Digestión de carbohidratos en rumiantes

November 13, 2017 | Author: Leoj Orrep Pandita Pichu | Category: Lignin, Lipid, Carbohydrates, Fatty Acid, Proteins
Share Embed Donate


Short Description

Download Digestión de carbohidratos en rumiantes...

Description

Digestión de carbohidratos en rumiantes Gracias a la microbiota ruminal los carbohidratos fibrosos como la celulosa y hemicelulosa pueden representar la fuente más importante de energía para los rumiantes. Las raciones carentes de fibra pueden conducir a desórdenes de la digestión. Estos carbohidratos fibrosos además son necesarios para: » Estimular la rumia (la cual mejora la fermentación). » Aumentar el flujo de saliva hacia el rumen. » Estimular las contracciones ruminales. Cuando los carbohidratos de la dieta entran al rumen son hidrolizados por enzimas extracelulares de origen microbiano. En el caso de los carbohidratos fibrosos, el ataque requiere de una unión física de las bacterias a la superficie de la partícula vegetal, la acción de las enzimas bacterianas libera principalmente glucosa y oligosacáridos hacia el líquido ruminal por fuera de los cuerpos celulares microbianos. Estos productos no son aprovechados por el rumiante, en su lugar, son rápidamente metabolizados por la microbiota ruminal. La glucosa y otros azúcares son absorbidos por los microorganismos y una vez en el citosol se incorporan a la vía de la glucólisis. Este proceso enzimático da lugar a la formación de NADH+H (reducido), ATP y piruvato. La energía potencial representada por el ATP en este momento no es directamente accesible para el hospedero, pero representa la principal fuente de energía para el mantenimiento y crecimiento de los microbios.

Si la digestión fermentativa ocurriera bajo condiciones aeróbicas, lo cual no sucede, el piruvato sería transformado en la mitocondria para generar CO2 , H2O y ATP a través del ciclo de Krebs, cadena respiratoria y ATPAasa, proceso que en su conjunto involucra la restauración de NAD (oxidado). Pero la digestión fermentativa no es un sistema aeróbico; por el contrario es un sistema altamente anaeróbico y reductor, por lo que se debe proveer de un mecanismo diferente para la restauración de NAD. Si no existiera este mecanismo, todos factores oxidados presentes podrían rápidamente reducirse y entonces el metabolismo bacteriano se detendría. Debido a que en el rumen no se encuentra oxígeno a la mano, otro compuesto es el que debe servir como el resumidero de electrones para la oxidación de los cofactores enzimáticos. En la digestión fermentativa, el piruvato puede funcionar como el captador de electrones, sufriendo una reducción todavía mayor con el fin de proveer el material necesario para la regeneración del NAD y el retiro general del NADH+H, con una producción adicional de ATP. Además, el CO2 puede reducirse para formar metano aceptando electrones para la regeneración del NAD y de FAD. Este proceso transformador del piruvato da lugar a los productos terminales de la digestión fermentativa de los carbohidratos, los llamados ácidos grasos volátiles (AGV); Acético (CH3COOH), Propiónico (CH3-CH2-COOH) y Butírico (CH3-CH2-CH2COOH).

DIGESTIÓN DE PROTEINAS

La proteína es particularmente vulnerable a la fermentación ruminal, debido a que está formada por carbonos, los cuales se pueden reducir todavía más que los carbohidratos para proveer energía a los microorganismos. Los microorganismos del rumen son capaces de sintetizar todos los aminoácidos, incluyendo los esenciales para el hospedero. Por lo tanto los rumiantes son casi totalmente independientes de la calidad de las proteínas ingeridas. Además los microoorganismos pueden utilizar fuentes de nitrógeno no proteico (NNP) como sustrato para la síntesis de aminoácidos. A medida que las proteínas y el NNP entran al rumen son atacados por enzimas microbianas extracelulares, la mayor parte de estas enzimas son endopeptidasas parecidas a la tripsina y forman péptidos de cadena corta como sustratos terminales. Estos péptidos se originan extracelularmente y son absorbidos hacia el interior de los microorganismos. En el citosol los péptidos son degradados aaminoácidos y éstos son utilizados para la formación de proteína microbiana o son degradados todavía más para la producción de energía a través de la vía de los AGV. Para que los aminoácidos entren a esta vía, primero son desaminados para dar lugar aamoniaco y a un esqueleto carbonado.

El amoniaco es el principal compuesto nitrogenado que utilizan los microorganismos para la síntesis de aminoácidos y proteínas, hay que considerar que para esto se requiere suficiente energía o carbohidratos; El amoniaco se utiliza además para la formación de diversos componentes nitrogenados de la pared celular y ácidos nucleicos. El amoniaco liberado en el rumen es absorbido a la sangre, conducido al hígado en donde se forma urea, la cual se puede reciclar en la saliva o eliminarse a través de la orina. El esqueleto carbonado de muchos de estos aminoácidos se puede acomodar directamente en varios de los pasos de la vía de los AGV, dando lugar a la producción de los tres principales (acético, propiónico y butírico) y de AGV de cadena ramificada o isoácidos conocidos como ácido isobutírico, ácido isovalérico y ácido 2-metilbutirato; solo los tres aminoácidos de cadena corta ramificada (valina, leucina e isoleucina), permiten la producción de estos isoácidos. Los AGV de cadena ramificada son utilizados por las bacterias como factores de crecimiento.

En el rumen, cierta cantidad de proteína dietaria puede escapar a la digestión ruminal y pasar al intestino sin modificarse en el rumen, a ésta se le denomina proteína sobrepasante. La proteína microbiana representada por los cuerpos celulares de los microorganismos, pasa con las proteínas de la ración que no fueron modificadas por la microbiota ruminal a través del omaso, abomaso, hasta el intestino en donde son digeridas por acción de las enzimas pepsina, tripsina, quimiotripsina, carboxipeptidasa y aminopeptidasa en forma similar a la digestión proteica en los monogástricos . El crecimiento microbiano depende del aporte de nutrientes y de la velocidad a la cual los microorganismos del rumen se eliminan. Las proteínas o el nitrógeno no proteico (NNP) y los carbohidratos son utilizados para la producción ruminal de microbios, AGV, amoniaco, metano y bióxido de carbono de acuerdo a la siguiente ecuación: carbohidratos + proteínas = microbiota + AGV + NH3 + CH4 + CO2 El equilibrio en los productos de la ecuación depende de la concentración y balance de los sustratos. La relación que existe entre la disponibilidad de carbohidratos y la de proteínas (o nitrógeno) ejerce un fuerte impacto sobre la producción de células microbianas y por lo tanto sobre la nutrición del huésped. La mayoría de los microorganismos ruminales pueden sintetizar proteína a partir de amoniaco proveniente de fuentes no proteicas tales como la urea. Desde un punto de vista nutricional y económico, esto se ha

explotado utilizando fuentes nitrogenadas de bajo costo en lugar de proteínas costosas en las dietas de los rumiantes, permitiendo la síntesis microbiana de proteína para satisfacer las necesidades del hospedero.

Los AGV sintetizados en respuesta a un estricto control metabólico por parte de los microorganismos ruminales, son utilizados por éstos para la formación de aminoácidos y ácidos grasos que serán posteriormente incorporados al metabolismo bacteriano. Sin embargo, la mayor parte de los AGV es enviada hacia el líquido ruminal, en donde se difunden a través del epitelio del rumen y retículo, el resto se absorben en omaso, para posteriormente incorporarse a la circulación general pasando por la vena porta.

Los cambios en la dieta pueden modificar el patrón de fermentación. Cuando la dieta del animal está basada en forrajes, la proporción molar en que se encuentran los AGV es:

Mientras que si la dieta es alta en granos o concentrados la proporción será de:

En el hígado el propionato y el acetato son incorporados al metabolismo energético, el ácido propiónico es el único de los AGV que el hepatocito puede transformar en glucosa, en la vía de la gluconeogénesis . Las moléculas de glucosa sintetizadas en este proceso, serán exportadas hacia los tejidos extrahepáticos, quienes serán los encargados de utilizarla como la primera fuente de energía altamente disponible para sostener las necesidades fisiológicas de mantenimiento y reproducción. Los disacáridos y los almidones que escapan a la fermentación ruminal pasan al intestino delgado donde son digeridos por enzimas pancreáticas e intestinales, en la misma forma que en los animales monogástricos. DIGESTION DE LIPIDOS EN RUMIANTES

Cuando la dieta del rumiante consiste principalmente de forrajes, los lípidos que se encuentran en mayor proporción son los galactoglicéridos, pero si el nivel de granos o concentrados es elevado, los triacilglicéridos son más abundantes. Se ha observado que la mayoría de los ácidos grasos presentes en la dieta de los rumiantes son insaturados. En el rumen tanto los galactoglicéridos como los trigliacilglicéridos y fosfolípidos son hidrolizados por las bacterias, el resultado son ácidos grasos libres y glicerol. El glicerol derivado de la hidrólisis de los trigliacilglicéridos es fermentado hasta propionato y posteriormente absorbido junto con los otros AGV. Por otro lado se sabe que los lípidos que se encuentran en el tejido adiposo del animal y en la leche de las especies rumiantes son saturados

sufriendo poca modificación, por cambios en el aporte de lípidos insaturados de la dieta. Este fenómeno se debe a que el medio ambiente reductor del rumen produce la hidrogenación de una gran cantidad de ácidos grasos insaturados previamente hidrolizados . Posteriormente los lípidos microbianos son digeridos y adsorbidos en el intestino delgado. Al igual que las proteínas, algunos lípidos pueden escapar a la digestión microbiana ruminal y llegar intactas al intestino (donde son digeridos). A estos lípidos se les denominan de sobrepaso.

Las ventajas que presenta la hidrogenación de ácidos grasos son: » Aumenta el crecimiento bacteriano, ya que los ácidos grasos insaturados provocan cambios en la permeabilidad de las membranas microbianas (inhibiendo su desarrollo). » Se reduce la producción de metano al haber menor cantidad de hidrógeno. » Aumenta la energía disponible, ya que los ácidos grasos saturados liberan más energía al oxidarse que los ácidos grasos insaturados.

Lección 4. Digestión, absorción y metabolismo de los carbohidratos en monogástricos y rumiantes. Lección 4. Digestión, absorción y metabolismo de los carbohidratos en monogástricos y rumiantes. Características generales y comentarios sobre los principales. Los carbohidratos, hidratos de carbono o azúcares son compuestos orgánicos integrados por carbono, oxígeno e hidrógeno estos dos últimos en la misma proporción que el agua, aunque existen glúcidos que contienen otros elementos en su molécula principalmente N, S y P. Tienen las siguientes características químicas: 1. Estructura está basada en un esqueleto carbonado (molécula orgánica) 2. Cadena carbonada con grupos hidroxilo (OH ) por lo que se pueden considerar polialcoholes. 3. Pueden tener un grupo aldehído o un grupo cetona, ó ambos. 4. Moléculas ricas en enlaces de alta energía (C-H; C-C; C-OH; C=O) 5. Presentan isómeros y muchos presentan actividad óptica. Son muy abundantes en los vegetales en los que frecuentemente sobrepasan el 75% de la materia seca, a diferencia de los organismos animales en cuya composición entran en un porcentaje mucho más bajo. Esta abundancia en los organismos del reino vegetal se debe a su fácil elaboración mediante los mecanismos de fotosíntesis según la siguiente reacción general :

6CO2 + 6H2O +2870 kj = C6H12O6 + 6O2 Los carbohidratos presentes en las plantas proporcionan energía y fibra. Los vegetales son la fuente más importante de energía para los herbívoros y no solo proporcionan carbohidratos solubles sino que también son la fuente necesaria de fibra dietética especialmente importante en los rumiantes para la estimulación de la rumia.

Clasificación. Los carbohidratos de bajo peso molecular se conocen comúnmente como "azúcares". Se clasifican según el número de unidades estructurales de azúcares sencillos en monosacáridos, disacáridos y oligosacáridos, mientras que los carbohidratos de alto peso molecular se conocen como polisacáridos.

Monosacáridos. Los monosacáridos también se clasifican en dos grandes grupos dependiendo de la posición del grupo carbonilo (C=O) que los caracteriza. Si el grupo carbonilo esta localizado en un carbono terminal se trata de una "aldosa" y si éste grupo está localizado sobre un carbono secundario el azúcar es una "cetosa". Entre las aldosas más estudiadas por labioquímica se encuentra la glucosa y entre las cetosas su homologa la fructosa. Monosacáridos más importantes: Pentosas:

  

Arabinosa: forma parte de hemicelulosas, presente en la goma arábiga y otras gomas Xilosa: integrante de xilanas, pentosanas que constituyen la cadena principal de las hemicelulosas de la hierba. Ribosa: presente en el ARN en todas las células vivas.

Hexosas:    

Glucosa: azúcar de uvas, frutas, miel, sangre, linfa y componente de muchos oligosacáridos y polisacáridos. Fructosa: azúcar de fruta, hojas verdes, miel, muy dulce, las plantas verdes frondosas tienen mucha. Manosa: no se encuentra libre. Forma polímeros, presente en hongos y bacterias. Galactosa: tampoco se encuentra libre. Importante por formar parte de la molécula de lactosa, presente en la leche.

Disacáridos y oligosacáridos Los disacáridos son sustancias cuyas moléculas están constituidas por dos unidades de monosacárido. El enlacecaracterístico mediante el cual se unen los dos monosacáridos para conformar un disacárido se conoce como "enlace glucosídico" y es un enlace tipo: C-O-C derivado de la combinación de un grupo hidroxilo, de una molécula de monosacárido, con una porción aldehido o cetona de la otra (Formación de hemiacetales y hemicetales). Los disacáridos más comunes son la maltosa, la lactosa y la sacarosa. Tienen también en común el hecho de que, al menos uno de los monosacáridos que conforman el dímero, es Dglucosa.    

Sacarosa: es el más ubicuo y abundante en vegetales, presente en la caña de azúcar, en la remolacha y en las frutas en general. Constituido por glucosa y fructosa. Lactosa: es el azúcar de la leche. Se forma en la glándula mamaria, fermenta con facilidad por lo que se agria. Constituido por glucosa y galactosa. Maltosa: azúcar de malta, que se obtiene por ejemplo a partir del almidón en la germinación y fermentación del grano de cebada. Constituido por dos moléculas de glucosa. Celobiosa: es el disacárido integrante de la celulosa.

Tipos de unión de dos monosacáridos ( y ), maltosa y celobiosa. Los oligosacáridos (del griego oligo "pocos") son carbohidratos constituidos por varias unidades de monosacáridos pero que están entre los límites de 2 y 10 unidades. Los disacáridos son oligosacáridos, por lo que no es extraño encontrarlos bajo esta denominación en algunos textos; algunos de estos son la "Rafinosa" del azúcar de remolacha y la "Melicitosa" derivada de la savia de algunas plantas coníferas.

Polisacáridos Son polímeros constituidos por cadenas de monosacáridos, que se unen por medio de enlaces glucosídicos. Los polisacáridos, conocidos también como: "Glucanos", se diferencian entre sí por la clase de monosacáridos que los constituyen, por la longitud de las cadenas, por el grado de ramificación y por su origen biosintético. Los "homopolisacáridos" están constituidos por un solo tipo de monosacárido, mientras que los "heteropolisacáridos", por dos o más clases de monosacáridos. Entre los más importantes están los siguientes:

Almidón El almidón es un homopolisacárido constituido por unidades de D-glucosa que forman el enlace glucosídico mediante enlaces tipo  (1-4) y  (1-6). En el tejido de los frutos y raíces vegetales el polímero se forma de tamaños variados con pesos moleculares que varían desde miles hasta 500.000. El almidón presenta dos tipos de agrupaciones moleculares: amilosa y amilopectina. La amilosa se caracteriza porque sus cadenas largas, no ramificadas y por lo general forman una estructura helicoidal. Es posible preparar solucionescoloidales de amilosa, pero ésta no es soluble en agua; de hecho para las aplicaciones domésticas e industriales suelen utilizarse las preparaciones coloidales en agua. La amilopectina es un polímero de D-glucosa de cadenas ramificadas de longitud media (24 a 30 unidades por ramificación). Los enlaces glucosídicos de la cadena principal (esqueleto) son del tipo (1–›4) pero los de los puntos de ramificación son(1–›6). La amilopectina constituye el 80% de casi todos los almidones. Es muy viscosa y es fácilmente hidrolizada por la amilasa. El almidón se encuentra abundantemente en los granos, semillas, tubérculos y frutas. Es la fuente principal de carbohidratos para el hombre.

Glucógeno

El glucógeno, también llamado almidón animal es un homopolímero de glucosa análogo al almidón vegetal pero con una grado mayor de ramificación al de la amilopectina y más compacto. Abunda principalmente en el hígado de losanimales superiores, constituyendo el 10% de su peso húmedo. Se halla también en proporción del 1 al 2% en el músculo esquelético.

Celulosa Es el constituyente principal de las membranas de las células vegetales y es prácticamente insoluble en agua y resistente a la digestión ácida y a la acción de las amilasas gástricas. Cuando se hidroliza produce glucosa pero no sufre alteración significativa en el tracto digestivo, como si ocurre con los almidones, el glucógeno y las dextrinas. Los animales herbívoros, cuya base alimenticia es rica en celulosa, han desarrollado un sistema mediante el cual algunas bacterias, levaduras y protozoos presentes en el rumen o en el intestino grueso degradan parcialmente la celulosa para formar, D-glucosa y ácidos grasos inferiores que el animal utiliza para fines energéticos. La celulosa también es un homopolímero lineal y se diferencia de los almidones en el tipo de enlace glucosídico que forma: mientras que el enlace glucosídico de los almidones y el glucógeno es principalmente del tipo  (1–›4), el de la celulosa es del tipo  (1–›4). Se ha estimado el peso molecular de celulosas de diversas procedencias encontrándose un rango amplio de variación: 50.000 a 2500000, el equivalente a un rango de 300 a 15000 unidades de glucosa por molécula. Las pruebas de difracción con rayos X demuestran que las moléculas de celulosa están organizadas en cadenas paralelas que forman fibrillas, las cuales se aglutinan por otros polímeros hemicelulosa, pectina y extensina.

Hemicelulosa Son polisacáridos integrantes de las paredes celulares de los vegetales similares a la celulosa, pero se degradan más fácilmente. También es importante considerar que estos compuestos varían dependiendo de la edad, y variabilidad de las especies cultivadas y mejoradas. La hemicelulosa se caracteriza por ser una molécula con ramificaciones, como lo es el ácido urónico, capaz de unirse a las otras moléculas mediante enláces que constituyen la pared rígida que protege a la célula de la presión ejercida sobre esta por el resto de las células que la rodean.

Pectina Aparece en los espacios intercelulares como sustancia cementante, suele constar de una cadena polisacárida con cadenas laterales de arabana y galactana que se esterifican con Calcio y Magnesio. La actividad microbiana del rumen e intestino grueso la digieren. También se comporta como antidiarreico al retener agua.

LIGNINA.

Como lignina se conocen un grupo de compuestos químicos presenten en las paredes celulares de las plantas y forman parte integrante de la madera. La palabra lignina proviene del término latino lignum, que significa madera; así, a las plantas que contienen gran cantidad de lignina se las denomina leñosas. La lignina está formada por la extracción irreversible del agua de los azúcares, creando compuestos aromáticos. Lospolímeros de lignina son estructuras interconectadas con pesos moleculares muy elevados. Se caracteriza por ser un complejo aromático (no carbohidrato) del que existen muchos

polímeros estructurales (ligninas). Resulta conveniente utilizar el término lignina en un sentido colectivo para señalar la fracción lignina de la fibra. Después de los polisacáridos, la lignina es el polímero orgánico más abundante en el mundo vegetal. Es importante destacar que es la única fibra no polisacárido que se conoce. Este componente de la madera realiza múltiples funciones que son esenciales para la vida de las plantas. Por ejemplo, posee un importante papel en el transporte interno de agua, nutrientes y metabolitos. Proporciona rigidez a la pared celular y actúa como puente de unión entre las células de la madera, creando un material que es notablemente resistente a los impactos, compresiones y flexiones. Realmente, los tejidos lignificados resisten el ataque de los microorganismos, impidiendo la penetración de las enzimas destructivas en la pared celular. Estructura química La molécula de lignina es una macromolécula, con un elevado peso molecular, que resulta de la unión de varios ácidos y alcoholes fenilpropílicos (cumarílico, coniferílico y sinapílico). La lignina es el polímero natural más complejo en relación a su estructura y heterogenicidad. Por esta razón no es posible describir una estructura definida de la lignina; sin embargo, se han propuesto numerosos modelos que representan una “aproximación” de dicha estructura. Propiedades físicas Las ligninas son polímeros insolubles en ácidos y en álcalis fuertes, que no se digieren ni se absorben y tampoco son atacados por la microflora del intestino grueso. Pueden ligarse a los ácidos biliares y otros compuestos orgánicos (por ejemplo, colesterol), retrasando o disminuyendo la absorción en el intestino delgado de dichos componentes. El grado de lignificación afecta notablemente a la digestibilidad de la fibra. La lignina, que aumenta de manera ostensible en la pared celular de la planta con el curso de la maduración, es resistente a la degradación bacteriana, y su contenido en fibra reduce la digestibilidad de los polisacáridos fibrosos.

DIGESTION Y ABSORCION MONOGASTRICOS.

DE

CARBOHIDRATOS

EN

El almidón es el único polisacárido altamente utilizable por los animales monogástricos y tanto éste como los disacáridos presentes en la ración han de ser degradados hasta monosacáridos para ser absorbidos. La digestión y absorción del almidón tiene lugar en el primer tramo del intestino delgado y la principal enzima que participa es la -amilasa segregada por el páncreas junto al jugo pancreático y que actúa en la luz intestinal. La -amilasa rompe la cadena lineal de la amilosa dejando libres moléculas de glucosa y maltosa pero no puede romper las ramificaciones de enlaces -1-,6 de la amilopectina por lo que como primer paso de la digestión de los carbohidratos se genera en la luz intestinal una mezcla de glucosa, maltosa y oligosacáridos. Mientras la glucosa va siendo absorbida los disacáridos y oligosacáridos restantes son atacados por otras enzimas las  y  glucosidasas presentes en el borde de las microvellosidades intestinales y responsables de la hidrólisis final de los disacáridos. Los monosacáridos libres se acoplan con iones sodio y son transportados activamente al

interior de la célula absorbente. Este transporte activo es muy importante porque se realiza en contra de un gradiente de concentración, es decir, de una zona extracelular de baja concentración a otra de alta concentración en el interior de la célula, por lo que se requiere aporte de energía en el proceso. El transportador tiene dos puntos de unión uno al sodio y otro al compuesto orgánico, ya en el interior de la célula queda vacío y junto al sodio libre vuelven a atravesar la membrana quedando libre para formar nuevos complejos triples y repetir el proceso. Los azúcares absorbidos (intracelulares) son transportados por la sangre portal hasta el hígado. Los carbohidratos estructurales, celulosa y hemicelulosa, componentes de la fracción fibrosa atraviesan el tracto intestinal sin absorberse. En el ciego son sometidos a una acción microbiana muy limitada por las celulasas bacterianas desprendiendose algunos ácidos grasos volátiles que son absorbidos por la sangre portal. Por lo tanto su papel como nutrientes es mínimo, sin embargo absorben agua y estimulan el peristaltismo con lo que favorecen la digestión mecánica. Paralelamente reducen la velocidad de tránsito del resto de los materiales acompañantes en proceso de digestión.

Metabolismo de los carbohidratos en monogástricos. El metabolismo de los carbohidratos es muy importante en todos los animales pues son la fuente esencial de energía para el organismo además de ser los productos iniciales para la síntesis de grasas y aminoácidos no esenciales. El producto principal de la digestión de los carbohidratos en los monogástricos es la glucosa originada principalmente a partir del almidón. Constituye asimismo, el material inicial para los procesos de síntesis. La glucosa se mueve por el organismo a través de la sangre y su nivel (glucemia) se mantiene dentro de unos límites bastante estrechos (70-100 mg/100 ml, en monogástricos). Este nivel es el resultado de dos procesos opuestos: paso de glucosa a sangre procedente del alimento y de la acumulada en el hígado y otros órganos y salida de glucosa del torrente circulatorio con fines de oxidación y síntesis en los tejidos donde sea requerida (hígado, cerebro, músculos, etc.). Este proceso implica el paso de la glucosa circulante a glucógeno (glucogénesis) que se desarrolla fundamentalmente en el hígado, y la reconversión del glucógeno en glucosa (glucogenolisis). Las fuentes de glucosa en la sangre son tres: 1. 2.

El intestino delgado que es la procedente de los alimentos. Glucosa sintetizada en los tejidos corporales particularmente el hígado a partir de sustancias distintas de los carbohidratos, como ácido láctico, propiónico y glicerol, a este proceso se le denomina gluconeogénesis. 3. El glucógeno almacenado en el hígado y en el músculo principalmente (proceso de glucogenolisis). Y los destinos de la glucosa de la sangre son: 1. 2.

3. 4.

Síntesis y reserva de glucógeno. En este proceso actúa la enzima glucógeno-sintetasa cuya producción y actuación se estimula tras una comida rica en carbohidratos. Conversión en grasa. Como la cantidad de glucosa que puede almacenarse en forma de glucógeno es limitada, el exceso se convierte en grasa, esto supone la degradación previa hasta piruvato. Conversión en aminoácidos. Aminoácidos no esenciales que obtienen sus cadenas carbonadas de la glucosa. Fuente de energía. Por oxidación completa hasta dióxido de carbono y agua produciendo ATP como fuente de energía. 1 mol de glucosa proporciona 38 moles de ATP.

Ciclo de Cori. Mecanismo fisiológico por el cual la reservas musculares de glucógeno sirven como aporte energético anaerobio para los músculos que trabajan cuando el aporte de oxígeno no es suficiente para la oxidación total de la glucosa, así la glucosa se convierte en lactato por

Lección 6. Digestión, absorción y metabolismo de las materias nitrogenadas en monogástricos y rumiantes. Introducción. Las proteínas son compuestos altamente polimerizados, que están formados por aminoácidos. También se unen a componentes no proteicos. Las proteínas se encuentran entre los nutrientes más importantes, junto con los lípidos y los carbohidratos. Además de su función energética (1 g de proteína proporciona 4,1 Kcal al organismo), dada su naturaleza nitrogenada, son necesarias para la síntesis de compuestos propios del organismo implicados en la estructura de las membranas junto con los lípidos, como glicoproteidos en funciones de lubrificación y como nucleidos que posibilitan la síntesis de las proteínas propias del organismo, así como la formación de los cromosomas y la división celular.

El valor nutritivo de las proteínas depende de su digestibilidad, que depende a su vez de la estructura, es decir, de su composición aminoacídica. El contenido de aminoácidos esenciales determina el valor biológico, es decir, el mayor aprovechamiento fisiológico de una proteína por parte del organismo. Rige la ley del mínimo, esto es, si la oferta de aminoácidos esenciales es demasiado limitada, el conjunto del rendimiento de las reacciones de síntesis dependerá del aminoácido que esté presente en menor cantidad (aminoácido limitante). Los aminoácidos limitantes más importantes son la lisina (cereales y patatas) y la metionina (carne y leche).

Para el análisis de la proteína, el método de Kjeldahl que data de 1883 es el que ha alcanzado mayor importancia. Como consecuencia de su estructura a base de aminoácidos individuales, el contenido de nitrógeno de las proteínas varía sólo entre unos límites muy estrechos (15 a 18% y como promedio 16%). Para el cálculo de la proteína total o “proteína bruta” de un alimento, se determina en principio el contenido de nitrógeno tras eliminar la materia orgánica con ácido sulfúrico, calculándose finalmente el contenido de proteína con ayuda de un factor (en general 6,25).

La degradación oxidativa de compuestos orgánicos con ácido sulfúrico a temperaturas comprendidas entre 360 y 410C es la base del tratamiento Kjeldahl en el que no se determinan sólo proteínas o aminoácidos libres, sino también ácidos nucleicos y sales de amonio. También se determina el nitrógeno ligado de compuestos aromáticos, como pirazina, ciclopentapirazina, pirrol y oxazol, así como el nitrógeno orgánico ligado de las vitaminas, tales como la B 1 (tiamina), la B2 (riboflavina) y la nicotinamida.

No obstante, como por lo general los alimentos sólo contienen cantidades traza de compuestosaromáticos nitrogenados y de vitaminas, el error así cometido se considera despreciable. Además, por este método no se determinan el nitrógeno nítrico, el cianhídrico, el de la hidracina, ni el del grupo azo, por lo cual el método es particularmente interesante y relativamente específico para la determinación de las proteínas.

Las proteínas constituyen la fracción más importante de la ración. Son componentes fundamentales en los tejidos animales y requeridas para el mantenimiento de las funciones vitales como renovación de tejidos, reproducción, crecimiento y lactación. En los vegetales se encuentran en cantidades discretas salvo en algunos casos como en las semillas de leguminosas que tiene una riqueza aproximada del 20%. Los granos de cereal contienen aproximadamente un 10% de proteína y otro fruto importante en la alimentación del porcino como es la bellota tiene alrededor del 6% lo que puede considerarse como una tasa proteica pobre.

Químicamente son compuestos orgánicos complejos con peso molecular entre 5000 y 1000000. Constituidas por aminoácidos cuya presencia en la dieta en algunas ocasiones es indispensable. En este sentido, los monogástricos necesitan aminoácidos pre-formados en su dieta para fabricar con ellos sus proteínas corporales, mientras que los rumiantes pueden utilizar otras fuentes de nitrógeno porque tienen la habilidad especial de sintetizar aminoácidos y de formar proteína a partir de nitrógeno no proteico. Esta capacidad depende de los microorganismos ruminales. Además los rumiantes posean un mecanismo para ahorrar nitrógeno. Cuando el contenido de nitrógeno en la dieta es bajo, la urea, un producto final del metabolismo proteico puede ser reciclada al rumen en grandes cantidades. En cambio en los monogástricos, la urea siempre se pierde en la orina.

Considerando estas adaptaciones del metabolismo de nitrógeno, es posible alimentar rumiantes con fuentes de nitrógeno no proteico y obtener una proteína de alta calidad.

Aminoácidos.

Los aminoácidos son moléculas orgánicas pequeñas con un grupo amino (NH2) y un grupo carboxilo (COOH). La gran cantidad de proteínas que se conocen están formadas únicamente por 20 aminoácidos diferentes. Se conocen otros 150 que no forman parte de las proteínas.

Generalmente, el número de aminoácidos que forman una proteína oscila entre 100 y 300. Los enlaces que participan en la estructura primaria de una proteína son los enlaces peptídicos que es un enlace amida que se forma entre el grupo carboxilo de una aminoácido con el grupo amino de

otro y la eliminación de una molécula de agua. Independientemente de la longitud de la cadena polipeptídica, siempre hay un extremo amino terminal y un extremo carboxilo terminal que permanecen intactos.

Para cada proteína, la secuencia, es decir el orden en que van ordenados los aminoácidos, es diferente. El número de secuencias posibles es tan grande que se explica la gran cantidad de proteínas diferentes. Al tener un átomo de carbono asimétrico pueden presentar isomería. Los de la serie L son los que utilizan los animales. Los sintéticos se encuentran en las dos formas mezcladas (series L y D), por lo que adicionados a la ración no son tan eficaces como los naturales.

Cada especie animal puede sintetizar sólo algunos de los aminoácidos que necesita para formar proteínas y, por lo tanto, depende de la dieta para incorporar aquellos que no puede sintetizar. Esos aminoácidos se los considera esenciales y no porque sean los únicos necesarios para la vida de la especie, sino porque deben estar incluidos en la dieta. Cada especie, tiene su grupo de aminoácidos esenciales propios. Los organismos heterótrofos pueden sintetizar la mayoría de los aminoácidos esenciales. Todos los aminoácidos tiene la misma formula general:

Los aminoácidos esenciales son:

Proteínas.

Lección 5. Digestión, absorción y metabolismo de los lípidos en monogástricos y rumiantes. Lípidos. En los forrajes y semillas solo se encuentran pequeñas cantidades de lípidos. Las raciones consumidas ususalmente por los herbívoros contienen aproximadamente un 4-6 % de lípidos pero son una parte importante de las mismas como fuente de energía. Son sustancias orgánicas insolubles en agua (hidrófobas) y solubles en solventes orgánicos como éter, benceno y cloroformo. En el análisis inmediato de los alimentos se incluyen en la fracción denominada Extracto etéreo.

Clasificación.

Caracteres generales.  

   

Insolubles en agua. En general se les considera a todos los lípidos como sustancias hidrófobas. Solubles en solventes orgánicos del tipo del éter, cloroformo o benceno. Precisamente dicha característica es la que aprovecha el Análisis inmediato de los alimentos para su determinación analítica. La fracción resultante que incluye todas las sustancias de esta naturaleza que contiene un alimento se denomina Extracto etéreo. Escasos en los vegetales. En general el contenido de los vegetales en sustancias grasas es bajo salvo en algunos casos especiales como por ejemplo, la aceituna, el girasol o la soja. Asumen papeles protectores, aislantes y estructurales en los tejidos en los que se encuentran presentes. Presentes en cantidades variables en los animales. Fuente de energía para los animales que los consumen. También, sobre todo los lípidos compuestos y los no saponificables, ejercen en el organismo animal funciones especiales al actuar como enzimas, sustancias hormonales o vitamínicas.

Lípidos simples saponificables.

Grasas.

Se trata de sustancias incoloras, inodoras e insípidas excepto cuando se enrancian que adquieren tonalidades más oscuras y amarillentas y modifican su olor y sabor. Son esteres de la glicerina con ácidos grasos (triglicéridos). En presencia de un alcali sufren el proceso de saponificación que consiste en la hidrólisis de la grasa formándose glicerol y liberándose los ácidos grasos que se unen al alcali formando una sal alcalina hidrosoluble (jabón). En el organismo la saponificación se produce merced a las lipasas segregadas por el páncreas.

Son sustancias hidrófobas, flotan en el agua, no son solubles en ella pero forman emulsiones como por ejemplo las que se encuentran en la leche.

Constituyen el principal componente de la fracción lipídica de los alimentos concentrados llegando hasta un 98%. Abundan en determinadas semillas (soja, girasol, algodón) y frutos (aceituna), aunque en líneas generales son escasas en el reino vegetal.

Figura 1: Estructura básica de los triglicéridos. Los radicales (R1, R2, y R3) consisten de una cadena carbonadas de longitud y saturación variable.

Los ácidos grasos que las integran tienen una gran importancia desde el punto de vista nutritivo. Suelen ser ácidos de cadena larga que tienen entre 4 y 24 átomos de carbono y un solo grupo carboxilo. Son frecuentes los que presentan entre 16 y 18 carbonos en su cadena. Las propiedades físicas y químicas de un determinado triglicérido dependen de:  

Acidos grasos que lo integran. En este sentido hay que resaltar que dentro de un mismo triglicérido puede presentarse un mismo ácido graso o distintos y en posiciones diferentes. Los que tiene menos de diez átomos de carbono son líquidos. El grado de saturación de los ácidos grasos integrantes. Los triglicéridos en los que abundan los ácidos grasos insaturados tienen menor consistencia que los que presentan ácidos grasos con mayor grado de saturación.

Estas propiedades tienen una gran importancia dietética ya que muchos ácidos poliinsaturados se comportan como ácidos grasos esenciales. Los más frecuentes en las grasas son el palmítico, el esteárico y el oleico, este último presente un doble enlace en el centro de su cadena. Las grasas vegetales, de los peces y las aviares tienen mayor grado de insaturación que las de los mamíferos. También dentro de un mismo animal la composición de la grasa varía, por ejemplo la grasa corporal de una vaca está muy saturada es por tanto más consistente, mientras que la de la

leche está integrada por ácidos grasos con escaso número de átomos de carbono por lo que es una grasa más blanda.

Los ácidos grasos comunes encontrados en los lípidos de plantas varían de 14 a 18 carbones (Tabla 1). El punto de fusión determina si el lípido es líquido o sólido a temperaturas normales. El punto de fusión depende principalmente del grado de saturación y en menor grado por la longitud de la cadena carbonada. Los lípidos de plantas contienen 70 a 80% de ácidos grasos no-saturados y tienden a quedarse en estado líquido (aceites). Por otro lado, las grasas de origen animal contienen 40-50% de ácidos grasos saturados y tienden a quedarse en estado sólido (grasas). El grado de saturación tiene un efecto marcado en el modo de digestión por los animales y en el caso del rumiante, si interfieren o no con la fermentación de carbohidratos en el rumen.

Tabla 1: Acidos grasos comunes encontrados en la dieta de vacas lecheras.

Nombre común

Punto Estructura

Abreviada*

de

fusión (° C)

Acidos saturados Miristico

CH3-(CH2)12-COOH

(C14:0)

54

Palmitico

CH3-(CH2)14-COOH

(C16:0)

63

Estearico

CH3-(CH2)16-COOH

(C18:0)

70

Acidos no-saturados Palmitoleico

CH3-(CH2)5-CH=CH- (CH2)7-COOH

(C16:1)

61

Oleico

CH3-(CH2)7-CH=CH- (CH2)7-COOH

(C18:1)

13

Linoleico

CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH

(C18:2)

-5

(C18:3)

-11

Linolenico

CH3-CH2-CH=CH-CH2-CH=CH-CH2-CH=CH-(CH2)7COOH

Ácidos grasos esenciales. Difícilmente se dan carencias o enfermedades carenciales por ausencia de ácidos grasos en la ración, pero en circunstancias muy especiales o experimentalmente se pueden citar problemas de crecimiento y dermatológicos en ratas con dietas carentes de grasa. Los ácidos grasos que se ha comprobado que son esenciales son el linoleico, linolénico y araquidónico. Asimismo se conoce de la importancia que tiene para las aves el ácido linoleico y la

presencia de este mismo ácido y sus homólogos en el sistema nerviosos central y periférico formando parte de los fosfoglicéridos.

Ceras.

Son lípidos sencillos compuestos por un ácido graso de cadena larga esterificado con un alcohol de alto peso molecular. Carecen de valor nutritivo puesto que no son digeridas por animales. Suelen constituir las cubiertas protectores de tejidos animales (lana, plumas) y vegetales.

Lípidos compuestos saponificables. Son ésteres de los ácidos grasos con grupos polares hidrófilos (bases nitrogenadas, azúcares) además de los restos de ácidos graso hidrófobos.

Fosfolípidos. Esteres del glicerol en el que dos grupos hidroxilo se esterifican con dos ácidos grasos de cadena larga y un grupo con ácido fosfórico. Presentan propiedades emulsionantes y realizan importantes funciones en el transporte de lípidos en la sangre. Los más abundantes en animales y vegetales son las lecitinas en las que el ácido fosfórico se encuentra también esterificado con la base nitrogenada colina.

Glicolípidos. Los glicolípidos son

una

segunda

clase

de

lípidos

que

se

encuentran

principalmente en los forrajes (gramíneas y leguminosas). Tienen una estructura parecida a los triglicéridos con la excepción que uno de los tres ácidos grasos ha sido sustituido por un azúcar (usualmente galactosa). Cuando uno de los ácidos grasos se sustituye por un fosfato ligado a otra estructura compleja, el lípido se llama fosfolípido. Los fosfolípidos son componentes menores en los alimentos, encontrados principalmente en las bacterias del rumen. Abundan en los forrajes. Dos grupos hidroxilo del glicerol se esterifican con ácidos grasos especialmente linoleico. Al otro grupo hidroxilo se incorporan una o dos moléculas de galactosa.

Esfingolípidos. Contienen el aminoalcohol esfingosina en vez del glicerol, al que se le añaden un ácido graso, fosfato y colina. Abundan en las membranas del tejido nervioso.

Lipoproteínas. Son lípidos asociados a proteínas específicas. Importantes en el transporte de lípidos por vía sanguínea. Lípidos no saponificables.

No contienen ácidos grasos y no pueden formar jabones. Esteroides. Grupo de compuestos fisiológicamente importantes en animales y vegetales derivados del ciclopentanoperhidrofenantreno. Terpenos. Tienen olores y sabores característicos. Al degradarse producen isopreno. No proporcionan energía a los animales. Dentro de este grupo también se incluyen los carotenoides, pigmentos vegetales yvitaminas liposolubles, como lípidos no saponificables y misiones específicas en el interior del organismo.

Digestión y absorción de grasas. El objetivo primario de la digestión de los lípidos es hacerlos hidromiscibles y puedan absorberse a través de las microvellosidades intestinales que están recubiertas por una capa acuosa. No obstante existen diferencias entre rumiantes y monogástricos.

Digestión y absorción de grasas en monogástricos. La separación mecánica de los lípidos de los demás nutrientes comienza en el estómago por efecto de los movimientos peristálticos. Dicha acción continúa en el duodeno a donde llega una grosera emulsión de grasa que se irá hidrolizando gracias a la acción combinada de las lipasas pancreáticas y de las sales biliares. El tamaño de las partículas de grasa se reduce hasta los 5001000 Ä. La acción detergente de las sales biliares es previa a la acción de la lipasa pues deja las partículas grasas con mayor superficie por unidad de volumen con lo que facilita la acción de las enzimas pancreáticas.

La hidrólisis de los triglicéridos aun así no es total sino que se forman unas micelas de monoglicéridos, ácidos grasos y ácidos biliares que poseen grupos polares que se orientan hacia el exterior en contacto con la fase acuosa, mientras que los grupos no polares forman el corazón lipídico de la micela. Las micelas producidas en la luz del duodeno tienen un diámetro de 50-100 Ä y transportan los lípidos hasta las células de la mucosa intestinal donde son posteriormente absorbidas.

HIDROLISIS Y SATURACION DE LIPIDOS EN EL RUMEN

En el rumen, la mayoría de los lípidos son hidrolizados. El enlace entre el glicerol y los ácidos grasos se rompe dando origen a glicerol y tres ácidos grasos. El glicerol se fermenta rápidamente para formar ácidos grasos volátiles (ver metabolismo de carbohidratos). Algunos ácidos grasos son utilizados por las bacterias para sintetizar los fosfolípidos necesarios para construir sus membranas de células. Otra acción importante de los microbios del rumen es de hidrogenar los ácidos grasos no saturados. En este proceso, un ácido graso resulta saturado porque un enlace doble se reemplaza por dos átomos de hidrogeno. Por ejemplo la hidrogenación convierte el ácido oleico en ácido estearico.

Los ácidos grasos libres en el rumen tienden a ligarse a partículas de alimentos y microbios y propiciar más fermentaciones, especialmente de los carbohidratos fibrosos. La mayoría de los lípidos que salen del rumen son ácidos grasos saturados (85-90%) principalmente en la forma de ácidos palmítico y esteárico) ligados a partículas de alimentos y microbios y los fosfolípidos microbianos (10-15%).

ABSORCION INTESTINAL DE LIPIDOS Los fosfolípidos microbianos y los ácidos grasos procesados son digeridos y absorbidos a través de la pared del intestino. La bilis secretada por el hígado y las secreciones pancreáticas (ricas en enzimas y en especial las lipasas pancreáticas y bicarbonato) se mezclan con el contenido del intestino delgado. Las secreciones biliares en especial los ácidos glicocólico, taurocólico y cólico son esenciales para preparar los lípidos para absorción, formando partículas mezclables con agua que pueden entrar en las células intestinales. En las células intestinales la mayor parte de los ácidos grasos se ligan con glicerol (proveniente de la glucosa de la sangre) para formar triglicéridos. Los triglicéridos, algunos ácidos grasos libres, colesterol y otras sustancias relacionadas con lípidos se recubren con proteínas para formar lipoproteínas ricas en triglicéridos, también llamados lipoproteínas de baja densidad. Las lipoproteínas ricas en triglicéridos entran en los vasos linfáticos y de allí pasan al canal torácico (donde el sistema linfático se conecta con la sangre) y así llegan a la sangre. En contraste con la mayoría de nutrientes absorbidos en el tracto gastrointestinal los

lípidos absorbidos no van al hígado sino que entran directamente a la circulación general. Así los lípidos absorbidos pueden ser utilizados por todos los tejidos del cuerpo sin ser procesados por el hígado.

Figura 2: Metabolismo de lípidos en la vaca.

UTILIZACION DE LOS LIPIDOS DE LA RACION Casi la mitad de la grasa presente en la leche deriva del metabolismo de lípidos en la glándula mamaria. Estos ácidos grasos provienen principalmente de las lipoproteínas ricas en triglicéridos. Un aumento de ácidos grasos con más de 16 átomos de carbono (ácidos grasos de cadena larga) en la dieta aumenta su secreción en la leche, pero también inhibe la síntesis de ácidos grasos de cadena corta y mediana (ver metabolismo de carbohidratos). Así la depresión marcada en la secreción de grasa en la leche cuando se alimenta las vacas con dietas bajas en fibra no puede ser compensando dando más grasa en la dieta. CATABOLISMO DE LOS LIPIDOS. El principal mecanismo de obtención de energía de los lípidos (sustancias con muy alto valor calórico) lo constituye la oxidación de los ácidos grasos, que se obtienen de los triglicéridos mediante hidrólisis por lipasas específicas. Éstos siempre podrán entrar en el ciclo de Krebs, por lo que cuanto más largo sea el ácido graso mayor cantidad de energía se obtendrá en su oxidación. La glicerina también podrá degradarse si se transforma en dihidroxiacetona, entrando en la glucólisis.

En el caso de los mamíferos, los ácidos grasos (en forma de triglicéridos) tienen una importancia capital como almacén y fuente de energía. El exceso de glúcidos ingeridos en la dieta se almacenan en esta forma, para ser movilizados cuando el organismo lo necesite durante los periodos de ayuno o de demanda energética excesiva. Los triglicéridos son especialmente aptos para esta función. El principal mecanismo de obtención de energía de los lípidos lo constituye la llamada beta-oxidación de los ácidos grasos. Estos ácidos grasos se obtienen de la hidrólisis de los triacilglicéridos mediante el concurso de enzimas específicas y se difunden a la sangre donde los ácidos grasos se unen a las albúminas. Los ácidos grasos ligados a la albúmina son transportados a otros tejidos donde pueden emplearse como fuente energética. Los ácidos grasos se unirán a una molécula de coenzima A (CoA) en el citoplasma, quedando activados como acil-CoA. De esta forma pasan a la mitocondria, donde sufren el proceso denominado b-oxidacion. Los ácidos grasos se oxidan completamente hasta dióxido de carbono y agua. El resultado de cada ciclo oxidativo de la beta-oxidación de los ácidos grasos es la formación de equivalentes reductores (FADH2 y NADH), una molécula de acetil-coenzima A y una molécula de acil-coenzima A dos carbonos más corta. El acetil-coenzima A se incorpora al ciclo de Krebs para continuar su degradación. Como ejemplo el balance energético de 1 mol de ácido palmítico (16 átomos de carbono) da lugar a 129 ATP.

GRASAS PROTEGIDAS

La protección de grasas es un proceso consistente en la encapsulación de pequeñas gotitas de aceites en una fina capa proteica. De esta forma las grasa no son atacadas por los microorganismos a su paso por el rumen (no se saturan) por lo que los ácidos grasos insaturados que la constituyen se liberan en el intestino delgado y quedan disponibles para su digestión. Esta posibilidad se ha estudiado en el contexto de la prevención de problemas relacionados con enfermedades del corazón y arterioesclerosis.

EL PAPEL DEL HIGADO EN LA MOVILIZACION DE LIPIDOS En periodos de sub-alimentación o en la primera parte de lactancia, las vacas suplen su demanda energética movilizando los tejidos adiposos ya que la energía proveniente de la dieta no es suficiente. Los ácidos grasos de los triglicéridos almacenados en los tejidos adiposos (ubicados principalmente en el abdomen y encima de los riñones) son liberados hacia la sangre. Los ácidos grasos liberados son absorbidos por el hígado donde pueden ser utilizados como fuente de energía o pueden ser liberados hacia la sangre y utilizados como una fuente de energía en muchos tejidos. El hígado no tiene una alta capacidad para formar y exportar lipoproteínas ricas en triglicéridos y los ácidos grasos excedentes movilizados son almacenados como triglicéridos en las células del hígado. La grasa depositada en el hígado hace difícil al hígado formar más glucosa. Esta condición ocurre principalmente en los primeros días de lactancia y puede llevar a desordenes metabólicos como cetosis e hígado graso.

HIGADO GRASO El hígado graso es un síntoma de un trastorno del metabolismo de las grasas relacionado con la sobreproducción de grasa en el hígado y un mayor transporte de grasa en el hígado o bien por la subutilización de grasa en el hígado o una defectuosa liberación de las mismas. El hígado graso de los gansos y otras anátidas se produce deliberadamente por la administración forzada de grandes cantidades de granos de cereales, Estos tienen un alto contenido en almidón que es transformado en sustancias grasas. COLESTEROL El colesterol se encuentran en todos los tejidos animales, es componente esencial de las membranas adeás de ser precursor de sustancias muy úitles al organismos como hormonas esteroides, ácidos biliares o vitamina D. Sin embargo factores exógenos como raciones ricas en grasas o con elevada proporción de ácidos graso saturados, hacen que el contenido en colesterol del organismo y del plasma se eleve con el consiguiente riesgo de aparición de trastornos vasculares y cardíacos.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF