Dog Legged Stair Case

August 17, 2018 | Author: Aqeel Ahmad | Category: Stairs, Architectural Design, Mechanical Engineering, Building, Structural Engineering
Share Embed Donate


Short Description

Download Dog Legged Stair Case...

Description

DESIGN OF DOG-LEGGED STAIR pkn

Name of work :1

Stair hall measure

2.50

2

Available verical space between floor

3.00

m

3000

mm

3

Horizontal Span of stair case

1.20

mtr

1200

mm

4

Risers

0.15

mtr

150

mm

5

Treads

0.25

mtr

250

mm

6

Conrete

M-

20

scbc

7

fy

x

5.00

wt. of concrete N/mm

2

25000

m

3

N/m

m

13.33

sst

230

N/mm

30

mm

2

7

Steel

8

Nomi Nomin nal cover ver

25

Effective cover

Reinforcement Main Bottom slab

10

mm F bars

100

Anchor bars (Bottom )

8

mm F bars

2

Strirrups

8

mm F bars

270

415

10 mm f

200 mm c/c

2050 17 5 0

120 0

1 50

1 .2 0 250

1200 10 mm f

100 mm c/c

3 .0 0

15 0 8 mm f

270 mm c/c

250

1.80 10 mm f 18 0

200 mm c/c

mm

1050

1 05 0 [email protected]

2.75

120 0

mm c/c Nos. mm c/c

DESIGN OF DOG-LEGGED STAIR Name of work :pkn Stair hall measure Available verical space between floor Horizontal Span of stair case Risers Treads Concrete Steel Nominal cover

2.50 3.00 1.20 0.15 0.25 M- 20 7 cbc fy- 415 25

x m m m m

5.00 1200 150 250 wt. of concrete m

mm mm mm 2 25000 N/mm 13.33 230 N/mm st Effective cover 30 mm

N/mm mm

1 Genral arrngment:-  Fig. shows plan of stair hall. Height of 1 flight. = 3.00 / 2 No. of risers required = 1.80 / 0.15 No. of treads required = 12 1 Spce occupied by treads = 11 x 0.25 Keep width of landing equal to \ Space left for passage st Height of 1 flight. = 1.20 m No. of risers required = 1.20 / 0.15 No. of treads required = 8 1 Spce occupied by treads = 7 x 0.25 Keep width of top landing st

= = = = = =

1.50 12 11 2.75 1.20 1.05

m minimum 1.8 st No. in 1 flight. No. in 1st flight. m m m

= = = =

8 No. in 2 flight. 7 No. in 2nd flight. 1.75 m m

m which is heigher

nd

2 Design Constants:-  For HYSD Bars Cocrete M = 20 2 2 sst = 230 N/mm wt. of concrete = 25000 N/mm 3 scbc = N/mm 7 m = 13.33 13.33 m*c x 7 k= = = 0.289 13.33 x m*c+sst 7 + 230 j =1-k/3 R =1/2xc x j x k

= =

1

-

0.289

/

3

0.5

x

7

x

0.904

=

0.904

x 0.289 =

0.913

3 Loading Each Flight :-  The landing slab is assume to span in the same direction as stair, and is considered as acting together to form a single slab. Let the bearing of landing slab in wall be = 160 mm The effective span =

2.75 +

Let the thickness of waist slab '= \Weight of slab w' on slope =

1.20 +(

0.16 /

5.00 x 0.2 x

40 1

Dead weight of horizontal area w1= w' x 1 2 Total Dead weight per meter run Weight of fiishing etc. Live load 2

Dead weight of step is w

\

=

x

2

2

)'= 4.03 m

x

1

x

=

5000

x

x

####

2

R +T T 150 1000

say

25000 150 2+ 250 250

=

4.00

m

= =

200 5000

mm N/m2

5831

N/m

1875

N/m

2

=

=

2

= 7706 N = 100 N = 2500 N Total weight = 10306 N 8431 will not come on it. However, Note. The load w on the landing portion will be 10306 - 1875 = a uniform value of w has been adopted here.

[email protected]

4 Design of waist slab :-  B.M.

=

Effective depth required But available = 5 Reinforcement:-  Ast =

=

150

+

BM x 100 sst x j x D

=

10 mm F bars

using

Nomber of Bars

=

Spacing Hence used =

Distribution steel using

8

Hence used



= 8

= =

10306 x 8

4.00

20612000

0.913 x Rxb 2x cover = 25

1000

2

= 20612 = =

150

mm

175

mm

say =

20612000 = 659.91 mm2 230 x 0.904 x 150 2 3.14xdia 3.14 x 10 x 10 A = = 4 x100 4 x 100 660 x 1.20 = 11 No 78.50 1200 / 11 = 109 mm c/c F mm bars = 100 mm c/c 0.12

mm F bars

Spacing

[email protected]

= 10

wl2 8

x

150 x 100 3.14xdia2 A = 4 x100 50 x 1000 180.31 mm F bars =

1000

= = =

180 3.14 x 4 279

270 mm c/c

mm 8 x

N-m

180 mm

=

79

mm

2

=

50

mm

2

2

x 8 100

mm c/c

DESIGN OF DOG-LEGGED STAIR

2.50

1.20

UP 5.00

2.75

1.05

1.20 11 10 8 mm F 270

9 8

7 #### mm F ####

6 250

5 150

4 3 2 1 Foor level

2.75

1.20

1.05

2050 1750

1200

150

1.20 250 1200

10 mm f

100 mm c/c

8 mm f

270 mm c/c

3.00

0 0 180

mm 1.80

1050 1050 [email protected]

2.75

1200

2050 1750

1200

150

1.20 250 1200

10 mm f

100 mm c/c

8 mm f

270 mm c/c

3.00

0 0 180

mm 1.80

1050 1050

1200

2.75

[email protected]

VALUES OF DESIGN CONSTANTS Grade of concrete Modular Ratio

M-15 18.67

M-20 13.33

M-25 10.98

M-30 9.33

M-35 8.11

M-40 7.18

scbc N/mm2 m scbc

5

7

8.5

10

11.5

13

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

 jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

 jc

0.89

0.89

0.89

0.89

0.89

Rc

0.89 0.732

1.025

1.244

1.464

1.684

1.903

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

kc

0.289

0.289

0.289

0.289

0.289

0.289

 j

0 904

0 904

0 904

0 904

0 904

0 904

(a) sst = 140 N/mm2 (Fe 250) (b) sst = 190 N/mm2 (c ) sst =

VALUES OF DESIGN CONSTANTS Grade of concrete Modular Ratio

M-15 18.67

M-20 13.33

M-25 10.98

M-30 9.33

M-35 8.11

M-40 7.18

scbc N/mm2 m scbc

5

7

8.5

10

11.5

13

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

 jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

 jc

0.89

0.89

0.89

0.89

0.89

Rc

0.89 0.732

1.025

1.244

1.464

1.684

1.903

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

kc

0.289

0.289

0.289

0.289

0.289

0.289

 jc

0.904

0.904

0.904

0.904

0.904

0.904

Rc

0.653

0.914

1.11

1.306

1.502

1.698

Pc (%)

0.314

0.44

0.534

0.628

0.722

0.816

kc

0.253

0.253

0.253

0.253

0.253

0.253

 jc

0.916

0.916

0.916

0.914

0.916

0.916

Rc

0.579

0.811

0.985

1.159

1.332

1.506

Pc (%)

0.23

0.322

0.391

0.46

0.53

0.599

(a) sst = 140 N/mm2 (Fe 250) (b) sst = 190 N/mm2 (c ) sst = 230 N/mm2 (Fe 415) (d) sst = 275 N/mm2 (Fe 500)

Permissible shear stress Table 100A s bd < 0.15 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 and above

v

in concrete (IS : 456-2000)

Permissible shear stress in concrete tv N/mm M-15 M-20 M-25 M-30 M-35 0.18 0.22 0.29 0.34 0.37 0.40 0.42 0.44 0.44 0.44 0.44 0.44 0.44

0.18 0.22 0.30 0.35 0.39 0.42 0.45 0.47 0.49 0.51 0.51 0.51 0.51

0.19 0.23 0.31 0.36 0.40 0.44 0.46 0.49 0.51 0.53 0.55 0.56 0.57

0.2 0.23 0.31 0.37 0.41 0.45 0.48 0.50 0.53 0.55 0.57 0.58 0.6

0.2 0.23 0.31 0.37 0.42 0.45 0.49 0.52 0.54 0.56 0.58 0.60 0.62

2

M-40 0.2 0.23 0.32 0.38 0.42 0.46 0.49 0.52 0.55 0.57 0.60 0.62 0.63

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

tc.max

M-15 1.6

M-20 1.8

M-25 1.9

M-30 2.2

M-35 2.3

M-40 2.5

Permissible Bond stress Table rade of concret tbd (N / mm2)

M-10 --

M-15 0.6

M-20 0.8

M-25 0.9

bd

in concrete (IS : 456-2000) M-30 1

M-35 1.1

M-40 1.2

M-45 1.3

Development Length in tension Plain M.S. Bars

H.Y.S.D. Bars

Grade of concrete

tbd (N / mm2)

kd = Ld F

tbd (N / mm2)

kd = Ld F

M 15

0.6

58

0.96

60

M 20

0.8

44

1.28

45

M 25

0.9

39

1.44

40

M 30

1

35

1.6

36

M 35

1.1

32

1.76

33

M 40

1.2

29

1.92

30

M 45

1.3

27

2.08

28

M 50

1.4

25

2.24

26

Permissible stress in concrete (IS : 456-2000) Grade of concrete M M M M M M M M M

10 15 20 25 30 35 40 45 50

2 Permission stress in compression (N/mm ) Permissible stress in bond (Average) for 2 Bending acbc plain bars in tention (N/mm ) Direct (acc)

(N/mm2) 3.0 5.0 7.0 8.5 10.0 11.5 13.0 14.5 16.0

2

Kg/m 300 500 700 850 1000 1150 1300 1450 1600

(N/mm2) 2.5 4.0 5.0 6.0 8.0 9.0 10.0 11.0 12.0

2

Kg/m 250 400 500 600 800 900 1000 1100 1200

(N/mm2) -0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4

in kg/m -60 80 90 100 110 120 130 140

2

M-50 1.4

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF