December 17, 2017 | Author: Rianto Pakpahan | Category: N/A
Earth Tester PENGUKURAN TAHANAN TANAH
Besarnya tahanan tanah sangat penting untuk diketahui sebelum dilakukan pentanahan dalam sistem pengaman dalam instalasi listrik. Untuk mengetahui besar tahanan tanah pada suatu area digunakan alat ukur dengan penampil analog. Hasil pengukuran secara analog sering terjadi kesalahan dalam pembacaan hasil pengukurannya. Untuk mengatasi permasalahan tersebut,maka dirancanglah suatu alat ukur tahanan tanah digital yang memiliki kemudahan dalam pembacaan nilai tahanan yang diukur. Alat ukur ini penampilnya
menggunakan digital pada segmen-segmen, sehingga dengan mudah menyimpan data-data yang terukur. Perancangan alat ukur tahanan tanah digital ini menggunakan tiga batang elektroda yang ditanahkan yaitu elektroda E (Earth), elektroda P (Potensial) dan elektroda C (Curren). Tujuan penggunaan tiga batang elektroda tersebut adalah untuk mengetahui sejauh mana
tahanan dapat mengalirkan arus listrik. Alat ukur tahanan tanah ini terdiri dari beberapa blok diagram rangkaian, antara lain rangkaian osilator,rangkaian tegangan input, rangkaian arus input, mikrokontroler dan rangkaian penampil. Sebelum hasil pengukuran di tampilkan ke LCD, data diolah dirangkaian mikrokontroler. Keuntungan dengan manggunakan mikrokontuler ini yaitu keluaran dari rangkaian input ini debelum masuk ke LCD bisa diatur. Sehingga, perancangan alat ukur tahanan tanah digital ini dapat mengukur tahanan tanah dengan teliti dan akurat. Hadil pengukuran tahanan tanah juga bergantung pada kondisi tanah itu sendiri. Pengukuran tahanan tanah dilakukan dengan membandingkan alat ukur rakitan dengan alat ukur yang sudah ada dengan merek Kyoritsu Earth Tester Digital. Selisih nilai pengukuran antara alat ukur rakitan dengan alat ukur yang sudah ada adalah sebesar 0,31 ohm. Pengujian Tahanan Pentanahan November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Seperti yang telah dibahas pada bagian sistem pentanahan, betapa penting sistem pentanahan baik dalam sistem tenaga listrik ac maupun dalam pentanahan peralatan untuk menghindari sengatan listrik bagi manusia, rusaknya peralatan dan terganggunya pelayanan sistem akibat gangguan tanah. Untuk menjamin sistem pentanahan memenuhi persyaratan perlu dilakukan pengujian. Pengujian ini sebenarnya adalah pengukuran tahanan elektroda pentanahan yang dilakukan setelah dilakukan pemasangan elektroda atau setelah perbaikan atau secara periodik setiap tahun sekali. Hal ini harus dilakukan untuk memastikan tahanan pentanahan yang ada karena bekerjanya sistem pengaman arus lebih akan ditentukan oleh tahanan pentanahan ini. Pada saat ini telah banyak beredar di pasaran alat ukur tahanan pentanahan yang biasa disebut Earth Tester atau Ground Tester. Dari yang untuk beberapa fungsi sampai dengan yang banyak fungsi dan kompleks. Penunjukkan alat ukur ini ada yang analog ada pula yang digital dan dengan cara pengoperasian yang mudah serta aman. Untuk lingkungan kerja yang cukup luas, sangat disarankan untuk memiliki alat semacam ini. Bahasan dalam bagian ini menjelaskan tentang prinsip-prinsip pengujian pengukuran tahanan pentanahan, teknik pengukuran yang presisi baik untuk elektroda tunggal maupun banyak. Sumber : Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 1 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 174. Memasang Instalasi Pembumian November 2nd, 2010 · Buku Sekolah Gratis · Teknik distribusi tenaga listrik 2 No comments - Tags: Alat Ukur dan Pemeliharaan Tahanan Pembumian, Definisi-Definisi
Sistem Pembumian, Elektrode Bumi (Earth Electrode), Gangguan Bumi (Earth Fault), Pemasangan dan Susunan Elektrode Bumi, Pemeliharaan Tahanan Pembumian, Penghantar pembumian (Earthing Conductor) adalah :, Perencanaan pemasangan peralatan, Tahanan Jenis Tanah, Tujuan Pembumian Peralatan 4-3-1 Definisi-Definisi Sistem Pembumian Sesuai dengan PUIL 2000 (Persyaratan Umum Instalasi Listrik 2000) terdapat beberapa definisi yang perlu diperhatikan, yaitu : - Bumi (Earth) adalah massa konduktif bumi yang potensial listriknya di setiap titik manapun menurut konvensi, sama dengan nol. - Elektrode Bumi (Earth Electrode) adalah bagian konduktif atau kelompok bagian konduktif yang membuat kontak langsung dan memberikan hubungan listrik dengan bumi. - Gangguan Bumi (Earth Fault) merupakan : 1). Kegagalan isolasi antara penghantar dan bumi atau kerangka. Gangguan yang disebabkan oleh penghantar yang terhubung ke bumi atau karena resistansi isolasi ke bumi menjadi lebih kecil dari pada nilai tertentu. - Isolasi (Insulation) adalah : 1). (Sebagai bahan) merupakan segala jenis bahan yang dipakai untuk menyekat sesuatu. 2). (Pada kabel) merupakan bahan yang dipakai untuk menyekat penghantar dari penghantar lain dan dari selubungnya, jika ada, - Elektrode Batang adalah elektrode dari pipa logam, baja profil atau batang logam lainnya yang dipancangkan ke bumi. - Pembumian (Earthing) adalah penghubung suatu titik sirkit listrik atau suatu penghantar yang bukan bagian dari sirkit listrik dengan bumi menurut cara tertentu. - Penghantar pembumian (Earthing Conductor) adalah : 1). Penghantar berimpedasi rendah yang dihubungkan ke bumi. 2). Penghantar proteksi yang menghubungkan terminal pembumian utama atau batang ke elektrode bumi. - Rel pembumian adalah batang penghantar tempat menghubungkan beberapa penghantar pembumian.
4-3-2 Jenis Tanah Jenis tanah menurut PUIL 2000 dibagai atas : 1). Tanah rawa, 2). Tanah liat dan tanah ladang, 3). Pasir basah, 4). Krikil basah, 5). Pasir dan kerikil kering, 6). Tanah berbatu. 4-3-3 Tahanan Jenis Tanah Masing-masing jenis tanah mempunyai nilai tahanan jenis tanah yang berbeda-beda dan bergantung dari jenis tanahnya, dapat dilihat dalam tabel dibawah ini, merupakan nilai tipikal.
4-3-4 Tahanan pembumian Tahanan pembumian dari elektrode bumi, tergantung pada jenis tanah dan keadaan tanah serta ukuran dan susunan elektrode. Dari Tabel Tahanan Pembumian pada tahanan jenis (rho – 1) = 100 ohm-meter dibawah ini, menunjukkan nilai rata-rata tahanan elektrode bumi, untuk panjang tertentu.
Untuk tahanan jenis pembumian yang lain (rho), maka besar tahanan pembumiannya merupakan perkalian nilai dalam tabel dengan : Rho / rho – 1 atau Rho / 100 4-3-5 Perencanaan pemasangan peralatan 4-3-5-1 Tujuan Pembumian Peralatan Pembumian peralatan adalah pembumian bagian dari peralatan yang pada kerja normal, tidak dilalui arus. Tujuan pembumian peralatan adalah : a). Untuk membatasi tegangan antara bagian-bagian peralatan yang tidak dilalui arus dan antara bagian-bagian ini dengan bumi sampai pada suatu harga yang aman (tidak membahayakan) untuk semua kondisi operasi normal. b). Untuk memperoleh impedansi yang kecil/rendah dari jalan balik arus hubung singkat ke tanah. Kecelakaan pada personil, timbul pada saat hubung singkat ke tanah terjadi. Jadi bila arus hubung singkat ke tanah itu dipaksanakan mengalir melalui impedansi tanah yang tinggi, akan menimbulkan perbedaan potensial yang besar dan berbahaya. Juga impedansi yang besar pada sambungan-sambungan pada rangkaian pembumian dapat menimbulkan busur listrik dan pemanasan yang besarnya cukup menyalakan material yang mudah terbakar. 4-3-5-2 Pemasangan dan Susunan Elektrode Bumi Untuk memilih macam elektrode bumi yang akan dipakai, harus diperhatikan terlebih dahulu kondisi setempat, sifat tanah dan tahanan pembumian yang diijinkan. Permukaan elektrode bumi harus berhubungan baik dengan tanah sekitarnya. Batu dan kerikil yanglangsung mengenai elektrode bumi, akan memperbesar tahanan pembumian. Elektrode batang, dimasukkan tegak lurus ke dalam tanah dan panjang disesuaikan dengan tahanan pembumian yang diperlukan. Tahanan pembumian sebagian besar tergantung pada panjangnya dan sedikit bergantung pada ukuran penampangnya. Jika beberapa elektrode diperlukan untuk memperoleh tahanan pembumian yang rendah, maka jarak antara elektrode tersebut minimum harus dua kali panjangnya. Jika elektrode tersebut tidak bekerja efektif pada seluruh panjangnya, maka jarak minimum antara elektrode, harus dua kali panjang efektifnya. Penghantar bumi harus dipasang sambungan yang dapat dilepas untuk keperluan pengujian tahanan pembumian, pada tempat yang mudah dicapai dan sedapat mungkin memanfaatkan sambungan yang karena susunan instalasinya memang harus ada. Sambungan penghantar bumi elektrode bumi, harus kuat secara mekanis dan menjamin hubungan listrik dengan baik, misalnya dengan menggunakan
las, klem atau baut kunci yang tidak mudah lepas. Klem pada elektrode pipa, harus menggunakan baut dengan diameter minimal 10 mm. 4-3-5-3 Alat Ukur dan Pemeliharaan Tahanan Pembumian a) Alat Ukur Tahanan Pembumian Untuk mengukur nilai tahanan pembumian dengan cara : 1). Memakai model empat terminal (Motode Wenner) dengan generator putar tangan (DC).
2). Pengukuran tahanan pembumian dengan menyambungkan terminal C1 ke E yang akan diukur, terminal P2 ke P dan terminal C2 ke R. Jarak E – P – R di buat berjarak sama pada satu garis lurus. Meter akan memberikan pembacaan langsung dalam tahanan dan tahanan pembumian dihitung dengan rumus : ? (Rho) = 2 . ? . a . R (ohm-m) dimana : ? (Rho) = resistivitas tanah (ohm-m) a = jarak antara electrode (meter) R = tahanan (ohm) ? (Phi ) = 3,14 3). Memakai Earth Tester (analog) berdasarkan harga potensial.
E (elektrode tanah) yang akan diukur dan elektrode bantu P serta elektrode bantu R diletakkan pada satu garis lurus dengan elektrode E. Volt meter akan menunjuk pada potensial E – P. Menurut hukum Ohm, beda potensial akan berbanding langsung dengan tahanan pembumian. Terlihat bahwa tahanan membesar dengan kedudukan P semakin jauh dari E, dan kenaikan tersebut dengan cepat berkurang dan bahkan pada jarak tertentu dari E, kenaikan dapat diabaikan karena sangat kecil. Persyaratan yang harus diperhatikan adalah : a). Elektrode R harus cukup jauh dari elektrode E, sehingga daerah tahanan tidak saling menutup (over lap). b). Elektrode P harus ditempatkan di luar dua daerah tahanan, dalam hal ini ditempatkan pada daerah datar dari kurva. c). Elektrode P harus terletak diantara elektrode-elektrode R dan E, pada garis penghubungnya.
4-3-5-4 Pemeliharaan Tahanan Pembumian Pemeliharaan pembumian (pentanahan) dilaksanakan minimal sekali dalam setahun diadakan pengukuran nilai pembumian pada musim kemarau. Diambilnya pengukuran pada musim kemarau, karena pada kondisi tersebut nilai tahanan pembumian akan menunjukkan nilai sebenarnya. Jika nilai tahanan pembumian, pada pengukuran di musim kemarau sudah kecil, maka dimusim penghujan akan semakin kecil. Untuk mengetahui nilai tahanan total pembumian, dipakai rumus : 1/Rp = 1/R1 + 1/R2 + 1/R3 + ……………………… + 1/Rn (Ohm) Sumber :
Suhadi dan Wrahatnolo, Tri, 2008, Teknik Distribusi Tenaga Listrik Jilid 2 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 130 – 144. Pengukuran Tahanan Pentanahan (Earth Tester) November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Ada berbagai macam instrument pengukur tanahan pentanahan, salah satu contohnya adalah Earth Hi Tester. Pada instrument cara pengukuran ada 2 macam yaitu : ???? Pengukuran normal (metoda 3 kutub), dan ???? Pengukuran praktis (metoda 2 kutub) 2.12.1.1 Pengukuran Normal (Metoda 3 Kutub) Langkah awal adalah memposisikan saklar terminal pada 3a, selanjutnya : 1. Cek tegangan baterai ! (Range saklar : BATT, aktifkan saklar / ON). Jarum harus dalam range BATT. 2. Cek tegangan pentanahan (Range saklar : ~ V, matikan saklar / OFF) 3. Cek tanahan pentanahan bantu (Range saklar : C & P, matikan saklar / OFF). jarum harus dalam range P/C (lebih baik posisi jarum berada saklar 0). 4. Ukurlah tahanan pentanahan (Range saklar : x1???? ke x100????) dengan menekan tombol pengukuran dan memutar selektor, hingga diperoleh jarum pada galvanometer seimbang / menunjuk angka nol. hasil pengukuran adalah angka yang ditunjukkan pada selektor dikalikan dengan posisi range saklar (x1????) atau (x100????).
2.12.1.2 Pengukuran Praktis (Metoda 2 Kutub) Langkah awal adalah memposisikan saklar terminal pada 2a.
Perhatikan ! Jika jalur pentanahan digunakan sebagai titik referensi pengukuran bersama, maka semua sambungan yang terhubung dengan pentanahan itu selalu terhubung dengan tanah. Jika terjadi bunyi bip, maka putuskan dan cek lagi. 1. Cek tegangan baterai dan cek tegangan pentanahan Caranya hampir sama dengan metoda pengukuran normal, hanya pengecekan tekanan tahanan bantu tidak diperlukan. 2. Ukur tahanan pentanahan (Range saklar : x10???? atau x100????). Hasil pengukuran = Rx + Ro
Misalkan berdasarkan pengukuran diperoleh V = 20 V dan I = 1 A, maka tahanan elektroda adalah : R = V/I = 20/1 = 20 Ohm
Dalam pengukuran yang menggunakan alat ukur tahanan pentanahan, tidak dilakukan pengukuran satu per satu seperti di atas, namun alat ukur telah dilengkapi dengan sistem internal yang memungkinkan pembacaan secara langsung dan mudah. Sumber : Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 1 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 174 – 176. Earth Tester PENGUKURAN TAHANAN TANAH Besarnya tahanan tanah sangat penting untuk diketahui sebelum dilakukan pentanahan dalam sistem pengaman dalam instalasi listrik. Untuk mengetahui besar tahanan tanah pada suatu area digunakan alat ukur dengan penampil analog. Hasil pengukuran secara analog sering terjadi kesalahan dalam pembacaan hasil pengukurannya. Untuk mengatasi permasalahan tersebut,maka dirancanglah suatu alat ukur tahanan tanah digital yang memiliki kemudahan dalam pembacaan nilai tahanan yang diukur. Alat ukur ini penampilnya menggunakan digital. Posisi Elektroda Bantu Dalam Pengukuran November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Dalam setiap pengukuran diinginkan hasil pengukuran yang presisi. Apa artinya sebuah data bila tidak mendekati kebenaran. Salah satu faktor yang mempengaruhi ketelitian dalam pengukuran tahanan pentanahan ini adalah letak elektroda bantu yang digunakan dalam pengukuran. Untuk mendapatkan hasil pengukuran yang presisi adalah dengan meletakkan elektroda bantu-arus Z cukup jauh dari elektroda yang
diukur tahanannya, X, sehingga elektroda bantu-tegangan Y berada di luar daerah yang disebut daerah resistansi efektif dari kedua elektroda (elektroda pentanahan dan elektroda bantuarus). Apa sebenarnya yang dimaksud dengan daerah resistansi efektif ini, dapat diperhatikan Gambar 2.118.
Bila arus diinjeksikan kedalam tanah melalui elektroda Z ke elektroda X, pada kedua elektroda tersebut akan membangkitkan fluks magnet yang arahnya melingkari batangbatang elektroda. Daerah yang dilingkupi oleh fluks magnet dari masingmasing elektroda disebut daerah resistansi efektif. Gambar 2.118 menggambarkan daerah resistansi efektif yang tumpang tindih dari kedua elektroda. Peletakan elektroda Y harus di luar daerah tersebut agar penunjukan alat ukur presisi. Cara mudah untuk mengetahui apakah elektroda Y berada di luar daerah resistansi efektif adalah dengan melakukan pengukuran beberapa kali dengan mengubah posisi elektroda Y di antara X dan Z, yaitu, misalnya pertama pada Y, kemudian dipindah ke arah X, yaitu ke Y’ dan kemudian ke arah Z ke Y”. Perlu digambarkan kurva resistansi (tahanan) sebagai fungsi jarak antara X & Z untuk mengetahui ini. Bila penunjukan-penunjukan alat ukur tersebut menghasilkan harga resistansi (tahanan) yang berubah secara signifikan, menunjukkan bahwa elektroda Y ada di dalam daerah resistansi efektif yang berarti hasil pengukuran tidak presisi. Sebaliknya, bila diperoleh hasil pengukuran yang relatif sama seperti yang ditunjukkan pada Gambar 2.119, maka elektroda Y berada di luar daerah resistansi efektif dan hasilnya presisi. Dalam gambar ditunjukkan grafik resistansi sebagai fungsi posisi Y. Bila diperoleh perbedaan yang besar (Gambar 2.118) menunjukkan ketidakpresisian hasil pengukuran, sebaliknya jika perbedaan pembacaan kecil diperoleh hasil pengukuran yang presisi (Gambar 2.119) dalam arti bahwa inilah tahanan elektroda X yang paling tepat.
Sumber : Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 1 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 176 – 178. Tahanan Jenis Tanah November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Tahanan jenis tanah sangat menentukan tahanan pentanahan dari elektrodaelektroda pentanahan. Tahanan jenis tanah diberikan dalam satuan Ohm-meter. Dalam bahasan di sini menggunakan satuan Ohm-meter, yang merepresentasikan tahanan tanah yang diukur dari tanah yang berbentuk kubus yang bersisi 1 meter. Yang menentukan tahanan jenis tanah ini tidak hanya tergantung pada jenis tanah saja melainkan dipengaruhi oleh kandungan moistur, kandungan mineral yang dimiliki dan suhu (suhu tidak berpengaruh bila di atas titik beku air). Oleh karena itu, tahanan jenis tanah bisa berbeda-beda dari satu tempat dengan tempat yang lain tergantung dari sifat-sifat yang dimilikinya. Sebagai pedoman kasar, tabel berikut ini berisikan tahanan jenis tanah yang ada di Indonesia.
Pengetahuan ini sangat penting khususnya bagi para perancang sistem pentanahan. Sebelum melakukan tindakan lain, yang pertama untuk diketahui terlebih dahulu adalah sifat-sifat tanah di mana akan dipasang elektroda pentanahan untuk mengetahui tahanan jenis pentanahan. Apabila perlu dilakukan pengukuran tahanan tanah. Namun perlu diketahui bahwa sifat-sifat tanah bisa jadi berubah-ubah antara musim yang satu
dan musim yang lain. Hal ini harus betul-betul dipertimbangkan dalam perancangan sistem pentanahan. Bila terjadi hal semacam ini, maka yang bisa digunakan sebagai patokan adalah kondisi kapan tahanan jenis pentanahan yang tertinggi. Ini sebagai antisipasi agar tahanan pentanahan tetap memenuhi syaratpada musim kapan tahanan jenis pentanahan tinggi, misalnya ketika musim kemarau. Sumber : Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 1 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 170. Pengukuran Tahanan Pentanahan (Earth Tester) November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Ada berbagai macam instrument pengukur tanahan pentanahan, salah satu contohnya adalah Earth Hi Tester. Pada instrument cara pengukuran ada 2 macam yaitu : ???? Pengukuran normal (metoda 3 kutub), dan ???? Pengukuran praktis (metoda 2 kutub) 2.12.1.1 Pengukuran Normal (Metoda 3 Kutub) Langkah awal adalah memposisikan saklar terminal pada 3a, selanjutnya : 1. Cek tegangan baterai ! (Range saklar : BATT, aktifkan saklar / ON). Jarum harus dalam range BATT. 2. Cek tegangan pentanahan (Range saklar : ~ V, matikan saklar / OFF) 3. Cek tanahan pentanahan bantu (Range saklar : C & P, matikan saklar / OFF). jarum harus dalam range P/C (lebih baik posisi jarum berada saklar 0). 4. Ukurlah tahanan pentanahan (Range saklar : x1???? ke x100????) dengan menekan tombol pengukuran dan memutar selektor, hingga diperoleh jarum pada galvanometer seimbang / menunjuk angka nol. hasil pengukuran adalah angka yang ditunjukkan pada selektor dikalikan dengan posisi range saklar (x1????) atau (x100????).
2.12.1.2 Pengukuran Praktis (Metoda 2 Kutub) Langkah awal adalah memposisikan saklar terminal pada 2a.
Perhatikan ! Jika jalur pentanahan digunakan sebagai titik referensi pengukuran bersama, maka semua sambungan yang terhubung dengan pentanahan itu selalu terhubung dengan tanah. Jika terjadi bunyi bip, maka putuskan dan cek lagi. 1. Cek tegangan baterai dan cek tegangan pentanahan Caranya hampir sama dengan metoda pengukuran normal, hanya pengecekan tekanan tahanan bantu tidak diperlukan. 2. Ukur tahanan pentanahan (Range saklar : x10???? atau x100????). Hasil pengukuran = Rx + Ro
Misalkan berdasarkan pengukuran diperoleh V = 20 V dan I = 1 A, maka tahanan elektroda adalah : R = V/I = 20/1 = 20 Ohm
Dalam pengukuran yang menggunakan alat ukur tahanan pentanahan, tidak dilakukan pengukuran satu per satu seperti di atas, namun alat ukur telah dilengkapi dengan sistem internal yang memungkinkan pembacaan secara langsung dan mudah. Sumber : Sumardjati, Prih dkk, 2008, Teknik Pemanfaatan Tenaga Listrik Jilid 1 untuk SMK, Jakarta : Pusat perbukuan Departemen Pendidikan Nasional, h. 174 – 176. vii RINGKASAN Megger dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi, output dari alat ukur ini umumnya adalah tegangan tinggi arus searah, yang diputar oleh tangan. Megger ini banyak digunakan petugas dalam mengukur tahanan isolasi antara lain untuk: 1. Kabel instalasi pada rumah-rumah/bangunan 2. Kabel tegangan rendah 3. Kabel tegangan tinggi 4. Transformator, OCB dan peralatan listrik lainnya Pentanahan (grounding)adalah merupakan suatu mekanisme dimana daya listrik dihubungkan langsung dengan tanah (bumi). Tujuan utama dari adanya pentanahan adalah menciptakan jalur yanglow-impedance(tahanan rendah) terhadap permukaan bumi untuk gelombang listrik dan transient voltage. Untuk memperoleh nilai tahanan jenis tanah yang akurat diperlukan pengukuran secara langsung pada lokasi. Jika diperlukan di lapangan harus disiapkan hubungan atau koneksi yang mudah dilepas untuk dapat diadakan pengukuran pada tiap-tiap elektrode. PUTU RUSDI ARIAWAN 3 BAB II PEMBAHASAN 2.1 Megger 2.1.1 Apa itu Megger
Megger dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi, output dari alat ukur ini umumnya adalah tegangan tinggi arus searah, yang diputar oleh tangan. Besar tegangan tersebut pada umumnya adalah: 500, 1.000, 2.000 atau 5.000 volt dan batas pengukuran dapat bervariasi antara 0,02 sampai 20 meter ohm dan 5 sampai 5.000 meter ohm dan lain-lain sesuai dengan sumber tegangan dari megger tersebut. Dengan demikian, maka sumber tegangan megger yang dipilih tidak hanya tergantung dari batas pengukur, akan tetapi juga terhadap tegangan kerja (sistem tegangan) dari peralatan ataupun instansi yang akan diuji isolasinya. Dewasa ini telah banyak pula megger yang mengeluarkan tegangan tinggi, yang didapatkannya dari baterai sebesar 8 – 12 volt (megger dengan sistem elektronis). Megger dengan bateri umumnya membangkitkan tegangan tinggi yang jauh lebih stabil dibanding megger dengan generator yang diputar dengan tangan. Gambar rangkaian dasar megger adalah seperti gambar 2.1. Megger ini banyak digunakan petugas dalam mengukur tahanan isolasi antara lain untuk: 1. Kabel instalasi pada rumah-rumah/bangunan 2. Kabel tegangan rendah 3. Kabel tegangan tinggi 4. Transformator, OCB dan peralatan listrik lainnya.
PUTU RUSDI ARIAWAN 4 Gambar 2.1 Rangkaian dasar megger 2.1.2 Megger Test (Test Insulasi / Insulation Test) Mengapa kita melakukan pengetesaninsulation / megger test ?? Test insulasi dipergunakan untuk mengetahui kondisi konduktor di jaringan. Insulasi yang memadai diperlukan untuk menghindari terjadinya direct contactseperti short circuitatau ground fault. Buruknya insulasi jaringan bisa mengakibatkan terjadinya arus bocor dan bisa membahayakan nyawa seseorang. Dimungkinkan juga akan menimbulkan percikan api yang bisa mengakibatkan kebakaran. Pengetesan dilakukan dengan pengukuran tingkat kebocoran jaringan line/ phase dengan netral dan line dengan ground. Sebelum melakukan pengetesan terlebih dahulu dilakukan pemutusan hubungan komponen elektronik danpilot lampdengan jaringan. Metode pengetesan bisa dilakukan dengan tegangan yang
berbeda sesuai dengan kebutuhan. Batas minimum insulasi yang bisa ditolerir untuk pengetesan dengan tegangan 500 VDC adalah 0,5 Meg Ohm sedangkan dengan tegangan 1000 VDC adalah 1 Meg Ohm. Insulasi menjadi salah satu penyebab utama terbakarnya sebuah motor selain masalah elektrik dan mekanik. Sebuah motor akan mengalami penurunan tingkat insulasi karena usia pakai. Jika insulasi motor telah mencapai antara 10 ~ 1 Meg Ohm maka perlu dilakukan preventive maintenance. Jika insulasi dibawah 1 Meg Ohm berarti motor dalam kondisi kritis.
PUTU RUSDI ARIAWAN 5 Rumus Perhitungan Pengukuran Insulation Test 1. Pengukuran tegangan Rendah: Rumus ≥ 1000. E (minimal) Contoh : E =380 V Ris ol a si= 1000 . 380 = 380.000 Ω = 0.38 M Ω Bila hasil pengukuran lebih dari 0.38 maka alat tersebut masih bisa dikatakan baik.
2. Pengukuran Tegangan Menengah dan Tinggi : Mengunakan DC Test Rumus Risolator → Arus bocor Max =………… μA 2.1.3Meter Tahanan Pentanahan Biasa disebut dengan Meger Tanah atau Earth Tester, digunakan untuk mengukur tahanan pentanahan kerangka kubikel dan pentanahan kabel. Terminal alat ukur terdiri dari 3 (tiga) buah, 1 (satu) dihubungkan dengan elektroda yang akan diukur nilai tahanan pentanahannya dan 2 (dua) dihubungkan dengan elektroda bantu yang merupakan bagian dari alat ukurnya. Ketelitian hasil tergantung dari cukupnya energi yang ada pada baterai. Gambar 2.2 Meter Tahanan Pentanahan
PUTU RUSDI ARIAWAN 6 Meter Tahanan Kontak biasa disebut dengan Micro Ohm meter dan digunakan untuk mengukur tahanan antara terminal masuk dan terminal keluar pada alat hubung utama kubikel. Nilai yang dihasilkan adalah dalam besaran micro atau sepersatu juta ohm.
Dua terminal alat ukur yang dihubungkan ke terminal masuk dan keluar akan mengalirkan arus searah dengan nilai minimal 200 Amper. Sebenarnya yang terukur pada alat ukurnya adalah jatuh tegangan antara 2 (dua) terminal yang terhubung dengan alat ukur, tetapi kemudian nilainya dikalibrasikan menjadi satuan micro ohm. Gambar 2.3 Micro Ohm meter. 2.2 Pentanahan 2.2.1 Pengertian Pentanahan Pentanahan (grounding) adalah merupakan suatu mekanisme dimana daya listrik dihubungkan langsung dengan tanah (bumi). Seperti kita ketahui bersama bahwa arus listrik terjadi jika ada perbedaan potensial diantara 2 (dua) buah titik (node). Arus listrik selalu mengalir dari titik yang mempunyai energi potensial (Ep) yang lebih tinggi ke titik yang mempunyai energi potensial lebih rendah. Hal ini terjadi sebaliknya dengan arah aliran elektron yang mengalir dari titik dengan Ep yang lebih rendah ke titik yang mempunyai Ep yang lebih tinggi, mengapa dapat terjadi demikian?, ilmu elektronika yang akan menjawabnya, yakni suatu cabang ilmu fisika yang secara khusus mempelajari aliran elektron. Energi listrik atau biasa disebut dengan daya listrik (P) yang notabene adalah merupakan hasil perkalian antara tegangan listrik (V) dengan arus listrik (I) PUTU RUSDI ARIAWAN 7 selalu akan mengalir ke titik yang mempunyai tantangan atau rintangan atau hambatan (R) yang paling besar, mengapa bisa begitu? Fenomena ini dapat dijawab dengan percobaan dengan mempergunakan zat cair (air) dengan bejana berhubungan, misalnya bentuk setiap bejana yang berhubungan itu mempunyai perbedaan bentuk dan ukurannya, akan terlihat bahwa jika pada bejana berhubungan tersebut kita alirkan air untuk memenuhi semua bejana tersebut, maka semua bejana tersebut akan menjadi penuh secara bersamaan dalam waktu yang sama, hal ini dapat kita analogikan dengan apa yang terjadi pada energi listrik.
Dengan demikian ternyata bahwa arus listrik akan mengalir jika ada hambatan atau rintangan yang menghalang diantara 2 titik yang berbeda, mengapa ? jawabannya adalah dengan adanya rintangan atau hambatan yang ada akan menyebabkan terjadinya perbedaan potensi pada masing-masing titik, sehingga menyebabkan terjadinya arus listrik (I) diantara kedua titik tersebut. Jadi usahakanlah tantangan atau hambatan diantara kedua titik yang berbeda potensinya agar menjadi sekecil mungkin (mendekati nilai nol) untuk menghindari terjadinya arus listrik diantara kedua titik tersebut, karena semua penghantar mempunyai tahanan masing-masing atau disebut dengan tahanan jenis, maka untuk membuat tahanan yang benar-benar bernilai nol diantara kedua titik tersebut, yakni hanya dengan menghubungkannya ke bumi atau tanah yang akan menyebabkan tahanan atau hambatan diantara kedua titik tersebut menjadi nol sehingga tidak ada perpindahan daya listrik yang terjadi diantara keduanya. 2.2.2 Tujuan Pentanahan Adapun tujuan dari sistem pentanahan tersebut adalah untuk membatasi tegangan pada bagian-bagian peralatan yang tidak seharusnya dialiri arus mis: body/casing, hingga tercapai suatu nilai yang aman untuk semua kondisi operasi, baik kondisi normal maupun saat terjadi gangguan, memberikan jaminan keselamatan dari bahaya kejut listrik, baik perlindungan dari sentuh langsung PUTU RUSDI ARIAWAN 8 maupun tak langsung, serta perlindungan terhadap suhu berlebih yang dapat mengakibatkan kebakaran. Tujuan utama dari adanya pentanahan adalah menciptakan jalur yang low-impedance(tahanan rendah) terhadap permukaan bumi untuk gelombang listrik dan transient voltage. Penerangan, arus listrik, circuit switchingdan electrostatic dischargeadalah penyebab umum dari adanya sentakan listrik atau transient voltage. Sistem pentanahan yang efektif akan meminimalkan efek tersebut.
Jika terjadi gangguan/kondisi yang tidak diinginkan, baik langsung atau tidak langsung (induksi), diupayakan agar gangguan tersebut dialirkan ke tempat yg aman, misal, ke tanah. Grounding yang baik tergantung kondisi tanah (komposisi dan kelembaban), semakin basah tanah maka resistansinya semakin kecil sehingga semakin mudah mengalirkan arus/tegangan buangan. Jadi simpelnya, usahakan grounding mencapai permukaan air dan menggunakan kabel khususgrounding (penghantar) yang baik. cukup ideal jika disambungkan dengan pipa instalasi pompa/mesin air. Tambahan, berikut dari salah satu sumber tentang jenis-jenis gangguan listrik yang sering terjadi yaitu : Blackouts, Blackouts, Line Noise, Sags, Surges, Spike/Lightning. 2.2.3 Karakteristik Pentanahan yang Efektif Karakteristik sistem pentanahan yang efektif antara lain adalah: 1. Terencana dengan baik, semua koneksi yang terdapat pada data center harus merupakan koneksi yang sudah direncanakan sebelumnya dengan kaidahkaidah tertentu. 2. Verifikasi secara visual dapat dilakukan. 3. Sesuai dengan ukuran, TIA-942 menyediakan guideline untuk setiap komponen pada data center. 4. Menghindarkan gangguan yang terjadi pada arus listrik dari perangkat.
PUTU RUSDI ARIAWAN 9 5. Semua komponen metal harus ditahan/diikat oleh sistem pentanahan, dengan tujuan untuk meminimalkan arus listrik melalui material yang bersifat konduktif pada potensial listrik yang sama. 2.2.4Komponen Utama Sistem Pentanahan Dalam system pentanahan komponen komponen utama yang diperlukan antara lain elektroda pentanahan dan hantaran pentanahan berperan sangat besar. Elektroda Pentanahan adalah penghantar yang ditanam dalam tanah dan sebagai kontak langsung dengan tanah yang diusahakan sampai mencapai titik air tanah. Bahan elektroda pentanahan ialah tembaga atau baja profil digalvanisir atau pipa galvanis, sedangkan ukuran dan jenis elektroda pentanahan bermacam- macam tergantung dari lokasi dan metode pentanahannya. Jenis elektroda pentanahan antara lain : 1. Elektroda Batang / pasak yaitu elektroda dari batang logam tembaga Cu ( Cupper Rod / Ground Rod) berdiamater minimum 5/8”, atau batang logam baja profil / pipa galvanis berdiameter 1,5” yang dipancangkan tegak dalam tanah sedalam 2,75 meter. (Gambar 2.3) Gambar 2.4 Elektroda Batang 2. Elektroda pita ( strip plat ) yang dibentuk lingkaran ditanam minimum 0,5 – 1m dari permukaan tanah. ( Gambar 2.4 )
PUTU RUSDI ARIAWAN 10 Gambar 2.5 Elektroda pita 3. Elektroda plat ditanam minimum 50 cm dari permukaan tanah. ( Gambar 2.5 ) Gambar 2.6 Elektroda plat 4. Elektroda jembatan ( mesh / grounding bridge ) dibuat dari strip plat yang dirangkai menyerupai jembatan biasanya dipasang dibawah tower transmisi (Gambar 2.6 ) Gambar 2.7 Elektroda Jembatan
Hantaran pentanahan yaitu hantaran sebagai penyalur arus, harus jenis penghantar yang baik, kuat secara mekanis dan dilindungi untuk menjaga kemungkinan gangguan mekanis yang dapat menyebabkan turunnya daya hantar ataupun terputus.
PUTU RUSDI ARIAWAN 11 Satu hal yang sangat perlu diperhatikan dalam pemasangan sistem pentanahan adalah cara penyambungan / kontak sambung. Penyambungan harus baik dan benar sehingga memenuhi persyaratan mekanis maupun daya hantar listriknya, sambungan harus dapat dibuka dalam rangka pengujian besarnya tahanan pentanahan dan pemeliharaan. 2.3 Pengukuran Pentanahan 2.3.1 Resistans Tanah
Struktur dan karakteristik tanah merupakan salah satu faktor yang mutlak diketahui karena mempunyai kaitan erat dengan perencanaan sistem pentanahan yang akan digunakan. Nilai tahanan jenis tanah harganya bermacam-macam, tergantung pada komposisi tanahnya. Batasan atau pengelompokan tahanan jenis dari berbagai macam jenis tanah pada kedalaman tertentu tergantung pada beberapa hal antara lain pengaruh temperatur, pengaruh kelembaban, dan pengaruh kandungan kimia. 1. Nilai resistans jenis tanah Nilai resistans jenis tanah, rt sangat berbeda tergantung komposisi tanah seperti dapat dilihat dalam pasal 320-1 dalam PUIL 1987 atau yang ditunjukkan pada Tabel 2.1. Tabel 2.1 Nilai rata-rata jenis tanah rt Jenis Tanah Resistans jenis tanah rt dalam ohm-m Tanah rawa 10……....40 Tanah liat dan tanah ladang 20……....100 Pasir basah 50….…...200 Kerikil basah 200……..3000 Pasir / kerikil kering 10m; Rbt=1,5 rt / L Pita Rpt = (rt / pL) x (ln 2L / d) pada L < 10 m; Rpt=2rt / L pada L > 10m; Rpt=3 rt / L dst.nya Tabel 2.3. Rumus untuk menghitung resitans pembumian untuk macam-macam elektrode bumi Di lapangan atau lokasi sering dilaksanakan dua cara pengukuran untuk menentukan tahanan jenis tanah untuk memperoleh perubahan dalam lapisan tanah: PUTU RUSDI ARIAWAN 14 1. Pengukuran dengan elektrode ukur yang tetap Satu elektrode ukur, panjang 1 m ditanamkan tegak lurus dalam lapisan tanah. Dengan alat ukur jembatan-tahanan, diukur tahanan jenis tanah dalam daerah antara permukaan lapisan tanah dan dalamnya pemasukan elektrode tersebut. Rumus untuk tahanan pentanahan batang adalah : Rt = (rt / 2pL) x (ln (4L / d)) di mana : Rt = tahanan bentang suatu elektrode dalam ohm, rt = tahanan jenis tanah dalam ohm-meter, L = panjang elektrode batang dalam m,
d = jari-jari batang elektrode dalam m, ln = logarithmus (dasar e=2.7182818) Tahanan jenis tanah adalah : rt = ( Rt x 2pL ) / (ln 4L/d) = (Rt 6,28 m) / ( ln 157,5) = 1,24 Rt Dapat dilihat bahwa nilai ukur elektrode batang (batang pengukur) dikalikan dengan 1,24 untuk mendapatkan hasil tahanan jenis tanah. Untuk elektrode dengan ukuran yang lain harus ditentukan faktor yang sesuai. 2. Cara mengukur menurut metode von Werner atau cara 4-batang acuan. Dalam Gambar 2.8 dapat dilihat cara mengukur resistans jenis tanah dengan digunakan 4-batang acuan yang dimasukkan dalam tanah dengan jarak a sepanjang satu garis lurus yang sama dan dihubungkan ke alat ukur resistans pembumian.
PUTU RUSDI ARIAWAN 15 Gambar 2.8 cara mengukur resistans jenis tanah Pada ujung-ujung luar batang elektrode 1 dan 4 dialirkan arus dan pada bagian dalam dari batang elektrode 2 dan 3 diukur susut tegangan dalam lapisan tanah. Dari hasil pengukuran perbandingan jembatan dapat dibaca nilai tahanan R, maka resistans jenis tanah dapat dihitung dengan rumus : Qt = 2 p x a x Rt Bila jarak a dalam m dan R dalam ohm, maka terdapat resistans jenis tanah dalam ohm-m yang diukur di sini bukan resistans jenis tanah, hanya resistans jenis
tanah semu. Cara atau metode ukur sesuai von Werner ini hanya dapat mengukur lapisan tanah sampai jarak sedalam a dari elektrode acuan. Dengan merobah-robah jarak a dapat ditemukan nilai tahanan jenis tanah dalam beberapa lapisan tanah. Seperti telah diterangkan sebelumnya lembab tanah sangat mempengaruhi resistans pembumian. Dalam musim panas dengan terik panas yang panjang, lapisan tanah sangat kering. Bila diadakan pengukuran dalam periode musim kering tersebut harus ditanam elektrode acuan yang lebih panjang untuk menembus dalam lapisan yang basah, atau daerah lapisan tanah sekitar elektrode acuan harus dibasahinya
PUTU RUSDI ARIAWAN 16 2.3.3Pengukuran resistansi pembumian
Besarnya resistansi pembumian hanya dapat ditentukan dengan pengukuran. Ini tak mungkin dapat dilakukan dengan alat ukur ohm-meter yang biasa, karena alat ohm-meter mempunyai tegangan AS yang kecil dan cara pengukuran ini tidak mungkin, karena logam dalam tanah yang basah menunjukkan elemen galvanis. Untuk mengukur resistansi pembumian suatu elektrode bumi dapat dilaksanakan menurut proses pengukur arus-tegangan atau dengan alat ukur pembumian menurut pengukuran cara kompensasi: a. Pengukuran dengan metode ukur arus tegangan dalam jaringan dengan titik bintang (netral) yang dibumikan sesuai PUIL 1987 Pasal 323, b. Penghantar bumi dari elektrode bumi RA yang akan diukur dihubung dengan konduktor fase L melalui resistans yang dapat diatur dari 1000 ohm sampai 2000 ohm di belakang gawai pengaman dalam sirkuit amperemeter, lihat Gambar 2.9. Gambar 2.9 hubungan elektrode dengan konduktor PUTU RUSDI ARIAWAN 17 Dalam sirkuit tersebut dipasang juga voltmeter dengan tahanan internal R1 dari kira-kira 40 k-ohm, di mana diukur tegangan antara elektrode acuan dan elektrode bumi bantu dengan jarak 20 ohm. Resistans pembumian dari sistim pembumian pengamanan didapatkan dari rumus RA = U/1 Keburukan dari metode b) ini adalah: tegangan ukur antara elektrode bumi bantu dan RA tak boleh melebihi tegangan sentuh yang diizinkan, karena dapat terjadi kecelakaan, hanya dapat dilaksanakan dalam jaringan di mana titik netral langsung dibumikan (lihat a), karena bila terdapat arus bocor kecil yang mengalir ke bumi, dapat menimbulkan susut tegangan antara RA dan RS, sehingga terdapat hasil pengukuran yang tak tepat. c. Pengukuran dengan alat ukur pembumian - metode ukur arus - tegangan dengan sumber tegangan sendiri.
Untuk elektrode tersendiri yang diperlukan untuk pengukuran, jarak antara elektrode bantu H dan elektrode acuan S dipasang dalam jarak kira-kira 20m, sedangkan untuk elektrode bumi yang disusun dalam bentuk lingkaran, radial atau kombinasi harus berjarak kira-kira 3 kali diameter sistim pembumian. Pengukuran dilakukan dengan alat ukur pembumian dengan sumber tegangan tersendiri. Tahan elektrode RE yang akan diselidiki adalah tahanan antara koneksi pembumian dan elektrode acuan, dan terdiri dari tahanan peralihan dari penghantar dalam lapisan tanah dan tahanan lapisan tanah di sekitar elektrode. Tahanan peralihan ini adalah relatif kecil, karena bagian penghantar adalah sangat pendek. Makin jauh dari elektrode, makin menurun tahanan dari lapisan tanah, karena penampang dari lapisan tanah adalah sangat besar. Dalam jarak 20m untuk pengukuran dapat ditanam elektrode acuan dalam tanah.
PUTU RUSDI ARIAWAN 18 Bila tahanan diukur antara elektrode acuan RS dan elektrode batang RE, maka tentu termasuk juga tahanan pembumian dari elektrode acuan. Kesulitan ini dapat disingkirkan dengan susunan sesuai Gambar 2.10. Gambar 2.10 susunan pengukuran
Dengan perantara suatu elektrode bantu H, suatu generator G menyuplai ABB dengan umpama 110 Hz dalam lapisan tanah. Susut tegangan (voltage drop) yang terjadi pada tahanan RE dari elektrode diukur dengan alat ukur tegangan U. Tahanan dari elektrode bantu RH sama sekali tak mempunyai pengaruh, juga tidak ada dari tahanan elektrode acuan RS, bila arus ukur IS dari alat ukur tegangan adalah nol; atau sangat kecil. Resistans pembumian dapat dihitung dari : RE = U/I Cara yang lain adalah : Pengukuran dengan alat ukur pembumian menurut metode kompensasi Pengukuran resistans pembumian dengan alat ukur pembumian sering digunakan dari pada pengukuran menurut cara ukur arus-tegangan, karena pengukurannya sangat sederhana dan tak tergantung dari tegangan jaringan.
PUTU RUSDI ARIAWAN 19 Persyaratan bahwa arus ukur IS adalah nol, dapat dicapai dengan pengukuran dengan rangkaian jembatan. Pada pengukuran ini dengan perbandingan resistans,
maka tegangan antara elektrode pembumian, elektrode acuan dan elektrode bumi bantu dibandingkan, lihat Gambar 2.11. Gambar 2.11 perbandingan resistans Suatu generator ABB 1-fase membangkitkan arus pembumian, tegangan AS galvanik dalam lapisan tanah tidak mempengaruhinya. Alat penunjuk arus A tidak menunjuk adanya arus mengalir, bila tegangan U1 pada resistans pembumian adalah sama dengan U2 atau pada tahanan perbandingan. Frekuensi generator menyimpang dari 50 Hz atau 60 Hz, dan mengkontrol rectifier dari amperemeter A, maka tegangan asing dari jaringan disingkirkan. Hasil nilai tahanan dapat langsung dibaca dari alat ukur pembumian, Gambar 2.11 dan 2.12.
PUTU RUSDI ARIAWAN 20 Gambar 2.12 pembacaan alat ukur pembumian Gambar 2.11 menunjukkan pengukuran dalam sirkuit 3-konduktor. Tahanan dari penghantar E1 ke elektrode langsung dapat diukur, sedangkan sirkuit 4-konduktor dalam 2.12 membutuhkan konduktor ke 4, untuk menghubungkan E2 ke bumi.
Pengukuran seluruh tahanan pembumian dalam jaringan TR dibahas juga susunan batang-batang elektrode ditanam dalam tanah dalam jumlah yang banyak (multi-rod). Bila dalam jaringan yang luas sekali terdapat jumlah elektrode yang banyak yang ingin diketahui seluruh resistans pembumian, maka harus diselidiki menurut cara pengukuran teknis. Suatu perhitungan tiap-tiap elektrode dalam jaringan hanya akan menghasilkan resistans pembumian total yang terlalu kecil, karena tiap-tiap elektrode dalam jaringan akan saling mempengaruhinya. Pada pengukuran adalah sangat menentukan, titik pengukur yang mana dipilih, dan untuk mendapatkan sustu hasil yang tepat, hanya bila diukur dari beberapa titik ukur dari pinggir keliling jaringan.
PUTU RUSDI ARIAWAN 21 Jarak antara titik ukur tergantung dari luasnya jaringan dan biasanya terletak antara 4000m dan 1000m. Dari tiap-tiap pengukuran tersebut dapat ditentukan jumlah resistans pembumian dari jaringan dengan menghitung secara aritmetik. Pada umumnya penyimpangan dari nilai yang dihasilkan adalah + 10% dari nilai yang sebenarnya dari jumlah resistans pembumian efektif. Cara mengukur untuk elektrode yang jumlahnya banyak adalah dengan cara atau metode sudut, di mana jarak antara elektrode ukur dan elektrode bantu yang paling cocok adalah 200m sampai 300m 2.3.4 Pengukuran Tahanan Pentanahan Pengukuran perlu dilakukan sebelum sistem dioperasikan pertama kali, waktu pemeliharaan atau setelah system ada gangguan. Sewaktu pelaksanaan pengukuran pentanahan, saluran (kawat) dari electrode ke rangka peralatan harus dilepas. Pengukuran dilakukan pada electrode dengan alat ukur EARTH TESTER.
Untuk mendapatkan nilai resistansi R dari elektroda pengetanahan haruslah mempunyai parameter yang meliputi: 1. Resistivitas tanah 2. Resistivitas air tanah 3. Dimensi elektroda pengetanahan 4. Ukuran elektroda pengetanahan PUIL 2000-3.19.1.4 : Apabila hasil pengukurannya belum mencapai 5 Ω, Maka Ground roodditambah, dengan jarak 2 x panjangnya. Hukum OHM (Goerge Simon Ohm-Ahli Fisika Jerman) Pada percobaan dalam bidang listrik dan menemukan dan menemukan hubungan antara tegangan dan arus yang dilewatkan pada suatu tahanan : Apabila dalam suatu rangkaian tertutup dihubungkan tegangan listrik sebesar 1 Volt, dan dipasan
PUTU RUSDI ARIAWAN 22 tahanan listrik 1 , maka akan mengalir arus listrik sebesar 1 Ampere yang dinyatakan dalam persamaan sbb: Gambar 2.13 hubungan antara tegangan dan arus Pelaksanaan pengoperasian Earth Tester sbb: Prop (A) di hubungkan dengan electrode (di bak kontrol). Prop (B) dan (C) ditancapkan ketanah dengan jarak antara 5 sd. 10 m. Maka alat ukur akan menunjukan besar dari R-tanah lihat. Gambar 2.14 pengoperasian Earth Tester Standar besar R-tanah untuk electrode pentanahan ±5 Ohm. apabila belum mencapai nilai 5 Ohm, maka electrode bisa ditambah dan dipasang diparalel. Pentanahan paling ideal apabila electrode bias mencapai sumber air atau R-tanah = 0. Contoh: Pemasangan electrode pertama (R1), setelah diukur = 12 Ω Selanjutnya di tanam lagi electrode ke 2 (R2), diukur tahanan = 12 Ω, Maka besar tahanan RI diparoleh dengan R2 = 6 Ω, Karena belum mencapa i 5 Ω, maka ditanam lagi electrode ke 3 (R3).
PUTU RUSDI ARIAWAN 23 Maka perhitungan R ekivalennya sbb; Gambar 2.15 metode perhitungan tahanan pentanahan Ada kendala ketika suatu saat kita membangun sistemGrounding, setelah diukur dengan Earth Tester Nilai yang muncul 100 ohm (maks), kalau acuannya PUIL munkin anda diWajibkan menurunkannya.. Ada trik sederhana dengan menambah Rods sesuai dengan rumus mencari Nilai 2 tahanan yang di- paralelkan. (Rod dianalogikan sebagai tahanan). Kalau 100/100=50 ohm (2 rod), 50/50=25 ohm (menjadi 4 rod), trus 25/25=12,5 ohm (menjadi 6 rod), trus 12,5/12,5=6,25 ohm (menjadi 8 rod), trus karena nilainya dianggap bagus kalau
BAB II PEMBAHASAN 2.1 Megger 2.1.1 Apa itu Megger Megger dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi, output dari alat ukur ini umumnya adalah tegangan tinggi arus searah, yang diputar oleh tangan. Besar tegangan tersebut pada umumnya adalah: 500, 1.000, 2.000 atau 5.000 volt dan batas pengukuran dapat bervariasi antara 0,02 sampai 20 meter ohm dan 5 sampai 5.000 meter ohm dan lain-lain sesuai dengan sumber tegangan dari megger tersebut. Dengan demikian, maka sumber tegangan megger yang dipilih tidak hanya tergantung dari batas pengukur, akan tetapi juga terhadap tegangan kerja (sistem tegangan) dari peralatan ataupun instansi yang akan diuji isolasinya. Dewasa ini telah banyak pula megger yang mengeluarkan tegangan tinggi, yang didapatkannya dari baterai sebesar 8 – 12 volt (megger dengan sistem elektronis). Megger dengan bateri umumnya membangkitkan tegangan tinggi yang jauh lebih stabil dibanding megger dengan generator yang diputar dengan tangan. Gambar rangkaian dasar megger adalah seperti gambar 2.1. Megger ini banyak digunakan petugas dalam mengukur tahanan isolasi antara lain untuk: 1. Kabel instalasi pada rumah-rumah/bangunan 2. Kabel tegangan rendah 3. Kabel tegangan tinggi 4. Transformator, OCB dan peralatan listrik lainnya.
PUTU RUSDI ARIAWAN 4 Gambar 2.1 Rangkaian dasar megger 2.1.2 Megger Test (Test Insulasi / Insulation Test) Mengapa kita melakukan pengetesaninsulation / megger test ?? Test insulasi dipergunakan untuk mengetahui kondisi konduktor di jaringan. Insulasi yang memadai diperlukan untuk menghindari terjadinya direct contactseperti short circuitatau ground fault. Buruknya insulasi jaringan bisa mengakibatkan terjadinya arus bocor dan bisa membahayakan nyawa seseorang. Dimungkinkan juga akan menimbulkan percikan api yang bisa mengakibatkan kebakaran.
Pengetesan dilakukan dengan pengukuran tingkat kebocoran jaringan line/ phase dengan netral dan line dengan ground. Sebelum melakukan pengetesan terlebih dahulu dilakukan pemutusan hubungan komponen elektronik danpilot lampdengan jaringan. Metode pengetesan bisa dilakukan dengan tegangan yang berbeda sesuai dengan kebutuhan. Batas minimum insulasi yang bisa ditolerir untuk pengetesan dengan tegangan 500 VDC adalah 0,5 Meg Ohm sedangkan dengan tegangan 1000 VDC adalah 1 Meg Ohm. Insulasi menjadi salah satu penyebab utama terbakarnya sebuah motor selain masalah elektrik dan mekanik. Sebuah motor akan mengalami penurunan tingkat insulasi karena usia pakai. Jika insulasi motor telah mencapai antara 10 ~ 1 Meg Ohm maka perlu dilakukan preventive maintenance. Jika insulasi dibawah 1 Meg Ohm berarti motor dalam kondisi kritis.
PUTU RUSDI ARIAWAN 5 Rumus Perhitungan Pengukuran Insulation Test
1. Pengukuran tegangan Rendah: Rumus ≥ 1000. E (minimal) Contoh : E =380 V Ris ol a si= 1000 . 380 = 380.000 Ω = 0.38 M Ω Bila hasil pengukuran lebih dari 0.38 maka alat tersebut masih bisa dikatakan baik. 2. Pengukuran Tegangan Menengah dan Tinggi : Mengunakan DC Test Rumus Risolator → Arus bocor Max =………… μA 2.1.3Meter Tahanan Pentanahan Biasa disebut dengan Meger Tanah atau Earth Tester, digunakan untuk mengukur tahanan pentanahan kerangka kubikel dan pentanahan kabel. Terminal alat ukur terdiri dari 3 (tiga) buah, 1 (satu) dihubungkan dengan elektroda yang akan diukur nilai tahanan pentanahannya dan 2 (dua) dihubungkan dengan elektroda bantu yang merupakan bagian dari alat ukurnya. Ketelitian hasil tergantung dari cukupnya energi yang ada pada baterai. Gambar 2.2 Meter Tahanan Pentanahan
PUTU RUSDI ARIAWAN 6 Meter Tahanan Kontak biasa disebut dengan Micro Ohm meter dan digunakan untuk mengukur tahanan antara terminal masuk dan terminal keluar pada alat hubung utama kubikel. Nilai yang dihasilkan adalah dalam besaran micro atau sepersatu juta ohm. Dua terminal alat ukur yang dihubungkan ke terminal masuk dan keluar akan mengalirkan arus searah dengan nilai minimal 200 Amper. Sebenarnya yang terukur pada alat ukurnya adalah jatuh tegangan antara 2 (dua) terminal yang terhubung dengan alat ukur, tetapi kemudian nilainya dikalibrasikan menjadi satuan micro ohm. Gambar 2.3 Micro Ohm meter. 2.2 Pentanahan 2.2.1 Pengertian Pentanahan Pentanahan (grounding) adalah merupakan suatu mekanisme dimana daya listrik dihubungkan langsung dengan tanah (bumi). Seperti kita ketahui bersama bahwa
arus listrik terjadi jika ada perbedaan potensial diantara 2 (dua) buah titik (node). Arus listrik selalu mengalir dari titik yang mempunyai energi potensial (Ep) yang lebih tinggi ke titik yang mempunyai energi potensial lebih rendah. Hal ini terjadi sebaliknya dengan arah aliran elektron yang mengalir dari titik dengan Ep yang lebih rendah ke titik yang mempunyai Ep yang lebih tinggi, mengapa dapat terjadi demikian?, ilmu elektronika yang akan menjawabnya, yakni suatu cabang ilmu fisika yang secara khusus mempelajari aliran elektron. Energi listrik atau biasa disebut dengan daya listrik (P) yang notabene adalah merupakan hasil perkalian antara tegangan listrik (V) dengan arus listrik (I)
PUTU RUSDI ARIAWAN 7 selalu akan mengalir ke titik yang mempunyai tantangan atau rintangan atau hambatan (R) yang paling besar, mengapa bisa begitu? Fenomena ini dapat dijawab dengan percobaan dengan mempergunakan zat cair (air) dengan bejana berhubungan, misalnya bentuk setiap bejana yang berhubungan itu mempunyai perbedaan bentuk dan ukurannya, akan terlihat bahwa jika pada bejana berhubungan tersebut kita alirkan air untuk memenuhi semua bejana tersebut, maka semua bejana tersebut akan menjadi penuh secara bersamaan dalam waktu yang sama, hal ini dapat kita analogikan dengan apa yang terjadi pada energi listrik. Dengan demikian ternyata bahwa arus listrik akan mengalir jika ada hambatan atau rintangan yang menghalang diantara 2 titik yang berbeda, mengapa ? jawabannya adalah dengan adanya rintangan atau hambatan yang ada akan menyebabkan terjadinya perbedaan potensi pada masing-masing titik, sehingga menyebabkan terjadinya arus listrik (I) diantara kedua titik tersebut. Jadi usahakanlah tantangan atau hambatan diantara kedua titik yang berbeda potensinya agar menjadi sekecil mungkin (mendekati nilai nol) untuk menghindari
terjadinya arus listrik diantara kedua titik tersebut, karena semua penghantar mempunyai tahanan masing-masing atau disebut dengan tahanan jenis, maka untuk membuat tahanan yang benar-benar bernilai nol diantara kedua titik tersebut, yakni hanya dengan menghubungkannya ke bumi atau tanah yang akan menyebabkan tahanan atau hambatan diantara kedua titik tersebut menjadi nol sehingga tidak ada perpindahan daya listrik yang terjadi diantara keduanya. 2.2.2 Tujuan Pentanahan Adapun tujuan dari sistem pentanahan tersebut adalah untuk membatasi tegangan pada bagian-bagian peralatan yang tidak seharusnya dialiri arus mis: body/casing, hingga tercapai suatu nilai yang aman untuk semua kondisi operasi, baik kondisi normal maupun saat terjadi gangguan, memberikan jaminan keselamatan dari bahaya kejut listrik, baik perlindungan dari sentuh langsung
PUTU RUSDI ARIAWAN 8 maupun tak langsung, serta perlindungan terhadap suhu berlebih yang dapat mengakibatkan kebakaran. Tujuan utama dari adanya pentanahan adalah menciptakan jalur yang low-impedance(tahanan rendah) terhadap permukaan bumi untuk gelombang listrik dan transient voltage. Penerangan, arus listrik, circuit switchingdan electrostatic dischargeadalah penyebab umum dari adanya sentakan listrik atau transient voltage. Sistem pentanahan yang efektif akan meminimalkan efek tersebut. Jika terjadi gangguan/kondisi yang tidak diinginkan, baik langsung atau tidak langsung (induksi), diupayakan agar gangguan tersebut dialirkan ke tempat yg aman, misal, ke tanah.
Grounding yang baik tergantung kondisi tanah (komposisi dan kelembaban), semakin basah tanah maka resistansinya semakin kecil sehingga semakin mudah mengalirkan arus/tegangan buangan. Jadi simpelnya, usahakan grounding mencapai permukaan air dan menggunakan kabel khususgrounding (penghantar) yang baik. cukup ideal jika disambungkan dengan pipa instalasi pompa/mesin air. Tambahan, berikut dari salah satu sumber tentang jenis-jenis gangguan listrik yang sering terjadi yaitu : Blackouts, Blackouts, Line Noise, Sags, Surges, Spike/Lightning. 2.2.3 Karakteristik Pentanahan yang Efektif Karakteristik sistem pentanahan yang efektif antara lain adalah: 1. Terencana dengan baik, semua koneksi yang terdapat pada data center harus merupakan koneksi yang sudah direncanakan sebelumnya dengan kaidahkaidah tertentu. 2. Verifikasi secara visual dapat dilakukan. 3. Sesuai dengan ukuran, TIA-942 menyediakan guideline untuk setiap komponen pada data center. 4. Menghindarkan gangguan yang terjadi pada arus listrik dari perangkat.
PUTU RUSDI ARIAWAN 9 5. Semua komponen metal harus ditahan/diikat oleh sistem pentanahan, dengan tujuan untuk meminimalkan arus listrik melalui material yang bersifat konduktif pada potensial listrik yang sama. 2.2.4Komponen Utama Sistem Pentanahan Dalam system pentanahan komponen komponen utama yang diperlukan antara lain elektroda pentanahan dan hantaran pentanahan berperan sangat besar. Elektroda Pentanahan adalah penghantar yang ditanam dalam tanah dan sebagai kontak langsung dengan tanah yang diusahakan sampai mencapai titik air tanah. Bahan elektroda pentanahan ialah tembaga atau baja profil digalvanisir atau pipa galvanis, sedangkan ukuran dan jenis elektroda pentanahan bermacam- macam tergantung dari lokasi dan metode pentanahannya. Jenis elektroda pentanahan antara lain : 1. Elektroda Batang / pasak yaitu elektroda dari batang logam tembaga Cu (
Cupper Rod / Ground Rod) berdiamater minimum 5/8”, atau batang logam baja profil / pipa galvanis berdiameter 1,5” yang dipancangkan tegak dalam tanah sedalam 2,75 meter. (Gambar 2.3) Gambar 2.4 Elektroda Batang 2. Elektroda pita ( strip plat ) yang dibentuk lingkaran ditanam minimum 0,5 – 1m dari permukaan tanah. ( Gambar 2.4 )
PUTU RUSDI ARIAWAN 10 Gambar 2.5 Elektroda pita 3. Elektroda plat ditanam minimum 50 cm dari permukaan tanah. ( Gambar 2.5 ) Gambar 2.6 Elektroda plat
4. Elektroda jembatan ( mesh / grounding bridge ) dibuat dari strip plat yang dirangkai menyerupai jembatan biasanya dipasang dibawah tower transmisi (Gambar 2.6 ) Gambar 2.7 Elektroda Jembatan Hantaran pentanahan yaitu hantaran sebagai penyalur arus, harus jenis penghantar yang baik, kuat secara mekanis dan dilindungi untuk menjaga kemungkinan gangguan mekanis yang dapat menyebabkan turunnya daya hantar ataupun terputus.
PUTU RUSDI ARIAWAN 11 Satu hal yang sangat perlu diperhatikan dalam pemasangan sistem pentanahan adalah cara penyambungan / kontak sambung. Penyambungan harus baik
dan benar sehingga memenuhi persyaratan mekanis maupun daya hantar listriknya, sambungan harus dapat dibuka dalam rangka pengujian besarnya tahanan pentanahan dan pemeliharaan. 2.3 Pengukuran Pentanahan 2.3.1 Resistans Tanah Struktur dan karakteristik tanah merupakan salah satu faktor yang mutlak diketahui karena mempunyai kaitan erat dengan perencanaan sistem pentanahan yang akan digunakan. Nilai tahanan jenis tanah harganya bermacam-macam, tergantung pada komposisi tanahnya. Batasan atau pengelompokan tahanan jenis dari berbagai macam jenis tanah pada kedalaman tertentu tergantung pada beberapa hal antara lain pengaruh temperatur, pengaruh kelembaban, dan pengaruh kandungan kimia. 1. Nilai resistans jenis tanah Nilai resistans jenis tanah, rt sangat berbeda tergantung komposisi tanah seperti dapat dilihat dalam pasal 320-1 dalam PUIL 1987 atau yang ditunjukkan pada Tabel 2.1. Tabel 2.1 Nilai rata-rata jenis tanah rt Jenis Tanah Resistans jenis tanah rt dalam ohm-m Tanah rawa 10……....40 Tanah liat dan tanah ladang 20……....100 Pasir basah 50….…...200 Kerikil basah 200……..3000
Pasir / kerikil kering 10m; Rbt=1,5 rt / L Pita Rpt = (rt / pL) x (ln 2L / d) pada L < 10 m; Rpt=2rt / L
pada L > 10m; Rpt=3 rt / L dst.nya Tabel 2.3. Rumus untuk menghitung resitans pembumian untuk macam-macam elektrode bumi Di lapangan atau lokasi sering dilaksanakan dua cara pengukuran untuk menentukan tahanan jenis tanah untuk memperoleh perubahan dalam lapisan tanah:
PUTU RUSDI ARIAWAN 14 1. Pengukuran dengan elektrode ukur yang tetap Satu elektrode ukur, panjang 1 m ditanamkan tegak lurus dalam lapisan tanah. Dengan alat ukur jembatan-tahanan, diukur tahanan jenis tanah dalam daerah antara permukaan lapisan tanah dan dalamnya pemasukan elektrode tersebut. Rumus untuk tahanan pentanahan batang adalah : Rt = (rt / 2pL) x (ln (4L / d)) di mana : Rt = tahanan bentang suatu elektrode dalam ohm, rt = tahanan jenis tanah dalam ohm-meter, L = panjang elektrode batang dalam m, d = jari-jari batang elektrode dalam m, ln = logarithmus (dasar e=2.7182818) Tahanan jenis tanah adalah : rt = ( Rt x 2pL ) / (ln 4L/d) = (Rt 6,28 m) / ( ln 157,5) = 1,24 Rt
Dapat dilihat bahwa nilai ukur elektrode batang (batang pengukur) dikalikan dengan 1,24 untuk mendapatkan hasil tahanan jenis tanah. Untuk elektrode dengan ukuran yang lain harus ditentukan faktor yang sesuai. 2. Cara mengukur menurut metode von Werner atau cara 4-batang acuan. Dalam Gambar 2.8 dapat dilihat cara mengukur resistans jenis tanah dengan digunakan 4-batang acuan yang dimasukkan dalam tanah dengan jarak a sepanjang satu garis lurus yang sama dan dihubungkan ke alat ukur resistans pembumian.
PUTU RUSDI ARIAWAN 15 Gambar 2.8 cara mengukur resistans jenis tanah Pada ujung-ujung luar batang elektrode 1 dan 4 dialirkan arus dan pada bagian dalam dari batang elektrode 2 dan 3 diukur susut tegangan dalam lapisan tanah. Dari hasil pengukuran perbandingan jembatan dapat dibaca nilai tahanan R, maka resistans jenis tanah dapat dihitung dengan rumus : Qt = 2 p x a x Rt Bila jarak a dalam m dan R dalam ohm, maka terdapat resistans jenis tanah dalam ohm-m yang diukur di sini bukan resistans jenis tanah, hanya resistans jenis tanah semu. Cara atau metode ukur sesuai von Werner ini hanya dapat mengukur lapisan tanah sampai jarak sedalam a dari elektrode acuan. Dengan merobah-robah jarak a dapat ditemukan nilai tahanan jenis tanah dalam beberapa lapisan tanah. Seperti telah diterangkan sebelumnya lembab tanah sangat mempengaruhi resistans pembumian. Dalam musim panas dengan terik panas yang panjang, lapisan tanah sangat kering. Bila diadakan pengukuran dalam periode musim kering tersebut harus ditanam elektrode acuan yang lebih panjang untuk menembus dalam lapisan yang basah, atau daerah lapisan tanah sekitar elektrode acuan harus dibasahinya
PUTU RUSDI ARIAWAN 16 2.3.3Pengukuran resistansi pembumian Besarnya resistansi pembumian hanya dapat ditentukan dengan pengukuran. Ini tak mungkin dapat dilakukan dengan alat ukur ohm-meter yang biasa, karena alat ohm-meter mempunyai tegangan AS yang kecil dan cara pengukuran ini tidak mungkin, karena logam dalam tanah yang basah menunjukkan elemen galvanis. Untuk mengukur resistansi pembumian suatu elektrode bumi dapat dilaksanakan menurut proses pengukur arus-tegangan atau dengan alat ukur pembumian menurut pengukuran cara kompensasi: a. Pengukuran dengan metode ukur arus tegangan dalam jaringan dengan titik bintang (netral) yang dibumikan sesuai PUIL 1987 Pasal 323, b. Penghantar bumi dari elektrode bumi RA yang akan diukur dihubung dengan konduktor fase L melalui resistans yang dapat diatur dari 1000 ohm sampai 2000 ohm di belakang gawai pengaman dalam sirkuit amperemeter, lihat Gambar 2.9. Gambar 2.9 hubungan elektrode dengan konduktor
PUTU RUSDI ARIAWAN 17 Dalam sirkuit tersebut dipasang juga voltmeter dengan tahanan internal R1 dari kira-kira 40 k-ohm, di mana diukur tegangan antara elektrode acuan dan elektrode bumi bantu dengan jarak 20 ohm. Resistans pembumian dari sistim pembumian pengamanan didapatkan dari rumus RA = U/1 Keburukan dari metode b) ini adalah: tegangan ukur antara elektrode bumi bantu dan RA tak boleh melebihi
tegangan sentuh yang diizinkan, karena dapat terjadi kecelakaan, hanya dapat dilaksanakan dalam jaringan di mana titik netral langsung dibumikan (lihat a), karena bila terdapat arus bocor kecil yang mengalir ke bumi, dapat menimbulkan susut tegangan antara RA dan RS, sehingga terdapat hasil pengukuran yang tak tepat. c. Pengukuran dengan alat ukur pembumian - metode ukur arus - tegangan dengan sumber tegangan sendiri. Untuk elektrode tersendiri yang diperlukan untuk pengukuran, jarak antara elektrode bantu H dan elektrode acuan S dipasang dalam jarak kira-kira 20m, sedangkan untuk elektrode bumi yang disusun dalam bentuk lingkaran, radial atau kombinasi harus berjarak kira-kira 3 kali diameter sistim pembumian. Pengukuran dilakukan dengan alat ukur pembumian dengan sumber tegangan tersendiri. Tahan elektrode RE yang akan diselidiki adalah tahanan antara koneksi pembumian dan elektrode acuan, dan terdiri dari tahanan peralihan dari penghantar dalam lapisan tanah dan tahanan lapisan tanah di sekitar elektrode. Tahanan peralihan ini adalah relatif kecil, karena bagian penghantar adalah sangat pendek. Makin jauh dari elektrode, makin menurun tahanan dari lapisan tanah, karena penampang dari lapisan tanah adalah sangat besar. Dalam jarak 20m untuk pengukuran dapat ditanam elektrode acuan dalam tanah.
PUTU RUSDI ARIAWAN 18
Bila tahanan diukur antara elektrode acuan RS dan elektrode batang RE, maka tentu termasuk juga tahanan pembumian dari elektrode acuan. Kesulitan ini dapat disingkirkan dengan susunan sesuai Gambar 2.10. Gambar 2.10 susunan pengukuran Dengan perantara suatu elektrode bantu H, suatu generator G menyuplai ABB dengan umpama 110 Hz dalam lapisan tanah. Susut tegangan (voltage drop) yang terjadi pada tahanan RE dari elektrode diukur dengan alat ukur tegangan U. Tahanan dari elektrode bantu RH sama sekali tak mempunyai pengaruh, juga tidak ada dari tahanan elektrode acuan RS, bila arus ukur IS dari alat ukur tegangan adalah nol; atau sangat kecil. Resistans pembumian dapat dihitung dari : RE = U/I Cara yang lain adalah : Pengukuran dengan alat ukur pembumian menurut metode kompensasi Pengukuran resistans pembumian dengan alat ukur pembumian sering digunakan dari pada pengukuran menurut cara ukur arus-tegangan, karena pengukurannya sangat sederhana dan tak tergantung dari tegangan jaringan.
PUTU RUSDI ARIAWAN 19
Persyaratan bahwa arus ukur IS adalah nol, dapat dicapai dengan pengukuran dengan rangkaian jembatan. Pada pengukuran ini dengan perbandingan resistans, maka tegangan antara elektrode pembumian, elektrode acuan dan elektrode bumi bantu dibandingkan, lihat Gambar 2.11. Gambar 2.11 perbandingan resistans Suatu generator ABB 1-fase membangkitkan arus pembumian, tegangan AS galvanik dalam lapisan tanah tidak mempengaruhinya. Alat penunjuk arus A tidak menunjuk adanya arus mengalir, bila tegangan U1 pada resistans pembumian adalah sama dengan U2 atau pada tahanan perbandingan. Frekuensi generator menyimpang dari 50 Hz atau 60 Hz, dan mengkontrol rectifier dari amperemeter A, maka tegangan asing dari jaringan disingkirkan. Hasil nilai tahanan dapat langsung dibaca dari alat ukur pembumian, Gambar 2.11 dan 2.12.
PUTU RUSDI ARIAWAN 20 Gambar 2.12 pembacaan alat ukur pembumian
Gambar 2.11 menunjukkan pengukuran dalam sirkuit 3-konduktor. Tahanan dari penghantar E1 ke elektrode langsung dapat diukur, sedangkan sirkuit 4-konduktor dalam 2.12 membutuhkan konduktor ke 4, untuk menghubungkan E2 ke bumi. Pengukuran seluruh tahanan pembumian dalam jaringan TR dibahas juga susunan batang-batang elektrode ditanam dalam tanah dalam jumlah yang banyak (multi-rod). Bila dalam jaringan yang luas sekali terdapat jumlah elektrode yang banyak yang ingin diketahui seluruh resistans pembumian, maka harus diselidiki menurut cara pengukuran teknis. Suatu perhitungan tiap-tiap elektrode dalam jaringan hanya akan menghasilkan resistans pembumian total yang terlalu kecil, karena tiap-tiap elektrode dalam jaringan akan saling mempengaruhinya. Pada pengukuran adalah sangat menentukan, titik pengukur yang mana dipilih, dan untuk mendapatkan sustu hasil yang tepat, hanya bila diukur dari beberapa titik ukur dari pinggir keliling jaringan.
PUTU RUSDI ARIAWAN 21 Jarak antara titik ukur tergantung dari luasnya jaringan dan biasanya terletak antara 4000m dan 1000m. Dari tiap-tiap pengukuran tersebut dapat ditentukan jumlah resistans pembumian dari jaringan dengan menghitung secara aritmetik. Pada umumnya penyimpangan dari nilai yang dihasilkan adalah + 10% dari nilai yang sebenarnya dari jumlah resistans pembumian efektif.
Cara mengukur untuk elektrode yang jumlahnya banyak adalah dengan cara atau metode sudut, di mana jarak antara elektrode ukur dan elektrode bantu yang paling cocok adalah 200m sampai 300m 2.3.4 Pengukuran Tahanan Pentanahan Pengukuran perlu dilakukan sebelum sistem dioperasikan pertama kali, waktu pemeliharaan atau setelah system ada gangguan. Sewaktu pelaksanaan pengukuran pentanahan, saluran (kawat) dari electrode ke rangka peralatan harus dilepas. Pengukuran dilakukan pada electrode dengan alat ukur EARTH TESTER. Untuk mendapatkan nilai resistansi R dari elektroda pengetanahan haruslah mempunyai parameter yang meliputi: 1. Resistivitas tanah 2. Resistivitas air tanah 3. Dimensi elektroda pengetanahan 4. Ukuran elektroda pengetanahan PUIL 2000-3.19.1.4 : Apabila hasil pengukurannya belum mencapai 5 Ω, Maka Ground roodditambah, dengan jarak 2 x panjangnya. Hukum OHM (Goerge Simon Ohm-Ahli Fisika Jerman) Pada percobaan dalam bidang listrik dan menemukan dan menemukan hubungan antara tegangan dan arus yang dilewatkan pada suatu tahanan : Apabila dalam suatu rangkaian tertutup dihubungkan tegangan listrik sebesar 1 Volt, dan dipasan
PUTU RUSDI ARIAWAN 22 tahanan listrik 1 , maka akan mengalir arus listrik sebesar 1 Ampere yang dinyatakan dalam persamaan sbb: Gambar 2.13 hubungan antara tegangan dan arus Pelaksanaan pengoperasian Earth Tester sbb: Prop (A) di hubungkan dengan electrode (di bak kontrol). Prop (B) dan (C) ditancapkan ketanah dengan jarak antara 5 sd. 10 m. Maka alat ukur akan menunjukan besar dari R-tanah lihat. Gambar 2.14 pengoperasian Earth Tester Standar besar R-tanah untuk electrode pentanahan ±5 Ohm. apabila belum mencapai nilai 5 Ohm, maka electrode bisa ditambah dan dipasang diparalel. Pentanahan paling ideal apabila electrode bias mencapai sumber air atau R-tanah = 0. Contoh: Pemasangan electrode pertama (R1), setelah diukur = 12 Ω Selanjutnya
di tanam lagi electrode ke 2 (R2), diukur tahanan = 12 Ω, Maka besar tahanan RI diparoleh dengan R2 = 6 Ω, Karena belum mencapa i 5 Ω, maka ditanam lagi electrode ke 3 (R3).
PUTU RUSDI ARIAWAN 23 Maka perhitungan R ekivalennya sbb; Gambar 2.15 metode perhitungan tahanan pentanahan Ada kendala ketika suatu saat kita membangun sistemGrounding, setelah diukur dengan Earth Tester Nilai yang muncul 100 ohm (maks), kalau acuannya PUIL munkin anda diWajibkan menurunkannya.. Ada trik sederhana dengan menambah Rods sesuai dengan rumus mencari Nilai 2 tahanan yang di- paralelkan. (Rod
dianalogikan sebagai tahanan). Kalau 100/100=50 ohm (2 rod), 50/50=25 ohm (menjadi 4 rod), trus 25/25=12,5 ohm (menjadi 6 rod), trus 12,5/12,5=6,25 ohm (menjadi 8 rod), trus karena nilainya dianggap bagus kalau
PUTU RUSDI ARIAWAN 24 nilai tahanannya >0 dan 6,25/6,25= 3,125 ohm.. maka jumlah rods yang dibutuhkan untuk menurunkan dari 100 ohm ke 3,125 adalah 10 buah rods. Setelah Grounding Ringdipastikan terhubung sempurna, cek kembali dengan Earth Tester nilai tahanan harusnya sudah turun drastis. Elektrode bumi selalu harus ditanam sedalam mungkin dalam tanah, sehingga dalam musim kering selalu terletak dalam lapisan tanah yang basah. Phasa sequence tester (drivel) : alat ukur untuk mencari urutan fasa (R, S dan T) pada suatu sumber listrik
PUTU RUSDI ARIAWAN 25 BAB III PENUTUP 2.1 Simpulan Megger dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi, output dari alat ukur ini umumnya adalah tegangan tinggi arus searah, yang diputar oleh tangan. Megger ini banyak digunakan petugas dalam mengukur tahanan isolasi antara lain untuk: kabel instalasi pada rumahrumah/bangunan, kabel tegangan rendah, kabel tegangan tinggi, transformator, OCB dan peralatan listrik lainnya.
Pentanahan (grounding)adalah merupakan suatu mekanisme dimana daya listrik dihubungkan langsung dengan tanah (bumi). Adapun tujuan dari sistem pentanahan tersebut adalah untuk membatasi tegangan pada bagian-bagian peralatan yang tidak seharusnya dialiri arus mis: body/casing, hingga tercapai suatu nilai yang aman untuk semua kondisi operasi, baik kondisi normal maupun saat terjadi gangguan, memberikan jaminan keselamatan dari bahaya kejut listrik, baik perlindungan dari sentuh langsung maupun tak langsung, serta perlindungan terhadap suhu berlebih yang dapat mengakibatkan kebakaran. Untuk memperoleh nilai tahanan jenis tanah yang akurat diperlukan pengukuran secara langsung pada lokasi. Jika diperlukan di lapangan harus disiapkan hubungan atau koneksi yang mudah dilepas untuk dapat diadakan pengukuran pada tiap-tiap elektrode. 2.2 Saran Bila hendak melakukan pengukuran pentanahan ataupun pengukuran yang lainnya haruslah melakukannya dengan prosedur yang benar dan selalu mengutamakan faktor keselamatan. Gunakan alat dengan benar dan sesuai dengan fungsinya.
PUTU RUSDI ARIAWAN 26 DAFTAR PUSTAKA Elektro Indonesia. 2009. Peraturan Umum untuk Elektrode Bumi dan Penghantar Bumi , (online),
(http://www.elektroindonesia.com/ elektro/ener24b.html , diakses 20 Maret 2009). Aslimeri, dkk. 2008.TEKNIK TRANSMISI TENAGA LISTRIK (Jilid 1), Jakarta : Direktorat Pembinaan Sekolah Menengah Kejuruan. Darmanto, Mustafa. 2009. Pengukuran Pengetanahan, (online), (http://technoku.blogspot.com/2009/01/pengukuran-pengetanahan.html, diakses 20 Maret 2009). Darmanto, Mustafa. 2009. Megger Test, (online), (http://technoku.blogspot.com/2008/11/megger-test.html, diakses 20 Maret 2009). Salmon, Melky. 2009. Pentanahan (grounding),
(online), (http://melkyaiboy.com/2008/08/31/pentanahan-grounding/, diakses 20 Maret 2009).
PUTU RUSDI ARIAWAN 27 BIODATA PENULIS Nama : Putu Rusdi Ariawan TTL : Denpasar. 19 April 1990
Agama : Hindu Mahasiswa Teknik Elektro Unv. Udayana Email :
[email protected] www.facebook.com/turusdi MEGGER & PENGUKURAN PENTANAHAN Download this Document for FreePrintMobileCollectionsReport Document Report this document? Please tell us reason(s) for reporting this document Top of Form 71dc71a08ac651
doc
Spam or junk Porn adult content Hateful or offensive If you are the copyright owner of this document and want to report it, please follow these directions to submit a copyright infringement notice. Report Cancel Bottom of Form This is a private document. Info and Rating Reads: 7,384 Uploaded: 06/18/2010 Category:
School Work>Homework Rated: 5
5
false
false
0
1 Rating() Copyright: Attribution Non-commercial
MEGGER & PENGUKURAN PENTANAHAN bumi menggunakan resistansi bumi tahanan untuk mengukur resistansi arus bocor konduktor data Elektroda Pentanahan dan Tahanan Pentanahan November 27th, 2010 · Buku Sekolah Gratis · Teknik pemanfaatan tenaga listrik 1 No comments Tahanan pentanahan harus sekecil mungkin untuk menghindari bahaya-bahaya yang ditimbulkan oleh adanya arus gangguan tanah. Hantaran netral harus diketanahkan di dekat sumber listrik atau transformator, pada saluran udara setiap 200 m dan di setiap konsumen. Tahanan pentanahan satu elektroda di dekat sumber listrik, transformator atau jaringan saluran udara dengan jarak 200 m maksimum adalah 10 Ohm dan tahanan pentanahan dalam suatu sistem tidak boleh lebih dari 5 Ohm. Seperti yang telah disampaikan di atas bahwa tahanan pentanahan diharapkan bisa sekecil mungkin. Namun dalam prakteknya tidaklah selalu mudah untuk mendapatkannya karena banyak faktor yang mempengaruhi tahanan pentanahan. Faktor-faktor yang mempengaruhi besar tahanan pentanahan adalah : • Bentuk elektroda. Ada bermacam-macam bentuk elektroda yang banyak digunakan, seperti jenis batang, pita dan pelat. • Jenis bahan dan ukuran elektroda. Sebagai konsekwensi peletakannya di dalam tanah, maka elektroda dipilih dari bahan-bahan tertentu yang memiliki konduktivitas
sangat baik dan tahan terhadap sifat-sifat yang merusak dari tanah, seperti korosi. Ukuran elektroda dipilih yang mempunyai kontak paling efektif dengan tanah. • Jumlah/konfigurasi elektroda. Untuk mendapatkan tahanan pentanahan yang dikehendaki dan bila tidak cukup dengan satu elektroda, bisa digunakan lebih banyak elektroda dengan bermacam-macam konfigurasi pemancangannya di dalam tanah; • Kedalaman pemancangan/penanaman di dalam tanah. Pemancangan ini tergantung dari jenis dan sifat-sifat tanah. Ada yang lebih efektif ditanam secara dalam, namun ada pula yang cukup ditanam secara dangkal; • Faktor-faktor alam. Jenis tanah: tanah gembur, berpasir, berbatu, dan lainlain; moisture tanah: semakin tinggi kelembaban atau kandungan air dalam tanah akan memperrendah tahanan jenis tanah; kandungan mineral tanah: air tanpa kandungan garam adalah isolator yang baik dan semakin tinggi kandungan garam akan memperendah tahanan jenis tanah, namun meningkatkan korosi; dan suhu tanah: suhu akan berpengaruh bila mencapai suhu beku dan di bawahnya. Untuk wilayah tropis seperti Indonesia tidak ada masalah dengan suhu karena suhu tanah ada di atas titik beku. Tahanan Pentanahan Sabtu, 4 Oktober 2008 pada 10:31 (IPTEK) Tags: bentonite, elektroda, galvanic, garam, musim, service, tanah, temperatur
i
4 Votes
Sambungan ke tanah diperlukan untuk melindungi peralatan – peralatan komunikasi dan personal terhadap bahaya petir atau kesalahan pada power sistem dan juga dapat berfungsi sebagai service pada suatu sistem. Untuk merencanakan suatu sistem pentanahan ada beberapa faktor yang perlu dipertimbangkan, antara lain Tahanan Jenis Tanah, Struktur tanah, keadaan lingkungan, biaya, ukuran dan bentuk sistemnya. Biasanya tahanan pentanahan yang lebih rendah sangat efektif, tetapi biaya menjadi besar. Untuk itu perlu dipertimbangkan efek fungsi dan ekonomisnya. Oleh karena itu perlu kiranya bagi kita untuk dapat merencanakan dan membuat sistem pentanahan yang sesuai dengan keperluannya. SYARAT – SYARAT SISTEM PENTANAHAN YANG EFEKTIF 1. Tahanan pentanahan harus memenuhi syarat yang di inginkan untuk suatu keperluan pemakaian 2. Elektroda yang ditanam dalam tanah harus :
○ Bahan Konduktor yang baik ○ Tahan Korosi ○ Cukup Kuat 3. Jangan sebagai sumber arus galvanis 4. Elektroda harus mempunyai kontak yang baik dengan tanah sekelilingnya. 5. Tahanan pentanahan harus baik untuk berbagai musim dalam setahun.
6. Biaya pemasangan serendah mungkin. FAKTOR-FAKTOR YANG MENENTUKAN TAHANAN PENTANAHAN Tahanan pentanahan suatu elektroda tergantung pada tiga faktor : 1. Tahanan elektroda itu sendiri dan penghantar yang menghubungkan ke peralatan yang ditanahkan. 2. Tahan kontak antara elektroda dengan tanah. 3. Tahanan dari massa tanah sekeliling elektroda. Namun demikian pada prakteknya tahanan elektroda dapat diabaikan, akan tetapi tahanan kawat penghantar yang menghubungkan keperalatan akan mempunyai impedansi yang tinggi terhadap impuls frekuensi tinggi seperti misal pada saat terjadi lightningdischarge. Untuk menghindarinya, sambungan ini di usahakan dibuat sependek mungkin. Dari ketiga faktor tersebut diatas yang dominan pengaruhnya adalah tahanan sekeliling elektroda atau dengan kata lain tahanan jenis tanah (ρ). TAHANAN JENIS TANAH (ρ) Dari rumus untuk menentukan tahanan tanah dari statu elektroda yang hemispherical R = ρ/2πr terlihat bahwa tahanan pentanahan berbanding lurus dengan besarnya ρ. Untuk berbagai tempat harga ρ ini tidak sama dan tergantung pada beberapa faktor : 1. sifat geologi tanah 2. Komposisi zat kimia dalam tanah 3. Kandungan air tanah 4. Temperatur tanah 5. Selain itu faktor perubahan musim juga mempengaruhinya. Sifat Geologi Tanah Ini merupakan faktor utama yang menentukan tahanan jenis tanah. Bahan dasar dari pada tanah relatif bersifat bukan penghantar. Tanah liat umumnya mempunyai tahanan jenis terendah, sedang batu-batuan dan quartz bersifat sebagai insulator. Tabel dibawah ini menunjukkan harga-harga ( ρ ) dari berbagai jenis tanah. Tabel. 1 No.
JENIS TANAH
TAHANAN JENIS TANAH( ohm.meter
) Tanah yang mengandung 1. air garam
5–6
2. Rawa
30
3. Tanah liat
100
4. Pasir Basah
200
5. Batu-batu kerikil basah
500
6. Pasir dan 7. kering
1000
batu
krikil
3000
Batu KOMPOSISI ZAT – ZAT KIMIA DALAM TANAH Kandungan zat – zat kimia dalam tanah terutama sejumlah zat organik maupun anorganik yang dapat larut perlu untuk diperhatikan pula. Didaerah yang mempunyai tingkat curah hujan tinggi biasanya mempunyai tahanan jenis tanah yang tinggi disebabkan garam yang terkandung pada lapisan atas larut. Pada daerah yang demikian ini untuk memperoleh pentanahan yang efektif yaitu dengan menanam elektroda pada kedalaman yang lebih dalam dimana larutan garam masih terdapat. KANDUNGAN AIR TANAH Kandungan air tanah sangat berpengaruh terhadap perubahan tahanan jenis tanah ( ρ ) terutama kandungan air tanah sampai dengan 20%. Dalam salah satu test laboratorium untuk tanah merah penurunan kandungan air tanah dari 20% ke 10% menyebabkan tahanan jenis tanah naik samapai 30 kali.Kenaikan kandungan air tanah diatas 20% pengaruhnya sedikit sekali. TEMPERATUR TANAH Temperatur bumi pada kedalaman 5 feet (= 1,5 m) biasanya stabil terhadap perubahan temperatur permukaan. Bagi Indonesia daerah tropic perbedaan temperatur selama setahun tidak banyak, sehingga faktor temperatur boleh dikata tidak ada pengaruhnya. ELEKTRODA PENTANAHAN Jenis Elektroda pentanahan Pada dasarnya ada 3 (tiga) jenis elektroda yang digunakan pada sistem pentanahan yaitu : 1. Elektroda Batang 2. Elektroda Pelat
3. Elektroda Pita Elektroda – elektroda ini dapat digunakan secara tunggal maupun multiple dan juga secara gabungan dari ketiga jenis dalam suatu sistem. ELEKTRODA BATANG Elektroda batang terbuat dari batang atau pipa logam yang di tanam vertikal di dalam tanah. Biasanya dibuat dari bahan tembaga, stainless steel atau galvanised steel. Perlu diperhatikan pula dalam pemilihan bahan agar terhindar dari galvanic couple yang dapat menyebabkan korosi. Ukuran Elektroda : diameter 5/8 ” - 3/4 ” Panjang 4 feet – 8 feet Elektroda batang ini mampu menyalurkan arus discharge petir maupun untuk pemakaian pentanahan yang lain. ELEKTRODA PELAT
Bentuk elektroda pelat biasanya empat perseguí atau empat persegi panjang yang tebuat dari tembaga, timah atau pelat baja yang ditanam didalam tanah. Cara penanaman biasanya secara vertical, sebab dengan menanam secara horizontal hasilnya tidak berbeda jauh dengan vertical. Penanaman secara vertical adalah lebih praktis dan ekonomis. ELEKTRODA PITA
Elektroda pita jenis ini terbuat dari bahan metal berbentuk pita atau juga kawat BCC yang di tanam di dalam tanah secara horizontal sedalam ± 2 feet. Elektroda pita ini bisa dipasang pada struktur tanah yang mempunyai tahanan jenis rendah pada permukaan dan pada daerah yang tidak mengalami kekeringan. Hal ini cocok untuk daerah – daerah pegunungan dimana harga tahanan jenis tanah makin tinggi dengan kedalaman. PENGKONDISIAN TANAH Bagi daerah – daerah yang mempunyai struktur tanah dengan tahanan jenis tanah yang tinggi untuk memperoleh tahanan pentanahan yang diinginkan seringkali sukar diperoleh. Ada tiga cara untuk mengkondisikan tanah agar pada lokasi elektroda ditanam tahanan jenis tanah menjadi rendah, yaitu :
1. Dengan membuat lubang penanaman elektroda yang lebar dan dimasukkan mengelilingi elektroda tersebut bahan – bahan seperti tanah liat atau cokas. 2. Mengelilingi elektroda pada statu jarak tertentu diberi zat-zat nimia yang mana akan memperkecil tahanan jenis tanah di sekitarnya. Zat-zat nimia yang biasa di pakai adalah sodium chloride, calsium chloride, magnesium sulfat, dan coper sulfat. 3. Dengan Bentonite.
Bubuk bentonita bersifat mengabsorb air, karena itu dengan mencampur bubuk bentonite, garam dapur dan air maka campuran bentonite tersebut dapat menghasilkan tahanan jenis tanah yang rendah. Dengan menanamkan campuran bentonite tersebut disekeliling elektroda maka tahanan pentanahandapat diperkecil 1/10 – 1/15 kali. Komposisi campuran bentonite menurut perbandingan :Bentonite : garam dapur : air = 1 : 0,2 : 2
Free Auto-hide: on
PENGUKURAN TAHANAN PENTANAHAN Tujuan pentanahan peralatan adalah usaha untuk mengamankan system apabila terjadi hubung singkat pada peralatan, selanjutnya arus hubung singkat tsb
akan disalurkan ketanah dan tidak membahayakan bagi orang dan peralatan, terutama pada peralatan listrik yang rangka (bodi) terbuat dari logam harus ditanahkan. Pengukuran perlu dilakukan sebelum system dioperasikan pertama kali, waktu pemeliharaan atau setelah system ada gangguan. Sewaktu pelaksanaan pengukuran pentanahan, saluran (kawat) dari electrode ke rangka peralatan harus dilepas. Pengukuran dilakukan pada electrode dengan alat ukur EARTH TESTER. Dalam perencanaan pengetanahan hal yang harus diperhatikan adalah jenis tanah, berikut ini tabel nilai rata2 resistansi dari jenis tanah. Pelaksanaan pengoperasian Earth Tester sbb: Prop (A) di hubungkan dengan electrode (di bak kontrol). Prop (B) dan (C) ditancapkan ketanah dengan jarak antara