Mecanica de Suelos Aplicada

September 3, 2024 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download


Description

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Tecnológico Nacional de México Instituto Tecnológico de Tehuacán Departamento de Ciencias de la Tierra Ingeniería Civil

Mecánica de Suelos Aplicada Ing. Rodolfo C. Medrano Castillo Ing. Eduardo López Sánchez Ing.- Daniel Montalvo Herrera 2015 V.1.0

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

CONTENIDO 5

CAPITULO 1. DISTRIBUCIÓN DE ESFUERZOS. 1.1 Esfuerzos en la masa de suelo 1.2. Ecuaciones de Boussinesq y Steinbrenner 1.3 Solución gráfica de Newmark y gráficas de Fadum 1.4 Incrementos de esfuerzo vertical bajo diferentes condiciones de carga 1.4.1 Carga lineal de longitud infinita 1.4.2 Carga de franja de ancho finito (B) y longitud infinita 1.5 Otras teorías: 1.5.1 Método 2:1 1.5.2 Westergaard 1.5.3 Burmister 1.5.4 Fröhlich

5 9 14 19 19 20 21 21 22 24 25 27

CAPITULO 2. ASENTAMIENTOS. 2.1 Tipo elástico 2.2 Asentamientos por consolidación 2.2.1 Asentamientos por consolidación primaria 2.2.1.1 Determinación de asentamientos 2.2.1.2 Porcentaje de asentamiento y tiempo de consolidación 2.2.2 Asentamientos por consolidación secundaria 2.3 Expansiones

27 30 32 32 39 45 47

CAPITULO 3. CAPACIDAD DE CARGA.

52

3.1 Introducción 3.2 Teorías de capacidad de carga 3.2.1 Terzaghi 3.2.2 Prandtl 3.2.3 Hill 3.2.4 Skempton 3.2.5 Meyerhof 3.2.6 Zeevaert

52 52 53 60 61 69 65 70

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

2

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

CAPITULO 4. CIMENTACIONES E INTERACCIÓN CON EL SUELO.

72

4.1 Superficiales 4.1.1 Clasificación 4.1.2 Factores que determinan el tipo de cimentación 4.1.3 Aplicación de las teorías en los diferentes tipos de suelos 4.1.3.1 Forma generalizada de la capacidad de carga última 4.1.3.2 Criterios para la aplicación de la formula de la capacidad de carga última, según el nivel de aguas freáticas 4.1.3.3 Factor de seguridad 4.2 Profundas 4.2.1 Clasificación 4.2.1.1 Según la forma como transmiten las cargas al subsuelo 4.2.1.2 Según su proceso constructivo 4.2.1.2.1 Con desplazamiento 4.2.1.2.2 Con poco desplazamiento 4.2.1.2.3 Sin desplazamiento 4.2.2 Capacidad de carga en los diferentes tipos de cimentaciones profundas 4.2.2.1 Capacidad de carga de un pilote de punta Qp 4.2.2.2 Capacidad de carga de un pilote por la resistencia al esfuerzo cortante (suelo – pilote) de la superficie del fuste Qs 4.2.2.3 Capacidad de carga de una pila perforada

72 72 74 75 75 76

78 85 85 85 87 88 88 89 89 89

91 95 97

CAPITULO 5. EMPUJE DE TIERRAS. 5.1 Clasificación de los elementos de retención 5.2 Estado de reposo

97 98

5.3 Estados plásticos de equilibrio 5.4 Teoría de Rankine 5.4.1 Estado activo 5.4.2 Estado pasivo 5.4.3 Estado activo y pasivo en rellenos de superficie inclinada 5.4.4 Estado activo. Sobrecarga uniformemente distribuida 5.4.5 Estado activo. Profundidad de la zona de tensión y altura crítica, en suelos cohesivos 5.5 Teoría de Coulomb

103 104 104 104 111 112 113 114

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

3

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

6.5.1 Método de Culmann 5.6 Método semi-empírico de Terzaghi 5.7 Ademes 5.8 Dimensionamiento de muros

116 119 125 127

CAPITULO 6. ESTABILIDAD DE TALUDES.

131

6.1 Tipos y causas de fallas en taludes 6.2 Métodos de análisis 6.2.1 Método sueco – Casagrande 6.2.2 Método de las dovelas – Fellenius 6.2.3 Método del Círculo de fricción 6.2.4 Método Taylor 6.2.5 Fallas por traslación 6.3 Análisis de círculos críticos 6.3.1 Taylor 6.3.1.1 Suelos cohesivos 6.3.1.2 Suelos con cohesión y fricción 6.3.2 Fellenius 6.3.3 Jambu 6.4 Prevención y corrección de fallas en taludes

131 132 133 136 140 142 143 144 148 148 149 150 154 155

ANEXO 1. CONSOLIDACIÓN UNIDIMENSIONAL (TERZAGHI)

157

BIBLIOGRAFÍA

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

4

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

CAPITULO 1

DISTRIBUCIÓN DE ESFUERZOS. 1.1 Esfuerzos en la masa de suelo Los esfuerzos dentro de un suelo se producen por el peso propio del mismo o por cargas que se encuentren sobre éste. Con la finalidad de establecer un orden en este capitulo, empezaremos por analizar los esfuerzos verticales que se generan en la masa de suelo por el peso propio de los materiales. En un suelo seco (sin N. A. F.), el esfuerzo vertical a una profundidad z puede calcularse considerando el peso del suelo que se encuentra encima de la partícula que se esté analizando. Así, considerando un suelo homogéneo con un peso específico γ constante, tendrá un esfuerzo vertical:

σz=zγ

(1.1)

Si el suelo es estratificado y el peso específico de cada estrato es diferente, los esfuerzos verticales, serán la suma del peso de los diferentes estratos: n

 z    i zi

(1.2)

i 1

Ejemplo

Determinar el esfuerzo vertical en una partícula de suelo ubicada a 8 metros de profundidad en suelos estratificados, los cuales tienen los siguientes pesos específicos y espesores:

Suelo 1 Suelo 2 Suelo 3

γ1=1.6 t/m3 γ2=1.8 t/m3 γ3=2.0 t/m3

∆z1=2 m ∆z2=3 m ∆z3=3 m

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

5

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Las cotas están en metros.

²

²

²

Profundidad Z=2 m Z=5 m Z=8 m

zγ (1.6*2.00)=3.20 (1.8*3.00)=5.40 (2.0*3.00)=6.00

Esfuerzo vertical

σz=3.20 t/m2 σz=8.60 t/m2 σz=14.60 t/m2 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

6

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

En una masa de suelo existen esfuerzos que se generan por contacto de sus partículas y cuando el nivel de aguas freáticas es alto, existen esfuerzos dentro del agua que se encuentra en sus intersticios. Por lo que es importante analizar estos esfuerzos. Si se tiene un suelo con el nivel de aguas freáticas en la superficie y a una profundidad z una partícula de suelo (para fines didácticos imaginemos un cubo de dimensiones diferenciales), la cara superior paralela a la superficie del suelo estará sometida a un peso W producto de la columna que se encuentra encima de ésta,

Fig. 1.2 Partícula de suelo a una profundidad z W=Ws+Ww

(1.3)

El suelo debajo del nivel freático se encuentra sometido a un empuje U (Principio de Arquímedes), de tal forma que el peso que aplica sobre la partícula solo el suelo, es el Peso Efectivo: W´s=Ws-U

(1.4)

Dividiendo los pesos entre el área de la superficie de la partícula (A), obtenemos los esfuerzos verticales

σ´z= σz -μ

(1.5)

En donde nos queda que el Esfuerzo Total (σz) es igual al Esfuerzo Efectivo (σ´z) más el Esfuerzo Neutro o Presión Intersticial (μ).

σz=σ´z+μ

(1.6)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

7

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Esta ecuación es valida no solo para esfuerzos verticales sino en cualquier dirección, como lo enunció el Dr. Kart Terzaghi en El Principio del Esfuerzo Efectivo, que propone que en cualquier punto de una masa de suelo saturado, el esfuerzo total en cualquier dirección es igual a la suma algebraica del esfuerzo efectivo en esa dirección y la presión intersticial que es la misma en cualquier dirección.

Ejemplo Determinar los esfuerzos verticales en suelos estratificados, a las siguientes profundidades 0, 4 y 10 metros, los cuales tienen los siguientes pesos específicos y espesores: Suelo 1: ARENA SECA Suelo 2: ARCILLA

γ1=1.7 t/m3 γ2=1.9 t/m3

∆z1=4 m ∆z2=6 m

El Nivel del Aguas Freáticas NAF se encuentra a 4 metros y γ2 es el peso específico saturado de la arcilla. Las cotas están en metros-

Esfuerzos verticales:

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

8

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

´

²

²

²

Profundidad Z=0 m. Z=4 m. Z=10 m

Esfuerzo efectivo σ´z 0 (1.7*4.00)=6.80 t/m2 6.80+(1.9-1.0)(6.00) =12.20 t/m2

²

²

Esfuerzo neutro  0 0 (1.0*6.00)=6.00 t/m2

Esfuerzo total σz 0 t/m2 6.80 t/m2 18.20 t/m2

1.2. Ecuaciones de Boussinesq y Steinbrenner Boussinesq en 1883 propuso una solución al problema de determinar los esfuerzos en una partícula de suelo producto de cargas en la superficie, proponiendo un modelo que considera un medio homogéneo, elástico, isótropo y semi-infinito. El incremento de esfuerzo vertical producto de una carga puntual esta dado por la ecuación:

 z 

3 P z 3 3P z3  2 R 5 2 r 2  z 2





5

(1.7) 2

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

9

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.3 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga puntual

Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga puntual P=25 t. con x=1.0m y y=1.4m, a la profundidades de 0 a 10m a cada metro.

r  1.0 2  1.4 2  1.72m 325 z3  z  2 1.72 2  z 2





5

2

Diagrama de esfuerzos (Bulbo de presiones)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

10

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

²

Profundidad

Incremento de esfuerzo vertical ∆σz=0.00 t/m2 ∆σz=0.38 t/m2 ∆σz=0.75 t/m2 ∆σz=0.65 t/m2 ∆σz=0.49 t/m2 ∆σz=0.36 t/m2 ∆σz=0.27 t/m2 ∆σz=0.21 t/m2 ∆σz=0.17 t/m2 ∆σz=0.13 t/m2 ∆σz=0.11 t/m2

z=0m z=1m z=2m z=3m z=4m z=5m z=6m z=7m z=8m z=9m z=10m

Boussinesq. Incremento de esfuerzo vertical producto de una carga lineal de longitud finita esta dado por la ecuación:

 z 

p yz 3 2 ( x 2  z 2 )

 1 2   2   2 2 2 x  z 2  x  y z x y z 1

2

2

2

(1.8)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

11

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.4 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga lineal Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga lineal de p=20 t/m. con x=1.0m y y=4.0m, a la profundidades de 0 a 10m a cada metro.

 z 

20 4 z 3 1 2 2 2 2 (1  z ) 1  4 2  z 2 Profundidad z=0m z=1m z=2m z=3m z=4m z=5m z=6m z=7m z=8m z=9m z=10m

1 2    2  2 2 2 2  1  4  z 1  z  Incremento de esfuerzo vertical ∆σz=0.00 t/m2 ∆σz= 1.58 t/m2 ∆σz=1.99 t/m2 ∆σz=1.61 t/m2 ∆σz=1.23 t/m2 ∆σz=0.95 t/m2 ∆σz=0.75 t/m2 ∆σz=0.59 t/m2 ∆σz=0.48 t/m2 ∆σz=0.40 t/m2 ∆σz=0.33 t/m2

Boussinesq. Incremento de esfuerzo vertical producto de una carga bajo la esquina de un área flexible rectangular cargada, esta dado por la ecuación: Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

12

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA 2 2 2 2 xyz x 2  y 2  z 2   x 2  y 2  2z 2  w  2 xyz x  y  z 1    tan 2 2  z  4  z 2 x 2  y 2  z 2  x 2 y 2  x 2  y 2  z 2  z x  y 2  z 2  x 2 y 2 









(1.9)

Fig. 1.5 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga rectangular uniformemente distribuida Steinbrenner. En este mismo caso existe el método de Steinbrenner, que presenta un mejor modelo del incremento de esfuerzos en el suelo a cualquier profundidad, con la siguiente ecuación (homologando la nomenclatura con el método anterior):

 z 









Q  yz x R 2  z 2   1  y x x 2  y 2  2 xz R  z     tan   2 2 2 2 2 2 2 2   z x  y R  z   z R  z   y  z x  z R   

(1.10)

R  x2  y2  z 2

(1.11)









Donde:

Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga rectangular de w=20 t/m2, con x=2.0m y y=4.0m, a la profundidades de 0 a 10m a cada metro.

R  22  42  z 2 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

13

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA









20  4z 2 R2  z 2   1  4 2 2 2  4 2  2(2) z R  z     z   2 tan   2 2 2 2 2 2 2   z 2  4 R  z   z R  z   4  z 2  z R   





Profundidad z=0.01m z=1m z=2m z=3m z=4m z=5m z=6m z=7m z=8m z=9m z=10m





Incremento de esfuerzo vertical ∆σz= 5.00 t/m2 ∆σz= 4.78 t/m2 ∆σz= 4.00 t/m2 ∆σz= 3.12 t/m2 ∆σz= 2.40 t/m2 ∆σz= 1.86 t/m2 ∆σz= 1.46 t/m2 ∆σz= 1.17 t/m2 ∆σz= 0.95 t/m2 ∆σz= 0.78 t/m2 ∆σz= 0.65 t/m2

1.3 Solución gráfica de Newmark y gráficas de Fadum Newmark, Desarrolla en 1942 un método gráfico que permite obtener los incrementos de esfuerzos en el suelo, considerando los criterios de Boussineq, en medio semiinfinito, homogéneo, isótropo y elástico, a través de la ecuación:

     z 1   1  2  w  1   r      z 

3 2

(1.12)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

14

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.6 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga circular uniformemente distribuida Considerando una profundidad unitaria z, y determinando los radios de los círculos para incrementos de esfuerzos a cada 10%.

 z w

r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.269752 0.400496 0.518106 0.636962 0.766421 0.917614 1.1097 1.38709 1.90829 

Tabla 1.1 Radios de la carta de Newmark, en función del porcentaje de esfuerzo

Con lo que se puede elaborar una carta de acuerdo a Newmark, dibujando circunferencias concéntricas y dividiéndolas en sectores más pequeños (en este caso a través de familias de rectas que pasan por el centro de las circunferencias), llamándole al porcentaje que representan cada uno de los sectores: valor de influencia.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

15

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.7 Carta de Newmark

Ejemplo Determinar el incremento de esfuerzo vertical, causado en la esquina de una carga rectangular de w=20 t/m 2., con x=2.0m y y=4.0m, a una profundidad de 2m.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

16

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Nivel

Sectores

1º 2º 3º 4º 5º 6º 7º 8º 9 10º

5 5 5 5 5 5 4.5 2.9 2.2 0.2

Valor de influencia 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Σ=

Influencia por nivel 0.025 0.025 0.025 0.025 0.025 0.025 0.0225 0.0145 0.011 0.001 0.199

El incremento de esfuerzo vertical es:

 z  (20)(0.199)  z  3.98t / m 2 Fadum, Desarrolla en 1941 un método gráfico (semi logarítmico) que permite obtener los incrementos de esfuerzos en el suelo, considerando los criterios de Boussineq, en medio semiinfinito, homogéneo, isótropo y elástico, a través de las ecuaciones presentadas en forma adimensional introduciendo los parámetros

m

x z

n

y z

(1.13)

Expresándose la formula para una carga lineal:

z 1 n 1 2    z     2   2 2 2 2 2  p  2 (m  1) m  n  1  m  n  1 m  1 

(1.14)

Abreviando

z  z    po  p

 z 

p po z

(1.15)

Expresándose la formula para una carga rectangular: Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

17

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

 z 1  2mn m 2  n 2  1  w 4  m 2  n 2  1  m 2 n 2





2 2   m2  n2  2  1 2mn m  n  1   2   tan 2  m 2  n 2  1  m 2 n 2   m  n 1 





(1.16)

Abreviando

 z  wo w

 z  wo  w

(1.17)

Ejemplo Determinar el incremento de esfuerzo vertical, causado en la esquina de una carga rectangular de w=20 t/m 2. con x=2.0m y y=4.0m, a una profundidad de 2m.

m

2 1 2

n

4 2 2

Según gráficas

0.2

0.15 wo( m  n) 0.1

0.05

0 0.01

0.1

1

10

n

Gáfica tipo Fadum para m=1

Wo=0.20

Como se puede observar el incremento de esfuerzo vertical, es el siguiente:

 z  (0.20)  (20)  4.0 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

18

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

 z  4.00t / m 2

1.4 Incrementos de esfuerzo vertical bajo diferentes condiciones de carga 1.4.1 Carga lineal de longitud infinita, esta dado por la ecuación:

 z 

2 pz 3  (x2  z 2 )2

(1.18)

Fig. 1.8 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga lineal de longitud infinita

Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga lineal de p=20 t/m. con x=1.0m y a la profundidades de 0 a 10m a cada metro.

 z 

2(20) z 3  (12  z 2 ) 2

Profundidad z=0m z=1m z=2m z=3m z=4m

Incremento de esfuerzo vertical ∆σz=0.00 t/m2 ∆σz= 3.18 t/m2 ∆σz=4.07 t/m2 ∆σz=3.43 t/m2 ∆σz=2.82 t/m2 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

19

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA z=5m z=6m z=7m z=8m z=9m z=10m

∆σz=2.35 ∆σz=2.00 ∆σz=1.75 ∆σz=1.54 ∆σz=1.38 ∆σz=1.24

2 t/m 2 t/m 2 t/m 2 t/m 2 t/m 2 t/m

1.4.2 Carga de franja de ancho finito (B) y longitud infinita

 z 

q



  sen cos  2 

(1.19)

Fig. 1.9 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga de franja de ancho finito y longitud infinita Donde

  tan 1

x z

B 2

y

  tan 1

x z

B 2 

(1.20)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

20

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga de franja de carga q=10 t/m2, con un ancho B=2.0 m, a una distancia x=3.0m y a la profundidades de 1 a 10m a cada metro.

 z 

  tan 1

3

10



  sen cos  2 

2 2

y

z Profundidad z=1m z=2m z=3m z=4m z=5m z=6m z=7m z=8m z=9m z=10m

  tan 1

3 z

2 2 

Incremento de esfuerzo vertical ∆σz= 0.17 t/m2 ∆σz=0.70 t/m2 ∆σz=1.14 t/m2 ∆σz=1.34 t/m2 ∆σz=1.39 t/m2 ∆σz=1.36 t/m2 ∆σz=1.30 t/m2 ∆σz=1.22 t/m2 ∆σz=1.14 t/m2 ∆σz=1.07 t/m2

1.5 Otras teorías: 1.5.1 Método 2:1 Es un método aproximado para calcular el incremento promedio del esfuerzo vertical a una profundidad z debajo de una cimentación de dimensiones B por L. Este método propone que los esfuerzos disminuyen en la masa del suelo de acuerdo a que con la profundidad la carga se reparte en una mayor área, formándose una pirámide truncada de pendiente 2:1, por lo que la formula quedaría de la siguiente forma:

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

21

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.10 Incremento de esfuerzo vertical en el suelo de acuerdo al criterio del método 2:1

 z 

w( BL ) ( B  z )( L  z )

(1.21)

Este método proporciona valores preliminares, tomando en cuenta que considera el mismo incremento de esfuerzo a la misma profundidad de cualquier punto, siempre y cuando se encuentre dentro de la pirámide, y fuera de esta no indica incrementos. Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga rectangular de w=20 t/m2. con B=2.0m y L=4.0m, a una profundidad de 2m.

 z 

20(2)(4) (2  2)(4  2)  z  6.67t / m2

1.5.2 Westergaard Westergaar publicó en 1938 una fórmula que se considera se ajusta mas a las condiciones elásticas de suelos estratificados. Supone que el suelo es una masa homogénea, elástica y reforzada por laminas horizontales, proponiendo la siguiente formula para determinar el incremento de esfuerzo vertical producido por una carga concentrada, aplicada en la superficie del suelo

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

22

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

P

 z 



r 





2

z 2 1      z 

3

(1.22) 2

Considerando el mismo criterio de aplicación de la carga y el incremento de esfuerzo que se toma con Boussinesq.

Fig. 1.11 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga puntual Ejemplo Determinar el incremento de esfuerzo vertical, causado por una carga puntual P=25 t. con x=1.0m y y=1.4m, a la profundidades de 0 a 10m a cada metro.

r  1.0 2  1.4 2  1.72m

 z 

25   1.72  2   z 2 1     z    

Profundidad z=1m

3

2

Incremento de esfuerzo vertical ∆σz=1.01 t/m2 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

23

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA z=2m z=3m z=4m z=5m z=6m z=7m z=8m z=9m z=10m

∆σz=0.87 ∆σz=0.58 ∆σz=0.39 ∆σz=0.26 ∆σz=0.20 ∆σz=0.15 ∆σz=0.12 ∆σz=0.09 ∆σz=0.08

2 t/m 2 t/m 2 t/m 2 t/m 2 t/m 2 t/m 2 t/m 2 t/m 2 t/m

1.5.3 Burmister Burmister estudió la distribución de esfuerzos en un sistema formado por dos capas, homogéneas, isótropas y elásticas, la primera capa horizontal y de espesor h, la segunda subyacente y semiinfinita. Se considera una frontera plana entre las dos capas, de contacto continuo y rugoso. Los estudios están enfocados al diseño de pavimentos en los cuales el módulo de elasticidad de la capa superior (E 1) es mayor que el de la capa subyacente (E2), considerándose que si E1=E2, E1/E2=1, el incremento de esfuerzo vertical corresponde al calculado con las formulas de Boussinesq. Considerando una carga p aplicada en la superficie, circular y uniformemente distribuida. El incremento de esfuerzo vertical en el centro a la profundidad z, la cual es igual al r (el radio) e igual a h (espesor de la primera capa) y μ=0.5 (relación de Poisson), según Burmister, tenemos.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

24

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.12 Incremento de esfuerzo vertical en un suelo estratificado de acuerdo al criterio de Burmister

E1/E2 1 2 5 10 20 100

∆σz 70% 55% 40% 30% 22% 10%

Tabla 1.2 Porcentaje de incremento de esfuerzo vertical, en función de la relación de módulos de elasticidad

1.5.4 Fröhlich Fröhlich en 1942 investiga la distribución de esfuerzos en la masa de suelo semi infinita elástica pero no isotrópica, proponiendo para calcular el incremento de una carga concentrada en la superficie la expresión:

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

25

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 1.13 Incremento de esfuerzo vertical en una partícula de suelo, producto de una carga puntual de acuerdo al criterio de Fröhlich

 z 

P cos  2  2z 2

(1.23)

En donde χ es el factor de distribución de esfuerzos de Fröhlich, χ 1.5

2

3 4

Características Incremento de esfuerzo vertical aproximadamente igual a la solución de Westergaard para una masa de suelo semi infinita y estratificada. Incremento de esfuerzo vertical en un estrato semi infinito intermedio entre un suelo isotrópico y un suelo “altamente” estratificado. Incremento de esfuerzo vertical igual a la solución de Boussinesq para una masa de suelo semi infinita e isotrópica. Incremento de esfuerzo vertical equivalente a la solución de Frölich para una masa de suelo semi infinita y un con módulos de esfuerzo que decrecen con la profundidad. Tabla 1.3 Valores del factor de distribución de esfuerzos

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

26

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

CAPITULO 2

ASENTAMIENTOS. 2.1 Tipo elástico Se pueden establecer tres tipos básicos de comportamiento mecánico en su relación esfuerzo-deformación, el elástico, el plástico y el viscoso. El comportamiento elástico (Ley de Hoock) establece que al aplicarle un sistema de cargas a un material, existe una deformación, pero al retirarle las cargas el material regresa a su estado geométrico inicial. El comportamiento plástico se caracteriza porque el material permanece deformado aún cuado se le retiren todas las cargas. En el comportamiento viscoso la deformación depende de la magnitud y del tiempo transcurrido En los suelos finos saturados se pueden encontrar los tres tipos de comportamiento, elástico, plástico y viscoplástico En la teoría elástica se establecen las relaciones lineales de los esfuerzos aplicados y sus correspondientes deformaciones. Considerando una partícula de suelo que se deforma.

L

T

Fig. 2.1 Criterio de deformación de una partícula de suelo, producto de un esfuerzo normal Donde: ∆σ

Esfuerzo normal Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

27

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA ∆εL ∆εT

Deformación lineal longitudinal Deformación lineal Transversal

Módulo de elasticidad E

Relación de Poisson

E

  L

(2.1)



 T  L

(2.2)

ν

Debido a que los suelos no tienen un comportamiento elástico, ni lineal, este modelo no se aplica comúnmente a suelos, sin embargo bajo ciertas consideraciones es posible aplicarlo para determinar deformaciones que resulten de un suelo cuando se aplica una carga. El asentamiento (deformación vertical) que se produce en un suelo cuando se aplica una carga, como indicamos la teoría de la elasticidad utiliza básicamente el módulo de elasticidad E y la relación de Poisson ν, existiendo una gran dificultad para determinar estos parámetros, por lo que se limita la aplicación práctica de esta teoría. En arenas el módulo de elasticidad E varía con la profundidad y con el ancho del área cargada, y la relación de Poisson varía con la deformación. Por lo tanto en este tipo de suelos prácticamente no se usa la teoría elástica para predecir asentamientos. En arcillas saturadas, durante la construcción de obras, los asentamientos que se producen sin drenaje del agua intersticial del suelo, se pueden considerar de tipo elástico en el cual el modulo de elasticidad no drenado es constante y la relación de Poisson se considera ν=0.5; con lo que se pueden predecir asentamientos inmediatos (asentamientos elásticos) en estas condiciones. El asentamiento elástico en la superficie de una masa de suelo semiinfinita que acontece en una esquina de un área rectangular flexible, con una carga uniforme w, con un ancho B y una longitud L; se puede determinar por la siguiente formula

wB(1  2 ) h  Is E

(2.3)

Donde Is es un factor de influencia del asentamiento que depende de la relación Largo/Ancho, que Terzaghi estableció en 1943.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

28

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Por lo que se propone una función cuadrática para obtener los valores del factor de influencia del asentamiento con gran aproximación a los valores de las gráficas de Terzaghi, con un dominio 1  ( L / B)  5 . Is=-0.03(L/B)2+0.29(L/B)+0.30

(2.4)

Ejemplo Determinar el asentamiento diferencial inmediato entre el centro y una esquina de un área rectangular flexible de L= 8m de longitud y B= 4m de ancho, a la cual se le aplica una carga w= 4t/m2 en una arcilla saturada con un módulo de elasticidad E=350t/m2 Esquina:

wB(1  2 ) h  Is E L/B=2

Is=0.76

h 

(4)(4)(1  0.52 ) 0.76 350

h  2.6cm Centro: 4 veces el área, L=4m, B=2m

h 

wB(1  2 ) Is E

L/B=2

Is=0.76

h  4

(4)(2)(1  0.52 ) 0.76 350

h  5.2cm

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

29

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Con lo que se tiene un asentamiento diferencial de 5.2-2.6=2.6cm

2.2 Asentamientos por consolidación En los asentamientos por consolidación es común que se tenga que predecir:  

El asentamiento total de la estructura El tiempo en el cual se produce el asentamiento

En suelos granulares como la arena, la permeabilidad es relativamente alta y por ello el exceso de presión intersticial suele disiparse prácticamente al instante, por lo que el asentamiento del suelo no lo consideramos por consolidación. En suelos finos como las arcillas la permeabilidad es baja y por ello la disipación del exceso de presión intersticial es muy lenta, con lo cual este asentamiento puede durar años, como es el caso de la zona lacustre de la Ciudad de México. Cuando un suelo saturado se somete a un incremento de esfuerzos por la aplicación de una carga en la superficie del mismo, se produce un incremento en la presión intersticial (presión en exceso de la hidrostática), y debido a que el agua no resiste esfuerzos cortantes, este incremento de presión intersticial se disipa mediante el flujo del agua hacia un estrato permeable. La disipación del exceso de presión intersticial producto de la permeabilidad del suelo produce una reducción en el volumen de vacíos y por consecuencia una reducción en el volumen total, lo cual se manifiesta con un asentamiento conocido como Asentamiento por Consolidación. El asentamiento por consolidación depende del tiempo como a continuación se indica. Consideremos que tenemos un estrato de arcilla saturado de espesor H, que se encuentra entre dos estratos de arena que le permiten drenar el agua por ambos lados, y en la superficie se coloca una carga que provoca un incremento en la presión del agua intersticial y que se disipará de acuerdo a la permeabilidad de la arcilla, transfiriendo los esfuerzos a la estructura del suelo, considerando teóricamente que el exceso de presión intersticial se disipará en tiempo infinito. Para comprender mejor el proceso de consolidación a continuación se tienen tres esquemas que indican tres etapas del proceso de consolidación, el primer esquema se considera un tiempo t=0, en el segundo esquema un tiempo mayor que cero pero menor que infinito 0  t   , y en el tercer esquema, un tiempo infinito t  

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

30

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

´

Fig. 2.2 Esfuerzos verticales en el tiempo t=0

´

Fig. 2.3 Esfuerzos verticales en el tiempo t>0

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

31

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

´

Fig. 2.4 Esfuerzos verticales en el tiempo t   El proceso de consolidación se puede dar en varias dimensiones, para el caso de asentamientos, el enfoque es solamente en sentido vertical con lo que solo se considera el fenómeno de consolidación unidimensional. En el laboratorio la prueba de consolidación, nos da información que se ocupa para poder predecir el comportamiento de un suelo. En la gráfica de la curva de consolidación, se puede observar las dos etapas que tiene un suelo fino sujeto al proceso de consolidación.

Fig. 2.5 Curva de consolidación

2.2.1 Asentamientos por consolidación primaria 2.2.1.1 Determinación de asentamientos

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

32

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Consideremos un estrato de arcilla saturada de espesor H, bajo una presión producto de una sobrecarga en la superficie que provoca un incremento de esfuerzo vertical (promedio) ∆σ, que inducirá un asentamiento ∆H, cuando ∆σ= ∆σ´.

Fig. 2.6 Asentamiento producto de un incremento de esfuerzo vertical

H e  H 1  e0

(2.5)

Despejando obtenemos la formula general para calcular asentamientos por consolidación

H 

e H 1  eo

(2.6)

Las arcillas tienen “memoria”, como lo demuestran las típicas curvas de compresibilidad, en las cuales, el Tramo de Recomprensión nos indica los esfuerzos geológicos a los cuales ha estado sometido el suelo. Terzaghi descubrió que en las curvas de compresibilidad de suelos laminares dibujadas en escalas semilogarítmicas el tramo virgen es prácticamente recto, con lo que se pueden separar del tramo de recompresión, determinando el esfuerzo de preconsolidación σ´c, (método de Casagrande).

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

33

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

´

´

Fig. 2.7 Curva de compresibilidad

Por lo anterior se tendrán dos formas diferentes de asentamientos en la consolidación primaria: Preconsolidada: Debida a esfuerzos menores del esfuerzo de preconsolidación σ´c, lo que provocará pequeños asentamientos. Normalmente consolidada: Debida a esfuerzos mayores al esfuerzo de preconsolidación σ´c, con lo que se tendrán asentamientos significativos. Una formula común también para determinar el asentamiento es en función de las pendientes de la curva de compresibilidad. Coeficiente de compresibilidad

av 

e  ´

(2.7)

Con lo que la formula para calcular el asentamiento, quedaría

H 

av  ´H 1  eo

(2.8)

Coeficiente de variación volumétrica

mv 

av 1 e

(2.9)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

34

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Con lo que la formula para calcular el asentamiento, quedaría

H  mv  ´H

(2.10)

Índice de compresibilidad (pendiente en gráficas semi-logarítmicas en el tramo virgen)

Cc 

e  ´  ´ log o  o´

(2.11)

Con lo que la formula para calcular el asentamiento (normalmente consolidada), quedaría

H 

Cc  ´  ´ log o H 1  eo o'

(2.12)

Índice de expansión (pendiente en gráficas semi-logarítmicas en el tramo de descarga o expansión, usado también como equivalente en el tramo de recarga)

Cs 

e  ´  ´ log o  o´

(2.13)

Con lo que la formula para calcular el asentamiento (preconsolidada), quedaría

H 

Cs  ´  ´ log o H 1  eo o'

(2.14)

Índice de compresión (Cc). Terzaghi con la finalidad de de realizar cálculos aproximados de consolidación primaria propuso las siguientes formulas empíricas del el Índice de compresión: Para arcillas inalteradas Cc=0.009(LL-10)

(2.15)

Para arcillas remodeladas Cc=0.007(LL-10)

(2.16)

En donde LL es el límite líquido en porciento Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

35

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Índice de expansión.(Cs). Se determina por pruebas de laboratorio y se encuentra entre el siguiente rango:

1 1 Cs  a Cc 5 10

(2.17)

Ejemplo Determinar el asentamiento por consolidación primaria en el estrato de arcilla, de la siguiente figura (cotas en metros):

Datos: Carga en la superficie: ∆σ=6t/m2 Arena (Suprayacente): seco=1.6t/m3 sat.=1.8t/m3 Arcilla: sat.=1.9t/m3 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

36

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA σ´c=10t/m2 eo=0.9 LL=50 Cs=0.2Cc

Esfuerzo efectivo (promedio) a la mitad del estrato de arcilla σ´o=2.0(1.6)+2.0(1.8-1.0)+3.0(1.9-1) σ´o=7.50t/m2 σ´c=10t/m2>σ´o=7.50t/m2 σ´o+∆σ´=7.5+6.0=13.5t/m 2 Índice de compresión (Cc). Cc=0.009(LL-10)=0.009(50-10)=0.36 Índice de expansión.(Cs). (Se considera semejante a la recompresión) Cs=0.2Cc=0.2(0.36)=0.07 Asentamiento en la zona preconsolidada

H 

Cs  ´  ´ log o H 1  eo o'

H 

0.07 10 6.0 log 1  0.9 7.5 ∆Hp=0.03m.

Asentamiento en la zona normalmente consolidada

H 

Cc  ´  ´ log o H 1  eo o'

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

37

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

H 

0.36 13.5 6.0 log 1  0.9 10 ∆Hn=0.15m.

Por lo que el asentamiento total será:

∆H=0.18m. Ejemplo Considerando el estrato de arcilla calcular el asentamiento por consolidación primaria, que se produce por colocar una zapata cuadrada (cotas en metros)

Datos: Zapata: Cuadrada de 1.6 X1.6 mts. Suelos: Arena suprayacente

Arcilla normalmente consolidada

seco =1.6t/m3

sat =1.7t/m3

sat =1.8t/m3

eo = 1.0 LL=40 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

38

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Asentamiento: Asentamiento en la zona normalmente consolidada

H 

Cc  ´  ´ log o H 1  eo o'

Cc=0.009(LL-10)=0.009(40-10)=0.27 eo = 1.0 H=6m

σo´=2.0x1.6+2.0(1.8-1.0)+3.0(1.7-1.0)=6.9t/m2 Determinando el incremento de esfuerzo (a la mitad del estrato), por el método de Fadum: Considerando

q z 5.5

80t  31.25t / m 2 2 1.6 x1.6m

x 1.6/2

Y 1.6/2

m=x/z 0.107

n=y/z 0.107

wo 0.009757

∆σ´=4qwo=1.22t/m2 Substituyendo

H 

0.27 6.90  1.22 log 6.0 11 6.90

H  0.057m 2.2.1.2 Porcentaje de asentamiento y tiempo de consolidación La consolidación es un fenómeno en el cual el tiempo es un factor importante, como ejemplo tenemos que la consolidación regional de la Ciudad de México lleva más de cien años y a mediados del siglo pasado se realizaron obras como el drenaje profundo para dar solución a la eliminación de aguas residuales del Valle de México. Así también se establecieron políticas de prohibición a la extracción de aguas subterráneas que acelera el proceso de consolidación y el acondicionamiento de nuevos lagos sobre el exlago de Texcoco para establecer recargas a los acuíferos. Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

39

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Como la consolidación aumenta con la disipación de la presión en exceso de la hidrostática, una forma de determinar el porcentaje de asentamiento U, es comparando la presión en exceso de la hidrostática ∆ en un tiempo t, con la presión en exceso de la hidrostática ∆o al inició.

U  1

  o

(2.18)

Entre los factores que influyen en el tiempo del asentamiento, se encuentran la relación de vacíos e, el coeficiente de permeabilidad k, el espesor del estrato H, el número de fronteras permeables (sobreyacente y/o subyacente) N, el coeficiente de compresibilidad (razón de cambio de relación de vacíos con cambios de esfuerzos) av, y el peso especifico del agua γω. De acuerdo a la Teoría de la Consolidación primaria, estos factores podemos agruparlos en una razón adimensional llamada factor tiempo T, que se define con la siguiente expresión.

T

t 1  e k H 2 av  

(2.19)

H = Es la trayectoria vertical de drenaje promedio, más larga durante la consolidación Este análisis teórico esta basado en un suelo homogeneo, saturado y que es constante la siguiente relación

k 1  e  av

(2.20)

El porcentaje de consolidación U, se expresa como una expresión matemática en función del factor tiempo.

 10000 2 2  2 2   ( 2 n 1)    T4    U( T)  100 1   8  ( 2 n  1)      e   n 0  



(2.21)

En donde el límite superior de la sumatoria es infinito, pero para fines de establecer la gráfica se consideró 10,000, quedando la gráfica de la siguiente forma:

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

40

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA 0 10 20 30 40 U( T )

50 60 70 80 90 100

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2

T

Fig. 3.8 Curva hipotética (asintótica) del porcentaje de consolidación en función del factor tiempo

Tabla de la función teórica de consolidación U% 0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T 0.000 0.008 0.018 0.031 0.049 0.071 0.096 0.126 0.159 0.197 0.238 0.287 0.342 0.405 0.477 0.565 0.684 0.848 1.127 

Tabla 2.1 Valores del Factor Tiempo T, en función del porcentaje de consolidación El coeficiente de coeficiente de consolidación Cv Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

41

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Cv 

1  ek

(2.22)

av  

Se obtiene en el laboratorio a través de la gráfica de la Curva de Consolidación (tiempo – deformación), por el método del logaritmo del tiempo (Casagrande y Fadum) o por método de la raíz cuadrada del tiempo (Taylor). Método del logaritmo del tiempo

Cv 

T50 H 2 t50

Método de la raíz cuadrada del tiempo

Cv 

T90 H 2 t90

T50=0.197 T90=0.848 H = Es la trayectoria de drenaje promedio más larga durante la prueba de consolidación

Tabla 2.2 Formulas más comunes para obtener el coeficiente de consolidación Por lo que se puede aplicar en para predecir el tiempo del asentamiento en campo con la formula:

t

TH 2 Cv

(2.23)

H = Es la trayectoria vertical de drenaje promedio, más larga durante la consolidación Ejemplo Determinar cual será la elevación del agua de piezómetro inmediatamente después de aplicar la carga, y que grado de consolidación se tiene cuando en el punto A se tiene una altura h (arriba del N.A.F.) de 4 m

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

42

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

²

Determinar cual será la elevación del agua de piezómetro (arriba del N.A.F.) inmediatamente después de aplicar la carga La presión del agua en exceso de la hidrostática, la determinamos dividiendo entre el peso especifico del agua

 o    10t / m 2 

10t / m 2  10m 1t / m3

o  10m Que grado de consolidación se tiene cuando en el punto A se tiene una altura h (arriba del N.A.F.) de 4 m

  U  1  a  o

 4 100  1  100  60%  10  

U  60% Ejemplo Considerando el estrato de arcilla del ejemplo anterior, determinar el tiempo para que se produzca el 50% y 90% de consolidación primaria (cotas en metros). Considerando que el coeficiente de consolidación se determina por los siguientes datos de laboratorio: Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

43

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Espesor del espécimen 2.54 cms 0.0254 m. Drenado: ambas caras Espesor del estrato 1 pulg. drenado por ambas caras Tiempo requeridotiempo 50% de consolidación 3 min 180 seg requerido para el 50% de consolidación 2min 20 seg. 2   0.197  0.0254    2   Cv 

180

Cv  1.765 10 7 m / s

Tiempo para que se produzca el 50% de asentamiento 2   0.192  6     2  t  50

Cv

t50  9.789 106 seg

t50=113dias

Tiempo para que se produzca el 90% de asentamiento 2   0.848  6     2  t  90

Cv

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

44

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

t90  4.324  107 seg

t90=500dias

Se debe tener en cuenta que la función teórica tiempo – asentamiento es de tipo asintótica, y el 100% de asentamiento se alcanza en un tiempo infinito, es por esto que comúnmente se determina el tiempo para un asentamiento al 90% que da un pronóstico próximo al del 100%.

2.2.2 Asentamientos por consolidación secundaria Como se ha indicado, la consolidación primaria es considerada el asentamiento producto de la transferencia del incremento de esfuerzo en exceso de la hidrostática, al esfuerzo efectivo del suelo. Se considera que en los suelos orgánicos o inorgánicos altamente compresibles, el asentamiento conocido como flujo plástico, debido al ajuste plástico de la estructura del suelo, es conocido con el nombre de Consolidación Secundaria, y teóricamente se sucede después de la consolidación primaria (aunque algunos investigadores indican que una parte de la consolidación secundarias, se da al mismo tiempo de la consolidación primaria)En algunos suelos inorgánicos (arcillas y/o limos) el asentamiento por consolidación secundaria es muy pequeño y no tiene importancia, sin embargo en suelos orgánicos como turbas o en suelos inorgánicos altamente compresibles estos asentamientos pueden ser relativamente considerables. En la gráfica de relación de vacíos – tiempo (en escala logarítmica), se puede ver que el tramo de consolidación secundaria es prácticamente una línea recta con una pendiente (negativa) poco inclinada.

Fig. 2.9 Curva de consolidación

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

45

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 2.10 Tramo de consolidación secundaria

El índice de compresión secundaria Cα, es la pendiente de la línea (prácticamente recta) de tramo de consolidación secundaria, y se puede definir como:

C 

e  log t 2  log t1

e t  log 2   t1 

(2.24)

Como el asentamiento se puede determinar con la siguiente formula

H 

e H 1  eo

(2.25)

Substituimos ∆e para determinar la formula del asentamiento por consolidación secundaria.

H 

t  C log 2  H 1 ep  t1 

(2.26)

En donde ep, la relación de vacíos final de la consolidación primaria y la inicial de la consolidación secundaria.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

46

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Ejemplo En un estrato de arcilla de 5 metros de espesor, el asentamiento por consolidación primaria tendrá una variación en su relación de vacíos de eo=0.90 inicial, a ep=0.82 final, producto de la colocación de una carga en la superficie, y se sucederá en un lapso de 4 años. Estimar el asentamiento por consolidación secundaria que ocurrirá a los 8 años de haber colocado la sobre carga, considerando que el índice de compresión secundaria es Cα=0.020 Cα=0.020 ep=0.82 t2=8 años t1=4 años H=5 m.

H 

t  C log 2  H 1 ep  t1 

H 

0.02 8 log 5 1  0.82  4 

H  0.033m 2.3 Expansiones En excavaciones profundas se presenta el fenómeno de expansiones causadas por la descarga del suelo que se encuentra en el fondo, sin embargo en suelos no plásticos la magnitud de la expansión es prácticamente despreciable, pero en arcillas altamente compresibles el fenómeno es importante sobre todo cuando se realizan trabajos de cimentaciones compensadas en las cuales observan asentamientos importantes, causados por la recuperación de las expansiones generadas durante el proceso de excavación y construcción de la estructura. El abatimiento del nivel de aguas freáticas por el proceso constructivo, produce también fuerzas de filtración del flujo del agua ascendentes en forma de subpresiones que contribuyen a la expansión volumétrica de la arcilla

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

47

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

Fig. 2.11 Subpresiones que contribuyen a la expansión volumétrica de la arcilla

Las expansiones en las arcillas altamente expansivas, son producto de excavaciones que reducen la presión vertical, se pueden dividir en dos etapas: la primera es producto de las distorsiones en la masa de arcilla que subyace la base de la excavación y se le llama expansión inmediata; la segunda que se desarrolla gradualmente con un aumento en el volumen de la arcilla (tramo de descarga en la grafica de consolidación) y que se le llama expansión lenta. La suma de las expansiones, la expansión inmediata ∆Ei y la expansión lenta ∆El se puede considerar como la expansión total ∆Et

Et  Ei  El

(2.27)

EXPANSIÓN INMEDIATA. ∆Ei La expansión inmediata se asemeja a la expansión que sufre una probeta de arcilla inalterada en una prueba de compresión triaxial no drenada, en el momento en que se le descarga axialmente. En la prueba mencionada se puede determinar su módulo de elasticidad en la compresión considerado como la relación entre el esfuerzo axial promedio (50%) σc, entre su deformación unitaria axial correspondiente εc.

Ec 

c c

(2.28)

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

48

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA El módulo de elasticidad de expansión se considera un 20% mayor que el de compresión, por lo que puede expresar como:

Ee  1.2Ec

(2.29) El cálculo de la expansión se considera de tipo elástico y se puede determinar en forma semejante al cálculo del asentamiento elástico. Calculo del asentamiento elástico

h 

wB(1  2 ) Is E

B= ancho de la cimentación w= sobrecarga ν= 0.5 Módulo de Poisson E= Módulo de elasticidad (compresión) Is= Factor de influencia (Terzaghi)

Calculo de la expansión inmediata (elástico)

Ei 

wDf B(1  2 ) Ee

Ff

B= ancho de la cimentación WDf= Descarga ν= 0.5 Módulo de Poisson Es= Módulo de elasticidad de expansión Ff= Factor de forma (Egorov)

Tabla 2.3 Comparación de las formulas de asentamiento y expansión elasticos El factor de forma Ff de Egorov para cimentaciones cuadradas, establece valores que van de 0.7 a 1.05, para relaciones de profundidad del estrato Z/B de 1 a 10, siendo aproximadamente 1 con una relación Z/B=4; para cimentaciones rectangulares con una relación de 1:2 (ancho largo), los valores varían de 0.8 a 1.45, para relación de profundidad del estrato 1 a 10, siendo aproximadamente 1.1 con una relación Z/B=2. Ejemplo En un estrato de arcilla blanda, homogénea de 10 metros de espesor, subyacente en el fondo de una excavación para una cimentación cuadrada de 10 x 10 mts., tiene las siguientes caracteristicas. Es= 40kg/cm2 ν= 0.5 wDf= 1.5kg/cm2 B= 1000 cm Z= 500 cm. Factor de forma Ff, es

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

49

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA L/B=1 Cuadrada Z/B=1000/1000=1 Ff= 0.7

Ei 

Ei 

wDf B(1  2 ) Ee

Ff

1.51000(1  0.52 ) 0.7 40

Ei  19.7cm EXPANSIÓN LENTA. ∆El La expansión lenta inicia en el momento que se realiza la excavación y puede durar mucho tiempo (años incluso), dependiendo de los procesos constructivos y tipos de cimentaciones. Para medir los parámetros de expansión lenta, se realiza una prueba de expansión volumétrica, en un consolidómetro de anillo fijo, en la primera parte se comprime el espécimen inalterado de arcilla hasta su presión de preconsolidación y en la segunda parte se descomprime el espécimen para medir las expansiones a través del tiempo, producidas de acuerdo a los decrementos de carga. En los resultados de la prueba de expansión volumétrica expansión – tiempo se determinan dos etapas de expansión, la primaria y la secundaria, la primera está en función de la velocidad con que el agua es succionada por la parte superior del espécimen y la segunda esta en función del fenómeno de adsorción del agua en el espacio Intercoloidal de la arcilla. La expansión lenta primaria representa más del 85% de la expansión lenta y se puede ocupar en la práctica para determinar este tipo de expansión. El cálculo de la expansión lenta se puede determinar en forma semejante al cálculo del asentamiento por consolidación.

Calculo del asentamiento por consolidación

Calculo de la expansión lenta

H  mv  ´H

El  meWDf ´H Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

50

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA mv= Coeficiente de variación volumétrica ∆σ´= Incremento de esfuerzo efectivo H= Espesor del estrato

me= Modulo de expansibilidad volumétrica WDf´= Decremento de presión en campo H= Espesor del estrato

Tabla 2.4 Comparación de las formulas de asentamiento por consolidación y expansión lenta El módulo de expansibilidad volumétrica me, se obtiene en el laboratorio a través de la siguiente fórmula

me100 

E p100 H iWD

(2.30)

Donde tenemos me100= Módulo de expansibilidad primaria (100%)

∆Ep100= Expansión primaria máxima del espécimen Hi= Espesor inicial del espécimen recomprimido a la presión de preconsolidación WD= Decremento de presión en la prueba Ejemplo En un estrato de arcilla blanda, homogénea de 5 metros de espesor, se realizan pruebas de laboratorio para determinar sus características de expansión, obteniéndose un módulo de expansibilidad primaria me100=0.08cm2/kg, el decremento de presión sobre el estrato de arcilla es de WDf´=0.6kg/cm2. Determinar la expansión lenta (considerando que se desprecia la etapa de expansión secundaria). H= 500cm

El  meWDf ´H El  0.080.6500

El  24cm

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

51

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA

CAPITULO 3

CAPACIDAD DE CARGA. 3.1 Introducción La capacidad de carga de un suelo, se puede definir como el estado límite de falla de un suelo en una cimentación. De acuerdo a los reglamentos de construcción el estado límite de falla se entiende, por la situación que corresponde al agotamiento de la capacidad de carga del terreno de cimentación o al hecho de que ocurran daños irreversibles que afecten significativamente la resistencia del suelo ante nuevas aplicaciones de carga. El Reglamento de Construcciones del Distrito Federal (Publicado en la Gaceta Oficial del Distrito Federal el 29 de enero de 2004) en su Capitulo III DE LOS CRITERIOS DE DISEÑO ESTRUCTURAL, en el Articulo 146, establece Toda edificación debe contar con un sistema estructural que permita el flujo adecuado de las fuerzas que generan las distintas acciones de diseño, para que dichas fuerzas puedan ser transmitidas de manera continua y eficiente hasta la cimentación. Debe contar además con una cimentación que garantice la correcta transmisión de dichas fuerzas al subsuelo. Así mismo en el Artículo 147, dice, Toda estructura y cada una de sus partes deben diseñarse para cumplir con los requisitos básicos siguientes: I. Tener seguridad adecuada contra la aparición de todo estado límite de falla posible ante las combinaciones de acciones más desfavorables que puedan presentarse durante su vida esperada En Mecánica de Suelos se define este estado límite de falla del suelo, como la capacidad de carga última de un suelo.

3.2 Teorías de capacidad de carga En el Capitulo IV del RCDF. DEL DISEÑO DE CIMENTACIONES, en el artículo 169, establece: Toda edificación se soportará por medio de una cimentación que cumpla con los requisitos relativos al diseño y construcción que se establecen en las Normas. Las edificaciones no podrán en ningún caso desplantarse sobre tierra vegetal, suelos o rellenos sueltos o desechos. Sólo será aceptable cimentar sobre terreno natural firme o rellenos artificiales que no incluyan materiales degradables y hayan sido adecuadamente compactados.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

52

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Las teorías para la determinación de la capacidad carga establecen modelos para el diseño de cimientos sobre suelos en estado natural, y aplicables a rellenos artificiales con un correcto control de calidad. Existen diferentes Teorías para determinar la capacidad de carga de un suelo, Prandtl, Hill, Terzaghi, Skempton, Meyerhof, etc., todas en función de las propiedades y características del suelo; así como también en función de las características de la cimentación.

3.2.1 Terzaghi La Teoría de Terzaghi para determinar la capacidad de carga de un suelo cubre el caso más general, pues se aplica a suelos con cohesión y/o fricción, y se considera la teoría más usada para determinar la capacidad de carga en cimientos poco profundos (aquellos en que el ancho del cimiento B, es igual o mayor a la distancia vertical entre el nivel del terreno y la base del cimiento, Df).

Fig. 3.1 Modelo de cimentación poco profunda de ancho b Terzaghi en su teoría desprecia la resistencia al esfuerzo cortante arriba del nivel de desplante del cimiento. Esta Teoría establece que una zapata continua descansa sobre una superficie de suelo, el terreno falla a través de tres zonas. Debido a la fricción y cohesión entre el suelo y la base de la cimentación, la zona I actúa como una cuña que se introduce en el suelo como si fuera parte de la zapata formando el los lados del triangulo ángulos de (45o+ϕ/2); las zonas II son de deformación tangencial radial y las curvas de falla son espirales logarítmicas, cuyos centros se localizan en las aristas de la base de la cimentación; Las zonas III son zonas de estado plástico pasivo de Ranking y sus fronteras forman un ángulo de (45o-ϕ/2) con la horizontal.

Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

53

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA El mecanismo de falla se indica en la siguiente figura par un cimiento poco profundo.

Fig 3.2 Modelo de falla de cimentación infinita, poco profunda de ancho b, de Terzaghi Por lo anterior se deduce que la capacidad de carga de un suelo, depende de:    

Resistencia al esfuerzo cortante (cohesión y/o fricción) Ancho de la cimentación Peso volumétrico del suelo y del relleno arriba del nivel de desplante Profundidad del cimiento.

Por lo que Terzaghi propone la siguiente formula para determinar la capacidad de caga última de un cimiento continuo, poco profundo:

qu 

1 BN   cN c   q D f N q 2

(3.1)

En donde se suma la capacidad de carga con la que contribuyen, la parte friccionante, la parte cohesiva y la parte relativa a la profundidad de desplante. B= Ancho de la cimentación γ= Peso volumétrico del suelo debajo de la cimentación ϕ= Ángulo de fricción interna del suelo debajo de la cimentación c= Cohesión γq = Peso volumétrico del suelo arriba del nivel de desplante de la Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

54

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA Cimentación Df = Profundidad de desplante Nγ , Nc y Nq = Factores de carga en función del ángulo de fricción interna del suelo debajo del desplante de la cimentación Los factores de carga los determinan los diferentes códigos de construcción, según los tipos de suelos. Se pueden determinar a través de las siguientes formulas.



N q  e tan  tan 2 (450  ) 2

(3.2)

N  2( N q  1) tan

(3.3)

N c  ( N q  1) / tan

(3.4)

A continuación se en listan los valores de los factores de carga

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N

Nc

Nq

0 0.07 0.15 0.24 0.34 0.45 0.57 0.71 0.86 1.03 1.22 1.44 1.69 1.97 2.29 2.65 3.06 3.53 4.07 4.68 5.39 6.20

5.14 5.38 5.63 5.90 6.19 6.49 6.81 7.16 7.53 7.92 8.34 8.80 9.28 9.81 10.37 10.98 11.63 12.34 13.10 13.93 14.83 15.81

1 1.09 1.20 1.31 1.43 1.57 1.72 1.88 2.06 2.25 2.47 2.71 2.97 3.26 3.59 3.94 4.34 4.77 5.26 5.80 6.40 7.07 Ing. Rodolfo Medrano Castillo Ing. Eduardo López Sánchez Ing Daniel Montalvo Herrera

55

TECNOLOGICO

T E H U A C A N

I N S T I T U T O

D E

IN

GE

NI

TE H

E R IA

CI

VI

L

. U A CA N , P U E

MECÁNICA DE SUELOS APLICADA 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

7.13 8.20 9.44 10.88 12.54 14.47 16.72 19.34 22.40 25.99 30.21 35.19 41.06 48.03 56.31 66.19 78.02 92.25 109.41

16.88 18.05 19.32 20.72 22.25 23.94 25.80 27.86 30.14 32.67 35.49 38.64 42.16 46.12 50.59 55.63 61.35 67.87 75.31

7.82 8.66 9.60 10.66 11.85 13.20 14.72 16.44 18.40 20.63 23.18 26.09 29.44 33.30 37.75 42.92 48.93 55.96 64.19

Tabla 3.1 valores de los factores de carga, de acuerdo al criterio de Terzaghi

Estos factores de carga, aplicados en la formula de Terzaghi, representan el comportamiento de un suelo incompresible, hipótesis que se cumple en suelos compactos considerando este caso como falla general (Dr>70%), para suelos sueltos, como falla local (Dr70%)

tan   tan 2 tan   tan  * 3

Falla Intermedia

(70%
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF