Domain and Range Cheat Sheet
September 27, 2017 | Author: johanna | Category: N/A
Short Description
domain and range cheat sheet...
Description
Haroldβs Parent Functions βCheat Sheetβ 28 December 2015
Function Name
Parent Function
Graph
Characteristics
Algebra
Constant
π(π₯) = π
Linear or Identity
π(π₯) = π₯
Quadratic or Square
π(π₯) = π₯ 2
Square Root
π(π₯) = βπ₯
Copyright Β© 2011-2015 by Harold Toomey, WyzAnt Tutor
Domain: (ββ, β) Range: [c, c] Inverse Function: Undefined (asymptote) Restrictions: c is a real number Odd/Even: Even General Form: π΄π¦ + π΅ = 0 Domain: (ββ, β) Range: (ββ, β) Inverse Function: π(π₯) = π₯ Restrictions: m β 0 Odd/Even: Odd General Forms: π΄π₯ + π΅π¦ + πΆ = 0 π¦ = ππ₯ + π π¦ β π¦0 = π(π₯ β π₯0 ) Domain: (ββ, β) Range: [0, β) Inverse Function: π(π₯) = βπ₯ Restrictions: None Odd/Even: Even General Form: π΄π₯ 2 + π΅π¦ + πΆπ₯ + π· = 0 Domain: [0, β) Range: [0, β) Inverse Function: π(π₯) = x 2 Restrictions: π₯ β₯ 0 Odd/Even: Neither General Form: π(π₯) = πβπ(π₯ β β) + π
1
Function Name
Parent Function
Absolute Value
π(π₯) = |π₯|
Cubic
π(π₯) = π₯ 3
Cube Root
π(π₯) = βπ₯
Exponential
π(π₯) = 10π₯ ππ π(π₯) = π π₯
Logarithmic
π(π₯) = log π₯ ππ π(π₯) = ln π₯
Graph
3
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Characteristics Domain: (ββ, β) Range: [0, β) Inverse Function: π(π₯) = π₯ πππ π₯ β₯ 0 Restrictions: π₯, ππ π₯ β₯ 0 π(π₯) = { βπ₯, ππ π₯ < 0 Odd/Even: Even General Form: π(π₯) = π|π(π₯ β β)| + π Domain: (ββ, β) Range: (ββ, β) Inverse Function: 3 π(π₯) = βπ₯ Restrictions: None Odd/Even: Odd General Form: π(π₯) = π(π(π₯ β β))3 + π Domain: (ββ, β) Range: (ββ, β) Inverse Function: π(π₯) = π₯ 3 Restrictions: None Odd/Even: Odd General Form: 3 π(π₯) = π βπ(π₯ β β) + π Domain: (ββ, β) Range: (0, β) Inverse Function: π(π₯) = log π₯ ππ π(π₯) = ln π₯ Restrictions: None, x can be imaginary Odd/Even: Neither General Form: π(π₯) = π 10(π(π₯ββ)) + π Domain: (0, β) Range: (ββ, β) Inverse Function: π(π₯) = 10π₯ ππ π(π₯) = π π₯ Restrictions: x > 0 Odd/Even: Neither General Form: π(π₯) = π log(π(π₯ β β)) + π 2
Function Name
Parent Function
Graph
Characteristics Domain: (ββ, 0) βͺ (0, β) Range: (ββ, 0) βͺ (0, β) Inverse Function:
Reciprocal or Rational
π(π₯) = π(π₯) =
1 π₯
Restrictions: x β 0 Odd/Even: Odd General Form: π(π₯) = π [
Greatest Integer or Floor
π(π₯) = [π₯]
Inverse Functions
πΌπ π(π₯) = π¦, π‘βππ β1 (π¦) π = π β1 (π(π₯)) =π₯
1 π₯
π ]+π (π₯ β β)
Domain: (ββ, β) Range: (ββ, β) whole numbers only Inverse Function: Undefined (asymptotic) Restrictions: Real numbers only Odd/Even: Neither General Form: π(π₯) = π[π(π₯ β β)] + π Domain of x Domain of y Range of y Range of x Inverse Function: By definition Restrictions: None Odd/Even: Odd General Form: π(π₯) = π π(π(π₯ β β)) + π
Conic Sections
Circle
π₯2 + π¦2 = π2
Domain: [βπ + β, π + β] Range: [βπ + π, π + π] Inverse Function: Same as parent Restrictions: None Odd/Even: Both Focus : (β, π) General Forms: (π₯ β β)2 + (π¦ β π)2 = π 2 π΄π₯ 2 + π΅π₯π¦ + πΆπ¦ 2 + π·π₯ + πΈπ¦ + πΉ = 0 π€βπππ π΄ = πΆ πππ π΅ = 0
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
3
Function Name
Ellipse
Parent Function
Graph
π₯2 π¦2 + =1 π2 π 2
Characteristics Domain: [βπ + β, π + β] Range: [βπ + π, π + π] Inverse Function: π₯2 π¦2 + =1 π 2 π2 Restrictions: None Odd/Even: Both Foci : π 2 = π2 β π 2 General Forms: (π₯ β β)2 (π¦ β π)2 + =1 π2 π2 π΄π₯ 2 + π΅π₯π¦ + πΆπ¦ 2 + π·π₯ + πΈπ¦ + πΉ = 0 where π΅2 β 4π΄πΆ < 0
Parabola
π¦ = ππ₯ 2
Domain: (ββ, β) Range: [π, β) or (ββ, π] Inverse Function: π(π₯) = βπ₯ Restrictions: None Odd/Even: Even Vertex : (β, π) Focus : (β, π + π) General Forms: (π₯ β β)2 = 4π(π¦ β π) π΄π₯ 2 + π΅π₯π¦ + πΆπ¦ 2 + π·π₯ + πΈπ¦ + πΉ = 0 where π΅2 β 4π΄πΆ = 0
Hyperbola
π₯2 π¦2 β =1 π2 π 2
Domain: (ββ, -a+h] βͺ [a+h, β) Range: (ββ, β) Inverse Function: π¦2 π₯2 β =1 π2 π 2 Restrictions: Domain is restricted Odd/Even: Both Foci : π 2 = π2 + π 2 General Forms: (π₯ β β)2 (π¦ β π)2 β =1 π2 π2 π΄π₯ 2 + π΅π₯π¦ + πΆπ¦ 2 + π·π₯ + πΈπ¦ + πΉ = 0 where π΅2 β 4π΄πΆ > 0
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
4
Function Name
Parent Function
Graph
Characteristics
Trigonometry
Sine
π(π₯) = π ππ π₯
Cosine
π(π₯) = πππ π₯
Domain: (ββ, β) Range: [β1, 1] Inverse Function: π(π₯) = π ππβ1 π₯ Restrictions: None Odd/Even: Odd General Form: π(π₯) = π π ππ (π(π₯ β β)) + π Domain: (ββ, β) Range: [β1, 1] Inverse Function: π(π₯) = πππ β1 π₯ Restrictions: None Odd/Even: Even General Form: π(π₯) = π πππ (π(π₯ β β)) + π π
π(π₯) = π‘ππ π₯ Tangent =
π ππ π₯ πππ π₯
Domain: (ββ, β) except for π₯ = 2 Β± ππ Range: (ββ, β) Inverse Function: π(π₯) = π‘ππβ1 π₯ π Restrictions: Asymptotes at π₯ = 2 Β± ππ Odd/Even: Odd General Form: π(π₯) = π π‘ππ (π(π₯ β β)) + π π
π(π₯) = sec π₯ Secant =
1 πππ π₯
π(π₯) = ππ π π₯ Cosecant =
1 π ππ π₯
π(π₯) = πππ‘ π₯ Cotangent =
1 π‘ππ π₯
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Domain: (ββ, β) except for π₯ = 2 Β± ππ Range: (ββ,β1] βͺ [1, β) Inverse Function: π(π₯) = π ππ β1 π₯ Restrictions: Range is bounded Odd/Even: Even General Form: π(π₯) = π π ππ (π(π₯ β β)) + π Domain: (ββ, β) except for π₯ = Β±ππ Range: (ββ, -1] βͺ [1, β) Inverse Function: π(π₯) = ππ π β1 π₯ Restrictions: Range is bounded Odd/Even: Odd General Form: π(π₯) = π ππ π (π(π₯ β β)) + π Domain: (ββ, β) except for π₯ = Β±ππ Range: (ββ, β) Inverse Function: π(π₯) = πππ‘ β1 π₯ Restrictions: Asymptotes at x = Β±ππ Odd/Even: Odd General Form: π(π₯) = π πππ‘ (π(π₯ β β)) + π 5
Function Name
Parent Function
Graph
Characteristics Domain: [β1, 1] βπ π
Arcsine
π(π₯) = π ππβ1 π₯
Arccosine
π(π₯) = πππ β1 π₯
Range: [ 2 , 2 ] or Quadrants I & IV Inverse Function: π(π₯) = π ππ π₯ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: π(π₯) = π π ππβ1 (π(π₯ β β)) + π Domain: [β1, 1] Range: [0, π] or Quadrants I & II Inverse Function: π(π₯) = πππ π₯ Restrictions: Range & Domain are bounded Odd/Even: None General Form: π(π₯) = π πππ β1 (π(π₯ β β)) + π Domain: (ββ, β) βπ π
Arctangent
π(π₯) = π‘ππβ1 π₯
Arcsecant
π(π₯) = π ππ β1 π₯
Arccosecant
π(π₯) = ππ π β1 π₯
Arccotangent
π(π₯) = πππ‘ β1 π₯
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Range: ( , ) or Quadrants I & IV 2 2 Inverse Function: π(π₯) = π‘ππ π₯ Restrictions: Range is bounded Odd/Even: Odd General Form: π(π₯) = π π‘ππβ1 (π(π₯ β β)) + π Domain: (ββ,β1] βͺ [1, β) π π Range: [0, ) βͺ ( , π] or Quadrants I & II 2 2 Inverse Function: π(π₯) = π ππ π₯ Restrictions: Range & Domain are bounded Odd/Even: Neither General Form: π(π₯) = π π ππ β1 (π(π₯ β β)) + π Domain: (ββ,β1] βͺ [1, β) π π Range: [ β 2 , 0) βͺ (0, 2 ] or Quadrants I & IV Inverse Function: π(π₯) = ππ π π₯ Restrictions: Range & Domain are bounded Odd/Even: Odd General Form: π(π₯) = π ππ π β1 (π(π₯ β β)) + π Domain: (ββ, β) Range: (0, π) or Quadrants I & II Inverse Function: π(π₯) = πππ‘ π₯ Restrictions: Range is bounded Odd/Even: Neither General Form: π(π₯) = π πππ‘ β1 (π(π₯ β β)) +π
6
Function Name
Parent Function
Graph
Characteristics
Hyperbolics
π(π₯) = sinh π₯ Hyperbolic Sine =
π π₯ β π βπ₯ 2
π(π₯) = πππ β π₯ Hyperbolic Cosine
π π₯ + π βπ₯ = 2
π(π₯) = π‘ππβ π₯ Hyperbolic Tangent
=
π 2π₯ β 1 π 2π₯ + 1
π(π₯) = sech π₯ Hyperbolic Secant
=
1 πππ β π₯
π(π₯) = ππ πβ π₯ Hyperbolic Cosecant
=
1 π ππβ π₯
π(π₯) = πππ‘β π₯ Hyperbolic Cotangent
=
π 2π₯ + 1 π 2π₯ β 1
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Domain: (ββ, β) Range: (ββ, β) Inverse Function: π(π₯) = π ππββ1 π₯ Restrictions: None Odd/Even: Odd General Form: π(π₯) = π π ππβ (π(π₯ β β)) + π Domain: (ββ, β) Range: [1, β) Inverse Function: π(π₯) = πππ ββ1 π₯ Restrictions: None Odd/Even: Even General Form: π(π₯) = π πππ β (π(π₯ β β)) + π Domain: (ββ, β) Range: (β1, 1) Inverse Function: π(π₯) = π‘ππββ1 π₯ Restrictions: Asymptotes at π¦ = Β±1 Odd/Even: Odd General Form: π(π₯) = π π‘ππβ (π(π₯ β β)) + π Domain: (ββ, β) Range: (0, 1] Inverse Function: π(π₯) = π ππββ1 π₯ Restrictions: Asymptote at π¦ = 0 Odd/Even: Even General Form: π(π₯) = π π ππβ (π(π₯ β β)) + π Domain: (ββ, 0) βͺ (0, β) Range: (ββ, 0] βͺ [0, β) Inverse Function: π(π₯) = ππ πββ1 π₯ Restrictions: Asymptotes at π₯ = 0, π¦ = 0 Odd/Even: Odd General Form: π(π₯) = π ππ πβ (π(π₯ β β)) + π Domain: (ββ, 0) βͺ (0, β) Range: (ββ, 1) βͺ (1, β) Inverse Function: π(π₯) = πππ‘ββ1 π₯ Restrictions: Asymptotes at π₯ = 0, π¦ = Β±1 Odd/Even: Odd General Form: π(π₯) = π πππ‘β (π(π₯ β β)) + π 7
Function Name
Hyperbolic Arcsine
Hyperbolic Arccosine
Parent Function
Graph
π(π₯) = π ππββ1 π₯ = ππ(π₯ + βπ₯ 2 + 1)
π(π₯) = πππ ββ1 π₯ = ππ(π₯ + βπ₯ 2 β 1)
π(π₯) = π‘ππββ1 π₯ Hyperbolic Arctangent
1 1+π₯ = ππ ( ) 2 1βπ₯
π(π₯) = π ππββ1 π₯ Hyperbolic Arcsecant
1 1 = ππ ( + β 2 β 1) π₯ π₯
π(π₯) = ππ πββ1 π₯ Hyperbolic Arccosecant
1 1 = ππ ( + β 2 + 1) π₯ π₯
π(π₯) = πππ‘ββ1 π₯ Hyperbolic Arccotangent
1 π₯+1 = ππ ( ) 2 π₯β1
Copyright Β© 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Characteristics Domain: (ββ, β) Range: (ββ, β) Inverse Function: π(π₯) = π ππβ π₯ Restrictions: None Odd/Even: Odd General Form: π(π₯) = π π ππββ1 (π(π₯ β β)) + π Domain: [1, β) Range: [0, β) Inverse Function: π(π₯) = πππ β π₯ Restrictions: π¦ β₯ 0 Odd/Even: Neither General Form: π(π₯) = π πππ ββ1 (π(π₯ β β)) + π Domain: (β1, 1) Range: (ββ, β) Inverse Function: π(π₯) = π‘ππβ π₯ Restrictions: Asymptotes at π₯ = Β±1 Odd/Even: Odd General Form: π(π₯) = π π‘ππββ1 (π(π₯ β β)) + π Domain: (0, 1] Range: [0, β) Inverse Function: π(π₯) = π ππβ π₯ Restrictions: Odd/Even: Neither General Form: π(π₯) = π π ππββ1 (π(π₯ β β)) + π Domain: (ββ, 0) βͺ (0, β) Range: (ββ, 0] βͺ [0, β) Inverse Function: π(π₯) = ππ πβ π₯ Restrictions: Asymptotes at π₯ = 0, π¦ = 0 Odd/Even: Odd General Form: π(π₯) = π ππ πββ1 (π(π₯ β β)) + π Domain: [ββ, β1) βͺ (1, β] Range: (ββ, 0) βͺ (0, β) Inverse Function: π(π₯) = πππ‘β π₯ Restrictions: Asymptotes at π₯ = 0, π¦ = Β±1 Odd/Even: Odd General Form: π(π₯) = π πππ‘ββ1 (π(π₯ β β)) +π 8
Graphing Tips All Functions The Six Function βLeversβ
y = a f (b (x - h)) + k
Graphing Tips
1) Move up/down β
k
(Vertical translation)
β+β Moves it up
2) Move left/right β
h
(Phase shift)
β+β Moves it right
3) Stretch up/down β
a
(Amplitude)
Larger stretches it taller or makes it grow faster
4) Stretch left/right β
b
(Frequency β¦ 2Ο)
Larger stretches it wider
5) Flip about x-axis
a β βa
6) Flip about y-axis
b β βb
π(π₯) β β π(π₯) If π(π₯) =β π(βπ₯) then odd function π(π₯) β π(βπ₯) If π(π₯) = π(βπ₯) then even function
Trigonometric Functions The Six Trig βLeversβ
y = a sin (b (x - h)) + k
Graphing Tips (max + min) 2
Notes If π = π(π₯) then x-axis is replaced by π(π₯)-axis
1) Move up/down β
k
(Vertical translation)
2) Move left/right β
h
(Phase shift)
3) Stretch up/down β
a
(Amplitude)
4) Stretch left/right β
b
(Frequency β¦ 2Ο)
5) Flip about x-axis
a β βa
π(π₯) β βπ(βπ₯)
Odd Function: π ππ (π₯) = βπ ππ (βπ₯)
6) Flip about y-axis
b β βb
π(π₯) β π(βπ₯)
Even Function: πππ (π₯) = πππ (βπ₯)
k=
β+β shifts right (max β min) 2 2Ο 1 T= = |b| Ζ
a=
Copyright Β© 2011-2015 by Harold Toomey, WyzAnt Tutor
π ππ (π₯) = πππ (π₯ β π/2) a is NOT peak-to-peak on y-axis T = peak-to-peak on ΞΈ-axis π π = π for π‘ππ (ππ₯)
9
View more...
Comments