Ecuaciones Diferenciales de Primer Orden 100% Final PDF

November 17, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Ecuaciones Diferenciales de Primer Orden 100% Final PDF...

Description

 

 

’BÒM D@ IB PEOS@^XBIO[BHOME D@ IB XBIPD‑ 

T^BNBKM D@ @HPBHOME@X DOC@^@EHOBI@X D@ Z^OA@^ M^D@E; BZIOHBHOME@X B IB OEG@EO@^ÁB RPÁAOHB OET@G^BET@X; HFB^B ^MRP@ KPDOTF _MIO HFBÒO A@^AB, BAÁIHB^ F@E^_ HMBRPO^B FOIB^OM, C^BEL IPOX HBIBEHF@ D@IGBDM, KBO^ C^BEL FPBABEO CIM^@X, GMIN@^ B^OXTOD@X RPOEHFM HFPHTB_B, MIOS@^ IPOX XPHBXBHB AO^BAO^B, HB^IMX DBEO@I S@ETP^B HFBHBIIB, N^_BE ABP^OHOM

PEOS@^XODBD EBHOMEBI D@ XE BGPXTOE

CBHPITBD OEG@EO@^OB D@ Z^MH@XM @XHP@IB Z^MC@HOMEBI D@ OEG@EO@^OB A@TBIP^GOHB BXOGEBTP^B D@ @HPBHOME@X DOC@^@EHOBI@X 2

 

 

@hubhome`s doc`r`ehobi`s d` proa`r mrd`e; Bpiohbhome`s b ib Oeg`eo`ráb Ruáaohb 

Ibs `hubhome`s doc`r`ehobi`s bpbr`h`e hme auhfb cr`hu`ehob cr`h u`ehob `e auhfbs mtrbs bsogebturbs hmam amd`ims qu` p`raot`e `studobr prmpo`dbd`s d` ib abt`rob y prmh`sms d` oet`rïs `e Oeg`eo`ráb Ruáaohb. Hbdb prmni`ab topm sorv` pbrb dbr smiuhoøe b hbdb prmni`ab prmpu`stm. Im oapmrtbet` d` ims prmni`abs `s ib `xpiohbhoøe prmcuedb hme su amd`iozbhoøe abt`aâtohb. @e hmehiusoøe, hmehiuso øe, `i mnk`tovm d` `st` trbnbkm `s, pmr ueb pbrt`, amstrbr qu` ibs `hubhome`s doc`r`ehobi`s bpbr`h`e d` cmrab ebturbi `e hbetodbd d` prmni`abs d` oeg`eo`ráb o eg`eo`ráb quáaohb `e vbroms t`abs d` @hubhome`s doc`r`ehobi`s d` proa`r mrd`e; Bpiohbhome`s b ib Oeg`eo`ráb Ruáaohb ims qu` ims prmh`sms em sme `stbhomebroms. _ pmr mtrb pbrt` amstrbr qu`, `e ibs bpiohbhome`s, pmr im g`e`rbi, ib cmrab `e ib i b qu` s` `shron`e ibs `hubhome`s doc`r`ehobi`s, d`nodm b ib ib emtbhoøe qu` s` utoiozb, `s auy doc`r`et` d` ib qu` s` usb `e `i `studom abt`aâtohm d` ibs aosabs. Im emrabi `s qu` s` utoioh`e sáanmims qu` ems p`raotbe r`hmemh`r b soapi` vostb ims mnk`tms hme ims qu` `stbams trbnbkbedm, p`rm so`apr` d`n` `stbr hibrm huâi`s sme ibs vbrobni`s y hmestbet`s qu` oet`rvo`e` `e hbdb `hubhoøe. Biguems d` ims t`abs `e ims qu` s` bpiohb ibs `hubhome`s doc`r`ehobi`s hme; 2)  >)  8)  4)  0)  3)  7)  6) 

@hubhome`s Doc`r`ehobi`s `e Hoeïtohb Ruáaohb Nbibeh`s d` Absb y d` @e`rgáb @k`apims d` Nbibeh`s d` @e`rgáb Hmrr`ibhoøe d` ims pbrâa`trms hâihuim d` ib pr`soøe d` vbpmr Hbpbhodbd hbimrácohb d`i prmpbem ^`bhhome`s d` `quoionrom Horhuibhoøe d` ciuodms `e ueb r`d d` tun`rábs ^`bhtmr `ehbaosbdm `xmtïraohm

>

 

 

OEDOH@;

 HFB^B ^MRP@, KPDOTF _MIO  HFBÒO A@^AB, BAÁIHB^ F@E^_  HMBRPO^B FOIB^OM, C^BEL IPOX  HBIBEHF@ D@IGBDM, KBO^ C^BEL  FPBABEO CIM^@X, GMIN@^ B^OXTOD@X  RPOEHFM HFPHTB_B, MIOS@^ IPOX  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  S@ETP^B HFBHBIIB, N^_BE ABP^OHOM 

Zbgoeb

4-26 2?->? 8:-86 8?-04 00-30 33-77 76-66 6?-2::

8

 

 

2)  HFB^B ^MRP@ KPDOTF Pebd`pøsotm smiuhoøequ` d` sbiau`rb d` sbi ciuy` rbzøe I/aoe. fbhob oet`romr ue oeohobia`et` hmeto`e` 0: I d`hmestbet` smiuhoøe d` d` 3sbiau`rb `e ib`ihubi s` d` dosmivo`rme 0Lg d` sbi .Ib smiuhoøe hmet`eodb hmet`eodb `e `i d`pøsotm s` abeto`e` no`e bgotbdb y ciuy` fbhob `i `xt`romr hme ib aosab rbpod`z .Xo ib hmeh`etrbhoøe d` sbi `e ib sbiau`rb qu` `etrb `e `i d`pøsotm d`pøsotm d` :.0Lg/I d`t`raoe`r ib hbetodbd d` sbi sbi pr`s`et` `e `i d`pøsotm bi hbnm d` t aoeutms ao eutms ½hubedm bihbezbrb ib hmeh`etrbhome d` sbi `e `i d`pøsotm d` vbimr d` :.8 Lg/I = Xmiuhome

  .   3:.0                  3  0: :708  >00    708 >0    >0  708  28 ie708  >0  

 

 

 

 

 

 

 

∞  >0 >0 ∞  

 

:  0 0>0 >: >0>:∞         0:  2>  >0 ∞   

 

 

 

∞ :.:.8:.>:.0:.44∞ 

 

 

 

4

 

 

:. 0 ∞    >0i8e>

 

 

>)  HFB^B ^MRP@ KPDOTF Peb bin`rhb huym vmiua`e d` 2: :::I hmeto`e` bgub hme :.:2% d` himrm hi mrm `ap`zbedm `e t1:, d`sd` ib houdbd s` nman`b bgub qu` hmeto`e` :.::2 %d` himrm, fbhob `i oet`romr d` ib bin`rhb rbzøe d` 0 I/aoe y `i bgub d`i bin`rhb ciuy` fbhob `i `xt`romr b ib aosab v`imhodbd. ½huâi `s `i pmrh`etbk` d` himrm `e ib bin`rhb hbnm d` 2 fmrb. ½hubedm t`edrb `i bgub d`i bin`rhb :.::>% d` himrm= Xmiuhome

 2:∞         0 2::  0 2: ::: :  :.:2 2:.:::2  2:: 2::.00::::    00: 2::.:::    2::.:::  00:  0:2 ie00:  2::.:::   ie00:      >::: 00:  ∞  :.2∞  :  2 2:. 2  :.∞?  :.2:.?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3:3:  :.?782:.  ℅ ℅::?7%

  0

 

 

 :.::>%    :.>,∞   ∳ :.>:.2:.? 2?  ∞ 

 

 

 

4.8?4,>.40:::i78.e?>4℅

 

3

 

 

8)  HFB^B ^MRP@ KPDOTF Ib hmrro`et` sbeguáe`b ii`vb ue a`dohba`etm fbhob `i oet`romr d` ue ørgbem b rbzøe d` 8ha8/s`g. y sbi` d` ïi b ib aosab v`imhodbd. @i ørgbem to`e` ue vmiua`e iáquodm d` 2>0 ha8. Xo ib hmeh`etrbhoøe d`i a`dohba`etm `e ib sbegr` qu` `etr` `e `i ørgbem `s d` :.> gr./ ha8 ½huâi `s ib hmeh`etrbhoøe d`i a`dohba`etm `e `i ørgbem `e `i oestbet` o estbet` t so oeohobia`et` em fbnáb v`stogoms biguem big uem d`i a`dohba`etm= ½hubedm ib hmeh`etrbhoøe d`i a`dohba`etm `s `i ørgbem s`râ d` :.2 gr./ ha8= Xmiuhome

 8. :,>8       2>0 :  :   :, 708 3 82>02>0    708 2>0    2>0    708  28 ie708  2>0  

 

 

 

 

 

 

 

 

     708 

 

 : : :>0 >0  >0>0  :.2         2>0  

 

 

 

 

 

7

 

 

:.2 2>0  2>.0  2>.0>0>0  

 

 

   2>.2>080>0 ie2>.2>.>00 ie  

 

  2>08 ie2>.>00 >6.662  

 

6

 

 

4)  HFB^B ^MRP@ KPDOTF

Dms sustbehobs quáaohbs B y N s` hmanoebe pbrb cmrabr ueb sustbehob H. Oeohobia`et` fby 4: grbams B y 0: qu` grbams N, y s` 2: sbn` qu` pmr d` N  e`h`sotbams > grbams d` B X`d` mns`rvb s` cmrabe grbams d` hbdb H `e 0grbam aoeutms. Xmiuhome

       28    >8 

 

 

 

 

 4:> 4: 8 > 0:2 0: 8 2   2>:>20:  :?: ,0 2:   ? 2>:>20:    2>:>20:  ?  2>:> 2>:>20: 20:  ?  2>:>20:  ?      ; 2   ?   2   26:20:  ?:2>:> 226: ie 2>:> 20:  ?   20:  2>:> 2>:>    

 

 

 

 

 

 

 

 

?

 

 

20::    0 : : , 2>:>: 20:2:  :>2:  .    2>:> 2>:> 20: 20:  2. > 0  .    2    20: 2>.0. >:.  20: 2>.2  0. >?.>7  

 

 

 

 

 

 

2:

 

 

0)  HFB^B ^MRP@ KPDOTF

Pe tbequ` d` 2::: gbime`s `stb oeohobia`et` ii`em d` bgub fbstb ib aotbd qu` hmeto`e` d` 2: in ymdm dosu`itm. Bgub purb `etrb bi tbequ` b ueb tbsb d` 3 gbi/aoe. Peb vâivuib bno`rtb p`raot` qu` `i bgub sbigb b ueb tbsb d` 2 gbi/aoe @ehu`etr` ib hbetodbd y hmeh`etrbhoøe d`i ymdm b ims 2::aoeutms d` r`nbisbr.

            0 2:2::∞  0 2 ::: :  :.2:::2 2.:::2   00: 2.:::   00:  2:. : ::    00:  00: 2:.:::  0:2 ie00:  2:.:::   ie00:   >::  

 

 

 

 

 

 

 

 

00:  ∞  :.:2 2 ∞  2:. 2  :.∞?  :.2:.?  3: :.?782:.:07%  

 

 

 

 

 

 

22

 

 

3)  HFB^B ^MRP@ KPDOTF

Dms sustbehobs quáaohbs V y _ s` hmanoebe pbrb cmrabr ueb sustbehob W. Oeohobia`et` fby 24: grbams d` V y >0: grbams _, y s` sbn` qu` pmr hbdb grbam d` _ e`h`sotbams > grbams d` V X` mns`rvb qu` s` cmrabe 2: grbams d` W `e 20 aoeutms.   Xmiuhome

       28    >8   24: >8 >0: 28    ? 2>:>20: : : ,20 2:   ? >>:>>0:    >>:>>0:  ?  >>:> >>:>  >0: >0:     ?    >>:>>0: ?     ; 2   26:>0: 2   ?    ?:>>:> 226: ie >>:> >0:  ?   >>:> >0:   : : , >>:>: >>:>: >0:: >0::   . 7 0  

 

 

 

 

 

 

 

 

 

 

 

 

  2>

 

 

>0:2:  >:>2: >>:> >0: >.70.   20: 24. 2>>>0..  .   2    20: 28.>0. 6?.80

 

 

 

 

 

 

28

 

 

7)  HFB^B ^MRP@ KPDOTF Peb comib huym vmiua`e d` >0 :::I hmeto`e` c`ebit`ebi`oeb hme :.:20% d` himrurm d` pmtbsom `ap`zbedm `e t1:, d`sd` ib houdbd s` nman`b c`emitbi`oeb qu` hmeto`e` :.:>:2 %d` himrm, fbhob `i oet`romr d` ib bin`rhb rbzøe d` 7 I/aoe I /aoe y `i bgub d` ib comib ciuy` fbhob `i `xt`romr b ib aosab v`imhodbd. ½huâi `s `i pmrh`etbk` d` himrurm d` pmtbsom `e ib bin`rhb hbnm d` 6 fmrb. ½hubedm t`edrb `i oedohbdmr d` ib comib :.::0>% hme himrm= Xmiuhome

   2: ∞           0 2::  0 >0 ::: :  :.2:::>:2 >0 :::  2   00: >0 ::: 70: 70:   >0:::  70:   >0 :::    0:2 ie70:  >0 :::: ie70:   0:::  

 

 

 

 

 

 

 

 

 ∞  70: 70:2 ∞  :.

   

:  2 2:.::0> :.?∞04>  :.::0>:.?     ℅ ℅ 3: :.?782:.::?7%  :.::>%    :.>,  ∳ :.>:.2:.?∞   

 

 

 

 

 

 

24

 

 

2?  ∞  >04.:::ie? 064.8?4,4064.>4℅  

 

20

 

 

6)  HFB^B ^MRP@ KPDOTF Ib dosmiuhome d` ueb sustbehob fbhob `i oet`romr d` ue ørgbem b rbzøe d` 0ha8/s`g. y sbi` d` ïi b ib aosab v`imhodbd. @i ørgbem to`e` ue vmiua`e iáquodm d` 270 ha8. Xo ib hmeh`etrbhoøe d` ib sustbehob `e ib sbegr` qu` `etr` `e `i ørgbem `s d` :.> gr./ ha8 ½huâi `s ib hmeh`etrbhoøe d`i a`dohba`etm `e `i ørgbem `e `i oestbet` t so oeohobia`et` em fbnáb v`stogoms biguem d`i a`dohba`etm= ½hubedm ib hmeh`etrbhoøe d`i a`dohba`etm `s `i ørgbem s`râ d` :.2: gr./ ha8= Xmiuhome

 8. :,2          :8 270  :  :  :, 3 8    0>8 2702>0    708 270    270    708  28 ie708  270  

 

 

 

 

 

 

 

 

708 :  : 

 

 

:>0 >0  >0>0  :.2:       :.>0 0 270

 

 

 

 

 

 

23

 

 

 2:.0  2:.0>0>0    2:.0>0  8 2:.0 8270ie ie2:.>0>00 270270ie 74.>02  

 

 

 

 

 

27

 

  ?)  HFB^B ^MRP@ KPDOTF Peb smiuhoøe d` fodrmxodm d` smdom d` sbi ciuy` rbzøe hmestbet` d` 2> I/aoe. fbhob `i oet`romr d` ue d`pøsotm qu` oeohobia`et` hmeto`e` 2:: I d` smiuhoøe d` bgub `e ib hubi s` dosmivo`rme 2:Lg d` fodrmxodm d` smdom .Ib smiuhoøe hmet`eodb ``e e `i d`pøsotm s` abeto`e` no`e bgotbdb y ciuy` fbhob `i `xt`romr hme ib aosab rbpod`z .Xo ib hmeh`etrbhoøe d` sbi `e ib sbiau`rb qu` `etrb `e `i d`pøsotm d` :.0Lg/I d`t`raoe`r ib hbetodbd d` sbi pr`s`et` `e `i d`pøsotm bi hbnm d` t aoeutms ½hubedm bihbezbrb ib hmeh`etrbhome d` sbi `e `i d`pøsotm d` vbimr d` :.8 Lg/I = Xmiuhome;

  .              2>:.0  2> 2:: :  >0   708 70 708 708   >0   708   >0  28 ie708  >0   >0∞  >0∞  :  0 0>0 ∞  >0>:>:        0:  2>  >0 ∞  ∞  :.8:.0:.4∞  :.>:.4∞     :. 0>0i8e>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

2) HFBÒO A@^AB. Baáihbr F`ery Pe abt`robi rbdobhtovm s` d`soet`grb b ueb rbzøe prmpmrhomebi b ib hbetodbd pr`s`et`. Xo oeohobia`et` fby 0: ag d` abt`robi y bi hbnm d` dms fmrbs s` mns`rvb qu` fb p`rdodm `i >:% d` ib hbetodbd oeohobi. Fbiibr ib hbetodbd d` absb `e hubiquo`r ama`etm t. XMIPHOME

   



 :  0:    ↞0:   ↞ 0: 0:  

 

Xustotuy`edm

 

Zbrb

t1>

s` huapi` qu`

y10:-2:14:

_b qu` `i >:% d` 0: 1 2: ag Xustotuy`edm

4:0:      ↞      ↞    > > 4:0: :,>>824800282 :,443>672:>3>  :,443>672:>3>0: ∞,  

D`sp`kbams L;

 

 

 

 

Xustotuy`edm

y T1> `e ;

2?

 

 

>) HFBÒO A@^AB, Baáihbr F`ery Ib hmrro`et` sbeguáe`b ii`vb ue a`dohba`etm fbhob `i oet`romr d` ue ørgbem b rbzøe d` 3ha8/s`g. y sbi` d` ïi b ib aosab v`imhodbd. @i ørgbem to`e` ue vmiua`e iáquodm d` 2>3 ha8. Xo ib hmeh`etrbhoøe d`i a`dohba`etm a`dohba`etm `e ib sbegr` qu` `etr` `e `i ørgbem `s d` :.> gr./ ha8 ½huâi `s ib hmeh`etrbhoøe d`i a`dohba`etm `e `i ørgbem `e `i oestbet` t so oeohobia`et` em fbnáb v`stogoms biguems d`i a`dohba`etm= ½huâedm ib hmeh`etrbhoøe d`i a`dohba`etm `s `i ørgbem s`râ d` :.> gr./ ha8= Xmiuhome

                 3.:,>3 2>3   :  :  2, > 8 2>3   ↞   202,2>3>8     202.202,>>88  2>3    28 ie2028  2>3   202.>8  :  : :  0:.4     0:.4  0:,40:,4  

 

 

 

 

 

 

 

 

 

 :.2       2>3 :.2 2>3  2>.3  2>.30:.40:.4 2>.30:.4  8 2>.3  2>32>3ie ie0:,4  

 

 

 

 

>:

 

 

  2>38 ie2>.0:,34   3,447070    

 

8) HFBÒO A@^AB, Baáihbr F`ery Xupmegb qu` 2>g d`i osmtmpm d`i piutoeom Zu;>8? s` `shbpbrme `e `i bhhod`et bhhod`et` ` euhi`br . ½Huâetm to`apm tmabrb pbrb qu` ims 2 2>g >g s` d`shmapmeg d`shmapmegbe be `e 8 8g g = Tma` `e hu`etb ims p`romdms d` d`shmapmsohome qu` pmst`romra`et` pmst`romra`et` s` dbe .

   





Xustotuoams ; _12> T1:

 

2> 2> 2>2 2>          ∞   

 

 

 

XPXTOTPOAMX

_10

t1>483: bòms

 

012>.

 

0/2>1

 

ie0/2>1ie

 

ie0/2>1

 

2/>483:.ie0/2>1l L1-8.00x

Xustotuoams

2>

 

y

 _18

L1-8.00x

∞

 

T1=

 ∞.  

 

∞.  / / ∞.  

 

>2

 

 

/.∞  ∞.        ò ò ie

 

 

(ie

 

4) HFBÒO A@^AB, Baáihbr F`ery Pe tbequ` d` 0::: gbime`s `stb oeohobia`et` ii`em d` bgub fbstb ib aotbd qu` hmeto`e` d` >0 in ymdm dosu`itm. Bgub purb `etrb bi tbequ` b ueb tbsb t bsb d` 2: gbi/aoe. Peb vâivuib bno`rtb p`raot` qu` `i bgub sbigb b ueb tbsb d` 0 gbi/aoe @ehu`etr` ib hbetodbd y hmeh`etrbhoøe d`i ymdm b ims 2>: aoeutms d` r`nbisbr. Xmiuhoøe;

           2:∞  : 3 :.0:::0 0.:3::2 0 :::   33: 0.:::    33: 0:.:::    0:.:::  33: 2   3:i3:ieie33: 33: 33: 33:   0:.>4: ::: ::   33:  ∞  ∞   :.3  :  2 2:. 3  :. 8 3  :. 3:.83 ∞ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>>

 

 

3: :.2,?670:.:6?%

 

0) HFBÒO A@^AB, Baáihbr F`ery Dms sustbehobs quáaohbs B y N s` hmanoebe pbrb cmrabr ueb sustbehob H. Oeohobia`et` fby 3: grbams d` B y 6: grbams N, y s` sbn` qu` pmr hbdb grbam grb am d` N e`h`sotbams 4 grbams d` B X` mns`rvb qu` s` cmrabe 20 grbams d` H `e 2: aoeutms. Xmiuhome

        28     >8   > 2    3: 8 6: : : 826:> ,↞2:2:>4: 20  ? 26:> 26:> >4: >4:   ?                   ↞  26:>>4: ?  26:>>4: ? ↞  26:>>4:   ?    ;  ?:?:26:> 26:> 2   26:26:>4: >4: 2 26:>   ?   ↞26:i 26:2 ie 26:> 26:> >4: >4:  ?   ↞ >4: : : 26:>: >4::   4:20  20 >4: ,  >4: 2.20 288,, 26:> 26:>  

 

 

 

}

 

 

 

 

 

 

 

>8

 

 

86. 2   .  >4: 20 80.>3  

 

 

3) HFBÒO A@^AB, Baáihbr F`ery (@stbdm em `stbhomebrom `e ue HXT^ hme sustbehob hmes`rvbtovb y vmiua`e hmestbet`). - Hmesodïr`s` ue HX^T qu` hmeto`e` 2::: i. d` bgub ioapob, fbhob `i qu` ueb smiuhoøe sbibdb d` sbiau`rb `apo`zb b ciuor b ueb u eb v`imhodbd hmestbet` d` 3 i/aoe. Ib smiuhoøe ciuy` fbhob `i `xt`romr d`i tbequ` b ib v`imhodbd d` 3 i/aoe. Xo ib hmeh`etrbhoø hmeh`etrbhoøe e d` sbi `e ib sbiau`rb qu` `etrb `e `i tbequ` `s d` 2 lgr/i, d`t`raáe`s` hubedm s`râ d` 2 > lgr/i ib hmeh`etrbho hmeh`etrbhoøe øe `e `i tbequ`. (vïbs` Co Cogurb gurb 7.8)

Xmiuhoøe;

    2::: 32/ao  32/aoee. .2 3/ /      3  8 2 8   33 ∞      ´´  2    ↞2´      ↞ 2::: 0:: 2  0:: ∞     2 ∞  ∞      2  `  2 /> ⇞ `    2/ >   0::8 > ≆220,0> ib hmeh`etrbhom/ie d`bi hbnmsbi `ed``i220‟oet`0ro>maor d`ieuttbmequ` s s`rb d` 2 > lgr  

 

 

 

 

 

 

>4

 

 

7) HFBÒO A@^AB, Baoihbr F F`ery `ery Pe d`pøsotm hmeto`e` 6:: gbi d` bgub y >0: gbi d` smiutms. X` vo`rt` bgub cr`shb `e `i tbequ` b ue gbstm d` 0 gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosab oet`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` smiutms dosaoeuyb >/2: d` su vbimr mrogoebi= Xmiuhoøe;

  :  2:0:0   0  : 2:0:      >2:  : ie >2: ie   ∞     ∞ >0:  >0:∞     

 

R; Hmeh`etrbhoøe d`i hmetbaoebet`

 

 

t1:

Fbiibedm (t1=) pbrb qu` ib hmeh`etrbho hmeh`etrbhoøe øe d` hmetbao hmetbaoebet`s ebet`s dosaoeuyb >/2:

 ∞  0:>0:  

ie >0:0:   >2:     886   

>0

 

 

6) HFBÒO A@^AB, Baoihbr F`ery Fbe d` `ecrobrs` 4083 i/f d` bhodm suicûrohm, F>XM4 (hbimr `sp`hIJcohm :‟83

lhbi/(lgr· mH) y d`esodbd r`ibtovb 260 lgr/i) `e ue HXT^ hmam `i qu` s` au`strb `e ib Cogurb 7.4. @i bhodm b 274 m H s` oetrmduh` `e `i tbequ` dmed` `s no`e bgotbdm bgotbdm `e hmetbhtm hme ue s`rp`etáe r`crog`rbet` d` âr`b 6 a> y qu` s` abeto`e` hmestbet`a`et` b ib aosab t`ap`rbturb d` >:mH. Ib hbpbhodbd d`i tbequ` `s d` 4083 i. d` bhodm y `i hm`coho`et` d` trbesaosoøe d` hbimr `etr` `i s`rp`etoeb y `i bhodm `s d` 380 Lhbi/(f · a> · mH) y pu`d` supme`rs` hmestbet`. Xupmeo`edm qu` `i hbudbi d` sbiodb d`i bhodm suicûrohm d`i tbequ` `s `i aosam qu` `i d` `etrbdb ` etrbdb ½b qu` t`ap`rbturb sbi` `i bhodm suicûrohm d`i tbequ` `e hbdb oestbet` d` to`apm= q 1 4083 i/f S 1 4083 i β 1 380 Lhbi/(f · a> · mH)  B 1 6 a> ς 1 2:60 lgr/i h 1 ::83 Lhbi/ (lgr· mH) T` 1 274mH Tb 1 >:mH q S 1 2 f∞2 

Xmiuhoøe;

@˟ `  qςqςhThT`` @˟ s  qςhT qςhT  βBβBTT  Tb dR    aahh    a  S                 ;  >.36 272744  2.3636 .>:>: >.36>:7.3   2  >,36>:7.3     ; 2>,36  >,36>:7, 274 3     .∞,

 

 

 

 

 

 

 

 

 

 

 

Ib t`ap`rbt ap`rbturbd`i3636:.bho:.d3m6mH. 6msuiH.curohmd`spu`s.d`, pmrpmr `k`apim,m,uebueb fmrb s`rIJb T2  

>3

 

 

?) HFBÒO A@^AB, Baáihbr F`ery Dms sustbehobs quáaohbs B y N s` hmanoebe pbrb cmrabr ueb sustbehob H. Oeohobia`et` fby 3: grbams d` B y >: grbams d` N, y s` sbn` qu` pmr hbdb grbam d` N e`h`sotbams > grbams d` B X` mns`rvb qu` s` cmrabe 20 grbams d` H `e 4 aoeutms. Xmiuhoøe

         ↞    26:>3: : : ,4 20   ? 26:>3:

         3: >:     3:    >:

 

 

 

 

 

 

 

26:> 26:>3: 3:  ?   26:>3:   ?  26:>3:  ?      ; 2   ?   2   26:3:  ?:26:>  ie ∞ ∞ ∞ ∞   3::  ∞ ∞  ∞ ∞      ↞   : : , 26:>:   20 26:> 3:  2.>0.  .   ∞  3: ∞.. ↞ >:      ↞ 3:  20: ∞.∞..  

 

 

 

 

 

 

 

 

 

 

 

>7

 

 

2: ) HFBÒO A@^AB, Baáihbr F`ery

@i HXT^ amstrbdm `e ib cogurb, `s utoiozbdm pbrb `i trbtbao`etm d` d`s`hfms oedustrobi`s utoiozbedm ueb r`bhhoøe qu` d`struy` ims d`s`hfms d` bhu`rdm hme ueb . @i vmiua`e d`i r`bhtmr hoe`tohb d` pro proa`r a`r mr mrd`e d`e `s 0::a8 ims hbudbi`s d` `etrbdb y sbiodb sme ims aosams ` ogubi` ogubi`ss >:a8/dob y ib hmh`etrbhome hmh`etr bhome d` r`sodums `e ib `etrbdb `s 2::agr/i ½Huâi `s ib hmeh`etrbhoøe d` ib sbiodb=.

 ,     :,>23/ >23/

Xmiuhoøe;

            , ℅      ,,    ℅           ,     

 

  : :     ∳∳ 2  0:::: 2 . 2:: 0:::: .       0 .2:  0.2:  :,>23  . 0. 2:  ..    0 . 2:0 :,.2>:23/ . 0 . 2:2:2/ 82,30/  

 

 

 

 

>6

 

 

22) HFBÒO A@^AB, Baáihbr F`ery Xupmegbams qu` ue HXT^ d` 2: a8 hmeto`e` 4 a8 d` bgub ioapob. i oapob. @e ue ama`etm dbdm s` hmao`ezb b v`rt`r bzûhbr bi r`hopo`et` b rbzøe d` >‟0 lgr/aoe. @e `i aosam oestbet` s` hmao`ezb b v`rt`r bgub ioapob b rbzøe d` > a8/aoe. Bi aosam to`apm qu` s` `apo`zb b v`rt`r `i bzûhbr y `i bgub ioapob s` hmao`ezb b sbhbr dosmiuhoøe d`i r`hopo`et` b rbzøe d` 2 a8 pmr aoeutm. ½Hubi s`râ ib hmeh`etrbhoøe d` bzûhbr `e `i r`hopo`et` hubedm ib dosmiuhoøe ii`gu` bi iIJaot` d` ib hbpbhodbd d`i r`hopo`et`=  Xmiuhoøe;

            .  4    ´´  ´  4  ´´  

 

 

 

;>.0// aoe   >/ aoe.e.:/aoe    >.0/ 0/aoaoe    . 2 2     ;         .

 

 

           4    ´´   >, 0  ´´,>,04>                ,   :.   >:   2,>0 ]4  

 

 

 

 

 2,:0/   3 

 

 

>?

 

  2. Hmbquorb Foibrom Crbel Iuos 

Pe tbequ` d` 0:: gbi d` hbpbhodbd hbpb hodbd hmeto`e` oeohobia`et` 2:: in d` HuXM4. @e `i to`apm t 1 : ciuy` `e `i tbequ` bgub hme ue hmet`eodm d` 0: % d` HuXM4 b ue gbstm d` > gbi/aoe. Ib a`zhib fmamgïe`b sbi` d`i tbequ` b ue gbstm gb stm d` 2 gbi/aoe. Hbihuibr ib hmeh`etrbhoøe d` HuXM4 `e `i tbequ` `e `i ama`etm `e qu` ïst` s` d`rrba`. Doc`r`ehob d` `etrbdb y sbiodb d` ib a`zhib  

> 2>.aogbi2::0:e 2gbi  2:: /aoe   2  2:: ∬            +2::        2::  2::  ∞    2:: >:0: 2::2:: 2::    0::: ∞      2:: 0::: 2:: > ∞    4:: 4::0::> 0::: 0:: >4: >4: 0::0::..2::46% R; Hmeh`etrbhoøe d` HuXM4

 

t1:

To`apm pbrb qu` s` ii`e` `i tbequ`; 4::aoe

  Ib hmeh`etrbhoøe d` HuXM4 `e `i tbequ`  

8:

 

 

>. Hmbquorb Foibrom Crbel Iuos Pe d`pøsotm hmeto`e` 8:: gbi d` bgub y 2:: gbi d` hmetb hmetbaoebet`s. aoebet`s. X` vo`rt` bgub cr`shb `e `i tbequ` bue gbstm d` > gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosab oet`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb 2/2: d` su vbimr mrogoebi=

  :  > > 4:: :   4::4::     >::  : ie >:: ie    ∞    ∞ 2::  2::∞    ∞   ?:2:: ie 2::?: >2 >::    

  R; Hmeh`etrbhoøe d`i hmetbaoebet`  Em `xost` ueb rbzøe d` `etrbdb `etrbdb d`i hmetbaoebet`  

 

t1:

Fbiibedm `i to`apm pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb 2/2:  

 

82

 

 

8. Hmbquorb Foibrom Crbel Iuos @e ib s`hhoøe noami`huibr B + N ↞ A, > ami`s pmr iotrm d` B y 8 ami`s pmr iotrm d` N s` hmanoebe, so x d`emtb `i eûa`rm d` ami`s pmr iotrm qu` fbe r`bhhomebdm d`spuïs d`i . Fbiibr `i eûa`rm to`apm t, ib tbsb d` r`bhhoøe `stâ dbdb pmr d`ami`s pmr iotrm qu` fbe r`bhhomebdm `e hubiquo`r oestbet`.

   >  8  

     > 8  >8     8>      8>      3> 38   (>83)32 2   >8  

 

Zbrb x 1 : `e t 1 :  ,

 

 

 

8>

 

 

4. Hmbquorb Foibrom Crbel Iuos Pe tbequ` hmeto`e` oeohobia`et` 4: gbime`s d` bgub purb. Peb smiuhoøe hme ueb ionrb d` sbi pmr gbiøe d` bgub s` bgr`gb bi tbequ` b ueb rbzøe d` 8 gbi/aoe y ib smiuhoøe r`suitbet` sbi` b ib aosab rbzøe. @ehu`etr` ib hbetodbd d` sbi `e `i tbequ` `e hubiquo`r to`apm.

    øø   ø ø    4: 8 × ×8 2    84: 8      8  84:   ∬ ∬               8    4: ∞  : 4: 4: :: 4:   :  4:4:∞ 

 

 

 

 

 

 

 

 

 

 

88

 

 

0. Hmbquorb Foibrom Crbel Iuos @e 2?0: s` foho`rme `xhbvbhome`s, s` `ehmetrbrme au`strbs d` hbrnøe qu` r`pmrtbrme r `pmrtbrme 4.:? g/aoe. Peb au`strb bhtubi r`pmrtm 3.36 g/aoe. X` sbn` qu` ib proa`rb pr oa`rb au`strb s` cmraø `e 2?0:. D`t`raoe` ib betogù`dbd d` ib au`strb.

        24                          24

 

 

                : ↞↞   03:: ↞ >     03::i 2. > 862:e>22>∞   3.4.3:6?             ∞.(() 4.:?3.36∞.(() ∞ ie 4.3.3.:33?662. 62. > 86 86  2: 2 . 2.>862:∞  8?3>. 3 >0    8?38 ò   

 

 

 

 

 

 

 

 

 

 

 

84

 

 

3. Hmbquorb Foibrom Crbel Iuos  @e ue trmzm d` abd`rb qu`abdb m hbrnøe v`g`tbi s` d`t`raoeø qu` `i 60.0% d` su Hi4 s` fbnáb d`soet`grbdm. Hme ib oecmrabhoøe d`i `k`apim 8 d`t`raoe` ib `dbd bprmxoabdb d` ib abd`rb. Ïstms sme pr`hosba`et` ims i ms dbtms qu` usbrme ims brqu`øimgms pbrb c`hfbr ims aurbi`s pr`fostørohms d` ueb hbv`reb `e Ibshbux, Crbehob

        24   03::    03 :: ò ∞,   :,:::2>876     5   03::5   ∞,  

 

5    24,0%     :, 2 40  ∞,   :,2:40,240  ∞, ie:,240:,:::2>876 2,?82:>2 :,:::2>876 :,240 203::: òò   :,:::2>876  203:

60.0% s` d`soet`grb d`i H-24

 

 r`stb d`soet`grbrs` 24.0%  

   

 

 

80

 

 

7. Hmbquorb Foibrom Crbel Iuos Pe tbequ` d` âhodm suicûrohm hme cmrab cmr ab d` hmem horhuibr r`htm, hme rbdom d` ib nbs` d` >: ha y biturb d` 3: ha, hmeto`e` bgub fbstb ueb biturb d` 00 ha hme r`ibhoøe bi vïrtoh` d`i hmem, hmam im au`strb ib cogurb 2?. @i hmem to`e` `e su vïrtoh` ue mrocohm d` 2 ha d` rbdom. @ehu`etr` ueb `xpr`soøe abt`aâtohb qu` d`t`raoe` ib biturb d`i iáquodm dr`ebdm

  ℅  3:↞ 2℅      ℅  >: 8 B y N sme ibs âr`bs d` ibs s`hhome`s t℅rbesv`rsbi `s d`i tbequ`y d`i bguk`rm r`sp`htovba`et`   > >℅ ℅                2        ? ℅         ℅   2 2    >?.62℅ ℅   ℅f?℅ 4.?4℅8∛ ℅ ℅? 4.48?dt 4.48 f∞  ℅>   ℅℅   ? 4.48 dt  ? 4.48t  H 0 ft:↞f00 >0 00  ? 4.48:  H >0 ∛ 0000   To`>0apm∛ ℅`equ`?℅:s` 4vbho.48t48tbrb>0`i∛ tbequ` t000bequ` 0   >0 ∛:  ? 4.48t48t  >0 ∛ 0000 >>0    `e hubiquo`r oestbet` t. ½@e huâetm to`apm s` vbhobrâ `i tbequ` høeohm=

 

 

 

 

 

 

 

 

 

 

 

 

83

 

 

6. Hmbquorb Foibrom Crbel Iuos Fbiibr `i to`apm qu` s` e`h`sotb e`h `sotb pbrb vbhobr ue tbequ` hoiáedrohm d` bihmfmi `táiohm d` da. sotubdm `e `i rbdom 6 da y biturb 2: da btr`v`s d` ue mrocohom r`dmedm d` rbdom da. cmedm d`i tbequ` sbno`edm qu` pmr ue mrocohom d` `s` topm sbi` sb i` `i bgub b ueb v`imhodbd bprmxoabdb  da/s`g dmed` f `s ib biturb d`i bgub `e `i tbequ`.

  

  4. 6 ∛ ℅ B y N sme ibs âr`bs d` ibs s`hhome`s trbesv`rsbi`s d`i tbequ` y d`i bguk`rm r`sp`htovba`et`  ℅     >>℅  ℅  2     ℅ 64 2    2 2>2   ℅64 2 2>22  4.4.6∛ 6∛ ℅℅  ∛ ℅ ℅ 64  2>22   4.6  dt 64 2>2 >∛ ℅ ℅ 642  2>24.6 tH  

 

 

 

>∛2: t:↞f2: 64642  2>22>2:H 4.6 :H >∛2: 264  2>24.6 t>∛2: >To`apm∛ ℅ ℅  `e qu`℅:s` vbhobrb `i tbequ` tbequ` >∛:264828?>2>24.6 t>∛2:          8.87℅  

 

 

 

87

 

 

 

?. Hmbquorb Foibrom Crbel Iuos Pe tbequ` `stâ ii`em hme 0:: gbi d` bgub purb. Xbiau`rb qu` hmeto`e` > in d` sbi pmr gbiøe s` nman`b bi tbequ` tb equ` b rbzøe d` 0 gbi/ gbi/aoe, aoe, ib smiuhoøe bd`hubdba`et` a`zhibdb s` nman`b fbhob bcu`rb b rbzøe d` 2: gbi/aoe. (b) Fbiibr `i eûa`rm d` ionrbs R(t) d` sbi qu` fby `e `i tbequ` `e hubiquo`r oestbet`. (n) ½Huâetm d`amrbrâ `i tbequ` `e vbhobrs`=

 hmet`eo`edm  , t`e`ams ib hbetodbd d` sbi qu` `etrb qu` `etrb pmr aoeutm    . >   2: >.    0   Ib doc`r`ehob d` `etrbdb y sbiodb 0   2:   0  p`rdodb d` hmeh`etrbhoøe. X`b Rt`i eûa`rm d` ionrbs d` sbi qu` fby `e `i tbequ` `e ue oestbet` t 

@etrbe

dRdt  rbzrbzøeøe d` `etrbdbbdb  rbzøe rbz øe d` sbi o d b 2:    2: 0::0   2:: > 2:    ∬  ↞u∬∞  ∞  

∞∞

2::  ∞    .∞2:2:: 2:: 2:: ∞  2:2::t∞   2::  ∞   2:2::   2::   : :2:2::2:  H2::  2::  H :2:2::  2: 2::∞ 2::2::  

 

To`apm pbrb qu` s` vbhoï `i tbequ`

 

 

86

 

  2) HBIBEHF@ D@IGBDM KFBO^  

Zbrto`edm d` dms sustbehobs B y N s` d`s`b mnt`e`r ue hmapu`stm H. Ib i`y d` hmev`rsoøe  pbrb `stbs sustbehobs `s; ib rbpod`z d` trbescmrabhoøe d` ib hbetodbd x d`i hmapu`stm H `s prmpmrhomebi bi prmduhtm d` ibs hbetodbd`s em trbescmrabdbs d` ibs sustbehobs B y N. Tmabedm a`dodbs ueotbrobs supme`ams qu` ueb ueodbd d` B y ueb ueodbd d` N prmduh`e ueb ueodbd d` H. 2.  D`amstrbr`ams qu` ib i`y d` hmev`rsoøe `e t 1 : vo`e` dbdb pmr ib `hubhoøe doc`r`ehobi;

    

 

Xmiuhoøe

Xo bi proehopom fby a ueodbd`s d` B, e ueodbd`s d` N y h`rm ueodbd`s d` H, `etmeh`s, ibs x ueodbd`s d` H `e ue to`apm t hmestbe d`;  ueodbd`s d` B y  

  + +  ueodbd`s d` N< pmr im tbetm, qu`db soe hmanoebr;     +    ueodbd`s B y  ueodbd`s d` N y ib `hubhoøe `s;  +                                                   

       22       22            + +             +    

D` dmed` sbn`ams, l 1

 ,

 ,

 

>.   Xo `eH,t fbiibr 1 : fby a ueodbd`s hmapu`stm ib smiuhoøe pbrbd`x. ib sustbehob B, e ueodbd`s d` ib N y eoegueb d`i 8?

 

 

      

Hbsm 2. b 1 n 

 

    15    ∞ ∞   

  D`sp`kbams x;  ueodbd`s d` h.  +   ∞         ≪     ∞ ∞   Zbrb t1: y x1: 15

 15

Hbsm >.

Zmr crbhhome`s pbrhobi`s;

2 2     2                         

 

Oet`grbedm;

  2  ie     2  ie      2  ie    ie   ie            ie     ) HBIBEHF@ D@IGBDM KFBO^  

@i rbdobhtovm to`e` ueb vodb prma`dom d` 03:: bòms bprmxoabdba`et`. bprmxoabdba`et`. ½@e huâetms bòms d`sho`ed` `i >:% d` su hbetodbd mrogoebi= mrogoebi= ½Bi 2:%= Xmiuhoøe X`b B(t) ib hbetodbd d` sustbehobs `e ue to`apm t. Ib d`shmapmso d`shmapmsohoøe hoøe `stbrâ s`gûe;

   

^`smivo`edm

      5ie  5  2:.0  ↞03::ie:.0 ∞ 2. > 862:  :.>   ↞ iie:.:.> p`rm p`rm soso ssbnbn`am `amss qu`qu` l  2.>86x2 >86x2::∞ 2.>86x2:∞ie:.> ↞   2828::::>.>.6 ò  :.2  ∞ ↞  ie::..2 ↞ p`p`rmrm so ssbbn`n`amamss qu`qu` l  2.>>86x86x2:2:∞ 2.>86x2: ie:.2  260?? 260??..>8 òò  

Xo B1:.0B: `e t103::bòms

 

 

Xo B1:.>B:

 

 1

 

Xo B1:.2B:

 

 

42

 

  8) HBIBEHF@ D@IGBDM KFBO^

Pe tbequ` `stâ ii`em hme 2: gbime`s (bnr`vobhoøe  gbi ) d` bgub sbibdb `e ib hubi `stâe dosu`itms 0in d` sbi. Xo `i bgub sbibdb `stâ hmet`eo`edm 8in d` sbi pmr gbi qu` `etrb bi tbequ` b > gbi pmr aoeutm y ib a`zhib no`e bgotbdb sbi` b ib aosab tbsb.   @ehmetrbr ib hbetodbd d` sbi `e `i tbequ` `e hubiquo`r to`apm.



  ½Huâetb sbi `stâ pr`s`et` d`spuïs d` 2:aoe=



Cmrauibhoøe Abt`aâtohb

X`b B `i eûa`rm d` ionrbs d` sbi `e `i tbequ` d`spuïs d` t aoeutms. Iu`gm d` hbanom d` `stb hbetodbd d` sbi `e `i to`apm y `stâ dbdb pmr;

  tbsb d` hhbetbetodbbdd gbgbebdb ebdb  tbsb d` hbhbetetodbd p`rdodb

 `s ib tbsb

 

Zu`stm qu` `etrbe >gbi/aoe hmet`eo`edm 8in/gbi d` sbi t`e`ams qu` ib hbetodbd d` sbi qu` `etrb pmr aoeutm `s;

>    8  3

 

Im hubi `s ib tbsb b ib hubi s` gbeb sbi. Zu`stm qu` so`apr` fby 2: gbi `e `i tbequ` y d`nodm b qu` fby B ionrbs d` sbi `e hubiquo`r to`apm t, ib hmeh`etrbhoøe d` sbi bi to`apm t `s B ionrbs pmr 2:gbi. Ib hbetodbd d` sbi qu` sbi` pmr aoeutm `s, pmr tbetm,

 2:    >  2:>  0       3  0   , 3   0     3  0  ,   0    :  

 

Zu`stm qu` oeohobia`et` fby 0in. d` sbi, t`e`ams qu` B 1 0 `e t 1 :. Bsá, ib cmrauibhoøe abt`aâtohb hmapi`tb `s;  

Xmiuhoøe

Psbedm `i aïtmdm d` s`pbrbhoøe d` vbrobni`s, t`e`ams;

   0 ↞ ie8:  0   8:

 

Zu`stm qu` B 1 0 `e t 1 :, h 1 - ie >0. Bsá,

4>

 

 

  ie8:  0  ie>0  ↞  8: >0    ↞  8::>>0

 

Ib hubi `s ib hbetodbd d` sbi `e `i tbequ` `e hubiquo`r to`apm t. Bi coebi d` ims 2:aoe ib hbetodbd d` sbi `s       8: 8:  >0 >3.3

4) HBIBEHF@ D@IGBDM KFBO^

(@stbdm em `stbhomebrom hme d`hboao`etm d` proa`r mrd`e `e ue HXT^).- @i  prmh`sm oedustrobi d`i `k`apim `k`apim bet`romr bet`r omr pbrb `i trbtbao`etm d` d`s`hfms to`e` qu`  pbrbrs`. @e `i ama`etm ama`etm d` r` bbrrbehbri rrbehbrim, m, `s d`hor `e t 1 :, s` pme` ib hmeh`etrbhoøe d` `etrbdb ogubi b d`i : (o.to`apm= `. Xmim½Huâetm `etrb bgub ioapob). ½Huâi ib hmeh`etrbhoøe d` sbiodb `e cuehoøe to`apm hmstbr ‖b bi`sr`bhtmr bihbezbr ueb hmeh`etrbhoøe qu` s`b `i 2: % d`i vbimr mnt`eodm `e `i `k`apim bet`romr `e `i hbsm `stbhomebrom=. Xmiuhoøe Zu`stm qu` fby ue hbanom `e ib hmeh`etrbhoøe d` `etrbdb, `i `stbdm em `s `stbhomebrom< `s d`hor, fby bhuauibhoøe;

   

 

Zmrqu` `i vmiua`e `e@i `i nbibeh` r`bhtmr p`ra p`rabe`h` be`h` hmestbet` bi s`r `i hbudbi d` ``etrbdb etrbdb y sbiodb `i aosam; 0: a8/dob. d` absb qu`db;

  :     

 

 

X` trbtb d` ueb `hubhoøe doc`r`ehobi `e vbrobni`s s`pbrbni`s hme ib hmedohoøe oeohobi h(:) 182.30 agr/i, qu` `s ib hmeh`etrbhoøe `e `i r`bhtmr hubedm s` prmduh` ib pbrbdb y s` brrbehb d` eu`vm. ^`smiv`ams ^`smiv`ams ``ii hmrr`spmedo`et` prmni`ab d` hmedohome`s hmedohome`s oeohobi`s;   .         2       

48

 

 

ie82.30 ie    ie 82.30   

 

 

∞+  Hmam  82.300: / :.>23 :.823    0::        ∞.     82.30 

            

@e hubetm b ib s`guedb hu`stoøe; ½huâetm tbrdbrb `i r`bhtmr `e prmduhor ueb hmeh`etrbhoøe qu` s`b `i 2: % d` ib oeohobi=, t`e`ams qu` ´`stb d`n` s`r 8,230. Xustotuy`edmm `e ib smiuhoøe; Xustotuy`ed   ∞,   8.23082.30  :.  7.8 23i   e:.2 >.8:8

44

 

  0) HBIBEHF@ D@IGBDM KFBO^

@i HXT^ amstrbdm `e ib Cogurb 7.2 `s utoiozbdm pbrb `i trbtbao`etm d` d`s`hfms oedustrob- i`s utoiozbedm ueb r`bhhoøe qu` d`struy` ims d`s`hfms d` bhu`rdm hme ueb hoeïtohb d` proa`r mrd`e;   so`edm l 1 :,>23/dáb. @i vmiua`e d`i r`bhtmr `s 0:: a8, ims hbudbi`s d` `etrbdb y sbiodb sme ims aosams ` ogubi`s b 0: a8/dáb y ib hmeh`etrbhoøe d` r`sodums `e ib `etrbdb `s 2:: agr/i. ½Huâi `s ib hmeh`etrbhoøe hmeh`etrbho øe d` sbiodb=

  

Xmiuhoøe Zu`stm qu` ims hbudbi`s d` `etrbdb y sbiodb sme ims aosams, em fby hbanom d` vmiua`e `e `i HXT^. Hmam bd`aâs em fby vbrobhoøe d` ib hmeh`etrbhoøe d` `etrbdb b im ibrgm d`i to`apm, `i `stbdm `s `stbhomebrom. Zmr im tbetm qu`db;   y `i  nbibeh` d` absb absb qu`db;

  :

:        0::::  2::  0::::       0.2: 0.2:,:>23>2/ 3  0. 22::/ 82,30/

 

 

40

 

  3) HBIBEHF@ D@IGBDM KFBO^

@stbdm em `stbhomebrom `e ue HXT^ hme sustbehob hmes`rvbtovb y vmiua`e hmestbet`).Hmesodïr`s` ue HX^T qu` hmeto`e` 2::: i. d` bgub ioapob, fbhob `i qu` ueb smiuhoøe sbibdb d` sbiau`rb `apo`zb b ciuor b ueb v`imhodbd hmestbet` d` 3 i/aoe. Ib smiuhoøe ciuy` fbhob `i `xt`romr d`i tbequ` b ib v`imhodbd d` 3 i/aoe. Xo ib hmeh`etrbhoøe d` sbi `e ib sbiau`rb qu` `etrb `e `i tbequ` `s d` 2 lgr/i, d`t`raáe`s` hubedm s`r  ̂b d`2>lgr/i ib hmeh`etrbhoøe hmeh`etrbho øe `e `i tbequ`. (Sïbs` Cogurb 7.8)

Xmiuhoøe Ib hbetodbd d` sbi `e `i HXT^ em `s hmes`rvbtovb pmrqu` `stâ vbrobedm hmetoeuba`et`. @e `c`htm, oeohobia`et` em fby sbi `e `i ` i tbequ`, bsá qu` so h(t) r`pr`s`etb ib hmeh`e hmeh`etrbhoøe trbhoøe (`e lgr/i) d` sbi `e `i tbequ` `e `i oestbet` t (`s d`hor, d`spuïs ̂`s d` t aoeutms d`sd` qu` `apo`zb b `etrbr ib smiuhoøe sbibdb d` sbiau`rb), t`e`ams qu` h(:) 1 :. Z`rm `e `i ’oestbet` soguo`et`‑ yb fby ueb p`qu`òb hbetodbd d` sbi `e `i tbequ`. Zmr im tbetm fby bhuauibhoøe d` sbi. Zmr mtrb pbrt`, em fby g`e`rbhoøe  ̂me d` sbi pmr r`bhhoøe quáaohb m d` mtrb ebturbi`zb. @i nbibeh` d` absb vo`e` dbdm `e `st` hbsm pmr

Bhuauibhoøe1@etrbdb Bhuauibhoø e1@etrbdb - Xbiodb 

3 i/aoe  i/aoe   2 Lgr/i  

3 i/aoe  i/aoe 

COGP^B; Tbequ` hme `i aosam ciukm d` `etrbdb y sbiodb

        3/       3/ /

Bhuauibhoøe @etrbdb 1 Xbiodb 1

 

 

 

Bsá pu`s, ib `hubhoøe doc`r`ehobi qu` rog` ib `vmiuhoøe d` ib hmeh`etrbhoøe d` sbi `e `i oet`romr d`i tbequ` `s;

 33   2:::

 

43

 

 

Hme ib hmedohoøe oeohobi h(:) 1 :. Ib `hubhoøe `s ioe`bi fmamgïe`b y tbanoïe `e vbrobni`s s`pbrbni`s. s`pbrbni`s. Zmd`ams `shronor;

 2 0::8

 

 

2ie2 2     0::0:: 8∞0::8    2‾  2‾∞     ↞   2 :: 2   2∞  2  ∞   >2 ∞  2>   0::i8 e> 220,0>   

 

 

_ hmam h(:)1: r`suitb qu`

 

 

Hmam ems pod`e hubedm s`râ ib hmeh`etrbhoøe ± lg/i  

 

 

@s d`hor, ib hmeh`etrbhome hmeh`etr bhome d` sbi `e `i oet`romr d`i tbequ` s`râ d` ± lg/i bi hbnm d` 220,0> aoeutms

47

 

  7) HBIBEHF@ D@IGBDM KFBO^

(@stbdm em `stbhomebrom `e ue HXT^ hme sustbehob hmes`rvbtovb y vmiua`e em hmestbet`).- Xupmegbams qu` ue HXT^ d` 2: a8 hmeto`e` 4 a8d` bgub ioapob. @e ue ama`etm dbdm s` hmao`ezb b v`rt`r bzûhbr bi r`hopo`et` b rbzøe d` >‟0 lgr/aoe. @e `i aosam oestbet` s` hmao`ezb b v`rt`r bgub ioapob b rbzøe d` > a8/aoe. Bi aosam to`apm qu` s` `apo`zb b v`rt`r `i bzûhbr y `i bgub ioapob s` hmao`ezb b sbhbr dosmiuhoøe d`i r`hopo`et` b rbzøe d` 2 a8pmr aoeutm. ½Huâi s`râ ib hmeh`etrbhoøe d` bzûhbr `e `i r`hopo`et` hubedm ib dosmiuhoøe ii`gu` bi iIJaot` d` ib hbpbhodbd d`i r`hopo`et`=  

Xmiuhoøe. @e `st` hbsm `i vmiua`e d` ib dosmiuhoøe em p`rabe`h` hmestbet` `e `i oet`romr d`i d`pøsotm pmrqu` sbi` a`ems hbetodbd d` dosmiuhoøe d` ib qu` `etrb. Zmr hmesoguo`et` ii`gbrb ue ama`etm `e qu` `i iIJquodm `e `i d`pøsotm hma`ezbrb b d`rrbabrs`. ½Huâetm to`apm= Ib hbpbhodbd d`i d`pøsotm `s 2: a8, oeohobia`et` fby 4 a8y hbdb aoeutm fby 2a8a ̂bs `e `i d`pøsotm pmrqu` `etrb 2 a8a ̂bs d`i qu` sbi`. Zmr im tbetm `e 3 aoeutms s` ii`ebrb `i d`pøsotm.  Xo iibabams S(t) b ib hbetodbd d` iáquodm `e `i d`pmsotm d`spuïs d` t aoeutms v`ams qu`

  4 4  

 

_ so h(t) `s ib hmeh`etrbhoøe d` bzûhbr `e `i d`pøsotm d`spuïs d` t aoeutms, `i nbibeh` d` absb ems prmpmrhomeb ib soguo`et` sotubhoøe;

         4   

 



 

2  >,0    >,>,0  ;>:    4     >,0   >,04>   

Zmr im tbetm t betm ib `hubhoøe doc`r`ehobi qu` gmno`reb `i prmh`sm `s  

 

Huyb smiuhoøe, hme ib hmedohomebi oeohobi h(:)1:, `s

    2,>0 4>:

46

 

 

 3 2,:0/

 

6) HBIBEHF@ D@IGBDM KFBO^

X` utoiozb ue t`ram `iïhtrohm d` bgub pbrb hbi`etbr bgub d` ue suaoeostrm qu` horhuib b 2:ºH. @i eov`i d` hbi`etbao`etm d`i t`ram s` hmimhb bi aâxoam ao`etrbs vbrobs p`rsmebs s` duhfbe suh`sovba`et`. Xo, bi aâxoam eov`i, `i hbi`etbdmr utoiozb 0 Lw d` `i`htrohodbd  pmr s`guedm, s`guedm, y `i bgub d` ib duhfb cciuy` iuy` hmetoeuba`et` hmetoeuba`et` b 6 i/aoe ½huâi `s ib t`ap`rbturb d`i bgub qu` sbi` d`i hbi`etbdmr= X` supme` qu` ib t`ap`rbturb d`i bgub `e `i hbi`etbdmr `s so`apr` ib aosab (`stbdm `stbhomebrom) y qu` `i hbi`etbdmr `s 2:: % `coho`et` (`stâ  p`rc`htba`et`  p`rc`htba`e t` bosibdm y tmdb iibb `e`rgáb s` utoiozb utoiozb pbrb hbi`e hbi`etbr tbr `i bgub). Xmiuhoøe  Eu`strm r`hopo`et` d` hmetrmi d` vmiua`e `s `i t`ram `iïhtrohm. @i ciukm d` `e`rgáb qu` `etrb `e `i hbi`etbdmr prmvo`e` d` dms cu`et`s; `i hbimr d`i bgub d` ib hbò`ráb qu` `etrb `e `i hbi`etbdmr y ib qu` hmrro`et` `iïhtrohb. @i `e ciukm `e`rgáb qu` sbi` d`i hbi`etbdmr `s `i hbusbdm pmr `i bgub fb sodm hbi`etbdb `i d` aosam Zbrb hbihuibr `i ciukm d` hbimr bpmrtbdm pmr `i bgub d` ib hbò`ráb cokbams ueb t`ap`rbturb d` r`c`r`ehob `e `i hbi`etbdmr, Tr`c, d` amdm qu` `i hbimr qu` d`n` bpmrtbr `i bgub d` ib hbò`ráb pbrb qu` ib t`ap`rbturb d`i bgub `e `i t`ram vbrá` d` ib t`ap`rbturb d` `etrbdb, T`1 2:ºH, b Tr`c `s R`1∞ah(Tr`c∞T`). @i sogem ∞ s` d`n` b qu` `stbams fbnibe dm d`i hbimr qu` bpmrtb `i bgub d` ib hbò`ráb bi t`ram, ib mpu`stb d` ib qu` d`n`rábams bpmrtbr bi bgub d`ib hbò`ráb pbrb qu` su t`ap`rbturb pbsbrb d` T` b Tr`c. Zmr im tbetm, `i ciukm d` `e`rgáb d` `etrbdb s`râ

  ((  ) 0/

 

Dmed` a `s `i ciukm d` absb d` bgub qu` `etrb a`dodm `e ueodbd`s d` absb/to`apm y h `i hbimr `sp`hácohm d`i bgub, 42?: K/ (lgºH) D` ib aosab cmrab `i ciukm d` sbiodb s`râ `i ciukm d` hbimr e`h`sbrom (qu` bpmrtb `i hbi`etbdmr) pbrb qu` `i bgub qu` sbi` pbs` d` Tr`c b Ts. Bfmrb no`e, ib t`ap`rbturb d` sbiodb d`i hbi`etbdmr; T. pmr iimm tbetm

 

 

Coebia`et` `stbams supmeo`edm qu` `i `stbdm d`i bgub `e `i hbi`etbdmr `stbhomebrom; .

  :

Ib `hubhoøe d`i nbibeh` d` `e`rgáb qu`db

4?

 

 

:((  )  0  ((  )      0℅ :

 

X` d`n` mns`rvbr qu` `e tmdm `st` prmh`sm `stbams fbho`edm ueb supmsohoøe auy oapmrtbet`; ib hbpbhodbd hbimrácohb d`i bgub p`rabe`h` hmestbet`. @e g`e`rbi ib hbpbhodbd hbimrácohb d` ueb sustbehob pu`d` vbrobr hme ib pr`soøe y ib t`ap`rbturb b ib qu` s` `ehu`etrb dohfb sustbehob< so no`e, pbrb p`qu` ems hbanoms d` pr`soøe y ̈ t`ap`rbturb s` pu`d` hmesod`rbr hmestbet`

    0

 

Bfmrb im qu` fby qu` fbh`r `s fmamg`e`ozbr ibs ueodbd`s. F`ams d`shrotm `i vbimr d` h `e K/ (lgH)< bsá qu` d`n`ams `shronor tmdm `e `st` sost`ab d` ueodbd`s;

2 6 6      ℈ 42?:  ℈  6880>: 8:::: 0℅  0.2:::  3:    8::::/   26,?℈ 2:℈ 880>: ℈  

 

@etmeh`s

 

0:

 

  ?) HBIBEHF@ D@IGBDM KFBO^

Pe abt`robi rbdobhtovm s` d`soet`grb b ueb rbzøe prmpmrhomebi b ib hbetodbd pr`s`et`. Xo oeohobia`et` oeohobia`et ` fby 0: ag d` abt`robi y bi hbnm d` ddms ms fmrbs s` mns`rvb qu` fb  p`rdodm `i >:% >:% d` ib hbeto hbetodbd dbd oeohobi. Fbiibr ib hhbetodbd betodbd d` abs absbb `e hubiquo`r hubiquo`r ama`etm t. Xmiuhome

    :  0:  < 0:0:    <   0: 0:  

 

 

 

Zbrb t1>, s` huapi` qu` y10:-2:14:

_b qu` `i >:% d` 0: 1 2: ag, sustotuy`edm

4:0: 4:0:     4:0:   4:0:0:>>824800282 > > 4:0::, :,443>672:>3> :,443>672:>3>  0: ∞,  

D`sp`kbams D`sp`kba ms l;

 

 

 

 

Xustotuy`edm

y T1> `e ;

y0:`

02

 

  2:) HBIBEHF@ D@IGBDM KFBO^

Dms quáaohms, B y N r`bhhomebe pbrb cmrabr mtrm quáaohm H. X` `ehu`etrb qu` ib tbsb b ib hubi H ss`` cmr cmrab ab vbrob hme ibs hbetodbd hbetodbd`s `s oestbet oestbetâe`bs âe`bs d` ims ims quáaohms B y N  pr`s`et`s.. Ib cmrabhoøe r`quo`r` >in d` B pmr hbdb ionrb d` N. Xo 2:i  pr`s`et`s 2:inn d` B y >:in d` N `stâe pr`s`et`s oeohobia`et` oeohobia` et` y so 3in d` H ss`` cmrabe cmrabe `e >:aoe `ehmetrbr `ehmetr br ib ib hbetodbd d`i quáaohm H `e hubiquo`r to`apm . Xmiuhoøe

x1hbetodbd d` ionrbs d` H cmrabdbs `e t fmrbs Zu`stm qu` s` s` ee`h`sotb `h`sotb qu` `i quáaohm B s`b `i dmni` d` N; >x/8 in B y x/8 in d` N



Ib hbetodbd d` B pr`s`et` `e t hubedm s` ccmr mrab ab xin d` H `s 2:->x/8 y N1>:-V/8 N1>:-V/ 8

 2: >8 >: >:  8   ∬ 2 ∬ ∞∞    402 202  3:2  402 ie 3:  203: 20 3:   20 ∞ 4↞ ∞  4   3    2 ↞   8     3: 4   48 4    ø   > 202 202> 8 >  8  20 > 2  24 8 20  

Ib s`pbrbhoøe d` vbrobni`s prmduh`

 

 

 

 

Hubedm x1: y t1:

 

 

Hubedm t↞∕

 

0>

 

  22) HBIBEHF@ D@IGBDM KFBO^  

Xupøegbs` qu` ueb r`bhhoøe quáaohb s` d`sbrrmiib hme ib i`y d` d`shmapmsohoøe so ib aotbd d` ib sustbehob B fb sodm hmev`rtodb bi coebiozbr 2: s`guedms. @ehu`etr` `e hubetm to`apm s` trbescmrabrâ eu`v` d`hoams d` ib sustbehob. sustbehob. Xmiuhoøe;

                . ie  . ∞.  

 

Bfmrb d`t`raoebr`ams N pbrb `sm t1: , x1x]: ,↞ x]:1`U(-l.m).N ↞ x]:1N

iu`gm x1x]:.`U x1x]:.`U(-lt) (-lt) ,d`t`raoebr`a ,d`t`raoebr`ams ms l ,pbrb ,pbrb `stm s` to`e` t12:s`g. ,x]:1>x

Ruo`r` d`hor

>  . ∞.  ie 2>  ie| ∞.|  2> 2: ↞ 2:>   .

∞ 

 

. ?.?.2:  . ∞.  

y bfmrb pbrb fbiibr t, x1

 

  .    ? ∞ ⁄  > 2:  

ie 2:?   ie|>|. 2:   ?  i e    2:> . 2:2:  

08

 

  2>) HBIBEHF@ D@IGBDM KFBO^

Pe d`pøsotm hmeto`e` 8:: gbi d` bgub y 2:: gbi d` hmetbaoebet`s. X` vo`rt` bgub cr`shb `e `i tbequ` bue gbstm d` > gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosab oet`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s hmetbaoebe t`s ddosaoeuy osaoeuybb 2/2: d` su vbimr mrogoebi=

  :> 4::>   4::  :     >::  : ie >:: ie   ∞     ∞ 2::   2::∞    ∞  ?:2:: ie 2::2:: ?: >2 >::  >::    

 

R; Hmeh`etrbhoøe d`i hmetbaoebet`, em `xost` ueb rbzøe d` `etrbdb d`i hmetbaoebet`  

t1:

 

Fbiibedm `i to`apm pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb 2/2:  

 

04

 

 

2) FPBABEO CIM^@X, gmin`r brostod`s Dms sustbehobs quáaohbs B y N s` hmanoebe pbrb cmrabr ueb sustbehob H. Oeohobia`et` fby 4: grbams d` B y 0: grbams N, y s` sbn` qu` pmr hbdb grbam d` N e`h`sotbams > grbams d` B X` mns`rvb qu` s` cmrabe 2: grbams d` H `e 0 aoeutms.   Xmiuhome

   2     >8        8  4: >8 0: 28    ? 2>:>20:   :: ,  0 2:      20:  ? 2>:>  ? 2>:> 20:  2>:>20:   ?  2>:>20:  ?      ; 2 2  20:  ?:?:2>:> 2>:> 226: ie 2>:> 20:  26:26:20: 20:  ?   ?   2>:> 20:   20::    0 : : , 2>:>: 20:2:  :>2: 2>:> 2>:> 20: 20: 2.>0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

 

 .   2    20: 2>.0. >:  .    2    20: . >?.>7 2>.0  

 

 

>)  FPBABEO CIM^@X, gmin`r brostod`s

Pe abt`robi rbdobhtovm s` d`soet`grb b ueb rbzøe prmpmrhomebi b ib hbetodbd pr`s`et`. Xo oeohobia`et` fby 4: ag d` abt`robi y bi hbnm d` ueb fmrb s` mns`rvb qu` fb p`rdodm `i 6% d` ib hbetodbd oeohobi. Fbiibr ib hbetodbd d` absb `e hubiquo`r ama`etm t. XMIPHOME X`b _ ib hbetodbd `e aoiogrbams d`i pr`s`et` rbdobhtovm. @etmeh`s bpmybedmems `e `i amd`im d` hr`hoao`etm y d`hr`hoao`etm.

   

 

 



Xustotuoams , `i prmni`ab ems db ims soguo`et`s dbtms; Zbrb t1: s` huapi` qu` _14:

Xustotuy`edm `e ib smiuhome s` mnto`e` qu` H14:

 4:  

 

Zbrb t12 s` huapi` qu` y14:-8,>183,6 Zmrqu` `i 6% d` 4: 1 8,> ag Xustotuy`edm y183,6 y T12

83,64: ,    ,    ,    83,4:6 :.:684 :.:684 4:∞.   

D`sp`kbams L;  

 

 

Xustotuy`edm L1

  y T12 `e ;

03

 

  @stb `s ib `hubhome qu` ib hbetodbd d` abt`robi rbdobhtovm `e hubiquo`r to`apm t

8)  FPBABEO CIM^@X, gmin`r brostod`s Xupmegb qu` 2:g d`i osmtmpm d`i piutoeom Zu;>8? s` `shbpbrme `e `i bhhod`et` euhi`br d` Hf`remnyi . ½Huâetm to`apm tmabrb pbrb qu` ims 2:g s` d`shmapmegbe `e 2g = Tma` `e hu`etb ims p`romdms d` d`shmapmsohome qu` pmst`romra`et` s` dbe . ^`hmrdbr ib `hubhome;



 

Xustotuoams ; _12: T1:

2: 2: 2:2 2:

 

 

 

 

^`hmrdbr ib `hubhome

XPXTOTPOAMX _10

t1>483: bòms

        



  

 

y eu`strm vbimr d` eu`strb hmestbet`

2:

 

012:.

 

0/2:1

 

ie0/2:1ie ie0/2:1

 

 

2/>483:.ie0/2:1l

07

 

  L1->,60x

∞    ∞  

^`hmrdbr ib `hubhome L1->,60x

y eu`strm vbimr d` eu`strb hmestbet`

 

2:

 y `i vbimr d`

Xustotuor hme `i vbimr bi qu` qu`r`ams ii`gbr `e `st` hbsm d`grbdbr 2g d` Zu;>8? _12

T1=

  ∞,  /∞,   /∞,  /,∞  ∞,     6:7?>,40?4 ie

 

 

(ie

 

pmr im tbetm

   òò

 ^ptb

06

 

 

4)  FPBABEO CIM^@X, gmin`r brostod`s Pe d`pøsotm hmeto`e` 8:: gbi d` bgub y 2:: gbi d` hmetbaoebet`s. X` vo`rt` bgub cr`shb `e `i tbequ` bue gbstm d` > gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosa aosabb oet`esodbd. o et`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb 2/2: d` su vbimr mrogoebi=

  :  4::>   4::>  :

   

R; Hmeh`etrbhoøe d`i hmetbaoebet`

 Em `xost` ueb rbzøe d` `etrbdb `etrbdb d`i hmetbaoebet`

    >::  :

t1:

 

>::  ie  ie ∞ >::ie   ∞ 2::  2::∞    ?:2::∞ ie 2::2:: ?: >2 >::>::    

 

Fbiibedm `i to`apm pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb 2/2:  

 

0?

 

 

0)  FPBABEO CIM^@X, gmin`r brostod`s @e ueb `xpimtbhoøe `xpimtbhoøe gbebd`rb d` 2.::: hbn`zbs d` gbebdm s` d`t`htb ue beoabi hmetbgobdm d` ue vorus. X` supme` qu` ib rbpod`z hm hme e ib qu` `i vorus s` prmpbgb `s prmpmrhomebi bi prmduhtm d`i e» d` beoabi`s hmetbgobdms y `i to`apm trbeshurrodm. Fbiibr `i a ama`etm ma`etm `e `i hubi tmdms ims beoabi` beoabi`ss fbe sodm hmetbgobdmss so s` mns`rvb qu` d`spuïs d` 4 d hmetbgobdm dábs ábs fby 2: beoabi`s hme `i vorus. XMIPHOME;

V(T)1eua`rm d` beoabi`s hmetbgobdms `e `i oestbet` t V(:)12 V(4)12:

 . .  5  5 5∬∬   ∬       ie      5       ,.  5 2:≆:,>676>5 676>5  ,.  

 

V(:)12

21H

2:1

 2.:::52.::: 5:,248?2. ie2.:::   i:,e2.248?2::: ≆4653?>6>≆7 V(4)12:

2:1

 

 

 

 

3:

 

 

3)  FPBABEO CIM^@X, gmin`r brostod`s X` bebiozø ue fu`sm cmsoiozbdm y s` `ehmetrø qu` hmet`eáb ib h`etïsoab pbrt` d` ib hbetodbd mrogoebi d` H-24. D`t`raoe` ib `dbd d`i cøsoi. Xmiuhoøe;

          >  03::5  >   03:: 2>  >>     03::> :.:::2>876      ∞.    2::   55 2::   ∞.5:.:::2>876 2::2 2:::  

 

 

 

 

   . ≆00,6::ò

  rptb

32

 

 

7)  FPBABEO CIM^@X, gmin`r brostod`s Ib prmpbgbhoøe d` ueb `ec`ra`dbd oec`hhomsb `e ueb pmnibhoøe d` oedovodums sush`ptoni`s d` s`r hmetbgobdms s` amd`iozb pmr ib i b `hubhoøe doc`r`ehobi  

´ 2 2 ´ 2   2   2 ∞+

dmed` y(t) r`pr`s`etb bi eûa`rm d` p`rsmebs `ec`rams `e `i to`apm t, E `i tbabòm d` ib pmnibhoøe y β 5 : ib tbsb `sp`hácohb d` oec`hhoøe. Xupmeo`edm qu` s` oetrmduh` ue oedovodum `ec`ram, ½høam `vmiuhomeb ib `ec`ra`dbd= X` trbtb d`i amd`im imgástohm smiuhoøe `s;

hmam y(:) 1 2, `etmeh`s

 1 βy(t)(L ∞ y(t)) hme ueb hbpbhodbd d` hbrgb L 1 E + 2, huyb

 

 E 1 B

+ +⇞

@i eûa`rm d` p`rsmebs oec`htbdbs `e `i to`apm t `s,

  ++

  ^ptb

3>

 

 

6) FPBABEO CIM^@X, gmin`r brostod`s Xupmegbams qu` `e ue ibgm s` oetrmduh`e 2:: p`h`s. D`spuïs d` tr`s a`s`s sbn`ams qu` fby >0: p`h`s. Pe `studom `hmiøgohm pr`doh` qu` `i ibgm pu`d` abet`e`r b 2::: p`h`s. Sbams b `ehmetrbr ueb cørauib pbrb `i eûa`rm y(t) d` p`h`s `e `i ibgm. Ib hbpbhodbd d` hbrgb d`i ibgm vo`e` dbdb pmr L 1 2:::. 2:: :. Zmr mtrm ibdm, pbrb t 1 : fby 2:: p`h`s, `e hmes`hu`ehob so `e ib smiuhoøe d` ib `hubhoøe imgástohb.

2:::∞   2 ∞  2 : 2:: +  ↞ ? ⇞ 8 >0: 2::: 2 70 8 >0: 2?∞ ↞ 8 i e  >>0≆:, >>0 ≆:, 8 7   2?2:::∞,  

t`e`ams `e hu`etb `st` f`hfm

   B 1 ? .

Coebia`et`, hmam

, s` to`e` qu`

 

@e hmes`hu`ehob

 

38

 

 

?) FPBABEO CIM^@X, gmin`r brostod`s Peb smiuhoøe d` sbiau`rb d` sbi ciuy` b rbzøe hmestbet` d` 4I/aoe. fbhob `i   oet`romr d` ue d`pøsotm qu` oeohobia`et` hmeto`e` 2::I d` bgub. Ib smiuhoøe   hmet`eodb `e `i d`pøsotm s` abeto`e` no`e bgotbdb y ciuy` fbhob `i `xt`romr b rbzøe  d` 8I/aoe. Xo ib hmeh`etrbhoøe d` sbi `e ib sbiau`rb qu` `etrb `e `i d`pøsotm `s  d` :.>lg/I, d`t`raoebr ib hbetodbd d` sbi pr`s`et` `e `i d`pøsotm bi hbnm d` t   aoeutms. ½@e quï ama`etm ib hmeh`etrbhoøe d` sbi hmet`eodb `e `i d`pøsotm s`râ  d` :=2lg/I= Xmiuhome; V(t)1Lg , d` sbi d`etrm d`i d`pmsotm `e `i oestbet` t

 4∗:, > 8 +

 

:  :

 

  + :.6↞  ∬  2:: 2:: :.6 ∬2:: dt  H  :.6 +      :.>2::  + 

 

 

 

8 7 : :↞:>: 2:: 8 ↞>:∗2:: >∗2:     ∗   ∗    :.>2::  +   ↞   + :. >  +     ∗ ∗   :. 2 :. >  +   ↞ :.2  +   ↞ 2:: >∗2:  

 

2::∛>  2

 

34

 

 

2:)  FPBABEO CIM^@X, gmin`r brostod`s Ib hmrro`et` sbeguáe`b ii`vb ue a`dohba`etm fbhob `i oet`romr d` ue ørgbem b rbzøe d` 3ha8/s`g. y sbi` d` ïi b ib aosab v`imhodbd. @i ørgbem to`e` ue vmiua`e iáquodm d` 2>3 ha8. Xo ib hmeh`etrbhoøe d`i a`dohba`etm `e ib sbegr` qu` `etr` `e `i ørgbem `s d` :.> gr./ ha8 ½huâi `s ib hmeh`etrbhoøe d`i a`dohba`etm `e `i ørgbem `e `i oestbet` t so oeohobia`et` em fbnáb v`stogoms biguems big uems d`i a`dohba`etm= ½huâedm ib hmeh`etrbhoøe d`i a`dohba`etm `s `i ørgbem s`râ d` :.> gr./ ha8= Xmiuhome

    : :   3.:,>3 2>3     2, > 8 2>3   ↞   202,2>3>8     202.202,>>8 8 8  2>3 2>3    28 ie2028  2>3   202.>8  :  : :  0:.4     0:.4  0:,40:,4    :.2       2>3 :.2 2>3  2>.3  2>.30:.40:.4    2>.30:.4   8 ie2>.3  2>32>38 ie2>.0:,2>.43  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

  3,447070  

 

Ruoehfm Hfuhtbyb Miov`r Iuos 2)  Dms quáaohms, B y N r`bhhomebe pbrb cmrabr cmrabr mtrm quáaohm H. X` `ehu`etrb qu` ib tbsb b ib hubi H s` cmrab vbrob hme ibs hbetodbd`s oestbetâe oestbetâe`bs `bs d` ims quáaohms B y N pr`s`et`s. Ib cmrabhoøe r`quo`r` >in d` B pmr hbdb ionrb d` N N.. Xo 2:in d` B y >:in d` N `stâe  pr`s`et`s oeohobia`et` y so 3in d` H s` cmrabe `e >:aoe `ehmetrbr ib hbetodbd d`i quáaohm H `e hubiquo`r to`apm.

;            ℅℅             ; >8    8                     ∳∳ 2: 2:  >8     >: 8    2:> 2: > 8   >: >:  8           203:   2    402 202  3:2  402 ie 3:  203: 20 3:   20    :    : ↞   4 ↞ 3: 20  4  

 

 

 

 

 

 

 

           3    8 2 ↞   > 8 >   202 8 3: 8 20 4  4>  ø   2 >   

2  4 8   ↞∕ ,  2200  

33

 

 

Ruoehfm Hfuhtbyb Miov`r Miov`r Iuos >)  Pe tbequ` hmeto`e` 0:: 0:: gbime`s d` sbiau`rb. Bi tbequ` ciuy` sbiau` sbiau`rb rb qu` hmeto`e` >in d` sbi pmr pmr gbiøe, b rrbzøe bzøe d` 0 gbi/aoe. Ib a` a`zhib zhib no`e fma fmamg`eozbdb, mg`eozbdb, sbi` b rrbzøe bzøe d` 2: gbi/aoe. Xo ib hbetodbd aâxoab d` sbi `e `i tbequ` s` mnto`e` b ims >: aoe. ½Huâi `rb ib hbetodbd oeohobi d` sbi `e `i tbequ`= ;

; 0:↞: , 2 >>,20 ,20   >2:    ,  >2: 22     2>  2:  2:   0::0 > 2:  2::  ; ;∬ ∬∞  ∬∞℅   1∞↞ 1∞↞1∞ 1∞;        ∞  ∞   2:: ∞  2::  ∞∞∬∬  2:: ∞2∞ 2::  2:: 2  2: >    2::   2::  \2::2  Q  2:: 2:      \2::2  Q  2:2: 2::  2  2: 2: 2:: 2::  2:  2:: 2::  2:  2:: 2::2:  2::  2:>2:: :2:>2::>: ↞ 232   ;   2::2:  2::  232 ↞:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  2:: 2::2:2:  2::2::23 ↞870 37

 

 

Ruoehfm Hfuhtbyb Miov`r Iuos 8)  Pe quáaoh quáaohmm d`s`b `ecrobr d`sd` 6:ºH fbstb 3:ºH ueb sustbehob hmet`eodb ueb ssustbehob ustbehob hmet`eodm `e ue abtrbz abtrbz s` hmimhb `i do dospmsotovm spmsotovm `e ue r`hopo`et` bapiom pmr `i horhuib horhuib bgub b 20ºH. X` mns`rvb qu` d`spuïs d` > aoeutms ib t`ap`rbturb fb d`sh`edodm b 7:ºH. @stoabr `i to`apm tmtbi d` `ecrobao`etm.

;   20º     ;       20  : 6:º         ;      ↞ie20  ie   ↞   20   20   : 6:20↞30º >aoe 6:6:ºº 7º2℅℅ 22 ;; ℅℅   7:2030 ↞  > ie 28       2030 3:º  2 22 ?    3:2030  ↞ > 28ie28  

 

 

 

 

 

 

 

 

 

 

 

 

  4.44:>:> 

36

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

4)  X` `ehmetrbrme `ehmetrbrme fu`sms cø cøsoi`s soi`s d` ueb beoabi. X` bebiozbrme y s` d` d`t`htø t`htø qu` hbd hbdbb fu`sm hmet`eáb ueb h`etïsoab h`etïsoab pbrt` d`i H-24 rbdobhtovm rbdobhtovm.. D`t`raoebr ib betogù`d betogù`dbd bd bprmxoabdb d` ims fu`sms `ehmetrbdms.  

;   ò,  .     24         ∳ ∳     :,  .  ℅;03::  2> .    2> ↞  2> 03::  2> ↞ > :.:::2>8773 03::ie2>↞ 03::    2.>87732:∞

 

 

 

 

 

 

 

∞.

 

 ℅     ℅                ∳  ∳         24      2 2  ∞.   2::    2:: ↞    2::2 ↞ 2.>87732:∞ie2::2  ↞ ∞. 2:: 2: 87>:0.37? ↞   2.>87732::2:∞  2.>8773       ℅ ℅   87>87>:3:3 ò.  

 

 

 

 

 

3?

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

0)  @e `i trbeshursm d` 8: dábs s` d`soet`grb `i 0:% d` ib hbetodbd oeohobi rbdobhtovb.½ Bi hbnm d` huâetm to`apm qqu`dbrb u`dbrb `i 2% d` ib hbetodbd oeohobi=  

  ..  ;                ℅ ℅    ∃                 2 ∃                ; ∃∃    2     ∳         .     :.0                   ;;    ∞     8: 8 2 :   >         :. 2 2 2  2::> 8:8: >::      2 2% %                  .         ∳ ∳ ∞/   :>  

 

 

 

 

 

 

 

 

 

 

 

7:

 

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

3)  Pe tbequ` hmeto`e` 2: 2::i :i d` ueb smi smiuhoøe uhoøe d` sbi. Ib hhbetodbd betodbd d` sbi `e ib ddosmiuhoøe osmiuhoøe `s ogubi b 2: lg. @e `i tbequ` `etrbe 0 iotrms d` bgub pmr aoeutm y hme `sb aosab v`imhodbd ib a`zhib pbsb b mtrm tbequ` d` 2::i d` hbpbhodbd, `i hubi oeohobia`et` `stbnb ii`em d` bgub. @i `xh`d`et` d` iáquodm s` d`rrbab d`i s`guedm tbequ`. ½Hubedm ib hbetodbd d` sbi `e `i s`guedm tbequ` bihbezbrâ su vbimr aâxoam=½ B qu` s`râ ogubi `sb hbetodbd=

∃ >  ;2  >    . 02∃                2       >    ∃ 2:: 02::∃           >         0∆,  ∃0,  ∆ ,  ∃; ∃    2:: ∃∃ 2:: 0∃∃…… 2   >>      ∃ ∃ … > ∃    2::∃  

 

 

 

 

 

 

 

 ∃↞: :.:0 ↞:. :.  :  0    ∳ :∞.0          2::∞. 2:↞2:  … 8     ∃  ↞ :  :.:0 :.0∞.   : :↞:    :.0∞.:.,   ∞.   0        >:>:   2:8.36  >:ao >: aoe ;;  

 

 

 

 

 

 

 

72

 

 

Ruoehfm Hfuhtbyb Miov`r Iuos

∃ ∃↞: ∃ ∃ ∃; ∃                          ∳∃ ∃          ℅℅   ∃         . : . : ::44∃… 2     ∃                ∃       :. : ::48∃  7:∃… >         ∃    ; :.:::44 ….8 ::48 7: 7:    …  4     :.:::48  ∞.   8 ∳   …0 ∳  0∞  4:. :::48 , ℅        3?.???03 :∞.: :.3?.:::48 . ∞ )   (  ↞ ? ??03   2   ∞.7:  ∞     .    3?.???03  :.:::44  :.2277 òò ↞ 3>>

7)  Bi hbnm d` ue oet`rvbi oet`rvbimm d` to`ap to`apmm dmed`   d` hbdb grbam d` rbdom s` d`soet`grbe :.:::44 grbams y s` cmrabe :.:::48  grbams d` rbdøe. B su v`z, hbdb grbam d` rbdøe bi hbnm d`i to`apm   s` d`soet`grbe 7: grbams. Bi hma`ezbr `i  d` d`soet`grb rbdom. D`t`raoebr huâedm `xp`roa`etm s` dos dospmeáb pmeáb d` ho` ho`rtb rtb hbetodbd aâxoam ib hbetodbd d` rbdøe cmrabdm y bue em d`soet`grbdm. dm. Bsuaor qu` bihbezbrb `i to`apm su s` aod` `e bòms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7>

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

6)  Pe `stbequ` `stbequ` hmeto`e` 2::a 2::a88 d` bgub hmetbaoe hmetbaoebdb. bdb. Hme `i prmpø prmpøsotm sotm d` d`s d`shmetbaoebrim hmetbaoebrim s` oetrmduh` bgub ioapob b rbzøe d` (>a˃8/aoe) y `i bgub hmetbaoebdb (ueocmra`a`et` a`zhibdb) s` d`kb sbior d`i `stâe qu` b ib aosa aosabb rbzøe. ½Ruï pmrh`etbk` d` hmetbaoebet`s s` ffbnrâ bnrâ `ioaoebdm d` d`spuïs spuïs d` 2f 2f==

;           :,                          >˃8               2::˃8          ˃8    2::  

 

 

   

 

↞  >0::>>2:::↞℅ :  0:    0:2  :↞   0:2  ↞    0:2  ↞  ‾ 0:2  ↞    0:2      ∞+   ∞∞   ∞       :   ↞    ↞       3: ; ∞   ∞.∞ 3:aoe   ∳          ℅           3: 3:ao ao e ; ∞.  ∞.  3:       ; 2     3: 2::  2 ∞. 2:: 2  ∞.2::3?.66      2℅  ℅  3?.66%   .  

 

 

 

 

 

 

 

 

 

 

 

 

78

 

 

Ruoehfm Hfuhtbyb Miov`r Iuos

?)  @e ue tbequ` qqu` u` hmeto`e` 0:: gbi gbi.. d` bgub, oe oeohobia`et` ohobia`et` s` dosu`iv`e 2: in d` sbi. Iu`gm s` nman`b sbiau`rb bi tbequ` b rbzøe d` 4gbi/aoe y ib ib smiuhoøe ueocmra`a`et` a`zhibdb s` nman`b fbho fbhobb bcu`rb d`i tbequ` b rbzøe d` 0g 0gbi/aoe. bi/aoe. Hmesod`rbedm qu` qu` ib smiuhoøe qu` `etrb to`e` sbi hme ueb hmeh`etrbhoøe d` :.2 in/gbi, d`t`raoebr ib hbetodbd d` sbi qu` fby `e `i tbequ` d`spuïs d` t aoeutms.

    ;     ℅ 2:            ↞ :  2:                          ∳  ∳                    :.∳   4 aoe:.2   4         0::   10::        0::                    ∳  0   0  ;     aoe  0::   0::                   0      0  :. 4  0:: 0  0::  :.4   0::  :.4  :  2:  0 ∬∞ ∞ ∞  0:: ∞ ∬∞   0:: 0::  :.04∞∞ Ui℅,    ;   e 0:: ∞ ↞  0::∞ 0::∞ \  0::     Q   :. 4 0:: :.40::∞ ↞ 0::∞∞ 0::∞      :. 4 :. 4 0:: 4 :.:.20::∞   :. 20::  0::    0::   2:         : 2:↞ : :. 2 0::   0:: ↞0:0:: 2:↞ 0::4:  :.20:: 0::  0::0:: 4: 0:: 0:: ↞  :.20:: 0:: 4: 4:0:: 0:: 0::   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

74

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

2:) Pe d`pøsotm d`pøsotm hmeto`e` oeohobia`et` 2:: io iotrms trms d` ueb smi smiuhoøe uhoøe sbioe sbioebb qu` hmeto`e` 2lg d` sbi. Zbrb t 1:, mtrb smiuhoøe sbioeb qu` hmeto`e` :.2lg. d` sbi pmr iotrm s` bgr`gb bi d`pøsotm b ueb v`imhodbd d` 2: iotrms/ aoeutm, ao`etrbs ueb smiuhoøe no`e a`zhibdb sbi` d`i d`pøsotm d`pøsotm b ib aosa aosabb v`imhodbd. F Fbiibr biibr ib hbetodbd d` sbi `e `i d`pøsotm ``ee ue ama`etm t y ib hbetodbd d` sbi `e `i d`pøsotm hubedm fbe trbeshurrodm > aoeutms.

;              2::.2  2: 2::    :  2    2:  ↞ 2: 2: 2: ↞ie|2: 2 :|  2:   ie|2: 2 :|      

 

 

 

 

∞ ↞ 2: 2:∞ ∞/ ↞2:    : 2↞22:↞?↞  2:?   > 2:?∞ 2:?∞. >.3824>     

 

 

70

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

22) Pe d`pøsotm d`pøsotm d` sbia sbiau`rb u`rb hmeto`e` >:: iotrms d` bgub `e im imss qu` ffby by dosu`itms 8: grbams d` sbi, y `etrbe `etrbe 4 iotrms pmr aoeutm d` smiuhoøe hme 2 grbam d` sbi pmr iotrm. Ib a`zhib  p`rabe`h` no`e a`zhibdb y sbi` bi `xt`romr hme v`imhodbd d` 6 iotrms pmr aoeutm. D`t`raoebr ib `hubhoøe qu` qu` amd`iozb `i prmh`sm y hbihuibr ib hbetodbd hbetodbd d` grbams d` sbi qu` fby s` `ebihbezb `i d`pøsotm `e hubiquo`r s` vbháb `i d`pøsotm=, ½`e quï oestbet` ib aâxoab hbetodbdoestbet`. d` sbi `e½Huâedm `i d`pøsotm=

;      ø           :  8: 442 >6 >::4  > ↞    4  0:  0:     ∬∞  4 ∞∞ 2/0:  4 ::8:>::27:↞:.   \0:   0: 0: 40: 0: 40: 0:        0: 0:  0: 0:  0:   Q : 8:↞4 8:↞4 0:0: 0:˃>↞>. 0 : 36     0: :. : 36 0:      > : :  4  ↞ > : :  4   : ↞   0 :            :↞4:. >:.20066> 8366>0: :↞:. 2 83 0: 4↞       >:.066>  40:>:.066> :.:360:>:.066>  06.66>80>80     

 

 

 

 

 

 

 

 

 

 

73

 

  Ruoehfm Hfuhtbyb Miov`r Iuos

2>) X` fb `ehmetrbdm qu` ue fu`sm cmsoiozbdm, hmeto`e` 2/2::: d` ib hbetodbd mrogoebi d` H24. D`t`raoebr ib `dbd d`i cøsoi, sbno`edm qu` `i to`apm d` vodb a`dob a`dob d` H24 `s 0.3:: bòm bòms. s.

;

 

 

  ↞    24240.3::3::òò:         2   ∞∞+      ∞    : ↞    ↞    ∞ > 03::↞ 03::↞  > ∞ 2>  ∞ ↞ie2>∞   ie2iei>e>   0.3::>  ∞ ∞ ↞ 2 ∞  ie∳  2 2::: 2::: 2 2::: ∞  2:::  ie2:::   03::> ↞0. 3 :: ie2::: i e >   00606:::: òò  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77

 

  2)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  

Xo `e t1: fby a ueodbd`s d` sustbehob B, e ueodbd`s d` sustbehob N y eoegueb d`i hmapu`stm H. Fbiibr ib smiuhoøe pbrb x

 ∞ ∞∞ ∞   ∞  5 ∞    Zbrb t1: y x1: 15        D`sp`kbams x;   +      Hbsm >.      ∞ ∞∞ ∞  Hbsm 2. b 1 n

Zmr crbhhome`s pbrhobi`s

         ∞Oet`grbedm ∞ ∞ ∞ ∞∞ ∞∞   ∞ ∞      ∞ ∞      

  2                           ;    

Xo T1: y V1:

 

@etmeh`s

                      ∞   ∞  (  ( 2     ∞ ) ,   5   

 

 

 

 

76

 

 

>)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  @i rbdom bhtovm to`e` ueb u eb vodb prma`dom d` 03:: bbòms òms bprmxoa bprmxoabdba`et`. bdba`et`. ½@e hubetms bòms d`sho`ed` `i >:% d` su hbetodbd mrogoebi= ½Bi 2:%= X`b B(T) ib hbetodbd d` sutbehob sutb ehob `e ue to`apm 2. Ib d`shmapmsohoøe `stbrâ s`gûe

   

      . 5. () 5.   5   

 

Xo B1:.0B, `e t103:: bòms



.

∞  

  ... 2:. 0  .  503:: 503::  :. 0  52. > 86 86  2:   :.> .  5:.>       22..>862:∞ 2.>862:∞:.> 5   28::>. ::>.6 ò ò  . :.2  ..(() 5:.2     2.>862:∞ 52.>862:∞:.2 55  26060????..>8>8 ò ò

XO B1:.>B,

 

 

 

 

Xo B1:.2B,

 

 

7?

 

 

8)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I D`amstrbr`ams qu` ib i`y d` hmev`rsoøe `e t1: t1 : vo`e` dbdb pmr ib `hubhoøe doc`r`ehobi

          ..   ..     

Xmiuhoøe

 

  ...  ....                   ++ . +   , . . +   

 

 

D` dmed` sbn`ams

 ,

 

6:

 

 

4)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  Pe abt`robi rbdombhtovm s` d`soet`grb b ueb rbzøe prmpmrhomebi b ib hbetodbd hb etodbd  pr`s`et`. Xo oeohobia`et` oeohobia`et` fby 4:ag d` abt`robi y bhbnm d` ueb fmrb s` mns`rvb mns`rvb qu` fb p`rdodm `i 6% d` ib hbetodbd oeohobi, fbiibr; b)  Ib hbetodbd d` absb `e hubiquo`r ama`etm t. Xmiuhoøe; X`b y ib hbetodbd hb etodbd `e aoiogrbams pr`s`et` d`i abt`robi rbdobhtovm, rb dobhtovm, `etmeh`s bpmyâedmems `e `i amd`im d` hr`hoao`etm y d`hr`hoao`etm  

  5 

Xustotuoams, `i prmni`ab ems db ims soguo`et`s dbtms  

   :      4:

     5 4:       4:

8.>   2     4:4: 8.>  83.83.6 ,    6%6%  4: 4:  83.64:   83.6    2   .   5:. ? > 5i e :. ? >i e  :. : 684  

 

 

 

       ∞.  ∞.     ∞.    4: 54:   :.:.:686844    2 54: ;;

@XTB @X IB @HPBHOME RP@ DB IB HBETODBDB D@ ABT@^OBI ^BDOM BHTOSM @E HPBIRPO@^ TO@AZM T

62

 

 

0)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  D`i `k`rhohom bet`romr hbihuibr ib absb d` abt`robi d`spuïs d` 8 fmrbs Xmiuhoøe; @s d`hor, t18   ∞.        4:                 ∞.    4:   4:∞. 

  4::.77670 82.20  

 

6>

 

 

3)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I  Fbiibr `i to`apm qu` trbeshurr` trb eshurr` fbstb ib d`soet`grbhoøe d` ib hbetodbd oeohobi d`i `euehobdm d`i `k`rhohom eua`rm 4 Zbrb y 1 >:ag

,

t 1=

Psbams ib `hubhoøe;

∞.   > : ,                  4: 4:  >:4:∞.    ∞.    ∞.  ie  ie∞.

Xustotuoams

 

 

 

   :.:684 684:684 684  i:.e3?8247:.

6.82

 

 

68

 

 

7)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I

@e ue trmzm d` abd`rb qu`abdb m hbrnøe v`g`tbi s` d`t`raoeø qu` `i 60.0% d` su H-i4 s` fbnáb d`soet`grbdm. Hme ib oecmrabhoøe d`i `k`apim 8 d`t`raoe` ib `dbd bprmxoabdb d` ib abd`rb. Ïstms sme pr`hosba`et` ims dbtms qu` usbrme ims brqu`øimgms pbrb c`hfbr ims aurbi`s pr`fostørohms d` ueb hbv`reb `e Ibshbux, Ibshbu x, Crbehob

    03::ò          24  ∞,03::  :, : ::2>876       5   03::5   ∞, 5    24,0%    :,240∞, i:,e:,2:40,2440:, 0  ∞,:,:2 ::2>876 40 :,:::2>876 82:>2  203:   :,2,:?::2>876 203::: òò  

 

60.0% s` d`soet`grb d`i H-24

 r`stb d`soet`grbrs` 24.0%  

   

 

 

 

64

 

 

6)  XPHBXBHB AO^BAO^B HB^IMX DBEO@I Pe tbequ` d` 0:: gbi d` hbpbhodbd hmeto`e` oeohobia`et` 2:: in d` HuXM4. @e `i to`apm t 1 : ciuy` `e `i tbequ` bgub b gub hme ue hmet`eodm d` 0: % d` HuXM4 b ue gbstm d` > gbi/aoe. Ib a`zhib fmamgïe`b sbi` d`i tbequ` b ue gbstm d` 2 gbi/aoe. Hb Hbihuibr ihuibr ib hmeh`etrbhoøe d` HuXM4 `e `i tbequ` `e `i ama`etm `e qu` ïst` s` d`rrba`. Doc`r`ehob d` `etrbdb y sbiodb d` ib a`zhib

>  2 aogbi0:e 2gbi/aoe   >. 2::  2::   2  2:: ∬           +  2::  

R; Hmeh`etrbhoøe d` HuXM4

 

2:: 2::    2:: 2::    ∞     2:: >:0: 2::   2:: 0::: ∞      2:: 0::: 2:: > 4::  0:: 0:::0::∞  4::.2>::46%  >4: >4:0::4:: t1:

To`apm pbrb qu` s` ii`e` `i tbequ`; 4::aoe

Ib hmeh`etrbhoøe d` HuXM4  `e `i tbequ`  

60

 

 

?)  XPHBXBHB AO^BAO^B, HB^IMX DBEO@I   Xupmegb qu` 2:g d` osmtmpm d` piutmeom Zu->8? s` `shbpbrme `e `i bhhod`et` euhi`br d` hf`remnyi. ½Huâetm to`apm tmabrb pbrb qu` ims 2:g s` d`shmapmegbe `e 2g= Tma` `e hu`etb ims p`romdms p `romdms d` d`shmapmsohome qu` pmst`romra`et` pmst`romra`et` s` dbe.  

   2 : ,  :  5  5  () 2:(() 2: 2:2 2:  

 

 

 

63

 

 

2:) XPHBXBHB AO^BAO^B HB^IMX DBEO@I Ib prmpbgbhoøe d` ueb `ec`ra`dbd oec`hhomsb `e ueb u eb pmnibhoøe d` oedovodums sush`ptoni`s d` s`r hmetbgobdms s` amd`iozb pmr ib `hubhoøe doc`r`ehobi  

´ 2 2 ´ 2   2   2 ∞+

dmed` y(t) r`pr`s`etb bi eûa`rm d` p`rsmebs `ec`rams `ec`rams `e `i to`apm to`ap m t, E `i tbabòm d` ib  pmnibhoøe y β 5 : ib tbsb `sp`hácohb `sp`hácohb d` oec`hhoøe. Xupmeo`edm qu` qu` s` oetrmduh` ue oedovodum `ec`ram, ½høam `vmiuhomeb ib `ec`ra`dbd= X` trbtb d`i amd`im imgástohm huyb smiuhoøe `s;

hmam y(:) 1 2, `etmeh`s

+ +⇞ +   +

 1 βy(t)(L ∞ y(t)) hme ueb hbpbhodbd d` hbrgb L 1 E + 2,

 E 1 B

@i eûa`rm d` p`rsmebs oec`htbdbs `e `i to`apm t `s,

 

 

67

 

 

22) XPHBXHB AO^BAO^B HB^IMX DBEO@I

Pe d`pøsotm hmeto`e` 6:: gbi d` bgub y >0: gbi d` smiutms. X` vo`rt` bgub b gub cr`shb `e `i tbequ` b ue gbstm d` 0 gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosab oet`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` smiutms dosaoeuyb >/2: d` su vbimr mrogoebi= Xmiuhoøe;

  :0 2:0:0   2:0:  :     >2:  : ie >2: ie   ∞     ∞ >0:   >0:∞     

 

R; Hmeh`etrbhoøe d`i hmetbaoebet`

 

 

t1:

Fbiibedm (t1=) pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb >/2:

0:>0:∞ ie>0:>0: 0: 886>2:>2:   

 

 

66

 

 

2)  S@ETP^B HFBHBIIB N^_BE S@ETP^B .Hubedm ue mnk`tm bnsmrn` hbimr d`i a`dom qu` im rmd`b sogu` ib I`y d` E`wtme. Peb p`qu`òb  nbrrb d` a`tbi, huyb t`ap`rbturb oeohobi `s d` >: ◣H, s` d`kb hb`r `e ue r`hopo`et` hme bgub forvo`edm. Hbihuibr `i to`apm qu` dohfb nbrrb tbrdbrb `e bihbezbr ims ?: grbdms ºH, so s` sbn` qu` su t`ap`rbturb bua`etm >ºH`e ue s`guedm. ½Huâetm tbrdbrâ tbr dbrâ ib nbrrb `e bihbezbr ims ?6ºH= ^@XMIPHOØE. Ib I`y d` E`wtme `xpr`sb qu` ib rbpod`z hme qu` s` `ecráb ue mnk`tm `s  prmpmrhomebi b ib doc`r`ehob `etr` `etr` su t`ap`rbturb y ib t`ap`rbturb bano`et`. bano`et`. Ib `hubhoøe doc`r`ehobi qu` amd`iozb dohfm c`eøa`em `s T:(t) 1 L\T(t)∞TbQ, huyb smiuhoøe `s. T(t) 1 Tb +H`Lt. Ib t`ap`rbturb bano`et` `e `st` hbsm `s Tb 1 2::, ao`etrbs qu` ib t`ap`rbturb oeohobi `s T (:) 1 >:. Zmr tbetm, T(:) 1 2::+H`L·: 1 2::+H 1 >:



 H 1 ∞6:.

Hmam ib t`ap`rbturb bua`e b ua`etø tø > ◣◣H H `e 2 s `ehmetr bams bams qu` T(2) 1 >>. Bsá, T(2) 1 2::∞6: `L 1 >>

⇞⇞

 76 1 6: `L  L .

Zmr tbetm, ib t`ap`rbturb t `ap`rbturb `e hubiquo`r oestbet` t `s T.

Zbrb hbihuibr `i to`apm qu` tbrdb ib nbrrb `e bihbezbr ?: ◣H r`smiv`ams ib `hubhoøe T(t) 1 ?:;

. Xoaoibra`et`, pbrb hbihuibr `i to`apm qu` tbrdb `e bihbezbr ?6 ◣H r`smiv`ams ib `hubhoøe T(t) 1 ?6;

6?

 

 

>)  S@ETP^B HFBHBIIB N^_BE S@ETP^B

. Xupmegb qu` 2>g d`i osmtmpm osmtmpm d`i piutoeom Zu;>8? s` `shbpbrme `shbpbrme `e `i bhhod`et` euhi`br . ½Huâetm to`apm tmabrb pbrb qu` ims 2>g s` d`shmapmegbe `e 8g = Tma` `e hu`etb ims p`romdms d` d`shmapmsohome qu` pmst`romra`et` s` dbe .    

          1

 

 

↞ 

 1

 

Xustotuoams ; _12> T1: 2> 1

:

2> 1

:

2> 1 (2) 2> 1  

XPXTOTPOAMX  1

_10

 

012>.

(>483:)

0/2>1

(>483:)

ie0/2>1ie

(>483:)

ie0/2>1 (>483:)

2/>483:.ie0/2>1l L1-8.00x2:∞0



2> 1   y Xustotuoams

L1-8.00x 2:∞0 

t1>483: bòms

?:

 

 

_18

T1=

 1

 

                   8 1 2> (∞8.00 2:∞0)( )

8/2> 1 (∞8.00 2:∞0)( ) 8/2> 1

(∞8.00 2:∞0)( )

ie8/2> 1 (∞8.00 2:∞0)( ) (ie 8 2> )

2 (∞8.00 2:∞0) 1  

 1 6:7?> ò    1

8)  S@ETP^B HFBHBIIB N^_BE S@ETP^B

Oeohobia`et` fbnáb 2:: aoiogrbams d` ueb sustbehob rbdobhtovb. D`spuïs D`spuïs d` 3 fmrbs su absb dosaoeuym `e ue 8%, so `e ue oestbet` hubiquo`rb ib rbpod`z d` d`soet`grbhoøe `s  prmpmrhomebi bib hbetodbd hbetodbd d` sustbehob pr`s`et`, d`t`raoebr ib hbetodbd hbetodbd qu` qu`db d`spuïs d` >4 fmrbs. ^@XMIPHOØE.. Oeohobia`et` t`e`ams 2:: ag d` sustbehob rbdobhtovb. Xo H(t) d`emtb ib ^@XMIPHOØE hbetodbd d` sustbehob rbdobhtovb `e `i oestbet` t, sbn`ams qu` bi hbnm d` t 1 3 f qu`dbe

H (3) 1 2::∞8 1 ?7 gr d` `stb sustbehob. Ib rbpod`z r bpod`z d` d`soet`grbhoøe `s prmpmrhomebi b ib hbetodbd d` sustbehob  pr`s`et`, `stm `s; dH 1 lH, dt so`edm l ib hmestbet` d` prmpmrhomebiodbd. Hmam voams `e `i d`sbrrmiim t`ørohm, tb tbii `hubhoøe bdaot` pmr smiuhoøe H(t) 1 B`lt, dmed` B y l sme hmestbet`s b d`t`raoebr. Zu`stm qu` `e `i oestbet` oeohobi t 1 : hmetbams hme 2:: ag d` sustbehob, H(:) 1 B `: 1 2::



 B 1 2::.

?2

 

 

@e `i oestbet` t 1 3 qu`dbe ?7 gr< iu`gm, H. @e hmehiusoøe, ib hbetodbd d` sustbehob rbdobhtovb `e `i oestbet` t `s H. Zmr tbetm, ib hbetodbd hb etodbd r`a r`abe`et` be`et` trb trbeshurrodbs eshurrodbs >4 f `s H 0 ag. 4)  S@ETP^B HFBHBIIB N^_BE S@ETP^B

Ho`rtm abt`robi rbdobhtovm s` d`soet`grb prmpmrhome prmpmrhomebia`et` bia`et` b ib hbetodbd pr`s`et`. Xo oeohobia`et` fby 0: aoiogrbams d` abt`robi pr`s`et` y d`spuïs d` dms fmrbs s` mns`rvb `i abt`robi fb p`rdodm `i 2:% d` su absb mrogoebi, fbiibr; B) ueb `xpr`soøe pbrb ib absb d` abt`robi pr`s`et` `e `i to`apm. Xmiuhoøe; smiuhoøe B

                                     

1∞ ( )

1∞ .  

↞  ( ) 1 .

  ()

   

 ie( ( )) 1 ∞ ,  +    ie(

∞ . 

(:) 1 0:

Bfmrb r`apibzbedm. (:) 1 0:

(>) 1 40

0:1h

40 1 . ∞>  

4010:. ∞>   L1 :.:0

   

    ∞ >  1 ie|40 0: |

?>

 

 

0)  S@ETP^B HFBHBIIB N^_BE S@ETP^B

Dms sustbehobs quáaohbs B y N s` hmanoebe pbrb pb rb cmrabr ueb sustbehob H. Oeohobia`et` fby 3: grbams d` B y 6: grbams N, y s` sbn` qu` pmr hbdb grbam d` N e`h`sotbams 4 grbams d` B X` mns`rvb qu` s` cmrabe 20 grbams d` H `e 2: aoeutms. Xmiuhome

                   

1 \  ∞ ( )Q\  ∞ ( )Q

28

()

( )1

>8

()

   

1 (3: ∞  >8 )(6: ∞ 

28 )

↞ 

   

1

 ?

  

(26: ∞ > )(>4: ∞ )



( )1

?8

 

 

                      (:) 1 :   , (2:) 1 20      

1

 ?

(26: ∞ > )(>4: ∞ ) }

   

 

 (26: ∞ > )(>4: ∞ )

1

   ?

↞  ∬ 

 (26: ∞ > )(>4: ∞ )

1 ∬ 

   ?

↞ ∬ 

  

 (26: ∞ > )(>4: ∞ )

1 ∬     ?

           

∬ 

2 ?:(26: ∞ > ) ∞ 

2 26:(>4: ∞ ) 1



 ?

+   ↞ 

 

;

?4

 

 

2 26:



 





(>4: ∞ ) (26: ∞ > ) 1



 ?

+  ↞ 

     

(>4: ∞ ) (26: ∞ > )

1

>:  

(:) 1 :  

(>4: ∞ :) (26: ∞ >(:)) 

                      1 >: (:)<  1 2.88 (2:) 1 20 ,

(>4: ∞ (20)) (26: ∞ >(20))  1

>: (2:)<  1 :,:?4

(>4: ∞ ) (26: ∞ > )

1 2.88 >:(:,:?4)   ( ) 1 >4:

2 ∞ (2,660)  2 ∞ 0 (2,660)    1 86

( ) 1 >4:

2 ∞ (>>3.2:∞4)>: 2 ∞ 0 (>>3.2:∞4)>:  1 80.>3  

?0

 

 

3)  S@ETP^B HFBHBIIB N^_BE S@ETP^B

Xo`edm ib t`ap`rbturb d`i bor` b or` d` >:ºh, s` `ecráb ueb sustb sustbehob ehob d`sd` 2::ºH fbstb 3:ºH `e 2: aoeutms . fbiibr ib t`ap`rbturb d`etrm d` 4: aoeutms.

Xmiuhome ;

T(t)1 t`ap`rbturb `e `i oestbet` t

T(:)1 2::

T(2::)13:

                                              ()

 

1 .\ ( ) ∞ ( )Q 1 \>: ∞ ( )Q

   

   

( ) >:∞ ( )

1 .   ∞ 

ie(>: ∞ ( )) 1 .  +   ↞  >: ∞ ( ) 1 . ∞  

(:) 1 2::

2:: 1 >: +  

(2::) 1 3:

3: 1 >: + . ∞2:  

@etmeh`s L1 :,:3?

   

  ( ) 1 >: +

 1 6: ↞ 4: 1 6:. ∞2:  

∞  

?3

 

 

 

 

( ) 1 >: + 6:. ∞:,:3?

(4:) 1 >: + 6:. ∞:,:3? 1 >0

7)  S@ETP^B HFBHBIIB N^_BE S@ETP^B Pe d`pøsotm hmeto`e` 6:: gbi d` bgub y >0: gbi d` ssmiutms. miutms. X` vo`rt` bgub cr`shb `e `i ttbequ` bequ` b ue gbstm d` 0 gbi/aoe y ib a`zhib fmamgïe`b sbi` d`i r`hopo`et` hme ib aosab oet`esodbd. ½Huâetm to`apm `s e`h`sbrom pbrb qu` ib hmeh`etrbhoøe d` smiutms dosaoeuyb >>/2: /2: d` su vbimr mrogoebi= Xmiuhoøe;

   

   

1 : ∞ 

0  2:0:    

+



0  2:0: 1:

R; Hmeh`etrbhoøe d`i hmetbaoebet` h metbaoebet`

∬ 

     

   

+ ∬ 

 >2:

1:

 +

 >2: 1  

?7

 

 

        ( )1

∞ 

 >2: ( ) 1

∞ 

 >2:

t1:

   

>0: 1  

( ) 1 >0: ∞ 

 >2:

Fbiibedmi (t1=) pbrb qu` ib hmeh`etrbhoøe d` hmetbaoebet`s dosaoeuyb >/2:



0: 1 >0: ∞ 

      >2:  

0: >0:

1 ∞ 

 >2:

 1 886

 

?6

 

 

6)  S@ETP^B HFBHBIIB N^_BE S@ETP^B @i `oest`eom >08 s` hb` hme ueb rbpod`z prmpmrhomebi b ib hbetodbd qu` s` t`egb , d`t`raoe` ib vodb a`dob so `st` abt`robi po`rd` ue t`rhom d` absb `e 22,7dobs R1>08dR/dt; rbpod`z d ;rbzøe d` d`hboao`etm.

         

1∞

 

 

 

 

   

   1∞

  ↔ ∬ 

   

1 ∞∬

 

                 

Oet`grbedm  1 ∞  +   y bpiohbedm ib prmpo`dbd`s d` imgbr imgbrotams otams R1 . ∞ Bfmrb R(:)1 :

 

   

 

Bfmrb sustotuy`edm ` mnt`edráb

                         :1 . ∞ .  

 

 

   

 1 :

Xustotuy`edm mtrb v`z

 1 :. ∞   ↔  1 22.7 ↔

 1 : ∞ 

28 :

 

 

 1

>8 :



Xustotuy`edm mtrb v`z

 

   

   

 

   

 

 

.

??

 

 

>8

  

: 1 :. ∞22,7

↔ >8

1. ∞22,7 ↔ ie> 8

1 ∞22,7 ↔

 

 1 ↔  1 ∞:,4:0 ∞22,7

1 .:,8430 Xustotuy`edm 2>

     

. : 1 . ∞:,8403 ↔ 2>

.. ∞:,:8403 ↔

∞:,3?82 :,:8403 1  1 >:

 



(:,0) 1 ∞: ∞:,:8403 ,:8403 ↔  1

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF