ECUACIONES DIFERENCIALES HOMOGENEAS ECUACIONES HOMOGÉNEAS. Si una función f tiene la propiedad f ( tx , ty ) = t f ( x , y ) α
para algún número real α , entonces se dice que es una función homogénea de grado α Por ejemplo f ( x, y) = x3 + y3 es homogénea de grado 3, por que 3
3
f ( tx, ty ) = ( tx ) + ( ty ) = t
3
(x
3
+ y 3 ) = t 3 f ( x, y ) Mientras que f ( x, y ) = x3 + y3 + 1 no es
homogénea. Una
ecuación
diferencial
de
primer
orden
en
forma
diferencial
M ( x, y ) dx + N ( x , y ) dy = 0 se dice que es homogénea si los coeficientes M y N a la vez,
son funciones homogéneas del mismo grado. En otras palabras la ecuación M ( x, y ) dx + N ( x , y ) dy = 0 es homogénea si:
M ( tx, ty ) = t M ( x, y ) y N ( tx, ty ) = t N ( x, y ) α
MÉTODO
SOLUCIÓN:
α
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Aplicamos las propiedades de los logaritmos para escribir la solución anterior en la forma ln
( x + y ) cx
2
=
y x
0⇒
2
( x + y ) = cxe y / x
Nota: Aunque se puede usar cualquiera de las sustituciones en toda ecuación diferencial homogénea, en la práctica probaremos con x = vy Cuando la funcion M ( x, y ) sea más simple que N ( x, y ) . También podría suceder que después de aplicar una sustitución, nos
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
EJEMPLO 4. Resuelva la ecuación diferencial ( y + x 2 + y 2 ) dx − xdy = 0 2 2 2 y = ux ⇒ dy = udx + xdu ⇒ (ux + x + u y ) dx − x(udx + xdu) = 0
x 1 + u 2 dx − x 2du = 0 ⇒
dx x
−
du
1+ u
2
=0
ln x − ln u + 1 + u 2 = c ⇒ u + 1 + u 2 = cx ⇒ y + y 2 + x 2 = cx 2
EJEMPLO 5. Resuelva la ecuación diferencial ( x3 + y 3 )dx − xy 2 dy = 0 con la condición
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
EJERCICIOS RESUELTOS 1) x xdy =
dy dx
− y = x2 + y 2
)
(
x 2 + y 2 + y dx ⇒ y = vx ⇒ dy = vdx + xdv ⇒
dv
1 + v2
=
dx x
Integrar lado izquierdo por su sustitución trigonométrica y lado derecho por tablas para obtener, después de revertir el cambio de variable. y + x + y = cx 2
2
2
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
5)
( y
2
− x 2 ) dx + xydy = 0
y = vx ⇒ dy = udx + xdu ⇒
dx x
=−
u
2u − 1 2
du ⇒ ln x = −
⎛ 2 y 2 ⎞ x ⎜ 2 − 1 ⎟ = c ⇒ 2 x 2 y 2 − x 4 = c ⎝ x ⎠ 4
t ⎛ ⎞ y 6) e ( y − t ) dy + y ⎜ 1 + e ⎟ dt = 0 ⎜ ⎟ ⎝ ⎠ dy eu + 1 t uy ⇒ dt udy + ydu ⇒ ⇒ eu +u t
y
z
1 4
ln 2u 2 − 1 + ln c
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
u2
⇒ xdu =
u2 +1
Pero u =
y x
⇒−
u2 +1
⇒
u
2
x 2 + y 2 y
du =
+ 1n
dx x
⇒⇒ −
x 2 + y 2 x
+
y x
1+ u2 u
= 1nx + c
11) ( x − y ) dx + xdy = 0
( x − y ) dx + xdy = 0 (
)
dy
0
dy
y−x
dy
y
+ 1n 1 + u 2 + u = 1nx + c
1
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
⇒ x + ( y − 2 x )
dy dx
=0⇔
dy dx
=−
x y − 2x
⇔
dy dx
=
x
2x − y
⇔
dy dx
=
1 2−
y
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
⇒ x
dv dx
=
v
2 + 2v
−v ⇔ x
dv dx
=
v − 2v − 2v
2 + 2v
2
2 + 2v 1 −v − 2v 2 ⇔x = ⇔ = dv dx 2 + 2v dx x −v − 2v 2 dv
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
⇒
dv v 2 + 2v
1
= − dx ⇔ ∫ x
⎡1 ⎤ 1 1 1 = −∫ dx ⇔ ∫ ⎢ − ⎥ dv = −∫ dx v ( v + 2) x x ⎣ 2v 2 ( v + 2) ⎦ dv
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
⇒ 2udx = ( 3u + u ) dx + x ( 3 + u 3 ) du ⇔ 2udx − ( 3u + u 4 ) dx = x ( 3 + u 3 ) du ⇒ ( 2u
( 3v + u ) ) dx 4
(
x 3+u
3
) du ⇔ ( 2u
3u u 4 ) dx
(
x 3 +u
3
) du
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2
⎛ y⎞ ⇒ v = 2 ln x + c ⇒ v = ⇒ ⎜ ⎟ = 2 ln x + c x ⎝x⎠ 2
y
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Titles you can't find anywhere else
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.