EFEITO DE GRUPO EM ESTACAS.pdf
Short Description
Download EFEITO DE GRUPO EM ESTACAS.pdf...
Description
EFEITO DE GRUPO EM ESTACAS Pile Groups
Fernando Artur Brasil Danziger
Principais referências • Velloso e Lopes (2002) • Poulos e Davis (1980) • Reese e Van Impe (2001)
Efeito de grupo Análises correspondentes correspondentes • Recalques do grupo • Cap Capaci acidade dade de carg carga a do grup grupo o • Dist Distri ribu buiç ição ão de carg carga a nas nas esta estaca cass do do grupo
Efeito de grupo depende • Da interação das estacas através do solo (pile-soil-pile) interaction • Do processo de instalação das estacas → associado ao tipo de solo
Exemplo de efeito de grupo
Fig. 16.1 de Velloso e Lopes (2002) – Massa de solo mobilizada pelo carregamento (a) de uma estaca isolada e (b) de um grupo de estacas
Recalque de grupos sob carga vertical
• Recalque do grupo é maior (no máximo igual) ao recalque da estaca isolada (no caso de não consideração do efeito de instalação) • Obs.: grande maioria dos métodos não leva em conta o efeito de instalação das estacas
Recalque de grupos sob carga vertical • Artifício do Radier Fictício Primeira abordagem do problema de estimativa de recalques de um grupo de estacas → Terzaghi e Peck (1948) → radier fictício → fundação direta imaginada a alguma altura acima da base das estacas (dependendo de se as estacas trabalham mais por atrito ou por ponta) → objetivo é calcular o acréscimo de tensões em camadas compressíveis abaixo das pontas das estacas para um cálculo convencional de recalques (como o de fundações superficiais). Este esquema de cálculo é admitido pela norma brasileira NBR 6122/96.
Recalque de grupos sob carga vertical
• Artifício do Radier Fictício
Fig. 16.3 de Velloso e Lopes (2002) - Esquema de cálculo pelo ‘radier fictício’, com sugestões para a profundidade do radier
Recalque de grupos sob carga vertical
• Métodos Empíricos Métodos procuram definir uma razão ζ entre os recalques de um grupo de estacas, e aquele de uma única estaca sob sua parcela de carga no grupo. Obs.: proposições feitas para condições particulares e devem ser vistas com reserva. Skempton et al. (1953)
4 B g + 3 ξ = B g + 4
s Meyerhof (1959) s 5 − d 3 d ξ = 2 1 1
Bg = dimensão transversal do grupo
2
de estacas (em metros)
s = espaçamento entre estacas d = diâmetro das estacas nr = número de linhas de estacas num bloco quadrado
Recalque de grupos sob carga vertical
• Métodos Elásticos → principais contribuições de Poulos e colaboradores (Poulos, 1968; Poulos e Davis, 1980; Poulos, 1989); aplicaram a metodologia já exposta para estaca isolada (incluindo a integração da equação de Mindlin) ao problema do grupo de estacas Interação entre Duas Estacas
A interação em termos de recalque entre duas estacas iguais e igualmente carregadas pode ser expressa em termos de um fator de interação α , definido como
α =
recalque adicional provocado por uma estaca adjacente recalque de uma estaca sob sua própria carga
Métodos Elásticos – Poulos e Davis (1980)
Grupo de duas estacas flutuantes
Métodos Elásticos – Poulos e Davis (1980) Fator de interação entre duas estacas (Poulos e Davis, 1980) em solo homogêneo, meio semiinfinito.
K = Ep/Es para estacas maciças, rigidez relativa estaca-solo • A interação decresce com o aumento do espaçamento relativo • A interação cresce com o aumento da rigidez relativa estaca-solo • A interação cresce com o aumento da relação L/d
Métodos Elásticos – Poulos e Davis (1980) Fator de interação entre duas estacas (Poulos e Davis, 1980) em solo homogêneo, meio semiinfinito.
s
K = Ep/Es para estacas maciças, rigidez relativa estaca-solo • A interação decresce com aumento do espaçamento relativo • A interação cresce com o aumento da rigidez relativa estaca-solo • A interação cresce com o
Métodos Elásticos – Poulos e Davis (1980)
α = αF Nh
Fator de correção aos fatores de interação entre duas estacas (Poulos e Davis, 1980) para considerar camada de espessura finita de espessura h.
Podem ser aplicados a outros valores de K e L/d, sabendo que • quando L/d decresce, Nh decresce • quando K decresce, Nh cresce
Métodos Elásticos – Poulos e Davis (1980) Efeito de alargamento de base
Obs.: meio semi-infinito e estacas rígidas (K= ∞); para estacas não rígidas, o efeito do alargamento é menor, logo Ndb é menor que na
Métodos Elásticos – Poulos e Davis (1980) Fator de correção para o coeficiente de Poisson
α = αF N ν Obs.: interação aumenta com a redução do coeficiente de Poisson, o efeito é mais importante com o aumento de s/d
Métodos Elásticos – Poulos e Davis (1980) Comparação módulo constante com módulo linearmente crescente com a profundidade
Valor de αF para solo com módulo linearmente crescente com a profundidade é 20 a 25% menor que módulo constante (média do linearmente crescente)
Métodos Elásticos – Poulos e Davis (1980) Fator de interação entre duas estacas (Poulos e Davis, 1980) com pontas em solo muito rígido (end-bearing piles).
K = Ep/Es para estacas maciças, rigidez relativa estaca-solo • A interação decresce com o aumento do espaçamento relativo • De modo diferente das estacas flutuantes, a interação decresce com o aumento da rigidez relativa estaca-solo; para K=∞, não existe interação, já que a carga é toda transmitida para a base rígida • A interação decresce com a
Métodos Elásticos – Poulos e Davis (1980) Fator de interação entre duas estacas (Poulos e Davis, 1980) com pontas em solo muito rígido (end-bearing piles).
K = Ep/Es para estacas maciças, rigidez relativa estaca-solo • A interação decresce com o aumento do espaçamento relativo • De modo diferente das estacas flutuantes, a interação decresce com o aumento da rigidez relativa estaca-solo; para K=∞, não existe interação, já que a carga é toda transmitida para a base rígida A interação decr
Métodos Elásticos – Poulos e Davis (1980) • Efeito da compressibilidade finita da camada resistente Os fatores de interação de uma estaca com ponta em uma camada com uma compressibilidade finita terão valores entre os de uma estaca flutuante, αF, e os de uma estaca com ponta em um solo de rigidez infinita, αE.
α = αF – FE (αF - αE) FE depende de K, L/d e Eb/Es.
Métodos Elásticos – Poulos e Davis (1980)
Efeito da compressibilidade finita da camada resistente
Métodos Elásticos – Poulos e Davis (1980)
Efeito da compressibilidade finita da camada resistente
Métodos Elásticos – Poulos e Davis (1980)
Efeito da compressibilidade finita da camada resistente
Métodos Elásticos – Poulos e Davis (1980) Efeito da compressibilidade finita da camada resistente
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas • A análise de grupos de duas estacas pode ser estendida a um número qualquer de estacas, desde que todas as estacas no grupo se comportem de modo semelhante, isto é, que as estacas estejam posicionadas de modo simétrico em torno de uma circunferência e tenham cargas iguais (grupo simétrico). Resultados mostraram que o recalque adicional de uma estaca causado pelas outras estacas do grupo é quase igual à soma dos recalques causados por cada uma das estacas isoladamente. Ou seja, os fatores de interação individual podem ser superpostos, embora isto não seja teoricamente correto. • Assim, para um grupo de 3 estacas igualmente carregadas, dispostas em um triângulo equilátero, o acréscimo do recalque no grupo em relação ao de uma estaca isolada é igual ao dobro de um grupo de duas estacas.
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas • No caso de um grupo de 4 estacas dispostas em um quadrado, com cargas iguais, o deslocamento do grupo é dado por
ρ G
= P 1 ρ 1 ( 1 + 2α 1 + α 2 )
Sendo ρG = recalque do grupo, ρ1 = deslocamento da estaca isolada para uma carga unitária, P 1 = carga atuante em cada estaca, α1 = fator de interação para estaca com espaçamento s, e α2= fator de interação para estaca com espaçamento 1,41 s
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas • Embora os deslocamentos das estacas possam ser superpostos, deve ser observado que a distribuição de tensões cisalhantes é ligeiramente alterada pela interação e a proporção de carga da base cresce com o aumento do número de estacas • A aplicabilidade do princípio da superposição para grupos simétricos sugere que possa ser aplicado também para grupos quaisquer.
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas Para um grupo de n estacas idênticas
ρ k = ρ 1
n
∑ ( P α ) + ρ P j
kj
1
k
j =1 , j ≠ k
sendo
ρ k = recalque da estaca k do grupo ρ 1 = deslocamento de uma estaca com carga unitária α kj = fator de interação entre estacas k e j
Para estacas de características distintas, ver Poulos e Davis (1980)
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas A equação anterior pode ser escrita para as n estacas do grupo, fornecendo portanto n equações. De modo a se ter equilíbrio vertical, tem-se n
P G
= ∑ P j j =1
sendo P G
= carga total no grupo
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas Assim, tem-se n+1 equações, que podem ser resolvidas para duas condições: 1. Carga igual (ou carga conhecida) em todas as estacas, correspondendo a um carregamento sobre um bloco flexível 2. Recalque igual de todas as estacas, correspondendo a um carregamento sobre um bloco rígido
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas No caso 1, P j = PG/n, e a equação anterior que expressa ρk pode ser usada diretamente para calcular o recalque de cada estaca no grupo, possibilitando avaliar os recalques diferenciais entre as estacas. No caso 2, os valores de recalques para todas as estacas são igualados (n equações) e, juntamente com o equilíbrio de forças, obtêmse as cargas nas estacas e o recalque do grupo. Na prática, frequentemente o número de equações é reduzido pela simetria do estaqueamento.
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas Na maioria dos casos práticos, se apenas a estimativa do recalque do grupo é desejada, a consideração de bloco rígido tal como mencionado não é necessária. O recalque médio do grupo de estacas com cargas iguais é aproximadamente igual ao do grupo com o bloco rígido. Resultados da análise: 1. Em termos da relação de recalques Rs, sendo Rs = recalque médio do grupo/recalque de estaca isolada com a carga média do grupo 2. Em termos do fator de redução do grupo RG, sendo RG = recalque médio do grupo/recalque de estaca isolada com a carga total do grupo
Métodos Elásticos – Poulos e Davis (1980) Análise de grupos com n estacas
= nRG ρ G = R s P av ρ 1 ρ G = RG P G ρ 1
R s
sendo P av PG
= carga média da estaca no grupo = carga total no grupo
Exemplo de aplicação Estacas de concreto de 30 cm de diâmetro, cravadas à percussão. Prova de carga em estaca isolada forneceu 15 mm de recalque para uma carga de 50 tf. Determine o recalque do grupo. Sugestão: use a tabela 5.4 para estimativa de K.
Sugestão de valores de K (Poulos e Davis, 1980)
Métodos Elásticos – Poulos e Davis (1980) Exemplo de aplicação
Table 6.2 Theoretical values of Rs, friction pile groups, rigid cap, deep uniform soil mass (Poulos e Davis, 1980)
Table 6.3 Theoretical values of Rs, end-bearing pile groups, rigid cap, bearing on a rigid stratum (Poulos e Davis, 1980)
• • • •
Das tabelas 6.2 e 6.3: Rs aumenta quando s/d diminui Rs aumenta quando o número de estacas aumenta Floating groups: Rs aumenta quando K aumenta End-bearing groups: Rs aumenta quando K diminui
• Valores para outras quantidades de estacas podem ser interpolados das tabelas 6.2 e 6.3. • Para grupos com mais de 16 estacas, verificou-se que Rs varia aproximadamente linearmente com a raiz quadrada do número de estacas no grupo. Logo Rs pode ser extrapolado para n>25 como
R s
= ( R25 − R16 )(
n − 5) + R25
sendo
= valor de R s para grupo de 25 estacas R16 = valor de R s para grupo de 16 estacas n = número de estacas no grupo R25
Influência do tipo de grupo nos recalques do grupo (bloco rígido) (Poulos e Davis, 1980) RG, portanto o recalque do grupo, decresce com o aumento do número de estacas. Entretanto, com pequenos espaçamentos relativos, o uso de mais estacas para reduzir o recalque do grupo é ineficaz se o mesmo espaçamento for mantido.
Recalque versus largura do grupo, bloco rígido (Poulos e Davis, 1980) Em geral, observa-se que o recalque de um grupo em camada uniforme depende principalmente da largura do grupo. Assim, aumentar o número de estacas além de um certo limite vai reduzir o recalque apenas marginalmente, a menos que o espaçamento original do grupo seja maior que cerca de 6d. A figura ao lado e a seguinte mostram que, para grupos maiores, RG não varia muito com o número de estacas no grupo.
Recalque versus largura do grupo, bloco rígido (Poulos e Davis, 1980)
Obs.: Curva para 25 estacas pode ser usada como limite
Recalque versus largura do grupo, bloco rígido (Poulos e Davis, 1980) Resultados sugerem que, em solo homogêneo, se o recalque é o critério mais importante, é mais econômico usar um menor número de estacas mais espaçadas do que um menor número de estacas menos espaçadas.
Efeito da espessura da camada (Poulos e davis, 1980)
ξ h
=
R s para uma camada finita de espessura h R s para uma camada infinita
Outros efeitos em Poulos e Davis (1980) • Efeito da compressibilidade da camada suporte • Efeito do coeficiente de Poisson • Efeito da distribuição do módulo
Distribuição de cargas em grupos com bloco rígido (Poulos e Davis, 1980)
Valores de P/Pav Estacas flutuantes
Distribuição de cargas em grupos com bloco rígido (Poulos e Davis, 1980)
Notação
Distribuição de cargas em grupos Valores de com bloco rígido P/Pav (Poulos e Davis, 1980)
Estacas flutuantes
Distribuição de cargas em grupos com bloco rígido (Poulos e Davis, 1980)
Estacas flutuantes
• Cargas Cargas maiore maioress nos nos extrem extremos, os, meno menores res no no centro • Distrib Distribuiç uição ão meno menoss unifo uniforme rme quan quando do o espaçamento diminui, o número de estacas aumenta, L/d aumenta ou K aumenta
Efeito da presença de camada rígida, bloco com 9 estacas
Distribuição de cargas em grupos com bloco rígido (Poulos e Davis, 1980)
Valores de P/Pav Estacas com pontas em camada rígida
Distribuição de cargas em grupos Valores de com bloco rígido P/Pav (Poulos e Davis, 1980)
Estacas com pontas em camada rígida
Estacas assentes em camada rígida, bloco com 9 estacas
Distribuição de cargas em grupos com bloco rígido (Poulos e Davis, 1980)
Estacas assentes em camada rígida
• Distribuição menos uniforme quando o espaçamento diminui, o número de estacas aumenta, L/d aumenta, mas o aumento de K torna a distribuição mais uniforme
Exemplo de consideração de Eb/Es Distribuição mais uniforme quando Eb/Es cresce
Recalque de grupos sob carga vertical
• Métodos Elásticos → Método de Aoki e Lopes (1975)
O método de Aoki e Lopes (1975), também baseado na equação de Mindlin, pode ser aplicado a um grupo de estacas. Nesse caso, os efeitos - em termos de recalques e tensões - causados por cada estaca são superpostos no ponto em estudo (p. ex., um ponto imediatamente abaixo da base das estacas). É o mesmo procedimento descrito anteriormente para estacas isoladas, porém, estendido a várias estacas. Neste método, a interação entre estacas de grupos vizinhos pode ser avaliada.
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001)
Na literatura → várias propostas empíricas de redução do coeficiente de reação horizontal em função do espaçamento relativo
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001)
• Enfoque sugerido → extensão das curvas p – y para a análise de estacas em um grupo. À medida que as estacas são instaladas próximas, a eficiência diminui, a resistência última diminui e a curva toda sofre uma modificação. • Enfoque altamente dependente de dados experimentais • Vantagem: permitir solução não-linear
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001)
Conceituação
(a) estacas em linha, (b) estacas lado a lado, (c) estacas com um ângulo em relação à direção da carga (a) estaca 2 “na sombra” da estaca 3; “efeito de sombra” obviamente relacionado com espaçamento relativo
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001)
Conceituação
(a) estacas em linha, (b) estacas lado a lado, (c) estacas com um ângulo em relação à direção da carga (b) estaca 2 também influenciada pela presença das estacas 1 e 3, influência também relacionada com espaçamento relativo
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001) Side-by-side piles s e = 0.64 b
0.34
para 1 ≤ s/b ≤ 3.75, e = 1.0, s/b ≥ 3.75
Leading piles s e = 0.7 b
0.26
para 1 ≤ s/b ≤ 4.0, e = 1.0, s/b ≥ 4.0
Trailing piles s e = 0.48 b
0.38
para 1 ≤ s/b ≤ 7.0, e = 1.0, s/b ≥ 7.0
Efeito de grupo sob carga horizontal (Reese e Van Impe, 2001) Para estaca em outra condição e = ( ei2 cos 2 φ + e s2 sin 2 φ )2 sendo
= eficiência de estaca in - line e s = eficiência de estaca side - by - side φ = ângulo entre estacas ei
= ( e1 j )( e2 j )( e3 j )( e4 j )...( e Ij )...( e Nj ), I ≠ j α j = e j e j e p
= p
α
Capacidade de carga do grupo • Ver Velloso e Lopes (2002)
View more...
Comments