Ejercicio de Lineas de Aducción Por Gravedad
Short Description
Descripción: diseño de acueductos...
Description
EJERCICIO DE DISEÑO DE LÍNEA DE ADUCCIÓN POR GRAVEDAD Realizar el diseño de la línea de aducción mostrada en la vista en planta.
FUENTE
D
E
A B
C F
G I H
Datos Topográficos de la Comunidad Punto
Cota (msnm)
Tramo
Longitud (m)
Fuente A B C D E F G H I
Nivel Mínimo = 200 120 85 160 145 110 130 110 120 40
Fuente-A A-B B-C C-D D-E C-F F-G G-H G-H H-I
4000 1500 3500 2000 2000 800 5000 2500 3500
Otras Informaciones de Proyecto: 1.- La comunidad ubicada en E tiene una población de diseño de 10.000 hab. 2.- La comunidad ubicada en I tiene una población de diseño de 5.000 hab. 3.- En E, la aducción descargara en un tanque metálico elevado, de altura de torre más cámara de almacenamiento de 15 metros, y con requerimiento de presión mínima en la descarga de 7 mca. 4.- En I, la aducción descargara en un tanque de concreto sobre terreno, con altura de 4 metros, y con requerimiento de presión mínima en la descarga de 10 mca. 5.- Solo existe disponibilidad en depósito de tubería PEAD sdr 17. 6.- La dotación se establece en 200 LPD.
UNEFM - CURSO DE ACUEDUCTOS Y CLOACAS – ING. CARLOS MARTINS
Resolución: Se determina la carga hidráulica para todo el recorrido. Perfil Fuente -E 250
200
40
55
115
80
90
150
100
50
0 0
4000
5500
9000
11000
13000
Perfil C-I 200 180
40
70
90 90
80
160 160
160 140 120 100 80 60 40 20 0 9000
9800
14800
17300
20800
Se puede apreciar que para todo el recorrido, la carga hidráulica es positiva, por lo tanto la fuente domina el perfil, y en teoría la conducción será por gravedad. Posteriormente determinamos los gatos de diseño, sabiendo que:
Qdis = Qmd =
10.000 ℎ ∗ 200 86.400
= 23,15 /
= 1,25 ∗ 23,15 = 28,94 /
=
5.000 ℎ ∗ 200 86.400
= 11,57 /
= 1,25 ∗ 11,57 = 14,46 /
Ahora bien, sabemos que el tramo desde la fuente hasta C, deberá transportar el gasto que demandan la comunidades ubicadas en E y I. Por lo que los gastos de diseño quedaran expresados por: − = 28,94 + 14,46 = 43,40 / − = 28,94 / − = 14,46 /
Establecidos los gastos de diseño, fijaremos los tipos y clases de tuberías a usar en función de las presiones máximas de trabajo. Para ello y en función de la carga hidráulica disponible seleccionamos las tuberías, pero según indicaciones solo disponemos de tubería de PEAD que soporta máximo una presión de 105 mca. En el primer perfil observamos, que en el tramo A-B se presentan presiones de 115 mca, por lo que deberemos instalar algún dispositivo que permita el uso de la tubería disponible, pudiendo ser estos una Tanquilla Rompe Carga (TR) o una Válvula Reductora de Presión (VRP). La TR es más económica, por lo tanto será el dispositivo que se usará.
Cota de Fuente = 200 msnm Cota de TR = 190 msnm TR
30 105
UNEFM - CURSO DE ACUEDUCTOS Y CLOACAS – ING. CARLOS MARTINS
Fijada la TR en ese perfil, se puede apreciar que se usara la tubería de PEAD sdr 17 para el resto del recorrido. En cuanto al otro perfil, se aprecia que al final del tramo las presiones también sobrepasan el máximo permitido por la tubería, por lo cual se fijara otra TR.
Nueva Línea de Presión Estática, dada por la TR previamente 30 105
150 TR2 Cota de TR2 = 85 msnm 45
Fijada la segunda TR, procedemos al dimensionado de las tuberías, teniendo ya la configuración definitiva de los elementos de la aducción.
Perfil Fuente -E 250
200
Fuente
Cota de TR1 = 190 msnm C
150
D
A
100
E B
50
0 0
4000
5500
9000
11000
13000
Tramo Fuente – TR1: = =∝ , ∝=
∝=
,
10 500 ∗ (43,40),
= 0,00001869
∝ = 0,000008081 → ∅ = 200 ∝ = 0,00003280 → ∅ = 150 =
∝ ′
,
(∝ ∝ ),
=
10 0,00003280 ∗ 500 ∗ 1,05 ∗ (43,40), (0,000008081 0,00003280) ∗ (43,40),
= 319 ∅ 200
= = 500 319 = 181 ∅ 150
Tramo TR1 – C: ∝=
30 = 0,000003299 8500 ∗ (43,40),
∝ = 0,000002729 → ∅ = 250 ∝ = 0,000008081 → ∅ = 200 =
30 0,000008081 ∗ 8500 ∗ 1,05 ∗ (43,40), (0,000002729 0,000008081) ∗ (43,40),
= 8237 ∅ 250
= = 8500 8237 = 263 ∅ 200
Tramo C – D: ∝=
15 = 0,00001483 2000 ∗ (28,94),
∝ = 0,000008081 → ∅ = 200 ∝ = 0,00003280 → ∅ = 150 =
15 0,00003280 ∗ 2000 ∗ 1,05 ∗ (28,94), (0,000008081 0,00003280) ∗ (28,94),
= 1587 ∅ 200
= = 2000 1587 = 413 ∅ 150
Tramo D – E: ∝=
13 = 0,00001286 2000 ∗ (28,94),
∝ = 0,000008081 → ∅ = 200 ∝ = 0,00003280 → ∅ = 150
UNEFM - CURSO DE ACUEDUCTOS Y CLOACAS – ING. CARLOS MARTINS
13 0,00003280 ∗ 2000 ∗ 1,05 ∗ (28,94), = = 1640 ∅ 200 (0,000008081 0,00003280) ∗ (29,94), = = 2000 1640 = 360 ∅ 150
Perfil C-I 200 180 160
C
140
F
120
H G Cota de TR2 = 85 msnm
100 80 60 40
I
20 0 9000
9800
14800
17300
20800
Tramo C – H: ∝=
40 = 0,00003441 8300 ∗ (14,46),
∝ = 0,00003280 → ∅ = 150 ∝ = 0,0002356 → ∅ = 100 =
40 0,0002356 ∗ 8300 ∗ 1,05 ∗ (14,46), (0,00003280 0,0002356) ∗ (14,46),
= 8716 ∅ 150
Al ser la longitud aportada mayor a la del tramo, se toma para todo el diámetro de 150 mm.
Tramo H – TR2: ∝=
35 = 0,0001632 1531,26 ∗ (14,46), ∝ = 0,00003280 → ∅ = 150 ∝ = 0,0002356 → ∅ = 100
=
35 0,0002356 ∗ 1531,26 ∗ 1,05 ∗ (14,46), (0,00003280 0,0002356) ∗ (14,46),
= 636 ∅ 150
= = 1531,26 636 = 895,26 ∅ 100
Tramo TR2 – I: ∝=
31 1968,74 ∗ (14,46),
= 0,0001124
∝ = 0,00003280 → ∅ = 150 ∝ = 0,0002356 → ∅ = 100 =
31 0,0002356 ∗ 1968,74∗ 1,05 ∗ (14,46), (0,00003280 0,0002356) ∗ (14,46),
= 1311 ∅ 150
= = 1968,74 1311 = 657,74 ∅ 100
Dimensionadas las conducciones, chequeamos el arreglo de las tuberías, quedando:
Perfil Fuente -E 250
200
Fuente TR1 C
150
D
A
100
E B
50
8737 m de 250 mm
263 m de 200 mm 3640 m de 200 mm
0
360 m de 150 mm 0
4000
5500
9000
11000
UNEFM - CURSO DE ACUEDUCTOS Y CLOACAS – ING. CARLOS MARTINS
13000
Perfil C-I 200 180 160
C
140
F
120
H
G
100
TR2
80 60 40
I
11142,26 m de150 mm
20
657,74 m de 100 mm
0 9000
9800
14800
17300
20800
Por último, determinamos las presiones de servicio en la conducción.
Tramo
Longitud (m)
Diámetro (mm)
Coef. Alfa
Clase de Tub.
Caudal (l/s)
J (m)
(m)
Fu - TR1 TR1 - A A-B B - B´ B´- C C-D D – D´ D´ - E C-F F-G G-H H – TR2 TR2 – I´ I´ - I
500 3500 1500 3237 263 2000 1640 360 800 5000 2500 1531,26 1311 657,74
250 250 250 250 200 200 200 150 150 150 150 150 150 100
0,000002729 0,000002729 0,000002729 0,000002729 0,000008081 0,000008081 0,000008081 0,00003280 0,00003280 0,00003280 0,00003280 0,00003280 0,00003280 0,0002356
PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD PEAD
43,40 43,40 43,40 43,40 43,40 28,94 28,94 28,94 14,46 14,46 14,46 14,46 14,46 14,46
1,46 10,22 4,38 9,45 2,27 8,17 6,70 5,97 3,68 22,97 11,48 7,03 6,02 21,70
1,46 10,22 14,60 24,05 26,32 34,46 41,16 47,13 30 52,97 64,45 71,48 6,02 27,72
∑J
Cota (msnm) 200 190
190 120
85 154,36 160 145 116,30 110 130 110 120 85 85 55 40
Presión Estática (m)
Presión Dinámica (m)
10 70 105 35,64 30 45 73,70 80 60 80 70 105 30 45
8,54 59,78 90,40 11,59 3,68 10,51 32,54 32,87 30 27,03 5,55 33,52 23,98 17,28
View more...
Comments