Eclipse e300 Example
Short Description
Download Eclipse e300 Example...
Description
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012
General description: 56(150ft)*24(150ft)*5(100ft) scale horizontal reservoir, has 10000ft depth at the top layer. Oil Gas contact stays at 10000ft; Oil water contact stays at 10400ft; initial formation pressure at 10000ft is 4332psi. Porosity: 0.15, permeability: 56mD, Crock = 0.00001577 @ P initial Formation fluid contains CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3, has a mole fraction of 0.0852 , 0.13774, 0.468529, 0.061628, 0.041961, 0.068657, 0.03195, 0.0994, 0.001633 respectively. In Cartesian block centered system, a vertical gas injection well stays at (40, 15) penetrated through layer 1 to 4. Gas injected is flue gas (12% CO2, 88% N2). Has a constant bottom-hole pressure at 5000psi. A vertical production well stays at (10, 8) penetrated through layer 3 to 4. Has a constant bottom hole pressure at 4000psi. Predicted the formation pressure, oil saturation, water saturation, gas saturation, oil production rate for future 10 years which starts at 1th Jan. 2012.
1/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 --Table dimensions --Runspec section-------------------------------------------------
TABDIMS 1 1 40 40 /
--The RUNSPEC section is the first section of an ECLIPSE data input file. It contains the run title, start date, units, various problem dimensions (numbers of blocks, wells, tables etc.), flags for phases or components present and option switches.
--specifies the start date of the simulation. START 1 JAN 2012 / --Grid section-------------------------------------------------------
RUNSPEC --Request the FIELD unit set
WATER
--The GRID section determines the basic geometry of the simulation grid and various rock properties (porosity, absolute permeability, netto-gross ratios) in each grid cell. From this information, the program calculates the grid block pore volumes, mid-point depths and interblock transmissibilities. In this case, we use block centered Cartesian
GAS
GRID
-- Allow CO2 to dissolve in the aqueous phase CO2SOL
--define of 56 by 24 by 5 grid, with 150 ft. by 150 ft. by 100 ft. Depth of the top layer is 10000 ft.
--Adaptive IMplicit solution method
DXV
AIM
56*150 /
--Nine components in study (not plus water)
DYV
COMPS
24*150 /
9/
DZV
--Peng-Robinson equation of state to be used
5*100 /
EOS
TOPS
PR /
1344*10000 /
--Number of blocks in X, Y, Z directions
-- EQUALS assign or replace the value of a property for a box of cells within the grid
FIELD --Three phases are present OIL
DIMENS
EQUALS
56 24 5 /
2/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 -- Porosity. Grid blocks are ordered with the X axis index cycling fastest, followed by the Y and Z axis indices.
NNHHHHAAA/ -- Critical temperatures Deg R
PORO
TCRIT
0.15 /
548.46000 227.16000 343.08000 549.77400 665.64000
--permeability PERMX 56 /
806.54054 838.11282 1058.03863 1291.89071 /
PERMY 56 /
-- Critical pressures PSIA
PERMZ 20 /
PCRIT
/
1071.33111 492.31265 667.78170 708.34238 618.69739
--Properties section----------------------------------------------
514.92549 410.74956 247.56341 160.41589 /
--The PROPS section of the input data contains pressure and saturation dependent properties of the reservoir fluids and rocks.
-- Critical Z-factors ZCRIT
PROPS -- Confirm number of components NCOMPS
.27408 748
.29115
.28473
.28463
.27640 /
.26120
.22706
.20137
.27
9/ -- Acentric factors EOS ACF PR / .22500 240
.04000
.01300
.09860
.21575 /
.31230
.55670
.91692
STCOND 60.0 14.7 /
-- Molecular Weights
-- Component names
MW
CNAMES
44.01000 44.09700
-- Standard temperature and pressure in Deg F and PSIA
CO2 N2 C1 C2 C3 C4-6 C7+ C7+2 C7+3 /
28.01300
16.04300
.15
30.07000
HYDRO
3/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 66.86942 107.77943 198.56203 335.19790 /
527.40000 140.58000 201.06000 329.40000 415.80000
-- Omega_A values
526.05233 519.67000 519.67000 519.67000 /
OMEGAA -- Reference densities LB/FT3 .4572355 .4572355 .4572355
.5340210
.4572355 /
.6373344
.6373344
.4572355 DREF .6373344
-- Omega_B values
48.50653 50.19209 34.21053 36.33308
26.53189
37.87047 55.89861
50.88507
45.60035 /
OMEGAB -- Parachors (Dynes/cm) .0777961 .0777961 .0777961
.0777961
.0777961 /
.0872878
.0872878
.0777961 PARACHOR .0872878
78.00000 41.00000 108.00000 150.30000
-- Default fluid sample composition
77.00000
213.52089 331.78241 516.45301 853.48860 /
ZMFVD -- Binary Interaction Coefficients 1
0.0852 0.13774 0.468529 0.061628 0.041961 0.068657 0.03195 0.0994 0.001633
10000
0.0852 0.468529 0.041961 0.0994 0.001633 /
0.13774 0.061628 0.068657
BIC -.0200 .1000 .0360 .1300 .0500 .000000
0.03195
.1350 .0800 .000000 .000
-- Boiling point temperatures Deg R
.1277 .1002 .092810 .000 .000
TBOIL
.1000 .1000 .130663 .006 .006 .0
350.46000 139.32000 201.06000 332.10000 415.98000
.1000 .1000 .130663 .006 .006 .0 .0 .1000 .1000 .130663 .006 .006 .0 .0 .0 /
523.33222 689.67140 958.31604 1270.40061 /
-- Reservoir temperature in Deg F
-- Reference temperatures Deg R
RTEMP
TREF
230.0 /
4/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 --Water saturation functions
0.00 0.000 0.000
SWFN
0.24 0.000 0.000
--Sw, Krw, Pc
0.28 0.005 0.005
0.16 0
3
0.32 0.012 0.012
0.18 0
2
0.44 0.060 0.060
0.20 0.002 1
0.56 0.150 0.150
0.44 0.090 0.5
0.72 0.400 0.400
0.68 0.330 0.1
0.84 0.800 0.800 /
0.8 0.540 0.05
--Pref, rock compressibility
1.00 1.000 0.0 /
ROCK
--Gas saturation functions
4351.1 0.00001577 /
SGFN
--Water pressure tables
--Sg, Krg, Pc
PVTW
0.00 0.000 0.0
--Pref, Bref, Cw, Vw, (dVw/dp)/Vw
0.04 0.005 0.0
4351.1 1.0 0.000004 0.2476 0.0 /
0.12 0.026 0.0
--Surface density
0.24 0.078 0.0
DENSITY
0.36 0.156 0.0
--deno
0.48 0.260 0.0
--For a compositional run, only the water density is required
denw
deng
0.60 0.400 0.0 1* 63.02 1* / 0.72 0.562 0.0 --Solution section-----------------------------------------------------
0.84 0.800 0.0 /
-- contains sufficient data to define the initial state (pressure, saturations, compositions) of every grid block in the reservoir.
--Oil saturation functions (three-phase) SOF3
SOLUTION
--So, Krog(oil and water), Krow (oil and gas)
EQUIL
5/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 -- Datum depth, Pressure at the datum depth, Depth of the water-oil contact, Oil-water capillary pressure at the water-oil contact, Depth of the gas-oil contact, Gas-oil capillary pressure at the gas-oil contact, DEFAULT
--Schedule section------------------------------------------------------ specifies the operations to be simulated (production and injection controls and constraints) and the times at which output reports are required.
10000 4332 10400 3 10000 0.001 1* 1* 1* / -- Outputs at every report step
SCHEDULE
OUTSOL
-- Controls on output from SCHEDULE section
--formation pressure, oil saturation, water saturation, gas saturation
RPTSCHED
PRESSURE SOIL SWAT SGAS /
--grid block pressures, grid block water saturations, grid block oil saturations, grid block gas saturations
---- Summary section-----------------------------------------------------
PRESSURE SWAT SOIL SGAS / --General specification data for wells
--summary specifies a number of variables that are to be written to Summary files after each time step of the simulation
WELSPECS --Well name, Name of the group to which the well belongs, I - location of well head or heel, 4 J - location of well head or heel, Reference depth for bottom-hole pressure, Preferred phase for the well
SUMMARY -- Requests tabulated output of SUMMARY data RUNSUM
I FIELD 40 15 10500 GAS /
--Field oil production rate, water production rate, oil production total, GOR and field pressure
P FIELD 10 8 10500 OIL / /
FOPR
--Well completion specification data
FWPR
COMPDAT
FOPT
-- requests that summary data be written to the Summary file only at report times
--Well name, I - location of connecting grid block, J - location of connecting grid block, K location of upper connecting block in this set of data, K - location of lower connecting block in this set of data, Open/shut flag of connection, DEFAULT
RPTONLY
I 40 15 1 4 open 1* /
FGOR FPR
P 10 8 3 4 open 1* /
6/7
Nan Zhang
Eclipse E300 simulation example for Engi. 9114 Advanced Reservoir Engineering Winter 2012 /
-- Well name, A character string specifying the nature of the fluid to be injected, A character string is required if the composition of the injection fluid was specified using STREAM, MIX, GV or WV in item 2
-- Control data for production wells WCONPROD -- Well name, Open/shut flag for the well, Control mode (Controlled by bottom-hole pressure target), Oil rate target or upper limit, Water rate target or upper limit, Gas rate target or upper limit, Liquid rate target or upper limit, Reservoir fluid volume rate target or upper limit, BHP target or lower limit, DEFAULT
I STREAM 'FLUE' /
P OPEN BHP 1* 4* 4000 /
35*100 /
/
END
/ -- After each time step a report of the current state of the reservoir is produced
TSTEP
-- Control data for injection wells WCONINJE -- Well name, Injector type, Open/shut flag for the well, Control mode, Surface flow rate target or upper limit, Reservoir fluid volume rate target or upper limit, BHP target or upper limit, DEFAULT I GAS OPEN BHP 1* 1* 5000 / / -- Set composition of injection gas stream WELLSTRE -- The name of the well stream, the mole fraction of the first component, the mole fraction of the second component. 'FLUE' 0.12 0.88 / / -- When running in compositional mode, the nature of the injected gas must also be specified with keyword WINJGAS Reference: Reference Manual, ECLIPSE* reservoir simulation software, Schlumberger, Version 2010.2
WINJGAS
7/7
Nan Zhang
View more...
Comments