Ejercicios Cauchy Euler

July 14, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Ejercicios Cauchy Euler...

Description

 

EJERCICIOS DE COMPROBACION 1) EJERCICIO 1: RESOLVER:

  +2 2=0

 

SEA:

 =  =− =1−

REEMPLAZANDO EN LA ECUACIÓN DIFERENCIAL:

   1− +2− 2 = 0

 

   −    1+2  2 ]==00   [ +22  [ +22] = 0   [ +22] = 0   [ +2] = 0 

 +2=0 +21=0  = +1  = 2  

 

 ^

 

 =   +    =  + −

SOLUCIÓN GENERAL

RAICES REALES DISTINTAS

 

 

  2) EJERCICIO 2: 

: "+3′+=0  

 

Sea:  

== − "=1−    ó [  1−] + 3[−] +  = 0   1 +3 +  = 0 [1+3+1=0 1 +3+1 +3+1]] = 0  +3+1=0  +2+1=0  + 1 + 1 = 0  == 11       = −+ −  =  +   ó   

 

 

 

 

 

 

 

 

 

   

 

 

 

PÁGINA 1

 

 

3) EJERCICIO 3:

 "′+=2   ℎé "′+=0 == − − "=1    ó [  11−]+[ =−0 ] +  = 0 [1+1=0 1 +1] = 0  +1=0 2+1=0 = 11  1 = 0   = 1     == ++         ==++ ó        ó   

 

 

 

Sea:

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 (Solución  

 

   ==|  |  ==| 0 |   = |  0|   ==1 =     =1+ 

PÁGINA 2

 

 

   ó       á     "′+=2/ "" 1 ′′++ 1  = 2 2  =     0 0          2 2  = 1 1 +   =  1+   = 1    == 1+ 1+  1  =+=  = 01+ 1+  2   =02=2  =  =  (2)  10 =20=2  = 

 

 

 

 

 

 

 

 

 

 

 

 = 2      = 2 2  ∫  = ∫ 2   ∫  = ∫      =   =2   + 2     ==  2   +2  

 

 



 

 



 

==+      =  + + ó ó   

 

PÁGINA 3

 

 

EJERCICIOS DE EXTENSIÓN Resolver: 1.-

2.

 "′+= "′+=  "+′=  "′+=

 

 

 3.-

 

4.-

 

5.-

      "+′  = 

PÁGINA 4

 

 

BIBLIOGRAFÍA (ANÁLISIS MATEMÁTICO IV- EDUARDO ESPINOZA RAMOS) https://www.academia.edu/33808323/Ecuaci%C3%B3n_dif https://www.academia.edu/33808323/Ec uaci%C3%B3n_diferencial_de_Cauc erencial_de_CauchyhyEuler?fbclid=IwAR11PYf4i Euler?fbcl id=IwAR11PYf4iZS5aiNW8nlRFkM ZS5aiNW8nlRFkM1xyiMSgCfuv1E 1xyiMSgCfuv1EWFKS15CPPVTM WFKS15CPPVTMUmiv75-OVY4 Umiv75-OVY4

https://www.academia.edu/17873488/ECUAC https://www.academia.edu/178 73488/ECUACI%C3%93N_DE_CA I%C3%93N_DE_CAUCHYUCHYEULER?fbclid=IwAR3Ap EULER?fb clid=IwAR3ApzP3PE1VEA93JXRKJ8Hl zP3PE1VEA93JXRKJ8HlOhlBOF-RxUOG OhlBOF-RxUOGkeGzSTQMhT keGzSTQMhT1A6_U1A6_U3786FvA

PÁGINA 5

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF