Ejercicios de Análisis de Regresión 17-20

Share Embed Donate


Short Description

Descripción: Estadística "Análisis de Regresión"...

Description

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS ADMINISTRATIVAS CARRERA DE ADMINISTRACIÓN DE EMPRESAS

MATERIA: ESTADÍSTICA BÁSICA

TEMA: EJERCICIOS CAPÍTULO 13

INTEGRANTES:

ARMIJOS ALEXIS MILLINGALLI ERIKA RAMOS EDISON ROJAS MARIUXI

CURSO: AE 4-4 DOCENTE: ING. LEONARDO SALVADOR

17. En un artículo reciente en BusinessWeek se enumeran las “Best Small Companies”. Nos interesan los resultados actuales de las ventas e ingresos de ellas. Se seleccionó una muestra de 12 empresas, y a continuación se reportan sus ventas e ingresos, en millones de dólares.

a) Trace un diagrama de dispersión.

b) Calcule el coeficiente de correlación.

VENTAS INGRESOS (millones (millones de de dólares) dólares) (X) (Y) 89.20 4.90 18.60 4.40 18.20 1.30 71.70 8.00 58.60 6.60 46.80 4.10 17.50 2.60 11.90 1.70 19.60 3.50 51.20 8.20 28.60 6.00 69.20 12.80 X´ =¿ 41.7 6 Y´ =¿ 5.34

X-

47.44 -23.16 -23.56 29.94 16.84 5.04 -24.26 -29.86 -22.16 9.44 -13.16 27.44

( X − X´ )2 2250.71 536.31 555.00 896.50 283.64 25.42 588.47 891.52 490.99 89.15 173.14 753.05 ∑ ¿ 75 33.89

n= 12

c) Determine la ecuación de regresión

¿r a

y

0.0836

b

b

Sy =¿ Sx

¿ ´y −b ´x =¿

¿ a+bx=¿

¿(0.6735) a

3.2475 =¿ 26.1706

1.8517 ¿ 5.34−0.0836( 41.76)=¿

y ¿ 1.8517+0.0836 x

Y-

Y´ -0.44 -0.94 -4.04 2.66 1.26 -1.24 -2.74 -3.64 -1.84 2.86 0.66 7.46

(Y −Y´ )2 (X0.20 0.89 16.34 7.07 1.58 1.54 7.52 13.26 3.39 8.17 0.43 55.63 ∑¿ 1 16.01

X´ )

-20.95 21.81 95.21 79.59 21.19 -6.26 66.51 108.73 40.81 26.99 -8.66 204.67 ∑ ¿ 629 .64

d) Estime los ingresos de una compañía pequeña con ventas por $50.0 millones. 6.0305 R/. En una compañía pequeña con ventas por $50.0 millones se estima ingresos por $6.0305 millones.

18) Se realiza un estudio de fondos mutualistas para fines de inversión en varios de ellos. Este estudio en desempeño a cinco años. La pregunta ¿ es posible determinar la tasa de rendimiento a cinco años con base nueve fondos mutualistas al azar, y sus activos y tasas de recuperación se muestran a continuación

Activos Rendimiento 622,2 10,8 160,4 11,3 275,7 11,4 433,2 9,1 437,9 9,2 494,5 11,6 158,3 9,5 681 8,2 241,3 6,8 Media x Media y

389,39 9,77

A) Trace un diagrama de dispersión

Diagrama de dispersión 20 Rendimiento %

10 0 100 200 300 400 500 600 700 800 Activos ( En millones de dólares)

b) Calcule el coeficiente de correlación (x-`x) 232,81 -228,99 -113,69 43,81 48,51 105,11 -231,09 291,61 -148,09

(x-`x)^2 54201,013 5 52435,911 2 12925,163 5 1919,4134 6 2353,3279 11048,345 7 53402,074 6 85037,040 1 21930,319

(y-`y)

(y-`y)^2

(x-`x)(y`y)

1,03

1,0678

240,571

1,53

2,3511

-351,116

1,63

2,6678

-185,692

-0,67 -0,57

0,4444 0,3211

-29,207 -27,490

1,83

3,3611

192,704

-0,27

0,0711

61,624

-1,57 -2,97

2,4544 8,8011

-456,857 439,330

295252,61

r=

∑ (x−´x )( y −´y ) =¿

21,54

0,0978579 5

-116,133

Sx

Sy

131,7870

1,1256

(n−1) S x S y

c) Escriba un reporte breve de sus resultados en los incisos a yb Según el diagrama de dispersión y el coeficiente de correlación podemos concluir que el rendimiento se mantiene constante con un ligero grado de disminución a medida que aumentan los activos d) Determine la ecuación de regresión. Utilice los activos como variable independiente

0,0008358 4 Sy 1,12 b=r b=−0,0978 =¿ Sx 131,78 a= ´y −b ´x =¿

10,092132 7

y=a+bx=¿ y = 10,0921 - 0,000835x

e) Para un fondo con $ 400 millones en ventas, determine la tasa de rendimiento a cinco años y=a+bx=¿ y = 10,0921 - 0,000835(400) =

9,7577975

19. Consulte el ejercicio 5:

a) 18,25

Nº de delitos 11,88

Sx= Sy= r=

5,87367 6,446206 -0,874396

Policías Σ

X´x 0,00

(X - ´x )^2 241,50

(y ´y ) 0,00

(y -

´y )^2

290,875

´x )(yy´ ) -231,7500

(X -

a = y - bx

y= b= a=

29,3932 - 0,959627 x -0,959627 29,3932

b)

(-0,959627)(20)

+29,3932= y

10,200066 ¿ y

c) Interpretación: Por cada policía adicional, los delitos disminuyen en casi uno. Técnica la del Positivo de /conocido Negativo las palabras: Interesante /Negativo/Interesante. Es un desarrollo de ó Edward PNI es una de técnica del básica de decisión "beneficios ypositivo pérdidas" usado universalmente. Cuando 'Negativo', Ud., eBono 'Interesante'. se encuentre con una decisión, haga una tabla con columnas 'Positivo', En Luego la columna en 'Negativo' liste todos los los puntos puntos positivos. negativos. negativas. En la columna Interesante las implicaciones extendidas, sean positivas Valorice vaya su saltando PNI de lo positivo lonegativos. negativo, etc. Haga elledecisión ejercicio encon forma secuencial. Ud. positivos puede y7reducción decidir 0Positivo, acasa 10 de con su tabla números óentre incluir un puntaje subjetivo de 0las asi10 números Finalmente tomada caso sume de la un puntuación numero y/aliste tendrá 5Positivo yliste un resultado ó en si que su dirá su debe decisión ser evitada debe ser Ejemplo ¿Debo mudarme 1de centro de la capital ó10 permanecer las afueras de la ciudad? Positivo comodidades Negativo (+1) Interesante varios (+3) acceder aal lugares Fácil difícil de ver de acolumna mis padres un (+5) buen polución empleo (-4) yobtener soy alérgico No (-3) cerca aeropuertos (-2) Sin Conoceré garage nueva (-3) gente (+2) Mas Debo viaje vender hasta mi la oficina vieja (-4) y con mucho Podré hacer mantenimiento cursos en mi (+ tiempo 5) libre 9 -12 (+ +en 4) Total = 4la por lo cual me conviene mudarme 20. Consulte el ejercicio 6 a) Determine la ecuación de regresión. b) Estime el precio de venta de un automóvil de 10 años c) Interprete la ecuación de regresión a) Antigüedad

a= y=a+bx y=a+bx ´y −b ´x

Precio de

X-

(X -

´x

(y -

´y

(y -

´y )^2

(X -

´x )(y- ´y )

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF