E.03 Evaluación Complementaria III
August 10, 2022 | Author: Anonymous | Category: N/A
Short Description
Download E.03 Evaluación Complementaria III...
Description
Universidad Técnica Federico Santa María Departamento de Matemática Campus Vitacura
Profesor: Humberto Villalobos T. Probabilidad y Estadística MAT 032 I Trimestre 2019
TERCERA EVALUACIÓN COMPLEMENTARIA OBJETIVOS:
Durante esta Tercera Tarea se espera que el alumno adquiera los conceptos de variables aleatorias, probabilidades, valores esperados y su relación con modelos dicotómicos de probabilidad.
1. Sea X el tiempo hasta la falla (en años) de cierto componente hidráulico. Suponga que la función de densidad de probabilidad de X está está dada por: función de distribución del tiempo hasta la falla. a. Determine la función 3 32 x 4 , x 0 b. Si el tiempo de vida del componente ha superado los dos años, f x ¿cuál es la probabilidad de que el tiempo hasta la falla sea menor 0 , e .o .c . a 5 años? (exprese el resultado, redondeado a dos decimales) c. Suponga que, en forma aleatoria, se seleccionan componentes hasta que aparecen seis, cuyo tiempo de falla se encuentra entre 2 y 5 años. c.1 ¿Cuál es la probabilidad que se deban seleccionar más componentes de lo esperado? c.2 ¿Cuál es la probabilidad que el número de componentes seleccionados se encuentre a no más de dos desviaciones estándar de su valor esperado? d. Si el componente tiene un valor de rescate igual a 100/(4 + x) cuando su tiempo hasta que se presenta la falla es x0 (mayor que cero), ¿cuál es el valor de rescate esperado? lote de 61 arandelas espaciadoras contiene 6 que se encuentran fuera de la especificación requerida 2. Un (son más gruesas que la dimensión requerida). Suponga que en una inspección de calidad del lote se escogen cuatro arandelas al zar, para evaluar una a una la especificación de las arandelas. a. ¿Cuál es la probabilidad que no más de una arandela este fuera de la especificación? b. ¿Cuál es la probabilidad de que la tercera arandela muestreada sea la primera que se encuentra fuera de la especificación requerida? c. ¿Cuál es el número mínimo de arandelas que es necesario tomar del lote, para que la probabilidad que algunas de ellas sean más gruesas que la dimensión requerida sea al menos 0?90? d. Si este proceso de muestreo es llevado en los 27 lotes producidos en una semana, bajo el supuesto que cada lote presenta la misma configuración de elementos. d.1 ¿Cuál es la probabilidad que más de 8 pero no más de 14 lotes presenten una arandela fuera de los límites de especificación? d.2 Sobre que lote se encuentran el 35% de los lotes con tan sólo una arandela fuera de los límites de especificación
estrecha relación con el valor asignado a este producto debido a su 3. La vida útil de un producto guarda estrecha alta calidad, es por esta razón que la compañía de calefón R ILLO ILLO Ltda. ha invertido una gran cantidad de recursos en los últimos años en I+D, logrando establecer que la función de distribución que modela los tiempos de vida, en años, de estos aparatos hasta la primera falla está dada por: t 2/3 a. Determine la probabilidad de que la vida de FT (t ) 1 exp x 0 , un calefón se aleje de su valor esperado en a 3 lo más un tercio de desviación estándar. b. Si se toma una muestra de 26 clientes que han adquirido estos calefones durante el año 2010, ¿cuál es a probabilidad que tan solo 10 clientes manifiesten que la primera falla de su calefón surgió antes de los 39 meses? c. La garantía ofrecida por los fabricantes es de 8 meses, suponga que la reparación del artefacto fuera del tiempo de garantía es de $15.000, cuando falla antes de los tres años, mientras que si supera los tres años sus costos de reparación ascienden a $35.000. Determine la función de distribución asociada al costo de reparación y el costo esperado de reparación.
Fecha de Entrega: Sábado 13 de Abril
View more...
Comments