Dykstra Parsons
July 24, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Dykstra Parsons...
Description
4.3 Aplicaciones utilizando la teoría de Herman-Dykstra R.L Parson
Inicialmente se obtienen valores de permeabilidad del análisis realizado a un núcleo de la formación y posteriormente se siguen uno a uno los siguientes pasos para obtener los valores de los l os parámetros buscados: 1. Determinar el coeficiente d de e variación de permea permeabilidad, bilidad, V: Este coeficiente mide o cuantifica la estratificación de la permeabilidad y su efecto en el comportamiento de la inyección de agua. Su valor varía entre 0 y 1, de tal manera, que entre menor sea su valor mayor es la recuperación ya que el yacimiento es más homogéneo. El modo de calcular “V” se describe a continuación:
Las permeabilidades del perfil de las capas se colocan en orden decreciente.
.
Se determina para cada una de ellas el porcentaje del número total de permeabilidades que son mayores que cada una en particular.
Se construye un gráfico representando representando el logaritmo de ccada ada permeabilidad en función del porcentaje calculado en el paso anterior, en escala de probabilidades.
En el gráfico obtenido, se determina sobre la mejor recta trazada las permeabilidad es correspondientes a 50% y 84.1%, llamadas respectivamente K 50% y K84.1%
A partir de esos valores de K, se calcula “ V” utilizando la siguiente ecuación:
= (0%−0%4.%) 2. Se determina la relación relación de movilidades movilidades:: La razón de movilidades sse e define por la siguiente ecuación (que fue determinada anteriormente en ecuación 4.36.
= ∗ 88
3. Se determina determina la eficiencia de despl desplazamiento: azamiento:
= ( − ) 4. Se determina el volumen de hidrocarburos inicial en el modelo.
(1 − ) = 7758∗∅∗∗ℎ∗ Donde: Ni = Aceite inicial en el modelo. A = Área del modelo en acres. h = Espesor neto promedio del modelo, ft. Ǿ= Porosidad promedio en fracción. = Saturación de agua inicial en fracción. B=factor volumétrico del aceite a la presión inicial del yacimiento. oi
5. Se determina el aceite remanente en el modelo: modelo: Nr =Ni - Np 1. En este paso se suponen suponen valores de WOR que coincidan con aq aquellos uellos para los cuales están hechas las gráficas de Coeficiente de variación de permeabilidad (vs) Eficiencia vertical para varias razones de movilidades. Los valores de WOR supuestos son: 0.1, 0.25, 0.5, 1, 5, 10, 25, 50, 100. 2. Se determina el flujo fraccional. 3. Se determina la eficiencia areal: Dependiendo del patrón de inyección, permiten encontrar la eficiencia areal de desplazamiento en función de la movilidad y usando como parámetro el valor del flujo fraccional del agua del pozo productor. 4. Se determina la eficiencia vertical: Dykstra-Parsons utilizaron sus ecuaciones de WOR, eficiencia vertical y con el concepto de variación de permeabilidad “V” construyeron gráficos que relacionan V, razón de movilidad y eficiencia vertical para determinados valores de WOR .Para emplear dichos gráficos se suponen valores de WOR, que coincidan con aquellos para los cuales vs. están hechasvertical. las gráficas de Coeficiente de variación de permeabilidad Eficiencia
89
5. Se determina el aceite aceite producido: El petróleo producido acumulado desde desde que comenzó el proceso de desplazamiento de aceite por agua “Np”, se determina mediante la siguiente expresión: Np = Nr *E *ED *Ea * Ei 6. Se determina el agua necesaria para desplazar el petróleo: El agua necesaria para desplazar el petróleo, es igual al petróleo producido acondiciones de yacimiento a un WOR determinado. Luego, para cada WOR se determina el agua necesaria para desplazar el petróleo “WD” por medio de la siguiente ecuación. WD = Np * Bo (BBL) 7. Se calcula el agua producida: El agua producida producida para un valo valorr determinado de WOR se puede obtener de la integración gráfica del área bajo la curva de la gráfica de RAP vs. Np.
= ∫ =() 8. Se determina determina el agua de llenado. llenado.
=7758 ℎ ∅() 9. Se determina el agua inyectada. 10. Se determina el tiempo de inyección. El tiempo durante el cual se ha inyectado cierta cantidad de agua.(correspondiente a un valor determinado de WOR) 11. Se determina flujo de aceite y agua. 12. Se determina el tiempo para alcanzar el limite económico.
A continuación se presentan los datos de un yacimiento interestratificado en el cual dadas las permeabilidades absolutas siguientes, aplicar el método de Dykstra & Parsons para el yacimiento correspondiente.
Tabla 4.5 Datos de entrada para el método de Herma-Dystra R.L. Parson.
90
(1)
(2)
(3)
(4)
I
KI [MD]
N°>KI
% ACUM>K
1
2250
0
0
2
1500
1
4
3
1300
2
8
4
1025
3
12
5
910
4
16
6
880
5
20
7
810
6
24
8
710
7
28
9
665
8
32
10
630
9
36
11
590
10
40
12
570
11
44
13
570
12
48
14
550
13
52
15
490
14
56
16
440
15
60
17
415
16
64
CONTINUACION
I
KI [MD]
N°>KI
% ACUM>K
18
390
17
68
19
290
18
72
20
270
19
76
91
21
255
20
80
22
195
21
84
23
190
22
88
24
110
23
92
96
N= 25
5 N-1 = 24
n 1 100 n i
T
NT = 25
DATOS ADICIONALES:
O = 4.34 W = 0.82 KW = 0.2 KO = 0.8 BOI = 1.173 SWI = 20% BOT = 1.073
Se pide en (bl):
A) Obtener la recuperación del aceite para una WOR = 35, para la que no existe gráfica para aplicar el método de Dykstra and Parsons, si V R = 25´x 100 acres, = 0.20, Np = 0 (no ha producido nada). B) La recuperación también en (bl), para una Np = 0.530 x 10 6 (bl) después de un tiempo t y la misma WOR = 35.
92
Para determinar las recuperaciones para WOR = 1, WOR = 25, WOR = 50 y WOR = 100, se gráfica la permeabilidad vs. el % acumulado de K, como se muestra en la Gráfica. Y para nuestro caso de una WOR = 35 se tendrá que interpolar. De donde obtenemos V.
10000
1000
510
285 K
100
10
1 0
10
20
30
40
50
60
70
80
90
100
%Acum>k 84.1% 50%
Figura 4.3 Coeficiente de Dykstra Parson para la variación de Permeabilidad; Applied Petroleum Reservoir Engineering; Craft B. Cand Hawkins M.
De la Figura 4.3. K50% = 510 K%84.1 = 285 Entonces V es igual a: (V )
K 50%
K 84.1%
K 50%
510
285
510
0.441
93
Con el valor anterior entramos a las gráficas de V (variación de K) VS C (Cobertura); de donde obtenemos la figura 4.3. En donde
K r w
K r o
o w
0.2 4.34 0.8 0.82
1.32
V , d a di il b a e mr e p e d n ói c ai r a V 0.441
Cobertura, C
0.67
Figura 4.4 Predicción de la recuperación de aceite por inyección de agua, para una relación agua-aceite igual a la unidad; WILLHITE, G. P. Waterflooding. SPE Textbook No. 3. 1 ed. Richardson, Texas.SPE. s.f.
0.67
V , d b
a Figura 4.4 Predicción de la recuperación de aceite por inyección de agua, para una di 94 li relación agua-aceite igual a la unidad; WILLHITE, G. P. Waterflooding. SPE Textbook a No. 3. 1 ed. Richardson, Texas.SPE. s.f. e
m
0.44
Cobertura, C
0.875
Figura 4.5 Predicción de la recuperación de aceite por inyección de agua, para una relación agua-aceite igual a cinco; WILLHITE, G. P. Waterflooding. SPE Textbook No. 3. 1 ed. Richardson, Texas.SPE. s.f.
95
V , d a idl i b ea mr e p e d n ió c ai r a V
0.44
Cobertura, C
0.96
Figura 4.6 Predicción de la recuperación de aceite por inyección de agua, para una relación agua-aceite igual a vienti y cinco; WILLHITE, G. P. Waterflooding. SPE Textbook No. 3. 1 ed. Richardson, Texas.SPE. s.f.
96
V , d a di li b a e mr e p e d n ói c ai r a V 0.44
0.98
Cobertura, C
Figura 4.7 Predicción de la recuperación de aceite por inyección de agua, para una relación agua-aceite igual a cien; WILLHITE, G. P. Waterflooding. SPE Textbook No. 3. 1 ed. Richardson, Texas.SPE. s.f.
Tabla 4.6 Calculo de Cobertura.
WOR
C
de la figura
97
1-C
1
0.67
2
0.33
5
0.875
3
0.125
25
0.96
4
0.04
35
0.9626
100
0.98
0.0374
5
0.02
Con los valores de la Tabla 4.6, entramos a la Figura 4.8 de [1-C] vs
R 1
WO WOR R Sw
0.2
0.43
0.39 0.38 0.305
0.195
0.02
0.04 0.33 0.125
0.0374
Figura 4.8 Predicción de la cobertura debido a la inyección de agua; WILLHITE, G. P. Waterflooding. SPE Textbook No. 3. 1 ed. Richardson, Richardson, Texas.SPE. s.f.
Calculando R para WOR = 1 se tiene:
98
WO WOR R 0.195 R 0.2437 Sw 0.2 1 1 WOR R 1 WO R 1
Sw
0.2
0.2
0.2
Calculando R para WOR = 5 se tiene:
WO WOR R 0.305 0.3567 R 0.2 Sw 1 1 WOR R 5 WO R 1
Sw
0.2
0.2
0.2
Calculando R para WOR = 25 se tiene:
0.2 WO WOR R 0.38 0.4246 R 0.2 Sw 1 1 0.2 0.2 WOR R 25 WO
R 1
Sw
Calculando la Recuperación para WOR = 35 se tiene:
0.2 WO WOR R 0.390 0.4324 R 0.2 Sw 1 1 0.2 0.2 WOR WO R 35
R 1
Sw
Calculando R para WOR = 100 se tiene:
99
0.2 WO WOR R 0.43 R 0.4671 Sw 0.2 1 1 0.2 0.2 WOR R 100 WO R 1
Sw
De donde obtenemos la Tabla 4.7 siguiente:
Tabla 4.7 Calculo de la recuperación.
A)
R 1
WOR Sw
WOR
C
1-C
1
0.67
0.33
0.195
0.2437
5
0.875
0.125
0.305
0.3567
25
0.96
0.04
0.380
0.4246
35
0.9626
0.0374
0.390
0.4324
100
0.98
0.02
0.430
0.4671
0.2
R
La recuperación obtenida obtenida esta en fracción y por tanto no no tiene unidades.
N = VpSoi = ((Vr* )/Boi)*(1-Swi)
4046.86m 2 10.76 ft 2 25 ft 100acres 1 0.20 2 acre m 1 1 N 74244183.46 ft 3 @ c. s. 1.173
28.3168lt 1bl 13222375.43bl 3 ft lt 1 159
N 74244183.46 ft 3
Recuperación (Rec) = R* N Rec = 0.4324 * 13222375.43 [bl] = 5717355.136 [bl]
100
B) Recuperación después de un tiempo t cuya Np = 0.530 x 10 6 [bl] igual para una WOR = 35 Recuperación = R * (N-Np) Rec = 0.4324 * (13222375.43-530000) = 5488183.136 [bl] la que todavía existe en el yacimiento.
Rec = 5717355.136-5488183.136 = 229172 [bl]
101
View more...
Comments