Ejercicios 11-20 Sap
April 9, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Ejercicios 11-20 Sap...
Description
00. C`acua`r a` prksnói bk `pkrtur` (Xvj y Xvj màxnm`) p`r` c`b` ui` bk a`s snfunkitks vàavua`s bksl`a`ick`b`s, bjmj cji I< y jpkr`b`s pjr prksnói bka f`s bk niykccnói, cji fr`vkb`b kspkcnenc` bk 8.5; (`nrk = 0.8). Cjisnbkr`r \ = 8.0>5;, (0\=8.483;) cji a` snfunkitk niejrm`cnói7 Uàavua`
XbH58 ¸E
Xt, psn
Rkmpkr`tur` ` a` prjeuibnb`b bk a` vàavua` (¸E)
C t
0
688
62.06 psn
3
5;8
2;8
0;8
8.434
4;;. psn
2
588
;88
0;;
8.438
666.2 psn
Ij.
Xvj, psn
C`acua`r a`s Xb ` cjibncnjiks bk RX p`r` c`b` tkmpkr`tur`7 Xb H 58 ¸ E Xb H Rp = (Sk utnanz` a` t`la` 38.0 p`r` jltkikr C t
C t 0 H 028 ¸ E =8.4;3
X b 0=
C t < H 02;¸ E =8.42;
X b >.56 psn
Xv j 0= Xv j 5; ) 8.483;
66;.5;
= >684.;6 psn
∜( 2;8 )( 8.0>5; ) 8.483;
=4;;. psn Xv j = 2
65; ) 8.483;
C`acua`r ka kekctj bk tulkrí` bk prjbuccnói (R.K) p`r` c`b` cjibncnói7 R . K = Xt
\ 0∜ \
R . K0=5;
R . K3= 2;8 R . K2 =;88
8.483; 8.0>5; 8.483; 8.0>5; 8.483;
= 24.>0 psn =4;.;> psn =008.82 psn =05;.32 psn Xv j m`x 2 =666.2 + 0 8.>3;>
∜
>02.6
∖8.8520
8.>3;>
=;63.;63 psn
02.6
∖8.8520
8.>3;>
=2; )=34 psn
Bk a` t`la` 38.0 sk jltnkik C t = 8.48> H 068 ¸ E Xb H Rpjzj =
Xb H 58 ¸ E 34 psn = =
C`acua`r Xvj7 Xvj=
Xb Xc∖ \ 02.6∖8.8520 + St ∜ = + 388 psn ∜ =;83;> 8.>3;>
05. B`bj ajs snfunkitks b`tjs7
Uàavua` jpkr`b` pjr ajs eaunbjs bk a` ejrm`cnói Xb = ;88 psnf = ;02.6 psn Xrksnói ki ka c`snif = 6;8 psnf = 652.6 psn Uàavua` bk 0 ½” x ±” Àrk` bka eukaak ` 8.65; n i \ = 8.8520, 0-\ = 8.>3;> <
C`acua`r7 @) A` prksnói prksnói bk `pkrtu `pkrtur` r` bk a` a` vàavua` vàavua` (Xvj)7 (Xvj)7 Xvj=
Xb Xc∖ \ + St ∜ 0∜ \ 0∜ \
;02.6
Xvj=
652.6
psn ∜
8.>3;>
Bklnbj ` quk a` vàavua` sjaj kstà c`rf`b` cji bjmj, sk kanmni` St (tîrmnij bka rksjrtk bk a` kcu`cnói)
8.8520
psn∖
8.>3;>
= 2>6.;64 psn
prksnói bk cnkrrk cnkrrk bk a` vàavua` vàavua` (Xvc) (Xvc) L) A` prksnói Xvc = Xb Xvc =;02.6 psn
06. B`bj ajs snfunkitks b`tjs7 Uàavua` jpkr`b` pjr ajs eaunbjs bk a` ejrm`cnói Xrjeuibnb`b = 2888 et Rkmpkr`tur` bk ejibj = 038¸E Xrksnói ki a` supkrencnk bka c`snif = 688 psnf = 602.6 Uàavua` 0 ½ x ± Ỻ f bk 8.5; Xrksnói bk `pkrtur` bk a` vàavua` bk ;88 psn ` 2888 et = Xvj \ = 8.8520, 0-\ = 8.>3;>
C`acua`r a` prksnói prksnói bk `pkrtur` ki ka t`aakr p`r` ajs snfunkitks s nfunkitks c`sjs7 `) C` C`rf rf`` bk Int Intróf rófki kijj ` 48¸E 48¸E77 Xvj=
(
Xb =
(
)
Xb Xc∖ \ Xc∖ \ ∜ ∖( 0∜ \ ) ? Sk bkspkg` Xb y sk jltnkik7 Xb = Xvj + 0∜ \ 0∜ \ 0∜ \
;88 psn
+ 602.6
)∖(
psn∖8.8520
8.>3;>
8.>3;>
) =;03.65>.85>.85< psnf Xb H 48 ¸ E ≄ 2;4.552 psn = 0 ∜ \ 8.>3;>
l) Uàavua` cji rksjrtk Xc∖ \ Xc ∖ \ Xvj= St ∜ ? Sk bkspkg` St b`ibj7 St = Xvj + 0 ∜ \ 0∜ \ St =;88+
∖
602.6 8.8520 8.>3;>
=;24.>; psn
Cjmj sjaj pjskk rksjrtk kitjicks7 Xtrj= St Xtrj=;24.>; psn
c) Cji rksjrt rksjrtkk (3;8 psn) psn) y bjmj bjmj c`rf`bj c`rf`bj cji cji intrófk intrófkij ij Xvj=
(
Xb =
(
)
Xb Xc∖ \ Xc∖ \ + St ∜ ∖( 0 ∜ \ ) ? Sk bkspkg` Xb b`ibj7 Xb = Xvj ∜ St + 0∜ \ 0∜ \ 0 ∜ \
;88 psn
∜3;8 psn + 602.6
)∖(
∖8.8520
8.>3;>
8.>3;>
)=045.0>6 psn
Cjmj Xb 1 H 038¸ E
Xb H 58 ¸ E =C t ∖ Xb H Rpjzj= 8.45>∖045.0>6 psn =050.48; psn Xtrj Xtr j=
Xb H 58 ¸ E 050.48; psn + St = + 3;8 psn =;
04. Ki ui pjzj ` ui` prjeuibnb`b bk 6888 et sk nist`a`rà ui` vàavua` bk L.I. bksl`a`ick`b` jpkr`b` pjr eaunbjs y sk bksk` quk a` prksnói bk `pkrtur` ki ka t`aakr sk` bk ;88 psn ` 58 ¸E `bkmàs sk tnkiki ajs snfunkitks b`tjs7 • Uàavua` bk 0 0/< x 3/4 ni • Àrk` bk eukaaks = 8.65; ni< • Rkmpkr`tur` ` a` prjeuibnb`b bk a` vàavua` = 068 ¸E • Xrksnói ki a` R. \. = 0888 psn • Fr`vkb`b kspkcnenc` bka f`s bk niykccnói = 8.6 (`nrk = 0.8) C`acua`r A` prksnói bk `pkrtur`, psn, ` a` prjeuibnb`b bk a` vàavua` p`r` ajs c`sjs snfunkitks7 `) Uàavua` c`rf`b` ki ka bjmj cji I< ` 58¸E.
\ =
@l = @p
(
8.36; 2
<
∖ψ )
.65;
=8.02 8.02 2
Cjmj sjaj sk tnkik ka bjmj, ka tkrmnij St bk a` kcu`cnói bk Xtrj ks c`icka`bj, qukb`ibj Xtrj Xtr j=
Xb H 58 E 0∜ \
^ `a bkspkg`r XbH 58¸E X b H 58 E = Xtrj ( 0∜ \ )=;88 ( 0∜8.022 )= 2, Kitjicks X b H Xjzj=
Xb H Xjzj 2
Eni`amkitk p`r` jltkikr Xvj Xb Xc∖ \ ( Kanmni`ibj ka tkrmnij St pukstj quk sjaj tnkik bjmj ) ∜ X vj = 0 ∜ \ 0∜ \ Xvj=
(∜ )( ;.82 0
.022
∜
0888
)=
∖.022
∜.022
0
22>.40 ps
l) Uàavua` c`rf`b` ÷inc`mkitk cji rksjrtk. rksj rtk. @a sjaj cjit`r cji rksjrtk kitjicks tkikmjs quk X trj= St y St =;88 psn
Jltkikr Xvj
Xc∖ \ ( Ka tkrmnij tkrmnijbk bk Xb ks kanmni`bj pukstj quk sjaj tnkik rksjrtk rksjrtk ) Xvj= St ∜ 0 ∜ \
(
Xvj=;88∜
∖
)=
0888 .022
∜.022
0
330.66 psn
c) Uàavua` c`rf`b` cji rksjrtk (St = 388 psn) y bjmj cji I< ` 58 ¸E. Bklnbj ` quk ks Bjlak kakmkitj bk c`rf`, kst` vkz ` a`s kcu`cnjiks ij sk aks kanmni`r` inif÷i tkrmnij, kitjicks Xtrj Xtr j=
Xb H 58 E + St 0∜ \
Bkspkg`mjs XbH 58¸E Xb H 58 E =( Xtrj∜St ) ( 0 ∜ \ )=( ;88 ∜388 ) (0 ∜.022 ) =060. Xb H Xjz j 060.< Xb H Xjzj = = 48>
Eni`amkitk, p`r` jltkikr Xvj Xvj=
Xb Xc∖ \ + St ∜ 0∜ \ 0∜ \
Xvj=
(∜ ) 4 psn
0>. [i` vàavua` bk L.I. c`rf`b` cji rksjrtk (St = 2;8 psn), bjmj cji I< ` 58¸E y jpkr`b` pjr eaunbjs, sk ajc`anz` ki ui pjzj ` ui` prjeuibnb`b bk 2688 et y sk cjijck a` snfunkitk niejrm`cnói7 •
Uàavua` bk 0 0/< x ;/05 ni
•
Àrk` bk eukaaks = 8.65; ni<
•
Xr Xrkksnói snói bk `p `pkr krttur ur`` ` a` prj prjeu euib ibnnb` b`bb bk bk aa`` vàa vàavu vuaa` = >< >>888 psn psn
•
Rkmpkr`tur` ` a` pr prjeu euiibnb`b bk bk aa`` và vàavu vuaa` = 02; ¸E
Kicjitr`r7 `)
Xrkksn Xr snói ói bk bkaa bj bjmj mj bk a` và vàaavu vuaa` ` 58 58¸E ¸E,, ps psnn. <
\ =
@l = @p
(
8.3088 .088 ( 0∜.088 )=;03 psn 0∜.088
Bk a` t`la` 38.0 sk jltnkik ka v`ajr bk Ct, aj quk skrí` nfu`a. Ct = 8.42; Xb H 58 E =Ct ( Xb H Xjzj )=8.42; ( ;03 )= 233.24; psn
l)
Xrksnói bk cnkrrk ` a` prjeuibnb`b bk a` vàavua`, psn.
@panc`ibj a` ejrmua` bnrkct`mkitk tkikmjs Xvc = Xb + St ( 0∜ \ ) Xvc =;03+ 2;8 ( 0∜.088 )=>04 ps
X b H 58 E =Ct ( Xb H Xjzj )=8.45> ( ;0>.< )= 2;0.04 psn X trj= X trj=
l)
Xb H 58 E ( Ka tkrmnij St ks kanmni`bj pjrquk ij tnkik rksjrt rksjrtkk) 0 ∜ \ 2;0.04
∜.852
0
=24 (
View more...
Comments