DISEÑO DE VIGAS POR FLEXION Y CORTE oscar
Short Description
Download DISEÑO DE VIGAS POR FLEXION Y CORTE oscar...
Description
PUENTES
DISEÑO DE VIGAS POR FLEXION DISEÑO POR FUERZA CORTANTE A. DISEÑO DE VIGAS POR FLEXION
MARCO TEORICO: Las vigas de concreto armado no son homogéneas, ya que están compuestas de dos materiales completamente diferentes. HIPOTESIS FUNDAMENTALES EN EL DISEÑO DE VIGAS 1.- Las secciones planas antes de la flexión permanecen planas después de la flexión. 2.- Se conoce la curva esfuerzo – deformación del acero. 3.- Puede despreciarse la resistencia a la tracción del concreto. 4.- La curva esfuerzo – deformación en el concreto, define la magnitud y distribución del esfuerzo a compresión.
a.- El armado del acero se hace en concordancia con el diagrama de momentos donde es favorable colocar el acero.
Página 1
PUENTES
d=peralte efectivo
d
r=4cm r= recubrimi ento
h=peralte
2.5cm
As
Dimension minima de viga o columna =25 cms.
Espaciamiento minimo: norma(E-60) bmin=25cms
r=4cm b= ancho
Cuando a una viga se le incrementa la carga en forma gradual, se producen 3 etapas:
01 ESTADO ELASTICO NO AGRIETADO
Página 2
PUENTES
02 ESTADO ELASTICO AGRIETADO:
03 ESTADO DE ROTURA: 3) (ESTADO DE ROTURA
Página 3
PUENTES
CASOS:
deformacion del concreto en zona de deformacion ESTADO ELASTICO NO AGRIETADO compresion
fs=esfuerzo en el acero traccion
DEFORMACIONES
fc)^0.5
El concreto esta resistiendo a la tracción El comportamiento es elástico Deformación unitaria del acero=Deformación unitaria del concreto(ningun diseño se hace en estado elástico :ESTADO1)
ESTADO(02)
c
T=Asfs DEFORMACIONES
El concreto no trabaja en la zona de tracción sino el acero.
Página 4
ESFUERZOS
PUENTES
ESTADO (03): DISEÑOS AL ESTADO DE ROTURA
ESTADO(02)
c T T DEFORMACIONES
fs
ESFUERZOS
FORMAS EQUIVALENTES: A) Parabólicos con segmentos de recta: 0.732 fc 0.85 fc
T=Asfs
Página 5
T=Asfs
PUENTES
C)RECTANGULAR bloque rectangular B)trapecial 0.85 fc
b
a
bloque trapecial
T=Asfs
M
T=Asfs "DISEÑO ACTUAL" "BLOQUE EQUIVALENTE DE ESFUERZOS"
1)
ESTADO ELASTICO NO AGRIETADO: La tensión de tracción en el concreto es inferior al modulo de rotura(2 de tal manera que no aparecen grietas de tracción.
fc` )
“NILSON”
fc`= esfuerzo de comprension en el concreto fc`
Ecc
E.N.
Es=Ec
T=Asfs
Etc DEFORMACIONES
ftc ESFUERZOS
fs=esfuerzo en el acero ft=esfuerzo de traccion en el concreto ftc ≤ 2 fc` ≤ 2 210
≤ 28.9kg / cm ^ 2
La distribución de esfuerzos y deformaciones es la misma de una viga elástica y homogénea. Página 6
PUENTES
La deformación del acero es igual a la del concreto. Es=Ec Fs= Es Es
Es=modulo de elasticidad Es=deformación unitaria
Fc=Ec Ec Es=
Ec=
fs Es
luego: fs fc = ES Ec Es fs=( )fc Ec
fc EC Es fc Ec
fs=
n= fs=
Es Ec
n fc
n=
2.1 * 10^ 6kg / cmº 15000 fc`
n= 9.2 Hallando el esfuerzo en el acero: T=As*fs T=As*nfc nAs fc"concreto"
T=(nAs)*fc As As
5.1cm^2 (area deØ1")
As
*La sección transformada sirve para extraer o hallar los esfuerzos que producen tanto en el acero como en el concreto. Página 7
PUENTES
SECCION TRANSFORMADA: Implica no usar las varillas de acero si no mas bien el área en material de concreto.
1) SECCION TRANSFORMADA
SECCION TRANSFORMADA
y
M
E.N
x
d
x h-y
nAS/2 Area del acero "AS"
nAS/2
AS(n-1)/2
"AS"
"AS"
b
2).-EJE NEUTRO.Y=
∑ ΥA ∑A
Y=
b * h * h / 2 + As (n −1) d , b * h + As (n −1)
encontramos:
3).-COMPARANDO ESFUERZOS.-
Página 8
I X −X '
AS(n-1)/2
PUENTES
COMPRESION:
fcc =
TRACCION:
ftc =
M ACT * Y ≤ fc ADM . I X −X '
M ACT * ( h − Y ) ≤2 I X −X '
fc ADM =95 Kg. /cm^2( f `c
2
f `c
según COD. ACI-63)
=28.9 Kg. /cm^2
1.- Hallar la sección transformada 2.- Hallar el eje neutro 3.- Comprobar esfuerzos de compresión
(2) ESTADO ELASTICO AGRIETADO. Ocurre cuando el esfuerzo de tracción del concreto del concreto supera el esfuerzo de rotura frt. Si el esfuerzo de compresión en el concreto es inferior a aproximadamente ½ de f’c y la tracción en el acero no alcanza el punto de fluencia, ambos materiales se comportan en forma aproximadamente elástica. fc ≤
1 f 'c 2
fs ≤ fy
*
Se suponen que las grietas de tracción han avanzado hasta llegar a la fibra neutra.
Página 9
PUENTES
Página 10
PUENTES
EJE NEUTRO “K”:
∑M
AREAS
b(Κd )
η−η`
Κd =η 2
A
S
=0
( d − Κd )
bΚ2 d =η AS −η AS Κ 2
bd 2 Κ + (η AS )Κ −η AS = 2 Multiplicando por (2):
bdΚ 2 + 2η
A Κ − 2η A S
S
=0
Dividiendo a todos los términos entre (bd)
Κ 2 + 2η
A
ρ=
A
S
bd S
bd
Κ − 2η
A
S
bd
=0
= cuantía de acero
En función de “ρ” tenemos: Κ2 + 2ηρΚ − 2ηρ = 0
Κ=
− 2η ± 4 ρ 2η 2 + 8 ρη 2
Κ=
− 2η ± 2 ρ 2η 2 + 2 ρη 2
Κ=
ρ2η2 + 2 ρη − ρη
…………………………………………(1)
Página 11
PUENTES
ESFUERZOS DE TRACCION Y COMPRESION.T = As. fs
C=
1 fc * Kd * b 2
NECESITAMOS HALLAR.ESFUERZO EN EL ACERO.∑Mc =0 (Sumatoria de momentos con respecto a “C”) M ACT = T ( jd ) M ACT = As. fs. jd
fs =
M ACT …………………………………(2) As. j.d
j =1 −
Κ 3
ESFUERZO EN EL CONCRETO.C=
1 fc * Kd * b 2
∑M
T
( jd ) *
fc =
= 0 (Sumatoria de momentos con respecto a “T”)
1 fc (Κd )b = M ACT 2
M ACT 1 ……………………………………. (3) Κbd 2 j 2
Se busca: * fs ≤ fadm Página 12
PUENTES
* fc ≤ fadm
3.- ESTADO DE ROTURA.1) Las CARGAS llevan a la viga a esfuerzos próximos a la rotura o comportamiento inelástico, los esfuerzos no son proporcionales a las deformaciones. 2) Para las VIGAS RECTANGULARES, se han medido las deformaciones de εc (deformación unitaria del concreto) de 0.003 a 0.004 inmediatamente antes de la rotura. 3) Se supone de manera ligeramente conservadora que el concreto esta a punto de aplastarse, cuando la máxima deformación alcanza εc= 0.003 4) Se desea predecir el momento “Mu”(MOMENTO DE ROTURA ) para que la viga se rompa
Mu = f ( f ' c, fy , b, c, d , φ ) (σs) ESTADO DE ROTURA F = Esfuerzo Promedio
β = 0.425 f = Esfuerzo promedio b = Area en el que actua
ε c = 0.003
β c = f *( b *c) c
h
COMPRESION
E.N.
d
0.425 = α * f ' c = b * c
As
T = As fs
ES NECESARIO DEFINIR = “α” y “β”
fs
TRACCION
Cuando falla por el acero se llama falla a tracción
εs (“α” y “β” han sido determinados de manera experimental)
Página 13
PUENTES
α = 0.72, para f’c ≤ 280 kg/cm2 β = 0.425, para f’c ≤ 280 kg/cm2
C = f *b *c C = a f 'c * b * c C = 0.72 f ' c * b * c …………….(I)
Página 14
PUENTES
“α” vale 0.72 para f’c ≤ 280 kg/cm2 y disminuye en 0.04 por cada 70 Kg/cm2 sobre 280 kg/cm2 “β” vale 0.425 para f’c ≤ 280 kg/cm2 y disminuye en 0.025 para 70 Kg/cm 2 sobre 280 kg/cm2
BLOQUE RECTANGULAR EQUIVALENTE Es posible imaginar la distribución de esfuerzos por otra, que dé lugar a la misma fuerza de compresión en el mismo punto que en el elemento estructural, cuando está próximo a romperse. La propuesta de C.S. WHITNEY, es la siguiente: a= Longitud del rectángulo equivalente
Muchos experimentos han demostrado que con este rectángulo equivalente se puede determinar el momento de rotura.
COMPROBACION DE C: C = 0.85 f’c * a * b C = 0.85 f’c * (0.85c) * b C = 0.7225 f’c * c * b ……………………….. (II) (σs) ESTADO DE ROTURA.CASOS: 3.1. Falla a Tracción. 3.2. Falla a Compresión. Página 15
PUENTES
3.3. Falla Balanceada. 3.1. FALLA A TRACCION.Se produce cuando el acero llega al esfuerzo de fluencia, antes de que el concreto alcance su máxima capacidad de resistencia.
fs = fy Σ Fx = 0
C = 0.85* f ' c * a * b 0.85* f ' c * a * b = As * fy a=
As * fy 0.85* f ' c * b
…………(1)
Σ Mc = 0
a M = As * fy * d − ÷ 2 a Mu = φ As * fy * d − ÷ 2
…………..(2)
φ = Factor de reducción de capacidad de carga = 0.90 As = Área de acero Fy = Esfuerzo de fluencia del acero d = peralte efectivo a = Longitud de rectángulo equivalente 3.1. FALLA A TRACCIÓN 0.85 f’c
a=
a
As * fy ………..(1) 0.85* f ' c * b
As =
d
As fy b
Usos:
Página 16
Mu a ………..(2) φ fy d − ÷ 2
Mu = Momento ultimo d = Peralte efectivo φ = Factor de reducción de capacidad de carga
PUENTES
1.- Dados Mu , f’C , fY , b , d AS 2.- Calcular: “d” (1)en (2) a Mu = φ. As. fy.( d − ) 2 Mu =φ. As. fy.(d −
As * fy 1 * ) 2 0.85 * f ' c * b
Mu =φ. As. fy.(d − 0.59 *
ρ=
As * fy ) f 'c *b
As b*d
As =ρ* b * d Mu =φ.ρ.b.d . fy.( d −0.59 *
Mu =φ.ρ.b.d 2 . fy.(1 −0.59 *
ρ.b.d * fy f 'c * b
ρ. fy f 'c
)
φ = 0.90 ρ = cuantía
Página 17
)
PUENTES
d =
Mu
φ.ρ.b. fy.(1 − 0.59 *
ρ. fy f 'c
)
d = peralte efectivo fy = 4200
kg/cm2
f ' c = 210
kg/cm2
φ = 0.90 bmin = 25 cm. (E 060)
* Cuantía mínima (ρmin).- El refuerzo mínimo de acero en tracción provisto en una sección rectangular en una viga que resista Momento, esta dado por el mínimo de los siguientes límites:
Para: f ' c y fy
en PSI
3 f ' c 200 As ≥ max b.d y b.d ..........( A.C.I .10.5.1) fy fy Mínima 4 AS ≥ As requerido...............................(A.C.I.10.5.3) 3 Para: f ' c y fy
en Kg/cm2
0.79 f ' c 14 As ≥ max b.d y b.d fy fy Buscamos el
Menor 4 Página AS ≥ As requerido 18 3
PUENTES
Norma E 060: Concreto Armado 11.5.2.- El área mínimo de refuerzo de secciones rectangulares, podrá calcularse con: As min =
0.7 * f ' c b.d fy
11.5.3.- Alternativamente el área de refuerzo positivo o negativo, en cada seccion del elemento deberá ser por lo menos 1/3 mayor que la requerida por el análisis.
Interpretación de cuantía mínima.-
As =
Área de acero requerido:
Mu a 2
φ. fy.(d − )
Dos Alternativas: 1.- As requerida ≥ As min.
Usar As requerida (en varillas). Página 19
PUENTES
2.- As requerida < As min.
11.4 14 As ≥ max b.d y b.d .........................α fy fy Menor
-
4 AS ≥ As requerido.........................................β 3 Comparar (α) y (β) y tomar el menor de ellos Finalmente: el acero a usar sera el menor de ellos.
* USO DE GRÁFICOS *
Falla a tracción fs = fy Falla a compresión Ec = 0.003 FALLA A COMPRESIÓN: Ec = 0.003 • Se le llama también FALLA POR APLASTAMIENTO • Ocurre cuanto el ÁREA DE ACERO ES GRANDE. • El concreto alcanza su capacidad máxima antes que el acero. • Se produce FALLA VIOLENTA ó EXPLOSIVA sin previo aviso. • Se alcanzará la resistencia a flexión, cuando el acero se deforme.
Página 20
PUENTES
∑MT = φ
M = 0.85 f’c * a * b * a −
a …………….. (I) 2
Mu = φ * 0.85 f’c * a * b * ( a − fa 2 ) ……… (1) cálculo de “a” RELACIÓN AS (As de deformaciones) 0.003 Es = c d −c 0.003 fs / Es = c d −c fs 0.003( d − c ) = Es c
fs = Es. Es Es =
fs 0.003( d − c ) = Es c
fs =
fs Es
Esfuerzo del acero Módulo elasticidad del acero
a = 0.85 a = β1 * C
0.003( d − c ) Es c
C=
a
β1
a 0.003 a − * Es B1 fs = a B1
EN FIGURA:
(2) ……… fs =
∑Fx = φ
0.003 ( β1 d − a ) * Es a
REEMPLANZADO (2) EN (3):
C=T
0.003 (β1 d – a) * Es a 0.003 0.85 f’c * a * b = ρ * b * d * (β1 d – a) * Es a
0.85 f’c * a * b = As *
0.85 f ' c * a 2 0.003 * ρ* Es
= d(β1 d – a)
Página 21
0.85 f’c * a * b = As * fs … (3)
PUENTES
0.85 f ' c 2 2 0.003 * ρ Es a + da − β1 d =φ
---------- (II)
CALCULAR “a” Y REEMPLAZAR EN (I) PARA: Es = 2 X 106 F’C = 210 kg/cm2 0.02975 a2 +
a2
ρ
+da − 0.85 d 2 =φ
( ρd ) a 0.02975
−
0.85 d 2 ρ =φ 0.02975
a + (33.61 pd)a – 28.57 pd2 = φ 2
a=
− 33.61 pd 1 + 2 2
a = -16.81 pd + 0.5
( 33.61) 2
p 2 d 2 + 114.3 pd 2
(
114.3 9.88 p 2 d 2 + pd 2
)
a = -16.81 pd + 5.35 9.88 p 2 d 2 + pd 2 ECUACIÓN (4) reemplazado en (¡) Falla balanceada: Falle por compresión del concreto cuando existe mucho acero en la viga, fallaría por el concreto. “p” la cantidad de acero es la mínima, la idea es que falle por la tracción. FALLA BALANCEADA: (Revienta el concreto y fluye el acero) FALLA BALANCEADA La viga rompe por aplastamiento del concreto y por fluencia del acero de tracción. Ec = 0.003 fs = fy Se debe diseñar para que la falla de la VIGA sea por tracción, ya que la falla pro compresión es explosiva y sin aviso. Por tanto hay que limitar la cuantía de acero: “p” p ≤ p.máx REGLAMENTO A.C.I. p ≤ 0.75 pb vá a existir falla en el estado balanceado DEFORMACIÓN DE ESTRUCTURA
Página 22
PUENTES
Página 23
PUENTES
B. B.1
DISEÑO POR FUERZA CORTANTE
Diseño por Fuerza cortante con refuerzo en el alma
Donde: i = Longitud de la grieta p = Proyección horizontal de la grieta a = Espaciamiento en la dirección de la grieta del refuerzo transversal. s = Espaciamiento en la dirección horizontal del refuerzo transversal. La fuerza cortante que resiste una viga será las quo proporcionan el concreto y el acero transversal, es decir: Las grietas diagonales se forman debido a la tensión diagonal, los cuales son esfuerzos principales de tensión perpendiculares a la grieta.
Av: Área de cada estribo fv = Esfuerzo del refuerzo transversal Si existen n estribos inclinados dentro de la grieta entonces:
siendo: Página 24
PUENTES
además: Por trigonometría tenemos:
Reemplazando los valores de i y a tenemos:
Para el instante que se origina la grieta por tracción diagonal, se puede suponer que:
Fuerza cortante que resiste el concreto (Vc) El código ACI sugiere la siguiente expresión simplificada para la determinación de Vc.
Página 25
PUENTES
El código ACI presenta diferentes expresiones de Vc. para diferentes situaciones: •
Elementos sometidos a flexión y corte.
Elementos sometidos a considerable esfuerzo de tracción se puede efectuar el diseño considerando despreciable la resistencia del concreto.
Consideraciones de Diseño: SI la reacción del apoyo induce compresión al elemento y no existe carga concentrada entre Ja cara del apoyo y una sección ubicada a "d" de ella, entonces este tramo se diseñará para un cortante último quo corresponde a la sección ubicada a "d" do la cara de apoyo. Esta sección se denomina sección crítica y es la que se encuentra sometida al mayor cortante do diseño del elemento.
Página 26
PUENTES
B.4
Cálculo del refuerzo transversal
El refuerzo que se necesitará tendrá que resistir:
entonces de la expresión:
}
Que será el espaciamiento a que se encuentre los estribos que tienen un área Av. Si se usan estribos verticales es decir α = 90° Se tendrá.
Página 27
PUENTES
B.5
Requisitos Mínimos para el Diseño por Corte.
- Cambiar la sección. - Mejorar la calidad del concreto.
Página 28
View more...
Comments