Dibuje unos cuantos periodos de cada una de las siguientes señales periódicas y calcule el coeficiente indicado de la serie de Fourier Tema a estudiar: Coeficientes de la serie de Fourier (Ambardar, capítulo 8):
ak para
a)
-2.5
-1.5
0.5
x ( t )=rect (t−0.5) con T=2
-0.5
0.5
|
1.5
1 1 1 1 1 a0 = ∫ x ( t ) dt= ∫ 1∙ dt= ∙ t 0.5 = ( 0.5−(−0.5 ) ) = T 2 −0.5 2 −0.5 2 2 a0 =
1 2 0.5
2 2 ak = ∫ x (t ) cos ( 2 πk f 0 t ) dt= ∫ 1∙ cos ( 2 πk f 0 t ) dt T T −0.5 0.5
ak = ∫ cos ( 2 πk f 0 t ) dt= −0.5
ak =
sen(2 πk f 0 t) 0.5 2 πk f 0 −0.5
|
sen ( 2 πk f 0 ( 0.5 ) ) sen(2 πk f 0 (0.5)) + 2 πk f 0 2 πk f 0
2.5
ak =
T=
sen ( πk f 0 ) πk f 0
1 1 1 ∴ f 0= = f0 T 2
sen ak =
( πk2 ) = 2 sen( πk2 )
πk 2
2 sen ak =
πk
( πk2 )
πk
bk para
b)
x ( t )=1+t , 0 ≤t ≤1 con T=1
2
1
0
1
a0 =
1
1
1 ∫ x ( t ) dt= 11 ∫ (1+t)∙ dt=∫ 1∙ dt+∫ t ∙ dt T 0 0 0
1
2
|
t 1 1 3 =1+ = =1.5 2 0 2 2
a0 =1+
a0 =1.5
1
2 2 bk = ∫ x (t ) sen ( 2 πk f 0 t ) dt= ∫ (1+t) sen ( 2 πk f 0 t ) dt T 10 sen ( 2 πk f 0 t ) dt ¿ sen ( 2 πk f 0 t ) dt t ∙¿ 1∙¿ 1
bk =2∫ ¿ 0
bk =
−cos ( 2 πk f 0 t ) 1 sen ( 2 πk f 0 t ) cos ( 2 πk f 0 t ) 1 + −t ∙ 2 πk f 0 πk f 0 0 0 ( 2 πk f 0 )
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.