Domain and Range Cheat Sheet

September 27, 2017 | Author: johanna | Category: N/A
Share Embed Donate


Short Description

domain and range cheat sheet...

Description

Harold’s Parent Functions β€œCheat Sheet” 28 December 2015

Function Name

Parent Function

Graph

Characteristics

Algebra

Constant

𝑓(π‘₯) = 𝑐

Linear or Identity

𝑓(π‘₯) = π‘₯

Quadratic or Square

𝑓(π‘₯) = π‘₯ 2

Square Root

𝑓(π‘₯) = √π‘₯

Copyright Β© 2011-2015 by Harold Toomey, WyzAnt Tutor

Domain: (βˆ’βˆž, ∞) Range: [c, c] Inverse Function: Undefined (asymptote) Restrictions: c is a real number Odd/Even: Even General Form: 𝐴𝑦 + 𝐡 = 0 Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘₯ Restrictions: m β‰  0 Odd/Even: Odd General Forms: 𝐴π‘₯ + 𝐡𝑦 + 𝐢 = 0 𝑦 = π‘šπ‘₯ + 𝑏 𝑦 βˆ’ 𝑦0 = π‘š(π‘₯ βˆ’ π‘₯0 ) Domain: (βˆ’βˆž, ∞) Range: [0, ∞) Inverse Function: 𝑔(π‘₯) = √π‘₯ Restrictions: None Odd/Even: Even General Form: 𝐴π‘₯ 2 + 𝐡𝑦 + 𝐢π‘₯ + 𝐷 = 0 Domain: [0, ∞) Range: [0, ∞) Inverse Function: 𝑔(π‘₯) = x 2 Restrictions: π‘₯ β‰₯ 0 Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Žβˆšπ‘(π‘₯ βˆ’ β„Ž) + π‘˜

1

Function Name

Parent Function

Absolute Value

𝑓(π‘₯) = |π‘₯|

Cubic

𝑓(π‘₯) = π‘₯ 3

Cube Root

𝑓(π‘₯) = √π‘₯

Exponential

𝑓(π‘₯) = 10π‘₯ π‘œπ‘Ÿ 𝑓(π‘₯) = 𝑒 π‘₯

Logarithmic

𝑓(π‘₯) = log π‘₯ π‘œπ‘Ÿ 𝑓(π‘₯) = ln π‘₯

Graph

3

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

Characteristics Domain: (βˆ’βˆž, ∞) Range: [0, ∞) Inverse Function: 𝑓(π‘₯) = π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰₯ 0 Restrictions: π‘₯, 𝑖𝑓 π‘₯ β‰₯ 0 𝑓(π‘₯) = { βˆ’π‘₯, 𝑖𝑓 π‘₯ < 0 Odd/Even: Even General Form: 𝑓(π‘₯) = π‘Ž|𝑏(π‘₯ βˆ’ β„Ž)| + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 3 𝑔(π‘₯) = √π‘₯ Restrictions: None Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž(𝑏(π‘₯ βˆ’ β„Ž))3 + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘₯ 3 Restrictions: None Odd/Even: Odd General Form: 3 𝑓(π‘₯) = π‘Ž βˆšπ‘(π‘₯ βˆ’ β„Ž) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (0, ∞) Inverse Function: 𝑔(π‘₯) = log π‘₯ π‘œπ‘Ÿ 𝑔(π‘₯) = ln π‘₯ Restrictions: None, x can be imaginary Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž 10(𝑏(π‘₯βˆ’β„Ž)) + π‘˜ Domain: (0, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = 10π‘₯ π‘œπ‘Ÿ 𝑔(π‘₯) = 𝑒 π‘₯ Restrictions: x > 0 Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž log(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ 2

Function Name

Parent Function

Graph

Characteristics Domain: (βˆ’βˆž, 0) βˆͺ (0, ∞) Range: (βˆ’βˆž, 0) βˆͺ (0, ∞) Inverse Function:

Reciprocal or Rational

𝑔(π‘₯) = 𝑓(π‘₯) =

1 π‘₯

Restrictions: x β‰  0 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž [

Greatest Integer or Floor

𝑓(π‘₯) = [π‘₯]

Inverse Functions

𝐼𝑓 𝑓(π‘₯) = 𝑦, π‘‘β„Žπ‘’π‘› βˆ’1 (𝑦) 𝑓 = 𝑓 βˆ’1 (𝑓(π‘₯)) =π‘₯

1 π‘₯

𝑏 ]+π‘˜ (π‘₯ βˆ’ β„Ž)

Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) whole numbers only Inverse Function: Undefined (asymptotic) Restrictions: Real numbers only Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž[𝑏(π‘₯ βˆ’ β„Ž)] + π‘˜ Domain of x Domain of y Range of y Range of x Inverse Function: By definition Restrictions: None Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž 𝑓(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜

Conic Sections

Circle

π‘₯2 + 𝑦2 = π‘Ÿ2

Domain: [βˆ’π‘Ÿ + β„Ž, π‘Ÿ + β„Ž] Range: [βˆ’π‘Ÿ + π‘˜, π‘Ÿ + π‘˜] Inverse Function: Same as parent Restrictions: None Odd/Even: Both Focus : (β„Ž, π‘˜) General Forms: (π‘₯ βˆ’ β„Ž)2 + (𝑦 βˆ’ π‘˜)2 = π‘Ÿ 2 𝐴π‘₯ 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0 π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐴 = 𝐢 π‘Žπ‘›π‘‘ 𝐡 = 0

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

3

Function Name

Ellipse

Parent Function

Graph

π‘₯2 𝑦2 + =1 π‘Ž2 𝑏 2

Characteristics Domain: [βˆ’π‘Ž + β„Ž, π‘Ž + β„Ž] Range: [βˆ’π‘ + π‘˜, 𝑏 + π‘˜] Inverse Function: π‘₯2 𝑦2 + =1 𝑏 2 π‘Ž2 Restrictions: None Odd/Even: Both Foci : 𝑐 2 = π‘Ž2 βˆ’ 𝑏 2 General Forms: (π‘₯ βˆ’ β„Ž)2 (𝑦 βˆ’ π‘˜)2 + =1 π‘Ž2 𝑏2 𝐴π‘₯ 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0 where 𝐡2 βˆ’ 4𝐴𝐢 < 0

Parabola

𝑦 = π‘Žπ‘₯ 2

Domain: (βˆ’βˆž, ∞) Range: [π‘˜, ∞) or (βˆ’βˆž, π‘˜] Inverse Function: 𝑔(π‘₯) = √π‘₯ Restrictions: None Odd/Even: Even Vertex : (β„Ž, π‘˜) Focus : (β„Ž, π‘˜ + 𝑝) General Forms: (π‘₯ βˆ’ β„Ž)2 = 4𝑝(𝑦 βˆ’ π‘˜) 𝐴π‘₯ 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0 where 𝐡2 βˆ’ 4𝐴𝐢 = 0

Hyperbola

π‘₯2 𝑦2 βˆ’ =1 π‘Ž2 𝑏 2

Domain: (βˆ’βˆž, -a+h] βˆͺ [a+h, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑦2 π‘₯2 βˆ’ =1 π‘Ž2 𝑏 2 Restrictions: Domain is restricted Odd/Even: Both Foci : 𝑐 2 = π‘Ž2 + 𝑏 2 General Forms: (π‘₯ βˆ’ β„Ž)2 (𝑦 βˆ’ π‘˜)2 βˆ’ =1 π‘Ž2 𝑏2 𝐴π‘₯ 2 + 𝐡π‘₯𝑦 + 𝐢𝑦 2 + 𝐷π‘₯ + 𝐸𝑦 + 𝐹 = 0 where 𝐡2 βˆ’ 4𝐴𝐢 > 0

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

4

Function Name

Parent Function

Graph

Characteristics

Trigonometry

Sine

𝑓(π‘₯) = 𝑠𝑖𝑛 π‘₯

Cosine

𝑓(π‘₯) = π‘π‘œπ‘  π‘₯

Domain: (βˆ’βˆž, ∞) Range: [βˆ’1, 1] Inverse Function: 𝑔(π‘₯) = π‘ π‘–π‘›βˆ’1 π‘₯ Restrictions: None Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž 𝑠𝑖𝑛 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: [βˆ’1, 1] Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘  βˆ’1 π‘₯ Restrictions: None Odd/Even: Even General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘  (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ πœ‹

𝑓(π‘₯) = π‘‘π‘Žπ‘› π‘₯ Tangent =

𝑠𝑖𝑛 π‘₯ π‘π‘œπ‘  π‘₯

Domain: (βˆ’βˆž, ∞) except for π‘₯ = 2 Β± π‘›πœ‹ Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘‘π‘Žπ‘›βˆ’1 π‘₯ πœ‹ Restrictions: Asymptotes at π‘₯ = 2 Β± π‘›πœ‹ Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘‘π‘Žπ‘› (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ πœ‹

𝑓(π‘₯) = sec π‘₯ Secant =

1 π‘π‘œπ‘  π‘₯

𝑓(π‘₯) = 𝑐𝑠𝑐 π‘₯ Cosecant =

1 𝑠𝑖𝑛 π‘₯

𝑓(π‘₯) = π‘π‘œπ‘‘ π‘₯ Cotangent =

1 π‘‘π‘Žπ‘› π‘₯

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

Domain: (βˆ’βˆž, ∞) except for π‘₯ = 2 Β± π‘›πœ‹ Range: (βˆ’βˆž,βˆ’1] βˆͺ [1, ∞) Inverse Function: 𝑔(π‘₯) = 𝑠𝑒𝑐 βˆ’1 π‘₯ Restrictions: Range is bounded Odd/Even: Even General Form: 𝑓(π‘₯) = π‘Ž 𝑠𝑒𝑐 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) except for π‘₯ = Β±π‘›πœ‹ Range: (βˆ’βˆž, -1] βˆͺ [1, ∞) Inverse Function: 𝑔(π‘₯) = 𝑐𝑠𝑐 βˆ’1 π‘₯ Restrictions: Range is bounded Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž 𝑐𝑠𝑐 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) except for π‘₯ = Β±π‘›πœ‹ Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘‘ βˆ’1 π‘₯ Restrictions: Asymptotes at x = Β±π‘›πœ‹ Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘‘ (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ 5

Function Name

Parent Function

Graph

Characteristics Domain: [βˆ’1, 1] βˆ’πœ‹ πœ‹

Arcsine

𝑓(π‘₯) = π‘ π‘–π‘›βˆ’1 π‘₯

Arccosine

𝑓(π‘₯) = π‘π‘œπ‘  βˆ’1 π‘₯

Range: [ 2 , 2 ] or Quadrants I & IV Inverse Function: 𝑔(π‘₯) = 𝑠𝑖𝑛 π‘₯ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘ π‘–π‘›βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: [βˆ’1, 1] Range: [0, πœ‹] or Quadrants I & II Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘  π‘₯ Restrictions: Range & Domain are bounded Odd/Even: None General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘  βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) βˆ’πœ‹ πœ‹

Arctangent

𝑓(π‘₯) = π‘‘π‘Žπ‘›βˆ’1 π‘₯

Arcsecant

𝑓(π‘₯) = 𝑠𝑒𝑐 βˆ’1 π‘₯

Arccosecant

𝑓(π‘₯) = 𝑐𝑠𝑐 βˆ’1 π‘₯

Arccotangent

𝑓(π‘₯) = π‘π‘œπ‘‘ βˆ’1 π‘₯

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

Range: ( , ) or Quadrants I & IV 2 2 Inverse Function: 𝑔(π‘₯) = π‘‘π‘Žπ‘› π‘₯ Restrictions: Range is bounded Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘‘π‘Žπ‘›βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž,βˆ’1] βˆͺ [1, ∞) πœ‹ πœ‹ Range: [0, ) βˆͺ ( , πœ‹] or Quadrants I & II 2 2 Inverse Function: 𝑔(π‘₯) = 𝑠𝑒𝑐 π‘₯ Restrictions: Range & Domain are bounded Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž 𝑠𝑒𝑐 βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž,βˆ’1] βˆͺ [1, ∞) πœ‹ πœ‹ Range: [ βˆ’ 2 , 0) βˆͺ (0, 2 ] or Quadrants I & IV Inverse Function: 𝑔(π‘₯) = 𝑐𝑠𝑐 π‘₯ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž 𝑐𝑠𝑐 βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (0, πœ‹) or Quadrants I & II Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘‘ π‘₯ Restrictions: Range is bounded Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘‘ βˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) +π‘˜

6

Function Name

Parent Function

Graph

Characteristics

Hyperbolics

𝑓(π‘₯) = sinh π‘₯ Hyperbolic Sine =

𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2

𝑓(π‘₯) = π‘π‘œπ‘ β„Ž π‘₯ Hyperbolic Cosine

𝑒 π‘₯ + 𝑒 βˆ’π‘₯ = 2

𝑓(π‘₯) = π‘‘π‘Žπ‘›β„Ž π‘₯ Hyperbolic Tangent

=

𝑒 2π‘₯ βˆ’ 1 𝑒 2π‘₯ + 1

𝑓(π‘₯) = sech π‘₯ Hyperbolic Secant

=

1 π‘π‘œπ‘ β„Ž π‘₯

𝑓(π‘₯) = π‘π‘ π‘β„Ž π‘₯ Hyperbolic Cosecant

=

1 π‘ π‘–π‘›β„Ž π‘₯

𝑓(π‘₯) = π‘π‘œπ‘‘β„Ž π‘₯ Hyperbolic Cotangent

=

𝑒 2π‘₯ + 1 𝑒 2π‘₯ βˆ’ 1

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘ π‘–π‘›β„Žβˆ’1 π‘₯ Restrictions: None Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘ π‘–π‘›β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: [1, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘ β„Žβˆ’1 π‘₯ Restrictions: None Odd/Even: Even General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘ β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (βˆ’1, 1) Inverse Function: 𝑔(π‘₯) = π‘‘π‘Žπ‘›β„Žβˆ’1 π‘₯ Restrictions: Asymptotes at 𝑦 = Β±1 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘‘π‘Žπ‘›β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, ∞) Range: (0, 1] Inverse Function: 𝑔(π‘₯) = π‘ π‘’π‘β„Žβˆ’1 π‘₯ Restrictions: Asymptote at 𝑦 = 0 Odd/Even: Even General Form: 𝑓(π‘₯) = π‘Ž π‘ π‘’π‘β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, 0) βˆͺ (0, ∞) Range: (βˆ’βˆž, 0] βˆͺ [0, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘ π‘β„Žβˆ’1 π‘₯ Restrictions: Asymptotes at π‘₯ = 0, 𝑦 = 0 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘π‘ π‘β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, 0) βˆͺ (0, ∞) Range: (βˆ’βˆž, 1) βˆͺ (1, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘‘β„Žβˆ’1 π‘₯ Restrictions: Asymptotes at π‘₯ = 0, 𝑦 = Β±1 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘‘β„Ž (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ 7

Function Name

Hyperbolic Arcsine

Hyperbolic Arccosine

Parent Function

Graph

𝑓(π‘₯) = π‘ π‘–π‘›β„Žβˆ’1 π‘₯ = 𝑙𝑛(π‘₯ + √π‘₯ 2 + 1)

𝑓(π‘₯) = π‘π‘œπ‘ β„Žβˆ’1 π‘₯ = 𝑙𝑛(π‘₯ + √π‘₯ 2 βˆ’ 1)

𝑓(π‘₯) = π‘‘π‘Žπ‘›β„Žβˆ’1 π‘₯ Hyperbolic Arctangent

1 1+π‘₯ = 𝑙𝑛 ( ) 2 1βˆ’π‘₯

𝑓(π‘₯) = π‘ π‘’π‘β„Žβˆ’1 π‘₯ Hyperbolic Arcsecant

1 1 = 𝑙𝑛 ( + √ 2 βˆ’ 1) π‘₯ π‘₯

𝑓(π‘₯) = π‘π‘ π‘β„Žβˆ’1 π‘₯ Hyperbolic Arccosecant

1 1 = 𝑙𝑛 ( + √ 2 + 1) π‘₯ π‘₯

𝑓(π‘₯) = π‘π‘œπ‘‘β„Žβˆ’1 π‘₯ Hyperbolic Arccotangent

1 π‘₯+1 = 𝑙𝑛 ( ) 2 π‘₯βˆ’1

Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor

Characteristics Domain: (βˆ’βˆž, ∞) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘ π‘–π‘›β„Ž π‘₯ Restrictions: None Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘ π‘–π‘›β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: [1, ∞) Range: [0, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘ β„Ž π‘₯ Restrictions: 𝑦 β‰₯ 0 Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘ β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’1, 1) Range: (βˆ’βˆž, ∞) Inverse Function: 𝑔(π‘₯) = π‘‘π‘Žπ‘›β„Ž π‘₯ Restrictions: Asymptotes at π‘₯ = Β±1 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘‘π‘Žπ‘›β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (0, 1] Range: [0, ∞) Inverse Function: 𝑔(π‘₯) = π‘ π‘’π‘β„Ž π‘₯ Restrictions: Odd/Even: Neither General Form: 𝑓(π‘₯) = π‘Ž π‘ π‘’π‘β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: (βˆ’βˆž, 0) βˆͺ (0, ∞) Range: (βˆ’βˆž, 0] βˆͺ [0, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘ π‘β„Ž π‘₯ Restrictions: Asymptotes at π‘₯ = 0, 𝑦 = 0 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘π‘ π‘β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ Domain: [βˆ’βˆž, βˆ’1) βˆͺ (1, ∞] Range: (βˆ’βˆž, 0) βˆͺ (0, ∞) Inverse Function: 𝑔(π‘₯) = π‘π‘œπ‘‘β„Ž π‘₯ Restrictions: Asymptotes at π‘₯ = 0, 𝑦 = Β±1 Odd/Even: Odd General Form: 𝑓(π‘₯) = π‘Ž π‘π‘œπ‘‘β„Žβˆ’1 (𝑏(π‘₯ βˆ’ β„Ž)) +π‘˜ 8

Graphing Tips All Functions The Six Function β€œLevers”

y = a f (b (x - h)) + k

Graphing Tips

1) Move up/down ↕

k

(Vertical translation)

β€œ+” Moves it up

2) Move left/right ↔

h

(Phase shift)

β€œ+β€œ Moves it right

3) Stretch up/down ↕

a

(Amplitude)

Larger stretches it taller or makes it grow faster

4) Stretch left/right ↔

b

(Frequency ⦁ 2Ο€)

Larger stretches it wider

5) Flip about x-axis

a β†’ –a

6) Flip about y-axis

b β†’ –b

𝑓(π‘₯) β†’ – 𝑓(π‘₯) If 𝑓(π‘₯) =– 𝑓(βˆ’π‘₯) then odd function 𝑓(π‘₯) β†’ 𝑓(βˆ’π‘₯) If 𝑓(π‘₯) = 𝑓(βˆ’π‘₯) then even function

Trigonometric Functions The Six Trig β€œLevers”

y = a sin (b (x - h)) + k

Graphing Tips (max + min) 2

Notes If π‘˜ = 𝑓(π‘₯) then x-axis is replaced by 𝑓(π‘₯)-axis

1) Move up/down ↕

k

(Vertical translation)

2) Move left/right ↔

h

(Phase shift)

3) Stretch up/down ↕

a

(Amplitude)

4) Stretch left/right ↔

b

(Frequency ⦁ 2Ο€)

5) Flip about x-axis

a β†’ –a

𝑓(π‘₯) β†’ βˆ’π‘“(βˆ’π‘₯)

Odd Function: 𝑠𝑖𝑛 (π‘₯) = βˆ’π‘ π‘–π‘› (βˆ’π‘₯)

6) Flip about y-axis

b β†’ –b

𝑓(π‘₯) β†’ 𝑓(βˆ’π‘₯)

Even Function: π‘π‘œπ‘  (π‘₯) = π‘π‘œπ‘  (βˆ’π‘₯)

k=

β€˜+β€˜ shifts right (max – min) 2 2Ο€ 1 T= = |b| Ζ’

a=

Copyright Β© 2011-2015 by Harold Toomey, WyzAnt Tutor

𝑠𝑖𝑛 (π‘₯) = π‘π‘œπ‘  (π‘₯ βˆ’ πœ‹/2) a is NOT peak-to-peak on y-axis T = peak-to-peak on ΞΈ-axis πœ‹ 𝑇 = 𝑏 for π‘‘π‘Žπ‘› (𝑏π‘₯)

9

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF