Diffusion in Solid Metals and Alloys

May 8, 2017 | Author: arianeneves | Category: N/A
Share Embed Donate


Short Description

Diffusion in Solid Metals and Alloys...

Description

LANDOLT-BORNSTEIN Numerical Data and Functional Relationships in Scienceand Technology

Nau Series Editor in Chief: 0. Madelung Group III: Crystal and Solid StatePhysics

Volume 26 Diffusion in Solid Metals and Alloys H. Bakker - H.P. Bonzel - C.M. Bruff * M.A. Dayananda W. Gust - J. Horvath * I. Kaur - G.V. Kidson - A.D. Le Claire H. Mehrer - G.E. Murch * G. Neumann - N. Stolica - N.A. Stolwijk

Editor: H. Mehrer

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

ISBN 3-540-50886-4 ISBN o-387-50886-4

Springer-Verlag Springer-Verlag

Berlin Heidelberg New York New York Berlin Heidelberg

CIP-Kurztitelaufnahme der Deutschen Bibiiothek Zohlenwerfe wd Funkfionen our Nofvrwissensrho/en und Technik/Landolt-BBmstein. - Berlin; Heidelberg: New York; London: Paris; Tokyo; Hong Kong: Springer. Parallelt.: Numerical data and functional relationships in science and

technology. - N.S. teilw. Gesamthrsg.: K.-H. Hellwege; 0. Madelung. - N.S. Gesamthrsg.: 0. Madelung. Gruppe 3, Kristall- und Festk6rperphysik. NE: Landolt, Hans [Begr.]; Hellwege, Karl-Heinz IHrsg.1; Madelung. Otfried [Hrsg.]; PT Ed. 26. Diffusion in festen Metallen und Legierungen/H. Bakker... Hrsg.: H. Mehrer. - 1990

ISBN 3-540-50886-4(Berlin . . .) ISBN o-387-50886-4 (New York.. .) NE: Bakker, H. IMitverf.1; Mehrer, Helmut B-Ins.1

This work is subjectto copyright, All rights are reserved,whether the whole or part of the material is concerned,specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. 0 Springer-Verlag Berlin Heidelberg 1990 Printed in Germany The useof registerednames,trademarks, etc. in this publication doesnot imply, even in the absenceof a specific statement, that such namesare exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: K. Triltsch, Wiirzburg Printing: Druckhaus Langenscheidt KG, Berlin Bookbinding: Liiderita & Bauer-GmbH, Berlin 2163/302&543210- Printed on acid-free paper

Editor H. Mehrer

Institut fur Metallforschung, Universitit Miinster, W-4400 Miinster, FRG

Contributors H. Bakker

Natuurkundig Laboratorium der Universiteit van Amsterdam, 1018 XE Amsterdam, The Netherlands H. P. Bonzel Institut fur Grenzfllchenforschung und Vakuumphysik, KFA Jiilich, W-5170 Jiilich, FRG C. M. Bruff Department of Chemical and Materials Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia M. A. Dayananda School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA W. Gust Max-Planck-Institut fur Metallforschung, Institut fur Werkstoffwissenschaften, W-7000 Stuttgart 1, FRG J. Horveth W-7000 Stuttgart 1, FRG I. Kaur Max-Planck-Institut fur Metallforschung, Institut fur Werkstoffwissenschaften, W-7000 Stuttgart 1, FRG %. V. Kidson Deep River, Ontario, KOJ IPO, Canada A. D. Le Claire Oxford Research Unit, The Open University, Boars Hill, Oxford OX1 RDY, United Kingdom H. Mehrer Institut fur Metallforschung, Universitat Miinster, W-4400 Miinster, FRG G. E. Murch Department of Chemical and Materials Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia G. Neumann Institut fur Physikalische Chemie, FU Berlin, 1000Berlin 33, FRG N. Stolica Institut fiir Metallforschung, Universitat Miinster, W-4400 Mtinster, FRG N. A. Stolwijk Institut fur Metallforschung, Universitlt Miinster, W-4400 Mtinster, FRG

VIII

Preface

high precision became possible. Since then considerable experimental efforts have been devoted to a systematic study of diffusion in all types of metals and alloys using radioactive tracers. In addition during the recent decades, the scientific development of other techniques applicable in diffusion studies like electron microprobe analysis, secondary ion mass spectroscopy, ion beam backscattering profiling, nuclear magnetic relaxation, MEiBbauer spectroscopy, after effect measurements, etc., has been extraordinary. Because of the historical development and the strict desire for a critical evaluation of the available data, the reference lists in the various chapters start in general with references from the 50’s. The critical compilation of data was done in collaboration with 13 experts from the ‘diffusion community’ and has resulted in tables and series of diagrams which present in 12 chapters data for the following properties: self- and impurity-diffusion in metallic elements, self-diffusion in homogeneous binary alloys, chemical diffusion in binary and ternary alloys, diffusion in amorphous alloys, diffusion of interstitial foreign atoms like hydrogen, carbon, oxygen and nitrogen in metallic elements, mass and pressure * dependence of diffusion, diffusion along dislocations, grain and interphase boundary diffusion, and diffusion on metal surfaces. A general introductory chapter acquaints the user of this volume of the basic concepts and experimental methods in the field. The efforts of many people were involved in the preparation of this volume: It was a great experience for me at the beginning, that most colleagues whom I asked were indeed ready to make a contribution. The collaboration with coauthors continued to be excellent. I am also grateful to them for many suggestions to the general introductory chapter. The collaboration with the editor-in-chief, Professor O.Madelung, and with the editorial staff of Landolt-Bernstein, in particular with Dr. W. Polzin, Mrs. I. Lenhart and Mrs. R. Lettmann, was always encouraging. I also have benefited greatly over the years from discussions with my colleagues in Miinster, Dr. N. A. Stolwijk, Dr. N. Stolica, Professor Chr. Herzig, em. Professor Th. Heumann, Professor E. Nembach, with many students who worked for their diploma or doctoral thesis and with the guest scientists Dr. G. Erdelyi and Dr. J. Cermak. In the preparation of this volume during several years, I have been helped by my secretary Mrs. Niehues-Korouma, by Dipl. Phys. W. Lerch and Dip!. Phys. H. G. Hettwer, Mrs. G. Todt and Mr. M. Mevenkamp. I expressmy gratitude to all these persons. I am also grateful to Professor W. L. Johnson who invited me to spend several months in 1990 as a visiting professor at California Institute of Technology in Pasadena during a sabattical leave from Mtinster. The accomplishment of the volume has benelitted from this visit in many respects. Last, but not least, I express my deep gratitude to my wife, Karin, and to my children, Tobias, Julia, Simon and Lisa, for their moral support and their patience during many weekends over several years. Miinster, October 1990

Helmut Mehrer

Ref. p. 301

I

1.1 Fick’s laws, flux of particles, isotropic and anisotropic diffusion

1 General introduction 1.1 Fick’s laws, flux of particles, isotropic and anisotropic diffusion The law governing diffusion processesand hence the redistribution of concentrations is Fick’s first law, which for an isotropic medium or a cubic crystal can be written as J= -D grade.

(1.1)

J is the instantaneous flux of particles of a certain speciesand c is the concentration of the same species.The negative sign in (1.1) indicates the opposite direction of the flux compared to the concentration gradient. The factor of proportionality D is denoted as diffusion coeficient or as diffusivity. Jis expressedin number of particles or moles per unit area and unit time and c in particles or moles per unit volume. Consequently D has the dimension length2 time- l. In the international system of units (SIU) used in this volume, diffusion coefficients are expressedin m 2s- ’ . In the cgs-systemwhich is still used in the literature, too, they are expressedin cm’ s-I . D depends on temperature, pressure and in general also on concentration. Many metallic elements and alloys are cubic. Therefore, in many casesD is indeed a scalar quantity. For anisotropic media and non-cubic crystals Fick’s first law generalizes to J= - BVc,

(I.3

where 9 is a symmetric second rank tensor denoted as the diffusion coefficient tensor. Equation (1.2)meansthat the diffusion coefficient varies with direction. The diffusion flux is parallel to grade only along the three orthogonal principal axes of diffusion. If x1, x2, xj denote these principal axes and J1, J, and J3 the pertaining components of the diffusion flux, (1.2) may still be written as JI=-D,; J=-D 2

i 2 ax,

J,=-D,&. 3 D,, D,, D, denote the principal diffusion coefficients. In general the diffusion flux and grad c are not parallel.

However, if yl, yZ, y3 denote the direction cosines of grad c a diffusion coefficient for the direction (rl, yZ, y3)may be defined as (1.4) D(Y,,Yz,Y~)=Y:.D~+Y~Dz+Y~D~. Therefore, anisotropic diffusion is completely described by the three principal diffusion coefficients. For crystals with orthorhombic and higher symmetry the principal axes of diffusion coincide with the axes of crystallographic symmetry. In uniaxial (tetragonal, hexagonal, trigonal) crystals with the unique axis parallel to the x, axis, we have D, = D, =l=D,. The diffusion coefficients for both directions perpendicular to the unique axis are the sameand are usually denoted as D,. The diffusion coefficient parallel to the unique axis is denoted as D,,. For uniaxial crystals (1.4) reduces to D(0) = D,, cos2 0 + D, sin2 8, (I.3 where ~9is the angle between diffusion direction and crystal axis. For cubic crystals we have D, = D, = D, = D and (1.2) reduces to (1.1). Equation (1.1) and its three dimensional generalizations provide a formal definition of the diffusion coefhcient as the ratio of the flux and the concentration gradient. The steady state methods for measuring diffusion are based directly on Fick’s first law.

Land&-BBmstein New Series III/26

Mehrer

2

1.2.1 Sandwich solution and thin layer solution

[Ref. p. 30

In non-steady state situations the diffusion flux and the concentration vary with time t. In such situations in addition to Fick’s first law ‘a balance equation is necessary.For particles which undergo no reactions this is the equation of continuity

Combining (1.2) and (1.6) yields 8C

ar = div (3 Vc)

(1.7)

which is denoted as Fick’s second law. When the concentration varies only along a certain direction denoted by x (1.7) becomes

If furthermore D is independent of concentration and hence of position x in the sample (1.8) reduces to (1.9) For most diffusion experiments either (1.1) or its generalization to the anisotropic case(1.2),and in non-steady state situations either (1.8) or (1.9), respectively provide appropriate descriptions of the diffusion process.

1.2 Solutions of diffusion equations for constant diffusivity The diffusion coefficient is independent of concentration and position when diffusion occurs in chemically homogeneoussystems.Such measurementsare possible e.g.through the use of radioactive tracer elements.Since these measurementsrequire extremely small amounts of tracers, the system remains essentially homogeneous during the diffusion. The diffusion of an interstitial solute in a metal or alloy solvent may be also described by a constant D as long as the concentration differences are small. In section 1.2 some simple analytical solutions of the equation (1.8) for various initial and boundary conditions are described. For more comprehensive collections of solutions we refer to several textbooks [55H, 59C, 63S, 645,66A, 7X, 85P, 89Sl].

1.2.1 Sandwich solution and thin layer solution A very thin layer of the diffusing speciesof total amount M per unit area is deposited at the boundary x = 0 between two identical samples. After diffusion for time t the concentration is described by M

exp (1.10) 2&E provided that the thickness of the deposited layer is much smaller than 2(D t) *‘2. (1.10)is often also called either instantaneous sowce solution or Gaussian concentration profile. A plot of (1.10)in linear scalesis shown in Fig. 1 for 4 different values of 2 fi. The quantity 2(0 t)‘12 is a measurefor the penetration depth and occurs in most diffusion problems. It is often denoted as d@sion length. Instantaneous source diffusion also occurs when a quantity M per unit area is placed as a source on the surface of a sample and if the diffusing speciesis consumed only by diffusion into the sample.The concentration profile is then given by c(x, t) = ~

-- * c(x, t)=-& exp ( 4Xdt >

(1.11)

The thin layer solution is often used in radiotracer experiments for the determination of D from the concentration profile (seesubsection 1.6.1.2.1).The thin layer solution differs by a factor 2 from the sandwich solution since in (1.11) diffusion occurs into a half-space. Casesin which the thin film condition is violated becauseof low solubility of the diffusing speciesare not uncommon in impurity diffusion. In such casesoften (1.14)can be used instead of(l.11). For a detailed discussion of solubility-limited diffusion the reader is referred to [63 M].

Mehrer

Land&-B6mstein New Series 111126

Ref. p. 301

3

1.2.2 Constant surface concentration and semi-infinite sample

0.6

Fig. 1. Instantaneous source (Gaussian) diffusion profiles. The concentration normalized to the total amount Mis plotted versus penetration distance x for four different values of the diffusion length 2 @.

0

0.5

1.0

1.5

x-

2.0

2.5

:

1.2.2 Constant surface concentration and semi-infinite sample If at t = 0 the concentration in a semi-infinite sample was c(x, 0) = c0 and if at t > 0 the surface concentration is maintained at ~(0, t) = c, the appropriate solution is c - c,

In (1.12)

(1.12)

= erf(x/2 J&) co - c,

erfz = -?- 5 e-“‘du (1.13) fro denotes the error function. A sample may be considered as semi-infinite as long as (D t)l” is very much smaller than the sample dimension in diffusion direction. For co = 0 (1.12) leads to , (1.14) cfc, = erfc(x/2 JiYt) where the complementary error function is defined by erfcz = 1 - erfz.

(1.15)

Equation (1.14) describes the in-diffusion of a certain speciesfrom a surface concentration maintained at c,. A plot of (1.14) in linear scales is shown in Fig. 2 for 4 different values of 2(Dt)‘/2. Figure 3a and 3b show comparisons between the instantaneous source concentration profile (1.11)and the constant surface concentration profile (1.14) in logarithmic scales either as a function of the penetration distance or as a function of the penetration distance squared. For c, = 0 (1.12) leads to c/co = erf(x@ @) . (1.16) (1.16)is the appropriate solution e.g.for the evaporation of a volatile solute element of initial concentration co from a non-volatile solvent, or for the decarburization of a metal in an oxidizing atmosphere. The diffusion flux per unit area which penetrates the surface is D cJ~ in the caseof (1.14)and - D co/ ,/&% in the case of (1.16).The total amount of diffusing substance M(t) which penetrates into the sample is &f(t) = 2c, JzJi

(1.17)

in case of (1.14) and the amount escaping from the sample in the case of (1.16) is M(t) = 2c, JEqi

.

(1.18)

Equations (1.17)or (1.18)may be used in in- and out-diffusion experiments to determine D either from the total amount of material taken up by or lost from a sample. The solutions given in subsections 1.2.1and 1.2.2are applicable as long as (D t)1/2is very much smaller than the sample dimensions in diffusion direction. Under such conditions the samplesmay be considered as infinite or semi-infinite. Land&-Bibstein New Series III/26

4

1.2.3 Diffusion in a membrane

[Ref. p. 30

0.8 0.6 I L.7 :

0.4

0.2 2.5 i0 1.5 2.0 xFig. 2. Constant surface concentration (erfc) diffusion proIiles. The concentration normalized to the constant surface conccntraction r/c, is plotted versusdistance from the surface for four different values of the diffusion length 2 fi. 0.5

1.0-

1 10 ;;I 10-2 II ; 10-s u lo-’ 10.5 0

0 1.5 3.0 k.5 6.0 15 9.0 0.5 1.0 1.5 2.0 2.5 30 b a I’= x2/1,Lit z=x/zyzFig. 3. Instantaneous source (Gaussian) and constant surface concentration source (erfc) diffusion profiles in a semilogarithmic plot. The concentration normalized to the surface concentration is plotted in (a) versus the distance from the surface normalized to the diffusion length z = x/2 ,/% and in (b) versus z*.

1.2.3 Diffusion in a membrane In this subsection we consider two casesof one dimensional diffusion in a membrane of thickness L bounded by two parallel planes. If the surfaces of the membrane at x = 0 and x = L are maintained at constant concentrations c, and c2 as illustrated in Fig. 4a, after some delay time of the order of L2/6D(seebelow) a stead~~ sr~te is reached which is described by

c-c, c,=c,=

x

(1.19)

According to (1.19)the concentration changeslinearly from c1 to c2 through the membrane.The flux acrossthe membrane is given by

J = D(c, -Q/L.

(1.20)

Provided that c,, c2 and L are known, D can be determined from (1.20) by measuring .I. If the region of the membrane - L/2 < x < L/2 is initially at uniform concentration c0 and the surfacesare kept at constant concentration c, either desorption (c, < c,J or ahsorption (c, > cO)can occur as illustrated in Fig. 4 b. The ~~ort-srca~~~ srnre solution of (1.9) is described by c - co -,1-T! cs - co

C-1) n 2=. 2n ”

cos[(2n + 1)

Mehrer

nx/L] exp[-(2n

+ l)2n2Dt/L2].

(1.21 a)

land&BBmstcin New Series III,‘26

Ref. p. 301

1.2.3 Diffusion

in a membrane

Solution (1.21 a) is particularly useful for large timessince then only few terms in the sum contribute significantly. The appropriate solution for small times is

c - co

F (- 1y erfcW + 1) WI - x + 2 (- 1y erfcIOn + 1) WI + x

cs- co

n=O

n=O

2JDt

(1.21 b)

2JDt

Equations (1.21 a) and (1.21 b) can be written in terms of the dimensionless parameters D t/L’ and x/L. Graphs of (c - co)/(c, - co) versus x/(L/2) are shown in Fig. 4c for various values of 4 D tJL2. The total amount M(t) of the diffusing species which has entered the membrane at time t with respect to the corresponding quantity M(co) after infinite time obtained by integration of (1.21 a) is

M(t)

M(a) and by integration

= 1

8 m 1 “FO exp[- 2 (2n + 1)27?

(2n + 1)2x2Dt/LZ]

(1.22a)

of (1.21 b) is I/&

+ 2 jJ (- I)” ierfc nL n=O 2JDt

where ierfc z = 7 erfc u du I

1

(1.22b)

(1.22c)

denotes the integral of the complementaryerror function. For c, = 0 the expressions (1.21) and (1.22) can be used to describe the outgassing of a gaseous or volatile solute from a membrane. The case co = 0 describes the uptake of a gas or a solute by a thin slab of solvent material.

in.

a

0

L

x-

l

-L/2

b

0

L/2

X-

Fig. 4. Concentration distributions in “plane sheet” membranes of thickness L. (a) Steady state distribution with constant surface concentrations c1 and c2 according to (1.19). (b) Schematic non-steady state distribution according to (1.21a) for the casesof absorption c, > c,, and desorption cs < cO. (c) Concentration distribution at various times in a membrane -L/2 < x < L/2 with an initial uniform concentration c0 and surface concentration c, from (1.21) according to [75C]. The numbers on the curves are values of the dimensionless quantity 4 D t/L'.

Land&-Bhmstein New Series III/26

Mehrer

1.2.4 Diffusion in a cylinder; 1.2.5 Diffusion in a sphere

6

[Ref. p. 30

1.2.4 Diffusion in a cylinder We consider a long circular cylinder of radius R in which diffusion occurs everywhere radially. Concentraion is then a function of distance r from the cylinder axis and of time t. If the concentration is initially uniform and equal to c0 throughout the cylinder and if the surface concentration at r = R is maintained at c, for t 2 0, :he solution of (1.9) . , is c - co m exp(- D~,2t) JO(cl,r) -= (1.23a) + n 1 a, Jl 6%RI . cs - co In (1.23)J,(z) and J,(z) are the Besselfunctions of the first kind with orders zero and one, respectively. The r, are roots of J,(cc,R) = 0

which are tabulated in tables of Besselfunctions. Solutions for small times can be found in [75C]. The solution ‘or a cylinder can be written in terms of the dimensionless parameters Dt/R* and r/R. The corresponding graphical representation is given in Fig. 5. The quantity M(t) of the diffusing specieswhich has entered or left the cylinder in time t with respect to the :orresponding quantity M(co) at infinite time is obtained from (1.23) as

-=M(t) M(a)

(1.24) $ -$exp(-Daft). n’ n Equations (1.23) and (1.24) can be used for cylindrical samples to describe the outgassing or the uptake of Ysolute.

I

/I

Y

A

1 -f

//n/llrr

Fig. 5. Concentration distribution at various times in a cylinder of radius R with an initial uniform concentration cOand constant surface concentration c, according to [7X3 The numbers on curves are values of the dimensionless quantity DrjR’.

0.4

0.6

0.8

1.0

r/R -

1.2.5 Diffusion in a sphere We consider a sphere of radius R and restrict ourselves to a case where diffusion is radial. If the surface concentration for t 2 0 is maintained at c, and if the sphere is initially loaded with a uniform concentration co the solution is c - co =,+E cs - co

2 iI....? n xr “=I

sin y

exp[- n*rr* Dt/R*]

(1.25)

where r denotes the distance from the centre of the sphere.The total amount of the diffusing speciesM(t) at time t entering or leaving the sphere obtained by integration of (1.25) is given by

MO) -= M(a)

1 - -$ “el -$ exp(- n27c2Dt/R2)

(1.26)

where M(m) denotes the total amount at infinite time. Curves showing the solution of (1.25) as a function oi r/R for different values of the dimensionless parameter Dt/R* are reproduced in Fig. 6. Equation (1.25)and (1.26) can be used to describe the outgassing or the uptake of a solute from or by a sphere. Mehrer

la”ooll-Bomslel” New Series III/26

Ref. p. 301

1.3 Diff. eq. for cont.-dependent diffusivity;

Fig. 6. Concentration distribution at various times in a sphere of radius R with an initial uniform concentration cO and constant surfaceconcentration c, according to [75C]. The numbers on curves are values of the dimensionless quantity

1.4.1 Self-diff. coefficient

0.2

Dt/R2.

0

0.2

OA

0.6

0.8

'

r/R -

1.3 Diffusion equation for concentration-dependent diffusivity In general the diffusion coefficient will depend on the concentration of the species,which also means that the diffusion coefficient changes with position in the sample. In this case according to (1.8) Fick’s second law must be written as (1.27) In (1.27) we have used d for the chemical diffusion coef$cient (seesection 1.4). The solution of (1.27) in closed form is (apart from special casesof b(c)) usually not possible and numeric or graphic integrations of (1.27) are necessary.The most frequently used method of analysis is the Boltzmann-Matano method which was proposed by Matano [33M] and is based on a transformation of (1.27)which is due to Boltzmann [1894B]. This method is described in subsection 1.6.1.2.2.

1.4 The various diffusion coefficients In this section various experimental situations and the various diffusion coefficients which they entail are described. In order to permit a clear distinction between the various diffusion coefficients in the present chapter the symbol "D" is used for the diffusion coefficient in combination with lower and upper indices. However, the indices are dropped again in the following sections of chapter 1 and in the data chapters of the whole volume whenever it is clear which diffusion coefficient is considered.

1.4.1 Self-diffusion coefficient 1.4.1.1 Pure elements If in a solid of element A the diffusion of A atoms is studied, one speaks about self-diffusion. Studies of self-diffusion usually utilize tracer atoms A* of the same element. In most experiments tracers are marked by their radioactivity. A typical situation for a radiotracer experiment is shown in Fig. 7a. The isotopic mass or the nuclear spin is sometimes used as tag for tracer atoms as well. The tracer self-&&ion coefficient DF is in a microscopic picture according to

DA’ =fI” A

62

related to the jump length 1of atomic jumps and to the mean residence time of atoms r on a certain site in a ,crystalline solid. The correlation factor f is in the caseof self-diffusion often only a numeric factor which depends on the crystal structure and on the diffusion mechanism [7OLl]. Tracer self-diffusion data in pure metallic elements are listed in chapter 2. Land&Biimstein New Series III/26

Mehrer

1.4.1 Self-diffusion coefficient

8

a Fig. sion (a) (b) (c) (d)

b

C

[Ref. p. 30

d

7. Various situations for diffusion experiments which entail different diffucocflicients: thin layer of A* on A: tracer self-diffusion in pure elements thin layer of B* on A: impurity diGsion in pure elements thin layer of A* or B* on AB alloy: tracer self-diffusion in homogeneous alloys diffusion couple of metals A and B: interdiffusion of two metals A and B.

1.4.1.2 Homogeneous alloys In a homogeneous binary AB alloy two tracer self-diffusion coefficients for both A* and B* tracer atoms can be measured.They are denoted as Dii and DAB;),respectively. A typical experimental situation is illustrated in Fig. 7c. Since in a radiotracer experiment the concentration of A* or B* is usually negligible the alloy composition is not modified by the diffusing species.In general the tracer self-diffusion coeflicients depend on the alloy composition. Results on self-diffusion in &/tlte binary alloys containing small atomic fractions X, are frequently represented in terms of (1.29a) 0;; = D,^;(X,) = D,^‘[l + b,X, + b2X; . ..I. Then D:rf is denoted as the sol~~t seljrdtj%oa coeffjcient and DIi as the solute diJiusion coeflcienf. Experimenare usually well represented by (1.29a) and b,, b, etc. are denoted as solvent tal measurements of Dii(X,) enhnrtcet~lcnrfictors. D,A’(O) is the tracer self-diffusion coefficient in the pure solvent. b, is largely determined by perturbations due to isolated solute atoms, b, by pairs of solute atoms, and so on. For similar reasons,the soltrt~ dijirsion coej’kient DrR at low concentrations, can be representedby a power seriesdependence D:f Dy is then also denoted as impurity solute enhnncement factors.

= D,“;(X,)

=

Dr[l

+ B, X, + B,X; . ..I.

(1.29b)

diffusion coefficient of speciesB in solvent A. B,, B, etc. are denoted as

Depending on the specific alloy system, the one component is more or less soluble in the other component, i.e. the primary and terminal phases extend over wider or smaller composition ranges. A primary phase of an alloy AB is the solution of element B in A and thus has the same crystal structure as element A, whereas the terminal phase crystallizes in the crystal structure of element B. For higher concentrations these alloys exhibit usually short-range or even long-range atomic order, which may cause substantial deviations from the behaviour represented by the equations (1.29a, b). Attempts to describe the diffusion coefficients in these concentrared alloys as a function of composition theoretically or even empirically are less successful than for dilute alloys [84Bl]. For a limited number of alloy systems the primary/terminal phase extends over the whole composition range, sometimes with a tendency of atomic long-range order at higher concentrations and lower temperatures. This ordering has a profound influence on the diffusion coefficients of both components. An example is the Fe-Co system. In contrast, many alloy systemsexhibit intermediate phases. In the phase diagram these phasesare separated from the primary or terminal phases or from each other by two-phase regions. They usually crystallize in ordered structures. These may be completely different from the crystal structures of the pure components. Therefore the self-diffusion coeilicients in these materials can not be related to those in the pure constituents at all. A scarcenumber of theseintermediate phasesshow an order-disorder transition at higher temperatures with a considerable influence on the diffusion characteristics. Ordered intermediate phasesare also called intermetallit compods. The number of measurementsof self-diffusion coefficients in intermetallic compounds is relatively small. but it is clear already that the detailed atomic defect structure of these materials is essential to their self-diffusion behaviour. Tracer self-diffusion data in binary alloys and in intermediate phases are listed in chapter 4. Land&BBmstein New Series III,/26

Ref. p. 301

1.4.2, 3, 4 Impurity, chemical, intrinsic diffusion coefficients

9

1.4.2 Impurity diffusion coefficient When the diffusion of a solute B in a solvent A is measured at extremely small concentration of B, which e.g. radiotracers permit (by diffusion of tracer B* into pure metal A (see Fig. 7 b), the impurity diffusion coefficient 0: is observed. Apart from their practical importance impurity diffusion coefficients are also of special theoretical interest becausethey describe the diffusion of an isolated impurity atom in an otherwise pure solvent. Impurity diffusion of metallic elementsin metals is covered in chapter 3 and the diffusion of C, N, and 0 diffusing in metals in chapter 8.

1.4.3 Chemical diffusion coefficient A diffusion coefficient which is measured in a chemical concentration gradient is denoted as chemical coefficient 6 (seealso section 1.3).Any chemical diffusion coefficient describesdiffusion referred to fixed axes in the sample. d can be deduced from the concentration-depth-profile (see section 1.6) and in general depends on concentration. Measurements which entail diffusion in a chemical diffusion gradient are:

difision

(1) Diffusion of interstitial solutes (e.g. hydrogen) in metals (2) Interdiffusion of two metals A and B which form substitutional solid solutions or interdiffusion between two alloys of the metals. An interdiffusion experiment between two pure metals is schematically illustrated in Figs. 76 and 17(a). Obviously diffusion is measured in a chemical gradient. In the case of interdiffusion d is also denoted as interdiffusion coefjcient. For many practical purposes the chemical interdiffusion coefficient is an adequate measure of the diffusion behaviour of an alloy. Data for chemical diffusion are compiled for binary alloys in chapter 5 and for ternary alloys in chapter 6. Chapter 6 also contains an introduction to ternary diffusion, which is beyond the scopeof the general introduction. Diffusion of interstitial solutes except hydrogen is covered in chapter 8 and hydrogen diffusion in chapter 9.

1.4.4 Intrinsic diffusion coefficients The intrinsic diffusion coeficients (or component diffusion coefficients) DA and D, of an AB alloy, which are primarily of interest for more fundamental physical reasons, describe the diffusion of the two speciesA and B relative to the lattice planes. The diffusion rates of A and B are usually not equal. Therefore, in an interdiffusion experiment a net flux of atoms acrossany lattice plane’exists. If the number of lattice sites is conserved the lattice planes in the diffusion zone move with respect to the sample-fixed axes to compensate for the unequal fluxes across it. At the same time lattice sites are created on the one side of the diffusion zone and annihilated on the other side. This can be achieved by creation and annihilation of point defects(vacancies,self-interstitials). The shift of lattice planes with respect to sample-fixed axes is denoted as Kirkendall effect. The Kirkendall effect is illustrated schematically in Fig. 17(b). Inert markers (e.g. fine insoluble wires, oxide particles, etc.) have been incorporated at the initial interface between the two interdiffusing metals A and B or between two interdiffusing AB alloys of different composition. During the diffusion process a shift of the markers takes place. This Kirkendall shift was for the first time observed in [47S].It can be used to determine the velocity u of the markers. u is also denoted as Kirkendall velocity. A more complete description of diffusion in substitutional binary alloys is based on the intrinsic diffusion coefficients. DA and D, can be determined from the chemical diffusion coefficient d and the marker shift: It is possible to show [48D, 49D, 63S, 66A, 85P, 89Sl] that the chemical and intrinsic diffusion coefficients are related by the equation 0” =X,0,

+ X,0,

(1.30)

where X, and X, are the molar fractions of speciesA and B. The velocity u of an inert marker is given by v = (D, - DB) ax&

(1.31)

with aX,/ax denoting the concentration gradient at the marker position. u is also denoted as Kirkendall velocity. Using (1.30) and (1.31) DA and D, can be calculated separately when B and 2)have been measured. An alternative method permits the measurement of the ratio DA/DB instead of v. Such a method which is based on the marker shift in a sandwich arrangement of alloy samples with two different compositions is described in [77Hl]. Land&-Biimstein New Series III/26

Mehrer

10

1.5.1 Direct interstitial mechanism

[Ref. p. 30

Equation (1.30) assumesno net volume change which is only correct for ideal solutions. For non-ideal mixtures (1.30) must be replaced by [7OL2, 85P] (1.32) where t’ and vBdenote the partial molar volumes of speciesA and B, respectively. c, and cs are the concentrations of speciesA and B. Equations (1.31)and (1.32)also require complete flux compensation along the diffusion direction. In practice this is sometimes not the caseas can be seenfor example, from the occurrence of pores [53B] on the side of the diffusion couple suffering a net loss of atoms and from the occurrence of changes in lateral dimensions [52S, 59R]. These “side effects” of the Kirkendall effect are also illustrated in Fig. 17(b). The intrinsic diffusion coefficients DA and D, and the tracer diffusion coefficients Dfi and Dz”;, in an AB alloy differ fundamentally. The latter pertain to a homogeneous alloy whereas the intrinsic diffusion coefficients are measured in the presenceof a chemical composition gradient. This gradient imposes on the otherwise random motion of atoms a bias, which makesatoms preferentially jump in one direction along the composition gradient. It is possible to show [48D, 83B, 85P] that the intrinsic diffusion coefficients and the tracer self-diffusion coefficients in the alloy are related via DA=

D;;d,

(1.33)

D,=

D,“;$

(1.34)

and where 4 is denoted as thcrn~od~man~ic factor. The relations (1.30),(1.31),(1.33) and (1.34) were first established by Darken [48D, 49D]. They are sometimes denoted as Darken’s equations. The thermodynamic factor is given by

+=1+$$

x. ap. z-L.1 kT

I

(1.35)

aXi’

where yi is the activity coejlicient of the species i in the alloy and pi its chemical potential. Because of the Gibbs-Duhem relation Q,is the samefor both speciesof binary alloys. The thermodynamic factor is larger than unity for alloys with negative enthalpy of mixing and smaller than unity in the opposite case.Sometimesit may be even negative which leads to the phenomenon of “uphill’‘-diffusion. Equations (1.33) and (1.34) are approximate forms of the more elaborate expressions DA = Dti4rA

(1.36)

D, = Dik+rB

(1.37)

and where r, and r, denote the so-called vacancy wind factors. For a detailed discussion of these factors the reader is referred to [68M, 83B, 85P]. Often (1.33) and (1.34) are reasonably well obeyed experimentally.

1.5 Atomistic mechanisms of diffusion For a given temperature the diffusion coefticients of different atoms in a metal or an alloy may differ by many orders of magnitude. The diffusivity of an atom depends strongly on the mechanism by which it moves. In this section we describe briefly the most important atomic mechanisms of diffusion. For further details seee.g.[63S, 66A, 85P, 89Sl].

1.5.1 Direct interstitial mechanism Foreign atoms that are located exclusively in interstitial sites of an otherwise perfect crystal may diffuse simply by jumping from interstitial site to interstitial site as indicated in Fig. 8a. This mechanism is denoted as the interstitial (or even more specifically the direct interstitial) mechanism. The movement of interstitially dissolved atoms does not involve intrinsic point defects(vacancies,divacancies, self-interstitials . . .) as diffusion vehicles. Therefore, direct interstitial diffusion is usually much faster than the diffusion of substitutionally incorporated atoms. The direct interstitial mechanism is responsible e.g.for diffusion of hydrogen (seechapter 9) and for the diffusion of other small impurity atoms like C, N and 0 (seechapter 8) in metals. Mehrer

l..andolt-Bornstem New Series III!26

Ref. p. 301

11

1.5.2,3,4 Direct exchange and ring, vacancy, divacancy mechanisms

Fig. 8. Illustration of various direct diffusion mechanismsin zrystals according to [84F]: [a) direct interstitial mechanism (foreign atom [full circle] jumping from interstice 1 to interstice 2, from 2 to 3, etc.); [b) direct exchange mechanism of two neighbouring atoms on regular lattice sites; cc) ring mechanism of 4 neighbouring atoms.

a

b

1.5.2 Direct exchange and ring mechanisms The direct diffusion of substitutionally incorporated foreign atoms or of host atoms on regular lattice sites would involve the exchange of two atoms on neighbouring lattice sites (seeFig. 8 b) or of a ring of atoms (see Fig. SC).So far, no examples of these kinds of direct diffusion have been found presumably because these mechanismsare energetically unfavourable. Usually the diffusion of self-atoms or of foreign atoms on substitutional sites requires intrinsic point defects 1sdzfision vehicles (seethe following subsections 1.5.3to 1.5.6).The fact that the Kirkendall-effect (seesubsection 1.4.4)is observed in substitutional alloys is strong evidence in favour of diffusion mechanismswith diffusion vehicles.

1.5.3 Vacancy mechanism In the vacancy mechanism vacant lattice sites act as diffusion vehicles. A substitutional foreign atom or a self-atom diffuses by jumping into a neighbouring vacancy (seeFig. 9). Self-diffusion in most metals and alloys and diffusion of foreign atoms (impurity diffusion) exclusively dissolved on substitutional sites occur mainly by the vacancy mechanism. Attractive or repulsive interactions between the vacancy and substitutionally dissolved foreign atoms may lead to higher or lower diffusivities of foreign atoms compared with self-diffusion of the solvent.

Fig. 9. Illustration of the vacancy mechanism according to 34F]: the tagged self-atom in tracer self-diffusion or the forAgn atom in substitutional-solute diffusion (full circle) moves, by jumping into the vacancy on its right-hand side (a), to the right (b) by one nearest-neighbour distance of the regular lattice atoms.

a

b

1.5.4 Divacancy mechanism In this casebound pairs of vacancies on neighbouring lattice sites act as diffusion vehicles. A host atom or a substitutional foreign atom on a regular site diffuses by jumping into one vacancy of the neighbouring pair (seeFig. 10).The divacancy mechanism has been proposed to contribute to self-diffusion in face-centeredcubic metals above 2/3 T, (7’,‘,= melting temperature) besidesthe vacancy mechanism [7OS].The temperature dependence of self-diffusion of fee metals has been sometimes analysed in terms of a sum of two Arrhenius terms (see section 1.8).If this is the casethe term with the lower activation enthalpy is attributed to diffusion via monovacancies and the term with the higher activation enthalpy to diffusion via divacancies.

Fig. 10. Illustration of the divacancy mechanism: The tagged self-atom in tracer self-diffusion or the foreign atom in substitutional-solute diffusion (full circle) moves, by exchanging its site with one vacancy of the divacancy on its right-hand side (a), to the right (b) by one nearest-neighbour distance of the regular lattice atoms. Land&Biirnstein New Series III/26

Mehrer

a

b

12

1S.5 Interstitialcy

mechanism; 1.5.6 Interstitial-substitutional

1.5.5 Interstitialcy

mechanisms

[Ref. p. 30

mechanism

In the intersfitinlcy (or indirect irrrerstitinl) mechanism self-b~terstitials act as diffusion vehicles. A self-interstitial replaces a substitutional atom which then in turn replaces a neighbouring lattice atom (Fig. 11). This mechanismis the counterpart of the vacancy mechanism since the self-interstitial is the antidefect ofthe vacancy. In silicon. this mechanism dominates self-diffusion and presumably plays a prominent role in the diffusion of some substitutional solutes [84F]. In metals it is presumably not of importance under thermal equilibrium conditions. However, it is important if self-interstitials are created by irradiation of a crystal with energetic particles. DitTusion in an irradiation environment is not treated in this volume.

a

c

b

Fig. 11. Illustration of the interstitialcy mechanism according to [84F]. In (a) a self-interstitial (open circle in the center of the lattice cell) has approached a tagged self-atom or a substitutional foreign atom (full circle), rcspcctively; in (b) the tagged atom has exchanged its original position with the self-interstitial. In this way the tagged atom has temporarily become an interstitial, whereas the original self-interstitial has disappcarcd by occupying a regular lattice site. In (c) the tagged atom has jumped into a regular site by pushing a self-atom into an interstitial site.

1.5.6 Interstitial-substitutional

mechanisms

Some foreign atoms A may be dissolved on interstitial (Ai) and also on substitutional sites (A,). Such atoms may diffuse via the dissociotire n~~rhnnisntor via the kick-out nwchanism. The two mechanismshave in common that the diffusivity of foreign atoms is much higher when they are located in interstitial sites than when they are located in substitutional positions. Under such circumstances the incorporation of A atoms can occur by fast diffusion as Ai interstitials and their subsequent change-over to the substitutional positions [89Sl]. The difference between the two mechanismslies in the type of the intrinsic point defect which mediates this change-over: In the dissociative mechanism illustrated in Fig. 12a (sometimesalso denoted as the Frank-7imbull or as the Longini mechnnism) the interchange involves vacancies (V) according to the reaction A,+VF-?A,.

(1.38)

The.rapid diffusion of some foreign elements in some polyvalent metals has been attributed to the dissociative mechanism (seechapter 3). For further details seee.g. [84F, 89Sl]. In the kick-out mechanism illustrated in Fig. 12b the interchange involves self-interstitials (I) according to the reaction (1.39) Ai+AA,+I. Examples for the kick-out mechanism have been established for some rapidly diffusing foreign atoms in silicon. So far no examples for kick-out diffusion in metals have been found. For details seee.g. [84F]. Mehrer

Landok-Bkimstein New Series III:26

Ref. p. 301

13

1.6.1.1 Steady-state methods

a

AS

Ai

1

AS Ai b Fig. 12. Illustration of interstitial-substitutional mechanisms: (a) dissociative mechanism (also known as Frank-Turnbull mechanism or as Longini mechanism) (b) kick-out mechanism.

1.6 Methods of measuring diffusion coefficients The experimental methods of measuring diffusion coefficients can be grouped into two categories: Direct methods which are directly based on Fick’s laws and indirect methods. The latter take advantage of the fact that many physical phenomena in solids depend on the occurrence of thermally activated motion of atoms. From suitable measurements of such phenomena it is also possible to determine a diffusion coefficient.

1.6.1 Direct methods Since in methods based on Fick’s laws diffusion always occurs over distances which are large compared to the interatomic distance direct methods are sometimes also referred to as macroscopic methods. One measures a diffusion flux, an integral over a diffusion flux, a concentration profiles or an integral over a concentration profile.

1.6.1.1 Steady-state methods These methods are based directly on Fick’s first law. The usual procedure is to perform a permeation experiment through a “membrane” which e.g.can be a thin plane sheet or a cylindrical tube. The concentrations of the diffusant are maintained at c1 and c2 on the opposite sides of the sample. The diffusion flux J is measured. After a certain delay time of the order of L2/6 D (seesubsections 1.2.3 or 1.2.4)the steady-state concentration distribution.is established in the sample. Then the diffusion coefficient can be deduced according to L

D=Jp Cl

-

(1.40) c2

from measurementsperformed on a plane sheet of thickness L (seeFig. 4a), or according to

D= _

J WW,) 2nR,

c1 -c2

(1.41)

from measurements of e.g. outward diffusion performed on a cylindrical tube with inner and outer radii R, and R,. As an alternative to (1.40), the diffusion coefficient can be determined from D = - J/(&/ax)

(1.42)

if the steady state concentration distribution across the plane sheet is measured. Permeation measurements are applicable when the diffusing speciesis either a gas (e.g.hydrogen, . . .) or if it can’be supplied to and removed from the sample through a gas or vapour phase. Land&-B6mstein New Series III/26

Mehrer

14

1.6.1.2 Non-steady-state methods

[Ref. p. 30

1.6.1.2 Non-steady-state methods These methods are based on Fick’s second law for concentration-dependent (1.8)or concentration-independent diffusivities (1.9).Most frequently the concentration distribution in a sample is measured and the diffusion :oeffrcient is deduced from a comparison with the solution of Fick’s second law appropriate to the conditions >f the experiment. 1.6.1.2.1 Thin layer methods A very thin layer of the diffusant is deposited on a plane surface of the sample (seeFig. 7a, b, c). Vacuum :vaporation, electrochemical or chemical deposition and ion implantation are used as deposition techniques. After the diffusion anneal the concentration profile is given by (1.11)provided that the deposited thickness was very much smaller than (D t) ‘1’. This condition is usually easy to satisfy in radiotracer experiments of self- and impurity diffusion. Many details about the thin layer methods can be found in [84R, 89S2].Several procedures are in use to determine the redistribution of the diffusant: a) Direct profile measurements After diffusion the profile c(x) is usually determined by sectioning the diffusion zone and measuring the concentration (activity) in each section. The tracer diffusion coefficient D (in section 1.4 denoted as Dy in the caseof self-diffusion, as Dr in the caseof impurity diffusion and as 0:; in the caseof self-diffusion of A tracer in a homogeneous AB alloy) may be determined from a plot of logarithm of concentration in each section against the penetration distance squared. According to (1.11)in such a plot bulk diffusion leads to a straight line with slope - l/(4 Dt). Examples for the experimental standard of penetration profiles that can be achieved with this method are shown in Figs. 13 and 14 [87G, 84H]. The excellent linearity of these profiles permits a determination of diffusion coefficient within an accuracy of the order of a few percent. For serial sectioning several techniques are in use: Mechanical sectioning with a precision lathe (10 urn, 5 . lo-r6 m2s-‘), a microtome (1 urn, 5 * lo-‘* m* s- ‘) or a precision grinder (0.5 pm, IO- l8 m2s- ‘). Available microsectioning techniques are chemical or electrochemical attack (5 nm, lo-** m*s-‘) and sputtering by bombardment with ions (2 nm, 5 . 1O-24 m* s- ‘). The numbers in parentheses indicate the minimum section thicknessesand the minimum diffusion coefficients which can be obtained in practice. The section thicknesses and from these the penetration distance can be measured by weighing. For very thin sections weighing may be too inaccurate and optical methods (interference microscopy, . . .) or surface profile methods are to be preferred. For the determination of concentration activity counting is used in radio-tracer experiments. Becauseof the high sensitivity of counting facilities for radioactive substancesextremely small quantities of tracer atoms suffice to study diffusion. Mass spectrometry is sometimes also used for concentration measurements. Ionic sputtering for sectioning is associatedwith secondary ion massspectrometry (SIMS), secondary neutral mass spectrometry (SNMS), or Auger electron spectroscopy (AES) in commercial SIMS, SNMS, or AES analyzers. A schematic illustration of the SIMS technique is shown in Fig. 15. For details seee.g. the review [84P]. Sputtering for sectioning associated with activity counting has been combined in some laboratory devices (see,e.g.,[75Gl, 85M]). An example is shown in Fig. 16. Occasionally electronmicroprobe analysis (EMPA) has been used to measureimpurity diffusion coeflicients. A high sensitivity of the microprobe is necessaryto monitor diffusion from deposited layers of diffusants thin enough to meet the conditions for the use of equation (1.11). b) Residual activity measurement The residual activity emanating from each newly exposed sample surface at depth x in a radiotracer-sectioning experiment can be used to calculate the diffusion coefficient. This method is denoted as Gruzin-Seibel or as residual activity method. c) Surface activity decreasemeasurement The diffusion coefficient may be determined from the total activity emanating from the sample surface at x = 0 after various diffusion anneals. This procedure is denoted as the surface decreasemethod. Both the residual activity and the surface decreasemethod require an integration of (1.11).They should be regarded as less reliable than the sectioning method because they necessitate a knowledge of the absorption characteristics of the radiation concerned and an assumption about the concentration profile. In addition the surface decreasemethod is particularly susceptible to errors arising from sample oxidation, tracer losses and short circuiting diffusion. Mehrer

Land&-B6mst.h New Series Ill/26

1.6.1.2 Non-steady-state methods

Ref. p. 301

.YZ-

IO9 orb. units

105

8

12

16

20.10bnm2 :

arb. units

1OS

104

I x c .P z 0 IO3 .u .z E LA

10’

10

10

0

1 0

5

10

15

20

-Km4cm2 30

x2. Fig. 13. Examples for penetration profiles obtained with the radiotracer method and microtome sectioning according to [87G]. The isotope “‘Te was implanted to a depth of about 30 nm into silver single crystals. Afterwards diffusion anneals were performed at four different temperatures and times resulting in average diffusion lengths much larger than 30 nm. Under such conditions the implants may be considered as thin film sources.The specific activities are plotted as functions of the penetration distances squared. The slopes of these curves correspond to the quantity - 1/(4Dt).

(secondary ions, neutrals 1

Fig. 15. Schematic illustration of the SIMS technique for direct measurements of diffusion profiles. Landolt-Bibstein New Series III/26

Fig. 14. Examples for profiles obtained with the radiotracer method using sputter sectioning accordjng to [84H]. The isotope Q5Zrwas electrodeposited on the surface of a-Zr single crystals. Diffusion anneals were performed at eight temperatures for different times. The specific activities are plotted as functions of the penetration distances squared. The slopes of these curves correspond to the quantity - 1/(4Di). 1 ,

I 2 3 6

Tungsten filament Anode Catcher foil camera Ar’ ions (500 to 1500eV)

2 /

3 Sputtered moteriol (neutral) I

4 Specimen 5 Specimen holder with motor for specimen rototion

Fig. 16. Schematic view of a sputtering device which is used for radioactive diffusants according to [85M]. The penetration profiles shown in Fig. 14 have been obtained with this device.

Mehrer

1.6.1.2 Non-steady-state methods

16

[Ref. p. 30

1.6.1.2.2 Diffusion couple methods with profile measurement Two homogeneous metals or alloys of concentrations c, and c2 are brought into intimate contact across a plane interface and are then allowed to interdiffuse to provide a concentration profile c(x). If the profile is determined in some convenient manner (seea) to d)) b(c) is obtained from b(c*) = -

j xdc (2tac/ax). (1.43) ( L-1 >I Equation (1.43) is the basis of the Bo/tz,tlnnr~-Mntnno method which is illustrated in Fig. 17(a). The chemical Wusion coeficient B (seesubsection 1.4.3)can be determined from an integral over a part of the measured profile and from its slope in P. The origin of the abscissax, which is denoted as the Matano plane, is defined by the condition (1.44)

Ixdc=O.

A graphic interpretation of (1.43) and (1.44) is also given in Fig. 17(a). For concentration independent B the Matano plane coincides with the initial position of the interface. For concentration dependent d this is usually not the case (SWsubsection 1.4.4).

I

F’

n’

Shifted position of markers

Cl

-

lniliol position of morkers

X-

Fig. 17(a). Illustration of the Boltzmann-Matano method for the calculation of d from equation (1.43). The Matano plane is defined by the equality of the two hatched arcas FOhl and F’O’M. Jx-dr is equal to the doubly hatched area FOHP. a@.~ is the slope of the tangent of the concentration profile in P.

Fig. 17(b).. Schematic illustration of the Kirkendall-effect and its side effects: Jn and Ja denote the diffusion fluxes of species A and B; Jhl is the net flux of matter causing the Kirkcndall shift I which is indicated by a fat arrow. The formation of pores on the side of the faster diffusing species (D,, > 0,) and lateral changes of sample dimensions are frequently observed “side effects” of the Kirkendall effect.

Sauer and Freise [62S] have deduced an expression which does not require a knowledge of the position of the Matano plane. Using the expression 7 (1 - Y) dx + (1 - y(x*)) 1 ydx -m where

1

(1.45) (1.45a)

denotes a normalized concentration, the interdiffusion coefficient can be deduced from two integrals over the observed concentration profile and from one slope. Expressions (1.43) to (1.45) are applicable if the molar volume does not change upon interdiffusion. If the molar volume V, = V,(y) depends on concentration, which is the casefor non-idea! systems,instead of (1.45) the expression (1.46) D(y(x*)) = uY*) dx + (1 - y(x*)) 1 + dx 2t (aJl/ax),. m must bc used.

1

Mehrer

Land&-BBmstein New Series 111’26

1.6.1.2 Non-steady-state methods

Ref. p. 301

17

If 0” varies little in the concentration range c1 to c2, which is often the caseif the range c1 to c2 is sufficiently restricted, the appropriate solution for concentration independent D c-q c2-Cl

1 X = - erfc ~ 2 2JE

(1.47)

may be used instead of (1.43),(1.45) or (1.46). It should be pointed out that it is the chemical or interdiffusion coefjcient (see subsection 1.4.3) which is measured with the diffusion couple method. As already mentioned in 1.4.4markers inserted at the interface can be used to locate its final position after diffusion. From this the Kirkendall velocity can be determined. If the chemical diffusion coefficient and the Kirkendall velocity or the ratio DA/DBare known the intrinsic difision coefficients can be calculated according to subsection 1.4.4. The determination of the chemical diffusion coefficient by the diffusion couple method usually requires a measurement of the concentration profile c(x) (seehowever subsection 1.6.1.2.3).Several methods are in use for this purpose: a) Sample sectioning

The profile can be obtained by sectioning the diffusion zone and measuring the quantity of the diffusing speciesin each section with an appropriate method of analysis (seesubsection 1.6.1.2.1).Sample sectioning is of course a destructive technique. It is often indispensible in thin layer experiments, especially when radiotracers are used (seea) in subsection 1.6.1.2.1).For thin film diffusion couples nowadays several non-destructive techniques are available which allow the profile determination without sectioning (seec) and d)) below. b) Electron microprobe analysis (EMPA)

In an electron microprobe analyzer a thin electron beam (diameter about 1 urn) stimulates X-ray emission of the elements to be studied. The profile can be obtained by analysing the intensity of characteristic radiation from the sample along the diffusion direction. The sensitivity in concentration is about 10e3 to 10m4depending on the element. Becauseof the finite thickness of the electron beam and the finite size of the excited volume only diffusion coefficients d 2 10-l’ m2 s- ’ can be measured.EMPA is used for interdiffusion studies in macroscopic diffusion samples.An example for an interdiffusion profile obtained by EMPA is shown in Fig. 18. Interdiffusion coefficients determined from such profiles according to equation (1.45)are shown in Fig. 19 [86H, 89Hl].

-I”000-800 -600

-400

-200 x-

0

200

400

600 pm 800

Fig. 18. Example for an interdiffusion profile obtained with electron microprobe analysis according to [86H, 89Hl]. In this experiment a diffusion couple consisting of an Ag - Sb alloy (3.92 at% Sb) and ofpure Ag was formed and annealed for 35 h at 1048K. Land&-Biimstein New Series III/26

Mehrer

[Ref. p. 30

1.6.1.2 Non-steady-state methods

18

I 0

I 1

I

I

I

I

2

3

4 ot %

5

xSb -

Fig. 19. Interdiffusion coefficients in dilute Ag-Sb alloy as a function of the Sb concentration according to [86H, 89Hl].

c) Rutherford backscattering (RBS) Rutherford backscattering uses an ion beam (usually 4He ions, typical energies several MeV) from an accelerator. A schematic illustration of a backscattering device is shown in Fig. 20. The sample is bombarded along the diffusion direction with monoenergetic ions and one studies the number of elastically backscattered ions as a function of their energy. From this energy spectrum the profile can be determined. The element itrformntion is contained in the kinematic factor of Rutherford scattering which depends on the mass of the scattering atom. The deptlt injbrmation comesfrom the continuous energy loss of the analyzing ions. The yield of backscattered ions is proportional to the concentration of backscattering atoms. This is illustrated schematically in Fig. 21(a). An example for an RBS diffusion study is shown in Figs. 21(b) to 21(d). Becauseof the limited penetration range of the ions (several urn) in a solid sample RBS is applicable when one species is deposited at t = 0 as a fairly thin film. Diffusion coefficients between lo-r6 mzsV1 and 10mz3m2s-’ are accessible.RBS is mainly applicable for the analysis of a heavy element in a light matrix. For details see,e.g., the review [84M3]. m

M

MeV Heions

000000.. 000000.. 000000*a

I

Sample

Preamplifier

1

I

m M

2

jr

Energy

Fig. 20. Schematic representation of a Rutherford backscattering device. The ion beam. the sample and the detector are indicated.

Amplifier

4

c

MCA

Fig. 21(a). Schematic illustration of Rutherford backscattering: A sample consisting of two layers of heavy and light atoms (massesM and m) is shown. Yield and energy of the backscattered ions are monitored with an appropriate detector and a multichannel analyzer (MCA). The energy spectrum is also shown. The high energy end of the spectrum (M-signal) corresponds to the ions backscattered from heavy atoms near the sample surface. The low energy end of the M-signal corresponds to the ions backscattered from heavy atoms near the interface. The signals from heavy and light atoms are separated in the energy spectrum because of the different kinematic factors.

Mehrer

Landolt-Kmstein New Series III!26

1.6.1.2 Non-steady-state methods

Ref. p. 301

x012 I

0.14 pm I 4 nt%

1.0

1.2

1x

1.6 E-

1.8

2.0

2.2 MeV 2.1,

Fig. 21 (b). RBS back scattering spectrum resulting from 2.5 MeV 4He ions incident upon Sn implanted Fe according to [84M3]. The half width of the implanted Sn profile is 25.5 nm. Y,: backscattering yield.

6.0 6.51 0

I 0.5

I 1.0

-

Y 1.5

I -Joe2pm2

2.5

Fig. 21 (c). Depth profiles of Sn in Fe measured during a sequenceof anneals at 823 K with RBS according to [84M3]. The profile at t = 0 corresponds to the as-implanted profile shown in Fig. 21(b).

lo-l7 m2/s 104'8 IP

~I lo-l9

1o-zo

10-2' 10-2'1 1.05

1.10

1.15 l/T-

1.20

1.25&' 1.2540-3K' 1.30

Fig. 21 (d). Diffusion coefficients of Sn in Fe measured by RBS according to [84M3].

d) Nuclear reaction analysis (NRA) In a nuclear reaction analysis experiment a monoenergetic ion beam (protons, 4He, . . .) is used as in RBS. The sample is bombarded in the diffusion direction and the ions induce with the element to be studied a nuclear reaction with a narrow resonance. The yield of the out-going particles created by this reaction is measured as a function of the energy of the incident beam. From the yield versus energy curve the c(x) profile can be determined. As in the caseof RBS, NRA is also applicable to diffusion couples where one speciesis deposited as a thin film. Diffusivities between lo-l6 m2 s-l and 10ez3 m2sM1 are accessible. The NRA technique is convenient for some light nuclei. For details seee.g. the review [84L].

Landolt-BGmstein New Series III/26

Mehrer

20

1.6.1.2 Non-steady-state methods

[Ref. p. 30

1.6.1.2.3 Diffusion couple methods without profile measurement Methods for the determination of chemical diffusion coefficients without profile measurementbut restricted to low solute concentrations - i.e. close to the impurity dijiision cocjkient - are the resistometric analysis developed by Ceresara et al. [66C] and the X-ray dij’k-tion analysis developed by Fogelson [68F, 71Fj: In the resistonwtrir method a thin wire (diameter about 0.1 cm) is plated with a layer (about low4 cm) of the solute metal. The time dependenceof the resistance R of the wire at constant annealing temperature can be used to determine the diffusion coeflicient. The measured quantity usually is

R(t) - R(O) a0 = R(a) - R(0) ’

(1.48)

where R(f) denotes the resistance of the wire at time t. A theoretical expression for 4 is given in [66c]. This expression is based on the solution of Fick’s second law for diffusion into a cylinder given in subsection 1.2.4 and on the approximation that the resistivity is proportional to the solute concentration. From a comparison between the experimental values for 4 and the pertaining theoretical expression D-values can be determined. Accurate D-values are obtained for solute concentration of not more than some 0.1% provided that the solute is sufficiently soluble, that surface hold-up does not occur and that D is not strongly dependent on the concentration. The principle of the X-ray diffr,action annl~~is consists in the measurement of the surface concentration decreaseof the diffusant. A layer of about 10e5 cm is deposited on a foil of about 2. 10m2cm thickness. In a surface layer of about 10m3cm the concentration of the diffusant is determined by analyzing the diffraction line profile. The shift of the line edge is used to find the concentration, which changes upon diffusion by about 1 . ..3%. This method leads to diffusion coefficients very close to the impurity diffusion coef!icient, if the solubility is large enough to ensure the validity of the thin-film solution (1.11) and if a surface hold-up of the diffusant can bc exluded. It is obvious that both methods should be regarded as lessreliable than diffusion couple methods with profile measurement. 1.6.1.2.4 In- and out-diffusion methods Material is allowed to diffuse into, or out of, an initially homogeneous sample of concentration c0 under condition where the surface concentration is maintained at c,. The diffusion coefficient may be deduced from a measurement of the concentration distribution within the sample. For a concentration-dependent b the Boltzmann-Matano method can be used to give a a(c). Concentration-independent diffusion coefficients are determined by comparison with an appropriate analytical solution. For some simple sample geometries(plane sheet,cylinder, sphere) the analytical solutions to Fick’s second law are described in subsections 1.2.3, 1.2.4 and 1.2.5. The diffusion coefficient may also bc calculated from the total amount of material picked up or lost from the sample. For constant diffusivities appropriate expressions for the total amount of material have been given for the above mentioned geometries in subsections 1.2.3, 1.2.4and 1.2.5 as we!!. For concentration-dependent diffusivities this method gives an average diffusivity over the range c0 to c,. 1.6.1.2.5 Other macroscopic methods There are a number of phenomena in solids which for their occurrence depend on diffusion over distances large compared to the interactomic distance. From suitable measurement made on such phenomena it is possible to deduce with some limited accuracy a diffusion coefficient. The more important methods are: - Measurements of the growth rate of a new phase [74S]. A prerequisite of this method is that the growth rate is controlled by diffusion. - Measurements of the sintering kinetics, which under appropriate conditions can be controlled by bulk diffusion. For a recent review see,e.g., [89Gl]. - Measurements of the creep rate of a crystal, when it is controlled by bulk diffusion, which is the case in the so-called Nabarro-Herring creep regime. For a recent review see[8962]. By contrast in the so-called Cable creep regime the creep rate is dominated by grain boundary diffusion (seechapter 12).

Ref. p. 301

1.6.2.1 Relaxation methods; 1.6.2.2 Nuclear methods

21

1.6.2 Indirect methods These methods are not based directly on Fick’s laws. One studies phenomena which are influenced by the occurrence of the thermally activated motion of atoms. These methods are often sensitive to only one or to a few atomic jumps. A relaxation time, a relaxation frequency, a relaxation rate or a line-width is measured.With the help of a microscopic model of the underlying jump processthe mean residencetime z of the diffusing species is deduced. According to D =f d=r/6 (1.49a) a diffusion coefficient can be determined provided that the jump length d and the correlation factor f are known. d is usually obvious from the lattice geometry. f depends on the crystal structure and the diffusion mechanism. The quantity r= l/2 (1.49b) is often denoted as the mean jump frequency of the diffusing atoms. The indirect methods can be grouped into two categories - relaxation methods and nuclear methods:

1.6.2.1 Relaxation methods In the relaxation methods the atomic motion is induced by external influences like mechanical stresses, magnetic fields or temperature jumps. Anelastic or magnetic after-effects or internal jiktion are monitored. A great variety of experimental devices has been used (seee.g. [72N]). The more important relaxation phenomena related to diffusion are: a) Snoek effect

In body-centered cubic metals the interstitial (octahedral or tetrahedral) sites have a tetragonal symmetry. Due to this lower symmetry atoms in interstitial solution like C, N, 0 can give rise to a relaxation phenomenon, the so-called Snoek effect.The Snoek effect can be studied in anelastic after-effect and internal friction measurements. In addition in ferromagnetic material magnetic after-effect measurementscan be used to study the Snoek effect. b) Got-ski effect

Any foreign atom solute in a solvent which produces a lattice dilatation can give rise to an anelastic relaxation which is due to the diffusion in a macroscopic strain gradient. In practice the Gorski effect is detectable only if the diffusion coefficient is high enough. Therefore, Gorski effect measurementshave been used so far only for the study of hydrogen diffusion in metals. For details see e.g., the reviews [72V, 84B2] and chapter 9 of this volume. c) Zener effect

In substitutional AB alloys the reorientation of solute-solvent atom pairs under the influence of an applied stresscan give rise to an anelastic relaxation denoted as Zener effect. From the reorientation kinetics the jump frequencies can be determined for a given pair model.

1.6.2.2 Nuclear methods Examples are nuclear magnetic relaxation (NMR), Miissbauer spectroscopy (MBS) and quasi-elastic neutron scattering (QENS). Like other indirect methods these methods are sensitive to one or a few atomic jumps. a) Nuclear magnetic relaxation

(NMR)

The width of the resonance line and the spin-lattice relaxation time 7” have contributions which are due to the thermally activated motion of atoms. Measurements of the “diffusional narrowing” of the linewidth or of T1as functions of temperature permit a determination of diffusion coefficients (seee.g.[82K, 84S]).A prerequisite for NMR measurementsis a non-vanishing nuclear moment of the diffusing species.An example for a NMR study of diffusion is shown in Fig. 22(a) and (b). NMR methods are particularly appropriate for self-diffusion measurements of solid or liquid metals. In favourable cases(Li, Al, . ..) di ffusion coefficients between lo-l8 m*s-’ and 10-l’ m’s-’ are accessible(see Fig. 25). In the case of foreign atom diffusion NMR studies are handicapped by the fact that a signal from a minority of nuclear spins must be detected.However, in favourable casesNMR studies are possible. For details seee.g. [88G]. Land&-Bhnstein New Series III/26

Mehrer

22

[Ref. p. 30

1.6.2.2 Nuclear methods lo-'0 lo-'0 I.

I

d/S

10-l’ 10-12 lo-”

11

0

4

0 0

16

8

lo-16

0.45 MH; 1.8 4.8 8

x v,= ' . . .

15.5

.

35

.

I Q 10-15 10-1’6 10-n

I3K-’ 10-18

IL1

8 *lo-

Fig. 22(a). Nuclear magnetic relaxation times ‘& and T1pin’Li as a function of reciprocal temperature according to (78MJ. The spin-lattice relaxation time TI has been measured for several Larmor frequencies. In the caseof the spin-lattice relaxation time T,, the magnetic field is given instead of the Larmor frequency. The minima in T, and T,, are caused by the diffusional motion of Li atoms.

10-19 lo-‘91 2

3

4 l/T -

5 40JK-’ 40JK-' 6

Fig. 22 (b). Self-diffusion coeflicient of ‘Li as a function of reciprocal temperature deduced from the NMR data of Fig. 22(a) according to [78M].

b) Miissbauer spectroscopy(MBS) and quasielastic neutron scattering (QENS) The linewidth in Mhshauer spectroscopy and in quasielastic scattering of monoenergetic neutrons both have a contribution Ar which is due to the diffusional motion of atoms. This diffusional broadening can be observed only in systemswith fairly high diffusivities (seeFig. 25) since Ar must be comparable to or exceed the natural linewidth in MBS measurementsand the energy resolution of the neutron spectrometer in QENS experiments. Appropriate probes for MBS are “Fe, ‘19Sn, “‘Eu and 16’Dy. QENS is applicable to a few fast diffusing elementswith a large enough, quasielastic scattering cross section for neutrons. Examples are Na self-diffusion and hydrogen diffusion in metals. Further nuclei with large enough quasielastic scattering cross sections for thermal neutrons are Co, Ni, V, Ti and Cr. Fig. 23(a), (b) shows examples for MBS spectra together with the deduced diffusion coefficients. Fig. 24 illustrates typical effects of diffusive motion on a QENS spectrum. Neither MBS nor QENS are routine methods for diffusion measurements.An interesting aspect of both methods is that they can provide some microscopic information on the elementary jump process. If single crystals are used in MBS or QENS measurementsAr depends on orientation. This anisotropy can be used to deduce the jump direction and the jump length (see e.g. [84M2, 842, SSV]) of the diffusing atoms.

Mehrer

Land&BBmslein New Series III/26

Ref. p. 301

1.6.2.2 Nuclear

Fe

T=1767K

23

methods

FWHM=25.1mm/s

96 100

I c E ,; E 6 z

98 96 100 98 96 100

0.56

2 98 c) 2

701

lii2JK

I -40

,f

I

I -20

I

0.830mm/s 1

I 0

I

I 20

I I mm/s 40

0.60

I

vFig. 23 (a). Mijssbauer spectra for self-diffusion in y-iron (bottom) and S-iron in polycrystalline samples according to [85v]. The Miissbauer source was s7Co in Rh at room temperature. The linewidth increases with increasing temperature due to the diffusional motion of the Fe atoms. For each temperature the full width of half maximum of the Mossbauer line is given in mm s- r .

-6

-4

-2

0

2

4

Fig. 24. Quasi-elastic neutron scattering (QENS) spectrum (number of scattered neutrons N as a function of the energy transfer ho for a fixed scattering vector Q = 1.3 IO-r0 m-r) measured at 365.7 K on a sodium single-crystal according to [80G]. The dashed line represents the resolution function of the neutron spectrometer. The observed line is broadened due to the diffusional motion of sodium atoms. Land&-BBmstein New Series III/26

0.62

0.64

.lO"K“

0.68

Fig. 23 (b). Self-diffusion coefficient of iron as a function of reciprocal temperature deduced from the Miissbauer data of Fig. 23 (a) according to [85v]. Circles represent Mijssbauer results. For reasons of comparison tracer data are shown as solid lines.

96

,!I

0.58

Mehrer

1.6.3 Comparison of diffusivity

24

f D(l,)

t t Lll2/31~1 D(l,)

sputtering

Tracer

SIMS.AES

RBS

----------___--------

f

/

\ EMPA

/

\

NRA

m\

/

/W)

2 f

/rj I I 15

I

I I 10-7’

I

I

s 5 I% -fi .-e cl

-___, IF

I I KY’*

I O-

I,

I 10-1’

E I

[Ref. p. 30

0 I liquid) Olfost)

mech.sect.

/ /

ranges accessible to various methods

I

I I I I K-lo m2/s 10

Fig. 25. Illustration of the ranges of diffusion coeflicients which arc accessible to various experimental methods. The following abbreviations have been used: Tracer = radiotracer method, SIMS = secondary ion mass spectrometry, AES = Auger electron spectroscopy, EMPA = electron microprobe analysis, RBS = Rutherford backscattering, NRA = nuclear reaction analysis, AE = mechanical or magnetic after-effect, IF = internal friction, Gorski = Gorski effect, NMR = nuclear magnetic relaxation, MBS = Mijssbauer spectroscopy, QENS = quasielastic neutron scattering. On the upper scale some values of diffusion coeficients have been indicated: D (liquid) = typical value in a liquid metal, D (fast) = typical value for very fast diffusors in solids, D(T,) = typical value for self-diffusion in metals near the melting temperature, D(2/3 T,) = typical value for self-diffusion at 2/3 T,, D(7;) = typical value for diffusion in amorphous alloys near their crystallisation temperature.

1.6.3 Comparison of diffusivity ranges accessible to various methods Approximate rangesof diffusion coefficients which can be determined by various direct and indirect methods discussed in subsections 1.6.1 and 1.6.2 are illustrated in Fig. 25. Nowadays, the radiotracer method can cover an enormous range of diffusivities provided that microsectioning techniques (e.g.sputtering) and mechanical sectioning techniques (lathe-, microtome- grinder sectioning) are combined. Up to now it is the standard method for studies of self- and foreign atom diffusion provided that appropriate radioisotopes are available. SIMS and AES techniques both utilize depth profiling by sputtering and are therefore appropriate for small diffusion coefficients. The use of AES dictates that the diffusion of foreign atoms other than the major constituents be studied since AES discriminates between different elements only. In SIMS and in SNMS experiments the composition analysis is performed in mass spectrometers which can discriminate between different isotopes of the same element as well. Nevertheless, these techniques are mainly appropriate for foreign atom diffusors. Self-diffusion studies can be performed with enriched natural isotopes. However, they suffer from a background problem due to the natural abundance of these isotopes. RBS and NRA methods are restricted to small diffusion coefficients becauseof the limited penetration ranges of the analyzing ion beams and becauseof the effectsof beam straggling which becomemore serious for larger penetrations. RBS is particular appropriate for heavy solutes in a light solvent whereas NRA is appropriate for somelight solutes including hydrogen. A prerequisite for NRA studies of diffusion profiles is a nuclear reaction with a narrow resonance. EMPA is restricted to relatively large chemical diffusion coefficients since the depth resolution is limited by the size of the volume excited by the electron beam. The number of atomic jumps performed by the diffusing speciesduring anelastic or magnetic after-effect (e.g. Snoek effect) studies of diffusional processes is typically in the order of one. Internal friction studies are particular sensitive to diffusion processesin the sample when the jump rate of atoms is comparable to the vibration frequency of the internal friction device. When applicable the after-effect and the internal friction methods can monitor very small to small diffusion coefficients mainly for interstitial diffusors. The Gorski ejj-,ct is an anelastic after-effect in metal-hydrogen systems.Its cause is hydrogen redistribution by diffusion over distances which are comparable to the sample dimension. This can be monitored for sufliciently large diffusion coeflicients. Amongst the nuclear methods NRA covers the widest range of diffusivities. The range indicated in Fig. 25 can be observed in materials with large gyromagnetic ratios and small non-diffusive contributions to the relaxation rates (in metals e.g. the electronic contributions). MBS and QENS, when applicable, are limited to fast diffusion processes. Landolt-BBmstein New Series III/26

Ref. p. 301

1.7 Diffusion along dislocations, grain boundaries and on surfaces; 1.8 Temperature dependence of diffusion

25

1.7 Diffusion along dislocations, grain boundaries and on surfaces Any real crystalline sample usually contains dislocations, often grain boundaries and always free surfaces. In the context of diffusion these one- or two-dimensional defectsare denoted as diffusion short-circuits or aspaths of high difisivity. They have in common that the jump frequency of an atom in these regions is usually much higher than that of the same atom in the lattice [63S, 66A, 85P, 88K1, 89Sl]. The higher diffusivity in these regions is of interest for two reasons: In experiments made by any of the methods discussed in section 1.6 to determine the diffusivity in the volume, the question arises how much high-diffusivity paths contribute to the measured diffusion coefficient. However, in properly designed experiments these contributions can be reduced to a negligible extent. Effects of surface diffusion can be eliminated by removing the near surface region after the diffusion anneal and before a determination of what is intended to be a volume diffusion coefficient is performed. Obviously single crystals or at least coarse grain polycrystals are to be preferred in accurate measurementsof volume diffusion. Dislocation diffusion can never be completely avoided in metals. However, it can be made negligible by working with well-annealed samples and at relatively high temperatures. This is due to the fact that short circuiting diffusion rates increase less rapidly with increasing temperature than volume diffusion rates. It has been realized that the transport of matter along high-diffusivity paths plays a key role in several important technologies. This is particular obvious for diffusion along free surfaces and for grain boundary diffusion in fine-grain materials. Nowadays it is possible in properly designedexperiments to determine diffusion coefficients in these regions. The few data available for dislocation difision are collected in chapter 11. The data for grain-boundary difjitsion and those for surface diffusion are collected in chapters 12 and 13, respectively. In chapters 11 to 13 introductions to the various phenomena and to the pertaining experimental methods will be given as well.

1.8 Temperature dependence of diffusion Measurements of the diffusion coefficients are usually performed at a series of temperatures. In solids often an Arrhenius equation D=D” exp(-Q/kT) (1.50) describeswell the temperature dependencewithin the studied range. Do is denoted as preexponential factor and Q as activation enthalpy. T denotes the absolute temperature and k Boltzmann’s constant. Typically, for metals and alloys, the pre-exponential factors are in the range low6 m*s-’ & Do 5 10e3 rnzsml and the activation enthalpies in the range 50 kJmol-1 $ Q & 600 kJmol-’ depending essentially on the melting point of the material and on the diffusion mechanism (e.g.direct interstitial or vacancy mechanism) which is operating. In this volume the experimental data will primarily be reported in terms of Do and Q whenever this is possible. In addition the data will be often also represented either as data points or as an Arrhenius line in an Arrhenius diagram - a plot of the logarithm of the diffusion coefficient as a function of reciprocal temperature. When several measurementsexist for the same system an attempt has been made to select what appear to be the most recommended ones. Usually the recommended data will be included in the Arrhenius diagram. Experimentally the Arrhenius diagram is sometimescurved: In such casesthe data may be better represented by a sum of two Arrhenius terms according to D=D?exp(--Q,jkT)+Diexp(-Q&T)

(1.51)

where 0: and 0: have the meaning of pre-exponential factors and Q1 and Qz denote activation enthalpies. In the casesof so-called anomalous metals like B-Ti and B-Zr a representation of curved Arrhenius diagrams by D = D’ exp(- Q’jkT) exp(A/kT’) (1.52) is physically even more meaningful [77S, 88K2]. D’ and Q’ represent “normal” activation parameters and A a curvature parameter. Land&Bhnstein New Series III/26

Mehrer

26

1.8 Temperature dependence of diffusion

[Ref. p. 30

If tits of (1.51) or of (1.52) to the data have been performed by the authors either values of @, @, Q, and Q2 or values of D’, Q’ will also be reported. However, also Arrhenius diagrams are indispensible, whenever the data deviate substantially from a simple Arrhenius equation. Only in some relatively simple casescan the Arrhenius parameters of equation (1.50) be interpreted in a straightfonvard manner in terms of properties of atomistic defects.We mention three such cases: For the &&ion OJ interstitial solirtes which migrate by the direct interstitial mechanism (see Fig. 8 a) in a cubic crystal the diffusion coefficient can be written as D=ga’vOexpz

exp -g . (1.53) ( > Here v” is an attempt frequency of the order of magnitude of the Debye frequency, a the cubic lattice parameter. HM is the activation enthalpy that is necessaryto overcome the barrier between two adjacent interstitial sites and SMthe pertaining entropy. g is a geometric factor which depends on the lattice structure and on the type of interstitial sites involved. E.g. for octahedral interstitial sites we have g = 1 in the fee structure and g = l/6 in the bee structure. in a pure cubic metal - provided that diffusion occurs only by the monovacancy For tracer selfdiffirsion mechanism (seeFig. 9) - the diffusion coefficient of the tracer atoms is given by D = a2jvo exp[(SF + S”)/k] exp[ - (HF + H")/k

T].

(1.54)

In (1.54) HF and HM denote the enthalpies of formation (superscript F) and migration (superscript M) of a vacancy. SF and SMare the corresponding entropies. f is the correlation factor which for the monovacancy mechanism in cubic lattices is a temperature independent constant (fee: 0.781,bee: 0.727,diamond: 0.5).In these casesthe meaning of the pre-exponential factor and of the activation enthalpy are by comparison of equations (1.50) and (1.54) Q=HF+HM (1.54a) and Do = a2fvo exp [(SF+ S”)/k]. (1.54b) For impurity

di$lrsion

in cubic metals

D = a2j2v(:

via the monovacancy

mechanism

exp[(SF + Sy - SB)/k]*exp[-

D

can be written as

(HF - HB + Hy)/kT].

(1.55)

Here Hy is the enthalpy barrier for an exchange of sites between impurity and vacancy and v: the pertaining attempt frequency. Sy is the pertaining entropy. HB and SDdenote the binding enthalpy and entropy between vacancy and impurity. In contrast to self-diffusion the correlation factor f2 for impurity diffusion depends on temperature (see,e.g., [66A, SSP]).Strictly speaking, according to (1.55) D has no longer the Arrhenius form. It is however common practice to recast the temperature variation of D into the form of an Arrhenius law by defining an “effective” activation enthalpy as Q=-kg.

(1.56)

If equation (1.56) is applied to (1.55) one obtains (1.57)

Q=HF-H'+Hy-C

and Do = u2f2v:

exp[(SF + Sy - SB)/k] . exp( - C/k T).

(1.58)

The quantity C is defined as (1.59) and accounts for the temperature dependenceof the correlation factor. If C depends on 7; Q and Do will also depend on r Often the temperature dependence of f2 can be approximated by an Arrhenius equation S2(77 =fpOl

expW)F

T),

(1.59a)

where T denotes the average temperature of the temperature range investigated. Then Q and Do are indeed constant and may be written as Q= HF-H'+HyDo = a"f~v~

C(T)

exp[(SF + S,M- SB)/k]. Mehrer

(1.58a) (1.58b) Landolt-BBmstein New Series III/26

Ref. p. 301

1.9 Mass- and pressure dependence of diffusion

21

For slow diffusion C(T) is usually small, whereas for rapid diffusion by substitutional migration C(F) can be several tens of kJmol-‘; however, its dependence on F is often negligible. As already mentioned experimentally observed Arrhenius plots even for self-diffusion are sometimescurved. The departure from a straight line can be more or less pronounced. In some cases only curvature at high temperatures is observed. In the caseof the so-called “anomalous” bee metals a continuous curvature over the whole temperature range investigated can be present. Sometimes two straight lines with different slopes have been reported. In general, the activation enthalpy increases with increasing temperature. However, in some materials (like e.g. a-Fe) which undergo a magnetic order-disorder transition the activation enthalpy may also increase with decreasing temperature. Several explanations for deviations fom straight Arrhenius diagrams have been put forward: (i) The activation parameters depend on temperature: This has originally been proposed for normal metals [7562]. The idea of temperature dependent activation parameters and their relation with bulk properties has been extensively discussed in [86V]. It is very likely the reason for the strong curvatures observed for some anomalous metals [87H, 88K2] and for different reasons in systemswith order-disorder transitions like a-iron [77H2, 89H2]. The strong curvatures in anomalous metals have been attributed to anomalies in the phonon dispersion curves [87H, 88K2, 89H3]. (ii) Diffusion occurs by more than one lattice diffusion mechanism. This is the case when several defects contribute to the total diffusion coefficient. The slight curvatures of the Arrhenius diagrams of self-diffusion in fee metals which are observed above about 2/3 of the melting temperature have been attributed to the simultaneous contribution of mono- and divacancies to the diffusivity [7OS,78P, 78M]. The tracer self-diffusion coefficient is then given by (1.60) D=D,v+D,v, where D,, and D,, denote the mono- and divacancy contributions, respectively. Since the monovacancy mechanism has a lower activation enthalpy than the divacancy mechanism it will always dominate at lower temperatures. With increasing temperature the relative contribution of divacancies increasesand may cause a slight upward curvature of the Arrhenius diagram. If the mono-/divacancy interpretation is adopted, the activation parameters from a two-exponential fit according to (1.51) can be attributed to the two vacancy type defects. (iii) Diffusion occurs by one mechanism but by several types of atomic jumps. For example, interstitially incorporated foreign atoms may diffuse by jumps between neighbouring octahedral sites as well as by jumps between octahedral and tetrahedral sites. Double jumps of atoms have been proposed to contribute to self-diffusion in the close neighbourhood of the melting temperature [845].

1.9 Mass- and pressure dependence of diffusion Measurements of the diffusion coefficients of self- and foreign atom diffusion are sometimesperformed with tracer atoms of different isotopic mass. The mass dependence of diffusion is of special interest becauseit can provide information about atomic mechanisms of diffusion (seesection 1.5).Isotope effect data are collected in chapter 10, which also contains a brief introduction into the necessaryconcepts. Diffusion coefficients in solids depend on the hydrostatic pressure p. Often the equation D(P) = D(O) ev(-

pAl//kT)

(1.61)

describesthe pressure dependencesufficiently well. The quantity AI/’ is denoted as activation volume. Activation volumes for solid state diffusion are typically in the range between a few tenths of the atomic volume and 1.5 atomic volumes. Activation volumes of diffusion are of practical importance and of scientific interest. The pertaining data are collected in chapter 10 as well.

Land&-Biirnstein New Series III/26

Mehrer

28

1.10 Diffusion in amorphous alloys; 1.11 Further readings

[Ref. p. 30

1.10 Diffusion in amorphous alloys Amorphous metallic alloys are also denoted as metallic glasses or as glassy metals. Diffusion data for amorphous metallic alloys are collected in chapter 7. The study of diffusion in amorphous alloys is a difficult topic from an experimental point of view. Progress was only achieved in the last decade.The difficulties stem entirely from the facts that amorphous alloys are non-equilibrium structures and that the diffusion temperatures and times are limited by the need to avoid crystallization. This entails diffusional penetrations of the order of 0.1 urn and never exceeding 1 pm. Only those methods of section 1.6 for shallow profiles and some indirect methods can be used in diffusion studies of amorphous materials. Diffusion in amorphous alloys is of considerable technological and of scientific interest as we!!. It is of vital concern for the thermal stability of these materials which is determined by the processesof relaxation and crystallization. Di!fusion in non-equilibrium structures without long range order and its atomistic mechanisms are still not as well understood as for crystalline materials.

1.11 Further readings 1.11.1 Textbooks on diffusion Seith. W., Heumann, Th.: DilJlrsion in Metal/err (2nd Edition). Berlin: Springer, 1955. Shcwmon, P.: DilJlrsion in Solids. New York, San Francisco, Toronto, London: McGraw-Hi!!, 1963. Adda, Y, Philibert, J.: La DiJ’irsion dons les Solides. Paris: PressesUniversitaires de France, 1966. Manning, J.R.: Dilfirsion Kinetics of Atoms in Crystals. Princeton: van Nostrand, 1968. Jest, W: Difirsion in Solids, Liquids atin Gases(2nd Edition). New York: Academic Press, 1969. Flynn, C.P.: Poinf Dejects nnd Dilfirsion. Oxford: Clarendon Press, 1972. Shaw, D., (ed.): Atomic Diji~sion in Semiconductors. London, New York: Plenum Press, 1973. Tuck, B.: Introduction to Diffirsion in Semiconductors. IEE Monograph Series 16, Inst. Electr. Eng., 1974. Crank, J.: The Mofhemntics oj DiJiaion (2nd Edition). Oxford: Clarendon Press, 1975. Nowick. A.S., Burton, J.J.,(eds): Diffirsion in Solids - Recent Developments. New York: Academic Press, 1975. Wever, H.: Elektro- und Thermotransport in Metallen. Leipzig: Johann Ambrosius Barth, 1975. Stark, J.P.:Solid Stare Dilfirsion. New York: Wiley, 1976. Larikov, L.N., Geichenko, V.V., Fal’chenko, V.M.: Diffusion Processes in Ordered Alloys. Kiev, 1975. Eng!. Transl. published by Amerind Publ. Comp. New Dehli: 1981. Murch, G.E., Nowick, A.S.: D~j’irsion in Crystalline Solids. New York: Academic Press, 1984. Philibert, J.: Diffirsion et Transport de MariPre dons les Solides. Les editions de physique, France, 1985. Borovskii, LB., Gurov, K.P., Marchikova, I.D., Ugaste, Yu, E.: Interdiffusion in Alloys, 1973, Gurov, K.P., (ed.). Transl. from Russian by the National Bureau of Standards. New Delhi: Amerind. Pub!. Comp., 1986. Kirkaldy, J.S.,Young, D.J.: Dilfirsion in the Condensed Stare. Brookfield, USA: The Insitute of Metals, 1987. Borg. R.J.,Dienes, G.J.: An Introduction to Solid Stare Dijjiision. Boston: Academic Press, 1988. Kaur, I., Gust, W.: Fundnmenrals oj Grain and Interphase Boundary Dij’iision. Stuttgart: Ziegler Press, 1988. Shewmon, P.: Diffirsion in Solids (2nd Edition) Warrendale, Pennsylvania: The Minerals, Metals and Materials Society, 1989.

1.11.2 Collections of diffusion data and data of related phenomena Diffusion data and data of diffusion-related phenomena have also been gathered in: DlQj’irsionData. Wiihlbier, EH., (ed.),Vol. 1-7. Cleveland (USA) and Solothurn (Switzerland): Diffusion Informa-

tion Center. Di@rsion ond Defect Daro (DDD). From 1967, Vol. Sff, Wiihlbier, EH., Fisher, J.D., (eds.).Switzerland: Trans.

Tech. Publicatons; a review appears about three times a year. Adda, Y, Philibert, J.: Lo Diffirsion dons les Solides. Paris: PressesUniversitaires de France, 1966. Neumann, G., Neumann, G.M.: Surface SeljlDiffusion of Metals. Diffusion and Defect Monograph Series,No. 1; Wiihlbier, E, (ed.) 1972. Pratt, J.N., Sellers, P.G.R.: Hecrrorransporr in Metals and Alloys. Diffusion and Defect Monograph SeriesNo. 2. Adda, Y, Le Claire, A.D., Slilkin, L.M., Wiihlbier, EH., (eds.) 1973. Landolt-Btmstein New Series III/26

1.l 1 Further readings

29

Frischat, G.H.: Ionic Dgfusion in Oxide Glasses. Diffusion and Defect Monograph Series No. 314.Adda, Y, Le Claire, A.D., Slifkin, L.M., Wiihlbier, EH., (eds.) 1975. Wever, H.: Elektro- and Thermotransport in Metallen. Leipzig: Johann Ambrosius Barth, 1975. Burton, B.: Dffusion Creep of Polycrystalline Materials. Diffusion and Defect Monograph SeriesNo. 5. Adda, Y, Le Claire, A.D., Slifkin, L.M., Wbhlbier, EH., (eds.) 1977. Dariel, M.P.: Diffusion in rare earth metals, in: Handbook on the Physics and Chemistry of Rare Earths. Gschneidner jr., K.A., Eyring, L. (eds.)Amsterdam: North Holland, 1978, p. 847. Smithells Metals Reference Book (6th Edition). Brandes, E.A., (ed.), Washington: Butterworths, 1983, Chapter 13-1. Butrymowicz, D.B.: Diffusion rate data and mass transport phenomena in copper systems. Vol. 8, INCRA Series, New York, 1983. Kaur, I., Gust, W., Kozma, L.: Handbook of Grain and Interphase Boundary Diffusion Data. Vol. 1 and 2. Stuttgart: Ziegler Press, 1989.

1.11.3 Proceedings Some results concerning diffusion and related subjects are contained in proceedings of international conferences or symposia. The more recent ones are listed below: Cubic Metals. Proc. Int. Conf. held in Gatlinburg, USA, 1964; Wheeler, jr. J.A., Winslow, F.R., (eds.).Metals Park, Ohio: American Society for Metals, 1965. Vacancies and Znterstitials in Metals, Proc. Int. Conf. held in Jiilich, Germany, 1968; Seeger,A., Schumacher, D., Schilling, W!, Diehl, J., (eds.).Amsterdam: North Holland, 1970. Dzffusion in metallischen Werkstoffen, 7. Metalltagung in Dresden, DDR, 1970. Leipzig: VEB Deutscher Verlag fur Grundstoftindustrie, 1970. Atomic Transport in Solids and Liquids, Proc. Int. Conf. held in Marstrand, Sweden, 1970; Lodding, A., Lagerwall, T, (eds.).Z. Naturforsch. 26a, 1971. Diffusion Processes, Proc. Int. Conf. held in Glasgow; Sherwood, J.N., Chadwick, A.V, Muir, WM., Swinton, FL., (eds.).2 Volumes, London: Gordon and Breach, 1971. La Diffusion dans les Milieux Condenses: Thkorie et Application, 19’ Colloque Metallurgie. Saclay: INSTN, 1976. Low Temperature Dgfusion and Applications to Thin Films; Gangulee, A., Ho, P.S.,Tu, K.N., (eds.).Thin solid films 25 (1975) No. 1-2. Properties of Atomic Defects in Metals, Proc. Int. Conf. held in Argonne, USA, 1976; Peterson,N.L., Siegel,R.W, (eds.).J. Nucl. Mater. 69-70 (1978). Point Defects and Defect Interactions in Metals, Proc. Int. Conf. held in Kyoto, Japan, 1981; Takamura, J.I., Doyama, M., Kiritani, M., (eds.).University of Tokyo Press, 1982. Mass Transport in Solids; Benibre, E, Catlow, C.R.A., (eds.),Nato series,Series B, Vol. 97. London, New York: Plenum Press, 1983. DZMETA 82 - Dzffusion in Metals and Alloys, Proc. Int. Conf. held in Tihany, Hungary, 1982; Kedves, EJ.,Beke, D.L., (eds.).Diffusion and Defect Monographs Series No. 7 (1983). Nontraditional Methods in Diffusion, Proc. Symp. held in Philadelphia, USA, 1983; Murch, G.E., Birnbaum, H.K., Cost, JR., (eds.).The Metallurgical Society of AIME (1984). DiJfusion in Solids: Recent Developments. Proc. Symp. held in Detroit, USA 1984; Dayananda, M.A., Murch, G.E., (eds.).The Metallurgical Society (1985). Solute-Defect Interactions - Theory and Experiment. Proc. Int. Seminar held in Kingston, Canada, 1985; Saimoto, S., Purdy, G.R., Kidson, G.V, (eds.).Oxford, New York: Pergamon Press, 1986. Vacancies and Znterstitials in Metals and Alloys, Proc. Int. Conf. held in West-Berlin, 1986; Abromeit, C., Wollenberger, H., (eds.).Materials Science Forum 15-18 (1987). Diffusion in High-Technology Materials, Proc. ASM Symposium held in Cincinnati, USA, 1987; Gupta, D., Romig, A.D., Dayananda, M.A., (eds.),Trans. Tech. Publications, 1988. DIMETA-Diffusion in Metals and Alloys, Proc. Int. Conf. held in Balatonfiired, Hungary, 1988; Kedves, EJ., Beke, D.L., (eds.).Defect and Diffusion Forum 66-69 (1989). Diffusion in Body-Centered

Land&-BCmstein New Series III/26

Mehrer

30

1.12 References for 1

1.12 References for 1 1894B 33M 11s 48D 49D 52s 53B 55s 55H 59c 59R 62s 63M 63s 645 66A 66C 68F 68M 7OLl lOL2 70s 71F 72N 72V 74s 7sc 75Gl 7562 77Hl 77H2 77s 18M 78P 80G 82K 83B 84Bl 84B2 84F 84H 84J 84L 84Ml 84M2 84M3 84P 84R

Boltzmann, L.: Ann. Physik 53 (1894) 960. Matano, C.: Jpn. Phys. 8 (1933) 109. Smigelkas, A.D., Kirkendall, E.O.: Trans. Metall. Sot. AIME 171 (1947) 130. Darken, L.S.: Trans. Metall. Sot. AIME 175 (1948) 184. Darken, L.S.: Trans. Metall. Sot. AIME 180 (1949) 430. Seith, W., Kottmann, A.: Z. Angew. Chem. 64 (1952) 379. Ballufli, R.W.: J. Metals 5 (1953) 726. Seith, W, Heumann, Th.: Diffusion in Metallen. Berlin: Springer, 1955. Hauffe, K.: Reaktionen in und an festen Stoffen. Berlin: Springer, 1955. Carslaw, H.S., Jaeger,J.C.: Conduction of Heat in Solids. Oxford: Clarendon Press, 1959. Ruth, V.: Z. Phys. Chem. Neue Folge 20 (1959) 313. Sauer, E, Freise, V: Z. Elektrochemie 66 (1962) 353. Malkovitch, R.Sh.:Fiz. Met. Metalloved. 15 (1963)880; Phys. Met. Metallogr. USSR (English Transl.). Shewmon, P.: Diffusion in Solids. New York, San Francisco, Toronto, London: McGraw-Hill, 1%3. Jost, W.: Diffusion in Solids, Liquids and Gases.New York: Academic Press,(2”d Edition) 1964. Adda, Y, Philibert, J.: La Diffusion dans les Solides. Paris: PressesUniversitaires de France, 1966. Ceresara, S., Frederighi, T, Pieragostini, E: Phys. Status. Solidi 16 (1966) 439. Fogelson, R.L.: Fiz. Met. Metalloved. 35 (1968) 492. Manning, J.R.: Diffusion Kinetics for Atoms in Crystals. Princeton: von Norstrand, 1968. LeClaire, A.D.: Correlation Effects in Diffusion in Solids, in: Physical Chemistry - an Advanced Treatise, Vol. X, Chapt. 5. New York, London: Academic Press, 1970. van Loo, EJ.J.:Acta Metall. 18 (1970) 1107. Seeger,A., Mehrer, H., in: Vacanciesand Interstitials in Metals. Seeger,A., Schumacher, D., Schilling, W, Diehl, J., (eds.).Amsterdam: North-Holland 1970, p. 1. Fogelson, R.L.: Fiz. Tverd. Tela 13 (1971) 1028. Nowick, AS., Berry, B.S.:Anelastic Relaxation in Crystalline Solids. New York: Academic press,1972. Volkl, J.: Ber. Bunsenges.76 (1972) 797. Schmalzried, H.: Solid State Reactions. New York: Academic press, 1974. Crank, 1: The Mathematics of Diffusion, Oxford: Clarendon Press,(2”d Edition) 1975. Gupta, D.: Thin Solid Films 25 (1975) 231. Gilder, M., Lazarus, D.: Phys. Rev. 145 (1975) 507. Heumann, Th.: Z. Naturforsch. 32a (1977) 54. Hettich, G., Mehrer, H., Maier, K.: Ser. Metall. 11 (1977) 795. Sanchez,J.M., De Fontaine, D.: J. Phys. (Paris) C7-38 (1977) 444. Mehrer, H.: J. Nucl. Mater. 69 + 70 (1978) 38. Peterson, N.L.: J. Nucl. Mater. 69 + 70 (1978) 3. Goltz, G., Heidemann, A., Mehrer, H., Seeger,A., Wolf, D.: Philos. Mag. A 41 (1980) 723. Kanert, 0.: Phys. Rep. 91 (1982) 183. Bocquet, J.L., Brebic, G., Limonge, Y: Diffusion in Metals and Alloys, in: Physical Metallurgy 1983. Cahn, R.W., Haasen, P., (eds.).Amsterdam: North-Holland Physics Publishers (yd edition), 1983, p. 385. Bakker, H., in: Diffusion in Crystalline Solids. Murch, G.E., Nowick, A.S.,(eds.).New York: Academic Press, 1984, p. 189. Berry, B.S., Pritchet, W.C.: in [84Ml]. Frank, W, Gosele, U., Mehrer, H., Seeger,A.: Diffusion in Silicon and Germanium, in: Diffusion in Crystalline Solids. Murch, G.E., Nowick, A.S., (eds.).New York: Academic Press, 1984, p. 62. Horvath, J., Dyment, E, Mehrer, H.: J. Nucl. Mater. 126 (1984) 206. Jacucci, G.: in [84Ml]. Lanford, W.A., Beneson, R., Burman, C., Wielunski, L.: in [84Ml]. Murch, G.E., Birnbaum, H.K., Cost, J.R. (eds.):Nontraditional Methods in Diffusion, Proc. Symp. held in Philadelphia, USA, 1983. The Metallurgical Society of AIME (1984). Mullen, J.G.: in [84Ml]. Myers, S.M.: in [84Ml]. Petuskey, W.T.: in [84Ml]. Rothman, S.J.:The Measurement of Tracer Diffusion Coefficients in Solids, in: Diffusion in Crystalline Solids. Murch, G.E., Nowick, A.S. (eds.).New York: Academic Press, 1984, p. 1. Mehrer

Landolt-BBmstein New Series III/26

1.12 References for 3 84s 842 85M 85P 85V 86B 86H 86V 87G 87H 88G 88Kl 88K2 89Gl 8962 89Hl 89H2 89H3 89K 89Sl 8982

Stokes, H.T.: in [84Ml]. Zabel, H.: in [84Ml]. Mehrer, H., in: Solute-Defect Interactions - Theory and Experiment. Saimoto, S., Purdy, G.R., Kidson, G.V, (eds.).Oxford, New York: Pergamon Press, 1985, p. 162. Philibert, J.: Diffusion et Transport de Mat&e dans les Solides. Les editions de physique, France, 1985. Vogl, G., Petry, W: Diffusion in Metals Studied by Mijssbauer Spectroscopy and Quasielastic Neutron Scattering; Festkiirperprobleme XXV (Advances in Solid State Physics), Grosse, P., (ed.).Braunschweig: Friedrich Vieweg und Sohn, 1985, p. 655. Borovskii, LB., Gurov, K.P., Marchukova, I.D., Ugaste, Yu.E.: Interdiffusion in Alloys, 1973, Gurov, K.P., (ed.). Transl. from Russian by the National Bureau of Standards. New Delhi: Amerind. Publ. Company, 1986. Hagenschulte, H.: Diplomarbeit Universitat Miinster, 1986. Varotsos, P.A., Alexopoulos, K.D.: Thermodynamics of Point Defects and their Relation with Bulk Properties. Amsterdam: North Holland, 1986. Geise, J., Mehrer, H., Herzig, Chr., Weyer, G.: Mater. Sci. Forum 15-18 (1987) 443. Herzig, Chr., Kiihler, U.: Mater. Sci. Forum 15-18 (1987) 301. Gunther, B.: Untersuchungen atomarer Bewegungen in Festkorpern mit Methoden der kernmagnetischen Relaxation. Habilitationsschrift, Universitat Dortmund, 1988. Kaur, I., Gust, W.: Fundamentals of Grain and Interphase Boundary Diffusion. Stuttgart: Ziegler Press, 1988. Kiihler, U., Herzig, Chr.: Philos. Mag. A 58 (1988) 769. Gail, I.: in [89K]. Greenwood, G.W.: in [89K]. Hagenschulte, H., Heumann, Th.: J. Phys. Condensed Matter, 1 (1989) 3601. Hirano, K.-I., Iijima, Y.: in [89K]. Herzig, Chr.: Ber. Bunsenges.Phys. Chem. 93 (1989) 1247. Kedves, F.J.,Beke, D.L. (eds.):DIMETA 88 - Diffusion in Metals and Alloys, Proc. Int. Conf. held in Balatonftired, Hungary, 1988. Defect and Diffusion Forum 66-69 (1989). Shewmon, P.: Diffusion in Solids, 2nd edition. Warrendale, Pennsylvania: The Minerals, Metals and Materials Society, 1989. Slitkin, L.: Metallurgical Transactions 20A (1989) 2577.

Land&-Biimstein New Series III/26

Mehrer

32

2.1 Introduction

[Ref. p. 81

2 Self-diffusion in solid metallic elements 2.1 Introduction Self-diffusion is the most basic diffusion processin solids. In this chapter self-diffusion data are presented for solid metallic elements.Only data are given for “pure” metals. Data for tracer self-diffusion of binary alloys are tabulated in chapter 4 and the relatively few tracer self-diffusion data available for ternary alloys are included in chapter 6. Data on diffusion in the semiconducting elements Si and Ge have not been tabulated, but can be found in [89L]. For a description of experimental methods used in self-diffusion studies the reader is referred to section 1.6 of the “General introduction”.

2.1.1 Order of elements In this chapter data are compiled in the tables and figures according to the position of the substancesin the periodic table in the following order: alkali metals group, alkaline earth metals group, scandium group metals, rare earth metals, titanium group metals, vanadium group metals, chromium group metals, manganesegroup metals, iron group metals, cobalt group metals, nickel group metals, noble metals, zinc group metals, aluminum group metals, group IVB metals, group VB semimetals, group VIB semimetals, actinide group metals.

2.1.2 Use of tables and figures In the tables all measurementsare reported whenever possible in terms of the preexponerztialfictor Do and the octiwtion elltknlpy Q introduced in equation (1.50) of the “General introduction”. In some casesDo and Q values are not given in the original work. Do and Q values which were calculated from the original data points by the present authors are indicated as “recalculated”. The tempctwtwe range given in the tables is the range over which measurements were made and used to calculate Do and Q. Long extrapolations beyond this range may in some casesnot give reliable values for the diffusion coefficient as will be evident from the graphical representation. For zrnimiol crystals Do and Q values are given for diffusion perpendicular and parallel to the crystal axis, whenever experiments on oriented single crystals have been performed. The crystal orientation is indicated by the remarks “I c axis” and “ 11c axis” in the Do column of the table. For mctols wifh dotropic rran.y’htarions Do and Q values for the various crystal structures are reported. The pertaining crystal structure is indicated by a corresponding remark - e.g.“a-Fe” or “y-Fe” -in the Do column of the table as well. The column “Methon/Rernnrks” usually contains the information (i) to (v): (i)

The esperinmtol method is briefly characterized. - In by far the. most self-diffusion studies the thin layer method has been applied in combination with radiotracers (seesubsection 1.6.1.2.1of the “General introduction”). In thesecasesthe radioisotope used -for example 19’Au - will be stated. In some.casesmore than one isotope of the sameelement -e.g. “Na and 24Na - were used and will then be stated as well. In very few cases stable isotopes and mass spectrometry were used and will be mentioned explicitly. Mehrer, Stolica, Stolwijk

Land&-B6mstcin New Series 111~‘26

Ref. p. 811

2.1 Introduction

33

- If a serial sectioning technique in combination with counting of the section activity was used for the

(ii) (iii) (iv) (v)

measurement of the concentration depth profile, which is often the case,this will be indicated by one of the following keywords: “mechanical sectioning”, “sputter sectioning”, “chemical sectioning”, “electrochemical sectioning” or “anodic oxidation”. The keyword “mechanical sectioning” implies either sectioning by a lathe, by a precision grinder, or by microtome cutting or by combinations of these tools. If a serial sectioning technique was applied and not the section activity but the residual activity of the sample was measured this feature will be stated as well. - In some studies indirect methods (see subsection 1.6.2 of the “General introduction”) like nuclear magnetic relaxation (NMR), quasielastic neutron scattering (QENS) or transmission electron microscope observations (TEM) were used.In such casesthe above mentioned abbreviations plus someadditional keywords will be stated. The nominal purity of the samples will be stated whenever this information is available. For a more detailed specification of the purity, which only in some casesis available in the original work, the reference should be consulted. The use of single - or polycrystals will be stated. The grain size of polycrystals will be indicated, whenever this information is available. For uniaxial crystals it is indicated whether both crystallographic directions have been investigated or not. If both diffusion coefficients, D,, and D,, have been measured, a statement which of the two is larger is included. For metals which undergo (an) allotropic transformation(s) a statement is included which crystal structure(s) has (have) been investigated in this particular reference.

The column “Method/Remarks” may also contain some optional information which concerns the following items: [vi) Sometimesin the original work the temperature dependence of the diffusion coefficient is analyzed not only in terms of the simple Arrhenius relationship given by equation (1.50) of the “General introduction” but also in terms of more sophisticated expressions. The most common example is a sum of two exponentials as given by equation (1.51) of the “General introduction”. If this is the case the pertaining preexponential factors 0: and Di and the activation enthalpies Q, and Q, will be stated. If the authors adopt a certain interpretation like for example monoand divacancy contributions to the diffusion coefficient (seeequation (1.60)of the “General introduction”), this will be also mentioned. rvii) If in the same paper additional experiments like e.g. isotope effect experiments, or high-pressure diffusion experiments, or diffusion experiments with other isotopes and/or other matrices were performed this will be indicated as well. Central to the present chapter are the tables. From the tables referencesare made to the figures. For all metals where sufficiently reliable data were available an Arrhenius diagram - a semilogarithmic plot of the diffusion coefficient as a function of the reciprocal absolute temperature-has been included in the figure section. For a given metal those data which are strongly recommended have been included in the pertaining figure. Often data from several different references,which sometimes but not always cover different temperature ranges, are Included in the Arrhenius diagram. This procedure enables the user of chapter 2 to get an impression about the quality of the recommended self-diffusion data. Generally in a figure pertaining to a given metal its melting temperature T, is indicated. Values of T, are :aken from [83Sl]. Several metals undergo an allotropic transformation which transforms one crystal structure nto another when the temperature is raised or lowered. Some metals like for example iron even undergo more :han one allotropic transformation. Usually an allotropic transformation manifests itself by a stepwise change If the diffusion coefficient in the Arrhenius diagram. For metals with (an) allotropic transformation(s) the :ransformation temperature(s) is(are) indicated in the figure. The values of the transformation temperatures are :aken from [73H]. Figures 46 to 48 are the only ones to which no reference is made from the tables. Each of these figures :ontains a whole series of Arrhenius lines pertaining to metals with the same crystal structure. A homologous .eciprocal temperature scaleis used in thesecases.The normalization is performed with the melting temperature If each individual metal. The reader may find these figures useful to get a quick overview over the self-diffusion ,ehaviour of some important metals.

Landolt-Miirnstem

New Series III/26

Mehrer, Stolica, Stolwijk

2.2.1 Self-diffusion in alkali metals

34

[Ref. p. 81

2.2 The self-diffusion tables DO

Q

10-4mZs-1

kJmo!-’

Temperature range K

Method/Remarks

Fig.

Ref.

2.2.1 Self-diffusion in alkali metals Li, Na, K, Rb, Cs, Fr Lithium

(Li)

I.24

55.3

300..*453

NMR: spin lattice relaxation times Tr and T2; ‘Li signal in natural Li; 99.95%; dispersion of 12 urn particles in an oil; liquid Li also studied, Na and Rb also studied

-

55H

3.39

56.9

343 . . *443

6Li in natural Li as stable tracer; polycrystals; 99.8%; mechanical sectioning, mass spectrometry

-

59N

-

50.1

190...240

NMR: spin lattice relaxation time in rotating frame T,,; ‘Li signal in natural Li; dispersion of 15 urn Li-particles in mineral oil

-

65Al

3.123 16Li in ‘Li) D.120 [‘Li in 6Li) -

53.1

308 . ..451

1

7OL

54.0

308 .+.451

6Li in nearly pure ‘Li and ‘Li in nearly pure 6Li as stable tracer; mechanical sectioning, mass spectrometry

54

x 312...450

NMR: spin lattice relaxation time T,; 99.98%; dispersion of 10 urn particles in paraffin oil; T, also studied for dilute Li alloys containing 2, 4, 8 at% Mg; 1.5, 3 at% Cd and 2.75 at% Ag

-

72T

-

47.2

223 ... 373

NMR: spin lattice relaxation in rotating frame TIP; ‘Li signal in natural Li; 99.8%; dispersion of 15 urn particles in mineral oil

-

73w

0.133 (from T, data)

52.75

s 300...455

NMR: spin lattice relaxation times Tl and T,,;

-

75M

(continued)

Mehrer, Stolica, Stolwijk

LandolbB6mstein New Series III,/26

Ref. p. 811

2.2.1 Self-diffusion in alkali metals

DO

Q

10-4m2s-1

kJmol-’

35

Temperature range K

Method/Remarks

Fig.

Ref.

Lithium (Li), continued 0.038 (from TIP data)

50.2

x 192...350

various dispersions of small Li-spheres; purity not specified; Arrhenius diagram slightly curved, two-exponential fit: 07 = 0.038 . 10M4mz s-l Q, = 50.2 kJmol-‘, D,O= 9.5. 10m4m2s-r Qz = 67 kJmol-‘, mono-fdivacancy interpretation

-

75M

-

-

195.**450

NMR: spin lattice relaxation times 7” and T,,; ‘Li in ‘Li; deviation from Arrhenius behaviour, two-exponential fit: 0: = 0.06. 10m4m2s-r Q1 = 50.2 kJmol-‘, 0: = 28.8 . 10m4m2 s-l Qz = 69.5 kJmol-‘, mono-Jdivacancy interpretation

-

76M3

0.33

55.0

220...454

P-NMR: spin-lattice relaxation of polarized radioactive sLi nuclei using asymmetric P-decay; deviation from Arrhenius behaviour, two-exponential fit: 0: = 0.19. 10m4rn’s-’ Q, = 53 kJmol-‘, Di = 95. 10e4 m2s-1 Q, = 76.2 kJmol-‘, mono-/divacancy interpretation

1

85Hl

Sodium (Na) 0.20

41.9

E 223 ... 370

NMR: spin lattice relaxation times TI and T,; 23Na signal in natural Na; 99.95%; dispersion of 12 pm particles in oil; liquid Na also studied, Li and Rb also studied

-

55H

0.242

43.7

273...368

“Na; coarse grain polycrystals; purity not specified; diffusion couple of 22Na doped and undoped Na; mechanical sectioning; effects of hydrostatic pressure also studied

-

52N

(continued)

Landolt-B6irnstein New Series III/26

Mehrer, Stolica, Stolwijk

36

2.2.1 Self-diffusion in alkali metals

Q kJmol-’

[Ref. p. 81

Temperature range K

Method/Remarks

Fig.

Ref.

Sodium (Na), continued 0.145

42.2

273 ... 370

ZZNa, 24Na; polycrystals; 99.95%; mechanical sectioning; Arrhenius diagram slightly curved presumably due to K impurity; isotope effect also studied

2

66M

-

-

194.5... 370

22Na; 99.9995% ; mechanical sectioning; Do and Q values not given, Arrhenius diagram curved, two-exponential tit: 0: = 0.0057m2se1 Q1 = 35.7 kJmol-‘, Dy= 0.72.10m4m2s-’ Q2 = 48.1 kJmo!-‘, mono-/divacancy interpretation; effect of pressure also studied, isotope effect also studied

2

71Ml

0.12

41.5

349..-370

QENS: mono- and polycrystals; purity not specified; dependenceof quasielastic line width on momentum transfer also studied

-

79A

-

-

323...371

QENS; single crystal; 99.999% ; dependenceof quasi-elastic line width on momentum transfer studied for various crystallographic directions; data discussed together with radiotracer data; mono-/divacancy interpretation

-

80G

-

-

zl60...260

NMR: spin lattice relaxation times TI and T,p; 23Na signals in natural Na; 99.95%; dispersion of small particles in paraffin; two-exponential tit: Dy= 0.004~10-4m2sT1 Q, = 35.9 kJmo!-‘, Dz=2.6.10m4 m2sm1 Qz = 46.4 kJmo!-‘, mono-/divacancy interpretation

-

80B

Mehrer, Stolica, Stolwijk

Land&-B6mstein New Series III/26

Ref. p. 811

2.2.2 Self-diffusion in alkaline earth metals

DO

Q

10V4m2s-’

kJmol-’

Temperature range K

Method/Remarks

37

Fig.

Ref.

3

67M

3

71M2

-

55H

4

66D

Potassium (K) 0.31

40.8

42K.

273...333

polyirystals; 99.95% ; mechanical sectioning 0.16

39.2

42K.

22l.s.335

99.9; %;

mechanical sectioning; Arrhenius diagram slightly curved, two-exponential fit: 0: = 0.05 . 10m4m2 s-l Q, = 37.2 kJmol-‘, Di = 1 1IO-4m2s-1 Q, = 47 kJmol-’

Rubidium (Rb) 0.23

39.3

E 280 ... 312

NMR: spin lattice relaxation times TI and T,; *‘Rb and *‘Rb signals in natural Rb; purity not specified; dispersion of 50 urn particles in oil; liquid Rb also studied, Li and Na also studied

Cesium (Cs) No data available.

Francium (Fr) No data available.

2.2.2 Self-diffusion in glkaline earth metals Be, Mg, Ca, Sr, Bs, Ra

Beryllium (Be) 0.52

157.4

836...1342

165

841...1321

160.8

923.s.1473

(I c axis) D.62

[II c axis)

3.36

Land&Bhstein New Series III/26

I and 11hexagonal c axis investigated: ‘Be; single crystals; purity not specified; mechanical sectioning and measurement of residual activity; DII ’ D, ‘Be; polycrystals; 99.9%; mechanical sectioning and residual activity measurement .

Mehrer, Stolica, Stolwijk

68P2

[Ref. p. 81

2.2.3 Self-diffusion in scandium group and rare earth metals

38

DO

Q

10-4m2s-’

kJmo!-’

Temperature range K

Method/Remarks

Fig.

Ref.

Magnesium (Mg) 1.5 :l c axis) tfc axis)

136.1

74l.e.908

134.8

741 as.908

1.75 [I c axis) 1.78 [II c axis)

138.2

775...906

139

775 ..a906

56s

1 and 11hexagonal c axis investigated: 28Mg; single crystals; 99.9%; mechanical sectioning I and II hexagonal c axis investigated: 2*Mg; single crystals; 99.99%; mechanical sectioning and section activity as well as residual activity measurement; anisotropy carefully investigated and found to be weak DJD,, x 1.1 3.. 1.2

Calcium (Ca) 161.2

8.3

68Pl

45Ca; polycrystals; 99.95% ; mechanical sectioning and residual activity measurement; 14C 5gFe, 235U and 63Ni diffusion in &I also studied

773 ..* 1073

Strontium (Sr)

No data available.

Barium @a)

No data available.

Radium (Ra)

No data available.

2.2.3 Self-diffusion in scandium group and rare earth metals 2.2.3.1 Scandium group metals SC,Y, La

Scandium (SC)

No data available

Yttrium (Y) 280.9 tl” c axis a-Y) 0.82 (II c axis a-Y)

252.5

1173..*1573 1173...1573

a-Y, 1 and (1hexagonal c axis investi-

7

70Gl

8

69D2

gated: ‘lY; single crystals; mechanical sectioning and measurement of residual activity; D,, ’ DA

Lanthanum (La) 1.5 (B-W

188.8

923.s.1123

fee B-La investigated: r4’La; polycrystals (0.1 to 0.2 mm grain size); 99.95%; mechanical sectioning

(continued) Mehrer, Stolicaj Stolwijk

LandobB6mstein New Series III/26

Ref. p. 811

2.2.3 Self-diffusion in scandium group and rare earth metals

39

Temperature range K

Method/Remarks

Fig.

Ref.

102.6

1140...1169

bee r-La investigated: 14’La; strongly twinned samples; 99.95%; mechanical sectioning

8

73D

125.2

1151... 1183

bee y-La investigated: 140La; polycrystals; 99.85%, (detailed specification of purity); mechanical sectioning

8

74L3

fee y- and bee 6-Ce investigated: 141C!e; coarse grain polycrystals; 99.9%; mechanical sectioning

9

71D

1018...1064

bee 6-Ce investigated: 141C!e; polycrystals; 99.9%; mechanical sectioning with measurement of section and residual activity; data from [71D] also listed

9

73L2

1003,1028

bee 6-Ce investigated: 141Ce; polycrystals; 99.9%; mechanical sectioning; pressure dependence at two temperatures studied

-

74L2

fee y-Ce investigated: 141Ce; polycrystals; 99.9%; mechanical sectioning; pressure dependence studied

-

76M2

10

69Dl

DO

Q

10-4m2s-1

kJmol-’

Lanthanum (La), continued 1.3. 10-Z

(G-4 0.11 W4

2.2.3.2 Rare earth metals Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

Cei-ium (Ce) 153.2

801..+ 965

0.012 (&Ce)

90

992... 1044

0.007 (&Ce)

84.7

0.55 We)

-

-

-

-

930

Praseodymium (Pr) 0.087 (P-W

123.1

1075~~~1150 bee p-Pr investigated: 14’Pr; polycrystals; 99.96%; mechanical sectioning; p-Pr classified among “anomalous” bee metals; ‘141n, 14’La, ‘(j6Ho also studied in j3-Pr

Neodymium (Nd) No data available.

Land&-BBmstein New Series III/26

Mehrer, Stolica, Stolwijk

40

2.2.3 Self-diffusion in scandium group and rare earth metals

DQ

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

11

77F

12

77F

13

72s

hcp a- and bee y-Yb investigated: 16gYb; polycrystals; 99.9%; mechanical sectioning

14

74F

bee y-Yb investigated: r6’Yb; polycrystals; 99.9%; mechanical sectioning; pressure dependencestudied at these temperatures

-

Prometheum (Pm) No data available.

Samarium (Sm) No data available.

Europium (Eu) 1.0

144.0

771 *.* 1074

bee Eu investigated: ls2Eu; polycrystals; 99.7%; mechanical sectioning

Gadolinium (Gd) 0.01 (B-G4

136.9

1549...1581

bee g-Gd investigated: “‘Gd; polycrystals; 99.5%; mechanical sectioning; non-Gaussian penetration curves in the temperature range 1538*..1548 K

Terbium (Tb) No data available.

Dysprosium (Dy) No data available.

Holmium (Ho) No data available.

Erbium (Er) 4.51 (1 c axis) 3.71 (II c axis)

302.6

1475 .+.1685

301.6

1475...1685

1 and 11hexagonal c axis investigated: 169Er. single cr&tals; 99.9%; mechanical sectioning; DJD,, = 1.11... 1.16

Thulium (Tm) No data available.

Ytterbium (Yb) 0.034 (a-Yb) 0.12 (y-W

146.8

813...990

121.0

995 .** 1086

-

-

1003,1033, 1073

14

75F

Lutetium (Lu) No data available.

Mehrer, Stolica, Stolwijk

Landoh-kimstein New Series Ill/26

Ref. p. 811

2.2.4 Self-diffusion in titanium group metals

DO

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

41 Fig.

Ref.

-

63L

2.2.4 Self-diffusion in titanium group metals Ti, Zr, Hf

Titanium (Ti) 6.4. lo-* (a-Ti)

122.7

-

-

963...1123

44Ti.

poly&ystals; 99.9%; mechanical sectioning and residual activity measurement 1172... 1813

(P-V

44Ti; polycrystals; 99.9%; mechanical sectioning; curved Arrhenius plot, two-exponential fit: 0: = 3.58. 10m8rn’s-l Q1 = 130.6kJmol-‘, 0: = 1.09. 10e4 m2sm1 Q, = 251.2 kJmol-‘; 48V in Ti also studied

15

64M2 .

1.9. 10-3 (P-W

152.8

1173:.. 1856

44Ti; polycrystals; 99.9%; mechanical sectioning and residual activity measurement

-

68Wl

4.54.10-4 (P-V

131.0

1228... 1784

44Ti; co-diffusion with g4Nb or g5Nb; polycrystals; 99.97% ; mechanical sectioning; TiNb alloys also studied

-

79P

6.6. 10-s (a-Ti)

169..l

1013...1149

15

80D

[P-Ti)

-

1176...1893

44Ti; polycrystals; 99.97%; mechanical sectioning and residual activity measurement; great-depth tails observed 44Ti. poly:rystals; 99.98%; mechanical sectioning; curved Arrhenius plot: interpreted as phonon softening effect on monovacancy migration, data including [64M2] described as D = 3.5 . 10T4 exp( - 328.0 kJ/RT) . exp(4.1 T,/T”) rn’s-l, T in K

15

87Kl

Land&-Biirnstein New Series III/26

Mehrer, Stolica, Stolwijk

42

2.2.4 Self-diffusion in titanium group metals

DO

Q

10-4m2s-1

kJmo!-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

Zirconium (Zr) 2.4. 10-4 P-W

126.0

1441... 1776

g5Zr; polycrystals; metallic impurity content specified; mechanical sectioning; influence of a-g transition also studied

16

61K

-

1174...2020

g5Zr; polycrystals; 99.94%; mechanical sectioning; curved Arrhenius plot described by D = 3. 10-10(T/1136)15~6 _ [82.06+0.1294(7’-1136)]kJ

16

63F

&Zr)

RT g5Nb in Zr also studied 2.1 . lo-’

113.0

1013~~~1130 g5Zr; polycrystals; 99.99% ; mechanical sectioning and residual activity measurement; “Nb in Zr also studied

-

68Dl

-

1215...2088

8gZr; co-diffusion with “Zr. polycrystals (5 .. .7 mm grain size); detailed specifications of purity; mechanical sectioning; Do and Q not given; influence of preannealing examined; isotope effect also studied

16

70G2

-

1124

g7Zr; single crystals; purity not specified; mechanical sectioning; D = 5.6.10-18 m*s-1 D”=42.10-18~*~-1: 26A< 44Ti, 51Cr, 54Mn, 5gke, 6oCo and l**Sb in Zr also studied

16

74Hl

1189...2000

g5Zr and 88Zr; polycrystals; 99.985%; mechanical sectioning; curved Arrhenius plot: data including [61K, 63F, 70G2] described by D = 0.3 * 10m4exp( - 301.0 kJ/RT) * exp(3.39 Tz/T') m*s-‘, T in K; isotope effect also studied

16

79H

[or-Zr)

WW

[a-Zr)

ww

(continued)

Mehrer, Stolica, Stolwijk

LandoIl-BBmslein New Series III/26

Ref. p. 811

2.2.4 Self-diffusion in titanium group metals

DO

e

10-4m2s-1

kJmol-’

43

Temperature range K

Method/Remarks

Fig.

Ref.

Zirconium (Zr), continued 6.8 . 10-4 (P-W

145.0

1218... 1518

g5Zr; polycrystals; nuclear grade; mechanical sectioning; “Fe and ‘lC!r in Zr also studied

-

81P

3.1 . 10-s (P-W

105.3

1167... 1476

“Zr. poly&ystals; nuclear grade; mechanical sectioning; 48V in Zr also studied

16

82P

(c+Zr)

-

779... 1128

“Zr. , single crystals of the same random orientation; 99.99% ; sputter sectioning; downward curved Arrhenius plot

16

84H

Hafnium (Hf) 1.2. 10-3 W-W

162.0

2068 . . .2268

l8lHf; polycrystals; 97.9% (Zr 2.1%); mechanical sectioning

17

65W2

7.3. 10-6 @-HO

174.2

1197... 1756

17’Hf and ‘*lHf; polycrystals; 97.3% (Zr 2.7%); mechanical sectioning and residual activity measurement

-

68Dl

4.8. 1O-3 (P-W

183.4

2058...2431

175Hf and ‘*lHf; polycrystals; 97.3% (Zr 2.7%); mechanical sectioning and residual activity measurement

-

68Wl

0.86 (II c axis of cl-Hf) 0.28 (1 c axis of a-Ho

370.1

1470... 1883

17

72D

348.3

1538... 1883

a-Hf 1 and 11hexagonal c axis investigated: “lHf; single crystals; 97.9% (Zr 2.1%); mechanical sectioning; DL ’ DII

1.1 . 10-3 (P-W

159.2

2012...2351

‘8lHf; polycrystals; 97.1% (Zr 2.9%); mechanical sectioning; isotope effect also studied

17

82H

-La”*olt-tlornsfe*” ..-.. New Series III/26

Mehrer, Stolica, Stolwijk

44

2.2.5 Self-diffusion in vanadium group metals

DO

Q

10-4mZs-’

kJmo!-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

-

65Ll

I8

65P2

18

74P

18

79MI

-

81T

2.2.5 Self-diffusion in vanadium group metals V, Nb, Ta

Vanadium (V) 0.011

255.4

1275... 1673

49.

singie crystals; 99.7%; mechanical sectioning; separate Arrhenius term for 1873...2161 K: Do = 58. 10e4 m’s-‘, Q = 383.1 kJmo!-’ 0.36

308.4

1153...1629

49.

singie crystals (99.99%), polycrystals (99.9%); mechanical and chemical sectioning; separate Arrhenius term for 1629...2106 K: Do = 214. 10e4 m’s-‘, Q = 394.1 kJmol-‘; grain boundary diffusion observed; “Fe in V also studied 0.288

309.6

997... 1915

48V.

singie crystals; 99.9%; mechanical sectioning and anodic oxidation; great-depth tails observed; separate Arrhenius term for 1915...2115 K: Do = 173. 10m4m’s-‘, Q = 409.3 kJmo!-’ 0.0208

272.1

1446... 1649

48~.

singie crystals; 99.7%; mechanical sectioning; separate Arrhenius term for 1649...2166 K: Do = 79.9. 10m4m*s-’ Q = 385 kJmo!-‘; two-kxponential analysis also given -

308.8

1200~~~1600 NMR: motional narrowing and relaxation time T,; slV signals in natural V; polycrystals; 99.9%; Do not given; monovacancy interpretation; oxygen migration also studied, effects of oxygen-vacancy pairs discussed

(continued) Mehrer, Stolica, Stolwijk

Land&-Bhstein New Series III/26

Ref. p. 811

2.2.5 Self-diffusion in vanadium group metals

DO

e

10-4m2s-1

kJmol-’

45

Temperature range K

Method/Remarks

Fig.

Ref.

1323... 1823

48v.

18

83A

18

83Gl

Vanadium (V), continued 1.79

331.9

single crystals and polycrystals; 99.97% (s.c.); mechanical sectioning, residual and section activity measurement; separate Arrhenius term for 1823...2147K: Do = 26.81 . 10m4rn’s-l, Q = 372.4 kJmol-‘; enhancement factors due to alloying with Fe and Ta also determined 0.10

298.1

1333 ... 1840

NMR: relaxation time T,,; ‘IV signal in natural V; polycrystals; 99.95% and 99.8%; mono-vacancy interpretation: Do includes correlation factor J;,, = 0.727; oxygen migration also studied

Niobium (Nb) 12.4

439.6

1858;..2393

g5Nb; polycrystals; 99%; mechanical sectioning

-

60R.I

1.3

397.7

1970...2430

g5Nb; polycrystals (5 mm grains); purity not specified; autoradiographic method and mechanical sectioning; 6oCo and 55Fe in Nb also studied

-

62P

1.1

401.9

1224...2668

g5Nb; polycrystals (99.75%) and single crystals; mechanical sectioning and anodic oxidation; greath-depth-tails observed; no appreciable effect of oxygen found; 18’Ta in Nb also studied

19

65L2

0.61

397.3

1421...2509

g5Nb; single crystals (99.9%) and polycrystals; mechanical sectioning and anodic oxidation; residual and section activity measurement; 5gFe,6oCo and 63Ni in Nb also studied

19

77Al

Land&-Biirnstein New Series III/26

Mehrer, Stolica, Stolwijk

(continued)

46

2.2.5 Self-diffusion in vanadium group metals

DO

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

Niobium (Nb), continued 0.524

395.6

1354...2690

g5Nb; single crystals; 99.98%; mechanical sectioning and anodic oxidation; Do and Q recalculated from given data, two-exponential fit: 07 = 0.008. 10m4m2sm1 Q, = 349.3kJmol-‘, D, = 3.7. 10e4 m2s-’ Q, = 438.0 kJmol-‘, mono-/divacancy interpretation; no influence of oxygen content found

-

-

1929...2673

g5Nb, g2Nb; single crystals; purity not specified; mechanical sectioning; two-exponential tit: 0: = 0.015. 10e4 m2s-’ Q, = 354.1 kJmol-‘, 0: = 4.6. low4 m2s-’ Q2 = 442.9 kJmol-‘, mono-/divacancy interpretation; isotope effect also studied

-

-

2300’..2510

g5Nb; crystal type not specitied; purity not specified; electromigration study; mechanical sectioning; “Fe, 6oCo, ‘*‘Ta and ‘lCr in Nb also investigated Tantalum

0.124

78El

8332

(Ta)

413.2

1523.s.2576

‘s2Ta; mono- and polycrystals; 99.67%; mechanical sectioning and anodic oxidation; g5Nb in Ta also studied; Do and Q calculated from DNb/DT"= 1.85

65Pl

423.6

1261...2993

“‘Ta; single crystals; 99.98%; mechanical and sputter sectioning; monovacancy interpretation

83Wl

Mehrer, Stolica, Stolwijk

Land&-Bhstein New Series III/26

Ref. p. 811

2.2.6 Self-diffusion in chromium group metals

DO

e

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

47 Fig.

Ref.

2.2.6 Self-diffusion in chromium group metals Cr, MO, W

Chromium (Cr) 0.28

306.5

1473... 1873

“Cr; large grain polycrystals; 99.99% ; mechanical sectioning and residual activity measurement

-

62Hl

1.6

339.1

1273...2023

51Cr. mono- and polycrystals (2 ... 3 mm); 99.98%; mechanical sectioning; great-depth-tails observed; ‘ICr and 63Ni diffusion in NiCo alloys also studied

-

7lA

970

435.4

1369...2093

51Cr; single crystals; 99.995%; mechanical sectioning; isotope effect also studied

21

76M4

1280

441.9

1073... 1446

51Cr. singIL crystals; 99.99% ; sputter sectioning; analysis includes data of [76M4]

21

81M

Molybdenum (MO) 4

481.5

2073 . . .2448

ggMo; polycrystals; 99.3% (0.7% w); sectioning method not specified, residual activity measurement; la5W in MO also studied

22

59B

2.77

464.7

1973...2193

“MO* polycjstals (1 *. .2 mm grain size); 99.97% ; mechanical and electrochemical sectioning; only three data measured

22

60B2

0.38

422.0

2173...2353

“MO; polycrystalline wires; purity not specified; electrochemical sectioning in radial direction; effects of grain boundary diffusion and recrystallization also observed

-

61D

(continued) Land&Biimstein New Series III/26

Mehrer, Stolica, Stolwijk

48

2.2.6 Self-diffusion in chromium group metals

DO

Q

10-4m2s-1

kJmo!-’

[Ref. p. 81

Temperature range K

Method/Remarks

Fig.

Ref.

Molybdenum (MO), continued 0.1

386.0

2123.3.2618

ggMo; single crystals; purity not specified; mechanical sectioning; also measurementson polycrystals yielding higher diffusion coefficients

-

63A

8

488.2

1360...2113

ggMo; single crystals; 99.99%; mechanical and sputter sectioning; two-exponential fit: 0: = 0.126. 10m4rn’s-’ Q, = 437.1 kJmo!-‘, 0: = 139. 10e4 m2s-’ Q2 = 549.0kJmo!-‘, mono-/divacancy interpretation

22

79M2

-

65A2

23

69P

23

llA2

23

78M

Tungsten (W) 42.8

641.0

2939 ... 3501

18SW.

single’crystals; 99.99%; mechanical sectioning; le3Re and lB4Re in W also studied 1.88

587.4

2073 ..- 2676

188~.

single’crystals; purity not specified; anodic oxidation; greath-depth tails observed; g5Nb and ‘**Ta in W also studied 15.3

626.3

2042...2819

187W.

single’crystals; purity indicated by residual resistivity ratio 10’; mechanical sectioning and anodic oxidation; seealso [84A] -

-

1705...3409

‘s7W and lssW; single crystals; 99.999% ; mechanical sectioning and anodic oxidation; greath-depth tails observed; two-exponential fit: 0: = 0.04. 10V4 m*s-’ Q, = 525.8kJmo!-‘, 0: = 46. 10T4 m*s-’ Q2 = 665.7 kJmo!-‘, mono-/divacancy interpretation

Mehrer, Stolica, Stolwijk

Landok-B6mstein New Series III/26

2.2.7, 8 Self-diffusion in manganese, iron group metals

Ref. p. 811

DO

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

49 Fig.

Ref.

-

69A

-

64N

2.2.7 Self-diffusion in manganese group metals Mn, Tc, Re

Manganese (Mn) -

-

1390... 1508

54Mn; polycrystals; 99.95% and 99.3%; mechanical sectioning; great-depth tails observed; preliminary data for bee and fee phase; Do and Q not given

Technetium (Tc) No data available.

Rhenium (Re) -

511.4

1520... 1560

field ion microscopy, time dependence of needle shape; purity not specified; Do not determined

2.2.8 Self-diffusion in iron group metals Fe, Ru, OS

Iron (Fe) 118 (paramagnetic cl-Fe)

281.5

970... 1167

a-Fe investigated: 55Fe; coarse grain polycrystals; high purity material (not specified); influence of magnetic order-disorder transition on D observed; Do and Q values only from D values at least 50 K above Curie temperature

24

60Bl

239.5

1082...1178

-

61B

270

1337... 1666

w und y-Fe investigated: 55Fe; single and polycrystals; 99.97%; sectioning and residual activity measurements as well as surface decrease method employed; influence of magnetic order-disorder transition on D observed; Do and Q values for a-Fe only from D values at least 20 K above Curie temperature

238.6

1686... 1781

&Fe investigated: 59Fe; polycrystals; high purity material (not specified); mechanical sectioning; Co diffusion in &Fe also studied

-

63B

I

Land&-Bijmstein New Series III/26

Mehrer, Stolica, Stolwijk

(continued)

50

2.2.8 Self-diffusion in iron group metals

DO

Q

10-4m2s-1

[Ref. p. 81

Method/Remarks

Fig.

Ref.

kJmol-’

Temperature range K

240.7

1701... 1765

24a

665

240.7

999...1157

CL-and &Fe investigated: 55Fe, “Fe; coarse grain polycrystals; 99.97%; only data for &Fe included in Fig. 24 a; 6oCo diffusion in u- and &Fe also studied

311.1

1223... 1473

y-Fe investigated: 55Fe; coarse grain polycrystals (0.1 .*.0.3 mm); surface decreasemethod

24a

6612

284. 1

1444... 1634

y-Fe investigated: 5gFe, 55Fe; coarse grain polycrystals (2.. .5 mm); 99.98%; mechanical sectioning; data taken from Fig. 3 of [68H]; isotope effect also studied

24a

68H

-

1168,1169

24a

68W2

-

1641

-

1683... 1733

a-, y- and &Fe investigated: 52Fe, 5gFe; polycrystals; 99.97%; mechanical sectioning; Do and Q values not given; mainly isotope effect in a-, y- and &Fe studied CL-,y- and &Fe investigated: 55Fe, 5gFe. coarse grain polycrystals (3. **4 mm); 99.999% ; mechanical sectioning; Do and Q values not given; mainly isotope effect in u-, y-, &Fe studied

24a

69G

Iron (Fe), continued 2.01

:&Fe) 2.01 baramagnetic u-Fe)

0.49

(Y-Fe)

(a-Fe) (Y-Fe) (b-Fe)

(a-Fe) We) :6-Fe)

993,1043, 1142

-

1394,161l 1725

Iferromagnetic a-Fe)

-

784...1017

ferromagnetic a-Fe investigated: 5gFe; single crystals; samples with different purity studied; sputter sectioning; influence of magnetic order-disorder transition on D investigated; strong deviation from Arrhenius behaviour observed

24a 24b

77H

121 [paramagnetic a-Fe)

281.6

1067...1168

paramagnetic a-Fe investigated: 5gFe; polycrystals with 300 urn average grain size; 99.97%; mechanical sectioning; 48V diffusion in u-Fe also studied

24a

87G

(continued)

Mehrer, Stolica, Stolwijk

LandoltTl6mstein New Series III/26

51

2.2.9 Self-diffusion in cobalt group metals

Ref. p. 811

DO

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

766... 1148

“Fe, “Fe; coarse grain polycrystals; 99.97%; sputter sectioning; influence of magnetic order-disorder transition on D investigated; strong deviation from Arrhenius behaviour observed; isotope effect also studied

24b

881

754...1163

paramagnetic and ferromagnetic a-Fe investigated: “Fe, 55Fe; single crystals; 99.98%; mechanical and sputter sectioning; influence of magnetic order-disorder transition on D investigated; strong deviation from Arrhenius behaviour observed; dislocation diffusion also studied

24a 24b

89M, 9OL

6Oco. coarse grain polycrystals; 99:4% ; mechanical sectioning and measurement of residual activity; 6oCo and 63Ni diffusion in Co-Ni ,alloys and in Ni also studied

25

62H2

Iron (Fe), continued iara- and ferromagnetic a-Fe)

-

(para- and ferromagnetic a-Fe)

-

Ruthenium (Ru)

No data available.

Osmium (OS)

No data available.

2.2.9 Self-diffusion in cobalt group metals Co, Rh, Ir

Cobalt (Co) 274

1045 ... 1321

260.5

1465... 1570

1.66

287.5

1320... 1584

6OCo; polycrystals with 500 urn average grain size; 99.5%; mechanical sectioning and measurement of residual activity; ‘j°Co and 63Ni diffusion in Co -Ni alloys also studied

-

65Hl

0.55 (ferro- and paramagnetic Co)

288.5

896... 1745

To, -co, 6Oco; coarse grain polycrystals; 99.99% ; mechanical and sputter sectioning; no significant influence of the ferromagnetic order transition observed; isotope effect also studied for five temperatures

25

79B

iejrromagnetic Co) 0.17

[paramagnetic Co)

Land&-Biirnstein New Series III/26

Mehrer, Stolica, Stolwijk

(continued)

[Ref. p. 81

2.2.10 Self-diffusion in nickel group metals

52

DO

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

944...1743

S’Co; single crystals; 99.999% ; lathe und sputter sectioning; Doand Q values from a forced Arrhenius fit, small deviations attributed to divacancy contributions and magnetic ordering

25

88L

-

70s

26

86A

Cobalt (Co), continued 2.54 (ferro- and paramagnetic Co)

304

Rhodium (Rh) -

391

903 ... 2043

high temperature creep; polycrystals; 99.98%; requires a model of high temperature creep caused by diffusion; Do not obtained

Iridium (Ir) 0.36

438.8

2092 ... 2664

l g21r; single crystals; 99.9%; mechanical sectioning; correction for evaporation applied

2.2.10 Self-diffusion in nickel group metals Ni, Pd, Pt

Nickel (Ni) 1.27

279.7

1384...1521

63Ni; polycrystals; mechanical sectioning and residual activity measurement

56H

3.36

292.2

1423...1673

63Ni.

59M

polycrystals; mechanical sectioning and residual activity measurement; evidence of grain boundary diffusion below 1423 K 1.9

284.7

1315...1677

63Ni; coarse grain polycrystals; 99.95%; mechanical sectioning

64Ml

1.9

279.7

748...923

‘j3Ni; single crystals; 99.97% ; surface decreasemethod; polycrystals also studied for grain boundary diffusion

65Wl

(continued)

Mehrer, Stolica, Stolwijk

LandolbB6mstein New Series III!26

Ref. p. 811

2.2.10 Self-diffusion in nickel group metals

DO

Q

10-4m2s-1

kJmol-’

Temperature range , K

53

Method/Remarks

Fig.

Ref.

1173...1473

63Ni; mono- and polycrystals; 99.99%; surface decreasemethod

-

6611

Nickel (Ni), continued 2.59 (from single crystal data) 2.22 (from polycrystal data)

293.5

1.77

285.1

1253... 1670

63Ni; single crystals; 99.999%; mechanical sectioning and residual activity measurement; slight curvature of Arrhenius diagram observed, three-exponential fit: 0: = 0.38 . 10e4 m2s-l Q1 = 271.3 kJmol-‘, 0: = 3.07 . 10m4m2sm1 Qz = 309.9kJmol-‘, 0: = 0.017 rnzs-l Q3 = 377.5kJmol-‘, mono-, di-, trivacancy interpretation

27

68Bl

2.2

292.6

1323... 1477

63Ni; polycrystals; 99.7%; 63Ni in Ni,Al also studied

-

75B

2.6

279.1

1103... 1273

63Ni.

-

76F

290

single crystals; surface decreasemethod; D-values below 1073 K influenced by diffusion short circuits 1.33

280.8

815...1193

63Ni; single crystals; 99.997%; sputter sectioning; two-exponential fit to own data and those of [68Bl] 07 = 0.92. low4 rn’s-’ Q1 = 278 kJmol-‘, 0: = 0.037 m2 s-l Qz = 357 kJmol-‘, mono-/divacancy interpretation

27

76Ml

1.82

285.2

1323 ... 1673

63Ni; single crystals; 99.98% to 99.999%; mechanical sectioning

-

83V

0.205

266.3

1323... 1773

28

64P

Palladium (Pd) lo3Pd, ’ “Pd; single crystals; 99.999%; mechanical sectioning; isotope effect also studied

Mehrer, Stolica, Stolwijk

54

2.2.11 Self-diffusion in noble metals

DO

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

Platinum (Pt) 0.33

285.6

1598...1873

mixture of 193Pt, 195mPtand 19’Pt obtained by neutron activation of pure Pt; polycrystals; 99.99% ; mechanical sectioning

29

57K

0.22

278.8

1523... 1998

r=pt; coarse grain polycrystals; 99.999%; surface decreasemethod

29

62C

0.05

257.6

850... 1265

19’Pt; single crystals; 99.99%; sputter sectioning; two-exponential fit to own data and those of [57K]: 0: = 0.06. low4 mz s- ’ Q, = 259.7 kJmol-‘, D”=06t06~10-4mZs-1 Q: = 365 to 388 kJmol-‘, mono-/divacancy interpretation

29

78R

-

68B2

2.2.11 Self-diffusion in noble metals Cu, Ag, Au

0.19

196.4

Copper (Cu) 973 ... 1263 64Cll; single crystals; purity not specified; mechanical sectioning; pressure dependencealso studied for Cu, Au, Al

0.31

200.7

663...833

TEM observation of the annealing of quenched-in voids; 99.999% ; requires a model for void annealing caused by diffusion

-

69B

II.78

211.3

972...1334

30

69Rl

D.11 [from Wu data)

190.1

64cu, 67cu; single crystals; 99.999% ; mechanical sectioning; isotope effect also studied I 63Cu stable isotope

-

69E

D.15

193

[from ‘j5Cu data)

1003...1123

65Cu stable isotope; NMR: relaxation times 7, and 7”; Cu particles < 8 urn; 99.999% ; liquid Cu also studied (continued)

Mehrer, Stolica, Stolwijk

landok-BCmstein New Series III/26

Ref. p. 811

2.2.11 Self-diffusion in noble metals

DO

Q

10-4m2s-’

kJmol-’

55

Temperature range K

Method/Remarks

Fig.

Ref.

Copper (Cu), continued -

614...654

Tu; single crystals; 99.999%; sectioning by anodizing and stripping, only three temperatures studied; D-values agree with those of [77M], Do and Q values not given

-

74Ll

1.05

210.3

845.+.1111

NMR: 63Cu relaxation time in the rotating frame; Cu powder 3...3Onm; 99.99%

-

74w

0.35

203.6

574...905

64cu. 30 single crystals with low dislocation density; 99.999% ; sputter sectioning; Do and Q values from fit of one Arrhenius term to own data and those of [69Rl], two-exponential fit: 0: = 0.1 . 10e4 rn’8-l Qr = 196.8kJmol-‘, @’ = 2. 10e4m2sv1 Qz = 233.5 kJmol-l, mono-fdivacancy interpretation

77M

-

-

lOlO... 1352

64Cu; single crystals; 99.997%; mechanical sectioning; Do and Q values not given, two-exponential fit to own data and those of [69Rl, 77M]: 0: = 0.13. 10e4 m2se1 Q1 = 198.5kJmol-‘, D~=4.6.10-4m2s-1 Qz = 238.6 kJmol-r, mono-/divacancy interpretation

78Bl

0.68

209.4

1078... 1348

64Cu; coarse grain polycrystals; 99.999% ; mechanical sectioning; two-exponential fit to own data and those of [77M]: 07 = 0.15. 10e4 m2sm1 Q, = 198.8kJmol-‘, Dt = 4.8 . 10e4 m2 s-l Q2 = 243.1 kJmol-I, mono-fdivacancy interpretation

79K

0.877

211.3

992... 1355

Tu; coarse grain polycrystals; 99.998% ; mechanical sectioning

82F

_Landolt-Bornstem ..-.. New Series III/26

Mehrer, Stolica, Stolwijk

30

30

2.2.11 Self-diffusion in noble metals

56

DO

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

Silver (Ag) -

-

1183

llomk single crystals; 99.99%; measurementsat 1183 K only; pressure dependencealso studied at 1183 K for “OrnAg, ‘141n and 124Sb in Ag

-

65B

3.278

181.7

1038...1218

“OrnAg. polycrystals; mechanical sectioning and residual activity measurement

-

68K

0.67

190.1

913...1228

105~~,

31

70R

31

72R

llomAg;

single crystals; 99.999% ; mechanical sectioning; isotope effect also studied losAg, “ornAg; single crystals; 99.999%; mechanical sectioning; Do and Q values not given; isotope effect also studied; mono-/divacancy interpretation of diffusion and isotope effect data

-

-

946.e.1227

0.041

169.8

547...777

‘lo mAg. single ciystals; 99.999%; sectioning by anodizing; Do and Q are “best values” for monovacancies taken from two-exponential fit to own data and those of [70R]: 0: = 0.041 . 10e4 m*s-’ Q, = 169.8kJmol-‘, D~=4.8.10-4m2s-1 Q2 = 211 to 221 kJmol-‘, mono-/divacancy interpretation

31

73Ll

0.235

179.5

630..+ 854

11omAg; single crystals; 99.99% ; chemical sectioning; Do and Q values from tit of Arrhenius equation to own data and those of [70R, 73Ll], two-exponential tit of own data together with various sets of other data [70R, 73Ll] performed, mono-/divacancy interpretation

31

74B

(continued)

1

Mehrer, Stolica, Stolwijk

Landolt-BBmsIein New Series III/26

Ref. p. 811

2.2.11 Self-diffusion in noble metals

DO

Q

1()-4m2S-1

kJmol-’

Temperature range K

57

Method/Remarks

Fig.

Ref.

105Ag,

31

78B2

31

82R

-

57M

32

63D

-

65D

-

65Gl

-

6562

-

68B2

Silver (Ag), continued 0.043

-

0.091

169.8

580...834

ttomAg;

single crystals; 99.9995%; sputter sectioning; comparison with other microsectioning studies performed 1tomA . g, single crystals; 99.999% ; sputter sectioning; two-exponential fit to own data and data from [70R, 73L1,74B]: 0: = 0.046 . low4 m2 s-l Q1 = 169.8kJmol-‘, D,O= 3.3 . 10m4m2 s-l Qz = 218.1 kJmol-‘, mono-/divacancy interpretation; pressure dependence also studied

-

594...994

174.6

Gold (Au) 198AU, 1077 ... 1321 polyc&tals; 99.95%; mechanical sectioning

0.117

176.3

975...1172

-

-

1133...1233

0.107

176.6

623...733

0.107

176.9

1123...1323

0.043

167.5

973 ... 1263

Land&-Biimstein New Series III/26

198AU.

coarse’grain polycrystals; 99.93%; mechanical sectioning and residual activity measurement; diffusion of 59Fe,6oCo and ‘j3Ni in Au also studied 198AU. single ‘crystals; 99.99%; mainly pressure dependenceat three temperatures studied 195A~; polycrystals; purity not specified; L-X ray absorption method i95Au; single crystals; 99.97%; mechanical sectioning 198AU, single ‘crystals; purity not specified; mechanical sectioning; pressure dependence of self-diffusion also studied for Au, Cu and Al

Mehrer, Stolica, Stolwijk

(continued)

2.2.12 Self-diffusion in zinc group metals

58

Q kJmol-’

[Ref. p. 81

Temperature range K

Method/Remarks

Fig.

Ref.

559...685

198AU,

32

69R2

rg’Au, rg8Au; single crystals; 99.999%; mechanical sectioning; mono-/divacancy interpretation; Co diffusion in Au, isotope effect of self-diffusion and Co diffusion also studied

32

78Hl

“‘Au; single crystals; 99.999% ; sputter sectioning; pressure dependencealso studied

32

83W2

I and (1hexagonal c axis investigated: 65Zn; single crystals; 99.999% ; mechanical sectioning; D,, ’ D.l 1 and 11hexagonal c axis investigated: 65Zn, 6gZn; single crystals; 99.999%; mechanical sectioning; q > D,; mainly isotope effect studied for Zn and Cd diffusion

33

53s

33

67B

I and 11hexagonal c axis investigated: 65Zn, 6gZn; single crystals; 99.999% ; mechanical sectioning; D,, > D,; isotope effect also studied

33

67P

Gold (Au), continued 0.026

166.9

single ‘crystals; 99.99% ; sectioning by anodic oxidation and residual activity measurement 0.084

0.027

165

603...866

2.2.12 Self-diffusion in zinc group metals Zn, Cd, Hg Zinc (Zn) 0.58 (1 c axis) 0.13 (II c axis)

101.7

513.e.683

91.3

513...683

-

-

0.18 (1 c axis) 0.13 (II c axis)

655 ... 685

96.3

513...691

91.7

513...691

(continued)

Mehrer, Stolica, Stolwijk

LandolbB6mstein New Series III/26

59

2.2.12 Self-diffusion in zinc group metals

Ref. p. 811

DO

Q

10m4m2s-l

kJmol-’

Zinc (Zn), continued -

Temperature range K

Method/Remarks

Fig.

Ref.

573...673

I and 11hexagonal c axis investigated: 65Zn; single crystals; 99.999% ; mechanical sectioning; Do and Q values not given; mainly pressure effects investigated

-

72C

1 and 11hexagonal c axis investigated: “‘Cd; single crystals; 99.5%; mechanical sectioning; D,, > D,; polycrystals also investigated

34

55w

Cadmium (Cd) 0.10 (1 c axis) 0.05 (II c axis)

80

383...588

76.2

383...588

0.05

73.7

350...420

polycrystals investigated; NMR: spin relaxation times 7” and T,: l13Cd signal in natural Cd; 15 urn foil

-

58M

0.68 (II c axis)

86.2

453...573

II hexagonal c axis investigated: “‘Cd; single crystals; 99.99% ; surface decreasemethod; polycrystals also investigated, 65Zn and ‘lo “Ag in Cd also studied

34

67H

0.08

78.7

473...553

polycrystals investigated: l15Cd; fine grain polycrystals; 99.99% ; mechanical sectioning

-

67A

0.18 (1 c axis) 0.12 (II c axis)

82

420... 587

34

72M

77.9

420...587

-L and II hexagonal c axis investigated: rogCd; single crystals; 99.999% ; mechanical sectioning; D,, > D,; Zn-, Ag-, In-, Hg- and Au-diffusion also studied

-

523...593

I and II hexagonal c axis investigated: “‘Cd; single crystals; 99.999%; mechanical sectioning; Do and Q values not given; only pressure effects studied

-

73B

-

Mercury (Hg) No data available. Land&-B6rnstein New Series III/26

Mehrer, Stolica, Stolwijk

60

2.2.13 Self-diffusion in aluminum group metals

DO

e

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

[Ref. p. 81 Fig.

Ref.

2.2.13 Self-diffusion in aluminum group metals AI, Ga, In, Tl

Aluminum (Al) 1.71

142.4

729...916

26AI (radiotracer with low specific activity); single crystals and coarse grain polycrystals; 99.99% ; mechanical sectioning; 54Mn in AI also studied

35

62L

-

144.4

673*..883

26A1(radiotracer with low specific activity); single crystals; purity not specified; mechanical sectioning; pressure dependence also studied, selfdiffusion and its pressure dependence also studied for Cu and Au

-

68B2

0.176

126.4

358 . ..482

TEM observation of the annealing of quenched-in voids; 99.9999%; requires model of void shrinkage caused by self-diffusion

35

68V

120.4

512...820

NMR: spin lattice relaxation time in the rotating frame T, p of 100% abundant stable isotope 27Al

-

71F

123.5

515...770

NMR: spin lattice relaxation time in rotating frame T,@of 100% abundant stable isotope 27Al; 27 . . .30 urn foils; 99.999%; data reanalyzed in [87D]

35

74M

-

722

26AI; semi-infinite diffusion couple; D = 1.05. lo-l4 m2s-‘; agreeswith previous radiotracer data [62L, 68B2J

-

8582

-

68C

-

Gallium (Ga) D in 10-17

5.3 5.3 7.8 9.3 42

m2s-l

283 293.2 298.2 300.7 303

72Ga; single crystals and coarse grain polycrystals; 99.9999% ; results are becauseof experimental difficulties only of qualitative interest, no clear evidence of anisotropy was observed

Mehrer, Stolica, Stolwijk

Landolt-BBmstein New Series III/26

61

2.2.14 Self-diffusion in group IV B metals

Ref. p. 811

DO

Q

10-4m2s-’

kJmol-l

Temperature range K

Method/Remarks

Fig.

Ref.

36

59D

-

710

37

55s

37

85C

38

60M

38

64C

Indium (In) 78.5

312...417

;‘1’ c axis) 2.7 (II c axis)

78.5

312...417

-

-

392, 406, 422

I and 11tetragonal axis investigated: “41~. single ciystals; 99.97%; mechanical sectioning; DA > D,, I and 11tetragonal axis investigated: 1141111~. single crystals; 99.999% ; mainly pressure effects studied at 3 temperatures

Thallium (Tl) 94.6

420...500

hcp ct- and bee P-T1investigated: 204Tl.

;: c axis of hcp a-Tl) 95.9

420...500

83.7

515...550

80.2

513...573

Il;“c axis of hcp LXT1)

single ciystals; 99.9% ; mechanical sectioning; in c+Tl: D, > D,,

Kc P-Tl) 0.42 (bee P-Tl)

bee P-T1investigated: ‘04T1; coarse grain polycrystals; 99.999% ; mechanical sectioning; interpretation of slightly curved Arrhenius diagram in terms of mono- and divacancies

2.2.14 Self-diffusion in group IVB metals Sn, Pb Self-diffusion data for semiconducting elements Si, Ge can be found in [89L]

Tin (Sn) 97.6

451...495

107.2

451*..495

105.1

433...501

107.2

433...501

t;” c axis) ,“,i2caxis)

10.7 (I c axis) ii’c axis)

I and 11tetragonal c axis investigated: lt3Sn; single crystals; 99.998%; mechanical sectioning; D, ’ DII I and 11tetragonal c axis investigated: lt3Sn; single crystals; 99.999%; mechanical sectioning; D, > D,,; pressure dependence also studied

(continued) Land&-B6mstein New Series III/26

Mehrer, Stolica, Stolwijk

[Ref. p. 81

2.2.15 Self-diffusion in group V B semimetals

62

DO

Q

10-4m2s-1

Method/Remarks

Fig.

Ref.

kJmol-’

Temperature range K

108.4

455 ... 500

I and 11tetragonal c axis investigated:

38

74H2

Tin (Sn), continued 21.0 (1 c axis) 12.8 (II c axis)

l13Sn.

108.9

455~..500

single crystals; 99.999% ; mechanical sectioning; D1 ’ D!69‘& 124Sb-,

65~~~

diffusion in Sn

also studied’

Lead (Pb) 0.281

0.887

101.4

447 . . * 595

2’oPb; single crystals; 99.999%; mechanical (microtome) sectioning

39

55N

109.1

480...596

“‘Pb; coarse grain polycrystals; 99.99%; mechanical sectioning; diffusion of Tl and Bi in Pb-Tl tem also studied

39

61R

39

69M

1 and II rhombohedral (trigonal) c axis investigated: lz4Sb; single crystals; 99.998%; mechanical sectioning; D, > D,,; results influenced by surface defects and microcracks

-

64H

I and II rhombohedral (trigonal) c axis investigated: lz4Sb; single crystals; 99.9999% ; serial sectioning by chemical polishing; D.L’ D,,

40

66C

106.8

470..* 573

sys-

“‘Pb; single crystals; 99.999%; mechanical (microtome) sectioning; ’ lsmCd diffusion in Pb also studied

2.2.15 Self-diffusion in group VB semimetals P, As, Sb, Bi Self-diffusion data for P, As are not included.

Antimony (Sb) 185.9

770... 870

197.2

830... 890

149.9

773..*903

201

773 . ..903

;: c axis) ,ii’c axis)

0.10 (1 c axis)

c axis)

Mehrer, Stolica, Stolwijk

(continued)

Land&-Bhstein New Series III/26

63

2.2.16 Self-diffusion in group VI B semimetals

Ref. p. 811

!.I0

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

746... 856

lz4Sb; polycrystals; 99.9% ; mechanical sectioning and counting of residual activity; D at T, is 2.9 . IO-l4 m2s-‘; penetration profiles with tails presumably due to grain boundaries

-

65H2

Antimony (Sb), continued 1.05

165.4

Bismuth (Bi) Vo reliable data available.

2.2.16 Self-diffusion in group VIB semimetals S, Se, Te, PO self-diffusion data for S are not included. Selenium (Se) LOO I c axis) 1.2 11c axis)

135.1

1.0082 11c axis)

115.8

425 . ..488

115.8

350...480

I and 11trigonal c axis investigated: 75Se; 41 single crystals grown from vapour phase; purity specified by conductivity between 2. 10m5and 10m6R-’ cm-‘; mechanical sectioning and measurement of residual activity; great-depth tails observed; D, > D,,; 41 11trigonal axis investigated: NMR: spin lattice relaxation times q and Tie of stable isotope 77Sein natural Se; single crystals; 99.999%; three-exponential fit performed; Do and Q refer to dominating term (dashed line in Fig. 41), data also published in [8362] Tellurium

3.91 * 104 (I c axis) 130 (II c axis)

195.9

579...663

168.8

600...673

166

496...640

147.6

Land&Biirnstein New Series III/26

85G

(Te)

I and II trigonal c axis investigated: 127mTe; single crystals; 99.9%; mechanical sectioning; D, > D,, ; influence of I- and Al-doping also studied

42

67G

I and II trigonal c axis investigated:

42

83W3

127rnTe.

(“Y c axis) ii”c axis)

70B

single cryktals; 99.999%; sputter sectioning; D /DA = 1 . ..2.5. lZ14Sbdiffusion also studied

Mehrer, Stolica, Stolwijk

(continued)

64

2.2.17 Self-diffusion in actinide group metals

DO

Q

10-4m2s-’

kJmo!-’

[Ref. p. 81

Temperature range K

Method/Remarks

Fig.

Ref.

485...650

11trigona! c axis investigated: NMR: spin lattice relaxation times TI and T,@of stable isotope 125Tein natural Te; single crystals; 99.999%; good agreement with D,, from [83W2], similar data in [81G]

-

85G

43

67s

Tellurium (T’e),continued 0.12

139.9

(II c axis)

Polonium (PO) No data available.

2.2.17 Self-diffusion in actinide group metals AC, Th, Pa, U, Np, Pu etc. Data are available only for Th, U and Pu.

Thorium (Th) 395 (a-Th)

299.8

998..-1140

fee u-Th investigated: 228Th; polycrystals; 99.85% (detailed specification of purity given); u-spectroscopy method; 231Paand 233U diffusion in u-Th also studied

Uranium (U) 0.0018 (Y-U)

115.1

1073...1323

bee y-U investigated; diffusion couple of natural U and U enriched with 235U; polycrystals; purity not specified; mechanical sectioning and measurement of residual u-activity; y-U diffusion is anomalous

44

59Al

0.0135 WJ)

175.8

973 ... 1028

B-U investigated; diffusion couple of natural U and U enriched with 235U; polycrystals; purity not specified; mechanical sectioning and measurement of residual u-activity

44

59A2

(continued)

Mehrer, Stolica, Stolwijk

Ref. p. 811

2.2.17 Self-diffusion in actinide group metals

DO

Q

10-4m2s-1

kJmol-’

65

Temperature range K

Method/Remarks

Fig.

Ref.

Uranium (U), continued 0.00233 (Y-u)

119.3

1075... 1342

bee y-U investigated; 235U (93 % enriched); polycrystals; 99.998%; mechanical sectioning; Do and Q values anomalous

44

60R2

0.002 WJ)

167.5

853...923

orthorhombic a-U investigated; diffusion couples of natural U and U enriched with 235U; polycrystals; purity not specified; mechanical sectioning and measurement of residual a-activity; small anisotropy of diffusion in agrains

44

62A

0.0028 WJ)

185.1

973 ... 1023

P-U investigated: 235U; polycrystals; mechanical sectioning and measurement of residual activity; grain boundary diffusion also studied

-

68F

Plutonium

(Pu)

4.5. 10-3 (6-Pu)

99.6

623...713

fee 6-Pu investigated: diffusion couples of two cylinders, one enriched with 238Pu; polycrystals; purity not specified; lathe sectioning; from autoradiographic experiments concluded that grain boundary diffusion is unlikely

45

64T

0.02 (E-PU)

77.5

773...885

bee E-PUinvestigated; diffusion couples consisting of Pu with either 1% or 8% 240Pu; polycrystals; purity not specified; grinder sectioning and measurement of residual activity

45

68D2

0.003 (E-PU)

65.7

788...849

bee E-PUinvestigated; polycrystals; 99.9% (detailed specification of purity and isotopic composition is given); mechanical sectioning and measurement of residual activity; diffusion in E-PUis anomalous; pressure effects also studied

45

71C2

(continued)

Land&-Bknstein New Series III/26

Mehrer, Stolica, Stolwijk

[Ref. p. 81

2 Self-diffusion in solid metallic elements (Figures)

66

DO

Q

IOw4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

66.9

765 ... 886

45

78W

-

730...750

126.4

594...715

118.4

484...546

108

409...454

bee E-Pu, bet-6’-Pu, fee &Pu, face-centered orthorhombic y-Pu, body-centered monoclinic p-Pu investigated: 239Pu; polycrystals; z 99.9% (detailed specification of purity and isotopic composition given); grinder sectioning; short circuiting effects observed for yand p-Pu; Do and Q values for 6’-Pu given in [78w] are highly questionable

Plutonium (Pu), continued 3.5. 10-3 I&-PU) :6’-Pu) 5.17.10-2 I&-Pu) 3.8. 1O-2 :Y-pu) 1.69. 1O-2 :B-pu)

Figures for 2 -T KP

300

400 K

200

250

ml/s 10-l’

c

0 10-1s

6.5 X+K-’ 55 4.0 l/l Fig. 2. Na. Semilogarithmic plot of the self-diffusion coeflicient vs. reciprocal temperature from ‘*Na and 24Na tracer measurements[66M] (triangles) and [71Ml] (circles). 2.5

Fig. 1. Li. Semilogarithmic plot of the self-diffusion coefl?cient vs. reciprocal temperature from measurementswith 6Li and ‘Li as stable tracers (full circles) [7OL] and from P-NMR measurements(open circles) [UHI].

Mehrer, Stolica, Stolwijk

3.0

3.5

Landolt-BBmstein New Series Ill/26

Ref. p. 811

2 Self-diffusion in solid metallic elements (Figures)

!OO I

lo-"0 m*/s

lO“[ m2/s

67

Be 2-.

lo-"

10-l” ,o-l:

I 4

I Q , o-1:

10-1'3

IO-"4

10-1'4

10-f i

3.0

3.5

4.0

4.5

1o-l5 0

5.0.10-3K-' 5.5

1.0

1/T -

I.1

.,0-33K-l

l/T -

Fig. 3. K. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from 42K tracer measurements [67M] (full circles) and [71M2] (open circles).

Fig. 4. Be. Semilogarithmic plot of the self-diffusion coefticients vs. reciprocal temperature from 7Be tracer measurements parallel (full circles) and perpendicular (open circles) to the hexagonal axis [66D].

-7

IO“ m2/

1100 K 1000 ,=1116K f 7"

900 I

-

800

Ca

-T

900 K

4.10‘12, m2/s

I

1"

I

850 '

800

750

lo-

E

2

1o-1

I

8

10-1'2 8

I Q 8

6

10-l

I Q4 0

2

I l

IO-"3

10-l

:

4

o 01

e

&

l

1.00

1.05

1.10

1.15

1.20

:

1.25 .10-3K' 1.35

1o-1" 0.8

l/lFig. 5. Mg. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal absolute temperature from ‘sMg tracer measurements parallel (full circles) and perpendicular (open circles) to the hexagonal axis [71Cl]. Land&-Biimstein New Series III/26

J 0.9

1.0

1.1 l/T -

1.2

I.3 .lcr331c' 1

Fig. 6. Ca. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from 45Ca tracer measurements [68Pl].

Mehrer, Stolica, Stolwijk

2 Self-diffusion in solid metallic elements (Figures)

68 -1

-1

1600

lom’/

[Ref. p. 81

00 I

1100 K I

10-l'Or

Y

Ip+,=llX

ml/ s

l[

K

,=lE03K

lo-’I1 _

7

lo-13 _

0 1o-’12 _

.

a1 10’14 _

0

I a

.

10”13 _

0

lo-15 _ lo- 1L _

-

lo-16 I0.55

c

0.80 -10 -’ 0.90

10’I5

0.81 I

0 ,

I

0.95

.l 0-3K-l 1.10

1.00

l/T Fig. 7. Y Semilogarithmic plot of the self-diffusion cocfftcients vs. reciprocal tcmpcrature from “Y tracer mcasurcments parallel (full circles) and pcrpcndicular (open circles) to the hesagonal axis of a-Y [70Gl].

Fig. 8. La. Semilogarithmic plot of the self-diffusion coefticicnts vs. reciprocal temperature from r4’La tracer measurements in fee p-La [69D2] (open triangles) and bee y-La [73D] (open circles) and [74L3] (full triangles).

-1 -T

10 m’/

950

1050 K

I ,

071K

5.10-" m’/sl

850 I

1200 K

Pr I t

1

1150

4

1100

L

4

'y.b=999K

I,,=1205 K

Ce

J

r~g=106BK

3

lo-

lo-’ t a

0 8

10-l

8 0.875 0.900 -10. c-1 0.950 l/l Fig. 10. Pr. Semilogarithmic plot of the self-diffusion coefftcicnt vs. reciprocal temperature from ‘42Pr tracer measuremcnts in bee S-Pr [69Dl]. 0.800 0.825

0 cl

10-l

0.850

c

10-l

0.90 0.95 1.00

1.05 1.10 l/l-

4 Fig. 9. Ce. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature from 14’Ce tracer measure1.15 alO-‘K-’ 1.25 ments in feey-Ce 171D] (open circles) and beeS-Ce[71D] (full circles) and [73L2] (triangles).

- .

1

Mehrer, Stolica, Stolwijk

Land&BBmstein New Series 111'26

2 Self-diffusion in solid metallic elements (Figures)

Ref. p. 811 -T

1000 K

lo-'[ m2/s

9cIO

.&i m2/s

I

r

Eu

-T 1580Kl570

800

69

1560

1550

1540

3.3

8

IO-"

3.2 e 3.1 0

~I lo"2

I 3.0 Q

8

2.9 0

2.8

lo-l3

3

2.7 10-14 0.8

0.9

1

1.0

2.6 0.625

1 .W3 K-'1.4

0.630

0.635

0.640 l/T-

l/TFig. 11. Eu. Semilogarithmic plot of the self-diffusion coeflicient vs. reciprocal temperature from rs2Eu tracer measurements [77F].

3.10-13 m2/s

t'

I. = 1795 K

1600 I

Er

0.655

Fig. 12. Gd. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from “‘Gd tracer measurements in bee /3-Gd [77F].

-7 1700 K 1

0.645 -1O-3K-'

1o-1'

1500

m2/s

I'

I 10-l"

,o-l:

I Q , o-l: 0 0

0

10-l'

0

IO-lb s 6.10-15 0.54

0

,o-l:

0.56

0.58

0.60 l/T-

0.62

0.64 .10-3K'

0.68

Fig. 13. Er. Semilogarithmic plot of the self-diffusion coeficient vs. reciprocal temperature parallel (full circles) and ,erpendicular (open circles) to the hexagonal axis from r6’Er .racer measurement [72S].

Land&-Biimstein New Series III/26

0.90

0

0.95

1.00

1.10 1.05 l/T -

1.15 .10- C“ 1.25

Fig. 14. Yb. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature from rC9Yb tracer measurements in polycrystals of hcp a-Yb and bee y-Yb [74F].

Mehrer, Stolica, Stolwijk

2 Self-diffusion in solid metallic elements(Figures)

70

[Ref. p. 81

2000K 1500

10-l t-n’/

1000

800

10-l lo-li

10-n

10-

10-’ 10-l

I a

I

10“

10-16 10-1s

a

I

I

I

I

10-l’ 10-n

10’ lo“r 10“s 10’

1,o-l!o-l9

10’17

0.4

10-Z’ 10-20

0.5

0.6

0.7

0.8

0.9 .10-3K-’ 1.1

10a

l/l Fig. 15. Ti. Semilogarithmic plot of the self-diffusion coefticients vs. reciprocal temperature from 44Ti tracer measurements in hcp a-Ti polycrystals [80D] (full circles) and bee S-Ti [64M2] (open circles) and [87Kl] (triangles).

10-2;

10-2: [

a

0.6

0.8

1.0

1.2.10-3K-’1.4

1I200

3.10-l rn2/f

-I

-11361

10-l

I a ,o-li

Fig. 16. Zr. Semilogarithmic plot of the self-diffusion coef- b kients vs. reciprocal temperature from tracer measurements tn (a) hcp a-Zr single crystals parallel (‘I) and perpendicular 10-13 [v) to the hexagonal axis [74Hl], hcp a-Zr single crystals of the same random orientation (+) [84H] and bee S-Zr ac:ording to [61K] (x), [63F] (o), [70G2] (o), [79H] (+) and 4.10-nL [82P] (A). (b) same as Fig. a) for bee p-Zr on an enlarged 0.4 scale. b

Mehrer, Stolica, Stolwijk

b

I

0.5

0.6

0.7

0.8

W’K-

l/l-

Land&-B6mstein New series III!26

Ref. p. 811

1Cl-'" mvs Hf

2 Self-diffusion in solid metallic elements (Figures) -1 2000

2500 K

1700

71

4 Fig. 17. Hf. Semilogarithmic plot of the self-diffusion coefticients vs. reciprocal temperature from tracer measurements in hcp o-Hf parallel (full triangles) and perpendicular (open triangles) to the hexagonal axis [72D] and bee 8-Hf [65W2] (open circles) and [82H] (full circles).

1500

IO-" 10-l' 10.1:

m2/s I

-T 1500 I

2000 K I &2175K

+a,

1000

1200 1

,,

I”

I

I

I

I

I

I

I

I

I

IP

I b

10-'4

10-'5

10-16 10-171

I

"I

10-17

lo-'* 0.'

0.40

0.45

0.50 0.55 l/T-

0.60 .W3 K-' 0.70

* IO-20 lo-"II 0.4

-1

..

0.5

0.6

0.7 l/F-

0.8

0.9 W3 K'

1.1

Fig. 18. 8. Se&logarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from @V tracer measurements [65P2] (open circles), [74P] (full triangles), [79Ml] (full circles), [83A] (crosses) and from NMR measurements [83Gl] (open triangles).

4 Fig. 19. Nb. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from gsNb tracer measurements [65L2] (open circles), [77Al] (full circles), [78El] (full triangles) and [81B] (open triangles). 0.3

Landolt-Bijmstein New Series III/26

0.4

0.5

0.6 l/T-

0.7

0.8X+ Kd0.9

Mehrer, Stolica, Stolwijk

[Ref. p. 81

2 Self-diffusion in solid metallic elements(Figures)

72

C-T 1500

-7 10-l' lO-'1

3000 K

2000 2000

1500 1300 1500 1300

3.

ml/s

lo-" ml/s

10-11

10-l"

10-13

1o-l3

10“‘

10-l‘

10'15

lo-'5

lo-16

I a

K

1200 1100

10-16 10-l'

~I 10-l'

2000

I

I

I

I - 0

I

‘I 10-18.

10-18

lo-l9

10‘19

. 10-m

10-m

. 10-I'

10-n

10-222 lo-" 0.2 0.2

.

10-4 OA 0.3

0.L

0.5

0.6

0.7

-10.'K-'

0.9

l/l Fig. 20. Ta. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from ‘a2Ta tracer measurements [65Pl] (full circles) and [83Wl] (open circles). -I 2500 K 2000

10"

0.5

0.6

0.7 l/T-

0.8

t0.9~10-3K-' 1.0

Fig. 21. Cr. Semilogarithmic plot of the self-diffusion coefticient vs. reciprocal temperature [76M4] (open circles) and [81M] (full circles).

1700 1500

m'/s lO“j

10-2' 4 Fig. 22. MO. Semilogarithmic plot of the self-diffusion coef10‘" 0.2

ficient vs. reciprocal temperature from ggMo tracer measure0.3

0.1

0.5 l/l-

0.6

0.740~k'O.8

ments[59B](open circles).

Mehrer, Stolica, Stolwijk

circles),(60B2](triangles)and

[79M2](full

Landoh-BBmstein New Series III,/26

2 Self-diffusion in solid metallic elements (Figures)

Ref. p. 811 -1 5000 K 3000 1IF*, I I ' I . m*/s 10-1’3

1. =3673K$

2500 I

2000 I

0.4

0.5

1700 I,

w

. 8

10-22 0.2

0.3

_ . 0.6 WK-' 0.7

l/l-

Fig. 23. W Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from tracer measurements [69P] (open circles), [77A2] (triangles) and [78M] (full circles).

a

1o-23 0.50

0.65

0.80

0.95 l/T-

-T

Fig. 24. Fe. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature from tracer measurements in (a) bee o-Fe [60Bl] (x), [68W2] (a), [69G] (m), [77H] (+), [87G] (A), 18811(0) and [89M] (0); fee y-Fe [6612](v), [68H] (A), [68W2] (0) and [69G] (m) and bee S-Fe [66J] (v), [68W2] (0) and [69G] (m); (b) same as (a) for bee a-Fe according to [77H] (+), [881] (0) and [89M, 9OL] (0).

Land&Biirnstein New Series III/26

b

Mehrer, Stolica, Stolwijk

l/T-

1.10

.I,,-3K-1

1.40

2 Self-diffusion in solid metallic elements(Figures)

[Ref. p. 81

-J

2a,o.,32800K 2600 2500 2600 2300 2200 2100 d!V”i’:‘l

)

I

I I I0.425 0.450 W’K“ 0.500 l/fFig. 26. Ir. Semilogarithmic plot of the self-diffusion coefticient vs. reciprocal temperature from “‘Ir tracer measuremcnts [86A]. 0.350

l/JFig. 25. Co. Semilogarithmic plot of the self-diffusion cocfRcient vs. reciprocal temperature from tracer measurements :62H2] (open circles), [79B] (full circles) and [88L] (triangles).

I

I 0x00

0.375

-1

,o-,22000 K d/s

1700 I ,

A!

1.=lrmK

I

I FJ

I

I

0.6

0.7

0.8

0.9

1.0

1.1 XI5 K-l

1.3

l/J -

Fig. 27. Ni. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from 63Ni tracer measurements [68BI] (open circles) and [76Ml] (full circles).

0.50

I

I

) Pd 1 8

,,o-l3lJ_J

Q5

i500 I ’

I

I

1400 I ’

I

1300 ’

I

I

I I

I

I

0.80 0.65 0.70 W3K-' l/JFig. 28. Pd. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from ro3Pdand ‘12Pd tracer measurements[64P].

Mehrer, Stolica, Stolwijk

0.55

0.60

Land&-B6mstein New Series Ill!26

Ref. p. 811

2 Self-diffusion in solid metallic elements (Figures)

Fig. 30. Cu. Semilogarithmic plot of self-diffusion coeffi- b cient vs. reciprocal temperature from ‘%u and 67Cu tracer measurements [69Rl] (open circles), [77M] (full triangles), [78Bl] (full circles) and [82F] (open triangles). ,o-,,2500

-T 1800 K 1400 1200

IU -

-T 1200 K 1000 900

800

700

600

m2/s 1o-l3

1000 900

800

m% 10-1'2

. 10‘2' 0.4

1o-231 0.6 0.6

0.8

1.0

0.8

1.0

1.2.10-3K' 1.4

1.2 l/T-

IX

1.4 l/T-

1.6

1.6Xr3 K-'1

l/T-

Fig. 29. Pt. Semilogarithmicplot of the self-diffusion coefticient vs. reciprocal temperature from tracer measurements [57K] (open circles), [62C] (triangles) and [78R] (full circles).

Fig. 31. Ag. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from losAg and lromAg tracer measurements [7OR] (open circles), [72R] (squares), [73Ll] (full circles), [74B] (open triangles), [78B2] (full triangles) and [82R] (crosses). 0.8

Land&-B6rnst.h New Series III/26

Mehrer, Stolica, Stolwijk

1.0

1.2

1.8.10~W22.0

[Ref. p. 81

2 Self-diffusion in solid metallic elements (Figures)

76 -7 lZO0 1200K 1000

18” mr/s

700

800

600 I

lCT2

4 Fig. 32. Au. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from 19’Au and ‘98Au tracer measurements [63D] (crosses), (65DJ (open circles), [69R2] (open triangles), [78Hl] (full circles) and [83W2] (full triangles).

Au

-1

10-n

600 I

‘00 K 650 &lo-' I I ’ I.- 693K m*/!

10-l’

10-l

;‘” L-

I

I

520 1

550 I

I

I

.

0 A

~I 10-l I

I

AI 0

I

I

I

I

I A

I

I

!

.

I

lo-’ lo-”

147~K-’1.8 a A

2.10”

1.7 1.8 .,0-j K-’ 2.0 l/l Fig. 33. Zn. Semilogarithmic plot of the self-diffusion coefficients parallel (full symbols) and perpendicular (open symbols) to the hexagonal axis vs. reciprocal temperature from 6SZn and 69Zn tracer measurements [53S] (triangles), [67B] (squares) and [67R] (circles). 1.5

&lo-” m2/s

600 K 550

500

450

I

I

I A

1.8

2.0 l/l

10-u

,

1.6

2.2 -

1.6

4 Fig. 34. Cd. Semilogarithmic plot of the self-diffusion coefficients parallel (full symbols) and perpendicular (open symD bols) to the hexagonal axis vs. reciprocal temperature from 26 .10-k’ 2.6 lo9Cd and rr5Cd tracer measurements [55w] (squares), [67H] (circles) and [72M] (triangles). I IA 0

Mehrer, Stolica, Stolwijk

Landok-Bk-nstein New

Series III/26

Ref. p. 811

2 Self-diffusion in solid metallic elements (Figures) --I

1000K 800 700 600

500

400

350

10-1'3 m2/s

420 K 1 I

-1 380 1

3 40

360

320

In 0 lo-l4 00 . .

0

~I lo-l5 0 .

0 .

1o-l6

1O-l7 2.3

n A A A A A

-T

10-22

10-l

0 K

540

!O T-

m2/r fzi10-23 lo-24 1.0

3.1 .lO"K- 3.3

2.9

Fig. 36. In. Semilogarithmic plot of the self-diffusion coefficients parallel (full circles) and perpendicular (open circles) to the tetragonal axis vs. reciprocal temperature from rr41n tracer measurements [59D].

IO-JO 10-2'

2.7 l/T -

2.5

-

4EIO I,

460 ,

440 I

42 I

=507 F

n

TI 1.4

1.8

2.2

2.6 @K-'

:

10-l

l/T-

Fig. 35. Al. Semilogarithmic plot of the self-diffusion coefficient vs. reciprocal temperature from 26A1tracer measurements [62L] (open circles), from the TEM observation ofvoid shrinkage [68v] (triangles), and from NMR measurements [74M] (full circles).

“pf ,o-l:

I ~ IO"

-

’ 8

10.1"

lo-"

Fig. 37. Tl. Semilogarithmicplot of the self-diffusion coefti- b cients vs. reciprocal temperature from ‘04T1 tracer measurements in bet a-T1 parallel (full circles) and perpendicular (open circles) to the tetragonal axis [55S], bee S-T1[55S] (full triangles) and [85C] (open triangles). Landolt-Biknstein New Series III/26

10-l';

Mehrer, Stolica, Stolwijk

!.2 l/T-

.,O-3K-’ :

2 Self-diffusion in solid metallic elements(Figures)

78

10-1'3

ow,4 I 540 I K ,I520 II500

060

10-16

480 I,

460 I ,

440 I ,

I

[Ref. p. 81

600 K 560 550 520 500 480 &60

lTl’/S

DL

I 6.10-” 1.8

1.9

2.0

23 2.2 2.3W’K’2.1 l/T Fig. 38. Sn. Semilogarithmic plot of the self-diffusion coefticients parallel (full symbols) and perpendicular (open symbols) to the tetragonal axis vs. reciprocal temperature from “%n tracer measurements [60M] (squares), [64C] (circles) and [7482] (triangles).

1.6

1.7

1.8

1.9 2.0 l/l-

2.1 .lO-‘K-’ 2.3

Fig. 39. Pb. Semilogarithmic plot of the self-diffusion coefkicnt vs. reciprocal temperature from ‘rOPb tracer measurements [55N] (full circles), [61R] (triangles) and [69M] (open circles). 350 I

J++l 1: 1

I

‘tt

l-19 11

0

I

0

I

10-2s

‘o-‘52 1

I

I

‘++,

4

0

I

1.05

1.15

1.20 l/1 -

b i

4

10-Z’I I

I

A

I

l

t

4,

IdI DL

I

1.10

-

‘(+

10-22

.IO -16

tt

1.25

-10-s K-’ 1.35

Fig. 40. Sb. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature parallel (full circles) and perpendicular (open circles) to the trigonal c axis from 124Sb tracer measurements[66C].

t

o

1o-23 2.00

2.15

2.30

2.45 l/7-

2.60

7 ++t ~. . -lO-‘K-’ 2.90

Fig. 41. Se. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature parallel (full triangles) and perpendicular (open triangles) to the trigonal taxis from 75Setracer measurements [70B] and values parallel to the trigonal axis (circles) from NMR measurements[SSG].

Mehrer, Stolica, Stolwijk

Land&-BBmstein New series III/26

Ref. p. 811

2 Self-diffusion in solid metallic elements (Figures) C-T

-T 600 I 'I

,o-,4 700 K 650 AI 1'

550

500 I

I

1O-15 m2/s

I

1150 K

1100

1000

1050

10-1'6 I a

lo-17ai

I Q . 0. .

10‘19 l

n

Dll

0

0

0,

4.10~'81 0.85 0 . 0

10-m

10-2' 1.4

1.00 .10-3K' 1.05

0.95 l/T-

Fig. 43. Th. Semilogarithmic plot of the self-diffusion coefficient in fee u-Th vs. reciprocal temperature from “*Th tracer measurements [67S]. -T 2.1

10-g

Fig. 42. Te. Semilogarithmicplot ofthe self-diffusion coefficients vs. reciprocal temperature parallel (full symbols) and perpendicular (open symbols) to the trigonal c axis according to 127mTetracer measurements [67G] (squares) and [83W3] (circles).

m2/s lo-"0

1.5

1.6

1.7 1.8 1/r -

1.9

.@K'

C-T 10-l'

0.90

,”

1400 K

1200 1100

1000

900 800K 700

600

400

500

10-l' lo-l2

900

m2/s

I 1o-l3

10-12

~ lo-l4 lo-l5 lo-l6 lo-'7 lo-'8

lo-l6 1o-l7 0.6

0

IO“9

0 0 0

0.7

0.8

0.9 l/T-

1.0

.,o-3K'

1.2

Fig. 44. U. Semilogarithmic plot of the self-diffusion coeffr:ients vs. reciprocal temperature from 234U and 235U tracer neasurementsin orthorhombic CL-Upolycrystals [62A] (open :ircles); tetragonal S-U polycrystals [59A2] (full triangles); act y-U [59Al] (open triangles) and [60R2] (full circles).

Land&-Biirnstein New Series III/26

10-20 0.8

1.1

1.4

1.7

2.0

.,O-3,(-l

l/TFig. 45. Pu. Semilogarithmic plot of the self-diffusion coefficients vs. reciprocal temperature from Pu tracer measurements in monoclinic S-Pu polycrystals [78w] (open circles); orthorhomic face centered y-Pu polycrystals [78w] (open circles); fee 6-Pu [78w] (open circles), and [64T] (open triangles); bet 6’-Pu [78w] (open circles); bee E-PU [68D2] (full triangles), [71C2] (full circles) and [78w] (open circles).

Mehrer, Stolica, Stolwijk

[Ref. p. 81

2 Self-diffusion in solid metallic elements(Figures)

80

lo-“‘0 m2/s

lo-” 10-u 1o-l3 lo-‘&

1P

~I 10-15

10-‘6 I ~ lo-”

10-16

lo-“8

10-l’

lo-“9

10-18

10-m

10-19

10-Z’

10-20 1.0

I

I

I

I

I

lo-l::

I\

1 I\

\

I c>r*g I

I I

1 ‘Pb 1

I I

t

I

1

250 1, /l Fig. 46. Semilogarithmic plot of the self-diffusion cocfficients vs. reciprocal temperature normalized to the melting tempcraturcs T, for several fee metals.

1.2

1.4 1,/r -

1.6

1.8

2.0

Fig. 47. Semilogarithmic plot of the self-diffusion coeflicicnts vs. reciprocal temperature normalized to the melting tempcraturcs T, for several bee metals or metals with bee high-temperature phases [87K2].

Fig. 48. Semilogarithmic plot of the self-diffusion coefticicnts vs. reciprocal temperature normalized to the melting temperatures T, for some bee high-temperature phases including lanthanides and actinides [87K2].

Mehrer, Stolica, Stolwijk

Landok-BBmstei Ne\v Series 11112

2.3 References for 2

81

2.3 References for 2 52N 53s 55H 55N 55s 55w 56H 56s 57K 57M 58M 59Al 59A2 59B 59D 59M 59N 60Bl 60B2 60M 60Rl 60R2 61B 61D 61K 61R 62A 62C 62Hl 62H2 62L 62P 63A 63B 63D 63F 63L 64C 64H 64Ml 64M2 64N 64P 64T 65Al 65A2 65B 65D 65Gl 6562 65Hl 65H2 65Ll 65L2

Nachtrieb, N.H., Catalano, E., Weil, J.A.: J. Chem. Phys. 20 (1952) l;85. Shirn, G.A., Wajda, E.S., Huntington, H.B.: Acta Metall. 1 (1953) 513. Holcomb, D.E, Norberg, R.E.: Phys. Rev. 98 (1955) 1074. Nachtrieb, N.H., Handler, G.S.: J. Chem. Phys. 23 (1955) 1569. Shirn, G.A.: Acta Metall. 3 (1955) 87. Wajda, E.S., Shirn, G.A., Huntington, H.B.: Acta Metall. 3 (1955) 39. Hoffmann, R.E., Pikus, IX, Ward, R.A.: Trans. Metall. Sot. AIME 206 (1956) 483. Shewmon, P.G.: Trans. Metall. Sot. AIME 206 (1956) 918. Kidson, G.E, Ross, R.: Proc. UNESCO Int. Conf. Radioisotopes in Sci. Res., Ist, Paris 1957, p. 185. Makin, S.M., Rowe, A.D., Le Claire, A.D.: Proc. Phys. Sot. (London) B70 (1957) 545. Masuda, Y;: J. Phys. Sot. Jpn. 13 (1958) 597. Adda, Y, Kirianenko, A.: J. Nucl. Mater. 1 (1959) 120. Adda, Y, Kirianenko, A., Mairy, C.: J. Nucl. Mater. 3 (1959) 300. Borisov, YR, Gruzin, P.L., Pavlinov, L.V, Fedorov, G.B.: Metall. Metalloved. 1 (1959) 213. Dickey, J.E.: Acta Metall. 7 (1959) 350. MacEvan, JR., MacEvan, J.U., Yaffe, L.: Can. J. Chem. 37 (1959) 1623. Naumov, A.N., Ryskin, G.y Sov. Phys.-Tech. Phys. 4 (1959) 162. Borg, R.J., Birchenall, C.E.: Trans. Metall. Sot. AIME 218 (1960) 980. Bronfin, M.B., Bokshtein, S.Z., Zhukhovitsky, A.A.: Zavod. Lab. 26 (1960) 828; Ind. Lab. (English Transl.) 26 (1960) 886. Meakin, J.D., Klokholm, E.: Trans. Metall. Sot. AIME 218 (1960) 463. Resnick, R., Castleman, L.S.: Trans. Metall. Sot. AIME 218 (1960) 307. Rothman, S.J.,Lloyd, L.T., Harkness, A.L.: Trans. Metall. Sot. AIME 218 (1960) 605. Buflington, ES., Hirano, K.I., Cohen, M.: Acta Metall. 9 (1961) 434. Von Danneberg, W, Krautz, E.: Z. Naturforsch. 16a (1961) 854. Kidson, G.V, McGurn, .I: Can. J. Phys. 39 (1961) 1146. Resing, H.A., Nachtrieb, N.H.: J. Phys. Chem. Solids 21 (1961) 40. Adda, Y, Kirianenko, A.: J. Nucl. Mater. 6 (1962) 130. Cattaneo, F., Germagnoli, E.: Philos. Mag. 7 (1962) 1373. Hagel, WC.: Trans. Metall. Sot. AIME 224 (1962) 430. Hirano, K.I., Agarwala, R.P., Averback, B.L., Cohen, M.: J. Appl. Phys. 33 (1962) 3049. Lundy, TX, Murdock, J.E: J. Appl. Phys. 33 (1962) 1671. Peart, RI?, Graham, D., Tomlin, D.H.: Acta Metall. 10 (1962) 519. Askill, J., Tomlin, D.H.: Philos. Mag. 8 (1963) 997. Borg, R.J., Lai, D.Y.E, Krikorian, 0.: Acta Metall. 11 (1963) 867. Duhl, D., Hirano, K.-I., Cohen, M.: Acta Metall. 11 (1963) 1. Federer, J.I., Lundy, IS.: Trans. Metall. Sot. AIME 227 (1963) 592. Libatini, C.M., Dyment, I?: Acta Metall. 11 (1963) 1263. Coston, C., Nachtrieb, N.H.: J. Phys. Chem. 68 (1964) 2219. Huntington, H.B., Ghate, P.B., Rosolowski, J.H.: J. Appl. Phys. 35 (1964) 3027. Monma, K., Suto, H., Oikawa, H.: J. Jpn. Inst. Met. 28 (1964) 188. Murdock, J.E, Lundy, T.S., Stansbury, E.E.: Acta Metall. 12 (1964) 1033. Noimann, Kh., Kloze, G., Sokol’skaya, I.L.: Sov. Phys. Solid State (Engl. Transl.) 6 (1964) 1369. Peterson, N.L.: Phys. Rev. A 136 (1964) 568. Tate, R.E., Cramer, E.M.: Trans. Metall. Sot. AIME 230 (1964) 639. Alion, D.C., Slichter, C.P.: Phys. Rev. 137 (1965) 235. Andelin, R.L., Knight, J.D., Kahn, M.: Trans. Metall. Sot. AIME 233 (1965) 19. Bonanno, ER., Tomizuka, CT.: Phys. Rev. 137 (1965) 1264. Dickerson, R.H., Lowell, R.C., Tomizuka, C.T.: Phys. Rev. 137 (1965) 613. Gainotti, A., Zecchina, L.: Nuovo Cimento 40B (1965) 295. Gilder, H.M., Lazarus, D.: J. Phys. Chem. Solids 26 (1965) 2081. Hassner, A., Lange, W: Phys. Status Solidi 8 (1965) 77. Hassner, A., Hassner, R.: Phys. Status Solidi 11 (1965) 575. Lundy, TS., McHargue, C.J.:Trans. Metall. Sot. AIME 233 (1965) 243. Lundy, TS., Winslow, ER., Pawel, R.E., McHargue, C.J.:Trans. Metall. Sot. AIME 233 (1965) 1533.

Land&-Biirnstein New Series III/26

Mehrer, Stolica, Stolwijk

82

2.3 References for 2 1

65Pl 65P2 65Wl 65W2 66C 66D 6611 6612 665 66M 67A 67B 67G 67H 67M 67P 67s 68Bl 68B2 68C 68Dl 68D2 68F 68H 68K 68Pl 68P2 68V 68Wl 68W2 69A 69B 69Dl 69D2 69E 69G 69M 69P 69Rl 69R2 70B 70Gl 70G2 7OL 70R 70s 71A 7lCl 71C2 71D 71F 71Ml

7lM2 710 72C

Pawel, R.E., Lundy, T.S.:J. Phys. Chem. Solids 26 (1965) 937. Peat-t, RI? J. Phys. Chem. Solids 26 (1965) 1853. Wazzan, A.R.: J. Appl. Phys. 36 (1965) 3596. Winslow, ER., Lundy, ‘IS.: Trans. Metal!. Sot. AIME 233 (1965) 1790. Cordes, H., Kim, K.: J. Appl. Phys. 37 (1966) 2181. Dupouy, J.M., Mathie, J., Adda, Y: Mem. Sci. Rev. Metall. 63 (1966) 481. Ivantsov, I.G.: Fiz. Metal. Metalloved. 22 (1966) 725, Phys. Met. Metallogr. USSR (English Transl.) 5 (1966) 77. Ivantsov, I.G., Blinkin, A.M.: Fiz. Met. Metalloved. 22 (1966) 876. James,D.W, Leak, G.M.: Philos. Mag. 14 (1966) 701. Mundy, J.N., Barr, L.W, Smith, EA.: Philos. Mag. 14 (1966) 785. Apel, K., Hantzsch, S., Preshu, K.E.: Z. Metallkd. 58 (1967) 401. Batra, A.P.: Phys. Rev. 159 (1967) 487. Ghoshtagore, R.N.: Phys. Rev. 155 (1967) 598. Hirschwald, W., Schroedter, W: Z. Phys. Chem. NE 53 (1967) 392. Mundy, J.N., Barr, L.W., Smith, EA.: Philos. Mag. 15 (1967) 411. Peterson, N.L., Rothman, S.J.:Phys. Rev. 163 (1967) 645. Schmitz, E, Fock, M.: J. Nucl. Mater. 21 (1967) 317. Bakker, H.: Phys. Status Solidi 28 (1968) 569. Beyeler, M., Adda, Y: J. Phys. (Paris) 29 [4] (1968) 345. Carter, AC., Wilson, C.G.: Brit. J. Appl. Phys. 1 (1968) 515. Dyment, E, Libatini, C.M.: J. Mater. Sci. 3 (1968) 349. Dupouy, M., Calais, D.: Trans. Metall. Sot. AIME 242 (1968) 1679. Fedorov, G.B., Smirnov, E.A., Moiseenko, S.S.:Metall. Metalloved. Chist. Met. 7 (1968) 124. Heumann, Th., Imm, R.: J. Phys. Chem. Solids 29 (1968) 1613. Kaygorodov, XN., Klotsman, S.M., Timofeev, A.N., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 25 (1968) 910. Pavlinov, L.V, Gladyshev, A.M., Bykov, XN.: Fiz. Met. Metalloved. 26 (1968) 823. Pavlinov, L.V, Grigorev, G.X, Sevastianov, VG.: Fiz. Met. Metalloved. 25 (1968) 565. Volin, TE., Balluffi, R.W: Phys. Status Solidi 25 (1968) 163. Walsiie de Reca, N.E., Libatini, C.M.: Acta Metall. 16 (1968) 1297. Walter, C.M., Peterson, N.L.: Phys. Rev. 178 (1968) 922. Askill, J.: Phys. Status Sohdi 33 (1969) K 105. Bowden, H.G., Balluffi, R.W.: Philos. Mag. 19 (1969) 1001. Dariel, M.P., Erez, G., Schmidt, G.M.J.: Philos. Mag. 19 (1969) 1045. Dariel, M.P., Erez, G., Schmidt, G.M.J.: Philos. Mag. 19 (1969) 1053. El-Hanany, U., Zamir, D.: Phys. Rev. 183 (1969) 809. Graham, D.: J. Appl. Phys. 40 (1969) 2386. Miller, J.W: Phys. Rev. 181 (1969) 1095. Pawel, R.E., Lundy, TS.: Acta Metall. 17 (1969) 979. Rothman, S.J.,Peterson, N.L.: Phys. Status Solidi 35 (1969) 305. Rupp, W!, Ermert, U., Sizmann, R.: Phys. Status Solidi 33 [2] (1969) 504. Briitter, P., Gobrecht, H.: Phys. Status Solidi 37 (1970) 869. Gorny, D.S., Altovskii, R.M.: Fiz. Met. Metalloved. 30 (1970) 85. Graham, D., Hanes, E.R.: NASA Technical Note D 5905,NASA, Washington D.C. 1970,unpublished. Lodding, A., Mundy, J.N., Ott, A.: Phys. Status Solidi 38 (1970) 559. Rothmann, S.J.,Peterson, N.L., Robinson, J.T.:Phys. Status Solidi 39 (1970) 635. Shalayev, VI., Tkachenko, LB., Pavlov, VA., Timofeyev, N.I., Gushchina, A.V: Fiz. Metal. Metalloved. 39 (1970) 1061. Askill, J.: Phys. Status Solidi (a) 8 (1971) 587. Combronde, J., Brebec, G.: Acta Metall. 19 (1971) 1393. Cornet, J.A.: J. Phys. Chem. Solids 32 (1971) 1489. Dariel, M.P., Dayan, D., Languille, A.: Phys. Rev. B4 (1971) 4348. Fradin, EY: PhD Thesis, University of Illinois;1971. Mundy, J.N.: Phys. Rev. B3 (1971) 2431. Mundy, J.N., Miller, T.E., Porte, R.J.: Phys. Rev. B3 (1971) 2445. Ott, A., Norden-Ott, A.: J. Appl. Phys. 42 (1971) 3745. Chhabildas, L.C., Gilder, H.M.: Phys. Rev. B5 (1972) 2135. Mehrer, Stolica, Stolwijk

Landolt-BBmsteil New Series III/26

2.3 References for 2 72D 72M 72R 72s 72T 73B 73D 73H 73Ll 73L2 73w 74B 74F 74Hl 74H2 74Ll 74L2 74M 74P 74w 75B 75F 74L3 75M 76F 76Ml 76M2 76M3 76M4 77Al 77A2 77F 77H 77M 78Bl 78B2 78El 78Hl 78M 78R 78W 79A 79B 79H 79K 79Ml 79M2 79P 80B 80D 80G 81B

83

Davis, R.E., McMullen, WD.: Acta Metall. 20 (1972) 593. Mao, C.: Phys. Rev. B5 (1972) 4693. Reimers, P., Bartdorff, D.: Phys. Status Solidi (b) 50 [I] (1972) 305. Spedding, EH., Shiba, K.: J. Chem. Phys. 57 (1972) 612. Titman, J.M., Moores, B.M.: J. Phys. F 2 (1972) 592. Buescher, B.J.,Gilder, H.M., Shea, N.: Phys. Rev. B7 (1973) 2261. Dariel, M.P.: Philos. Mag. 28 (1973) 915. Hultgren, R., Desai, ED., Hawkins, D.T, Gleiser, M., Kelley, K.K., Wagman, D.D.: Selected Values of the Thermodynamic Properties of the Elements. Metals Park, Ohio: American Society for Metals, 1973. Lam, N.Q., Rothman, S.J.,Mehrer, H., Nowicki, L.J.: Phys. Status Solidi (b) 57 (1973) 225. Languille, A., Dariel, M.P., Calais, D., Coqblin, B.: Mem. Sci. Rev. Metall. 70 (1973) 241. Weithase, M., Noack, E: Phys. Status Solidi (b) 57 (1973) Klll. Backus, J.G.E.M., Bakker, H., Mehrer, H.: Phys. Status Solidi (b) 64 (1974) 151. Fromont, M., Languille, A., Calais, D.: J. Phys. Chem. Solids 35 (1974) 1367. Hood, G.M., Schultz, R.J.:Acta Metall. 22 (1974) 459. Huang, EH., Huntington, H.B.: Phys. Rev. B9 (1974) 1479. Lam, N.Q., Rothman, S.J.,Nowicki, L.J.: Phys. Status Solidi (a) 23 (1974) K35. Languille, A., Calais, D., Fromont, M.: J. Phys. Chem. Solids 35 (1974) 1373. Messer, R., Dais, S., Wolf, D., in: Proc. 18th Ampere Congress, Allen, P.S.,Andrew, E.R., Bates, C.A. (eds.).Nottingham, England, 1974. Pelleg, J.: Philos. Mag. 29 (1974) 383. Weithase, M., Noack, E: Z. Phys. 270 (1974) 319. Bronfin, M.B., Bulatov, G.S., Drugova, I.A.: Fiz. Met. Metalloved. 40 [2] (1975) 363. Fromont, M.: J. Phys. Chem. Solids 36 (1975) 1397. Languille, A., Calais, D.: J. Phys. Chem. Solids 35 (1974) 1461. Messer, R., Noack, E: Appl. Phys. 6 (1975) 79. Feller-Kniepmeier, M., Griindler, M., Helfmeier, H.: Z. Metallkd. 67 [8] (1976) 533. Maier, K., Mehrer, H., Lessmann, E., Schiile, W: Phys. Status Solidi (b) 78 (1976) 689. Marbach, G., Fromont, M., Calais, D.: J. Phys. Chem. Solids. 37 (1976) 689. Messer, R.: Magnetic Resonanceand Related Phenomena, Proc. 19th Congress Ampere, Heidelberg, Brunner, H. (ed.) (Heidelberg, Groupement Ampere) 1976, p. 269. Mundy, J.N., Tse, C.W, McFall, WD.: Phys. Rev. B13 (1976) 2349. Ablitzer, D.: Philos. Mag. 35 (1977) 1239. Arkhipova, N.K., Klotsman, SM., Rabovskiy, A., Timofeev, A.N.: Fiz. Met. Metalloved. 43 (1977) 779; Phys. Met. Metallogr. USSR (English Transl.) 43 (4) (1977) 88. Fromont, M., Marbach, G.: J. Phys. Chem. Solids 38 (1977) 27. Hettich, G., Mehrer, H., Maier, K.: Ser. Metall. 11 (1977) 795. Maier, K.: Phys. Status Solidi (b) 44 (1977) 567. Bartdorff, D., Neumann, G., Reimers, P.: Philos Mag. 38 (1978) 157. Bihr, J., Mehrer, H., Maier, K.: Phys. Status Solidi (a) 50 (1978) 17. Einziger, R.E., Mundy, J.N., Hoff, H.A.: Phys. Rev. B 17 (1978) 440. Herzig, Ch., Eckseler, H., Bussmann, W, Cardis, D.: J. Nucl. Mater. 69/70 (1978) 61. Mundy, J.N., Rothman, S.J.,Lam, N.Q., Hoff, H.A., Nowicki, L.J.: Phys. Rev. B18 (1978) 6566. Rein, G., Mehrer, H., Maier, K.: Phys. Status Solidi (a) 45 (1978) 253. Wade, WZ., Short, D.W, Walden, J.C., Magana, J.W: Metall. Trans. 9A (1978) 965. Ait-Salam, M., Springer, T, Heidemann, A., Alefeld, B.: Philos. Mag. A39 (1979) 797. Bussmann, W, Herzig, Ch., Rempp, W, Maier, K., Mehrer, H.: Phys. Status Solidi (a) 56 (1979) 87. Herzig, Ch., Eckseler, H.: Z. Metallkd. 70 (1979) 215. Krautheim, G., Neidhardt, A., Reinhold, U., Zehe, A.: Krist. Tech. 14 (1979) 1491. Macht, M.P., Frohberg, G., Wever, H.: Z. Metallkd. 70 (1979) 209. Maier, K., Mehrer, H., Rein, G.: Z. Metallkd. 70 (1979) 271. Pontau, A.E., Lazarus, D.: Phys. Rev. B19 (1979) 4027. Briinger, G., Kanert, O., Wolf, D.: Phys. Rev. B22 (1980) 4247. Dyment, E, in: Titanium 80, Kimura, H., Izumi, O., (eds.)Proc. 46th Int. Conf. on Titanium, Kyoto, Japan, 1980, p. 519. Giiltz, G., Heidemann, A., Mehrer, H., Seeger,A., Wolf, D.: Philos. Mag. A41 (1980) 723. Bussmann, W, Herzig, Ch., Hoff, H.A., Mundy, J.N.: Phys. Rev. B 23 (1981) 6216.

.andolt-Biimstein lew Series III/26

Mehrer, Stolica, Stolwijk

84 31G 31M 91P 81T 52F 82H B2P B2R B3A B3Gl B3G2 B3Sl

83S2 63V 83Wl 83W2 83W3 84A 84H 8% 85G 85Hl 85H2 86A 87D 87G 87Kl 87K2 881 88L 89L 89M 9OL

2.3 References for 2

Gunther, B., Kanert, O., Mehring, M., Wolf, D.: Phys. Rev. B24 (1981) 6747. Mundy, J.N., Hoff, H.A., Pelleg, J., Rothman, S.J.,Nowicki, L.J., Schmidt, EA.: Phys. Rev. B24 (1981) 658. Patil, R.X, Tiwari, G.P., Sharma, B.D.: Philos. Mag. A 44 (1981) 717. Tiers, J.E, Chabre, Y: J. Phys. E 11 (1981) 1943. Fujikawa, S., Hirano, K.I., in: Proc. of Yamada Vth Conf. on Point Defects and Defect Interactions in Metals, Takamura, J.I., Doyama, M., Kiritani, M., (eds.).Univ. of Tokyo Press 1982, p. 554. Herzig, Ch., Manke, L., Bussman, W, in: Proc. of Yamada Vth Conf. on Point Defects and Defect Interactions in Metals, Takamura, J.I., Doyama, M., Kiritani, M., (eds.).Univ. of Tokyo Press, 1982, p. 578. Pruthi, D.D., Agarwala, R.P.: Philos. Mag. A 46 (1982) 841. Rein, G., Mehrer, H.: Philos. Mag. A45 [3] (1982) 467. Ablitzer, D., Haeussler, J.P.,Sathyaraj, K.X: Philos. Mag. A47 (1983) 515. Gunther, B., Kanert, 0.: Acta Metal!. 31 (1983) 909. Gfinther, B., Kanert, O., Wolf, D.: Solid State Commun. 47 (1983) 409. Smithells, L.J.: Smithells Metals Reference Book (6th Edition), Brandes, E.A.J., (ed.). Washington: Butterworths, 1983. Serruys, Y, Brebec, G., in: DIMETA 82, Proc. Int. Conf. on Diffusion in Metals and Alloys, Tihany, 1982, Kedves, EJ., Beke, D.L., (eds.).Trans. Tech. Publication, Switzerland, 1983, p. 351. Vladimirov, A.B., Kaigorodov, VN., Klotsman, SM., Tracktenberg, I.S., in: DIMETA 82, Proc. Int. Conf. on Diffusion in Metals and Alloys, Tihany, 1982, Kedves, EJ., Beke, D.L., (eds.).Trans. Tech. Publication, Switzerland, 1983, p. 338. Weiler, D., Maier, K., Mehrer, H. in: DIMETA 82, Proc. Int. Conf. on Diffusion in Metals and Alloys, Tihany, 1982, Kedves, EJ., Beke, D.L., (eds.).Trans. Tech. Publication, Switzerland, 1983, p. 342. Werner, M., Mehrer, H.: in DIMETA 82, Proc. Int. Conf. on Diffusion in Metals and Alloys, Tihany, 1982, Kedves, EJ., Beke, D.L., (eds.).Trans. Tech. Publication, Switzerland, 1983, p. 393. Werner, M., Mehrer, H., Siethoff, H.: J. Phys. C: Solid State Phys. 16 (1983) 6185. Arkhipova, N.K., Klotsman, S.M., Polikarpova, I.P., Tatrinova, G.N., Timofeev, A.N., Veretennikov, L.M.: Phys. Rev. B30 (1984) 1788. Horvath, J., Dyment, E, Mehrer, H.: J. Nucl. Mater. 126 (1984) 206. Chiron, R., Faivre, G.: Philos. Mag. A51 (1985) 865. Gunther, B., Kanert, 0.: Phys. Rev. B31 (1985) 20. Heitjans, P., Kiirblein, A., Ackermann, H., Dubbers, D., Fujiwara, E, Stockmann, H.J.: J. Phys. F 15 (1985) 41. Hood, G., in: “Solute-Defect Interaction - Theory and Experiment”, Saimoto, S., Purdy, G.R., Kidson, G.V, (eds.),Oxford, New York: Pergamon Press, 1985, p. 83. Arkhipova, N.K., Klotsman, S.M., Polikarpova, I.P, Timofeev, A.N., Shepatkovskii, P.: Fiz. Met. Metalloved. 62 (1986) 1882 (in Russian). Dais, S., Messer, R., Seeger,A.: Mat. Sci. Forum 15-18 (1987) 419. Geise, J., Herzig, C.: Z. Metallkd. 78 (1987) 291. Kohler, U., Herzig, Ch.: Phys. Status Solidi (b) 144 (1987) 243. Kiihler, U.: PhD Thesis, University of Miinster, 1987. Iijima, Y, Kimura, K., Hirano, K.: Acta Metall. 36 (1988) 2811. Lee, Ch.G., Iijiama, Y, Hirano, K.: The Ninth Japan Symposium Thermophysical Properties, i988, p. 1. Landolt-Bornstein, NS, Vol. III/22 b: Semiconductors. Heidelberg, Berlin, New York: Springer, 1989. Mehrer, H., Ltibbehusen, M.: Defect and Diffusion Forum 66-69 (1989) 591. Liibbehusen, M., Mehrer, H.: Acta Metall., in press.

Mehrer, Stolica, Stolwijk

3.1 Introduction

85

3 Diffusion of impurities in solid metallic elements 3.1 Introduction By “impurity diffusion” is meant the diffusion of a solute element present in such low concentrations in a solvent (matrix) that the solute atoms may be regarded as diffusing quite independently of one another, i.e. with Ino mutual interaction. It represents the very simplest type of binary diffusion and so is of particular interest as being the most likely to be amenable to theoretical understanding. For this reason very considerable ,experimental effort has been devoted over the last thirty or forty years to systematic measurementsof impurity ,diffusion in metals of all types. Impurity diffusion in metals usually occurs by a vacancy mechanism (see 1.5.3). The same is true for self-diffusion of the matrix metal. Depending on the interaction between solute atom and vacancy the impurity ,diffusion coefficient will be either larger or smaller than the self-diffusion coefficient (seechapter 2). However, in a temperature range between 2/3 T, and T, (T, = melting temperature of the matrix metal) the difference ;between impurity and self-diffusion coefficient will usually not exceed one to two orders of magnitude as long as solute and self-atoms migrate via the same diffusion vehicle. Some solute atoms show “anomalous” fast diffusion. For fast diffusors the impurity diffusion coefficient texceedsthe self-diffusion coefficient by several orders of magnitude. Fast diffusing solutes usually have a low solubility in the matrix crystal as well. The phenomenon of fast diffusion has been observed mainly for 1polyvalent matrix metals like Pb, Sn, In, Tl, titanium and vanadium group metals and to some extent for alkali 1metals. Many solutes in Si and Ge are also fast diffusors. However, in this chapter diffusion data are compiled iFormetallic matrices only. It is commonly agreed that a low ratio between the atomic radii of solute and matrix atoms is favourable jibr fast diffusion and that this phenomenon is basically due to rapid transport of solute atoms via interstitial :rites of the matrix crystal. However, the question whether this rapid transport occurs via a pure interstitial Ivzechanism (see 1.5.1) or a interstitial-substitutional exchange mechanism (see 1.5.6) has been resolved only for 7very few solute-matrix combinations.

3.1.1 Methods of measurement The advent of readily available radioactive isotopes just after the war made it possible for the first time to aork with solute concentrations low enough to satisfy completely the conditions for true impurity diffusion, ;‘or extremely small concentrations of radioactive isotopes are accurately measurable. For this reason too the i deal method of measurementwith radioactive isotopes is the thin layer method (see1.6.1.2.1),for the condition 1;hat the thickness h 6 (D t)1/2 is very readily satisfied; extremely thin layers frequently suffice, often only a few I:ens of atoms thick. The thin layer method with serial sectioning and measurement of the activity of each section is quite the (:ommonest method employed, the diffusion coefficient D being calculated from equation (1.I 1). Alternative I procedures are to use the “residual activity” (Gruzin-Seibel) method or the surface decreasemethod. For reasons outlined in 1.6.1.2.1, these two methods are generally regarded as less reliable, although the residual activity method is capable of comparable accuracy when the emitted radiation is of low energy so that the integrated activity from below the surface becomes negligible. The surface decreasemethod is rarely used nowadays. Methods of sectioning and analysis for the thin layer methods are reviewed in 1.6.1.2.1. Either mechanical serial sectioning techniques (lathe sectioning, grinder sectioning, microtome sectioning) or microsectioning techniques (sputter sectioning, anodic stripping, . . .) may be used. Occasionally, penetration profiles follow, and are then analysed in terms of, equation (1.14) rather than equation (1.11); this is when the diffusant solubility is so small that the surface concentration remains at its maximum (solubility) value for the whole of the diffusion anneal. This solubility can then also be determined from the measurements. When the surface concentration maintains its maximum saturation value for only part of the anneal time, measurementsmay be analysed by a solution due to Malkovitch (Fiz. Met. Metalloved. 15 (1963) 880).

Land&-Biimstein New Series III/26

Le Claire

3.1 Introduction

86

Sometimesnon-radioactive diffusants are employed, either with the thin-layer method or, occasionally, with diffusion couple or in- or out-diffusion methods. Sufficiently sensitive methods of chemical analysis are then needed becauseof the necessarily very low concentrations; electron microprobe analysis (EMPA), secondary ion mass spectroscopy (SIMS), scanning laser mass spectroscopy (SLMS), spark source mass spectroscopy (SSMS), Rutherford back scattering (RBS) and nuclear reaction analysis (NRA) are among methods that can be employed. Electrical resistivity measurementsand X-ray diffraction methods (see1.6.1.2.3) provide another means of monitoring concentration changes and occasionally have been used to determine impurity diffusion coefficients. Apart from one or two measurementsby the Mijssbauer effect, “indirect methods”, (see1.6.2) have found little or no application to substitutional solute impurity diffusion, with which this chapter is principally concerned. This is in marked contrast with the diffusion of the interstitial solutes C, N, 0 and H dealt with in chapters 8 and 9.

3.1.2 Use of tables and figures In this chapter impurity diffusion data are compiled in tables and figures according to the positions of the nrorrix metals in the periodic table in the following order: alkali group metals, alkaline earth group metals, scandium group metals, rare earth metals, titanium group metals, vanadium group metals, chromium group metals, manganesegroup metals, iron group metals, cobalt group metals, nickel group metals, noble metals, zinc group metals, aluminum group metals, group IV B metals, group VB (semi) metals, actinide group metals This order of matrix elements is the same as in chapter 2 on self-diffusion. Within the table that refers to a given matrix metal the data for solute elements are compiled according to the same order of elements. The matrix metal can be found on top of the pertaining table. The solute element can be found in the column ‘Sohrte” of the table. Diffusion data are reported whenever possible in terms of thepre-exponenfiulfaclor Do (secondcolumn) and the nclhafion enfhnby Q (third column) introduced in equation (1SO) of the “General introduction”. Occasionally, diffusion coefficients have been listed in these two columns. This procedure was chosen whenever the original data did not justify an analysis in terms of equation (1.50). Possible reasons could be either too few data points or physically significant deviations from equation (1.50) already discussed in section 1.8. An example is diffusion in u-iron: When diffusion is studied over a wide enough temperature range the magnetic transition causes significant deviations from a simple Arrhenius behaviour. Occasionally curved Arrhenius diagrams were analyzed in terms of a sum of two Arrhenius terms. In these casesblanks occur in the Do and Q columns and the result of the two-exponential tit is listed in the “Method/Remarks” column (seebelow). The temperature range quoted is the range over which measurementswere made and used by the author(s) to calculate the quoted values of Do and Q. Extrapolation too far outside this range may not in somecasesgive reliable diffusion coefficients. For imitlxinl matrix metals Do and Q values are given for diffusion parallel (II) and perpendicular (I) to the crystal axis whenever experiments on single crystals of different orientation were performed. The orientation will be indicated in the Do column of the table. For matrh met& with allotropic transformations Do and Q values are listed for the various crystal structures. Either diffusion data are collected separately (like e.g. in the case of cr-Ti and I%Ti) or the modification is indicated by a corresponding remark (e.g. “y-Fe” or “S-Fe”) in the “Temperature range” column.

Le Claire

3.1 Introduction

87

The column “Method/Remarks” usually contains the following information: (i)

(ii) (iii) (iv) (v) (vi)

The experimental method is briefly characterized: - Thin layer methods If a thin layer method together with a radioactive diffusant was used the diffusant is stated together with its mass number. If concentration-depth curves were determined by serial sectioning and counting the sectioning technique is stated. If the residual activity method or the surface decreasemethod was employed together with radioactive diffusants this is stated by the remark “residual activity” or “surface decrease”. If a thin layer method is used together with non-radioactive diffusants the diffusing element is stated without mass number. The technique for the concentration-depth curve measurement (e.g., “electron microprobe analysis”, SIMS, . . .) is stated. - Diffusion couple methods or in- and out-diffusion methods or indirect methods are specified in tables. The statement “polycrystal” or “single crystal” is employed to indicate the microstructure of the material. The nominal purity of the material will be stated. Appropriate additional information on the method, additional information contained in the paper and remarks about the reliability of the quoted results may be added in the “Method/Remarks” column. When a curved Arrhenius plot has been analyzed by the sum of two exponentials according to equation (l.Sl), the pre-exponential factors 0: and 0; and the activation enthalpies Q, and Q, are tabulated in the “Method/Remarks” column. Very occasionally the various forms in which results are reported in a paper (tabulated, graphical, in text etc.) may be found to be incompatible with one another. Careful assessmentof the data has usually made possible identification of what is most likely the most correct result. It is stated explicitly where this has been necessary.

Central to the present chapter are the tables. From the tables references are made to the figures. Selected data have been plotted in the figures as indicated in the column “Figure” (Fig.). In the figures of sections 3.2.1 to 3.2.9 and 3.2.16 (sections treated by A.D. Le Claire) the temperature ranges of the D values shown in the figures agreewith those of the temperature range given in the tables. In most figures of sections 3.2.10 to 3.2.15 (sections treated by G. Neumann) Arrhenius lines are shown over a temperature range of typically 213 T, to T,. This temperature range is not identical with the temperature range over which the measurements were performed. The temperature range of measurements can be found in the tables. In most figures self-diffusion according to chapter 2 is shown for comparison. In most figures melting temperatures of the matrix metals and, if necessary,allotropic transformation temperatures have been indicated.

Land&-BBmstein New Series III/26

Le Claire

88

3.2.1 Impurity diffusion in alkali metals

[Ref. p. 203

3.2 The impurity diffusion tables Solute

Do

e

10-4m2s-1

kJmol-r

Temperature range K

Method/Remarks

Fig.

Ref.

3.2.1 Impurity diffusion in alkali metals Li, Na, K, Rb, Cs, Fr Matrix:

lithium (Li)

Li

-

-

-

seechapter 2 on self-diffusion

132

Na

0.41

52.80

325...449

1

67Ml

0.44

52.02*

317..,435

22Na* polyciystals; 99.8 %; microtome sectioning 22Na; polycrystals; purity not specified; microtome sectioning; diffusion in 7Li and 6Li studied; * Do and Q for 7Li estimated from graphical data by present authors 22Na, 24Na; polycrystals; 99.98%; microtome sectioning; isotope effect also determined

2

71Ll

-

73Ml

-

6901

1

73M2

-

6801

1

73Ml

1

6802

,cu

Ag

Au

D = l.16~10-11 m2sV1

423

0.047 *

38.60*

323...394

0.3

41.87

362...420

0.37

53.72

340...434

0.54

53.72

323 . ..423

0.21

46.01

319...426

64Cu; polycrystals; 99.98%; microtome sectioning; * values reassessedby present authors 64Cu; polycrystals; 99.98%; penetration plots curved Malkovitch solution 1’om&; polycrystals; 99.98%; microtome sectioning losAgt ‘lomAgi polycrystals; 99.98%; microtome sectioning; isotope effect also determined 195Au; polycrystals; 99.95%; microtome sectioning

(continued)

Le Claire

Land&-BCmslein New Series III/26

Ref. p. 2031 Solute

3.2.1 Impurity diffusion in alkali metals

Do

Q

10-4m2s-’

kJmol-’

89

Temperature range K

Method/Remarks

Fig.

Ref.

‘95AU. polyc&tals

2

7103

Matrix: lithium (Li), continued 0.10

43.47

300...441

0.141

44.93

300**.441

Zn

0.57

54.34

330...446

65Zn. polycrystals; 99.98%; microtome sectioning

69Ml

Cd

0.62

62.80

355...449

115mC4 polycrystals; 99.98% ; microtome sectioning

7001

Hg

1.04

59.37

331...447

‘03Hg; polycrystals; 99.98%; microtome sectioning

7001

Ga

0.21

54.05

389...447

72Ga; polycrystals; 99.98%; microtome sectioning

7001

In

0.39

66.44

348s.. 443

114mIn;

6803

Au

of 95 % 6Li;

microtome sectioning lg5Au: 2, 3 polycrystals of 92.5 % ‘Li; microtome sectioning; separate Arrhenius terms for 300...359 K: Do = 8.5. 10m6m2 s-l; Q = 42.83 kJmol-‘; 371...441 K: Do = 0.24. 10m4m2 s-l; Q = 46.52 kJmol-’ (seeFig. 3)

polycrystals; 99.95%; microtome sectioning Sn

0.62

66.32*

380...447

Sn (radioisotope not specified); polycrystals; 99.95%; microtome sectioning; * values reassessedby present authors

6902

Pb

1.6. IO4

105.5*

401 .*. 443

Pb (radioisotope not specified); polycrystals; 99.95% ; microtome sectioning; * values reassessedby present authors

6902

Land&-Bknstein New Series III/26

Le Claire

90 Solute

3.2.1 Impurity diffusion in alkali metals Do

Q

10-4m2s-1

kJmol-’

[Ref. p. 20

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: lithium (Li), continued Sb

1.6. 1012

173.8*

413 . ..449

Sb (radioisotope not specified); polycrystals; 99.95%; microtome sectioning * values reassessedby present authors

1

6902

Bi

5.3 . 10’4

198.0*

413...450

Bi (radioisotope not specified); polycrystals; 99.95% ; microtome sectioning; * values reassessedby present authors

1

6902

Matrix: sodium (Na) Na

-

-

seechapter 2 on self-diffusion

4

Li

1.8

49.1

291...358

4

64Nl

-

-

297...353

6Li, ‘Li; polycrystals; purity not specified; diffusion couple method; microtome sectioning and mass spectroscopy 6Li; polycrystals; 99.95%; microtome sectioning

-

83Bl

0.08

35.29

273...365

42~.

4

67Bl

K

poly&ystals; 99.95%; microtome sectioning Rb

0.15

35.55

272..-359

s6Rb; polycrystals; 99.95% microtome sectioning

4

67Bl

Ag

0.02

21.39

298..-351

1’omAg. polycrystals; 99.95% ; microtome sectioning

4

83Bl

Au

3.34. 10-4

9.25

274...350

‘=Au; polycrystals; 99.95%; microtome sectioning; solubility determined from the erfc-profile : c, = 540 exp (- 47.0 kJ/RT)

4

69Bl

Le Claire

Ref. p. 2031 Solute

Matrix:

3.2.2 Impurity diffusion in alkaline earth metals

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

273...363

“%Zd; polycrystals;

91 Fig.

Ref.

sodium (Na), continued

Cd

0.37

40.86

83Bl

99.95 % ;

microtome sectioning In

1.79

48.73

293...363

l141n; polycrystals;

83Bl

99.95 %;

microtome sectioning Tl

0.52

42.62

297...356

204Tl.

83Bl

poly&stals; 99.95 % ;

microtome sectioning Sn

0.54

43.92

316 ... 363

l13Sn; polycrystals;

83Bl

99.95 %;

microtome sectioning Matrix:

potassium (IL)

K

-

-

-

seechapter 2 on self-diffusion

Na

0.058

31.19

273...335

22Na* polyciystals;

67Bl

99.95 % ;

microtome sectioning Rb

0.09

36.76

273...333

‘(jRb; polycrystals;

69Sl

99.95 % ;

microtome sectioning Au

1.29. lO-3

13.52

279...326

lg8Au; polycrystals;

7OSl

99.95 %;

microtome sectioning; (erfc and Malkovitch solutions) Matrix:

rubidium (Rb) - No impurity diffusion data available (for self-diffusion data seechapter 2)

Matrix:

caesium (Cs) - No data available

3.2.2 Impurity diffusion in alkaline earth metals Be, Mg, Ca, Sr, Ba, Ra Matrix:

beryllium (Be)

Be

-

-

-

Ce

3.1 . 102

303.5

1223 ... 1513

seechapter 2 on self-diffusion

6

141C!e;

6

76Al

6

76Al

polycrystals; 99.7%;

residual activity (erfc solution) V

29

243.0

1173...1423

4av.

pol&rystals; 99.7%;

residual activity (erfc solution) Land&-BGmstein New Series III/26

[Ref. p. 203

3.2.2 Impurity diffusion in alkaline earth metals Temperature range K

Method/Remarks

Fig.

Ref.

Matrix beryllium (Be), continued 359.6 Nb 2. lo4

1318...1513

g5Nb; polycrystals; residual activity (erfc solution)

6

76Al

Fe

Fe; polycrystals; diffusion couple method and electron microprobe analysis; solubility limit also determined “Fe. polydrystals;

-

62Dl

6

66Nl

6

79Gl

6

70Al

combined data of [65Dl] and [74Ml] on single crystals: 64Cu; serial sectioning (for T > 950K); diffusion following ion implantation studied by Rutherford backscattering (for T < 950K)

6

65D1, 74Ml

1’om&; polycrystals;

-

66Nl

Solute

Do

Q

10-4m2s-1

kJmol-’

1.0

221.9

1073...1373

0.53

216.9*

973...1349

99.75 % ;

residual activity; * values reassessedby present authors co

27

287.2

1253... 1493

5’co; polycrystals; 99.8%;

residual activity Ni

0.2

243.0

1073 . . 1523

63Ni; polycrystals; 99.7 % ;

residual activity cu

Ag

11c 0.38

198.6

733 ... 1273

I c 0.42

193.3

693 ... 1273

6.2

193.0*

923...1183

99.75 % ;

11c 0.43 Ic 1.76

164.5* 180.9*

929...1170 929...1170

residual activity; * values reassessedby present authors “om&; single crystals;

6

99.75 % ;

D,, = 3.1 . lo-l3 m2se1 D

I = 13. . 10-13m2s-1

1053 1053

residual activity; * values reassessedby present authors single crystals;

75Ml

99.95 %;

in-diffusion studied by Rutherford backscattering analysis

Ik Claire

Landolt-BBmstein New Series lIlj26

3.2.2 Impurity diffusion in alkaline earth metals

Ref. p. 2031

93

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: beryllium (Be), continued D = 1.5 * lo-“3 m2s-1 Au D”=28.10-‘6~2~-1 I . D,, =4.4.10-15 m2sm1 D I =65.10-‘5m2s-l .

938 938 1053 1053

single crystals; 99.95% ; in-diffusion studied by Rutherford backscattering analysis; 99.95%; D in polycrystals of 10 urn grainsize about 10 times larger than in single crystals

6

75M3

Al

1068 *.+1356

26A1. polyirystals; 99.91%; residual activity (erfc solution)

6

76Gl

Matrix: magnesium (Mg) Mg

-

seechapter 2 on self-diffusion

7, 8

Be

8.06

157.0

773...873

Be; diffusion couple method with couple of Mg and Mg 0.2 % Be alloy; layerwise spectral analysis (erfc solution)

7

66Yl

La

2.2. 10-2

102.2

813...868

dissolution of precipitates in diffusion couple

-

66Ll

Ce

450

175.8

823...871

dissolution of precipitates in diffusion couple

-

66Ll

Fe

4.10-6

88.8

673.e.873

“Fe; polycrystals; 99.95% ; residual activity

7

68Pl

Ni

1.2. 10-5

95.9

673...873

63Ni; polycrystals; 99.95% ; surface decreasemethod

7

68Pl

Ag

0.34

119.3

749...894

7

67Ll

11c 3.62 J-c 17.9

133.1 148.2

752...913 752...913

‘lomAgi polycrystals; 99.875% ; serial sectioning ‘lomAgi single crystals; 99.99%; lathe and grinder sectioning

8

72Cl

Zn

0.41

119.7

740...893

65Zn; polycrystals; 99.875%; serial sectioning

7

67Ll

Cd

11c 1.29 I c 0.46

140.7 132.7

733...898 733...898

“‘Cd; single crystals; 99.99%; lathe and grinder sectioning

8

72Cl

Solute

andolt-BBmstein \Tew Series III/26

Do

e

10-4m2s-1

kJmol-’

1.0

168.3

Le Claire

Golute

[Ref. p. 203

3.2.2 Impurity diffusion in alkaline earth metals

94 Da

e

10-4m2s-’

kJmol-’

Ref.

Temperature range K

Method/Remarks

l141n; polycrystals; 99.875%; serial sectioning 114mIn; single crystals; 99.99%; lathe and grinder sectioning

67Ll

l13Sn.

72Cl

Fig.

Matrix: magnesium(Mg), continued [n

Sn

5.2. 10-2

118.9

745...883

(Ic 1.75 Ic 1.88

143.4 142.4

747..-906 747.~~906

11c 4.27

149.9

748 ..-903

72Cl

single’crystals; 99.99% ; lathe and grinder sectioning; D,/D,, = 1 at 902.3 K; D,/D,, = 1.13 at 858.2 K Sb

11 c 2.57 I c 3.27

137.3 138.2

781...896 781...896

124Sb; single crystals; 99.99% ; lathe and grinder sectioning (erfc solution)

72Cl

u

1.6. lo-’

114.7

773...893

235~.

68Pl

polyc’rystals; 99.95% ; residual activity Matrix: calcium (Ca) Ca

-

-

-

seechapter 2 on self-diffusion

Fe

3.2. lo-’

124.8

823. . - 1073

“Fe; polycrystals; 99.95% ; residual activity

68Pl

Ni

l.lo.10-5

121.0

823. . .1073

63Ni; polycrystals; 99.95%; surface decrease

68Pl

U

1.1 . 10-s

145.7

773*..973

23su; polycrystals; 99.95%; residual activity

68Pl

Matrix: strontium (Sr) - No data available Matrix: barium (Ba)

- No data available

Matrix: radium (Ra) - No data available

Le Claire

Land&-B6msIei New Series Ill/26

solute

95

3.2.3 Impurity diffusion in SC group and rare earth metals

Ref. p. 2031 Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

3.2.3 Impurity diffusion in scandium group and rare earth metals 3.2.3.1 Scandium group metals SC,Y, La Matrix: scandium (SC) SC

-

-

-

no data available

-

Fe

1.5. 10-3

54.0

1241s.. 1528 (Cl-SC) 1643 1702 1755 1790 (P-W

Fe; diffusion couple method using scanning laser mass spectroscopy; polycrystals; 99.96%; electro-mobility and effective valence also determined

10

seechapter 2 on self-diffusion

11

D=4.1.10-gm2s-’ 2.6 . IO-’ m2 s-l 3.4. IO-’ m2 s-l 4.4. IO-’ m2 s-l

Matrix: yttrium (Y) Y

-

86Al

Fe

1.8. lO-2

85.0

1173...1603 (a-Y>

“Fe; diffusion couple method; 99%; lathe sectioning; electro-mobility and effective valence also determined; similar data in [8201]

11

75M2

co

1.4. 10-2

83.3

1290... 1620 (a-Y)

11 co; diffusion couple method with couple of pure Y and Y 0.05% Co alloy; polycrystals; 99.6%; laser-ionization mass spectroscopy; electro-mobility and effective valence also determined

8201

Ni

5.8. 1O-2

96.5

1290...1580 (a-Y)

Ni; 11 diffusion couple method with couple of pure Y and Y 0.05% Ni alloy; polycrystals; 99.6%; laser-ionization mass spectroscopy; electro-mobility and effective valence also determined

8201

Ag

5.4. 10-3

77.0

1178... 1453 (f=Y>

llom&; diffusion couple method; 99%; lathe sectioning; electro-mobility and effective valence also determined

11

75M2

Land&-Biimstein New Series III/26

Le Claire

3.2.3 Impurity diffusion in SC group and rare earth metals

96 Solute

[Ref. p. 203

Method/Remarks

Fig.

kJmo!-’

Temperature range K

-

-

seechapter 2 on self-diffusion

12

1139~~~1170

141Ce.

12

76Fl

(-f-W

polycrystals; serial sectioning 12

69Dl

Do

Q

10-4m2s-’

Ref.

Mah-ix: lanthanum (La) La Ce

Au

1.8. IO-’

2.2 * 10-2

104.7

75.8

873 ... 1073 (P-W

rgOAu; polycrystals; 99.97%; lathe sectioning; self-diffusion also studied

3.2.3.2 Rare earth metals Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Matrix: cerium (Ce) Ce

-

-

seechapter 2 on self-diffusion

13

La

3.8. lo-*

102.6

998 ..- 1048 (&Ce)

i4’La; polycrystals; 99.95% ; lathe sectioning

13

73Dl

Gd

1.2. 10-2

100.5

1003... 1048 (&Ce)

Gd (radioisotope not specified); polycrystals; purity not specified; serial sectioning

13

76Ml

Mn

7.2. IO-’

37.0*

888...973

54Mn; polycrystals; 99.9%; lathe sectioning; * evaluated from 3 graphical data points by present authors

13

75Dl

Fe

D=2.78.10-10m2s-’

10!Fe) (&Ce)

3.3. 10-4

19.3

173.e.923 We)

1.7. 10-2

49.8

2.0. 10-3

32.2

875.e.990 (v-C4 1005... 1046 (6-Ce)

5gFe; polycrystals; 99.8 % ; diffusion couple method and nondestructive/destructive y-counting; electro-mobility and effective valence also determined 5gFe; polycrystals; 99.9 % ; lathe sectioning

Le Claire

73Cl

13

75Dl

Landolt-BBmslei! New Series III!26

3.2.3 Impurity diffusion in SC group and rare earth metals

Ref. p. 2031 Solute

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

97

Method/Remarks

Fig.

Ref.

6OCo.

13

73Cl

13

76Ml

13

72Dl

13

73Cl

72Dl

Matrix: cerium (Ce), continued

co

Ag

Au

46.1

1.0. 10-2

1.6. 1O-3

35.6

1.2. 10-3

33.5

2.5. 10-2

88.3

1.2 * 10-l

92.9

1.4

117.2

4.4. 10-3

62.4

9.5. 10-2

85.8

823...923 (r-W

~920~~*1000 (r-C@ 1003.*. 1048 (h-Ce)

polycjstals; 99.8%; diffusion couple method and nondestructive/destructive y-counting; electro-mobility and effective valence also determined 6Oco. polyc;ystals; serial sectioning (erfc solution)

852...969 We> 996... 1049 (&Ce) 873...973 (r-C4

‘lomAgi polycrystals; 99.9 %; lathe sectioning llomAg; polycrystals; 99.8 %; diffusion couple method and nondestructive/destructive y-counting; electro-mobility and effective valence also determined

823...973 We> 999... 1048 (6-Ce)

l98Atl; polycrystals; 99.9 ?$; lathe sectioning

13

-

seechapter 2 on self-diffusion

14

Matrix: praseodymium (Pr) Pr

-

La

D = 1.1 .

HO

IO-l3 m2 s-1 *

1.8. 1O-2

107.6

D = 3.35 . IO-“

m2 s-1 *

9.5. 10-3

Land&-BBmstein New Series III/26

-

110.1

1039 14’La; (a-Pr) polycrystals; 1080~~~1190 99.96% ; lathe sectioning; (P-W * value estimated from published graph by present authors 1004 (cl-Pr) 1085...1180 (P-W

166~~.

polycjstals 99.96% ; lathe sectioning; * value estimated from published graph by present authors

Le Claire

14

69D2

14

69D2

3.2.3 Impurity diffusion in SC group and rare earth metals

98 Solute

Do

Q

10P4m2s-’

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

930 ... 1000 (u-Pr) 1111~~*1166 (P-W

54Mn. po1yc;ysta1s; 99.9 % ; lathe sectioning; * evaluated from graphical data by present authors

14

75Dl

885... 1060 (mPr) 1075.+.1180 (B-W 885...1036 (cc-Pr) 1092 1151 (P-W 926...1059 (u-Pr) 1086.+.1187 @-w 886... 1040 (cc-Pr) 1085...1195 (WV 870...1015 (a-Pr) 1075...1185 1o$-W

59Fe; polycrystals; 99.9 % ; lathe sectioning

14

75Dl

6Oco; polycrystals; 99.93%; lathe sectioning

14

69D3

b4cu; polycrystals; 99.9 % ; lathe sectioning

14

71Dl

11omAg. polycryitals; 99.93% ; lathe sectioning

14

69D3

19’Au; polycrystals; 99.93% ; lathe sectioning 19’Au; single crystals; 99.94% lathe sectioning (erfc solution)

14

69D3

14

81Dl

65Zn; polycrystals; 99.97% ; lathe sectioning

14

70Dl

‘141n;

14

69D2

Matrix: praseodymium (Pr), continued

Fe

co

1.06.10-j

63.2 *

2.6. lo-’

25.1*

2.1 * 10-3

39.4

4.10-3

43.5

4.7. 10-Z

68.7

D=4.6-10-9m2s-1 D=5.0~10-9m2s-1 cu

Ag

Au

Zn

8.4. lo-*

75.8

5.7. 10-2

74.5

0.14

106.3

3.2. lo-*

90.0

4.3. 10-2

82.5

3.3. 10-2

84.2

D =4.4.jO-10m2s-1 D”=37.10-‘0m*s-’ D1 = 4.6 +lO-‘o m2sm1 D”=4.0.10-10m2s-1 1 0.18 103.8 0.63

113.0

In 9.6. lo-*

121.0

(cl-Pr) 1053 (u-Pr) 876...1040 (a-Pr) 1095...1194 (VW 1039 (u-Pr) 1075...1200 (P-W

polycrystals; 99.96% ; lathe sectioning; * values estimated from published graph by present authors

3.2.3 Impurity diffusion in SCgroup and rare earth metals

Ref. p. 2031 Solute

Matrix:

Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

no self-diffusion data available

-

54Mn; polycrystals;

15

75Dl

15

75Dl

neodymium (Nd)

-

Nd

-

Mn

D = 4.17 . IO-” m2 s-1 * 6.02 . 10-l’ mz s-l

1.12~10-‘0m2s-1* 1.61 . lo-” m2 s-l Fe

4.6. 1O-3

51.1

1028 1075

(a-Nd) 1148

99.9 %;

lathe sectioning; * values estimated from published graph by present authors

1182 (P-W 955...1136*

(a-Nd) 0.01

56.9

1162... 1231* (P-W

“Fe; polycrystals; 99.9%;

lathe sectioning; * values estimated from published graph by present authors

Matrix:

prometheum (Pm) - No data available

Matrix:

samarium (Sm)

- No data available

Matrix:

europium (Eu)

- No impurity diffusion data available; for self-diffusion seechapter 2

Matrix:

gadolinium (Gd)

- No impurity diffusion data available; for self-diffusion seechapter 2

Matrix:

terbium (Tb)

- No data available

Matrix:

dysprosium (Dy)

- No data available

Matrix:

hobnium (Ho)

- No data available

Matrix:

erbium (Er)

Er

-

Au

-

11c 4.73.10-3 * 64

lc1.95.10-2*

-

seechapter 2 on self-diffusion

1270..+ 1485

lg8Au; 16 single crystals; 99.91%; lathe sectioning (erfc solution); three temperatures only; * values estimated from published graph by present authors

99

- No data available

Matrix:

thulium (Tm)

Matrix:

ytterbium (Yb) - No impurity diffusion data available;

for self-diffusion seechapter 2 Matrix:

99

lutetium (Lu)

andolt-Bhnstein lew Series III/26

- No data available

Le Claire

16 79Dl

Solute

[Ref. p. 203

3.2.4 Impurity diffusion in titanium group metals

100

Do

Q

10-4mZs-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

17 -

79Sl

3.2.4 Impurity diffusion in titanium group metals Ti, Zr, Hf Matrix:

titanium (Ti)

r-titanium Ti

-

-

seechapter 2 on self-diffusion

259.0

933.e.1133

‘Be; polycrystals; 99.5%; residual activity

1124 1072

s4Mn. polyc;ystals; 99.998%; lathe sectioning; solvent and solute diffusion in bee Ti-Co and Ti-Mn alloys also studied 54Mn* 18 single’crystals; 99.94% ; lathe sectioning; D,,/D, = 3.84.e.1.68; effect of oxygen on Mn diffusion also studied

75Sl

59Fe; single crystals; 99.96% ; lathe sectioning; D,,/D ,, = 5.15 . ..2.01 s9Fe; polycrystals; purity not specified; residual activity

18

83Nl

-

73Kl

6OCo; polycrystals; 99.998%; lathe sectioning; solvent and solute diffusion in bee Ti - Co and Ti - Mn alloys also studied 6OCo; single crystals; 99.96% ; lathe sectioning; similar data in [83N2]; isotope effect also studied

-

75Sl

18

85N1, 85N2

Be

14.103

Mn

D = 1.42. lo-l3 rn’s-l 5.21 . lo-l4 m2s-l

Fe

co

1 c 0.6 ii c 4.9 . lo-’

189.2 160.5

878...1135 878...1135

lc 6.4. lo-’ iic 4.7. 1O-3

144.2 112.3

877...1136 877...1136

1.2. 10-4

110.5

973...1123

D=6.65~10-‘2m2s-’ 3.64. lo-l2 m2 s-l

1129 1072

lc 3.2. lO-2 Iic 1.9. 10-Z

875...1135 875...1135

126.1 114.1

Le Claire

88N2

Landok-BBmstei New Series Ill/21

Ref. p. 2031 Solute

3.2.4 Impurity diffusion in titanium group metals

Do

e

10-4mZs-1

kJmol-’

101

Temperature range K

Method/Remarks

Fig.

Ref.

912 971 1059 1117 1141

63Ni; polycrystals; “high purity”; lathe sectioning; * value reassessedby present authors 63Ni; single crystals; 99.96%; lathe sectioning

-

72HI

18

85N2

I7

76Pl

17

85R 1

Matrix: titanium (a-Ti), continued Ni

D = 6.7. 10-14m2s-i I.8 . IO-l3 m2 s-l 76.10-‘3m2s-l*

2.3 . IO-r2 m2 s-l 2.1 . IO-l2 m2 s-l I c 5.4 .10-2 11c 5.6. IO-’

141.8 137.2

877... 1100 877... 1100

9.7. 10-s

115.1

973...1123

7.4. 10-7

156.4

873...1123

Si

4.4. 10-7

105.2

923 ... 1073

Si (ion-implanted); polycrystals; 99.9 % ; nuclear reaction analysis; solubility of Si also determined

17

86Rl

P

l.c 0.155 11 c 4.7

138.2 172.3

973...1123 973...1123

32~.

4.1 . 10-7

114.5

p-titanium Ti Be

Al

Al; polycrystals; X-ray diffraction method Al (ion implanted); polycrystals; 99.9 % ; nulcear reaction analysis

I7

86NI

1020+.. 1124

single crystals; 99.96% ; lathe sectioning; for T < 973 K D values are smaller than calculated from Do and Q; P diffusion in Ti 2.35 at% 0 also studied -

18

78Fl

-

-

seechapter 2 on self-diffusion

17,18

0.8

168.3

1188...1573

7Be; polycrystals; 99.62%; residual activity

17

69Pl

SC

4.0. 10-3

135.7

1213... 1843

46sc. polycrystals; 99.95% ; lathe sectioning; similar data in [65Al]

18

7IAl

Zr

4.7. 10-3

148.2

1193...1773

“Zr; polycrystals; 98.94% ; residual activity

18

67PI

U

Land&-Biimstein New Series III/26

102 Solute

3.2.4 Impurity diffusion in titanium group metals Do

Q

10-4mZs-*

kJmo!-’

Mafrix: titanium @Ti), continued v

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

1175...1816

49.

18

64Ml

pol$rysta!s; 99.9 % ; lathe sectioning; two-exponential tit to the [64Ml] data: 0: = 7.9. lO-1o m*s-l, Q, = 101.1 kJmo!-‘, 0: = 0.21 . 10v4 m* s-l, Q2 = 209.0 kJ mol-’ ; seealso [65Al] Nb

-

-

1273... 1923

2.91 .10-4

129.9

1228... 1784

-

-

Ta

Cr

-

90Nl

“Nb; polycrystals; 99.7%; lathe sectioning and autoradiowphy; two-exponential fit: 07 = 5 . IO-’ m* s-l, Q, = 164.5 kJmo!-‘, 0: = 20. low4 m*s-*, Q2 = 305.6 kJmol-I; seealso [65Gl] g’Nb; polycrystals; 99.97% ; lathe sectioning; only three temperatures; diffusion of Ti and Nb in Ti -Nb alloys also studied

18

63Gl

-

79Pl

1187...1869

“*Ta; polycrystals; “iodide Ti”; lathe sectioning; two-exponential fit: 0: = 3. 10-8m2s-1, Q, = 140.3 kJmol-‘, 0: = 13 * lob4 m*s-‘, Q2 = 309.8 kJmo!-’

18

66A1

1243... 1923

51Cr; polycrystals; 99.7.**99.9%; lathe sectioning and autoradiowphy ; two-exponential fit: D~=5~10-7m2s-1, Q, = 147.8 kJmo!-‘, 0: = 4.9. 10e4 m* s-l, Q2 = 255.4 kJmo!-‘; seealso [65Gl]

18

63Gl

L42Claire

Land&-BBmsteir New Series III/26

Ref. p. 2031 Solute

3.2.4 Impurity diffusion in titanium group metals

Do

Q

10-4m2s-1

kJmol-’

Matrix: titanium (fl-Ti), continued MO

W

103

Temperature range K

Method/Remarks

Fig.

Ref.

1173...1923

“MO; polycrystals; 99.7*..99.9%; lathe sectioning; two-exponential tit: 0: = 8 . 10d7 m2 s-l, Q, = 180 kJmol-r, 0: = 20. 10m4m2 s-l, Q, = 305.6 kJmol-‘; seealso [65Gl] ggMo; polycrystals; 98.94%; residual activity; * Q and Do values from single exponential tit to given temperature ranges

18

63Gl

-

67Pl

185w.

18

67Pl

0.24 2.82. 1O-4

214.8 * 139.0*

1373... 1833 1173*..1373

3.6. 1O-3

183.8

1173...1523

polyciystals; 98.94%; surface decreasemethod Mn

?e

Land&-Bihstein New Series III/26

-

-

1203..- 1923

54Mn ’ polyciystals; 99.7 % ; lathe sectioning; two-exponential fit: 0: = 6.1 . 10e7 m2 s-l, Q, = 141.1 kJmol-‘, 0: = 4.3 . 10e4 m2 s-l, Q, = 242.8 kJmol-‘; seealso [65Gl]

18

63Gl

-

1193...1923

55Fe; polycrystals; 99.7 % ; lathe sectioning and autoradiographs ; two-exponential fit: 0: = 7.8. lo-’ m2 s-l, Q, = 132.3 kJmol-‘, 0: = 2.7. 10m4m2 s-l, Q, = 230.3 kJmol-l; seealso [65Gl] 5gFe; polycrystals; “iodide Ti”; lathe sectioning; pressure effects also studied “Fe; polycrystals; purity not specified; residual activity

18

63Gl

-

67132

-

73Kl

D = 9.9. 10-‘3m2sml

1175

5.6. 1O-3

1273... 1473

131.0

Le Claire

104 Solute

3.2.4 Impurity diffusion in titanium group metals Do

Q

10-4m2s-1

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: titanium (&Ti), continued

co

-

1183.a.1923

6oco. polyc~ystals; 99.7 % ; lathe sectioning; two-exponential tit: 0: = 1.2 * 10T6 m2s-‘, Q, = 128.1 kJmo!-‘, 0: = 2. 10-4m2s-1, Q, = 219.8 kJmo!-‘; seealso [65Gl]

18

63Gl

Ni

-

1203.+. 1923

63Ni.

18

63Gl

polyfrystals; 99.7%; lathe sectioning and autoradiographs ; two-exponential tit: 0: = 9.2. lo-’ m2 s-l, Q, = 123.9 kJmo!-‘, 0: = 2. 10m4m2s-', Q2 = 219.8 kJ mol-‘; seealso [65Gl] -

1233... 1733

Cu; polycrystals; “iodide Ti”; electron microprobe analysis; two-exponential fit: 0: = 2.1 . 10e7 m2 s-l, Q, = 122.3 kJmo!-‘, Dg= 11.3.10-4m2s-‘, Q, = 252 kJmo!-’

17

69Cl

3.0. 10-3

180.0

1213...1863

llom&* polycry~tals; 99.95%; lathe sectioning

17

71Al

-

-

1226...1868

l13Sn; polycrystals; 99.7%; lathe sectioning; two-exponential tit: 0: = 3.8 . lo-* m2 s-l, Q, = 132.3 kJmo!-‘, 0: = 9.5. 10m4m2 s-l, Q2 = 289.7 kJ mol-‘; seealso [65Gl]

17

65A1

113c&.

-

7751

cu

Sn

D~8.8.1()-~~m~s-* 4.9.10-13m2s-1 8.9. lo-l3 m2s-’ 1.8. lo-l2 m2s-’ 1.2.10-l1 m2s-’

1245 1388 1481 1581 1798

polyciystals; 99.97%; lathe sectioning; isotope effect also studied; D values agree with [65Al]

Le Claire

Landolt-B6mstci New Series W/2(

Ref. p. 2031 Solute

3.2.4 Impurity diffusion in titanium group metals

Do

e

10-4m2s-1

kJmol-l

Matrix: titanium (fi-Ti), continued P

105

Temperature range K

Method/Remarks

Fig.

Ref.

1218...1873

32p.

17

65A 1

pol&ystals; 99.9%; lathe sectioning; two-exponential tit : 07 = 3.62. IO-’ m2 s-l, Q, = 100.9 kJmol-‘, 0: = 5. 10m4 m2 s-l, Q, = 236.6 kJmol-‘; seealso [65Gl] U

2.10-3

138.1

1188 .-. 1298

U (natural); polycrystals; 99.34%; fission fragment radiography

-

67Dl

5.1 . 10-4

122.7

1173... 1473

23qJ.

-

7OP2

18

78Fl

7lL2

polycjstals; 99.62% ; residual activity -. two-exponential tit: 0: = 1.6. 10m9 m2 s-l, Q, = 89.2 kJmol-‘, 0: = 2. 10m6m2 s-l, Q, = 192.6 kJmol-’

-

-

1173**.1773

1.4. 10-6

64.1*

1173~~~1400 Pu; polycrystals; diffusion couple method; electron microprobe analysis and a-radiography; * values reassessedby present authors

18

r-zirconium Zr -

-

-

seechapter 2 on self-diffusion

19,20

Rb

1.17. 102

255.4

iO33...1136

Rb; polycrystals; out-diffusion method; possible grain-boundary influence

19

68Sl

Be

0.33

133.6

993...1120

‘Be; polycrystals; 99.99% ; grinder sectioning and residual activity

19

76Tl

Ce

3.54.10-7

106.2

923..*1123

141Ce; polycrystals; “high purity”; residual activity

20

68P2

PU

Matrix: zirconium (Zr)

Land&-Blimstein New Series III/26

3.2.4 Impurity diffusion in titanium group metals

106 Solute

Do

Q

10-4m2s-1

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: zirconium (a-Zr), continued Ti

D = 9.4. j()-”

m2s-’

1116

44Ti; single crystal of unspecified orientation; 99.93% ; lathe sectioning

20

74Hl

V

1.12.10-8

95.9

873...1123

48V.

20

68Al

g5Nb; polycrystals; 99.99%; residual activity; self-diffusion in hcp Ti, Zr, Hf also studied

20

68Dl

182Ta.

20

58Bl

-

72Tl

20

83B2

ggMo; polycrystals; “high purity”; residual activity

20

68P2

893 ... 1083

54Mn; polycrystals; 99.5 and 99.999% ; residual activity and serial sectioning

20

73Tl

973 1071

5gFe; polycrystals; 99.93% ; lathe sectioning 5gFe; single crystal of unspecified orientation; 99.93%; lathe sectioning

-

72Hl

-

74Hl

pol&rystals; 99.84%; residual activity Nb

6.6. 10-6

131.9

Ta

1 * 102

293.1

973 ... 1073

polyc;ystals; 99.6%; residual activity 4.9. 10-j

126.0

896...1105

I c 0.2 11 c 0.2

162.7 153.3

1023...1121 1023...1121

MO

6.22. 1O-8

103.7

Mn

2.4. 1O-3

126.4

Fe

D=3.7.10-‘2m2s-1 3.5.10-l’ m2s-’

Cr

1113

5’Cr. polycrystals; 99.5 and 99.999%; grinder sectioning and residual activity 51Cr; single crystals; 99.99% ; serial sectioning; considerably lower D values reported in [65A2]

Le Claire

Land&-BBmsteil New Series 111’2h

Ref. p. 2031 Solute

107

3.2.4 Impurity diffusion in titanium group metals Temperature range K

Method/Remarks

Fig.

Ref.

D II = 2.22. 10-‘3m2s-1

765 834 871 934 980.5 983 1032 1093 1131 1133 871 980.5 1032 1131

5gFe. single crystals; 99.98%; lathe sectioning

20

88N2

1.75 . IO-l2 m2 s-l 4.70 . IO-l2 m2 s-l 3.70 IO-” m2 s-l 5.5...7.1.10-11m2s-1 6.1 . 10-l’ m2 s-l 1.68 . IO-lo m2 s-l 2.25 . 10-l’ m2 s-l 2.2~~~3.6~10-‘0m2s-’ 2.85 . 1O-1o m2 s-l D I =1f~.1O-‘~m~s-~ . 1.2. lo-” m’s11 3.4. IO-” rn2sm1 9.9 .10-l’ m2 s-l I c 1.2 .103 Ic 37 11 c 4.104

< 873 > 923 860...990

5sco, 6OCo;

20

81Kl

63Ni; single crystals of unspecified orientation; 99.93%; lathe sectioning 63Ni; single crystals; “crystal bar Zr”; lathe sectioning; Ni diffusion in Zr alloys also studied

20

72Hl

20

87H2

64CU; single crystals; 99.95%; lathe sectioning

19

75Hl

-

74Tl

-

89Tl

19

89Vl

19

71Hl

Do

Q

10-4m2s-1

kJmol-’

Matrix: zirconium (a-Z+, continued Fe

co

183.4 145.8 191.2

single crystals; 99.7 and 99.9%; microtome sectioning

D = 1.2 - 10-11 m2 s-1 4.10-11 m2s-1 9.10-l’ m2s-1 8. lo-11 m2s-’

971 1023 1074 1103

D = 1.6 . 1O-‘o m2 s-1 D’= 6. 1()-‘0m2s-’ II

1123 1123

cu

I c 0.25 11 c 0.40

154.5 148.7

888...1132 888...1132

Ag

5.1 . 10-3

187.1

1037... 1120

I c 5.9 . 10-4 11 c 6.7 1O-2

173.7 212.3

2.2 6.8. 10-2

245.0 210.0

D = 1.3 . lo-l5

m2 s-l

Ni

Au

Land&-Biimstein New Series III/26

“oAg~ polycrystals; 99.99%; serial sectioning 1063...1118 11am-k 1063...1118 single crystals; 99.996%; grinder sectioning 938...1117 (SC) “OrnAg; 895 . . .I1 17 (PC) single crystals (99.93%); polycrystals (99.993% and 99.96%); microtome and grinder sectioning 1113

rg8Au; single crystal of unspecified orientation; 99.93%; lathe sectioning Le Claire

3.2.4 Impurity diffusion in titanium group metals

108 Solute

Do

Q

10-4m2s-’

kJmo!-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

1099

65Zn; single crystal of unspecified orientation;

19

7lHl

-

74Hl

19

85R2

19

59Gl

19

74Hl

19

67Vl

Matrix: zirconium (a-Zr), continued Zn

D=2.8~10-‘5m2s-’

99.93%; lathe sectioning Al

D=3.4~10-17m2s-’

1108

26Al; single crystal of unspecified orientation;

99.93%; 17

280.0

873...1073

lathe sectioning Al (ion-implanted); polycrystals;

99.8%; nuclear reaction analysis Sn

1.0. 10-e

92.1

113c&.

“u-phase”

polyc;ystals;

99...99.9%; residual activity Sb

D= l.4~~~2.6~t0-‘7m2s-1

1120

r**Sb; single crystal of unspecified orientation;

99.93%; lathe sectioning s

8.9

185.1

870...1080

J5S; polycrystals;

99.94%; serial sectioning g-zirconium Zr

-

-

seechapter 2 on self-diffusion

19

-

Rb

8.8. 10-4

153.7

1153...1303

Rb; polycrystals; out-diffusion method

19

68Sl

Be

8.33.10-2

130.2

1188...1573

‘Be; polycrystals; 99.7 and 99.99%; residual activity

19

69P1, 76Tl

Ce

-

-

1153...1873

14’Ce; polycrystals; “high purity”; residual activity; two-exponential tit: 07 = 3.16. 10m6m*s-‘, Q, = 173.3 kJmo!-‘, 0: = 42.2* 10e4 m*s-r, Q, = 310.2 kJ mol-’

20

68P2

h Claire

Land&-B6mstein New Series III/26

3.2.4 Impurity diffusion in titanium group metals

Ref. p. 2031 Solute

Do

Q

10-4m2s-1

kJmol-’

Matrix: zirconium (fi-Zr), continued Hf

Temperature range K 1190... 1943

109

Method/Remarks

Fig.

Ref.

‘81Hf.

20

87H3

polyc&stals; 99.9 and 99.99%; microtome sectioning; two-exponential fit to the [87H3] data: 0: = 2.8 . 10mgm2 s-l Q, = 107.6 kJmol-’ 0: = 0.30. 10e4 m2sm1 Q, = 251.3 kJmol-1 V

Nb

7.59. 1o-3 0.32

191.8 239.5

1143...1473 1473... 1673

8.9. 1O-5

116.5

1166... 1480

-

-

1155...2031

7.8. 1O-4

153.2

1503 ... 1908

1.23. 1O-4

131.9

1167... 1433

Ta

5.0. 10-5

113.0

1173...1473

Cr

4.17.10-3

134.0

1173...1473

48~.

90Nl

20

68Al

-

82Pl

g5Nb; polycrystals; 99.94% ; lathe sectioning; two-exponential tit to the [63Fl] data: 0: = 2.7 . IO-’ m2 s-l Q, = 116.9 kJmol-’ 0: = 0.26. 10m4m2se1 Q, = 238.4 kJmol-‘; self-diffusion in j3-Zr also studied g5Nb; polycrystals; residual activity g5Nb; polycrystals; 99.77%; serial sectioning

20

63Fl

policrystals; 99.84%; residual activity 48V; polycrystals; 99.8%; lathe sectioning; V and Zr diffusion in Zr - V alloys also studied

9ONl

-

69Fl

-

73T2

“‘Ta; polycrystals; 99.6 %; residual activity

20

58Bl

51Cr; polycrystals; 99.7 %; residual activity

-

67Pl

(continued)

Land&-BBmstein New Series III126

Le Claire

310 Solute

3.2.4 Impurity diffusion in titanium group metals Do

Q

10-4mZs-’

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

51Cr. polydrystals; 99.92’..99.999%; serial sectioning s’Cr. polydrystals; “high purity”; lathe sectioning; electro-mobility and effective valence also determined

20

79Nl

-

8921

ggMo; polycrystals; 99.7%; residual activity ggMo; polycrystals; “high purity”; residual activity; two-exponential fit: 07 = 1.99. lo-’ m’s-‘, Q, = 147.4 kJ mol-‘, 0: = 2.63 . 10e4 mz s-l, Q2 = 285.9 kJ mol-’

-

67Pl

20

68P2

20

67Pl

20

73Tl

-

79P2

Matrix: zirconium (BZr), continued Cr

MO

w

7.10-3

142.3

1187.+.1513

3.1

219.0

1630...1910

3.63.10-* 1.29

185.9 243.7

1173...1473 1628...1833

-

-

1173...1873

0.41

233.6

1173...1523

1SSw.

polyc;ystals; 99.7 % ; surface decrease Mn

Fe

5.6. 1O-3

138.2

1225... 1420

5.38. IO-’

140.6

1173...1473

9.1 . 10-3

113.0

1173..+1673

7.4. 10-J

108.0

1176...1886

54Mn; polycrystals; 99.5 and 99.999%; residual activity 54Mn; polycrystals; 99.99%; serial sectioning; Zr and Mn diffusion in Zr-Mn alloys also studied

“Fe; polycrystals; 99.7%; residual activity 5gFe. 20 polycrystals; “high purity”; lathe sectioning; Co and Fe diffusion in Zr-Nb alloys and isotope effect for Co in j3-Zr also studied

67Pl

87Hl

(continued)

Le Claire

Landolt-BCmstein New Series 111’26

Ref. p. 2031 Solute

3.2.4 Impurity diffusion in titanium group metals

Do

Q

10-4m2s-1

kJmol-’

Matrix: zirconium @-Zr), continued Fe 6.2. 10-3110.9

co

Ag

Sn

111

Temperature range K

Method/Remarks

Fig.

Ref.

1557... 1950

5gFe; polycrystals; “high purity”; lathe sectioning; electro-mobility and effective valence also determined

-

89Zl

6Oco; polycrystals; 99.99% ; lathe sectioning 57co. polyciystals; “high purity”; lathe sectioning 6OCo; polycrystals; “high purity”; lathe sectioning; electro-mobility and effective valence also determined

20

69Kl

-

87HI

-

89Zl

“‘Ag; polycrystals; 99.99%; serial sectioning and residual activity llomAg* polycryitals; “high-purity”; lathe sectioning; two-exponential Iit: 0: = 4.2. 10m8m2 s-l, Q, = 132.3 kJmol-‘, 0: = 190.5 . lop4 m2 s-l, Q, = 324.4 kJ mol- 1; isotope effect also studied

-

74TI

I9

82Ml

I9

59GI

19

7OVl

19

67VI

3.26. 1O-3

91.4

1193 ... 1878

3.3. 10-3

92.0

1193.*. 1741

4.7. 10-3

96.5

1600... 1950

5.7. 10-4

136.9

1224... 1463

-

-

1199... 1988

5.0. 10-3

163.3

“P-phase”

113&.

polycjstals; 99...99.9%; residual activity 0.33

139.4

1223++.1473

32~.

pol;crystals; 99.94% ; residual activity 27.6

162.4

1428 ... 1523

35s.

policrystals; 99.94%; serial sectioning

Land&-Biirnstein New Series III/26

Le Claire

Solute

[Ref. p. 203

3.2.5 Impurity diffusion in vanadium group metals

112 Do

Q

10-4mZs-’

kJmo!-’

Matrix: zirconium (&Zr), continued 111.4 8.15.10-s U

Temperature range K 1223...1573

1223... 1773

-

Method/Remarks

Fig.

Ref.

23su.

-

7OPl

20

71Fl

polyc’rystals; 99.61%; residual activity 23qJ.

polycjstals; serial sectioning; two-exponential fit: D”=30.1()-10mZs-1 Q: = 82.5 kJmol-I, ’ 0: = 3.6 * 10v5 mz s-l, Q2 = 242.8 kJ mol-’ Matrix: hafnium (Hf) Hf

-

-

-

seechapter 2 on self-diffusion

21

Cr

0.14

213.9

1183+..2173 (CL-and g-Hf)

5’Cr., polycrystals; 99.99% ; residual activity

21

76Dl

co

5.3. 10-3

95.5

1106...1798 W-W

6Oco; polycrystals; 99.99%; residual activity

21

76Dl

AI

170

357.0

1023...1173

AI (ion implanted); polycrystals; 97% Hf + 3% Zr; nuclear reaction analysis

21

85R2

3.2.5 Impurity diffusion in vanadium group metals V, Nb, Ta Matrix: vanadium (V) v

-

-

-

seechapter 2 on self-diffusion

22

Ti

0.1 34.1

285.0 363.9

1373...1623 1623...2076

4gTi ; polycrystals; 99.98% ; lathe sectioning; V and Ti diffusion in V-Ti alloys also studied

22

68M1, 78Pl

Zr

81

369.2

1578...1883

g5Zr. polycrystals; 99.95% ; lathe sectioning; V and Zr diffusion in V-Zr alloys also studied

22

84Pl

Le Claire

Landolt-BCmsIein New Series III126

Ref. p. 2031 Solute

3.2.5 Impurity diffusion in vanadium group metals

Do

Q

10-4m2s-’

kJmol-’

113

Temperature range K

Method/Remarks

Fig.

Ref.

1371..*2079

‘82Ta.

22

77Pl

Matrix: vanadium (V), continued Ta

0.244

301.4

polycljstals; 99.9%; grinder sectioning Cr

9.54.10-3

270.5

1173..*1473

51Cr; polycrystals; 99.8%; residual activity

22

64Wl

Fe

0.6

295.2

1115...1444

22

65P3

0.373 274

297.3 385.9

1233... 1618 1688...2090

“Fe; single and polycrystals; 99.9 and 99.99% ; lathe and chemical sectioning; self-diffusion also studied 55Fe, “Fe; single crystals; “zone refined”; lathe and chemical sectioning; two-exponential fit to the [68Cl] data: 0: = 2.6. 10m6m’s1 Q, = 269.9 kJmol-’ 0: = 0.11 m2se1 Q2 = 411.0 kJmol-i; isotope effect also studied “Fe, Fe; single and polycrystals; detailed specification of purity in [81Al]; sectioning and electron microprobe analysis

-

68Cl

2.48 31.7

318.7 356.6

1473... 1823 1823. ..2088

co

1.12

295.0

1298... 2126

Ni

0.18

266.2

Al

8.4. lo-’

2.45. lo-’

90Nl

22

81Al

6oco* single’ crystals; 99.9 % ; grinder sectioning

22

75Pl

1175... 1948

63Ni; single and polycrystals; 99.9 % ; residual activity

22

86Pl

268.2

1273..a 1773

Al; polycrystals; X-ray diffraction method

22

85Ml

208.5

1473 .‘. 1723

32~.

22

7OVl

22

69Vl

po&rystals; 99.8 %; residual activity 3.1 . 10-Z

142.4

1320... 1520

35s.

po&rystals; 99.8%; residual activity

Land&-Biirnstein New Series III/26

Le Claire

Solute

[Ref. p. 203

3.2.5 Impurity diffusion in vanadium group metals

114 Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

235~.

22

71F2

Matrix: vanadium (V), continued LJ

1.10-4

257.1

1373.e.1773

polycjstals. residual ac&ity Matrix: niobium (Nb) Nb

-

-

seechapter 2 on self-diffusion

23

873

Li (implanted); nuclear reaction analysis (?)

-

74Bl

-

76Bl

23

71Gl

23

7OP3

23

70Rl

Zr; polycrystals; 99.9 % ; electron microprobe analysis g5Zr; single crystals; 99.97%; grinder sectioning

23

70Rl

23

78El

48v.

23

68Al

23

70Rl

23

65Ll

Li

D = 1.7. lo-l6 m2s-’

Sr

11.7

479.8

x 2040 ..* 2500 out-diffusion of snallation-uroduced *‘Sr from polycrystalline foil

Y

1.5. 10-3

232.8

1473...1873

Ti

Zr

V

Ta

9.9. 10-2

364.0

1267es.1765

0.4

370.5

1898.s.2348

0.47

364.0

1855...2357

0.85

379.4

1923...2523

2.21

355.9

1273..-1673

0.47

377.0

1898...2348

1.0

415.7

1376...2346

91y.

singie crystals; 99.8 and 99.9%; residual activity 44Ti. sing;e crystals; 99.98% ; anodizing and stripping Ti; polycrystals; 99.9 % ; electron microprobe analysis

singie crystals; 99.98%; residual activity 48V, v. polycjstals; 99.9%; surface decreaseand electron microprobe analysis 182Ta.

single’crystals; 99.76% ; lathe, grinder and anodizingstripping sectioning; self-diffusion also studied

Le Claire

Land&-BBmstein New Series III!26

Ref. p. 2031 Solute

3.2.5 Impurity diffusion in vanadium group metals

Do

Q

10-4m2s-1

kJmol-l

115

Temperature range K

Method/Remarks

Fig.

Ref.

51Cr. singlk crystals; > 99.98%; anodizing-stripping sectioning “Cr; polycrystals; 99.96%; anodizing-stripping sectioning

23

69P2

-

69P3

MO; polycrystals; 99.9%; electron microprobe analysis “MO. polycl;stals . residual actibity

23

70Rl

23

73Fl

Matrix: niobium (Nb), continued Cr

MO

W

0.3

349.6

1226... 1708

0.13

337.5

1220... 1766

92

511.0

1988. ..2455

1.3. 10-z

350.4

1973..+2298

5.10-4

383.9

2073 . ‘. 2473

185~.

23

69F2

polyciystals; 99.8 %; residual activity W; polycrystals; 99.9%; electron microprobe analysis

23

70Rl

23

62Pl

23

77Al

7.104

653.1

2175...2443

1.5

325.3

1663.‘.2373

0.14

294.3

1663...2168

Ru

29.3

460.1*

2026 . . .2342

lo3Ru; polycrystals; 99.9 % ; grinder sectioning and residual activity; * Do and Q values calculated by present authors from tabulated D values

-

79S2

co

0.74

295.2

1834...2325

23

62Pl

4.18 . IO-*

257.2

1347...2173

6OCo; polycrystals; 99.74%; residual activity analyzed by autoradiography 6OCo; single crystals; 99.98%; grinder sectioning

23

76P2

Fe

“Fe. polydrystals; 99.74%; residual activity analyzed by autoradiography “Fe, Fe; polycrystals; 99.9 % ; lathe and grinder sectioning and electron microprobe analysis

(continued) Land&Biimstein New Series III/26

L43Claire

Solute

Matrix:

co

[Ref. p. 203

3.2.5 Impurity diffusion in vanadium group metals

116

Do

Q

10-4m2s-1

kJmo!-’

Temperature range K

Method/Remarks

Fig.

Ref.

1580... 1920

co 6oco-

23

77Al

63Ni ; polycrystals; 99.82%; residual activity 63Ni, Ni; polycrystals; 99.9 % ; grinder sectioning and electron microprobe analysis

23

72Al

23

77Al

niobium (Nh), continued

0.11

274.7

single cryLa!s; 99.9%; grinder sectioning and electron microprobe analysis 9.3

336.6

1261 . ..I519

7.7.10-2

264.2

1433...2168

Pd

2.38

399.5 *

1965... 2341

Pd; polycrystals; 99.9%; electron microprobe analysis; * Do and Q values calculated by present authors from tabulated D values

-

7982

cu

D=3.71~10-14m2s-1

1829 1909

cu; polycrystals; 99.9%; electron microprobe analysis

23

77Al

Ni

1.02. IO-l3 m2s-’

Zn

5.89

411.3

x 2000 .** 2600 out-diffusion of spallation-produced 65Zn from polycrystalline foil

-

76Bl

Al

450

430.1

1700...2000

out-diffusion method

-

78Nl

Sn

0.14

330.3

2123...2663

l13Sn; polycrystals; 99.85%; lathe sectioning

23

65A3

5.1 * 10-2

215.6

1573...2073

32~.

23

68Vl

23

68V2

23

65Pl

-

7lF2

single crystals; 99.9%; residual activity 2.6. IO’

306.0

1370...1770

35s.

single and polycrystals; 99.6%; serial sectioning 8.9. lO-2

321.5

1773... 2273

235~.

polyc’rystals; 99.55% ; residual activity 5.10-6

321.1

1993..+2373

235~;

polycrystals; details of method not specified

L.e Claire

Ref. p. 2031 Solute

3.2.5 Impurity diffusion in vanadium group metals

Do

Q

10-4m2s-1 Matrix: tantalum (Ta) Ta Rb

2.9. 10-S

117

Method/Remarks

Fig.

kJmol-’

Temperature range K

-

-

seechapter 2 on self-diffusion

24

235.0

x 1700. . .3100 out-diffusion of spallation-produced Rb from polycrystalline foil

-

77Bl

i-

Ref.

cs

8.3. 1O-5

237.0

e 1700. . .3100 out-diffusion of spallation-produced Cs from polycrystalline foil

-

77Bl

Ba

0.21

334.0

z 1700. . .3100 out-diffusion of spallation-produced Ba from polycrystalline foil

-

77Bl

Sr

4.3. 10-2

338.0

E 1700 . . .3100 out-diffusion of spallation-produced Sr from polycrystalline foil

-

77Bl

Y

0.12

302.3

1473 ‘.. 1773

24

71Gl

-

77Bl

91y.

singie crystals; 99.8 to 99.9%; residual activity

I

Hf

1.6. 1O-2

352.0

z 1700. . .3100 out-diffusion of spallation-produced Hf from polycrystalline foil

Nb

0.23

413.2

1194..*2757

g5Nb; 24 single and polycrystals; 99.7 % ; lathe, grinder and anodic stripping sectioning; two-exponential fit to the [65P2] data: 0: = 2.6 . 10m6m2 s-l Q, = 382.7 kJmol-’ D!j!= 14 . 10e4 m2 s-l Q, = 511.4 kJmol-‘; self-diffusion also studied

65P2

90Nl

MO

1.8. 1O-3

339.1

2023 ... 2493

ggMo; polycrystals; residual activity

24

68Bl

Fe

0.505

298.9

$203... 1513

24

55Vl

5.9. 10-2

329.9

2053 ... 2330

method and purity not specified; polycrystals “Fe. polydrystals; lathe sectioning

24

76A2

6OCo. 24 polycjrstals; lathe sectioning; * values estimated from graphical representation of results

76A2

co

D = 1.4 +IO-l3 m2 se1 8.0. lo-l3 m2 s-l

Land&-Biimstein New Series III/26

2128* 2330*

Le Claire

Solute

[Ref. p. 203

3.2.6 Impurity diffusion in chromium group metals

118 Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: tantalum (Ta), continued Ni

D = 1.1 . lo-l3 m2se1 1.14. lo-l2 m2s-’

Al

1.5

306.2

As

0.12

346.0

0.01

293.1

24 63Ni; polycrystals; residual activity; * values estimated from graphical representation of results 1750~~~2050 out-diffusion method w 1700... 3100 out-diffusion of spallation-produced As from polycrystalline foil

2053* 2330*

1970...2110

35s.

76A2

78Nl 77Bl

24

69Vl

24

71F2

24

77Sl

pol;crystals; 99.0%; residual activity 7.6 . lo-’

353.4

1873.s.2423

1.03.10-6

117.2

2186...2530

235U; polycrystals; residual activity U (nat.); polycrystals; 99.9997%; diffusion profiles deduced from fission fragment radiography

3.2.6 Impurity diffusion in chromium group metals Cr, MO, W Matrix: chromirml (Cr) Cr v

3s1*

419.0*

-

seechapter 2 on self-diffustion

25

1595...2041

48v.

25

76M2

singie crystals; 99.998% ; grinder sectioning; * Do and Q values calculated from tabulated D values; isotope effect of Cr self-diffusion also studied MO

2.7. 1O-3

242.8

1373...1693

25 ggMo; polycrystals; residual activity; possible grain boundary influence

6362

Fe

0.47 1.1 . lo+*

332.0 169.1*

1518...1686 1256...1518

“Fe; polycrystals; residual activity; * possible grain boundary influence

25

64Wl

Le Claire

Ref. p. 2031 Solute

3.2.6 Impurity diffusion in chromium group metals

Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix : molybdenum (MO) MO

-

-

-

seechapter 2 on self-diffusion

26

Li

0.65

141.0

1193...1243

-

75Wl

0.01

470.6

1570...1970

permeation through polycrystalline membrane; possible grain boundary influence Li (nat.); single crystals; out-diffusion

26

77Ll

Rb

27.5

555.2

2200 . ..2870

out-diffusion of spallation produced 84Rb from polycrystalline foil

-

76B3

Sr

75.8

587.2

2200 . . .2870

out-diffusion of spallation-produced %r from polycrystalline foil

-

76B3

y

1.8. lO-4

214.8

1473.+. 1873

9ly.

26

71Gl

-

76B3

singie crystals; 99.8...99.9%; residual activity out-diffusion of spallation-produced “Y from polycrystalline foil

9.33

432.5

2200 . . .2870

Zr

56.2

503.2

2200 ... 2870

out-diffusion of spallation-produced 88Zr from polycrystalline foil

-

76B3

V

2.9

473.1

1803 ... 1998

V; polycrystals; diffusion couple method and electron microprobe analysis

26

72Rl

Nb

14

452.6

2123 . ‘. 2623

26

65A4

2.9

569.4

1998. ..2453

26

72Rl

1.7. 10-Z

379.3

1973...2373,

g5Nb; polycrystals; 99.98%; lathe sectioning Nb; polycrystals; diffusion couple method and electron microprobe analysis “Nb; polycrystals; residual activity

26

73Fl

3.5. 10-4

347.5

1993..-2423

26

68Bl

1.9

473.1

2098 ... 2449

‘*‘Ta; polycrystals; residual activity Ta; polycrystals; diffusion couple method and electron microprobe analysis ls2Ta; polycrystals; grinder sectioning

26

72Rl

Ta

D = 1.09 . lo-l4 m2 s-l

Land&Biimstein New Series III/26

2373

Le Claire

79Ml

Solute

[Ref. p. 203

3.2.6 Impurity diffusion in chromium group metals

120

Do

Q

30-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

51Cr. polydrystals. residual acti;ity “Cr. singlk crystals; 99.8%; details of method not specified

26

68Bl

26

71Ml

1ssw.

-

67Al

-

68Bl

-

72Rl

26

74El

Matrix: molybdenum (MO), continued Cr

W

2.5. 10-4

226.1

1273... 1773

1.88

342.5

1273...1423

1.7

460.5 *

1973... 2533

poly&stals; serial sectioning; * Do and Q values from data of [67Al] and [64Bl] 4.5. 10-4

324.5

1973... 2423

165W.

poly&stals. residual activity W; polycrystals; diffusion couple method and electron microprobe analysis; four data points w; single crystals; electron microprobe analysis

140

569.4

2093 ..+2453

3.6

515.8

2173...2541

Re

9.7 * 10-2

396.5

1973’..2373

ls6Re; polycrystals; serial sectioning

26

64B2

Fe

0.15

346.2

1273e.a1623

73Nl

3.7 * 10-3

291.8

1200..- 1478

3.0

418.7

2213...2603

18

446.7

2123...2632

6

324.5

1273+.. 1773

26 “Fe; polycrystals; 99.96%; residual activity 5gFe. poly&ystals; 99.96 and 99.99% ; residual activity; possible grain boundary influence 6OCo; polycrystals; autoradiographic analysis 6OCo; 26 single and polycrystals; 99.98%; serial sectioning and autoradiographic analysis; rcilso [65A3] 26 polyc’rystals. residual act&ity 63Ni; single crystals; residual activity

7lM2

co

Ni

D = 2.4~~~3.2~10-16m2s-1 1623

26

74Ll

62Pl 65A4

68Bl

Landok-B6mstein New Series Ill/26

Ref. p. 2031 Solute

3.2.6 Impurity diffusion in chromium group metals

Do

e

10-4m2s-1

kJmol-’

121

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: molybdenum (MO), continued Zn

0.55

387.7

2200 ... 2870

out-diffusion of spallation-produced Zn from polycrystalline foil

-

76B3

P

0.19

337.0

2273 ... 2493

32~.

26

68Vl

26

68V3

-

74Ll

single crystals; 99.97% ; residual activity S

32*

422.9 *

2493 ... 2743

35s.

single crystals; 99.97% ; layerwise radiometric analysis (erfc solution); * values reassessedby present authors 3.4. 10-2

297.3

1238... 1443

35s.

pol&ystals . residual ac&ity ; possible grain-boundary influence Se

2.19. lo3

639.0

2200 ... 2870

out-diffusion of spallation-produced 15Sefrom polycrystalline foil

-

76B3

U

7.6. 1O-3

319.9

1773.e.2273

235U; polycrystals; 99.98%; residual activity

26

65Pl

1.3.10-6

316.5

2073 ... 2373

235~.

26

71F2

polycjrstals; details of method not specified Matrix: tungsten (IV) w

-

-

-

Ba

10.7

619.0

w 2400.9*3100 out-diffusion of spallation-produced Ba from polycrystalline foil

Y

6.7. 1O-3

285.1

1473... 1873

seechapter 2 on self-diffusion

91y.

singie crystals; 99.8 ... 99.9%; residual activity out-diffusion of spallation-produced Y from polycrystalline foil

27 -

76B2

27

71Gl

-

76B2

1.8. 1O-3

342.0

2400... 3100

Ce

2.88. 1O-2

426.0

2400...3100

out-diffusion of spallation-produced Ce from polycrystalline foil

-

76B2

Pm

6.2. 1O-2

440.0

2400...3100

out-diffusion of spallation-produced Pm from polycrystalline foil

-

76B2

Landolt-BBmstein New Series III/26

Le Claire

122 Solute

3.2.6 Impurity diffusion in chromium group metals Do

e

10-4m2s-*

kJmo!-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: tungsten (W), continued Eu

7.6. 1O-3

390.0

2400...3100

out-diffusion of spallation-produced Eu from polycrystalline foil

-

76B2

Gd

0.19

466.0

2400...3100

out-diffusion of spallation-produced Gd from polycrystalline foil

-

76B2

Tm

1.5.10-2

406.0

2400...3100

out-diffusion of spallation-produced Tm from polycrystalline foil

-

76B2

Yb

5.1 . 10-2

435.0

2400...3100

out-diffusion of spallation-produced Yb from polycrystalline foil

-

76B2

Lu

7.8. 1O-3

390.0

2400...3100

out-diffusion of spallation-produced Lu from polycrystalline foil

-

76B2

Hf

1.5. 10-Z

440.0

2400...3100

out-diffusion of spallation-produced Hf from polycrystalline foil

-

76B2

Nb

3.01

576.1

1578...2640

69P4

Ta

3.05

585.7

1578...2648

6.2

601.6

2102...2906

g5Nb; 27 single and polycrystals; sectioning by anodic stripping; self-diffusion also studied 182Ta. 27 single’and polycrystals; sectioning by anodic stripping; self-diffusion also studied ‘**Ta; 27 single crystals; residual resistivity ratio 2 ... 5 . I04; grinder and anodic sectioning

Cr

0.85

545.9

1909.*. 2658

89Kl

MO

0.05

506.6

2273 ... 2673

0.3

423.0

1973.s.2373

0.15

529.7

2281 es.2528

1.4

567.3

1909...2658

Cr; 27 single crystals; residual resistivity ratio 2 .. .5. 104; SIMS analysis; preliminary data in [87Kl]; isotope effect also studied ggMo; polycrystals; details of method not specified “MO; polycrystals; residual activity MO; single crystals; electron microprobe analysis; three data points only MO; single crystals; 27 residual resistivity ratio 2 ... 5 . 104; SIMS analysis; isotope effect also studied

Le Claire

69P4

84Al

67L2 68Bl 74El 89KI

Landolt-B6mstein New Series III!26

Ref. p. 2031 Solute

123

3.2.6 Impurity diffusion in chromium group metals

Do

Q

10-4m2s-1

kJmol-i

Fig.

Ref.

Temperature range K

Method/Remarks

27 ls3Re,‘84Re. > single crystals; 99.99% ; grinder sectioning 186Re; 27 polycrystals; details of method not specified ‘*‘jRe; 27 single crystals; residual resistivity ratio 2.. .5 . 104; grinder and anodic sectioning; similar data in [82Al]

65A5

Matrix: tungsten (W), continued 275

681.6

2939...3501

19.5

590.3

2373 . ..2673

4.0

597.0

2110...2900

Fe

1.4 ’ 10-z

276.3

1213...1513

“Fe; polycrystals; details of method not specified

27

55Vl

OS

0.64

538.4

2105...2928

191@.

27

84Al

Re

67L2 84Al

single ‘crystals. residual resistivity ratio 2 .. .5 . 104; grinder and anodic sectioning co

4.3 1.3. 10-6

418.0 210.0

1365... 1533 1673... 2324

S7Co’ single’ crystals; 99.98%; grinder sectioning

27

89Ll

Ir

0.32

506.2

2007 . . .2960

ig21r; 27 single crystals; residual resistivity ratio 2 . . .5 . 104; grinder and anodic sectioning

84Al

Ni

D = fj. lo-l5 mzsel

1913

electron microprobe analysis of W-Ni layer grown during liquid phase sintering of W-Ni

27

79M2

P

26.8

2153...2453

32p.

27

7811

27

7211

27

68Sl

-

71F2

-

77Sl

510.0

single crystals; 99.99%; in-diffusion S

2.17. 1O-5

292.2

2153...2453

35s.

single crystals; residual activity U

1.8. lo-’

389.4

2245 . . .3000

out-diffusion method; polycrystals; 99.99%

2.10-3

433.3

1973...2473

235u.

3.34.10-4

Land&-Bihstein New Series III/26

259.2

2407 . . .2608

polyc’rystals; details of method not specified U (nat.); polycrystals; 99.9998%; fission fragment autoradiographic analysis

Le Claire

[Ref. p. 203

3.2.7, 8 Impurity diffusion in Mn, Fe group metals

124 Solute

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

3.2.7 Impurity diffusion in manganese group metals Mn, Tc, Re There are no reported measurements of impurity diffusion in the manganesegroup metals.

3.2.8 Impurity diffusion in iron group metals Fe, Ru, OS Matrix: iron (Fe) The various allotropic modifications of Fe are denoted in the following way (Tc: Curie temperature, T,: melting temperature): r-f-Fe r-p-Fe y-Fe &Fe

ferromagnetic bee iron paramagnetic bee iron fee iron bee iron

T, = 1043 K) (T < T,; (T, v > T > T,; T. ” = 1183 K) (T,, > T > 6,;; T,:; = 1663 Kj Vi, > T> Ty.s; T,= 1809K) .

“.I

Fe

-

-

-

Be

5.34

218.1

6862

0.1

241.2

28 1073... 1773 ‘Be; (u and &Fe) polycrystals; 99.9%; residual activity; u-phase stabilized by x 1 wt% Be 28 1373...1623 ‘Be; polycrystals; We) 99.9%; residual activity

9.104

473.1

1438... 1593 (y-Fe)

29

65Sl

3.6. 10’

407.4

1371... 1626 We)

rssHf; polycrystals; 99.95%; residual activity 18lHf. polycjstals; 99.98%; residual activity

29

70Bl

0.75 *

264.2

1393...1653 We)

“V; polycrystals; 99.98% ; residual activity; * value reassessedby present authors

-

70Bl

124

274.0

1058...1172 (u-p-Fe) 1210+..1607 (NW 1433-e. 1563 We)

4av.

29

87Gl

-

65Sl

Hf

v

Nb

0.62

273.5

530

344.6

seechapter 2 on self-diffusion

30

68Gl

pol&ystals; 99.98%; microtome sectioning 9%; polycrystals; 99.95%; residual activity

Le Claire

Land&-BBmstcin New Series III/26

Ref. p. 2031 Solute Do

125

3.2.8 Impurity diffusion in iron group metals

Q 10-4m2s-’

Temperature range kJmol-’

Method/Remarks

1221... 1474 We)

g5Nb; polycrystals; 99.99% ; serial sectioning g5Nb; polycrystals; 99.97%; microtome sectioning

Fig.

Ref.

-

83Kl

-

85Gl

K

Matrix: iron (Fe), continued Nb

0.75

264.0

50.2

252.0

993 1025 (u-f-Fe) 1059..+ 1162

0.83

266.5

I2!)-‘-:$4 ...

D = 1.0. lo-l6 m2sm1 5.4. lo-l6 m2 s-l

(y-Fe) 1070... 1150 (a-p-Fe) 1233.a- 1669 We) 1043... 1150 (a-p-Fe)

8.52

250.8

10.8

291.8

90

271.0

37.3

885... 1174 267.4 . (1 + 0.133s2)* (a-Fe)

MO

0.3

205.1

1023... 1123 (a-Fe)

Mn

1.49

233.6

0.35

219.8

0.16

261.7

0.11*

251.6

973 ... 1033 (a-f-Fe) 1073...1173 (u-p-Fe) 1193... 1553 6-W 1082... 1174 (a-p-Fe)

0.76

224.6

Cr

(a-p-Fe and &Fe)

Land&-BBmstein New Series III/26

Le Claire

29 29

51Cr. polydrystals; 99.98%; residual activity 51Cr. poly&ystals; serial sectioning 51Cr* poly&ystal (6 mm grain size); serial sectioning; *s: ratio of spontaneous magnetization at T[K] to that at OK. “MO; polycrystals; “pure Fe”; residual activity and surface decrease; possible grain boundary influence 54Mn; polycrystals; 99.97%; residual activity

-

70Bl

29

89Hl

-

9OLl

-

66Bl

29

70Nl

29

54Mn; 29 single crystals; 99.99.**99.999%; microtome sectioning; * D" refers to purest Fe investigated (Do increases with impurity content) combined data of [73K2] (diffu- 29 sion couple; polycrystals; 1719.a. 1767 K; electron microprobe analysis; D independent of concentration for 0.. .4 % Mn) and [70Nl]

7212

73K2

Solute

[Ref. p. 203

3.2.8 Impurity diffusion in iron group metals

126

Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

30

63BI

29

63B2

-

64SI

30

6651

Matrix: iron (Fe), continued co

118

285.9

5.5

256.2

9.5

260.8

7.19

260.4

6.38

257.1

6.38

257.1

1.0

301.9

2.9. 10-2

247.4

2120. IO-** m* s- l D=358~10-23m2s-’ 2.35 . IO-** m* s-l 1.31 . IO-*’ m* s-l 3.28 . lo-** m* s-l 1.91 f IO-*O m*s-’ 5.54.1O-*O m* s-’ 7.46. IO-*’ m* se1 1.85. IO-l9 m2sP1 2.90. IO-l9 m* s-l 3.82. lo-” m* s-l 6.40.10-” m* s-’ 9.04. lo-l9 m*s-l 1.84. 10-‘8m2s-1 1.83. lo-” rn*s-l 9.30. IO-‘* m* s-l 1.33 . IO-” m* s-l 1.80 . IO-” m* s-’

6Oco; polycrystals; 99.999% ; residual activity; influence of magnetic transition on Co diffusion also studied 6OCo; 1669...1775 polycrystals; (&Fe) lathe sectioning and residual activity 1103~~~1161 6OCo; polycrystals; (a-p-Fe) 99.97%; serial sectioning 6OCo; 956...1000 single crystals; (a-f-Fe) 99.95%; 1081...1157 residual activity (a-p-Fe) 6OCo; 1702...1794 polycrystals; (&Fe) 99.95% ; lathe sectioning 1409... 1633 thin film and diffusion couple method; We) polycrystals; 99.999% ; electron microprobe analysis 1233... 1493 6Oco; polycrystals; We) 99.9 % ; residual activity single To, crystals; 6OCo. 785.5 823 1044...1177 (u-p-Fe)

824 857.5 873.5 907 926 934 945 960 963 976 976 991 993 1021 1034 1036 (u-f-Fe)

29

29

69B2, 61SI

29

75H2

29, 30 82M2

99.997% ; sputter sectioning; graphical data in [82M2]; numerical D-values tabulated in [84Kl]; deviations from Arrhenius behaviour due to influence of magnetic transition studied in detail (see Fig. 30)

(continued)

Le Claire

Land&BBmstein New Series III,/26

3.2.8 Impurity diffusion in iron group metals

Ref. p. 2031 Solute

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

127 Fig.

Ref.

Matrix: iron (Fe), continued

co

D = 5.30. lo-l7 m’s-’ 8.48 . lo-‘? m2 s-l 1.01 . IO-l6 m2 s-l 3.68 . lo-l6 m2 s-l 5.60. lo-l6 m2se1 1.68. 10-15m2s-1 -

-

29, 30

1058.5 1072 1081 1105.5 1122 1163.5 (u-p-Fe)

6Oco;

30

89Hl

29

6lHl

polycrystals; -(a-f-Fe and a-p-Fe) sputter sectioning; graphical data only; deviations from Arrhenius behaviour due to influence of magnetic transition studied in detail Ni

1.4

245.8

873 . ..953 (a-f-Fe)

1.3

234.5

1083 ... 1173 (a-p-Fe)

0.77

280.5

1203... 1323 We)

D = 3.75 . lo-” 9.96. IO-‘* 2.32. lo-l7 4.70. IO-l7

m2 s-l m2 s-l m2 s-l m2 s-l

9.9

259.2

3.0

314.0

972.6 996.7 1013.2 1032.4 (a-f-Fe) 1054... 1173 (a-p-Fe) 1409 ... 1633 (y-Fe)

1.09

296.8

1426... 1560 We)

63Ni.

single crystals; 99.97% ; residual activity and surface decrease 63Ni; single and polycrystals; 99.97%; residual activity 63Ni; polycrystals; 99.97%; residual activity (j3Ni; polycrystals; 99.999% ; residual activity

29

29

29

63Bl

29 Ni; thin film and diffusion couple method; polycrystals; 99.999% ; electron microprobe analysis; Do and 0 from combined data of [69;2] and [59Ml] 63Ni. 9 polycrystals; residual activity

29

69B2

29

78Hl (continued)

Land&-Bijmstein New Series III/26

Le Claire

Solute

[Ref. p. 203

3.2.8 Impurity diffusion in iron group metals

128

Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

788 788 833.2 833.2 877.8 877.8 922.5 968.5 1013.5 (u-f-Fe) 1048 1088 1123.3 1160 (a-p-Fe)

‘j3Ni; polycrystals (3.5 mm grain size); 99.999%; sputter sectioning; deviations from Arrhenius behaviour due to influence of magnetic transition

29

89Cl

63Ni. polydrystals (3.5 mm grain size); 99.999% ; sputter and microtome sectioning

29

lo3Pd; 29 polycrystals; 99.97% ; residual activity (and grinder sectioning); self-diffusion in Pd -Fe alloys also studied

Matrix: iron (Fe), continued Ni

D=1.85-10-21 mzswl 1.09. 10m2’ m2se1 1.84. 10mzom2sb1 8.69 . lo-*’ m2 s-l 1.20. lo-l9 m2se1 9.59 . 10V20m2 s-l 7.09. lo-l9 m2 s-l 3.86.10-‘* m2 s-’ 3.19 .10-l’ m2 s-l

D= 1.55*10-16m2s-1 5.69 * lo-l6 m2s-’ 1.96. lo-l5 m2s-’ 4.82 . lo-” m2 s-l Pd

0.41

280.9

1373..*1573 We)

Pt

2.7

296.0

1233.e.1533 (y-Fe)

Cu

1.8

295.0

1183...1293 (~-Fe)

D = 1.8 . 1O-15 m2 s-l 2.2. lo-” m2 s-’ 5.1 . lo-l5 m2 s-’

1127.5 1140 1174.6 (u-p-Fe) 1558...1641 We)

2.86

306.7

D = 4.81 11O-18 m2s01 9.55.10-‘* 1.78.10-” 4.10.10-” 8.26.10-l’

m2sw1 m2sw1 m2 s-l m2 s-l

300

283.9

0.19

272.6

4.16

305.0

963 978 993 1008 1024 (a-f-Fe) 1045...1173 (a-p-Fe) 1198...1323 (y-Fe) 1378... 1483 (y-Fe)

193mpt;

77Fl

29

73M3

28

66S1

28

68Rl

polycrystals; residual activity Cu; polycrystals; electron microprobe analysis 64cu. single or bicrystals; 99.91%; grinder sectioning 64Cu; single crystals; 99.91% ; grinder sectioning Cu; single crystals; 99.999% electron microprobe analysis; solubility of Cu also determined

28

28

7782

28 Cu; polycrystals; 99.999% ; electron microprobe analysis 64Cu; polycrystals; 99.96%; residual activity

Le Claire

28 28

78Ml

Landok-B6mstein New Series III/26

Ref. p. 2031 Solute

129

3.2.8 Impurity diffusion in iron group metals

Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

I

Matrix: iron (Fe), continued 1.95 * 103

288.9

1021... 1161 (a-p-Fe)

230

278.0

973 ... 1033 (cl-f-Fe)

38

259.2

1053... 1173 (ct-p-Fe)

D = 9.58 . IO-‘* 2.69.10-l’ 5.49.10-l’ 1.58 . lo-l6

m2 s-l

m2 s-l m2 s-l m2 s-l

“‘Au; polycrystals; 99.999% ; residual activity

31.0

261.2

972.1 997.8 1012.8 1034.4 (a-f-Fe) 1055...1174 (cl-p-Fe)

Zn

60

262.6

1072+*.1169 (u-p-Fe)

Zn; single crystals; residual resistivity ratio > 3000; electron microprobe analysis; chemical diffusion below Tc also measured

28

81R1

Al

1.8

228.2

1003... 1673

Al; polycrystals; 99.9 % ; X-ray diffraction method; no influence of a-y transition observed (?)

-

83Al

Si

1.7

229.1

28

89Bl

0.07

243.0

x 1100... 1173 Si; (a-p-Fe) polycrystals; 1273... 1463 electron microprobe analysis on Fe/Fe 1 . . .3.3 % diffusion We) couples; D values from extrapolation of chemical diffusion

5.4

232.4

28

72T2

&

Au

Sn

973 ... 1033 (a-f-Fe) 1073.+.1183 (a-p-Fe) 1300... 1510 We)

2.4

221.9

9.10-4

175.8

6.1 . lo4

316.4

896... 1023 (a-f-Fe)

0.845

261.7

1197...1653 (y-Fe)

Land&-Biimstein New Series III/26

“‘Ag; polycrystals; serial sectioning 11om& polycryitals; 99.97 %; residual activity

28

71Bl

28

73El

28 28

63Bl

28

l13Sn.

polycljstals . residual actibity 28 ‘13Sn; polycrystals; 99.8%; residual activity l13Sn; single crystals; 99.98% residual activity l13Sn; polycrystals; > 99.97% ; serial sectioning

Le Claire

28

75M3

28

84Hl

28

86Kl

3.2.8 Impurity diffusion in iron group metals

130 ;olute

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

3zp.

[Ref. p. 203 Fig.

Ref.

Matrix: iron (Fe), continued 3

4s

Sb

s

U

6.3. lo-*

193.4

1223...1573 We)

8.10’

314.0

1.38 . 10’

332.0

2.87. lo*

271.O

783...923 (cc-f-Fe) 932...1017 (a-f-Fe) 1078...1153 (u-p-Fe)

4.3

219.8

0.58

246.6

4.4. lo*

270.0

1040...1173 (a-p-Fe)

80

269.9

773..-873 (u-f-Fe)

2.7

205.0

0.5

209.3

1.7

221.9

34.6

231.5

2.10’

347.6

x 1050.. . 1150 sulfurization and desulfurization measured by electrical resistance (u-p-Fe) 1208... 1298 on polycrystalline foils (y-Fe) 35s. 1223...1523 polycrystals. (94 residual actibity 35s. 973...1173 polycrystals; (a-Fe) 99.996% ; residual activity surface segregation rate studied 770... 1000 with Auger electron spectros(u-f-Fe) copy on single crystals

7.10-s

133.2

28 po&rystals; 99.99% ; residual activity surface segregation rate studied 28 by Auger electron spectroscopy 32~. 28 pol;crystals* residual ac&ity

1223.s.1653 diffusion couple method; (u-stabilized) 0.5 ... 5% As; u-stabilized; electron microprobe analysis 1323..+1573 diffusion couple method; 0...1.2% As; (94 electron microprobe analysis

1223...1348 We)

124Sb; single and polycrystals; residual activity Sb (ion implanted); nuclear reaction analysis

thin layer method and fission fragment radiography; polycrystals

-

64M2

81Ll 83Ml

76B4

28

28

75Bl

28

78M2

-

7OWl

28

71H2

28

72Gl

28

86A2

-

67Dl

Matrix: ruthenium (Ru) - No data available Matrix: osmium (OS)

- No data available

Le Claire

Land&-LGmstein New Series III!26

Solute

131

3.2.9 Impurity diffusion in cobalt group metals

Ref. p. 2031 Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

3.2.9 Impurity diffusion in cobalt group metals Co, Rh, Ir Matrix: cobalt (Co) Diffusion data are available for ferromagnetic fee Co (f-Co) and for paramagnetic fee Co (p-co). The Curie temperature is Tc = 1393 K. -

-

co

-

v

D=3.41.10-16m2s-’ 6.56 . lo-l6 m2 s-l 2.46. lo-l5 m2s-’

1273 1328 1388 (f-Co)

D = 9.34. lo-l5 1.65 . lo-l4 2.39. IO-l4 3.92 . lo-l4

m2 s-l m2 s-l m2 s-l m2 s-l

3.15.10-2

232.4

1.1 .1o-2

217.7

0.04

239.4

1433 1473 1523 1563 (P-CO) 1133...1378 (f-Co) 1424... 1519 (P-CO) 1139*** 1510 (f and p-Co)

0.11

253.3

1409... 1629 (P-CO)

0.34

259.6

0.16

248.7

1.25

301.9

lOgI... T, (f-Co) TC... 1573 @-Co) 1425...1673 (P-CO)

0.34

269.2

Mn

Fe

Ni

seechapter 2 on self-diffusion

31

48v.

31

86K2

policrystals; 99.9985%; residual activity ; each D value is the mean of two results

1045.+. 1321 (f-Co)

31

7711

54Mn* polycjstals; 99.95%; residual activity

31

5gFe; single crystals; 99.97% ; residual activity diffusion couple method; polycrystals; 99.999% ; electron microprobe analysis; Do and Q values from combined data of [69B2] and [55Ml] 5gFe. sing16crystals; residual activity

31

65A7

31

69B2

31

74B2

63Ni; polycrystals; 99.5%; surface decrease

-

59Ml

63Ni.

31

62Hl

-

-

polycrystals; 99.2%; residual activity; 63Ni and 6oCo diffusion in Co - Ni alloys also studied (continued)

Landolt-B6mstem New Series III/26

Le Claire

Solute

[Ref. p. 203

3.2.10 Impurity diffusion in nickel group metals

132 Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: cobalt (Co), continued Ni

1465... 1570 (P-CO) 1500...1690 @-Co>

0.10

252.0

3.35

297.3

0.40

282.2

1409... 1643 @-Co)

Pt

0.65

219.3

CU

z 1.0

Zn

S

31 31

65Hl

31

69B2

1354...1481 1g3mpt; (f- and p-Co) polycrystals; 99.99% ; residual activity

31

73M3

x 275

1158, 1273 (f-Co)

Cu; polycrystals; 99.5%; 0..*5% cu; in-diffusion method; electron microprobe analysis; two temperatures only

31

84A2

0.12

266.7

1081... Tc (f-Co)

65Zn, single crystals; residual activity

31

74B2

0.08

254.5

1.3

226.1

T, ... 1573 @-Co> 1423... 1523

35s.

31

64Pl

63Ni; polycrystals; 99.5%; residual activity; 63Ni and 6oCo diffusion in Co-Ni alloys also studied Ni; diffusion couple method; polycrystals; 99.999% ; electron microprobe analysis

polycrystals; 99.99%; residual activity

@-Co)

Matrix: rhodium (Rh) - No impurity diffusion data available; for self-diffusion seechapter 2 Matrix: iridium (Ir)

- No impurity diffusion data available; for self-diffusion seechapter 2

3.2.10 Impurity diffusion in nickel group metals Ni, Pd, Pt Matrix: nickel (Ni) Ni Ce

0.66

-

-

seechapter 2 on self-diffusion

254.6

973...1370

14’Ce; polycrystals; 99.99%; grinder sectioning; non-Gaussian diffusion profiles

Le Claire/Neumann

32, 33 71Pl

Land&BBmstein New Series Ill:26

Ref. p. 2031 Solute

3.2.10 Impurity diffusion in nickel group metals

Do

Q

10-4m2s-1

kJmol-l

133

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: nickel (Ni), continued Nd

0.44

250.5

973 ... 1373

147Nd; polycrystals; 99.99% ; grinder sectioning; non-Gaussian diffusion profiles

-

71Pl

Hf

1.8*

251.0*

1023.‘. 1423

Hf; polycrystals; 99.99% ; electron microprobe analysis (Ni/ Ni 0.5; 3.8% Hf sandwich samples); * estimated values

-

72Bl

V

0.87

278.4

1073... 1573

497.

-

68M2

‘ICr; polycrystals; 99.95%; lathe sectioning; distinct data scattering

-

64M3

185~.

-

64M5

32

78V3

pol&rystals; 99.99% ; residual activity; grinder sectioning Cr

1.1

272.6

W

2.0

299.4

1373...1541

polyc;ystals; 99.95%; lathe sectioning 2.87

308.1

1346... 1668

181~.

single’crystals; 99.98% ; lathe sectioning

, Fe

1.0

269.4

1478... 1669

“Fe; single crystals; 99.999% ; grinder sectioning

32

71B2

co

2.77

285.1

1335.., 1696

To; single crystals; 99.98%; lathe sectioning

32

78V3

Pt

2.5

286.8

1354... 1481

193Pt; polycrystals; 99.99% ; residual activity

-

73M3

64cI.I. polyc;ystals; 99.95% ; lathe sectioning

-

64M4

‘.

cu

0.57

258.3

1327..: 1632:

(continued)

Land&-Biirnstein New Series III/26

Neumann

iolute

[Ref. p. 203

3.2.10 Impurity diffusion in nickel group metals

134 Do

Q

10-*mzs-’

kJmo!-’

Temperature range K

Method/Remarks

Fig.

Ref.

64Cu; polycrystals; 99.95% ; residual activity Cu; polycrystals; 99.95%; sectioning; atomic absorption analysis

-

65A8

32

84Tl

-

76T2

32

78Vl

-

55Kl

33

81G2

32

78V2

-

81Gl

33

88N3

32

83M2

Matrix: nickel (Ni), continued 0.724

255.4

1123...1323

0.61

255.0

1080...1613

8.25

282.2

1123...1323

8.94

279.4

1297.s. 1693

9U

2.0

272.1

1173..*1373

Al

1.0

260

914...1212

In

6.78

270.5

1274+..1659

3U

4g

1.1

Ge

2.1

250

264

777..*1513

939 ... 1675

“OAg; single crystals; 99.99% ; residual activity 11oAgt 105Ag* single crystals’; 99.98% ; lathe sectioning ‘98A,,, polycjstals; 99.98%; autoradiography Al; single crystals; 99.99% ; sputter sectioning; SIMS analysis (27Al+ signal) l141n.

single’crystals; 99.98% ; lathe sectioning In; single crystals; 99.99% ; sputter sectioning; SIMS analysis (‘l’In+, 131n+ signals); two-exponential tit of the [78V2] and [81Gl] data: 0: = 1.26 * 10v4 m2s-‘, Q, = 251 kJmo!-‘, 0: = 1.9m2s-‘, Q2 = 397.8 kJ mol-’ 68Ge (implanted); single crystals; 99.99% ; grinder and sputter sectioning

Neumann

Landolt-B6mstein New Series III/26

solute

135

3.2.10 Impurity diffusion in nickel group metals

Ref. p. 2031 Do

e

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: nickel (Ni), continued 3n

4.56

267.2

1242.e. 1642

l13Sn; single crystals; 99.98%; lathe sectioning

32

79Vl

!LS

1.39

251.8

1239.~. 1634

73As; single crystals; 99.98% ; lathe sectioning

32

79V2

Sb

3.85

264.0

1203... 1674

“‘Sb; single crystals; 99.98%; lathe sectioning

32

76Vl

s

1.4

219.0

1078.e. 1495

35s.

32

75Vl

‘23Te; single crystals; 99.99% ; microtome sectioning

32

89Nl

235~.

-

7121

68B2

single crystals; 99.98%; lathe sectioning Te

2.6

254.0

1135... 1553

u

1.0

236.1

1248... 1348

polyc’rystals; 99.998% ; autoradiography; solubility also measured: c,= 6.2exp(-83.7kJmol-‘/RT) Pu

0.17

213.5

1298.a. 1398

239Pu; polycrystals; 99.9%; autoradiography; solubility also measured: c, increases from 30 ppm at 1300 K to 80 ppm at 1400 K

Matrix: palladium (Pd) Pd

-

-

-

seechapter 2 on self-diffusion

34

Fe

0.18

260.0

1373... 1523

5gFe; polycrystals; 99.95% ; grinder sectioning

34

77Fl

-

seechapter 2 on self-diffusion

1273..a 1673

Fe; polycrystals; 99.99% ; electron microprobe analysis (Pt/Pt 2.06 % Fe sandwich samples)

34 -

78Bl

Matrix: platinum (Pt) Pt

-

Fe

0.025

243.4

(continued) Landolt-BBmstein New Series III/26

Neumann

[Ref. p. 203

3.2.11 Impurity diffusion in noble metals

136

Temperature range K

Method/Remarks

Fig.

Ref.

Uatrix: platinum (Pt), continued :0 19.6 310.7

1023... 1323

To; polycrystals; 99.9%; surface decreasemethod; distinctly curved Arrhenius plot

-

68Kl

4g

0.13

258.1

1473...1873

Ag; polycrystals; 99.99% ; electron microprobe analysis (Pt/ Pt 2.4% Ag sandwich samples)

78Bl

4u

0.13

252.0

850...1265

199Au; single crystals; 99.99% ; sputter sectioning

78Rl

41

1.3.10-3

193.6

1373..+ 1873

Al; polycrystals; 99.99%; electron microprobe analysis (Pt/ Pt 1.23% Al sandwich samples)

iolute

Do

Q

10-4m2s-1

kJmol-’

34

78Bl

3.2.11 Impurity diffusion in noble metals Cu, Ag, Au Matrix: copper (Cu) cu -

-

-

seechapter 2 on self-diffusion

35...38

Be

0.66

195.9

973 ..* 1348

Be; polycrystals; purity not specified; X-ray diffraction analysis

36

73F3

Ii

0.693

196

983 .** 1283

Ti; polycrystals; 99.998% ; electron microprobe analysis (Cu/Cu 2 ... 3 % Ti sandwich samples)

-

7712

V

2.48

215

995...1342

4av.

-

77Hl

-

7OS2

pol&rystals; 99.998%; residual activity; grinder sectioning; anomalous diffusion profiles Nb

2.04

251.5

1080...1179

95Nb; polycrystals; 99.999% ; residual activity; grinder sectioning; penetration profiles only 15 pm

Neumann

Land&-BBmsfein New Series III./26

Ref. p. 2031 Solute

3.2.11 Impurity diffusion in noble metals

Do

Q

10-4m2s-1

kJmol-’

137

Temperature range K

Method/Remarks

Fig.

Ref.

51Cr. polylrystals; 99.995%; residual activity 51Cr; polycrystals; 99.99% ; residual activity; grinder sectioning; near-surface effect for x < 15 urn 51Cr. polycrystals; 99.998%; residual activity; grinder sectioning; anomalous diffusion profiles ‘Wr; single crystals; 99.999% ; microtome sectioning; long Gaussian profiles; D(1200 K) = 1.4. lo-l3 m2s-’

-

71B3

-

71Sl

-

77Hl

-

83Rl

Mn; polycrystals; purity not specified; X-ray diffraction analysis 54Mn’ polyciystals; 99.998%; residual activity; grinder sectioning; anomalous diffusion profiles 54Mn; single crystals; 99.998% ; electrochemical sectioning

36

73F2

-

77Hl

-

79M3

59Fe; single crystals; 99.998%; lathe sectioning s9Fe* singlk crystals; 99.998% ; lathe sectioning 59Fe; single and polycrystals; 99.995%; residual activity

35

58Ml

-

61Ml

-

71B3

Matrix: copper (Cu), continued Cr

Mn

Fe

1.02

224.0

1073... 1343

1.6

240.7

IlOO...

0.337

195

999 ... 1358

-

-

1195... 1202

0.74

195.5

973...1348

1.02

200

873 ... 1323

1.42

204.3

773...976

1.4

216.9

992... 1347

1.01

213.3

990... 1329

1.36

217.7

923 ... 1343

(continued)

Land&-Biimstein New Series III/26

Neumann

Solute

[Ref. p. 203

3.2.11 Impurity diffusion in noble metals

138 Do

Q

10W4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

“Fe; single crystals; 99.999% ; electrolytical sectioning Fe; polycrystals; specpure; resistometric method

-

73Bl

-

78Sl

Matrix: copper (Cu), continued 1.3

215.6

1005... 1297

1.13

214.1

1063*.* 1274

Ru

8.5

257.5

1221... 1335

lo3Ru; single crystals; 99.999% ; electrolytical sectioning; solubility determined from the erfc-profile: c, = 0.018 * exp(- 100.5 kJ mol-‘/RT)

35

73Bl

co

1.93

226.5

975 ... 1351

35

58Ml

1.69

225.7

1163...1306

-

72B2

0.43

214.3

640 . . a848

6OCo; single crystals; 99.998% ; lathe sectioning 6OCo; polycrystals; specpure; lathe sectioning 6OCo; single crystals; 99.999% ; sputter sectioning and SIMS analysis (sgCo+ signal) two-exponential tit of the [58Ml] and [84Dl] data: Dy= 0.74*10m4m’s1r, Q, = 217.2 kJmol-‘, 0: = 736 . 10m4m2 s-l, Q, = 312.8 kJmol-’

-

84Dl

38

88N3

Fe

Rh

3.3

242.8

1023... 1348

Rh; polycrystals; purity not specified; X-ray diffraction analysis

35

72F2

Ir

10.6

276.4

1185...1303

1921r.

35

78Kl

35

58Ml

singld crystals; 99.99% ; lathe sectioning Ni

2.7

236.6

1016+..1349

63Ni ; single crystals; 99.998% ; lathe sectioning

(continued)

Neumann

LandolbB6mstein New Series III/26

Ref. p. 2031 Solute

3.2.11 Impurity diffusion in noble metals

Do

Q

10-4m2s-1

kJmol-’

Matrix: copper (Cu), continued Ni 3.8 237.8

139

Temperature range K

Method/Remarks

Fig.

Ref.

968 ... 1334

63Ni.

-

5911

-

64M4

-

71F3

-

72A2

-

83M3

38

88N3

1.7

231.5

1172-s. 1340

2.3

235.3

973.e. 1323

1.94

232.8

1128...1328

0.76

225.0

613...950

single crystals; 99.99% ; lathe sectioning 63Ni s polydrystals; 99.99% ; lathe sectioning Ni; polycrystals; purity not specified; X-ray diffraction analysis 66Ni; polycrystals; 99.99% + 99.999%; lathe sectioning Ni; single crystals; 99.999% ; sputter sectioning; SIMS analysis; two-exponential tit to the [58Ml, 64M4, 72A2, 8311131 data: 0: = 0.7.10e4 m2se1, Q, = 225 kJmol-‘, 0: = 0.025 m2s-‘, Q, = 299.3 kJ mol-’

Pd

1.71

227.6

1080... 1320

lo3Pd; single crystals; 99.999%; lathe sectioning

35

63Pl

Pt

0.67

233

1023 ... 1348

-

72Fl

0.56

233

1149... 1352

Pt; polycrystals; purity not specified; X-ray diffraction analysis isrpt, igspt; single crystals; 99.999% ; microtome sectioning

35

82Nl

0.63

194.7

37

60Nl

0.61

194.7

-

70B2

0.574

195.0

(1053 ... 1353) ““Ag* single ‘crystals; specpure; lathe sectioning (823 ... 1273) “OAg; single and polycrystals; 99.99% ; residual activity 1049... 1352 “o& single and polycrystals; 99.99% ; lathe sectioning and residual activity

-

7262

Ag

Land&-Biimstein New Series III/26

Neumann

Solute

[Ref. p. 203

3.2.11 Impurity diffusion in noble metals

140 Do

Q

10-4mZs-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: copper (Cu), continued Au

Zn

Cd

(1053 ... 1353) lg*Au; single crystals; specpure; lathe sectioning 195Au. 1085... 1342 single crystals; 99.99% ; lathe sectioning ig6Au; 993 ..* 1350 single crystals; 99.999%; microtome sectioning “‘Au; 633 . ..982 single crystals; 99.999% ; sputter sectioning

0.69

210.6

0.897

212.5

0.537

205.6

0.0803

191.2

0.34

190.9

878...1322

0.41

192.8

1168,122O

0.73

198.9

1165...1348

0.24

188.8

1073..*1313

0.28

189.3

993...1193

0.935

191.3

998...1223

0.73

188.8

(1053.s.1353)

I.27

194.6

1032... 1346

1.2

194

983...1309

35, 38 60NI

-

77Gl

-

87FI

38

65Zn; single crystals; specpure; lathe sectioning 65Zn; single crystals; 99.999% ; lathe sectioning; two data points only 65Zn* polyciystals; 99.99% ; lathe sectioning 65Zn; polycrystals; 99.99% ; lathe sectioning Zn; polycrystals; specpure; resistometric method

37

57Hl

-

67P3

-

69K2

-

72A2

-

79D2

“‘Cd; single crystals; 99.98%; lathe sectioning “%d; single crystals; specpure; lathe sectioning logCd; single crystals; 99.99% ; lathe sectioning “‘Cd; polycrystals; 99.998% ; grinder sectioning

36

58Hl

-

60Nl

-

7262

-

82Hl

Neumann

Landolt-B6mstein New Series 1111’26

Ref. p. 2031 Solute

141

3.2.11 Impurity diffusion in noble metals

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: copper (Cu), continued Hg

0.35

184.2

(1053 ... 1353) ‘03Hg; single crystals; specpure; lathe sectioning

36

60Nl

Al

0.08

181.3

973 ..- 1348

37

73F4

Ga

0.78

196.4

-

60Nl

0.523

192.7

-

71Kl

0.58

193.8

37

77F2

1.30

193.6

37

7262

1.87

196.4

-

78K2

0.219

178

(1053 ... 1353) 72Ga; single crystals; specpure; lathe sectioning 1153 ... 1352 67~~. polycjstals; 99.99% ; lathe sectioning 973...1323 Ga; polycrystals; purity not specified; X-ray diffraction analysis 1051... 1351 1141~. single’ and polycrystals ; 99.99% ; lathe sectioning “41~. 1071... 1354 polycjrstals; 99.999% ; microtome sectioning 602... 1351 In; single crystals; 99.9998% ; sputter sectioning; SIMS analysis (lisIn+ signal) two-exponential tit to the [7262, 78K2, and 83Gl] data: 07 = 0.29. 10m4m2 s-l, Q, = 179.6 kJmol-‘, 0: = 0.311 rn’s-l, Q, = 295.4 kJ mol-’

-

83Gl

38

88N3

In

Al; polycrystals; purity not specified; X-ray diffraction analysis

Tl

0.71

181.3

1058... 1269

‘04T1; single crystals; 99.999% ; lathe sectioning

37

63Kl

Si

0.07

171.7

973 ... 1323

Si; polycrystals; purity not specified; X-ray diffraction analysis

37

73F3

Ge

0.397

187.4

975 ..’ 1289

6*Ge. single crystals; 99.998%; lathe sectioning

36

70R2

Landolt-Biimstein New Series III/26

Neumann

(continued)

Solute

[Ref. p. 203

3.2.11 Impurity diffusion in noble metals

142 Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

68Ge; polycrystals; 99.99%; lathe sectioning

-

71Kl

36

73Gl

-

74Fl

-

79Kl

210Pb; single crystals; 99.99% ; lathe sectioning

36

77Gl

32~.

37

76Sl

37

6ONl

-

70Kl

124Sb; single crystals; 99.99% ; lathe sectioning ’ 24Sb; single crystals; 99.99%; lathe sectioning 124Sb; polycrystals; 99.999% ; microtome sectioning

36

6011

-

73Gl

-

79Kl

2o’Bi; single crystals; 99.99% ; lathe sectioning

37

77Gl

Matrix: copper (Cu), continued Ge

0.315

185.5

1111. ..I326

Sn

0.842

188.2

1011..a 1321

0.82

187.6

973.e. 1348

0.67

184.4

1018...1355

Pb

0.862

182.4

1006...1225

P

3.05.10-3

136.1

847... 1319

1lQ.

single’crystals; 99.99% ; lathe sectioning Sn; polycrystals; purity not specified; X-ray diffraction analysis “%n; polycrystals; 99.999% ; microtome sectioning

single crystals; 99.999% ; microtome sectioning As

Sb

Bi

0.12

175.8

0.202

176.4

(1053 ... 1353) 76As; single crystals; specpure; lathe sectioning 1086...1348 73As* polycrystals; 99.99% ; lathe sectioning and residual activity

0.34

175.8

873 ... 1275

0.616

182.7

1011.a. 1321

0.48

179.6

1049...1349

0.766

178.1

1074...1348

Neumann

Ref. p. 2031 Solute

143

3.2.11 Impurity diffusion in noble metals

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

1073... 1273

35s.

36

691112

Matrix: copper (Cu), continued S

23

206.6

single crystals; 99.999%; electrolytical sectioning Se

1.0

180.5

878...1150

‘?Se (implanted); single crystals; 99.999% ; microtome sectioning

37

89Rl

Te

0.97

180.5

822... 1214

“rTe (implanted); single crystals; 99.999% ; microtome sectioning

37

89R.I

Matrix: silver (Ag) Ag

-

-

seechapter 2 on self-diffusion

Ti

198

1051..* 1220

Ti; polycrystals; 99.999%; electron microprobe analysis (Ag/Ag 0.23; 0.45 % Ti sandwich samples)

39,40 79M4

1.33

V

2.72

209

1012..* 1218

49.

/

-

19M4

-

79M4

39

81Nl

-

79M4

po&rystals; 99.999%; residual activity; grinder sectioning; non-Gaussian diffusion profiles 3.29

210

1023... 1215

1.1

192.6

976 ... 1231

4.29

196

883 ... 1212

Cr

Mn

Land&-BBmstein New Series III/26

‘Cr. polyirystals; 99.999% ; residual activity; grinder sectioning; non-Gaussian diffusion profiles 51Cr* singlb crystals; 99.9999%; microtome sectioning; solubility determined from the erfc-profile: c, = 1620 * exp(- 170.0 kJmol-‘/RT) s4Mn; polycrystals; 99.999% ; residual activity; grinder sectioning; non-Gaussian diffusion profiles

Neumann

3.2.11 Impurity diffusion in noble metals

144 Solute

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

[Ref. p. 203 Fig.

Ref.

sgFe; single crystals; 99.99% ; lathe sectioning (1073 .*. 1205) 5gFe; single crystals; 99.999% ; electrolytical sectioning 1062... 1213 “Fe; single crystals; 99.999%; lathe sectioning; near-surface effect 1066...1219 103R” 106~~. single ‘crystals: 99.99% ; lathe sectioning; pronounced near-surface effect

39

6lMl

-

73Bl

-

77B2

-

59Pl

Method/Remarks

Matrix: silver (Ag), continued Fe

242

205.3

992... 1201

2.6

205.2

1.9

206.7

Ru

180

275.5

co

1.9

204.1

(973 ... 1214)

6oCo; single crystals; 99.999% ; electrolytical sectioning

39

73Bl

Ni

21.9

229.3

1022... 1223

-

6lH2

15

217.3

904...1199

63Ni; single crystals; 99.99% ; lathe sectioning; pronounced near-surface effect

-

76Ll

-

78Sl

63Ni.

single crystals; 99.999%; electrolytical sectioning; solubility determined from the erfc-profile: c, = 0.7 .exp(-33.7kJmol-‘/IV) Ni; polycrystals; specpure; resistometric method

2.8

230.4

1023..+ 1193

Pd

9.57

237.6

1009~~~1212

lo3Pd; single crystals; 99.999% ; lathe sectioning

39

63Pl

Pt

6.0

238.2

923 +.. 1223

-

75Fl

1.9

235.7

1094... 1232

Pt; polycrystals; purity not specified; X-ray diffraction analysis lg*Pt, r=pt; single crystals; 99.9999% ; microtome sectioning

39

82Nl

Neumann

Land&-BBmslein New Series HI/26

Ref. p. 2031 Solute

3.2.11 Impurity diffusion in noble metals

Do

Q

10-4mZs-1

kJmol-’

Temperature range K

145

Method/Remarks

Fig.

Ref.

64cu;

40

57Sl

-

80Dl

-

56Jl

-

57Ml

-

63Ml

Matrix: silver (Ag), continued

cu

Au

Zn

Cd

Land&-Bijmstein New Series III/%

1.23

193.0

990... 1218

0.029

164.1

699...897

0.262

190.5

923 ... 1223

0.41

194.3

929...1178

0.85

202.1

991...1198

0.62

199.0

0.54

174.6

916... 1197

0.532

174.6

970... 1225

0.85

176.3

953...1165

0.44’

174.6

866... 1210

0.504

176.8

1042... 1226

0.079

159.5

926... 1221

single crystals; 99.99% ; lathe sectioning CU; single crystals; 99.99%; sputter sectioning; SIMS analysis (63Cu signal) 198Au. single crystals; 99.99% ; lathe sectioning “‘Au; polycrystals; 99.99% ; microtome sectioning 198Au. single crystals; 99.99% ; lathe sectioning best tit to data from [56Jl, 57M1, 63MlJ 65Zn. single crystals; 99.99% ; lathe sectioning 65Zn; single crystals; 99.999% ; lathe sectioning Zn; polycrystals; specpure; resistometric method

39 55Sl

40

67Rl

-

79D2

“%d; single crystals; 99.99% ; lathe sectioning “‘Cd; polycrystals; 99.999% ; chemical sectioning and residual activity

40

54Tl

-

69K4

‘03Hg. singe &ystals; 99.99% ; lathe sectioning

39

57Sl

Neumann

solute

[Ref. p. 203

3.2.11 Impurity diffusion in noble metals

146 Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: silver (As), continued 91

0.13

159.5

873...1223

Al; polycrystals; purity not specified; X-ray diffraction analysis

39

75F2

3a

0.42

162.9

873...1213

Ga; polycrystals; purity no specified; X-ray diffraction analysis

40

77F2

h-i

0.41

170.1

886.a. 1209

l141n.

40

54Tl

-

67Kl

40

84Ml

single’crystals; 99.99% ; lathe sectioning 0.55

175.0

1044...1215

1 141n.

polycjstals; 99.999%; chemical sectioning and residual activity i141n: single crystals; 99.999%; sputter sectioning

0.36

169.0

553.e.838

Tl

0.15

158.7

(918 ..a 1073)

‘04T1; polycrystals; purity not specified; lathe sectioning and residual activity

40

58H2

Ge

0.084

152.8

(948...1123)

‘lGe; polycrystals; purity not specified; lathe sectioning and residual activity

39

58H2

Sn

0.25

165.0

865.+.1210

40

54Tl

0.472

171.0

1026...1227

113Sn; single crystals; 99.99% ; lathe sectioning “jSn, l19Sn; polycrystals; 99.999%; chemical sectioning and residual activity

-

69K3

Pb

0.22

159.5

(973 . . .1073)

210Pb; polycrystals; purity not specified; lathe sectioning; three data points only

-

55Hl

As

0.042

149.6

915...1213

As; polycrystals; 99.999% ; electron microprobe analysis (vapour deposited film of inactive As)

-

75H3

Neumann

Landoh-BBmstein New Series III/26

3.2.11 Impurity diffusion in noble metals

Ref. p. 2031 Solute

Do

Q

10-4m2s-’

kJmol-’

147

Temperature range K

Method/Remarks

Fig.

Ref.

iz4Sb; single crystals; 99.99% ; lathe sectioning 124Sb; polycrystals; 99.999% ; chemical sectioning and residual activity

39

54Sl

-

67K2

35s.

-

67B2

Matrix: silver (Ag), continued Sb

S

0.169

160.4

742... 1215

0.234

163.6

1053... 1225

1.65

167.5

873+..1173

policrystals; 99.999% ; grinder sectioning Se

0.285

157.4

759...1109

75Se(implanted); single crystals; 99.999% ; microtome sectioning

40

89Rl

Te

0.47

162.9

1043... 1213

-

69K3

0.21

154.7

65O.a.1169

“‘Te; polycrystals; 99.999% ; chemical sectioning “‘Te (implanted); single crystals; 99.999% ; microtome sectioning

40

8763

Matrix: gold (Au) Au

-

-

-

seechapter 2 on self-diffusion

41

Fe

0.19

172.5

973 ... 1323

Fe; polycrystals; purity not specified; X-ray diffraction analysis

41

77F3

co

0.22

183.4

973 ... 1323

-

77F3

0.25

185.2

1030.**1335

co; polycrystals; purity not specified; X-ray diffraction analysis 57co; single crystals; 99.999% ; microtome sectioning

41

78H2

0.30

192.6

1153 ... 1210

63Ni.

-

57Rl

973 ... 1323

poly&ystals; 99.96%; lathe sectioning Ni; polycrystals; purity not specified; X-ray diffraction analysis

41

76F2

Ni

0.25

Land&-B&n&n New Series III/26

188.4

Neumann

148 Solute

3.2.11 Impurity diffusion in noble metals Do

Q

10-4mZs-’

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: gold (Au), continued Pd

0.076

195.1

973...1273

Pd; polycrystals; purity not specified; X-ray diffraction analysis

41

78F2

Pt

0.095

201.4

973...1273

Pt; polycrystals; purity not specified; X-ray diffraction analysis

41

78F2

cu

0.105

170.2

973...1179

Cu (vapour deposited 1 u layer); polycrystals; 99.99% ; electron microprobe analysis

41

66Vl

Ag

0.072

168.3

943 ... 1281

-

63Ml

0.08

169.1

1046.~31312

-

65Kl

0.086

169.3

1004.~. 1323

“‘Age single crystals; 99.99% ; lathe sectioning “‘Ag; polycrystals; 99.99% ; electrochemical sectioning and residual activity “‘Ag, losAg; single crystals;

41

74H2

99.999 % ;

microtome sectioning Zn

0.082

158.1

969.a.1287

65Zn; single and polycrystals; 99.999%; microtome sectioning

41

77Cl

Hg

0.116

156.5

877...1300

203Hg; single crystals; 99.994% ; lathe sectioning

41

65Ml

AI

0.052

143.6

773... 1223

Al; polycrystals; purity not specified; X-ray diffraction analysis

41

78F3

In

0.075

153.7

(973 ... 1273)

l141n.

41

71D2

41

77Cl

polycjstals; 99.999% ; lathe sectioning and electron microprobe analysis (Au/Au 0.3% In sandwich samples) Ge

0.073

144.5

lOlO...

68Ge.

single and polycrystals; 99.999%; microtome sectioning

Neumann

Iandolt-Bhstein New Series Ill,/26

Solute

149

3.2.12 Impurity diffusion in zinc group metals

Ref. p. 2031 Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Sn; polycrystals; 99.999% ; electron microprobe analysis (Au/Au 0.3 % Sn sandwich samples)

-

72H2

“3Sn.

41

Matrix: gold (Au), continued Sn

0.0412

143.3

970... 1268

0.0399

143.1

962... 1272

polyciystals; 99.999% ; lathe sectioning Sb

0.0114

129.4

1003 ..+ 1278

Sb; polycrystals; 99.999% ; electron microprobe analysis (Au/Au 0.15 . ..0.4% Sb sandwich samples)

-

72H3

Te

0.063

140.9

908...1145

“‘Te (implanted); single crystals; 99.999% ; microtome sectioning

41

89Rl

3.2.12 Impurity diffusion in zinc group metals Zn, Cd, Hg Matrix: zinc (Zn) Zn

-

-

seechapter 2 on self-diffusion

42,43

63Ni.

42

67M2

11 c 8.1 I c 0.43

136.6 121.5

564...664

11c 2.22 I c 2.00

123.6 125.3

611 .*a688

64cLl; single crystals; 99.999% ; lathe sectioning

42

66B2

11c 0.32 I c 0.45

108.9 115.6

544...686

“OAg; single crystals; 99.999% ; lathe sectioning

42

61Rl

AU

11 c 0.97 I c 0.29

124.5 124.4

588...688 620...688

198Au; single crystals; 99.999%; lathe sectioning

42

63G3

Cd

11c 0.114 Ic 0.117

86.0 85.5

498...689

l15Cd; single crystals; 99.999% ; lathe sectioning

43

63G3

Ni

cu

Land&-Bhstein New Series III/26

single crystals; 99.999%; autoradiography

Neumann

3.2.12 Impurity diffusion in zinc group metals

150 Solute

Do

Q

10-4m2s-1

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: zinc (Zn), continued

Hg

11c 0.056 1 c 0.073

82.5 84.5

533.~~686

203Hg; single crystals; 99.999% ; lathe sectioning

43

67B3

Ga

11 c 0.016 lc 0.018

77.0 76.0

513...676

72Ga; single crystals; 99.999%; lathe sectioning

43

66B2

In

11 c 0.062 lc 0.14

80.0 82.1

444 9. ~689

l141n; single crystals; 99.999%; lathe sectioning

43

61Rl

Sn

IIC 0.15 lc 0.13

81.2 77.0

571 . ..673

1’3Sn; single crystals; 99.999%; lathe sectioning

43

7OW2

-

-

seechapter 2 on self-diffusion

11c 2.21

106.3

(453 .** 573)

67Hl

(Ic 1.40 1 c 0.68

103.2 105.0

(478 . . .583)

“OAg; single crystals; 99.99% ; surface decreasemethod “‘Ag; single crystals; 99.999% ; lathe sectioning

44 -

44

72Ml

Au

11 c 1.40 lc 3.16

106.6 110.7

(453 . . - 578)

‘g5Au; single crystals; 99.999%; lathe sectioning

44

72Ml

Zn

11c 0.13 1 c 0.084

75.5 75.4

(428 . . .588)

65Zn; single crystals; 99.999; lathe sectioning

44

72Ml

Hg

11c 0.21 1 c 0.21

78.6 78.6

(423 . . .573)

2o3Hg* single crystals; 99.999% ; lathe sectioning

44

72Ml

In

11c 0.10 1 c 0.090

73.1 70.9

(433 ... 573)

r141n; single crystals; 99.999%; lathe sectioning

44

72Ml

Pb

11 c 0.060 1 c 0.071

68.9 65.8

514*..571

210Pb; single crystals; 99.999%; lathe sectioning

44

81Yl

Matrix: cadmium (Cd) Cd A!2

Matrix: mercury (I-&) - No data available

Neumann

Landolt-Kmstein New Series III/26

3.2.13 Impurity diffusion in aluminum group metals

Ref. p. 2031 Solute

Do

Q

10V4m2s-’

kJmol-’

Temperature range K

Method/Remarks

151 Fig.

Ref.

3.2.13 Impurity diffusion in aluminum group metals Al, Ga, In, Tl Matrix: aluminum (Al) Al

-

-

seechapter 2 on self-diffusion

45,46

126

803.e.923

Li; polycrystals; 99.993% ; resistometric method

46

87Ml

24Na. po1ycrysta1s; purity not specified; surface decreasemethod

-

7783

137&.

-

73T3

Li

0.35

Na

6.7. 1O-4

719...863

cs

0.0104

453...573

polyciystals; 99.997%; residual activity; grinder sectioning; pronounced near-surface effect ; determination of D from deeper penetrations 667...928

28Mg; single crystals; 99.999% ; microtome sectioning

46

74Rl

242.0

804..+913

g5Zr. polyirystals; 99.999%; residual activity; grinder sectioning; distinct data scattering

-

73M4

253.0*

859.s.923

51Cr single crystals; 99.999%; microtome sectioning; * recalculated by present authors

45

7OP4

MO

250.0

898...928

MO; polycrystals; 99.99% ; electron microprobe analysis (Al/ Al 0.2 ... 0.3 % MO sandwich samples)

-

83Cl

Mn

211.4

s6Mn, “Mn (implanted); single and polycrystals; 99.999% ; electrochemical sectioning

45

71H3

W

1.24

Zr

728

Cr

1.85. IO3*

(continued)

Land&-BBmstein New Series III/26

Neumann

3.2.13 Impurity diffusion in aluminum group metals

152 Solute

Do

Q

10-4m2s-1

kJmo!-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Mn; polycrystals; 99.99% ; electron microprobe analysis (Al/ A! 0.5 ... I % Mn sandwich samples) s4Mn ; polycrystals; 99.99% ; microtome sectioning

-

73B3

-

87F2

“Fe; single crystals; 99.999% ; lathe sectioning sgFe (implanted); single and polycrystals; 99.99 to 99.999%; lathe and microtome sectioning ‘gFe; polycrystals; 99.995% ; microtome sectioning (profile evaluation by taking into account the formation of an intermetallic compound in the near-surface range) 5gFe (implanted); single crystals; 99.9995% ; microtome sectioning; mainly pressure dependence studied; two data points close to the results of [70HI]

-

70A3

-

70HI

-

87BI

-

89B2

6OCo; single crystals; 99.999% ; microtome sectioning 6OCo; polycrystals; 99.995%; lathe sectioning and residual activity co; polycrystals; 99.995% ; resistometric method 6oCo (implanted); single crystals; 99.999% ; lathe sectioning

45

7OP4

-

72A3

Matrix: aluminum (Al), continued Mn

Fe

co

I215

229.0

773 . ..923

317

217

843 . ..927

135

192.6

823...906

9.1 . 105

258.7

792...931

53

183.4

793 . ..922

-

(220)

855, 896

464

174.8

695...921

250

174.6

673...913

141

169.0

742.e.912

506

175.7

724...930

Neumann

78E2

-

83Hl

Land&-BCmstein New Series III/26

Ref. p. 2031 Solute

153

3.2.13 Impurity diffusion in aluminum group metals

Do

Q

10-4m2s-1

kJmol-l

Temperature range K

Method/Remarks

Fig.

Ref.

45

78E2

Matrix: aluminum (Al), continued Ni

4.4

145.8

742...924

Ni; polycrystals; 99.995%; resistometric method

cu

0.647

135.1

706...925

0.654

136.1

594...928

0.13

117.2

615...883

0.16

118.9

665...868

0.118

116.5

644...928

0.077

113.0

696... 882

0.27

121.0

723...873

0.131

116.4

642.a.928

0.259

120.8

630...926

0.30

121.4

(700 . . .920)

7OP4 64cu. 45 single crystals; 99.999% ; microtome sectioning 89Fl 67Cu; polycrystals; 99.999%; microtome sectioning (743 .a.928 K); grinder sectioning and residual activity measurement (594 . . .743 K) slight near-surface effect below 743 K 70A3 “‘Ag; single crystals; 99.999% ; lathe sectioning 70B3 “o&* single ‘crystals; 99.995% ; grinder sectioning and electron microprobe analysis (vapour deposited film of inactive Ag) 7OP4 ‘l”Ag; 46 single crystals; 99.999%; microtome sectioning 70A3 lg8Au; single crystals; 99.999% ; lathe sectioning 70B3 “‘AU; single crystals; 99.995% ; grinder sectioning 7OP4 “‘AU; 46 single crystals; 99.999%; microtome sectioning 7OP4 65Zn; single crystals; 99.999% ; microtome sectioning 65Zn; 7263 polycrystals; 99.99% ; residual activity; grinder sectioning (continued)

&

Au

Zn

LandolGB6mstein New Series III/26

Neumann

3.2.13 Impurity diffusion in aluminum group metals Solute

Matrix:

Do

Q

10-4mZs-1

kJmol-’

[Ref. p. 203

Temperature range K

Method/Remarks

Fig.

Ref.

Zn; polycrystals; 99.99% ; electron microprobe analysis (AI/Al 1% Zn sandwich samples) 65Zn; polycrystals; 99.999% ; residual activity; grinder sectioning 65Zn. polycrystals; 99.99% ; grinder sectioning Zn; polycrystals; 99.995%; resistometric method 65Zn. singld crystals; 99.999% ; microtome sectioning; evaluation together with the results of [7OP4] 65Zn; polycrystals; 99.99% ; microtome sectioning; *two sets of measurements; evaluation together with the results of [72G3, 77B33

-

73B3

-

76F3

-

77B3

-

78E2

-

78P2

aluminum (Al), continued

0.2

120.6

613...913

0.177

118.1

438...918

0.27

117.8

614..-890

0.20

120.7

650...903

0.325

117.9

688 ..*928

0.16 0.26

117.0 119.1

714 ... 893* 674 ‘.. 837*

0.245

119.6

(614 ... 920)

Cd

1.04

124.3

714..-907

“‘Cd; single crystals; 99.999% ; lathe sectioning

Hg

15.3

141.8

718...862

2o3Hg* polycjstals; 99.999%; residual activity; near-surface effect (oxide hold-up); determination of D from deeper penetrations

7882

Ga

0.49

123.1

680.~~926

72Ga; single crystals; 99.999%; microtome sectioning

46

7OP4

In

0.123

115.6

(673 .*. 873)

‘141n; polycrystals; purity not specified; residual activity

-

70A2

Zn

Neumann

83B3

46 46

70A3

Land&-B6mstein New Series 111126

Ref. p. 2031 Solute

3.2.13 Impurity diffusion in aluminum group metals

Do

Q

10-4m2s-1

kJmol-’

155

Temperature range K

Method/Remarks

Fig.

Ref.

46

71H4

Matrix: aluminum (Al), continued In

1.16

122.7

715...929

l141n (implanted); single crystals; 99.999% ; microtome sectioning

Tl

116

152.7

737...862

204T1; polycrystals; 99.999%; residual activity; near-surface effect (oxide hold-up); determination of D from deeper penetrations

78S2

Si

0.35

123.9

618 . ..904

-

73B2

2.02

136.0

753 ... 893

Si; polycrystals; 99.99% ; electron microprobe analysis (Al/Al 0.5 % Si sandwich samples) Si; polycrystals; 99.999% ; electron microprobe analysis (Al/ Al 0.58 .+. 1.15% Si sandwich samples)

-

78F4

Ge

0.481

121.3

674...926

71Ge. single crystals; 99.999%; microtome sectioning

46

7OP4

Sn

0.245

119.3

(673 *. ~873)

113&.

-

70A2

46

90El

polycjstals; purity not specified; residual activity 113Sn (implanted); single crystals; 99.9998% ; microtome sectioning; pressure effects also studied

0.84

118.6

649...905

Pb

50

145.6

777 ... 876

210Pb; polycrystals; 99.999%; residual activity; near-surface effect (oxide hold-up); determination of D from deeper penetrations

7882

Sb

0.09

121.7

721...893

124Sb; polycrystals; specpure Al; residual activity; grinder sectioning

68B3

Land&BBmstein New Series III/26

Neumann

-

Solute

[Ref. p. 203

3.2.13 Impurity diffusion in aluminum group metals

156 Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

798.e.898

235U. polycjstals; purity not specified; autoradiography

-

68B4

47 -

74Al

Matrix: aluminum (Al), (continued) u

0.1

117.2

Matrix: gallium (Ga) - No data available Matrix: indium (In) [n

-

-

-

seechapter 2 on self-diffusion

cl0

1.2.10-S

25.1*

383...423

6OCo; single crystals; 99.997% ; microtome sectioning; distinct data scattering; * diffusion in (111) direction

4g

IIC 0.11 1 c 0.52

48.1 53.6

(298 ... 423)

“‘Ag* single crystals; 99.99%; microtome sectioning

47

66A2

AU

9.10-3

28.1

(198...423)

lgOAu; single crystals with random orientation; 99.99%; microtome sectioning

47

66A2

l-i

0.049

64.9

323... 429

204T1; polycrystals; 99.9 % ; microtome sectioning

47

52El

Matrix: thallium (Tl) ri

-

-

-

seechapter 2 on self-diffusion

48

4g

11 c 0.027 1 c 0.038

46.9 49.4

(360, 480) (a-Tl)

48

68A2

0.042

49.8

(510 ... 570) (P-TO

“‘Ag; single crystals; 99.9999% ; microtome sectioning; two data points only bee polycrystals; same procedure as for single crystals

IIC 2-10-s 1 c 5.3 * 10-Q

11.7 21.8

(390, 490) (or-Tl)

48

68A2

5.2. 1O-4

25.1

(510 ..* 570) (B-V

lgOAu; single crystals; 99.9999% ; microtome sectioning; two data points only bee polycrystals; same procedure as for single crystals

Au

Neumann

Landolt-B6mstein New Series 111126

Ref. p. 2031 Solute

3.2.14 Impurity diffusion in group IV B metals

Do

Q

10-4m2s-1

kJmol-’

Temperature range K

Method/Remarks

157 Fig.

Ref.

3.2.14 Impurity diffusion in group IVB metals Sn, Pb Diffusion data for semiconducting elements Si, Ge are not included. They can be found in [89L2]. Matrix: tin (Sn) Sn

-

-

seechapter 2 on self-diffusion

49, 50 78S3

Fe

4.8. lO-4

51.2

387...462

co; polycrystals; 99.9995% ; MijDbauer spectroscopy (57Fe signal)

Ni

11 c 1.99 . IO-’ Ic 1.87. lo-’

18.1 54.2

298...373 393 . ..473

63Ni; single crystals; 99.999% ; lathe sectioning

50

84Yl

cu

Ic 2.4. lO-3

33.1

(413 .** 503)

64Cu; single crystals; purity not specified; microtome sectioning

50

67D2

&

11c 7.1 . 10-3 ..Lc 0.18

51.5 77.0

(403 . . .503)

“OAg; single crystals; purity not specified; microtome sectioning

50

66D2

Au

11 c 5.8 . lO-3 Ic 0.16

46.1 74.1

(403 . . * 503)

lg8Au; single crystals; purity not specified; microtome sectioning

50

66D2

Zn

11 c 1.1 . 10-Z I c 8.4

50.2 89.2

(410... 500)

65Zn; single crystals; 99.999%; lathe sectioning

50

74H3

Cd

11c 220 Ic 130

118.1 115.6

(460 . . .500)

logCd; single crystals; 99.999% ; lathe sectioning

49

74H3

Hg

11 c 7.5 Ic 30

105.9 112.2

448 . ..499

‘03Hg; single crystals; 99.9999%; microtome sectioning

49

72Wl

In

11 c 12.2 Ic 34.1

107.2 108.0

454... 494

’ 141n; single crystals; 99.998%; lathe sectioning

49

58Sl

Land&-Bhstein New Series III/26

Neumann

Solute

[Ref. p. 203

3.2.14 Impurity diffusion in group IV B metals

158 Do

e

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: tin (Sn), continued TI

1.3 * 10-J

61.5

410..+489

‘04T1; polycrystals; 99.999% ; lathe sectioning and autoradiomphy ; grain-boundary contributions

-

69B3

Sb

IIC 71.0 I c 73.0

121.8 123.1

466.s.499

124Sb; single crystals; 99.999%; lathe sectioning

49

71H5, 7483

Matrix: lead (Pb) Pb

-

-

seechapter 2 on self-diffusion

Na

6.3

118.5

522...586

22Na; single crystals; 99.9999%; microtome sectioning; distinct data scattering

51 -

7201

co

9. lo-’

46.4

383 ... 573

sgCo (implanted; ny6’Co, activation analysis); polycrystals; 99.9999%; microtome sectioning; pronounced near-surface effect

-

78K3

Ni

1.0. 10-z

44.5

(481 . . .593)

63Ni.

51

73C2

singlk crystals; 99.9999% ; microtome sectioning 63Ni; polycrystals; 99.999% ; lathe sectioning

-

8282

51

75D2

1.1 . 10-z

45.4

423.a. 523

Pd

3.4. 10-3

35.4

(470 . *. 590)

rogPd; single crystals; 99.9999% ; microtome sectioning

Pt

1.1 . 10-2

42.3

490..*593

cu

7.9. 10-3

33.6

(498 . . .598)

8OVl Pt; 51 single crystals; 99.9999%; microtome sectioning (Pt concentration determined by observing the variation in the melting curve for each slice); solubility determined from the erfc-profile: c, = 21.9 *exp(- 51.0 kJmol-‘/RT) 64Cu; 66Dl single and polycrystals; purity not specified; microtome sectioning (continued)

Solute

Do

Q

10-4m2s-1

kJmol-’

Matrix: lead (Pb), continued (23.4) * (8.6 * 10-y cu

Au

Temperature range K

Method/Remarks

Fig.

Ref.

491... 803

64cu;

-

72C2

51

75D3

-

65Cl

-

66Dl

-

74A2

-

75D2

51

82H2

lQ8Au; polycrystals; 99.99% ; microtome sectioning

-

56Al

195~~.

-

61Al

198~~.

-

66A3

single Lystals; 99.999%; microtome sectioning lQ8Au; single crystals; 99.999% ; lathe sectioning

-

66Kl

single crystals; 99.9999%; microtome sectioning; D(p) measured between 0 and 5.6 GPa; * partly erroneous zero-pressure results reanalysis of the results of [72C2], using an improved pressure calibration ** Do and Q represent the zeropressure parameters

8.6. 10-3

34.2 **

-

-*

(470 . . .750)

4.6. lo-’

60.5

(398 ... 598)

4.42. 1O-2

60.8

437.e.572

4.8. 1O-2

60.8 **

4.6. 1O-2

60.8

423...573

2.8. 1O-3

37.3

463 ... 569

4.1 * 10-3

39.1

367...598

&

159

3.2.14 Impurity diffusion in group IV B metals

Ref. p. 2031

“OAg; single crystals; 99.999%; microtome sectioning; D(p) measured between 0 and 3.9 GPa; * zero-pressure values for Do and Q not evaluated “‘Ag. single ‘crystals; purity not specified; microtome sectioning “OAg; single crystals; 99.998%; microtome sectioning reanalysis of the results of [65Cl] using an improved pressure calibration; ** Do and Q represent the zeropressure fitting parameters “OAg; polycrystals; 99.999% ; lathe sectioning

single Lystals; 99.999%; microtome sectioning 2.5. 1O-3

8.7. 1O-3

Land&-BBmstein New Series III/26

36.6

41.9

(353 ... 523)

(463 . . .593)

Neumann

(continued)

Solute

[Ref. p. 203

3.2.14 Impurity diffusion in group IV B metals

160

Do

Q

10-4m2s-1

kJmol-’

Fig.

Temperature range K

Method/Remarks

(444 . . .693)

ig8Au; single crystals; 99.9999% ; microtome sectioning; D(p) measured between 2.1 and 3.9 GPa; * Do and Q represent the zeropressure parameters reanalysis of the results of [71Wl], using an improved pressure calibration; * Do and Q represent the zeropressure parameters ig5Au; single crystals; 99.9999%; microtome sectioning ‘9’Au. 51 single crystals; 99.9999%; microtome sectioning 65Zn. single crystals; 99.9999%; microtome sectioning 65Zn. 51 singld crystals; 99.9999% ; microtome sectioning; D(p) measured between 0 and 4.7 GPa; * Do and Q represent the zeropressure parameters “‘Cd; single crystals; 99.9999%; microtome sectioning 51 “‘Cd; single crystals; 99.9999%; microtome sectioning; D(p) measured between 0 and 4 GPa; * Do and Q represent the zeropressure parameters zo3Hg. single crystals; 99.9999% ; microtome sectioning

Ref.

Matrix: lead (Pb), continued Au

Zn

Cd

Hg

5.6. 1O-3

39.7 *

5.8 . lo- 3

40.3 *

3.62. 1O-3

37.4

411*.*511

5.2. lo-’

38.6

(334 ... 563)

1.6. lo-*

47.3

455... 572

1.65.10-*

47.8 *

(453 ... 773)

0.409

88.9

(423 ... 593)

0.92

92.8 *

(523 ... 823)

1.05

95.0

466...573

71Wl

75D2

75W2

79D3

74R2

77Dl

69M3

77Vl

73Wl

(continued)

Neumann

Land&BSmstein New Series W/26

Solute

161

3.2.15 Impurity diffusion in group V B semimetals

Ref. p. 2031

Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: lead (Pb), continued

H&?

1.5

96.7 *

(523 ... 823)

‘03Hg* single crystals; 99.9999% ; microtome sectioning; D(p) measured between 0 and 3.8 GPa; * Do and Q represent the zeropressure parameters

51

77Vl

In

33

112.2

437.e.493

In; single crystals; 99.999%; electron microprobe analysis (5 urn film of inactive In deposited on the crystal)

-

69K5

Tl

0.511

101.9

480..+596

‘04T1; polycrystals; 99.99% ; microtome sectioning

51

61R2

Sn

0.41

94.4 *

(523 . . .723)

“3Sn.

51

77D2

single’crystals; 99.9999% ; microtome sectioning; D(p) measured between 0 and 3 GPa; * Do and Q represent the zeropressure parameters Sb

0.29

92.9

461...588

lz4Sb; single crystals; 99.9999%; microtome sectioning; distinct data scattering

-

72Nl

Bi

6.8

112.2

564, 596

‘loBi; polycrystals; 99.99% ; microtome sectioning; only two data points

-

61R2

3.2.15 Impurity diffusion in group VB semimetals P, As, Sb, Bi Matrix: phosphorus (P) - No data available Matrix: arsenic (As)

- No data available

Matrix: antimony (Sb) Sb

-

-

-

seechapter 2 on self-diffusion

-

Ag

67

119.7

603...879

li”Ag; polycrystals; 99.9 % ; serial sectioning

-

Matrix: bismuth (Bi) - No data available Land&-BGmstein New Series III/26

Neumann

73K3

iolute

[Ref. p. 203

3.2.16 Impurity diffusion in actinide group metals

162 Do

Q

10-4mZs-1

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

3.2.16 Impurity diffusion in actinide group metals AC, Th, Pa, U, Np, Pu, etc. vlatrix: actinium (AC) - No data available vlatrix: thorium (Th) [-thorium

rh

-

-

-

seechapter 2 on self-diffusion

‘e

5.10-3

80.8

1238...1558

52 Fe; polycrystals; 99.95% ; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

79w ‘1

5. 1o-4

55.3

1238... 1558

52 co; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

79Wl

Ni

4.10-3

77.9

1238...1558

52 Ni; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

79Wl

Pa

1.26. lo2

312.8

231Pa; polycrystals; 99.84%; profile determination via u-emission spectra

52

67Sl

LJ

2.21 . lo4

332.0

233~.

52

67Sl

963...1150

52

polycjstals; 99.84% ; profile determination via a-emission spectra g-thorium Th Zr

1.73 . lo4

-

-

no self-diffusion data for g-Th available

384.0

1773... 1873

52 Zr; polycrystals; 99.977%; diffusion couple method and scanning laser mass spectroscopy; electro-mobility and effective charge also determined

84Sl

Landolr-B5mslein New series III/26

Ref. p. 2031 jolute

3.2.16 Impurity diffusion in actinide group metals

Do

e

10m4m2sK1

kJmol-’

163

Temperature range K

Method/Remarks

Fig.

Ref.

1693 1963

‘8iHf.

52

65Rl

Matrix: thorium @Th), continued Hf

D=1.09.10-12m2s-1 2.09 . IO-” m2 s-l

polycjstals; lathe sectioning

V

0.019

129.8

1653.'.1939

52 v; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

7834

Nb

0.5

201.8

1643... 1933

52 Nb; polycrystals; 99.95% ; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

7884

Ta

0.57

210.6

1648...1933

52 Ta; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy; electro-mobility and effective charge also determined

78S4

MO

15.1

216.0

1698... 1873

52 MO; polycrystals; 99.977% ; diffusion couple method and scanning laser mass spectroscopy; electro-mobility and effective charge also determined

84Sl

W

0.103

160.0

1683...1818

52 W; polycrystals; 99.977% ; diffusion couple method and scanning laser mass spectroscopy; electro-mobility and effective charge also determined

84Sl

Re

4.04.10-3

84.0

1663 ... 1943

52 Re; polycrystals; 99.977% ; diffusion couple method and scanning laser mass spectroscopy; electro-mobility and effective charge also determined

84Sl

Fe

4.10-3

71.6

1633... 1898

52 Fe; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy

79Wl

Land&-Biimstein New Series III/26

Le Claire

Solute

[Ref. p. 203

3.2.16 Impurity diffusion in actinide group metals

164 Do

Q

10V4mzs-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

co;

52

79Wl

52 Ni; polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy

79Wl

Matrix: thorium (Th), continued co

4.10-j

65.3

1633... 1898

polycrystals; 99.95%; diffusion couple method and spark source mass spectroscopy Ni

4 * 10-4

38.1

1633.s.1898

Matrix: protactinium (Pa) - No data available Matrix: uranium (U) u-uranium u -

-

seechapter 2 on self-diffusion

-

918

polycrystals; D determined from precipitate dissolution

53

-

seechapter 2 on self-diffusion

53

D = 1.77. lo-l3 m2s-l

1021.2

53

62R 1

D=3.60~10-14mZs-1 6.45. lo-” rn’s-l 3.41 . lo-l4 m2 s-l * 5.36. lo-l4 m2 s-l 1.61 . lo-l4 m2s-’ 1.51 . lo-l3 m2sT1* 1.07. lo-l3 m2sT1

943 953 968.8 985.7 993 1002.5 1013

51Cr; polycrystals; 99.993% ; lathe sectioning 51Cr; polycrystals; 99.98% ; lathe sectioning; * mean of two values

53

70D2

Fe

D = 8.71 . lo-i3 m2s-‘* 2.6.10-12m2s-1*

974 1033

5gFe; polycrystals; 99.993% ; lathe sectioning; * mean of two values

53

62Rl

co

1.54.10-2

114.9

964.e. 1036

6OCo. polycjstals; 99.98% ; lathe sectioning

53

70D2

-

-

seechapter 2 on self-diffusion

53

Fe

Dz3.10-14m2s-1

p-uranium u Cr

-

y-uranium u -

-

72Sl

Nb

4.87. 1O-2

166.0

1063...1376

g5Nb; polycrystals; 99.99%; lathe sectioning

53

64P2

Cr

5.47.10-3

102.4

1070~~~1311 51Cr; polycrystals; 99.99% ; lathe sectioning

53

64P2

Le Claire

Landolt-BBmsfein New Series III/26

Ref. p. 2031 Solute

165

3.2.16 Impurity diffusion in actinide group metals

Do

Q

10-4m2s-’

kJmol-’

Temperature range K

Method/Remarks

Fig.

Ref.

Matrix: uranium (y-u), continued Mn

1.81. 1O-4

58.1

1060..+ 1212

54Mn. polyciystals; 99.99% ; lathe sectioning

53

64P2

Fe

2.69. 1O-4

50.3

1059... 1263

5gFe* polydrystals; 99.99% ; lathe sectioning

53

64P2

co

3.51 . 10-4

52.6

1056... 1263

6Oco. polyckystals; 99.99% ; lathe sectioning

53

64P2

Ni

5.36. 1O-4

65.6

1059... 1313

63Ni; polycrystals; 99.99% ; lathe sectioning

53

64P2

cu

1.96. 1O-3

100.7

1059... 1312

53

64P2

Au

4.86. 1O-3

127.3

1057.~. 1280

64Cu; polycrystals; 99.99% ; lathe sectioning ‘95Au. polycjstals; 99.99% ; lathe sectioning

53

61R3

Matrix: neptunium (Np) - No data available Matrix: plutonium (pu) S-plutonium Pu -

-

-

seechapter 2 on self-diffusion

54

co

1.2. 10-2

53.2

617...699

6OCo; polycrystals; grinder sectioning

54

75Cl

Ag

D = 1.08 . lo-l4 m2 s-i

695

“OAg; polycrystals; grinder sectioning

54

76Cl

Au

D=2.37.10-i4m2s-’

713

lg8Au; polycrystals; grinder sectioning

54

76Cl

s-plutonium Pu -

-

-

seechapter 2 on self-diffusion

54

co

1.4. 10-3

41.4

757...894

6OCo. polyc’rystals; grinder sectioning

54

75C2

cu

1.0. 10-3

51.5

773...853

cu; polycrystals; diffusion couple method

54

76C1, 7OLl

Land&-BBmstein New Series III/26

Le Claire

3 Diffusion of impurities in solid metallic elements (Figures) Solute

Do

Q

10-4mZs-1

kJmol-’

Temperature range K

[Ref. p. 203

Method/Remarks

Fig.

Ref.

l*om&;

54

76Cl

lg8Au; polycrystals; grinder sectioning

54

76Cl

1

Matrix: plutonium (E-Pu), continued

Ag

4.9. 10-s

40.2

772...884

polycrystals; grinder sectioning Au

5.7 * 10-s

43.1

788...844

Figures for 3 c-T 1u

i

10-Q

I ,

T,=QXK

m2/s

-T

350

400 K

.,-10

I

Matrices -6Li . I‘Lie

‘I

m7fs 1o-'o

‘i-13 6

2.1,

2.6

2.8

3.040-k’ :

4.10-‘” I

2.1

I/T-

‘ig. 1. Li. Semilogarithmic plot of impurity diffusion coeficicnts in lithium vs. reciprocal temperature. Na: [67Ml], 31: [73M2]. Ag: [73Ml], Au: [6802], Zn: [69Ml], Cd: 70011, Hg: [7001], Ga: [7001], In: (68031,Sn: [6902], ‘b: (69021. Sb: [6902], Bi: [6902]. Self-dimusion according

\ 2.3

2.5

2.1 l/T-

2.9

I 40°K.’

3.3

Fig. 2. 6Li and ‘Li. Semilogarithmic plot of diffusion coeficicnts vs. reciprocaltemperaturein near pure 6Li and ‘Li matrices.Na: [71Ll], Au: [7101]. The lines for 6Li in 6Li and for ‘Li in ‘Li areestimatedfrom ‘Li and7Li mutualdiffusion data 171Ll].

o chapter 2 is shown for comparison.

Ik Claire

3 Diffusion of impurities in solid metallic elements (Figures)

Ref. p. 2031

-T 2*lP

I

m*/s T,,=454 K

-1

350

400 K I

300 I

I

I

IO-'0 *

I

4mg m*/s

I

300

350 K

275

10-g

Matrices : “Li,7Li

I

167

h

I

IV"

1o-10

a

I a 10-l'

IOP

10-11 IO-'3 1 2.2

2.4

2.6

2.8 l/T-

3.0

.,0-j K-1

Fig. 3. 6Li and ‘Li. Semilogarithmic plot of Au diffusion coefficients in 6Li (full circles) and 7Li (open circles). The solid line indicates the analysis of 7Li data in terms of two separate Arrhenius terms [7101]. -T 4.1o‘g m*/s

10-13 i

2.8

3.0

3.2 l/T-

3.4

.,o-3K-'

Fig. 4. Na. Semilogarithmic plot of impurity diffusion coefficients in sodium vs. reciprocal temperature. Li: [64Nl], K: [67Bl], Rb: [67Bl], Ag: [83Bl], Au: [69Bl], Cd: [83Bl], In: [83Bl], Tl: [83Bl], Sn: [83Bl]. Self-diffusion according to chapter 2 is shown for comparison.

10-g

10-1'0 I a IO“'

+i;--I,

-T lo-"O m*/s

1400 K 1200

800

1000

IO-" ,o-l;

,0-l>

lo-l3 10-K

2.6

2.8

3.0

3.2 l/T-

3.4

.10-j K-1

3.8

Fig. 5. K. Semilogarithmic plot of impurity diffusion coefticients in potassium vs. reciprocal temperature. Na: [67Bl], Rb: [69Sl], Au: [7OSl]. Self-diffusion according to chapter 2 is shown for comparison.

I a

IO.14 ,0-l:

10-'E 10-l

Fig. 6. Be. Semilogarithmic plot of impurity diffusion coefficients in beryllium vs. reciprocal temperature. Ce: [76Al], V: [76Al], Nb: [76Al], Fe: [66Nl], Co: [79Gl], Ni: [70Al], Cu: [65Dl, 74Ml], Ag: [66Nl], Au: [75Ml], Al: [76Gl]. Self-diffusion according to chapter 2 is shown for comparison. Land&-Bihstein New Series III/26

10-l 10-l 0.60

Le Claire

0.75

0.90

1.05 l/T-

1.20

.lO“K-'

1.50

[Ref. p. 203

3 Diffusion of impurities in solid metallic elements (Figures)

168

10-l’ ml/s

900K

1100K ,, ,

lO”O,

-1 1000 I

I

900 ’ I

I’

800

1

Matrix : Co

10-‘2 10.‘3 lo-‘j I lo-” a I 10-14 Q

10-H

10-n 10-16 10-n 1°lil 0

1.125

1.200

1.275 l/T -

1.350 .lO-sK-’ 1.5f

:ig. 7. Mg. Semilogarithmic plot ofimpurity diffusion coeficients in magnesium vs. reciprocal temperature. Be: (66Yl], ig: [67Ll], Zn: [67Ll], In: [67Ll], Fe: [68Pl], Ni: [68Pl], J: [68Pl]. Self-diffusion according to chapter 2 is shown for :omparison

10-l’

10-19 0.850

0.925

1.000

1.075

1.150 .lO-sK-’ 1.300

Fig. 9. Ca. Semilogarithmic plot of impurity diffusion coefficients in calcium vs. reciprocal temperature. Fe, Ni, U [68Pl]. Self-diffusion according to chapter 2 is shown for comparison.

10-l’ ml/s;

900 K

I

I

750 I

Matrix : Mg 1

,o-l’; 1

I Q

10-l”3-

1

lo-” 1.0:i

1.10

1.15

1.20

1.25

1.30

1.3540% 1.40

Fig. 8. Mg. Semilogarithmic plot of impurity diffusion coeffkients in magnesium single crystals vs. reciprocal temperature. Ag, Cd, In, Sn, Sb [72Cl]. Selfdiffusion according to chapter 2 is shown for comparison.

Le Claire

Land&BBmstein New Series 111.l26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures)

169

-T KY7 2000 10-7 2000 K

1750

1500

1500

1750 K 10-e lT m2/s

1250

m2/s

1250

10-g lo-8 lo-"O

I Q 10-g

10-I'

QI 10-12

lo-lo 0.50

0.55

0.60

0.65 0.70 l/T-

0.75 .@K-' 10-13

Fig. 10. SC. Semilogarithmic plot of Fe impurity diffusion coeffkients in scandium vs. reciprocal temperature [86Al]. 10-14

-T IC m

1100 K 1 I T, =

1000

900 I

lo-l5

Matrix : Ce

1ln71K

lo-;

IO

0.60

IO1-9

-10

11LOl/OMII 1

1:

I:

A) [72011\. Ag oh 1

I

I ',

CeA

I t

La\! IO-11

1

0.70 0.75 1/T-

0.80 .10-3K-' 0.90

coT?3c11/-

1200 K

10-g m2/s

X-t-M+t-Au 1) 1

1000

1100

900

h+Ag[7iCl1 1

Id, I

I

0.65

Fig. 11. Y. Semilogarithmic plot of impurity diffusion coefficients in hcp a-yttrium vs. reciprocal temperature. Ag and Fe : [75M2], Ni and Co : [8201]. Self-diffusion according to chapter 2 is shown for comparison.

.

IO I Q

;I

800

m,Ag[72011

1

1.

lo-"[



10-l'

-1 ‘I

IO-12

yibcc))

I

I

0.95 4 IT

1.00

PCfcc)

I ,0-l:

Matrix : La

Q ’ Stbccl

I\

, o-1:

IO-13

10-l IO-14 0.90

\

0.95

1.00 1.05

1.10 l/T-

1.15

1.20 .10-3K-' 1.: 10-l'

Fig. 13. Ce. Semilogarithmic plot of impurity diffusion coefticients in fee y- and bee 6-cerium vs. reciprocal temperature. La: [73Dl], Gd: [76Ml], Mn: [75Dl], Fe: [73Cl, 75Dl], Co: [73Cl, 76Ml], Ag: [72Dl, 73Cl], Au: [72Dl]. Self-diffusion according to chapter 2 is shown for comparison. Land&-Biirnstein New Series III/26

U

I

0.85

0.90

1.05 .lOJK-'

1

Fig. 12. La. Semilogarithmic plot of impurity diffusion coeffkients in fee- and bee y-lanthanum vs. reciprocal temperature. Au: [69Dl], Ce: [76Fl]. Self-diffusion according to chapter 2 is shown for comparison.

Le Claire

[Ref. p. 203

3 Diffusion of impurities in solid metallic elements (Figures)

170

-T 2 ,o.q

Ed

rn?/s

in-8

K

1

1100 1

1, =1205K

I I

1

1000 la,p =1068K

‘I

I

1200 1100 10-s m2/s n=1289 t,blll,,

900 I

I Matrix : Pr

Matrix

-5 .I

10-q

F

10-s I-

I cl 1o-l0

: Nd

Pfbcc) lo-‘[

]cc(hcp)

oi

0

1 I

o Mn

I 10-l’

10-l’ 0.80 Pfbcc] 1

0.85

0.90

0.95 l/T-

1.00

: -1104K-’ 110

Fig. 15. Nd. Semilogarithmic plot of impurity diffusion coefficients in a- and S-neodymium vs. reciprocal temperature. Mn: (75Dl], Fe: [75Dl].

orfhcp)

10-n 0 In 0 Lo

10-l’

.Ho -T

10-n

0.80 0.85

0.90

0.95 1.00 l/T-

. . 1.05 .lO-‘K-’ ;5

10-g

1700K

1500

1250

m2k

Fig. 14. Pr. Semilogarithmic plot of impurity diffusion coefficicnts in hcp u- and bee L%praseodymiumvs. reciprocal temperature. La: [69D2], Ho: [69D2]. Mn: [75Dl], Fe: [75Dl], Co: [69D3], Cu: [7lDl], Ag: [69D3], Au: [69D3], Au in single crystals: [SlDl], Zn: [70Dl], In: [69D2]. Selfdiffusion according to chapter 2 is shown for comparison.

1o-q

lo-lo A

1

10“’

10-n 0. 5

0.70 0.75 40-3K-’ I l/TFig. 16. Er. Semilogarithmic plot of Au impurity diffusion coeftkicnts for hexagonal erbium single crystals vs. reciprocal temperature [79Dl]. Self-diffusion according to chapter 2 is shown for comparison.

I.82Claire

0.60

0.65

Land&-BGmstein New Seriec 111126

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures) -7

,o-8 2000 K

1500 I ' m2/s T,=1940K

1250

1000 I I /'&=1155K

1o-7 m2/s

-I 1500 2000 K I 11 I T,=2125K

I

1000

II

I

I

I

Tu.p=1136K I

I,

IF9 s'

173

P(bcc) 1 dhcp) I I II

IO-"O

11 Mairix : Zr

lo-" ,o-l;

1O-l3 ~I lo-l4 10-15 Si

1

10-1'6 IO.17

k

Y Agtsc)

lo-"B IO-'91 0.4

10-19 10-2[ 0.5

0.6

0.7

0.8 l/T-

0.9

1.0

.lO-'K-'

Fig. 17. Ti. Semilogarithmic plot of diffusion coefficients for non-transition element impurities in titanium vs. reciprocal temperature. Be: [69Pl], Cu: [69Cl], Ag: [71Al], Al: [76Pl, 85Rl], Sn: [65Al], Si: [86Rl], Pin a-Ti: [86Nl], Pin S-Ti: [65Al]. Self-diffusion according to chapter 2 is shown for comparison.

, ‘I 0.5

0.7

0.8 l/T-

0.9

1.0 40JK'

1.2

Fig. 19. Zr. Semilogarithmic plot of diffusion coefficients for non-transition element impurities in zirconium vs. reciprocal temperature. Matrix u-Zr: Rb: [68Sl], Be: [76Tl], Cu: [75Hl], Ag single crystals (SC)and polycrystals: [89Vl], Au: [71Hl], Zn: [71Hl], Al: [85R2], Sn: [59Gl], Sb: [74Hl], S: [67Vl]. Matrix S-Zr: Rb: [68Sl], Be: [69Pl] and [76Tl], Ag: [82Ml], Sn: [59Gl], P: [7OVl], S: [67Vl]. Self-diffusion according to chapter 2 is shown for comparison.

For Fig. 18 seenext page.

Land&-Biirnstein New Series III/26

0.6

Le Claire

172

3 Diffusion of impurities in solid metallic elements(Figures)

[Ref. p. 203

-1 ,o.q

Too0

1500 I

K

d/s

1250

1000

I

10-q

1P

10-l'

10-'2

~I lo-l3

\

lo-‘&

\

lo-l5

10-1’6

10‘"

10-nL cL5

0.6

0.7

0.8

0.9

1.0

1.1.lO-‘K-’ 1.2

l/TFig. 18. Ti. Semilogarithmic plot ofdiffusion coefftcients for transition element impurities in titanium vs. reciprocal temperature. Matrix a-Ti: Mn: [88N2], Fe: [83Nl], Co: [85Nl, 85N2], Ni: [85N2], U: [78Fl]. Matrix P-Ti: SC:[71Al], Zr: [67Pl], V: [64Ml], Nb: [63Gl], Ta: [66Al], Cr: [63Gl], MO: [63Gl], W: [67Pl], Mn: [63Gl], Fe: [63Gl], Co: [63Gl], Ni: [63Gl], U: [78Fl], Pu: [71L2]. Self-diffusion according to chapter 2 is shown for comparison.

Le Claire

Land&-B6mstein New series III!26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements(Figures)

1500 I

ZOOOK I r, = 2125K

lo-* d/s

I T

1000 I

‘ti,P’

I

! I w&J

800 1

Matrix : Zr I

1136K

1U9

I

173

I

ICP

IO-" ,o-l;

1 Q

IL?

lo-"C

IO‘"

I I

lo-'C

/3(bccl I

I iI T3Y”1

10-1'1

lo-'1 1o-l!

t# 0.4

I

I

I

0.5

0.6

0.7

m 0.8 l/T-

0.9

1.0

1.1

^

-10" K-'

1.3

Fig. 20. Zr. Semilogarithmic plot of diffusion coefficients for transition element impurities in zirconium vs. reciprocal temperature. Matrix cL-Zr: Ce: [68P2], Ti: [74Hl], V: [68Al], Nb: [68Dl], Ta: [58Bl], Cr: [83B2], MO: [68P2], Mn: [73Tl], Fe: [88N2], Co: [81Kl], Ni: [72Hl, 87H2]. Self-diffusion in cL-Zr according to chapter 2 is shown for comparison. Matrix p-Zr: Ce: [68P2], Hf: [87H3], V: [68Al], Nb: [63Fl], Ta: [58Bl], Cr: [79Nl], MO: [68P2], W: [67Pl], Mn: [73Tl], Fe: [87Hl], Co: [69Kl], U: [71Fl].

Land&-Bknstein New Series III/26

Le Claire

3 Diffusion of impurities in solid metallic elements (Figures)

174

0.L

05

0.6

0.7 l/T-

-lo5 K-’

0.8

[Ref. p. 203

1.0

Fig. 21. Hf. Semilogarithmic plot of impurity diffusion coefficicnts in hafnium vs. reciprocal tcmpcraturc. Cr: [76Dl], Co: [76Dl], Al: [85R2]. Self-diffusion according tochapter 2 is shown for comparison. -T 10-10

2000K 1

1750 I ’ I

1500 I’ I

I I

I I

I I

I I

I I

I

0.50

0.55

0.60

0.65

0.70

0.75

m%

I

1250 I

I

I

I

I

10-l’ ,o-l;

, 0 -1:

10-n t

Q

,0-l!

10.” 10-l’ 10-u ,o -1:

0 i

I

I

\I

0.80 .W3K-’ 0.90

Fig. 22. V. Semilogarithmic plot of impurity diffusion coeftkients in vanadium vs. reciprocal lempcrature. Ti: [68Ml, 78Pl], Zr: [84Pl], Ta: [77Pl], Cr: [64Wl], Fe: [65P3, 81Al], Co: [7SPl], Ni: [86Pl], Al: [85Ml], P: [7OVl], S: [69Vl], U: [71F2]. Self-diffusion according to chapter 2 is shown for comparison Le Claire

Land&-BCmrlein New Series III!26

Ref. p. 2031

175

3 Diffusion of impurities in solid metallic elements (Figures) -T 2500 K 2250 IF9 I I m2/s r,=27LOK I I

2000

1500 I

1750 I

I

I

Matrix : Nb

\

h

hNi-l72All

\i

1

10-l'

1O-'6

10-19 \

A,\

1o-2o 1o-n 0.35

0.10

0.45

0.50

0.55 l/T-

0.60

0.65

0.70

.10‘3 K-'

0.80

Fig. 23. Nb. Semilogarithmic plot of impurity diffusion coefficients in niobium

vs. reciprocal temperature.Y: [71Gl], Ti: [70Rl, 7OP3], Zr: [70Rl, 78El], V: [70Rl, 68Al], Ta: [65Ll], Cr: [69P2], MO: [70Rl, 73Fl], W: [69F2, 70Rl], Fe: [62Pl, 77Al], Co: [76P2, 77A1, 62Pl], Ni: [72Al, 77Al], Cu: [77Al], Sn: [65A3], P: [68Vl], S: [68V2], U: [65Pl]. Self-diffusion according to chapter 2 is shown for comparison.

Land&Bihstein New Series III/26

Le Claire

176

[Ref. p. 203

3 Diffusion of impurities in solid metallic elements(Figures) -1 lo-” nn'/s

I-

I,=

2500 K 2250 2000

^^L.. jLWK

II

I

1750

II

1500 II I

I

1

I

1250 I

I

I

Matrix : la 1U lo-” 1o“5 10‘”

Y’\‘\ \

I

~I 10-l’

\

I \

lo-‘8

I I I IW

lo-‘9

I I

IIlo-‘O

1o-23 0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 .lO-‘K-’ 0

l/TFig. 24. Ta. Semilogarithmic plot of impurity diffusion coefficients in tantalum vs. reciprocal temperature. Y: [71Gl], Nb: [65P2], MO: [68Bl], Fe: [55Vl, 76A2], Co: [76A2], Ni: [76A2], S: [69Vl], U: [71F2, 77Sl]. Self-diffusion according to chapter 2 is shown for comparison. -T

Fig. 25. Cr. Semilogarithmic plot of impurity diffusion coefftcicnts in chromium vs. reciprocal temperature.V: [76M2], MO: [6362], Fe: [64Wl]. Self-diffusion according to chapter 2 is shown for comparison.

Le Claire

0.45

0.50

0.55

0.60 l/T-

0.65

0.70 .lO”K-’ 0.80

Iandolt-B6mstein Nen Series III/26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures)

I".10

177

2500 K 289’3 :s I

\[\\

I

l.\I\

\I

I Irl71Mll \ I

lo-'" 10-1'9 10-20 0.35

0.40

045

0.50

0.55

0.60 l/T-

0.65

0.70

0.75

.10-K-’

0.85

Fig. 26. MO. Semilogarithmic plot of impurity diffusion coefficients in molybdenum vs. reciprocal temperature. Li: [77Ll], Y: [71Gi], V: [72Rl], Nb: [65A4, 72R1, 73Fl], Ta: [68Bl, 72Rl], Cr: [68Bl, 71Mi], W: [74El], Re: [64B2], Fe: [73Nl], Co: [65A4, 68Bl], Ni: [71M2], P: [68Vl], S: [68V3], U: [65Pl, 71F2]. Self-diffusion according to chapter 2 is shown for comparison.

Land&-BGmstein New Series III/26

Le Claire

178

3 Diffusion of impurities in solid metallic elements (Figures)

10-23 0.25

0.30

0.35

0.40

0.45

0.50 l/T-

0.55 0.60

[Ref. p. 203

0.65 010-~K-’0.75

Fig. 27. W. Semilogarithmic plot of impurity diffusion coefficients in tungsten vs. reciprocal tcmpcrature. Y:[71Gl],Nb: [69P4],Ta: [69P4,84Al],Cr:[89Kl], MO: [89Kl], Re: [65AS, 67L2, 84Al], Fe: [55Vl], OS: [84Al], Co: [89Ll], Ir: [84Al], Ni: (79M2]. P: [7811], S: [7211], U: [68Sl]. Self-diffusion according to chapter 2 is shown for comparison.

Fig 28. Fe. Semilogarithmic plot of impurity diffusion co- b efficients for non-transition element solutes in iron vs. reciprocal temperature. Be in a- and &Fe: [68G2], Be in y-Fe: [68Gl], Cu in y-Fe: ]66Sl, 68R1,77S2,78Ml], Cu in a-p-Fe: [7782, 68Rl], Cu in a-f-Fe: [77S2], Ag in a-p-Fe: [71Bl, 73El], Ag in a-f-Fe: [73El], Au in a-Fe: [63Bl], Zn in a-pFe: [81Rl], Sn in a-f-Fe: [72T2,84Hl], Sn in a-p-Fe: [72T2], Sn in y-Fe: [75M3, 86Kl], P in a-f-Fe: [81Ll, 83Ml], P in a-p-Fe: [83Ml], P in y-Fe: [64M2], As in y-Fe: [76B4], Sb in a-f-Fe: [78M2], Sb in a-p-Fe: [75Bl], S in a-Fe: [72Gl], S in a-f-Fe: [86A2], S in y-Fe: [71H2]. Ik Claire

Land&-BBmstein New Series III;26

-T 1750 K 10-g ,, , mi/,l~i.=l~09K

1500 I‘~~~,~=1~63K( I I

I1

I1

1250 I1

,I ~~~,p=11B3K

1000 I T,= 1043K I

I;

I Be

j

lo-"0

II I I

.

I Iv-Fe/

I

I

I I

II II

900 I

800 I

Matrix : Fe

I I w-D-Fe

I I II

Be+\ Ii \

oCuI77S21 Au[63Bll

l

l/T -

I I

I

I

-.

I n-f-Fe

I

I

I

3 Diffusion of impurities in solid metallic elements(Figures)

180

[Ref. p. 203

9 - Ii!

-

sss-11 .-zzu.- 0 . a0

---

9 L

Le Claire

Land&-Bhstein New Series III/26

3 Diffusion of impurities in solid metallic elements (Figures)

Ref. p. 2031

10-1:

1200 K

1100

1000

800

900

m*/s IF"

10.1:

10-'f

10.1;

~I

IO‘"

~~-1"

lo-*(

10-2

10-2;

,o-2:

C

0.9

1.0

1.1 l/T-

1.2

1.3 .105 K-' 1.4

Fig. 30. Fe. Semilogarithmic plot of Co impurity diffusion coefficients in c1iron vs. reciprocal temperature showing the influence of the magnetic transition [63Bl, 66J1, 82M2, 89Hl]. Self-diffusion according to chapter 2 is shown for comparison.

4 Fig. 29. Fe. Semilogarithmic plot of impurity diffusion coefficients for transition element solutes in iron vs. reciprocal temperature. Hf in y-Fe: [65Sl, 70Bl], V in y-Fe: [87Gl], V in u-p-Fe: [87Gl], Nb in a-p-Fe: [85Gl], Nb in y-Fe: [85Gl], CT in or-p-Fe:[89Hl], Mn in U-p-Fe and &Fe : [73K2], Mn in a-p-Fe: [7212], Mn in a-f-Fe and y-Fe: [70Nl], Co in u-Fe: [82M2, 84Kl], Co in y-Fe: [75H2, 69B2], Co in &Fe: [63B2, 66511,Ni in a-Fe: [89Cl, 63B1, 6lHl], Ni in y-Fe: [69B2, 6lH1, 78Hl], Pd in y-Fe: [77Fl], Pt in y-Fe: [73M3]. Land&-BBmstein New Series III/26

Le Claire

181

[Ref. p. 203

3 Diffusion of impurities in solid metallic elements(Figures)

182

-T 1750K 10“ A’ ’ lm=1768K mT/

1500 I

1250 A ’ 1, = 1393K

11cIO I

MCh X ..

co

lo-

f-Co

10-l

n

lo-’ I Q

+

1o-’

lo-

10‘

lo0.60

0

0.70

0.75 l/l-

0.80

0.85

0.90 -10 K”

1

Fig. 31. Co. Semilogarithmic plot of impurity diffusion coefficients in cobalt vs. reciprocal temperature. V: [86K2], Mn: [7711], Fe: [65A7, 69B2, 74B2], Ni: [62Hl, 65H1, 69B2], Pt: [73M3], Cu: [84A2], Zn: [74B2], S: [64Pl]. Selfdiffusion according to chapter 2 is shown for comparison.

Le Claire

Landolt-Btimstein New Series III/26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures) -T 1600K

1500 I

1400 I

1300 I

I

1200 I

Matrix : Ni

2.10-;;5

I 0.60

I 0.65

I 0.70 l/T-

I 0.75

I 0.80

\ 1 0.85.lO"K-' 0.90

Fig. 32. Ni. Semilogarithmic plot of impurity diffusion coefficients in nickel vs. reciprocal temperature. S: [75Vl], Te: [89Nl], Sb: [76Vl], In: [78V2], As: [79V2], Sn: [79Vl], Ag: [78Vl], Cu: [84Tl], Ge: [83M2], Fe: [71B2], Co: [78V3], W: [78V3]. For temperature ranges of the measurementssee section 3.2.10. Selfdiffusion according to chapter 2 is shown for comparison.

Land&-Biirnstein New Series III/26

Neumann

183

3 Diffusion of impurities in solid metallic elements(Figures)

184

-1 1600K 1LOO lLO0 1200 I’ 1’ l,= 1728K

lCig lo-g d/s

800 I ,o.,o

Matrix : Ni

I 10-l’

1000

[Ref. p. 203

2000K 16001400

d/s

\ 10-13

10-16

10-M It

0.5

0.6

0.7

0.8

a9 l/T-

1.0

1.1 .lO-jK-’ 1.3

Fig. 33. Ni. Semilogarithmic plot of impurity diffusion coefficients in nickel vs. reciprocal temperature including microsectioning measurements. Al: [81G2]. Two-exponential fits for In in Ni [88N3] and Ni in Ni [86N2].

lo-LL 0.4

0.6

I ! l/T -

10-73

1.0 .105K-’ 1.2

Fig. 34. Pd and Pt. Semilogarithmic plot of impurity diffusion coefficients in palladium and platinum vs. reciprocal temperature. Fe in Pd: [77Fl], Au in Pt: [78Rl]. For temperature ranges of the measurementsseesection 3.2.10.Self-diffusion according to chapter 2 is shown for comparison. The left hand D scalerefers to Pt and the right hand D scale refers to Pd.

Neumann

htdolbB6mstein New Series III/26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures)

0.70

0.75

0.80

0.85

0.90 l/T-

0.95

1.00

.10-j K-1

185

1.10

Fig. 35. Cu. Semilogarithmic plot of impurity diffusion coefficients in copper vs. reciprocal temperature for various slow diffusing impurities. Au: [60Nl], Fe: [58Ml], Co: [58Ml], Pd: [63Pl], Ni: [58Ml], Rh: [72F2], Pt: [82Nl], Ru: [73Bl], Ir: [78Kl]. For temperature ranges of the measurementsseesection 3.2.11. Self-diffusion according to chapter 2 is shown for comparison.

Land&-BBmstein New Series III/26

Neumann

3 Diffusion of impurities in solid metallic elements(Figures)

186

-10

10 m’‘IS y-&L

10

10

-I

1000

1300K

I 1

F F --II I

[Ref. p. 203

Matrix : Cu

tPb

S ib \

\

1 2

10

10

10

I

K-’ 1 l/lFig. 36. Cu. Semilogarithmic plot of impurity diffusion coeff’cicnts in copper vs. reciprocal tempcraturc for various fast diffusing impurities. S: [69M2], Pb: [77Gl], Sb: [6011], Sn: [73Gl], Cd: (58Hl], Hg: [60Nl], Ge: [70R2], Mn: [73F2]. Be: [73F3]. For temperature rangesofthcmeasurements seesection 3.2.11. Self-diffusion according to chapter 2 is shown for comparison. I

Neumann

Land&-BBmsfein New Series Ill!26

3 Diffusion of impurities in solid metallic elements (Figures)

Ref. p. 2031

187

2x-" mVs IO-"

\ \

I

I

\

lo-li

%Zn \ \ ,o-l:

t cl

10-14

,0-l'

10-If 0.70

0.75

0.80

0.85

0.90 l/T-

0.95

1.00

.I0 K-'

1.10

Fig. 37. Cu. Semilogarithmic plot of impurity diffusion coefficients in copper vs. reciprocal temperature for various fast diffusing impurities. Bi: [77Gl], Se: [89Rl], Te: [89Rl], Tl: [63Kl], P: [76Sl], In: [7262],As: [60Nl], Si: [73F3], Ag: [60Nl], Ga: [77F2], Zn: [57Hl], AI: [73F4]. For temperature ranges of the measurementsseesection 3.2.11. Self-diffusion according to chapter 2 is shown for comparison.

LandolGB6mstein New Series III126

Neumann

188

3 Diffusion of impurities in solid metallic elements(Figures)

lo-lo In’/:

13001200K1100 1000

-T 900

800

700

[Ref. p. 203

600

10” ,o-l;

,o-l!

lo-l4 lo-l5 10-16 QI 10”’ lo-“B lo-‘9 l0-m 10-n 10-n lo-” 10-2; 0.8

0.9

1.0

1.1

1.2 l/T-

1.3

1.4

1.5 .lOJK-’ 1.7

Fig. 38. Cu. Semilogarithmic plot of impurity diffusion coefficients in copper vs. reciprocal temperature including microsectioning measurements.Au: [60Ni, 87Fl]. Two-exponential fits for In, Co, Ni in Cu: [88N3] and Cu in Cu: [86N2].

Neumann

Land&-B6mstein New Series III/26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures)

1200K

4w'

-T 3 1001

1100

T

m2h ,o":

900

800

L

10-l"

1II-l4

\

\ \

\

\ \1

aI 10-l'

1 \

IP

lo-l7

I

I

lo-'[

24-”

!L.Io-3 K-11..

0.

0.85 l/T-

Fig. 39. Ag. Semilogarithmic plot of impurity diffusion coefficients in silver vs. reciprocal temperature. Ge: [58H2], Sb: [54Sl], Al: [75F2], Hg: [57Sl], Cr: [SINI], Fe: [61Ml], Co: [73Bl], Au: [63Ml], Pd: [63Pl], Pt: [82Nl]. For temperature ranges of the measurements see section 3.2.11. Self-diffusion according to chapter 2 is shown for comparison.

LandchB6mstein New Series III/26

Neumann

189

190

3 Diffusion of impurities in solid metallic elements(Figures)

[Ref. p. 203

-1

1200K

1100

1000

900

800

2

2 10-IS 8 6 4

0

0.85

0.90

0.95

1.00 1.05 l.lO 1.15 .@K-’ 1.25 l/lFig. 40. Ag. Semilogarithmic plot of impurity diffusion coeftkicnts in silver vs. reciprocal temperature. Se: [89Rl], Te: [8762], Ga: [77F2], Tl: [5882], Sn: [54Tl], In: [54Tl, 84Ml], Zn: [67Rl], Cd: [54Tl], Cu: [57Sl]. For temperature ranges of the measurementsseesection 3.2.11.Self-diffusion according to chapter 2 is shown for comparison.

Neumann

Landoh-Bbmstein New Series III126

Ref. p. 2031

191

3 Diffusion of impurities in solid metallic elements (Figures)

0.70

0.75

0.80

0.85

0.90 l/T-

0.95

1.00

1.05 .W3 K-'

1.15

Fig. 41. Au. Semilogarithmic plot of impurity diffusion coefficients in gold vs. reciprocal temperature. Te: [89Rl], Ge: [77Cl], Al: [78F3], Sn: [72H2], Hg:.[65Ml], In: [71D2], Zn: [77Cl], Fe: [77F3], Cu: [66Vi], Ag: [74H2], Co: [78H2], Ni: [76F2], Pd: [78F2], Pt: [78F2]. For temperature ranges of the measurements seesection 3.2.11. Self-diffusion according to chapter 2 is shown for comparison.

Land&Bhstein New Series III/26

Neumann

192

3 Diffusion

of impurities

in solid metallic

elements (Figures)

[Ref. p. 203

l/IFig. 42. Zn. Semilogarithmic plot of diffusion coefficients for slow diffusing impurities parallel (II) and perpendicular (I) to the hexagonal c axis in zinc vs. reciprocal temperature. Ag: [61Rl], Cu: [66B2], Au: [6363], Ni: [67M2]. For temperature ranges of measurementsseesection 3.2.12.Self-diffusion according to chapter 2 is shown for comparison.

Neumann

Landolt-B6mstein New series III/26

3 Diffusion of impurities in solid metallic elements(Figures)

Ref. p. 2031

193 1

6.1rP m*/:

I m=

650 K ,

550

500

c 93K

+z-!T \

I

-11

IO

5 \

I

I

-Cd Ilc t

I

nlc \

In Ilc

\ \ ,pi 4

\

I Q

Golc ,p

t Snlc \ \$7 Ilc IF"

2.104 1.6 l/T-

Fig. 43. Zn. Semilogarithmic plot of diffusion coefficients for fast diffusing impurities parallel (11)and perpendicular (I) to the hexagonal c axis in zinc vs. reciprocal temperature. Sn: [7OW2], In: [61Rl], Cd: [6363], Ga: [66B2], Hg: [67B3]. For temperature ranges of the measurements see section 3.2.12. Self-diffusion according to chapter 2 is shown for comparison.

Land&-Biimstein New Series III/26

Neumann

194

3 Diffusion of impurities in solid metallic elements (Figures)

540-‘1lT?/s

550K I1 = 59 K

[Ref. p. 203

51 -

lo-” \ ih. 10-n -

*

‘blc \

% $ g IIC g

.

IC

lo-‘J-

\

\n Ilc

h s \\ $1

nlc,

\\

\

\

~I lo-‘h-

\u IIC 10‘‘5---

t

\

i

\ \\

10-K~

10-l’ -

lo-‘B1.6

2.1 .l/l-

2.2

2.3

\L 2A *ll (-1 ;

Fig. 44. Cd. Semilogarithmic plot of impurity diffusion coefficients parallel (]I) and pcrpcndicular (I) to the hexagonal c axis in cadmium vs. reciprocal temperature. Pb: [81Yl], In: [72Ml], Hg: [72Ml], Zn: [72Ml], Ag: [72Ml], Au: [72Ml]. For temperature ranges of the measurements see section 3.2.12. Selfdiffusion according to chapter 2 is shown for comparison.

Neumann

Landolf-BBmstein New Series III/26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures)

&.\..,

1.0

1.1

1.2

1.3

IA

1.5

I.6 W3K4 1.7

l/T-

Fig. 45. Al. Semilogarithmic plot of diffusion coefficients for slow diffusing impurities in aluminum vs. reciprocal temperature. Co: [7OP4], Cu: [7OP4], Ni: [78E2], Mn: [71H3], Cr: [7OP4]. For temperature ranges of the measurements see section 3.2.13. Self-diffusion according to chapter 2 is shown for comparison.

Land&-BBmstein New Series III/26

Neumann

195

196

3 Diffusion of impurities in solid metallic elements (Figures)

l.,. -,,, , 9;OK ,

8;O

,

70,D,

,

[Ref. p. 203

,

6

6

\

4

lo-l5 e 6

&lo-“6 1.05

1.15

1.25

1.35 l/1 -

1.45

1.55.10-3K-’165

Fig. 46. Al. Scmilogarithmic plot of diffusion cocfficicnts for fast diffusing impurities in aluminum vs. reciprocal tcmpcraturc. Sn: [90El], In: [71H4], Cd: [70A3], Cc: [7OP4], Ga: [7OP4], Zn: [83B3], Au: [7OP4], Ag: [7OP4], Mg: [74Rl]. Li: [87Ml]. For tcmpcraturc ranges of the mcasurcmcnts set section 3.2.13. Self-diffusion according to chapter 2 is shown for comparison.

Neumann

Landok-Rihstein New Seric~ Ill.‘26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements (Figures) -T

;

K 400 -9 425 I I ’ /s T,,=430K

197

-T

350 I

375 I

325 I

10-g m2/s

550K

FiOCI

I

-10

400 I 1

450

, ) 7K

Matrix : TI

1o“o

10.

-11 _

IO'

10-l'

10.

IO-12 ,I'

1 -10‘

~1.lo-l3

-13 _

lo-

10-14

lo--15_

10-15

IO‘-16 _

lo-l6

lo- 17 2.3[I

2 5

2.60

2.75

2.90

-IO-%’

3

IO“7 1.:

l/T-

1.85

2.1

2.15

2.30

40” K-’ 2.60

l/T -

Fig. 47. In. Semilogarithmic plot of impurity diffusion coefficients parallel (I]) and perpendicular (I) to the tetragonal c axis in indium vs. reciprocal temperature. Au: [66A2], Ag: [66A2], Tl: [52El]. For temperature ranges of the measurements see section 3.2.13. Self-diffusion according to chapter 2 is shown for comparison.

Land&-Bhstein New Series III/26

1

Fig. 48. Tl. Semilogarithmic plot of impurity diffusion coefficients in bee S-thallium and hexagonal a-thallium parallel (I]) and perpendicular (I) to the c axis vs. reciprocal temperature. Au: [68A2], Ag: [68A2]. For temperature ranges of the measurements see section 3.2.13. Self-diffusion according to chapter 2 is shown for comparison.

Neumann

198

3 Diffusion of impurities in solid metallic elements(Figures)

[Ref. p. 203

-1 500 K

10-l m’l

LOO

i0 -

I

350 I

Matrix : Sn

VI-

Sn 11 i

10‘

1 I

lo-

lgIIC \ $ 4 \k \ nlc

\ t\

I -10-

lo-

lo-

lo-

lo1.9

2.0

2s

Fig. 49. Sn. Semilogarithmic plot of impurity diffusion coefficients parallel (]I) and perpendicular (I) to the tetragonal c axis in tin vs. reciprocal temperature. In: [SSSl], Cd: [7483], Hg: [72Wl], Sb: [71H5]. For temperature ranges of the measurementsseesection 3.2.14. Self-diffusion according to chapter 2 is shown for comparison.

Neumann

Land&-B6mstein New Series III!26

Ref. p. 2031

3 Diffusion of impurities in solid metallic elements(Figures) -1 10-; m2/!

500K

450

400

350

lo-' I

IV9I-

10-"[I

10-l'I_

pI

2-

10-l': 3-

10-l'

10-l' I_

10-l'I-

,o-l; ,

1.9

2.0

2.1

2.2

2.3

2.4 2.5 2.6 2.7 .lOJK-’ ; l/T Fig. 50. Sn. Semilogarithmic plot of diffusion coefftcients for fast diffusing impurities parallel (II) and perpendicular (I) to the tetragonal c axis in tin vs. reciprocal temperature. Ni: [84Yl], Cu: [67D2], Au: [66D2], Ag: [66D2], Zn: [74H3]. For temperature ranges of the measurements see section 3.2.14. Self-diffusion according to chapter 2 is shown for comparison.

Land&-Biirnstein New Series III/26

Neumann

200

3 Diffusion of impurities in solid metallic elements (Figures)

10d1

600K

550

[Ref. p. 203

jO0

10-

\ \ 3 ?

lfi

\

1.cu

-&h

10‘

\

~t lo-

\ \ 16

t \ \

lo-’

\ \

10-l

f

Sn

\2.2 ; 26 24 .lO K-’ 2.6 l/T Fig. 51. Pb. Semilogarithmic plot of impurity diffusion cocfkients in lead vs. reciprocal temperature. Cu: [75D3], Pd: [75D2], Au: [79D3], Pt: [8OVl], Ni: [73C2], Zn: [77Dl], Ag: (82823, Cd: [77Vl], Hg: [77Vl], Sn: [77D2], Tl: (61R2]. For temperature ranges of the measurements xc section 3.2.14. Self-diffusion according to chapter 2 is shown for comparison. 10“

1.6

1.7

1.6

Neumann

Landoll-BBmslein New Series III!26

Ref. p. 2031

201

3 Diffusion of impurities in solid metallic elements (Figures) -T 10 rn;

00 K 1800

1700 I

,=2028d 1

160CI

1500 I I &=I633 K

I Matrix : Th

-Ia(fcc)

10

+I-- Fe ‘0 I

rNi

b:IO-‘“m2/s

I 10 Q

I

10-1'5

IO

\ 1O-18 0.80

0.85

4

10

0.70

0.65 . I-

0.90

.10-3K-’ 1.

0.95

0.8040-3KK“ 0.85

0.75

.I//-

Fig. 52. Th. Semilogarithmic plot of impurity diffusion coefficients in thorium vs. reciprocal temperature. a-Th: Fe: [79Wl], Co: [79Wl], Ni: [79Wl], Pa: [67Sl], U: [67Sl]. Selfdiffusion according to chapter 2 is also shown for comparison. S-Th: Zr: [84Sl], Hf: [65Rl], Nb: [78S4], Ta: [7834], MO: [84Sl], W: [84Sl], Fe: [79Wl], Co: [79Wl], Re: [84Sl], Ni: [79Wl], V: [78S4].

For Fig. 53 seenext page.

Fig. 54. Pu. Semilogarithmic plot of impurity diffusion coefficients in plutonium vs. reciprocal temperature. &Pu: Co: [75Cl], Ag: [76Cl], Au: [76Cl]. Self-diffusion according to chapter 2 is shown for comparison. a-Pu: Co: [75C2], Cu: [76Cl], Ag: [76Cl], Au: [76Cl]. Self-diffusion according to chapter 2 is shown for comparison. Land&Bhnstein New Series III/26

10

10

Le Claire

I

1.2

I

1.3 l/T-

I

1

1.4

1.5

I

.10-3K-' I:

I

202

3 Diffusion of impurities in solid metallic elements (Figures)

1300K

1Cl-!

1200

1000

1100

[Ref. p. 203

900

m2/:

10-’

Matr

10”

~t lo-

10” e , i

lo-

lo-

I

I

0.75

0.80

0.85

0.90

0.95

1.00

1.05 -110-3K-’ 1.15

l/T-

Fig. 53. U. Semilogarithmic plot of impurity diffusion coefficients in uranium vs.reciprocaltemperature.a-U: Fe: [72Sl]; 0-U: Cr: [70D2,62Rl], Fe: [62Rl], Co: [70D2]. Self-diffusion according to chapter 2 is shown for comparison. y-U: Nb: [64PZ], Cr: [64P2], Mn: [64P2], Fe: [64P2], Co: [64P2], Ni: [64P2], Cu: [64P2], Au: [61R3]. Self-diffusion according to chapter 2 is shown for

Le Claire

Landolt-B&nstein New Series III/26

3.3 References for 3

203

3.3 References for 3 52El 54Sl 54Tl 55Hl 55Kl 55Ml 55Sl 55Vl 56Al 56Jl 57Hl 57Ml 57Rl 57Sl 58Bl 58Hl 58H2 58Ml 58Sl 59Gl 5911 59Ml 59Pl 6011 60Nl 61Al 61Hl 61H2 61Ml 61Rl 61R2 61R3 61Sl 62Dl 62Hl 62Pl 62Rl 63Bl 63B2 63Fl 63Gl 6362 6303 63Kl 63Ml 63Pl 64Bl 64B2

Eckert, R.E., Drickamer, H.G. : J. Chem. Phys. 20 (1952) 13. Sonder, E., Slifkin, L.M., Tomizuka, C.T.: Phys. Rev. 93 (1954) 97. Tomizuka, C.T., Slifkin, L.M.: Phys. Rev. 96 (1954) 610. Hoffman, R.E., Turnbull, D., Hart, E.W: Acta Metall. 3 (1955) 417. Kurtz, A.D., Averbach, B.L., Cohen, M. : Acta Metall. 3 (1955) 442. Mead, H.W., Birchenall, C.E.: Trans. AIME 203 (1955) 994. Sawatzky, A., Jaumot, F.E.: Phys. Rev. 100 (1955) 1627. Vasil’ev, YP., Kamardin, V.I., Skatskii, S.G., Chermomorchenko, S.G., Schuppe, G.N. : Tr. Stredneaziat Gos. Univ. Lenina 65 (1955) 47. Ascoli, A., Germagnoli, E., Mongini, L.: Nuovo Cimento 4 (1956) 123. Jaumot, F.E., Sawatzky, A.: J. Appl. Phys. 27 (1956) 1186. Hino, J., Tomizuka, C.T., Wert, C.A.: Acta Metall. 5 (1957) 41. Mead, H.W., Birchenall, C.E.: Trans. AIME 209 (1957) 874. Reynolds, J.E., Averbach, B.L., Cohen, M. : Acta Metall. 5 (1957) 29. Sawatzky, A., Jaumot, F.E.: Trans. AIME 209 (1957) 1207. Borisov, E.V., Godin, YuG., Gruzin, P.L., Eustyukhin, A.I., Emelyanov, VS. : Met. Met. Izdatel Akad. Nauk SSSR, Moscow 1958; Translation: NP-TR-448 1960,196. Hirone, T., Kunitomi, N., Sakamoto, M., Yamaki, H.: J. Phys. Sot. Jpn. 13 (1958) 838. Hoffman, R.E.: Acta Metall. 6 (1958) 95. Mackliet, C.A.: Phys. Rev. 109 (1958) 1964. Sawatzky, A.: J. Appl. Phys. 29 (1958) 1305. Gruzin, P.L., Emelyanov, VS., Ryabova, G.G., Federov, G.B.: 2nd Geneva Conf. Proc. 19 (1959) 187. Ikushima, A.: J. Phys. Sot. Jpn. 14 (1959) 1636. MacEwan, J.R., MacEwan, J.U., Yaffe, L. : Can J. Chem. 37 (1959) 1629. Pierce, C.B., Lazarus, D.: Phys. Rev. 114 (1959) 686. Inman, M.C., Barr, L.W.: Acta Metall. 8 (1960) 112. Nachtrieb, N.H., Tomizuka, C.T., Schulz, L.G.: Report AFOSR-TR-60-23, The University of Chicago, U.S.A. 1960. Ascoli, A.: J. Inst. Met. 89 (1961) 218. Hirano, K.-I., Cohen, M., Averbach, B.L.: Acta Metall. 9 (1961) 440. Hirone, T., Miura, S., Suzuoka, T.: J. Phys. Sot. Jpn. 16 (1961) 2456. Mullen, J.G.: Phys. Rev. 121 (1961) 1649. Rosolowski, J.H.: Phys. Rev. 124 (1961) 1828. Resing, H.A., Nachtrieb, N.H. : J. Phys. Chem. Solids 21 (1961) 40. Rothman, S.J.: J. Nucl. Mater. 3 (1961) 77. Suzuoka, T.: Trans. Jpn. Inst. Met. 2 (1961) 176. DonzC, G., Le Hazif, R., Maurice, F., Dutilloy, D., Adda, Y: C. R. Acad. Sci. (Paris) 254 (1962) 2328. Hirano, K.-I., Agarwala, R.P., Averbach, B.L., Cohen, M. : J. Appl. Phys. 33 (1962) 3049. Peart, R.F., Graham, D., Tomlin, D.H.: Acta Metall. 10 (1962) 519. Rothman, S.J., Peterson, N.L., Moore, S.A.: J. Nucl. Mater. 7 (1962) 212. Borg, R.J., Lai, D.Y.F.: Acta Metall. 11 (1963) 861. Borg, R.J., Lai, D.Y.F., Krikorian, O.H.: Acta Metall. 11 (1963) 867. Federer, J.I., Lundy, T.S.: Trans. Met. Sot. AIME 227 (1963) 592. Gibbs, G.B., Graham, D., Tomlin, D.H. : Philos. Mag. 8 (1963) 1269. Gruzin, P.L., Zemskii, S.V., Rodina, I.B.: Metall. Metalloved. Chist. Met. 4 (1963) 243 (A.E.R.E. Transl. 1032, 1965). Ghate, P.B.: Phys. Rev. 131 (1963) 174. Komura, S., Kunitomi, N.: J. Phys. Sot. Jpn. 18 Supp. II (1963) 208. Mallard, W.C., Gardner, A.B., Bass, R.F., Slifkin, L.M. : Phys. Rev. 129 (1963) 617. Peterson, N.L.: Phys. Rev. 132 (1963) 2471. Bokshtein, S.Z., Bronfin, M.B., Kishkin, S.T.: Diffusion ProcessesStructure and Property of Metals, Moscow 1964, p. 16; Translation: New York: Consultants Bureau 1965. Bronfin, M.B.: Diffusion ProcessesStructure and Properties of Metals, Moscow 1964, p. 24; Translation: New York: Consultants Bureau 1965.

Land&-Biimstein New Series III/26

Le Claire, Neumann

204 64Ml 64M2 64M3 64M4 64M5 64Nl 64Pl 64P2 64SI 64Wl 65Al 65A2 65A3 65A4 65AS 65A6 65Al 65A8 65C1 65Dl 65Gl 65Hl 65Kl 65L1 65Ml 65Pl 65P2 65P3 65Rl 65Sl 66Al 66A2 66A3 66Bl 66B2 66D1 66D2 66J1 66Kl 66Ll 66Nl 66Sl 66Vl 66Yl 67A1 67Bl 67B2 67B3 67Dl

3.3 References for 3 Murdock, J.F., Lundy, T.S., Stansbury, E.E.: Acta Metall. 12 (1964) 1033. Mural’, V.V., Gruzin, P.L.: Fiz. Met. Metalloved. 17 (1964) 792; Phys. Met. Metallogr. (English Transl.) 17 (5) (1964) 154. Monma, K., Suto, H., Oikawa, H.: J. Jpn. Inst. Met. 28 (1964) 188. Monma. K., Suto, H., Oikawa, H.: J. Jpn. Inst. Met. 28 (1964) 192. Monma, K., Suto, H., Oikawa, H.: J. Jpn. Inst. Met. 28 (1964) 197. Naumov, A.N.: Fiz. Tverd. Tela 6 (1964) 2517; Sov. Phys. Solid State (English Transl.) 6 (1964) 1997. Pavlyuchenko, M.M., Kononyuk, I.F.: Dokl. Akad. Nauk Belorussk. SSR 8 (1964) 157. Peterson. N.L., Rothman, S.J.: Phys. Rev. A 136 (1964) 842. Sato, K.: Trans. Jpn. Inst. Met. 5 (1964) 91. Wolfe, R.A., Paxton, H.W.: Trans. Met. Sot. AIME 230 (1964) 1426. Askill, J., Gibbs, G.B.: Phys. Status Solidi 11 (1965) 557 (Contains recalculated values of D’s and Qs from the measurementson Cr, Mn, Fe, Co, Ni, Nb, and MO reported in [63Gl]. However, since these seem.in some cases,to give a much inferior representation of the original data, none is quoted). Aganvala, R.P., Murarka. S.P.; Anand, MS.: Trans. Met. Sot. ATME 233 (1965) 986. Askill, J.: Phys. Status Solidi 9 (1965) K 167. Askill, J., in: Diffusion in Body-Centered Cubic’Metals, Am. Sot. Met. 1965, p. 247. Andelin. R.L., Knight, J.D., Kahn, M.: Trans. Met. Sot. AIME 233 (1965) 19. Askill, J.: Phys. Status Solidi 9 (1965) K113. Aucouturier, M., Lacombe, P.: Cobalt No. 28 (1965) 1. Anand, M.S., Murarka, S.P., Agarwala, R.P.: J. Appl. Phys. 36 (1965) 3860. Curtin, H.R., Decker, D.L., Vanfleet, H.B. : Phys. Rev. 139 (1965) A 1552. Dupouy, J.M., Mathie, J., Adda, Y.: Proc. Int. Conf. Metallurgy of Be. Grenoble 1965, p. 159. Graham. D.,in:DiffusioninBody-CenteredCubicMetals,Cleveland,U.S.A.:Am.Soc.Met.l%S,p.27. Hassner, A., Lange, W.: Phys. Status Solidi 8 (1965) 77. Klotsman, S.M., Arkhipova, N.K., Timofeyev, A.N., Trakhtenberg, ISh.: Fiz. Met. Metalloved. 20 (1965) 390; Phys. Met. Metallogr. (English Transl.) 20 (3) (1965) 70. Lundy, T.S., Winslow, F.R., Pawel, R.E., McHargue, C.J.: Trans. Met. Sot. AIME 233 (1965) 1533. Mortlock, A.J., Rowe, A.H.: Philos. Mag. 11 (1965) 1157. Pavlinov, L.U., Nakonechnikov, A.I., Bykov, V.N.: Sov. J. At. Energy (English Transl.) 19 (1965) 1495. Pawel. R.E., Lundy, T.S.: J. Phys. Chem. Solids 26 (1965) 937. Peart. R.F.: J. Phys. Chem. Solids 26 (1965) 1853. Rothman, S.J., Peterson, N.L., in: Diffusion in Body-Centered Cubic Metals, Am. Sot. Met. 1965, p. 183. Sparke, B., James.D.W., Leak, G.M.: J. Iron Steel Inst. 203 (1965) 152. Askill. J.: Phys. Status Solidi 16 (1966) K63. Anthony, T.R., Turnbull, D.: Phys. Rev. 151 (1966) 495. Ascoli, A., Bollani, B., Guardi, C., Kustidic, D.: Phys. Rev. 141 (1966) 732. Borisov, V.T., Golikov, V.M., Sherbedinskiy, G.V.: Fiz. Met. Metalloved. 22 (1966) 159; Phys. Met. Metallogr. (English Transl.) 22 (1) (1966) 175. Batra. A.P., Huntington, H.B.: Phys. Rev. 145 (1966) 542. Dyson, B.F., Anthony, T.R., Turnbull, D.: J. Appl. Phys. 37 (1966) 2370. Dyson, B.F.: J. Appl. Phys. 37 (1966) 2375. James,D.W., Leak, G.M.: Philos. Mag. 14 (1966) 701. Kidson, G.V.: Philos. Mag. 13 (1966) 247. Lal, K., Levy, V.: C. R. Acad. Sci. (Paris) C 262 (1966) 107. Naik, M.C., Dupouy, J.M., Adda. Y: Mtm. Sci. Rev. Metal!. 63 (1966) 488. Speich, G.R., Gula, J.A., Fisher, R.M., in: The Electron Microprobe, New York: Wiley 1966,p. 525. Vignes. A., Haeussler, J.P.: M&m. Sci. Rev. Metall. 63 (1966) 1091; C. R. Acad. Sci. (Paris) C 263 (1966) 1504. Yerko, V.F., Zelenskiy, V.F., Krasnorutskiy, V.S.: Fiz. Met. Metalloved. 22 (1966) 112; Phys. Met. Metallogr. (English Transl.) 22 (1) (1966) 112. Askill, J.: Phys. Status Solidi 23 (1967) K21. Barr, L.W., Mundy, J.N., Smith, EA.: Philos. Mag. 16 (1967) 1139. Barbouth, N., Oudar, J., CabanC,J.: C. R. Acad. Sci. (Paris) C 264 (1967) 1029. Batra, A.P., Huntington, H.B.: Phys. Rev. 154 (1967) 569. De Keroulas, F., Mary, J., QuCrC,J.: J. Nucl. Mater. 22 (1967) 276. Le Claire, Neumann

3.3 References for 3 67D2 67Hl 67Kl 67K2 67Ll 67L2 67Ml 67M2 67Pl 67P2 67P3 67Rl 67% 67Vl 68Al 68A2 68Bl 68B2 68B3 68B4 68Cl 68Dl 68Gl 6862 68Kl 68Ml 68M2 6801 6802 6803 68Pl 68P2 68Rl 68Sl 68Vl 68V2 68V3 69Bl 69B2 69B3 69Cl 69Dl 69D2 69D3 69Fl 69F2 69Kl

205

Dyson, B.F., Anthony, T.R., Turnbull, D. : J. Appl. Phys. 38 (1967) 3408. Hirschwald, W., Schrodter, W.: Z. Phys. Chem. N. F. 53 (1967) 392. Kaygorodov, V.N., Rabovskiy, Ya.A., Talinskiy, V.K. : Fiz. Met. Metalloved. 24 (1967) 117; Phys. Met. Metallogr. (English Transl.) 24 (1) (1967) 115. Kaygorodov, V.N., Rabovskiy, Ya.A., Talinskiy, V.K.: Fiz. Met. Metalloved. 24 (1967) 661; Phys. Met. Metallogr. (English Transl.) 24 (4) (1967) 78. Lal, K.: CEA Report R 3136, 1967. Larikov, L.M., Tyshkevich, V.M., Chorna, L.F. : Ukr. Fiz. Zh. 12 (1967) 983. Mundy, J.N., Ott, A., LBwenberg, L.: Z. Naturforsch. 22a (1967) 2113. Mortlock, A.J., Ewens, P.M.: Phys. Rev. 156 (1967) 814. Pavlinov, L.V. : Fiz. Met. Metalloved 24 (1967) 272; Phys. Met. Metallogr. (English Transl.) 24 (2) (1967) 70. Peart, R.F.: Phys. Status Solidi (1967) 545. Peterson, N.L., Rothman, S.J.: Phys. Rev. 154 (1967) 558. Rothman, S.J., Peterson, N.L.: Phys. Rev. 154 (1967) 552. Schmitz, F., Fock, M.: J. Nucl. Mater. 21 (1967) 317. Vandyshev, B.A., Panov, A.S., Gruzin, P.L.: Fiz. Met. Metalloved. 23 (1967) 908; Phys. Met. Metallogr. (English Transl.) 23 (5) (1967) 133. Agarwala, R.P., Murarka, S.P., Anand, M.S.: Acta Metall. 16 (1968) 61. Anthony, T.R., Dyson, B.F., Turnbull, D.: J. Appl. Phys. 39 (1968) 1391. Borisov, E.V., Gruzin, P.L., Zemskii, S.V.: Zashch. Pokryt. Metal. No.2, 1968, p. 104. Translation: Protective Coatings on Metals, Vol. 2, p. 76, New York: Consultants Bureau 1970. Blechet, J.J.,van Craeynest, A., Calais, D. : J. Nucl. Mater. 28 (1968) 177. Badrinarayanan, S., Mathur, H.B.: Int. J. Appl. Radiat. Isot. 19 (1968) 353. Blechet, J.J.,van Craeynest, A., Calais, D.: J. Nucl. Mater. 27 (1968) 112. Coleman, M.G., Wert, C.A., Peart, R.F.: Phys. Rev. 175 (1968) 788. Dyment, F., Libanati, C.M.: J. Nucl. Mater. 3 (1968) 349. Grigoriev, G.V., Pavlinov, L.V.: Fiz. Met. Metalloved. 25 (1968) 836; Phys. Met. Metallogr. (English Transl.) 25 (5) (1968) 79. Grigoriev, G.V., Pavlinov, L.V.: Fiz. Met. Metalloved. 26 (1968) 946; Phys. Met. Metallogr. (English Transl.) 26 (5) (1968) 179. KuEera, J., ZemEik, T’.: Can. Met. Quart. 7 (1968) 83. Murdock, J.F., McHargue, C.J.: Acta Metall. 16 (1968) 493. Murarka, S.P., Anand, MS., Agarwala, R.P.: Acta Metall. 16 (1968) 69. Ott, A., Nordtn-Ott, A.: Z. Naturforsch. 23a (1968) 473. Ott, A.: Z. Naturforsch. 23a (1968) 1683. Ott, A.: Z. Naturforsch. 23a (1968) 2126. Pavlinov, L.V., Gladyshev, A.M., Bykov, V.N.: Fiz. Met. Metalloved. 26 (1968) 823; Phys. Met. Metallogr. (English Transl.) 26 (5) (1968) 59. Paul, A.R., Anand, M.S., Naik, M.C., Agarwala, R.P. : Int. Conf. Vat. Interstitials in Metals. Jiilich, Sept. 1968, Vol.1, p. 105. Rothman, S.J., Peterson, N.L., Walter, C.M., Nowicki, L.J.: J. Appl. Phys. 39 (1968) 5041. Schwegler, E.Ch., White, EA.: Int. J. Mass Spectrom. Ion Phys. 1 (1968) 191. Vandyshev, B.A., Panov, A.S.: Fiz. Met. Metalloved. 26 (1968) 517; Phys. Met. Metallogr. (English Transl.) 26 (3) (1968) 138. Vandyshev, B.A., Panov, A.S. : Izv. Akad. Nauk SSSR, Met. No.1 1968, 206. Vandyshev, B.A., Panov, A.S. : Fiz. Metal. Metalloved. 25 (1968) 321; Phys. Met. Metallogr. (English Transl.) 25 (2) (1968) 130. Barr, L.W, Mundy, J.N., Smith, EA.: Philos. Mag. 20 (1969) 389. Badia, M., Vignes, A.: Acta Metall. 17 (1969) 177. Bartha, L., Szalay, T.: Int. J. Appl. Radiat. Isot. 20 (1969) 825. Caloni, O., Ferrari, A., Strocchi, P.M.: Electrochim. Metall. 4 (1969) 45. Dariel, M.P., Erez, G., Schmidt, G.M.J.: Philos. Mag. 19 (1969) 1053. Dariel, M.P., Erez, G., Schmidt, G.M.J.: Philos. Mag. 19 (1969) 1045. Dariel, M.P., Erez, G., Schmidt, G.M.J.: J. Appl. Phys. 40 (1969) 2746. Federov, G.B., Smirnov, E.A., Novikov, SM.: Metall. Metalloved. Chist. Met. 8 (1969) 41. Federov, G.B., Zhomov, F.J., Smirnov, E.A.: Metall. Metalloved. Chist. Met. 8 (1969) 145. Kidson, G.V., Young, G.J. : Philos. Mag. 20 (1969) 1047.

Land&-B&n&n New Series III/26

Le Claire, Neumann

206 69K2 69K3 69K4 69K5 69MI 69M2 69M3 6901 6902 69Pl 69P2 69P3 69P4 69SI 69Vl 70AI 70A2 70A3 70Bl 70B2 70B3 70Dl 70D2 70Hl 70Kl 7OLI 70NI 7001 7OPl 7OP2 7OP3 7OP4 70RI 70R2 7OSl 7OS2 7OVI 7OWl 7OW2 71AI 71Bl 71B2 71B3 71Dl 71D2 71Fl

3.3 References for 3 Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N.: Fiz. Met. Metalloved 28 (1969) 1025; Phys. Met. Metallogr. (English Transl.) 28 (6) (1969) 66. Kaygorodov, V.N., Klotsman, S.M., Timofeyev, A.N., Trakhtenberg, J.Sh.: Fiz. Met. Metalloved. 28 (1969) 120; Phys. Met. Metallogr. (English Transl.) 28 (1) (1969) 128. Kaygorodov, V.N., Klotsman, S.M., Timofeyev, A.N., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 27 (1969) 1048; Phys. Met. Metallogr. (English Transl.) 27 (6) (1969) 91. KuEera, J., St&sky, K.: Can. Met. Quart. 8 (1969) 91. Mundy, J.N., Ott, A., Lowenberg, L., Lodding, A.: Phys. Status Solidi 35 (1969) 359. Moya, F., Moya-Goutier, G.E., CabanC-Brouty, F.: Phys. Status Solidi 35 (1969) 893. Miller, J.W.: Phys. Rev. 181 (1969) 1095. Ott, A.: J. Appl. Phys. 40 (1969) 2395. Ott, A., Lodding, A., Lazarus, D.: Phys. Rev. 188 (1969) 1088 and Corrigendum (private communication). Pavlinov, L.V., Grigor’yev, G.V., Gromyko, G.O.: Izv. Akad. Nauk SSSR, Met. No. 3,1969, 207; Russ. Metal!. (English Transl.) No.3, 1969, 158. Pelleg, J.: Philos. Mag. 19 (1969) 25. Pelleg, J.: J. Less-Common Met. 17 (1969) 319. Pawel, R.E., Lundy, T.S.: Acta Metal!. 17 (1969) 979. Smith, EA., Barr, L.W.: Philos. Mag. 20 (1969) 205. Vandyshev, B.A., Panov, A.S. : Izv. Akad. Nauk SSSR, Met. No. 1, 1%9, 244. Anan’in, V.A., Gladkov, V.P., Zotov, V.S., Skorov, D.M.: Sov. J. At. Energy (English Transl.) 29 (1970) 941. Anand, M.S., Agarwala, R.P.: Phys. Status Solidi (a) 1 (1970) K41. Alexander, W.B., Slifkin, L.M.: Phys. Rev. B 1 (1970) 3274. Bowen, A.W., Leak, G.M.: Metal!. Trans. 1 (1970) 1695. Barreau, G., Brunel, G., Cizeron, G., Lacombe, P.: C. R. Acad. Sci. (Paris) C 270 (1970) 516. Beyeler, M., Maurice, F., Seguin, R.: M&m. Sci. Rev. Metal!. 67 (1970) 295. Dariel, M.P.: Philos. Mag. 22 (1970) 563. Dariel, M.P., Blumenfeld, M., Kimmel, G.: J. Appl. Phys. 41 (1970) 1480. Hood, G.M.: Philos. Mag. 21 (1970) 305. Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N.: Fiz. Met. Metalloved. 29 (1970) 803; Phys. Met. Metallogr. (English Transl.) 29 (4) (1970) 127. Lataillade, F., Despres,1, Hocheid, B.: Plutonium and Other Actinides, Nucl. Metal!. 17 (1) (1970)144. Nohara, K., Hirano, K.-I.: Proc. Int. Conf. Sci. Tech. Iron & Steel 7 (1970) 11; seealso: Trans. Iron & Steel Inst. Jpn., Suppl. 11 (1971) 1267. Ott, A.: Z. Naturforsch. 25a (1970) 1477. Pavlinov, L.V.: Fiz. Met. Metalloved. 30 (1970) 367; Phys. Met. Metallogr. (English Transl.) 30 (2) (1970) 149. Pavlinov, L.V.: Fiz. Met. Metalloved. 30 (1970) 800; Phys. Met. Metallogr. (English Transl.) 30 (4) (1970) 129. Pelleg, J.: Philos. Mag. 21 (1970) 735. Peterson, N.L., Rothman, S.J.: Phys. Rev. B 1 (1970) 3264. Roux, F., Vignes, A.: Rev. Phys. Appl. (France) 5 (1970) 393. Reinke, ED., Dahlstrom, C.E.: Philos. Mag. 22 (1970) 57. Smith, EA., Barr, L.W.: Philos. Mag. 21 (1970) 633. Saxena, M.C., Sharma, B.D.: Trans. Indian Inst. Met. 23 (3) (1970) 16. Vandyshev, B.A., Panov, A.S. : Izv. Akad. Nauk SSSR, Met. No. 1, 1970, 231. Wang, S.-J., Grabke, H.J.: Z. Metallkde. 61 (1970) 597. Warford, J.S., Huntington, H.B.: Phys. Rev. B 1 (1970) 1867. Askill, J.: Phys. Status Solidi (b) 43 (1971) K I. Bondy, A., Levy, V.: C. R. Acad. Sci. (Paris) C 272 (1971) 19. Bakker, H., Backus, J., Waals, F.: Phys. Status Solidi (b) 45 (1971) 633. Barreu, G., Brunel, G., Cizeron, G.: C. R. Acad. Sci. (Paris) C 272 (1971) 618. Darie!, M.P.: J. Appl. Phys. 42 (1971) 2251. Dreyer, K., Herzig, Ch., Heumann, Th., in: Atomic Transport in Solids and Liquids, A.Lodding, T. Lagervall (eds.), Tubingen: Verlag der Zeitschrift fir Naturforschung 1971, p. 237. Federov, G.B., Smimov, E.A., Zhomov, F.I., Gusev, F.I., Paraev, S.A.: Metal!. Metalloved. Chist. Met. 9 (1971) 30. Le Claire, Neumann

Landolt-Kmstein New Series W/26

3.3 References for 3 71F2 71F3 71Gl 71Hl 71H2 71H3 71H4 71H.5 71Kl 71Ll 71L2 71Ml 71M2 7101 71Pl 71Sl 71Wl 7121 72Al 72A2 72A3 72Bl 72B2 72Cl 72C2 72Dl 72Fl 72F2 72Gl 7202 72G3 72Hl 72H2 72H3 7211 7212 72Ml 72Nl 7201 72Rl 72Sl 72Tl 72T2 72Wl 73Bl 73B2

Federov, G.B., Smirnov, E.A., Zhomov, F.I., Gusev, V.N., Paraev, S.A. : Sov. J. At. Energy (English Transl.) 31 (5) (1971) 1280. Fogelson, R.L., Ugay, Ya.A., Pokoev, A.V., Akimova, I.A.: Fiz. Tverd. Tela 13 (1971) 1028; Soviet Phys. Solid State (English Transl.) 13 (1971) 856. Gornyy, D.S., Al’tovskiy, R.M.: Fiz. Met. Metalloved. 31(1971) 781; Phys. Met. Metallogr. (English Transl.) 31 (4) (1971) 108. Hood, G.M.: Diffusion Processes,J.N.Sherwood et al. (eds.), New York: Gordon & Breach 1971, Vol.1, p. 361. Hoshino, A., Araki, T.: Trans. Nat. Res. Inst. Met. 13 (1971) 99. Hood, G.M., Schultz, R.J.: Philos. Mag. 23 (1971) 1479. Hood, G.M., Schultz, R.J.: Phys. Rev. B 4 (1971) 2339. Huang, F.H., Huntington, H.B.: Ser. Metall. 5 (1971) 705. Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N. : Fiz. Met. Metalloved. 31 (1971) 429; Phys. Met. Metallogr. (English Transl.) 31 (2) (1971) 214. Lodding, A., Ott, A. : Z. Naturforsch. 26a (1971) 81. Languille, A.: M&m. Sci. Rev. Metall. 68 (1971) 435. Mulyakaev, L.M., Shcherbedinskii, G.U., Dubinin, G.N.: Metallov. Term. Obrab. Met. 8 (1971) 45. Makhlin, N.A., Ivanov, L.I.: Izv. Akad. Nauk SSSR, Met. No. 1, 1971, 222; Russ. Met. (English Transl.) No. 1, 1971, 152. Ott, A.: J. Appl. Phys. 42 (1971) 2999. Paul, A.R., Agarwala, R.P.: Metall. Trans. 2 (1971) 1691. Saxena, M.C. : Trans. Indian Inst. Met. 24 (4) (1971) 56. Weyland, J.A., Decker, D.L., Vanfleet, H.B. : Phys. Rev. B 4 (1971) 4225. Zanghi, J.P., van Craeynest, A., Calais, D.: J. Nucl. Mater. 39 (1971) 133. Agarwala, R.P., Hirano, K.-I.: Trans. Jpn. Inst. Met. 13 (1972) 425. Anusavice, K.J., de Hoff, R.T.: Metall. Trans. 3 (1972) 1279. Anand, A., Agarwala, R.P. : Philos. Mag. 26 (1972) 297. Bergner, D.: Krist. Tech. 7 (1972) 651. Badrinarayanan, S., Mathur, H.B.: Indian J. Pure Appl. Phys. 10 (1972) 512. Combronde, J., Brebec, G.: Acta Metall. 20 (1972) 37. Candland, C.T., Decker, D.L., Vanfleet, H.B. : Phys. Rev. B 5 (1972) 2085. Dariel, M.P., Dayan, D., Calais, D.: Phys. Status Solidi (a) 10 (1972) 113. Fogelson, R.L., Ugay, Ya.A., Pokoyev, A.V.: Fiz. Met. Metalloved. 33 (1972) 1102; Phys. Met. Metallogr. (English Transl.) 33 (5) (1972) 194. Fogelson, R.L., Ugay, Ya.A., Pokoyev, A.V.: Fiz. Met. Metalloved. 34 (1972) 1104; Phys. Met. Metallogr. (English Transl.) 34 (5) (1972) 198. Gruzin, P.L., Mural’, V.V., Fokin, A.P. : Fiz. Met. Metalloved. 34 (1972) 1326; Phys. Met. Metallogr. (English Transl.) 34 (6) (1972) 209. Gorbachev, VA., Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N. : Fiz. Met. Metalloved. 34 (1972) 879; Phys. Met. Metallogr. (English Transl.) 34 (4) (1972) 202. God&y, I., Beke, D.L., Kedves, F.J.: Phys. Status Solidi (a) 13 (1972) K 155. Hood, G.M., Schultz, R.J.: Philos. Mag. 26 (1972) 329. Herzig, Ch., Heumann, Th.: Z. Naturforsch. 27a (1972) 1109. Herzig, Ch., Heumann, Th. : Z. Naturforsch. 27 a (1972) 613. Iovkov, V.P., Panov, A.S., Ryabenko, A.V. : Fiz. Met. Metalloved. 34 (1972) 1322; Phys. Met. Metallogr. (English Transl.) 34 (6) (1972) 203. Irmer, V., Feller-Kniepmeier, M.: J. Phys. Chem. Solids 33 (1972) 2141. Mao, Ch.: Phys. Rev. B 5 (1972) 4693. Nishikawa, S., Tsumuraya, K.: Philos. Mag. 26 (1972) 941. Owens, C.W., Turnbull, D. : J. Appl. Phys. 43 (1972) 3933. Roux, R. : Thesis, Univ. Nancy, France 1972. Stelly, M., Servant, J.M.: J. Nucl. Mater. 43 (1972) 269. Tendler, R., Varotto, C.F.: J. Nucl. Mater. 44 (1972) 99. Treheux, D., Marchive, D., Delagrange, J., Guiraldenq, P.: C. R. Acad. Sci. (Paris) C 274 (1972) 1260. Warburton, W.K.: Phys. Rev. B 6 (1972) 2161. Bernardini, J., CabanC,J.: Acta Metall. 21 (1973) 1561. Bergner, D., Cyrener, E.: Neue Hiitte 18 (1973) 356.

Land&-Biimstein New Series III/26

Le Claire, Neumann

208 73B3 73Cl 73C2 73Dl 73El 73Fl 73F2 73F3 73F4 73Gl 73Kl 73K2 73K3 73Ml 73M2 73M3 73M4 73Nl 73Tl 73T2 73T3 73Wl 74Al 74A2 74B 1 74B2 74El 74Fl 74Hl 74H2 74H3 74Ll 74Ml 74R 1 74R2 74Tl 7.5Bl 75Cl 75C2 7SDl 75D2 75D3 75Fl 75F2 75Hl 75H2 75H3 75Ml 75M2

3.3 References for 3 Bergner, D., Cyrener, E.: Neue Hiitte 18 (1973) 9. Cathey, W.N., Murphy, J.E., Woodyard, J.R.: Metall. Trans. 4 (1973) 1463. Candland, CT., Vanfleet, H.B.: Phys. Rev. B 7 (1973) 575. Dariel, M.P.: Philos. Mag. 28 (1973) 915. Eguchi, T., Iijima, Y, Hirano, K.-I.: Cryst. Lattice Defects 4 (1973) 265. Federov, G.B., Smirnov, E.A., Gusev, V.N., Zhomov, F.I., Gorbenko, V.L.: Metall. Metalloved. Chist. Met. No. IO, 1973, 62. Fogelson, R.L., Ugay, Ya.A., Pokoyev, A.V. : Izv. Vyssh. Uchebn. Zaved., Chern. Metall. (9) (1973) 136. Fogelson, R.L., Ugay, Ya.A., Pokoyev, A.V., Akimova, I.A., Kretinin, V.D.: Fiz. Met. Metalloved. 35 (1973) 1307; Phys. Met. Metallogr. (English Transl.) 35 (6) (1973) 176. Fogelson, R.L., Ugay, Ya.A., Pokoyev, A.V. : Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 16 (1973) 143. Gorbachev, V.A., Klotsman, SM., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N.: Fiz. Met. Metalloved. 35 (1973) 889; Phys. Met. Metallogr. (English Transl.) 35 (4) (1973) 226. Korneluk, L.G., Mirsky, L.M., Bokshtein, B.S.: Titanium Science and Technology, Vol.11, 1973, p. 905. Kirkaldy, J.S., Smith. P.N., Sharma, R.C.: Metall. Trans. A 4 (1973) 624. Kuzmenko, P.P., Grinevich, G.P.: Metallotiz. 47 (1973) 98. Mundy, J.N., McFall, W.D.: Phys. Rev. B 7 (1973) 4363. Mundy, J.N., McFall, WD.: Phys. Rev. B 8 (1973) 5477. Million. B., K&era, J.: Kovove Mater. 11 (1973) 300. Marumo, T., Fujikawa, S., Hirano, K.-I.: J. Jpn. Inst. Light Met. 23 (1973) 17. Nohara. K., Hirano, K.-I.: Nippon Kinzoku Gakkaishi; (J. Jpn. Inst. Met.) 37 (1973) 731. Tendler, R., Varotto, C.F.: J. Nucl. Mater. 46 (1973) 107. Tiwari, G.P., Saxena, M.C., Patil, R.V.: Trans. Indian Inst. Met. 26 (1973) 55. Tiwari, G.P., Sharma, B.D.: Indian J. Technol. 11 (1973) 560. Warburton, W.K.: Phys. Rev. B 7 (1973) 1330. Albrecht, W.W., Frohberg, G., Wever, H.: Z. Metallkde. 65 (1974) 279. Ascoli, A., Filoni, L., Poletti, G., Rossi, S.L.: Phys. Rev. B 10 (1974) 5003. Biersack, J.B., Fink, D.: Proc. Symp. Fusion Technology, 8th, EUR-5182, 1974, p. 907. Bristoti, A., Wazzan, A.R.: Rev. Bras. Fis. 4 (1974) 1. Erley, W., Wagner, H.: Phys. Status Solidi (a) 25 (1974) 463. Fogelson, R.L., Ugay, Ya.A., Akimova, I.A.: Fiz. Met. Metalloved. 37 (1974) 1107; Phys. Met. Metallogr. (English Transl.) 37 (5) (1974) 201. Hood, G.M., Schultz, R.J.: Acta Metall. 22 (1974) 459. Herzig. Ch., Wolter, D.: Z. Metallkde. 65 (1974) 273. Huang. F.H., Huntington, H.B.: Phys. Rev. B 9 (1974) 1479. Lesage, B., Huntz, A.M.: J. Less-Common Met. 38 (1974) 149. Myers, S.M., Picraux, S.T., Prevender, T.S.: Phys. Rev. B 9 (1974) 3953. Rothman, S.J.,Peterson, N.L., Nowicki, L.J., Robinson, L.C.: Phys. Status Solidi (b) 63 (1974) K 29. Ross, R.A., Vanfleet, H.B., Decker, D.L. : Phys. Rev. B 9 (1974) 4026. Tendlcr, R., Varotto, C.F.: J. Nucl. Mater. 54 (1974) 212. Bruggeman, G.A., Roberts jr., J.A.: Metall. Trans. A 6 (1975) 755. Charissoux, C., Calais. D., Gallet, G.: J, Phys. Chem. Solids 36 (1975) 981. Charissoux, C., Calais, D.: J. Nucl. Mater. 57 (1975) 45. Dariel. M.P.: Acta Metall. 23 (1975) 473. Decker, D.L., Candland, C.T., Vanfleet, H.B.: Phys. Rev. B 11 (1975) 4885. Decker, D.L.: Phys. Rev. B 11 (1975) 1770. Fogelson. R.L., Ugay, Ya.A., Akimova, I.A.: Fiz. Met. Metalloved. 39 (1975) 447; Phys. Met. Metallogr. (English Transl.) 39 (2) (1975) 212. Fogelson, R.L., Ugay, Ya.A., Akimova, I.A.: Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (2) 1975, 142. Hood, G.M., Schultz, R.J.: Phys. Rev. B 11 (1975) 3780. Henry, G., Barreau, G., Cizcron, G.: C. R. Acad. Sci. (Paris) C 280 (1975) 1007. Hehenkamp, Th., Wiibbcnhorst, R.: Z. Metallkde. 66 (1975) 275. Myers, S.M., Langley, R.A.: J. Appl. Phys. 46 (1975) 1034. Murphy, J.E., Adams, G.H., Cathey, W.N.: Metall. Trans. A 6A (1975) 343. Le Claire, Neumann

Landoh-BBm&n New Series 111126

3.3 References for 3 75M3 75Pl 75Sl 75Vl 75Wl 75W2 76Al 76A2 76Bl 76B2 76B3 76B4 76Cl 76Dl 76Fl 76F2 76F3 76Gl 76Ll 76Ml 76M2 76Pl 76P2 76% 76Tl 76T2 76Vl 77Al 77Bl 77B2 77B3 77Cl 77Dl 77D2 77Fl 77F2 77F3 77Gl 77Hl 7711 7712 77Jl 77Ll 77Pl

209

Marchive, D., Due, D., Treheux, D., Guiraldenq, P.: C. R. Acad. Sci. (Paris) C 280 (1975) 25. Pelleg, J.: Philos. Mag. 32 (1975) 593. Santos, E., Dyment, F.: Philos. Mag. 31 (1975) 809. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 39 (1975) 319; Phys. Met. Metallogr. (English Transl.) 39 (2) (1975) 82. Wu, C.H.: J. Chem. Phys. 62 (1975) 4589. Warburton, W.K.: Phys. Rev. B 11 (1975) 4945. Anan’in, V.A., Gladkov, V.P., Svetlov, A.V., Skorov, D.M., Tenishev, V.I.: Sov. J. At. Energy (English Transl.) 40 (1976) 304. Ablitzer, D., Gantois, M.: La Diffusion dans les Milieux Condenses. Theorie et Applications. CEN Saclay, Vol. 1, 1976, p. 299. Beyer, G.J., Novgorodov, A.F.: Radiochem. Radioanal. Lett. 27 (5/6) (1976) 341; seealso: ZfK-311 (Zentralinstitut fiir Kernforschung, Dresden, DDR) 1976. Beyer, G.J.: ZfK-310 (Zentralinstitut fur Kernforschung, Dresden, DDR) 1976. Beyer, G.J.: ZfK-317 (Zentralinstitut fur Kernforschung, Dresden, DDR) 1976. BoiiC, B.I., LuEiC, R.J.: J. Mater. Sci. 11 (1976) 887. Charissoux, C., Calais, D.: J. Nucl. Mater. 61 (1976) 317. Dyment, F.: J. Nucl. Mater. 61 (1976) 271. Fromont, M.: J. Phys. (Paris) Lett. 37 (1976) L117. Fogelson, R.L.,Ugay, Ya.A., Akimova, I.A.: Fiz. Met. Metalloved. 41(1976) 653; Phys. Met. Metallogr. (English Transl.) 41 (3) (1976) 180. Fujikawa, S., Hirano, K.-I.: Trans. Jpn. Inst. Met. 17 (1976) 809. Gladkov, V.P., Svetlov, A.V., Skorov, D.M., Tenishev, V.I., Shabalin, A.N. : Sov. J. At. Energy (English Transl.) 40 (1976) 306. Ladet, J., Bernardini, J., Cabane-Brouty, F.: Ser. Metall. 10 (1976) 195. Marbach, G., Charrissoux, C., Janot, C.: La Diffusion dans les Milieux Condenses - ThCorie et Applications. Proc. Colloque de Metallurgic. CEN Saclay, Vol. 1, 1976, p. 119; Report CEA-Conf.3674. Mundy, J.N., Tse, C.W., McFall, WD. : Phys. Rev. B 13 (1976) 2349. Pokoev, A.V., Mironov, V.M., Kudryavtseva, L.K.: Izv. Vyssh. Uchebn. Zadev., Tsvetn. Metall. 19 (2) (1976) 130; Sov. Non-Ferrous Met. Res. (English Transl.) 4 (2) (1976) 81. Pelleg, J.: Philos. Mag. 33 (1976) 165. Spindler, P., Nachtrieb, K.: Phys. Status Solidi (a) 37 (1976) 449. Tendler, R., Abriata, J., Varotto, C.F.: J. Nucl. Mater. 59 (1976) 215. Treheux, D., Heurtel, A., Guiraldenq, P.: Acta Metall. 24 (1976) 503. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, ISh.: Fiz. Met. Metalloved. 41 (1976) 429. Phys. Met. Metallogr. (English Transl.) 41 (2) (1976) 181. Ablitzer, D.: Philos. Mag. 35 (1977) 1239. Beyer, G.J., Fromm, WD., Novgorodov, A.F.: Nucl. Instr. Methods 146 (1977) 419. Bharati, S., Badrinarayanan, S., Sinha, A.P.B.: Phys. Status Solidi (a) 43 (1977) 653. Beke, D.L., God&y, I., Kedves, F.J., Groma, G.: Acta Metall. 25 (1977) 539. Cardis, D. : Doctoral Thesis, Univ. Miinster, FRG 1977. Decker, D.L., Ross, R.A., Evenson, W.E., Vanfleet, H.B. : Phys. Rev. B 15 (1977) 507. Decker, D.L., Weiss,J.D., Vanfleet, H.B.: Phys. Rev. B 16 (1977) 2392. Fillon, J., Calais, D.: J. Phys. Chem. Solids 38 (1977) 81. Fogelson, R.L., Ugay, Ya.A., Akimova, I.A. : Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. (1) 1977, 172. Fogelson, R.L., Kazimirov, N.N., Soshnikova, I.V.: Fiz. Met. Metalloved. 43 (1977) 1105; Phys. Met. Metallogr. (English Transl.) 43 (5) (1977) 185. Gorbachev, V.A., Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N.: Fiz. Met. Metalloved. 44 (1977) 214; Phys. Met. Metallogr. (English Transl.) 44 (1) (1977) 191. Hoshino, K., Iijima, Y, Hirano, K.-I.: Metall. Trans. A 8 (1977) 469. Iijima, Y, Hirano, K.-I., Taguchi, 0.: Philos. Mag. 35 (1977) 229. Iijima, Y, Hoshino, K., Hirano, K.-I.: Metall. Trans. A 8 (1977) 997. Jackson, M.S., Lazarus, D.: Phys. Rev. B 15 (1977) 4644. Larikov, L.N., Isaichev, V.I., Maksimenko, E.A., Belkov, B.M.: Dokl. Akad. Nauk SSSR 237 (2) (1977) 315; Sov. Phys. Dokl. (English Transl.) 22 (1977) 677. Pelleg, J., Herman, M.: Philos. Mag. 35 (1977) 349.

Landok-Biimstein New Series III/26

Le Claire, Neumann

210 17Sl r7S2 17s3 17vl 18Bl 18El 18E2 18Fl 18F2 78F3 78F4 78Hl 78H2 7811 78Kl 78K2 78K3 78Ml 78M2 78Nl 78Pl 78P2 78Rl 78Sl 7832 78S3 78S4 78Vl 78V2 78V3 79Dl 79D2 79D3 79Gl 79Kl 79Ml 79M2 79M3 79M4 79Nl 79Pl 79P2 79Sl 79S2 79Vl 19V2 79Wl

3.3 References for 3 Su, C.S.: Nucl. Instr. Methods 145 (1977) 361. Salje, G., Feller-Kniepmeier, M.: J. Appl. Phys. 48 (1977) 1833. Sudir, S., Csikai, J., Buczko, M.: Z. Metallkde. 68 (1977) 740. Vanfleet, H.B., Jorgenson, J.D., Schmutz, J.D., Decker, D.L.: Phys. Rev. B 15 (1977) 5545. Bergner, D., Schwarz, K.: Neue Hiitte 23 (1978) 210. Einziger, R.E., Mundy, J.N.: Phys. Rev. B 17 (1978) 449. ErdClyi, G., Beke, D.L., Kedves, F.J., Godeny, I.: Philos. Mag. B 38 (1978) 445. Federov, G.B., Smimov, E.A. : Diffuziya v. Reaktornykh Materialakh. Moscow: Atomizdat Publ. 1978. Translation: Diffusion in Reactor Materials. Trans. Tech. Pub!., Switzerland 1984. Fogelson, R.L., Voronina, I.M., Somova, T.I.: Fiz. Met. Metalloved. 46 (1978) 190; Phys. Met. Metallogr. (English Transl.) 46 (1) (1978) 163. Fogelson, R.L., Trotimova, N.N.: Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metal!. (4) 1978, 152. Fujikawa, S., Hirano, K.-I., Fukushima, Y: Metall. Trans. A 9 (1978) 1811. Hanatate, Y., Majima, K., Mitani, H.: Trans. Jpn. Inst. Met. 19 (1978) 669. Herzig, Ch., Eckseler, H., Bussmann, W., Cardis, D.: J. Nucl. Mater. 69/70 (1978) 61. Iovkov, V.P., Panov, A.S., Ryabenko, A.V.: Izv. Akad. Nauk SSSR, Met. No. 1, 1978, 78; Russ. Met. (English Transl.) No. 1, 1978, 68. Klotsman, S.M., Rabovskiy, Ya.A., Talinskiy, V.K., Timofeyev, A.N.: Fiz. Met. Metalloved. 45 (1978) 1104; Phys. Met. Metallogr. (English Transl.) 45 (5) (1978) 181. Krautheim, G., Neidhardt, A., Reinhold, U.: Krist. Techn. 13 (1978) 1335. Kusunoki, K., Nishikawa, S.: Ser. Metal!. 12 (1978) 615. Majima, K., Mitani, H.: Trans. Jpn. Inst. Met. 19 (1978) 663. Myers, S.M., Rack, H.J. : J. Appl. Phys. 49 (1978) 3246. Nikolaev, G.I., Bodrov, N.V.: Zh. Fiz. Khim. 52 (1978) 143. Pelleg, J.: Rev. High-Temp. Mater. IV (1978) 5. Peterson, N.L., Rothman, S.J.: Phys. Rev. B 17 (1978) 4666. Rein, G., Mehrer, H., Maier, K.: Phys. Status Solidi (a) 45 (1978) 253. Sen, S.K., Dutt, M.B., Barua, A.K.: Phys. Status Solidi (a) 45 (1978) 657. Sawanayagi, F., Hasiguti, R.R.: J. Jpn. Inst. Met. 42 (1978) 1155. Shimotomai, M., Hasiguti, R.R., Umeyama, S.: Phys. Rev. B 18 (1978) 2097. Schmidt, EA., Conzemius, R.J., Carlson, O.N.: J. Less-Common Met. 59 (1978) 53. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 45 (1978) 1015; Phys. Met. Metallogr. (English Transl.) 45 (5) (1978) 100. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 45 (1978) 1301; Phys. Met. Metallogr. (English Transl.) 45 (6) (1978) 160. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 46 (1978) 1232; Phys. Met. Metallogr. (English Transl.) 46 (6) (1978) 94. Dariel, M.P., Komblit, L., Beaudry, B.J., Gschneidner, K.A.: Phys. Rev. B 20 (1979) 3949. Dutt, M.B., Sen, S.K.: Jpn. J. App!. Phys. 18 (1979) 1025. Decker, D.L., Melville, J.G., Vanfleet, H.B.: Phys. Rev. B 20 (1979) 3036. Gladkov, V.P., Svetlov, A.V., Skorov, D.M., Shabalin, A.N.: Fiz. Met. Metalloved. 48 (1979) 871; Phys. Met. Metallogr. (English Transl.) 48 (4) (1979) 170. Krautheim, G., Neidhardt, A., Reinhold, U., Zehe, A.: Phys. Lett. A 72 (1979) 181. Maier, K., Mehrer, H., Rein, G.: Z. Metallkde. 70 (1979) 271. Muster, W.J.,Yoon, D.N., Huppmann, W.J.: J. Less-Common Met. 65 (1979) 211. Maier, K., Kirchheim, R., Tiilg, G.: Mikrochim. Acta Suppl. 8 (1979) 125. Makuta, F., Iijima, Y, Hirano, K.-I.: Trans. Jpn. Inst. Met. 20 (1979) 551. Nicolai, L.I., de Tendler, R.H.: J. Nucl. Mater. 87 (1979) 401. Pontau, A.E., Lazarus, D.: Phys. Rev. B 19 (1979) 4027. Pruthi, D.O., Anand, M.S., Agarwala, R.P.: Philos. Mag. A 39 (1979) 173. Shabalin, A.N., Gladkov, V.P., Gruzin, P.L., Svetlov, A.V.: Fiz. Met. Metalloved. 48 (1979) 663; Phys. Met. Metallogr. (English Transl.) 48 (3) (1979) 182. Sathyraj, K.V., Ablitzer, D., Demangeat, C.: Philos. Mag. A 40 (1979) 541. Vladimirov, A.B., Kaygorodov, V.N., Klotsman, S.M., Trakhtenberg, I.Sh.: Fiz. Met. Metalloved. 48 (1979) 352; Phys. Met. Metallogr. (English Transl.) 48 (2) (1979) 107. Vladimirov, A.B., Klotsman, S.M., Trakhtenberg, IS. : Fiz. Met. Metalloved. 48 (1979) 1113; Phys. Met. Metallogr. (English Transl.) 48 (5) (1979) 193. Weins, W.N., Carlson, O.N.: J. Less-Common Met. 66 (1979) 99. L.e Claire, Neumann

Land&-BBmstein New Series III/26

3.3 References for 3 80Dl 80Vl 81Al 8lDl 81Gl 81G2 81Kl 81Ll 81Nl 81Rl 8lYl 82Al 82Hl 82H2 82Ml 82M2 82Nl 8201 82Pl 83Al 83Bl 83B2 83B3 83Cl 83Gl 83Hl 83Kl 83Ml 83M2 83M3 83Nl 83N2 83Rl 84Al 84A2 84Dl 84Hl 84Kl 84Ml 84Pl 84Sl 84Tl 84Yl 85Gl 85Ml 85Nl 85N2

211

Dorner, P., Gust, W., Hintz, H.B., Lodding, A., Odelius, H., Predel, B. : Acta Metall. 28 (1980) 291. Vanfleet, H.B.: Phys. Rev. B 21 (1980) 4337. Ablitzer, D., Haeussler, J.P., Sathyraj, K.V., Vignes, A.: Philos. Mag. A 44 (1981) 589. Dariel, M.P., McMasters, O.D., Gschneidner, K.A.: Phys. Status Solidi (a) 63 (1981) 329. Gust, W., Hintz, H.B., Lodding, A., Odelius, H.: Philos. Mag. A 43 (1981) 1205. Gust, W, Hintz, H.B., Lodding, A., Odelius, H., Predel, B.: Phys. Status Solidi (a) 64 (1981) 187. Kidson, G.V.: Philos. Mag. A 44 (1981) 341. Luckman, G., Didio, R.A., Graham, W.R.: Metall. Trans. A 12 (1981) 253. Neumann, G., Pfundstein, M., Reimers, P.: Phys. Status Solidi (a) 64 (1981) 225. Richter, I., Feller-Kniepmeier, M.: Phys. Status Solidi (a) 68 (1981) 289. Yeh, D.C., Acuna, L.A., Huntington, H.B.: Phys. Rev. B 23 (1981) 1171. Arkhipova, N.K., Veretennikov, L.M., Klotsman, S.M., Tatarinova, G.N., Timofeyev, A.N. : Fiz. Met. Metalloved. 53 (1982) 104; Phys. Met. Metallogr. (English Transl.) 53 (1) (1982) 92. Hoshino, K., Iijima, Y, Hirano, K.-I., in: Point Defects and Defect Interactions in Metals, J.I.Takamura, M.Doyama, M.Kiritani (eds.), University of Tokyo Press 1982, p. 562. Hu, C.K., Huntington, H.B.: Phys. Rev. B 26 (1982) 2782. Manke, L., Herzig, Ch. : Acta Metall. 30 (1982) 2085. Mehrer, H:, Hopfel, D., Hettich, G.: DIMETA-82, Diffusion in Metals and Alloys, F.J. Kedves, D.L.Beke (eds.), Trans. Tech. Publ., Switzerland 1983, p. 360. Seealso [84Kl]. Neumann, G., Pfundstein, M., Reimers, P. : Philos. Mag. A 45 (1982) 499. Okafor, I.C.I., Carlson, O.N.: J. Less-Common Met. 84 (1982) 65. Pruthi, D.O., Agarwala, R.P.: Philos. Mag. A 46 (1982) 841. Akimova, LA., Mironov, V.M., Pokoyev, A.V.: Fiz. Met. Metalloved. 56 (1983) 1225; Phys. Met. Metallogr. (English Transl.) 56 (6) (1983) 175. Barr, L.W, Smith, EA., in: DIMETA-82, Diffusion in Metals and Alloys, F.J. Kedves, D.L.Beke (eds.), Trans. Tech. Publ., Switzerland 1983, p. 325. Balart, S.N., Varela, N., Tendler, R.: J. Nucl. Mater. 119 (1983) 59. Beke, D.L., GbdCny, I., Kedves, F.J.: Philos. Mag. A 47 (1983) 281. Chi, N.V., Bergner, D., in: DIMETA-82, Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Trans. Tech. Publ., Switzerland 1983, p. 334. Gust, W., Ostertag, C., Predel, B., Roll, U., Lodding, A., Odelius, H. : Philos. Mag. A 47 (1983) 395. Hood, G.M., Schultz, R.J., Armstrong, J.: Philos. Mag. A 47 (1983) 775. Kurokawa, S., Ruzzante, J.E., Hey, A.M., Dyment, F.: Met. Sci. 17 (1983) 433. Matsuyama, T., Hosokawa, H., Suto, H.: Trans. Jpn. Inst Met. 24 (1983) 589. Mantl, S., Rothman, S.J., Nowicki, L.J., Lerner, J.L.: J. Phys. F 13 (1983) 1441. Macht, M.P., Naundorf, V., Dbhl, R., in: DIMETA-82, Diffusion in Metals and Alloys, F.J.Kedves, D.L. Beke (eds.) Trans. Tech. Publ., Switzerland 1983, p. 516. Nakajima, H., Koiwa, M., Ono, S.: Ser. Metall. 17 (1983) 1431. Nakajima, H., Koiwa, M., Minonishi, Y, Ono, S.: Trans. Jpn. Inst. Met. 24 (1983) 655. Rockosch, H.J., Herzig, Ch.: Phys. Status Solidi (b) 119 (1983) 199. Arkhipova, N.K., Klotsman, S.M., Polikarpova, I.P., Tartarinova, G.N:, Timofeev, A.N., Veretennikov, L.M.: Phys. Rev. B 30 (1984) 1788. Arita, M., Nakamura, M., Goto, K.S., Ichinose, Y: Trans. Jpn. Inst. Met. 25 (1984) 703. Diihl, R., Macht, M.P., Naundorf, V.: Phys. Status Solidi (a) 86 (1984) 603. Hennesen, K., Keller, H., Viefhaus, H.: Ser. Metall. 18 (1984) 1319. KuEera, J., Kozak, L., Mehrer, H.: Phys. Status Solidi (a) 81 (1984) 497. Mehrer, H., Weiler, D.: Z. Metallkde. 75 (1984) 203. Pruthi, D.D., Agarwala, R.P. : Philos. Mag. A 49 (1984) 263. Schmidt, EA., Beck, M.S., Rehbein, D.K., Conzemius, R. J., Carlson, O.N. : J. Electrochem. Sot. 131 (1984) 2169. Taguchi, O., Iijima, Y, Hirano, K.-I.: J. Jpn. Inst. Met. 48 (1984) 20. Yeh, D.C., Huntington, H.B.: Phys. Rev. Lett. 53 (1984) 1469. Geise, J., Herzig, Ch.: Z. Metal&de. 76 (1985) 622. Maslov, I.A., Mironov, V.M., Pokoyev, A.V.: Fiz. Met. Metalloved. 60 (1985) 193; Phys. Met. Metallogr. (English Transl.) 60 (1) (1985) 180. Nakajima, H., Ishioka, S., Koiwa, M.: Philos. Mag. A 52 (1985) 743. Nakajima, H., Koiwa, M.: Titanium Science and Technology, Proc. 5th Int. Conf. on Ti 1985, p. 1759.

Land&-Biimstein New Series III/26

Le Claire, Neumann

212 35Rl 35132 36Al 36A2 36Kl 36K2 36Nl 96N2 56Pl 86Rl 87Bl B7Fl B7F2 B7Gl B7G2 B7Hl B7H2 B7H3 B7Kl 87K2 87Ml 8701 88Nl 88N2 88N3 89Bl 89B2 89Cl 89Fl 89Hl 89Kl

89Ll 89L2 89Nl 89Rl 89Tl B9Vl B9Zl 90El 9OLl 90Nl

3.3 References for 3 RIisiinen, J., Anttila, A., Keinonen, J.: J. Appl. Phys. 57 (1985) 613. Rais?inen,J., Antilla, A., Keinonen, J.: Appl. Phys. A 36 (1985) 175. Axtell, S.C., Okafor, I.C.I., Conzemius, R.J., Carlson, O.N.: J. Less-Common Met. 115 (1986) 269. Arabczyk, W., Militzer, M., Miissig, H.J., Wieting, J.: Ser. Metall. 20 (1986) 1549. Kimura, K., Iijima, Y., Hirano, K.-I.: Trans. Jpn. Inst. Met. 27 (1986) 1. Ku&era, J., Million, B., RftiiEkovl, J.: Phys. Status Solidi (a) % (1986) 177. Nakajima, H., Nakazawa, J., Minonishi, Y., Koiwa, M.: Philos. Mag. A 53 (1986) 427. Neumann, G., Tolle, V.: Philos. Mag. A 54 (1986) 619. Pelleg, J.: Philos. Mag. A 54 (1986) L21. RaisLnen, J., Keinonen, J.: Appl. Phys. Lett. 49 (1986) 773. Beke, D.L., Godeny, I., Szabo, I.A., ErdClyi, G., Kedves, F.J.: Philos. Mag. A 55 (1987) 425. Fujikawa, S., Werner, M., Mehrer, H., Seeger,A.: Mater. Sci. Forum 15-18 (1987) 431. Fujikawa, S., Hirano, K.-I.: Mater. Sci. Forum 13/14 (1987) 539. Geise, J., Herzig, Ch.: Z. Metallkde. 78 (1987) 291. Geise, J., Mehrer, H., Herzig, Ch., Weyer, G.: Mater. Sci. Forum 15-18 (1987) 443. Herzig, Ch., Neuhaus, J., Vieregge, K., Manke, L.: Mater. Sci. Forum 15-18 (1987) 481. Hood, G.M., Schultz, R.J.: Mater. Sci. Forum 15-18 (1987) 475. Herzig, Ch., Kijhler, U.: Mater. Sci. Forum 15-18 (1987) 301. Klotsman, S.M., Tatarinova, G.N., Timofeyev, A.N.: Mater. Sci. Forum 15-18 (1987) 457. Klotsman, S.M., Osetrov, S.V., Polikarpova, I.P., Tartarinova, G.N., Timofeyev, A.N., Shepatkovskiy, O.P.: Fiz. Met. Metalloved. 64 (1987) 148; Phys. Met. Metallogr. (English Transl.) 64 (1) (1987) 133. Minamino, Y., Yamane, T., Araki, H.: Metall. Trans. A 18 (1987) 1536. Okafor, I.C.I.: Acta Metall. 35 (1987) 759 (reports results that seem to be identical with those of [84Sl]!) Nakamura, Y, Nakajima, H., Ishioka, S., Koiwa, M.: Acta Metall. 36 (1988) 2787. Nakajima, H., Hood, G.M., Schultz, R.J.: Philos. Mag. B 58 (1988) 319. Neumann, G., TolIe, V.: Philos. Mag. A 57 (1988) 621. Bergner, D., Khaddour, Y., LBrx, S.: DIMETA-88, Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.); Defect and Diffusion Forum 66-69 (1989) 1407. Becker, Ch., ErdClyi, G., Hood, G.M., Mehrer, H.: DIMETA-88. Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 409. Cermlk, J., Liibbehusen, M., Mehrer, M.: Z. Metallkde. 80 (1989) 213. Fujikawa, S., Hirano, K.: DIMETA-88. Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 453. Hirano, K.-I., Iijima, Y: DIMETA-88, Diffusion in Metals and Alloys, F.J.Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 1039. Klotsman, S.M., Koloskov, V.M., Osetrov, S.V., Polikarpova, I.P., Tatarinova, G.N., Timofeyev, A.N.: DIMETA-88. Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 439; Fiz. Met. Metalloved. 67 (1989) 767; Phys. Met. Metallogr. (English Transl.) 67 (4) (1989) 136. Lee, J.S., Klockgeter, K., Herzig, Ch., in: Proc. Int. Conf. on Intergranular and Interphase Boundaries in Materials, Paris, 1989, J. Phys. (Paris), in press; and Diploma&it K. Klockgeter, Univ. Miinster, 1989. Landolt-Bornstein, NS, Vol. 111/22b: Semiconductors, Heidelberg, Berlin, New York, Tokyo: Springer 1989. Neuhaus, P., Herzig, Ch.: Z. Metallkde. 80 (1989) 220. Rummel, G., Mehrer, H.: DIMETA-88. Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 453. Tobar, G., Balart, S.: DIMETA-88. Diffusion in Metals and Alloys, F.J. Kedves, D.L. Beke (eds.), Defect and Diffusion Forum 66-69 (1989) 381. Vieregge, K., Herzig, Ch.: J. Nucl. Mater. 165 (1989) 65. Zee, R.H.: J. Phys. Condensed Matter. 1 (1989) 5631. ErdClyi, G., Freitag, C., Mehrer, H.: Philos. Mag. Lett., in press. Lee, C.-G., Iijima, Y, Hiratani, T., Hirano, K.: Materials Trans. JIM 31 (1990) 255. Neumann, G., Tolle, V.: to be published.

Le Claire, Neumann

LandoIl-Bhstein New Series III/26

4 Self-diffusion in homogeneous binary alloys and intermediate phases

213

4 Self-diffusion in homogeneousbinary alloys and intermediate phases Use of the tables and figures In this chapter tracer self-diffusion coefficients are presented in binary alloys, i.e. metallic mixtures of two elements. Results on diffusion in, for example, a semiconducting intermediate phase such as GaAs are not tabulated. In this chapter the tables have a central function. From these tables referencesare made to the figures. The order in which the alloy systemsare arranged is alphabetical, for example Ag - Al is tabulated before Ag - Au and V,Ga should be transformed to GaV, first and is then found after Ga - Pu. This order is exactly the same as used in collections of binary phase diagrams. Primary and terminal phasesare indicated by a hyphen between the element symbols: A - B, whereas intermediate compounds are presented by their stoichiometric formula, for example A,B. The crystal structure of thesecompounds is also given. In the various columns of the tables, a dash indicates that no data (or figures) are available (or shown) for a special composition, a blank space should be understood as a repetition of the information (immerical values, reference key) given in the line above. The full list of alloys, treated in this chapter, is presented below. In contrast to the tables, the alloys are given here both in the order A-B and B-A. In this way it is immediately clear which Ni systems,for example, occur in the tables. In a scarcenumber of casesalso isotope effectshave been measured (seechapter 10 about the mass dependenceof the diffusion coefficient for an explanation). In the list below, these are indicated by E(A), which means the isotope effect for diffusion of element A.

List of alloys, their phasesand diffusing elements System

Phase

Diffusing element

Page

Ag-Al Ag-Au

primary and terminal primary/terminal phase extending over the whole composition range in the temperature range studied primary primary intermediate, y-phase primary intermediate, B2 (CsCl) structure primary primary primary terminal intermediate, y-phase primary and terminal intermediate, B2 (CsCl) structure terminal, bee structure intermediate, B2 (CsCl) structure intermediate, rhombohedral structure intermediate, rhombic structure intermediate, monoclinic structure intermediate, B2 (CsCl) structure intermediate, Ll 2 (Cu,Au) structure primary primary/terminal phase extending over the whole composition range in the temperature range studied

Ag Ag, Au

218 218

Ag, Cd Ag Hg Ag Ag Ag Ag, Sn Ag Ag, Zn Ag, Zn Ag co Al, Fe Al, Fe Fe Al, Fe Al, Fe Ni Ni Zn Ag, Au

218 218 219 219 219 219 219 220 220 220 218 220 220 221 221 221 221 221 221f. 222 218

Ag-Cd Ag-Cu 4z,Hg, Ag-In A@fg Ag-Sb Ag-Sn Ag-Zn Ag,Zn, Al-Ag AlCo Al-Fe AlFe A&Fe AI,Fe, A&Fe AlNi AlNi, Al-Zn Au-Ag

Land&-BBmstein New Series III/26

Bakker

214

4 Self-diffusion in homogeneous binary alloys and intermediate phases

System

Phase

Diffusing element

Page

4uCd 4u-cu

intermediate, B2 (CsCI) structure primary/terminal phase extending over the whole composition range in the temperature range studied primary intermediate, B2 (CsCI) structure

Au, Cd Au, Cu

222 223

Au-Ta AuZn

Cu-Sb Cu,Sb Cu-Sn Cu,Sn Cu,Sn, Cu-Zn

primary primary terminal intermediate, B2 (CsCI) structure terminal intermediate, B2 (CsCI) structure primary/terminal phase extending over the whole composition range, fee, bee and ordered B2 intermediate, B2 (CsCI) structure primary primary/terminal phase extending over the whole composition range in the temperature range studied terminal intermediate, Ll 2 (Cu,Au) structure terminal primary/terminal phase extending over the whole composition range in the temperature range studied primary and terminal terminal terminal terminal primary/terminal phase extending over the whole composition range in the temperature range studied terminal primary primary primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary intermediate, p-phase, DO, (BiF,) structure primary intermediate, p-phase, DO, (BiF,) structure intermediate, &phase, y-brass-type structure primary

CuZn

intermediate, bee, and B2 structure

Fe-Al FeAl FeAI, Fe,AI, FeA!, Fe-Co

primary, bee structure intermediate, B2 (CsCI) structure intermediate, rhombohedra! structure intermediate, rhombic structure intermediate, monoclinic structure primary/terminal phase extending over the whole composition range, fee, bee and ordered B2 primary/terminal phase extending over the whole composition range in the temperature range studied

Be-Cu Be-Ni Cd-Ag CdAu Cd-Pb CoAl Co-Fe CoGa Co-Mn Co-Ni Co-Ti Co,Ti co-u Cr-Fe Cr-Ni Cr-Zr Cu-Ag Cu-Au Cu-Be Cu-Fe Cu-In Cu-Ni Cu-Pt

Fe-Cr

Au 223 Au, Zn 223 EN4 WW Be 224 Ni 224 Ag, Cd 218 Au, Cd 222 Cd 224 co 220 224f. Co, Fe Wo), We) 225f. Co, Ga Mn 226 226f. Co, Ni Co, Ti co U Cr, Fe

221 228 228 228

Cr Ni Cr, Zr 4.z Au, Cu

228 228f. 229 218 223

Be cu cu Cu, Ni

224 229 229 229

cu, Pt

229f.

cu cu cu Cu, Sn Cu, Sn Cu, Zn Wu), Wn) Cu, Zn Wu), Wn) AI, Fe Al, Fe Fe Al, Fe Al, Fe Co, Fe E(Co), E(Fe) Cr, Fe

230 230 230 230 230 231 231f. 220 221 221 221 221 224f. 228

Land&-BCmsIein New Series 111126

215

4 Self-diffusion in homogeneous binary alloys and intermediate phases System

Phase

Fe-Cu Fe-Ge Fe-Mn Fe-MO Fe-Ni

terminal primary * primary primary primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary, fee structure primary primary primary primary primary terminal intermediate, B2 (CsCl) structure intermediate, B2 (CsCl) structure terminal, E- and &phase intermediate, Al 5 structure terminal primary/terminal phase extending over the whole composition range in. the temperature range studied intermediate, y-phase terminal terminal terminal intermediate, B2 (CsCl) structure intermediate, B2 (CsCl) structure terminal terminal ordered phase, Ll, (Cu,Au) structure terminal terminal terminal terminal primary/terminal phase extending over the whole composition range in the temperature range studied terminal intermediate, DO, @-TiCu,) structure primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied intermediate, B2 (CsCI) structure intermediate, L 12 (Cu,Au) structure terminal primary/terminal phase extending over the whole composition range in the temperature range studied primary and terminal primary primary/terminal phase extending over the whole composition range in the temperature range studied

Fe-Pd Fe-Pt Fe-Sb Fe-Si Fe-Sn Fe-Ti Fe-V Fe-Zr GaCo GaNi Ga-Pu GaV, Ge-Fe Hf-Zr I-Q%, Hg-Pb In-Ag In-Cu InPd M&s Mn-Co Mn-Fe MnPt, Mn-Ti Mn-Zr MO-Fe Mo-Ni MO-W Nb-Ni NbNi, Nb-Ti Nb-W Nb-Zr NiAl N&Al Ni-Be Ni-Co Ni-Cr Ni-Cu

Land&-Biimstein New Series III/26

Bakker

Diffusing element

Page

cu Fe Fe, Mn Fe Fe, Ni

229 232 232 232 233

Fe, Pd

233

Fe, Pt Fe Fe, E(Fe) Fe Fe Fe, V Fe, Zr Co, Ga Ga, Ni Pu Ga, V Fe Hf

234 234 234f. 236 236 236 236 225f. 236f. 237 237 232 237

Hg Nit, Pb Ag cu In, Pd Ag Mn Fe, Mn Mn Mn, Ti Mn, Zr Fe MO, Ni MO, W

219 237 219 229 237f. 219 226 232 238 238 238 232 239 239

Ni Nb, Ni Nb, Ti

239 240 240

Nb, W

240

Nb, Zr

241

Ni Ni Ni Co, Ni

221. 221f. 224 226f.

Cr Ni Cu, Ni

228 228f. 229

:,,

216

4 Self-diffusion in homogeneous binary alloys and intermediate phases

System

Phase

Diffusing element

Page

Ni-Fe

primary/terminal phase extending over the whole composition range in the temperature range studied intermediate, B2 (CsCI) structure primary primary intermediate, DO, (B-TiCu,) structure primary intermediate, y-phase primary primary primary primary/terminal phase extending over the whole composition range in the temperature range studied intermediate, B2 (CsCI) structure primary/terminal phase extending over the whole composition range in the temperature range studied terminal, fee structure ordered phase, Ll, (Cu,Au) structure primary, E-phaseand &phase terminal terminal terminal intermediate, DO, (BiF,) structure terminal intermediate, p-phase primary/terminal phase extending over the whole composition range in the temperature range studied terminal terminal terminal terminal intermediate, DO, (BiF,) structure intermediate, y-brass-type structure terminal intermediate, p-phase primary terminal primary intermediate, L 12 (Cu,Au) structure terminal primary primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied terminal primary primary/terminal phase extending over the whole composition range in the temperature range studied terminal

Fe, Ni

232

Ga, Ni MO, Ni Ni Nb, Ni Ni Zn Cd Hg, Pb Pb, Ti Fe, Pd

236 239 239 240 241 241 224 237 241 232

In, Pd cu, Pt

237f. 229f.

Fe, Pt Mn Pu W Aiz cu cu Fe Sn Zr

232 238 237 242 219 230 230 232 242 242

Fe, E(Fe) Ni 4s Sn cu Cu, Sn Cu, Sn Fe Sn Sn, Zn Au Co, Ti co Fe Mn, Ti Nb, Ti

232 241 219 230 230 230 234 242 242 223 227 228 234 238 240

Ti, V

242f.

Ti

243

Pb, Tl U U, Zr

241 228 243

Fe, V

234

NiGa Ni-Mo Ni-Nb Ni,Nb Ni-Si Ni,Zn, Pb-Cd Pb-Hg Pb-Tl Pd-Fe PdIn Pt-Cu Pt-Fe Pt,Mn Pu-Ga Re-W Sb-Ag Sb-Cu SbCu, Sb-Fe Sb,Sn, SC-Zr Si-Fe Si-Ni Sn-Ag Sn-Cu SnCu, Sn,Cu, Sn-Fe Sn,Sb, Sn-Zn Ta-Au Ti-Co TiCo, Ti-Fe Ti-Mn Ti-Nb Ti-V Ti-Zr Tl-Pb u-co U-Zr V-Fe

Bakker

Landolt-B6mstein New Series Ill/26

4 Self-diffusion in homogeneous binary alloys and intermediate phases

217

System

Phase

Diffusing element

Page

V,Ga V-Zr V-Ti

Ga, V V, Zr Ti, V

237 243

MO, w

239

Nb, W

240

W

Zn,Ag, Zn-Al ZnAu

intermediate, Al 5 structure primary and terminal primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary/terminal phase extending over the whole composition range in the temperature range studied primary primary terminal intermediate, y-phase terminal intermediate, B2 (CsCl) structure

242 220 220 220 222 223

Zn-Cu

terminal

W-MO W-Nb W-Re Zn-Ag

242f.

Ag, Zn Ag Ag, Zn

Zn Au, Zn EW),

WW

Cu, Zn

231

E(Cu), E(Zn)

ZnCu

intermediate, bee and B2 structure

Zn,Ni, Zn-Sn Zr-Cr Zr-Fe Zr-Hf

intermediate, y-phase terminal primary primary primary/terminal phase extending over the whole range in the temperature range studied primary primary/terminal phase extending over the whole range in the temperature range studied primary/terminal phase extending over the whole range in the temperature range studied primary/terminal phase extending over the whole range in the temperature range studied primary/terminal phase extending over the whole range in the temperature range studied primary and terminal

Zr-Mn Zr-Nb Zr-Sc Zr-Ti Zr-U Zr-V

composition

241 242 229 234 237

composition

Mn, Zr Nb, Zr

238 241

composition

Zr

242

composition

Ti

243

composition

U, Zr

243

V, Zr

243

For figures seepage 244.

Land&-Biimstein New Series III/26

Bakker

231f.

Cu, Zn WW, -Vn) Zn Sn, Zn Cr, Zr Fe, Zr Hf

218

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Zomposition It %

Temperature range [K]

ig-Al; primary and terminal phase ‘lomAg diffusion in primary phase 873 ... 1073 AI: 3.8 11.6 17.8 21.7 ‘romAg diffusion in terminal phase Al: 90.3...99 673...868

DO 10m4m’s-’

Q

Fig.

Ref.

kJ mol-’

-

185.9 256.6 180.0 114.3

-

70s

0.39

121.0

1

68H *)

‘) Remark: D is concentration independent.

Ag- Au; primary/terminal phaseextending over the whole composition range in the temperature range studied *romAg diffusion 63M 927...1218 0.52 187.5 Au: 8 0.32 184.4 17 908...1225 0.23 182.3 908...1229 35 180.5 908...1245 0.19 50 174.7 927... 1244 0.11 66 171.7 923... 1284 0.09 83 168.5 936.e.1234 0.072 94 “*Au diffusion 202.2 63M Au: 8 991... 1213 0.82 991 ..* 1220 0.48 198.0 17 0.35 195.4 991 ... 1269 35 988 ... 1274 0.21 189.5 50 186.3 988 ... 1274 0.17 66 0.12 180.2 985 ... 1274 83 176.1 991 ... 1283 0.09 94 Ag - Cd; primary phase ’ ‘OrnAgdiffusion Cd: 30.50...37.70 836,..955 11‘Cd diffusion Cd: 31.25...36.25 836...955

For D seeFig. 3

68G

For D see Fig. 3

68G

Ag - Cu; primary phase lromAg diffusion cu: 0.17 0.17 0.84 0.84 0.85 1.38 1.68 1.75 2.52 2.55 3.36 4.16 4.43 5.00 6.56 8.15

1053...1179 963 ... 1053 1053..*1179 963...1179 963...1123 883...1113 998...1179 973..*1173 926... 1091 963...1123 963...1123 973... 1173 926... 1091 998...1153 973..*1173 998.s.1103

0.65 1.06 0.68 0.08 0.39 1.04 0.07 0.66 0.63 0.30 0.26 1.84 0.57 0.06 0.51 0.04

189.2 171.6 189.2 163.3 184.2 188.9 170.0 187.5 183.2 180.4 176.6 195.1 181.3 167.0 182.1 160.3

Bakker

4

57Y, 77B2

5 6 4 7 6 5 5 7 6 4 7 4

64S, 77B2 72P, 77B2 57Y, 77B2 55H, 77B2 72P, 77B2 64S, 77B2 64S, 77B2 55H, 77B2 72P, 77B2 57Y, 77B2 55H, 77B2 57Y, 77B2

Iandolt-BBmstein New Series III/26

219

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

Do 10m4m’s1l

e kJ mol-’

Fig.

Ref.

8

77s

9

85K

Ag,Hg,; intermediate phase, y-phase 203Hg diffusion Hg: 55

323...375

1.2.10-4

30.3

Ag - In; primary phase “OrnAg diffusion In: 0.151 . ..0.943 1054

For D see Fig. 9

AgMg; intermediate phase, B2 (CsCl) structure “OrnAg diffusion Mg: 41.1. 43.6 43.6, 43.8 45.0 45.8 48.5 48.7 49.8 52 52.8 57.2

773...973

0.095 0.15 0.31 0.686 1.53 0.37 0.39 0.28 0.134 0.33 0.051

139.0 147.8 154.5 165.8 172.9 165.3 166.2 170.0 159.1 153.6 120.1

0.382 0.302 2.75

182.1 178.3 175.8

10 10 10 10 10

64D 64D 61Hl 64D 64D 61Hl 61Hl 64D 64D

Ag - Sb; primary phase 1lomAg diffusion Sb: 0.53 0.89 1.42

902... 1173 842...1163 841...1164

11

55s

12 13

83H2 85K *)

14

78G

15

78G

Ag - Sn; primary phase 1lomAg diffusion Sn: 0...8.67 946... 1146 0.218 ... 0.773 1052

For D see Fig. 12 For D see Fig. 13

*) Remark: Single crystals.

Sn: 0.108 0.8 3 4.7 6

893 ... 893 ... 889 ... 893 ... 885...

l1 3Sn diffusion Sn: 0.11

893 ... 1123

1.7

Land&BBmstein New Series III/26

1042 1042 1010 1042 980

0.13 0.12 0.085 0.07 0.07

172.9 168.3 160.7 157.0 154.9

No difference with Sn impurity diffusion in pure silver 0.125 156.8

Bakker

220

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Composition at %

Temperature range [K]

DO low4 rn’s-’

Q

Fig.

Ref.

16

67R

17

69s

17

69s

18

67SI,69S

18

67S1,69S

kJ mol-’

Ag - Zn; primary and terminal phase “OrnAg diffusion in primary phase Zn: 0...4.1 1020,1153

For D seeFig. 16

“OrnAg diffusion in terminal phase; diffusion in single crystals parallel to the hexagonal axis 0.42 (5) Zn: 99.11 594...686 0.35 (7) 99.32 594...690

I 10.0 (6) 109.2 (12)

1’omAgdiffusion in terminal phase; diffusion in single crystals perpendicular to the hexagonal axis 117.2 (8) 0.69 (10) Zn: 99.11 594...686 115.7 (4) 0.49 (3) 99.65 594...682 65Zn diffusion in terminal phase; diffusion in single crystals parallel to the hexagonal axis 0.17 (1) Zn: 98.6 620...690 0.14 (1) 99.43

92.4 (3) 91.9 (4)

65Zn diffusion in terminal phase; diffusion in single crystals perpendicular to the hexagonal axis 96.8 (2) 0.26 (1) Zn: 98.6 620 . . .696 96.8 (6) 0.22 (2) 99.43 Ag,Zn,; intermediate phase, y-phase “OrnAg diffusion Zn: 61 62 65Zn diffusion Zn: 61

713..*913

4.06 -

122.2 (13) -

19

71s

680...840

1.55

108.0 (11)

20

71s

21

51N

AICo; intermediate compound, B2 (CsCl) structure ‘j°Co diffusion co: 49..*57 Al-Fe;

1523

For D see Fig. 21

terminal phase, disordered bee structure

26AI diffusion in paramagnetic phase 100 Fe: 75 1173...1358

267.1

-

75L

“Fe diffusion in paramagnetic phase 32.4 Fe: 75 1173...1413

252.0

22

75L

“Fe diffusion in paramagnetic phase 0.01 Fe: 82 973... 1450 0.02 90 1156...1450 0.42 94 1088... 1478

171.7 183.5 197.7

23

81RI

“Fe diffusion in ferromagnetic phase 0.01 Fe: 82 816.a.953 0.06 90 765...941 94 953.s.991

197.7 195.9 -

23

81Rl

Landolt-BBmstein New Series III/26

I

221

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

DO 10m4m2sv1

Q

Fig.

Ref.

kJ mol-’

AlFe; intermediate phase, B2 (CsCl) structure 26A1diffusion Fe: 48.8, 51.5 55Fe diffusion Fe: 47.8 48.8 51.5 59.5 65.9

1173...1358

8700

339.9

-

75L

1173.s.1423

60 170 1.82 . lo4 830 230

278.8 252.0 331.9 293.9 278.8

24

75L

180.0

-

75L

Al,Fe; intermediate phase, rhombohedral structure ’ 5Fe diffusion Fe: 33.18

-

0.02

A&Fe,; intermediate phase, rhombic structure 26A1diffusion Fe: 28.39

1173 ... 1358

1.75.10-5

106.7

-

75L

“Fe diffusion Fe: 28.39

1173 ..* 1358

0.004

141.1

-

75L

Al,Fe; intermediate phase, monoclinic structure 26A1diffusion Fe: 24.83

1173... 1358

0.012

183.3

-

75L

55Fe diffusion Fe: 24.83

1173... 1358

0.001

157.8

-

75L

0.00012 0.00104 0.00053 0.2302 4.461 0.6296 0.1504

177.9 (264) 209.7 (310) 200.5 (448) 275.9 (21) 307.3 (96) 274.2 (314) 250.3 (134)

27,28

71Hl

0.0352 0.096 0.7254

216.4 (71) 253.7 (130) 250.3 (163)

AlNi; intermediate phase, B2 (CsCl) structure 63Ni diffusion Ni: 48.3 48.6 49.0 49.2 50.0 53.2 54.5 55.5 58.0 58.5 58.7 AlNi,;

1273.‘. 1623

26,27

See Figs. 26,27

intermediate phase, Ll, (Cu,Au) structure

63Ni diffusion Ni: 73.2 74.7 74.8 76.2

Land&-BBmstein New Series III/26

1193...1553 1193... 1553 1163.~. 1477 1193... 1553

3.11 1.00 1.00 4.41

300.3 303.1 286.8 (42) 306.3

Bakker

28,29 28,29 30 28,29

71H2 71H2 75B 71H2 (continued)

222

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Composition at %

Temperature range [K]

Q.

DO’

IO+ m’s-r

kJ mol-’

Dab

10e4 m2s-*

Fig.

Qb

Ref.

kJ mol-’

AINi,, continued 63Ni diffusion Analysis in terms of two exponentials: D(T) = Do" exp(- QJR T) + Dabexp(- QJR T) Ni: 14 965... 1623 105 (90) 344.9(50) 2 (3). 10-n 121.8(117) 75 965... 1623 146 (32) 347.0(29) 1.1 (4). lo-’ 141.1(33) 16 965... 1623 132 (53) 342.4 (105) 1.0 (6). lo-’ 134.8(50)

31 87H3 31, 32 31

Remark: In the high-temperature range there is a good agreement with [71H2] and [75B] (seeFig. 31).

Composition at %

Temperature range [K]

DO 10m4rn’s-’

e kJ mol-’

Fig.

Ref.

0.25 (3) 0.18 (2) 0.22 (4) 0.22 (4) 0.24 (5) 0.23 (4) 0.170 (98) 0.20 0.324 (216) 0.209 (96) 0.22 0.288 (266) 0.229 (137) 0.23

119.0 (9) 116.7 (12) 117.6 (12) 117.1 (13) 117.5 (15) 116.9 (12) 112.5 (32) 112.6 (21) 113.2 (37) 108.3 (25) 105.1 (21) 105.7 (54) 103.5 (34) 100.5 (29)

33, 34 33, 34 33, 34, 35 33, 34 33, 34 33, 34, 35 36 37 36 36

77Bl

0.162 +“‘238 -0.108 0.575 + 1.084 -0.376 0.692 (701)

100.5 (59)

-

80C

106.6 (59)

-

108.1 (54)

-

111.9 (54)

-

106.8 (25)

-

111.4 (39) 90.4 (42)

36

75Gl

117.6 (4) 125.6 (21)

38, 39 38, 39

67G 67G

116.8 (13) 109.7 (21)

-

61H2*)

38, 39

67G

129.8 (4) 130.6 (20) 117.2 (29)

38, 39 38, 39

67G 67G

-

61H2

113.4 (21)

38, 39

67G

Al - Zn; primary phase 65Zn diffusion Zn:

1.16

614...890

1.73 2.15 2.80 3.29 3.76 7.06 9.9 15.17 24.25 28.9 31.27 41.51 50.0

598...753 683...836 598...782 598...753 622...745 634...726 634...715 603...683

52.52

616...695

53.28

615...686

55.04

598...686

56.85

585...654

57.28

598...675

1 514 +2.852 -0.989 0.575 (265)

57.50 58.5

585...675 589...663

1.35 (103) 0.036

8OC 75Gl 80C 80C 75Gl 80C 8OC 75Gl

AuCd; intermediate phase, B2 (CsCI) structure lg5Au diffusion Cd: 47.5

627...871

49.0 50.0 50.5

714...822 576...877 714...822

0.23 0.61 0.17 0.12

(2) (6) (3)

(1)

*) Remark: Diffusion of rg8Au.

logCd/“sCd diffusion Cd: 47.5 646 ... 858 49.0 50.0 50.5

714...822 604 ... 893 714...822

1.36 (2) 1.5 (2) 0.23 (1) 0.22 (2)

Bakker

Landolf-Wmstein New Series Ill/26

223

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

DO 10d4 rnzs-l

Fig.

Q

Ref.

kJ mol-’

Au - Cu; primary/terminal phase extending over the whole composition range in the temperature range studied lg5Au diffusion cu: 75

823...1173

0.0065 (9)

160.2 (39)

40

70. ‘. 100

1133

For D see Fig. 41

41

65B, 69A, 77B2 78H

64Cu diffusion cu: 70... 100

1133

For D seeFig. 41

41

78H

143 (10)

42

75G2

Au - Ta; primary phase lg5Au diffusion Ta: 1.2

477...669

0.0014

AuZn; intermediate phase, B2 (CsCl) structure lg5Au diffusion Zn: 49.0 50.0 51.0

701 ... 923 701 ... 923 701 ... 923

0.19 0.33 0.016

133.5 138.6 113.0

43,44

71G

65Zn diffusion Zn: 49.0 50.0 51.0

701...923 701...923 701 ... 923

0.84 1.93 0.047

144.8 148.2 115.1

43,44

71G

Composition at %

Temperature K

D 311’sl

E

Fig.

Ref.

1g5/1ggA~diffusion, Zn: 48.37 48.59 49.10 49.40 49.41 49.47 49.78 49.83 50.27 50.70 50.73 50.92 51.01

isotope effect E 876 876 878 874 878 875 757 874 757 875 875 814 875

1.620 (12). IO-l3 1.880 (13). lo-l3 1.420 (8). IO-l3 1.700 (4). 10-13 1.730 (6). lo-l3 1.650 (20) . lo- l3 1.040 (6). lo-l4 1.530 (22). 10-13 8.950 (44). lo-l5 2.000 (16). IO-l3 1.670 (15). IO-l3 6.330 (15). IO-l4 2.380 (12). IO-l3

0.22 (2) 0.30 (3) 0.41 (4) 0.24 (3) 0.32 (2) 0.21 (6) 0.37 (4) 0.20 (3) 0.23 (2) 0.25 (3) 0.29 (3) 0.35 (3) 0.36 (3)

45

83H3

0.230 (17) 0.190 (13) 0.090 (35) 0.100 (13) 0.050 (10)

46

83H3

Remark: For pressure dependence of the diffusion coefficient see [72J].

65/6gmZndiffusion, Zn: 49.18 49.35 50.21 50.43 51.85

isotope effect E 916 928 835 837 810

7.280 (64). lo-l3 1.200 (21) . lo-l2 1.330 (15). lo-l3 1.200 (16). lo-l3 3.180 (47). lo-l3

Remark: For pressure dependence of the diffusion coefficient see [725].

Land&-BGmstein New Series III/26

Ijakker

224

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Q

Fig.

Ref.

9.03

195.1

47

73L, 77B2

5.99

198.0

47

73L, 77B2

Be - Ni; primary phase 63Ni diffusion Ni: 1.7 1173...1373 6.0

0.41 (16) 0.23 (12)

247.0 (109) 188.4 (17)

-

70A

Cd - Pb; terminal phase lo9Cd diffusion Pb: 99.1 . ..99.995 410.1

For D seeFig. 48

48

79Cl

Composition at %

Temperature range [K]

Be - Cu; primary phase Be tracer diffusion perpendicular to the c axis Cu: 1.6 770...1120 parallel to the c axis Cu: 1.6 770...1120

DO 10-4 m2s-’

,

kJ mol-’

Co-Fe; primary/terminal phase extending over the whole composition range in the temperature range studied “Co diffusion in the ordered B2 (CsCI) structure Fe: 50 928...995 557 (42) 70F 49 6oCo diffusion in the disordered bee structure, ferromagnetic phase Fe: 32.8

903...1153

(6.04:;:;:).

10-3

190.9 (54)

-

72H 70F ‘)

50.4 50

1023...1123 1068...1218

2.00 (50) (6.59+;:;;!

71.4

903 ... 1083

93.2

903 ... 1073

+lO-2

251.2 247.0 (84) (109)

“’

(l.25+$.

lo-’

198.0 (96)

-

(4.69;;:;;).

10-l

187.1 (121)

-

72H

‘) 5’Co diffusion.

‘j°Co diffusion in the disordered bee structure, paramagnetic phase Fe: 93.2

1153...1193

(5.72:;:;;).

lo-’

146.5 (84)

-

72H

251.2 (167)

-

72H

6oCo diffusion in the fee structure, ferromagnetic phase Fe: 10.4

1073...1283

(6.44+;:;;).

1O-2

6oCo diffusion in the fee structure, paramagnetic phase Fe: 10.4

1333... 1583

(l.61 ‘;!;i).

lO-2

234.0 (193)

-

72H

32.8

1333...1583

(3.15’;:;;).

1O-2

265.0 (117)

-

72H

50

1285...1437

1.33 (50)

290.5 (84)

49

70F ‘)

50.4

1333...1583

(1.54:;:;;).

IO-’

349.5 (42)

-

72H

71.4

1333...1583

(3.36+$

* 1O-2

266.2 (96)

-

93.2

1283...1583

(1.09$;;).

10-r

326.0 (201)

(continued)

‘) 5’Co diffusion.

Bakker

land&BBmstcin

New Series III,/26

225

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables)

Q

Fig.

Ref.

557 (42)

49

70F

59Fe diffusion in the disordered bee structure, ferromagnetic phase 230.2 (42) 1068... 1218 0.25 (10) Fe: 50

49

70F

59Fe diffusion in the fee structure, ferromagnetic phase 1081... T, 0.58 Fe: 6 10 0.68

273.3 279.2

-

74B

59Fe diffusion in the fee structure, paramagnetic phase TC... 1573 0.15 Fe: 6 10 TC... 1573 0.18 50 1285 ... 1473 1.26 (10)

261.6 263.3 286.7 (84)

49

74B 74B .70F

Temperature range [K]

Composition at %

DO

10m4m2sv1

kJ mol-’

Co -Fe, continued 59Fe diffusion in the ordered B2 (CsCl) structure 928...995 Fe: 50

Composition at %

Temperature K

D

E

Fig.

Ref.

-

70F

49

70F

49

70F

49

70F

m*s-’

57/60Codiffusion, isotope effect E in the fee structure, paramagnetic phase 0.773 (100) 1333 2.63 . lo-l6 Fe: 50 55159Fediffusion, isotope effect E in the ordered B2 (CsCl) structure 0.06 (20) 928 1.56. IO-l9 Fe: 50 0.30 (20) 956 8.68 . 10-19 0.16 (20) 975 4.79.10-18 0.30 (15) 994.5 8.70. IO-= 55/59Fediffusion, isotope effect E in the disordered bee structure 0.54 (8) 1068 1.03 . 10-16 Fe: 50 0.46 (8) 1150 1.07.10-15 0.64 (IO) 1175 1.85. 10-l’ 0.55 (8) 1218 5.12. IO-” 55/59Fediffusion, isotope effect E in the fee structure 1285 3.00.10-‘6 Fe: 50 1335 8.14. IO-l6 1400 2.28. IO-l5 1434 5.34.10-15 Composition at %

Temperature range [K]

Doa 10m4m’s’

Q.

kJ mol-’

0.67 (8) 0.71 (8) 0.65 (8) 0.61 (8) Dab 10m4m’s1r

Qb

Fig.

Ref.

80s

kJ mol-’

CoGa; intermediate phase, B2 (CsCl) structure 6oCo diffusion Analysis in terms of two exponentials: D(T) = Doa exp( - Q,/R T) + Dab exp( - QJRT) Ga: 40.0

848...1423

0.989+ o’49 -0.33

225 (10)

967+ 7oo -400

294 (21)

50

44.0

898...1423

234 (13)

51

912...1423 948 ... 1423

1450+530 -390 366 (9) 883 (14)

302(12)

50.0 52.0

0846+“‘54 . -0.33 one exponential one exponential

292 (2) 302 (1)

52 53

54.8

924... 1373

0.365 (13)

235 (2)

1160;;;

308 (2)

54

Remark: See also [79B]. (continued)

Land&-Bhutein New Series III/26

226

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Composition at %

Tempcraturc range [K]

DO”

IOe4 m2s1’

Q.

kJ mol-’

Dab

Fig.

Ref.

383 (29)

50

80s

IO6

410 (29)

-

IO7

434 (45)

51

. IO4

357(50)

-

Qb

IOm4m2s11

kJ mol-’

CoGa, continued 67Ga diffusion Analysis in terms of two exponentials: D(T) = Do” exp( - Q,/R T) + Dab exp( - QJR T) 53 6+12 . -10

277 (9)

(,.I,-$IO’

Ga: 40.0

973 ... 1423

42.0

1123...1373

145+I’ -10

290

44.0

1024...1423

518+70 -80

304 (8)

46.0

1024...1373

212+380 -140

302

48.0

1198...1373

249+ 39 -34

302

(7.82;;:‘).

IO7

441 (49)

-

50.0

998...1423

292 (I I)

(I.80:;:$.

IO6

398 (18)

52

52.0

1024... 1423

303 (1I)

(4.59+::;).

IO8

462 (46)

53

53.0

1133...1323

309

1.60. IO6

394

-

54.8

923... I373

66.3+18 -14 326+50 -40 690 9410+1000 - 900

(3.26+;:‘).

IO-4 163 (IO)

328 (7)

54

Remark: See also [79B]. Composition

Temperature

at %

range [K]

Co -Mn;

DO 10m4m2s-’

Q

Fig.

Ref.

268.3 (63) 256.6 (100) 263.3 (34)

55

771

kJ mol-’

primary phase

54Mn diffusion Mn: 5.22

5.22 10.24

1141 ... 1241”)

1.38

1329...1473b) 1176... 1421

0.501

1.36

Remark: l ) Ferromagnetic phase, b, Paramagnctic phase.

Co-Ni;

primary/terminal phase extending over the whole composition range in the temperature range studied

6oCo diffusion [69M]; “Co Ni:

3.7

diffusion [72M] 1 23+1.23 1340...1579 . -06,

7.1

1349.e.1578

1 12+2.55 . -075

280.0 (142)

10.3

1358...1578

o 43 + 0.75 . -028

267.5 (126)

30.0

1362...1577

o lo+o.15 . -oo6

246.6 (113)

49.3

1366...1577

o 18+o:20 . -oo9

252.0 (88)

0.094+ o.50 -0.08 o.40+“.60 -0.25 o 98 + 0.73 . -o,41

49.3 69.7 69.7

853... 1353 1365...1574 853... 1353

56

69M

254.1 (163)

-

72M

258.7 (117)

56

69M

271.7 (50)

-

72M

283.4 (84)

(continued)

Bakker

Landolt-B6mslein New Series 111126

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

227

Temperature range [K]

DO 10e4 m2 s-l

Q

Fig.

Ref.

kJ mol-’

Ni: 73.7

1355...1570

o.og -oo7 + 0.26

240.3 (159)

56

69M

73.7

853*..1353

o.37 -021 +0:50

261.6 (75)

-

72M

80.1

1343...1564

o.22 -o + 0.55 16

250.7 (151)

56

69M

o.32+0.24 -o.14

259.5 (50)

-

72M

8.68 + -49.44 53

312.3 (88)

-

71M

7.1

l2 6+7:04 ’ -4.52

316.5 (54)

-

10.3

13 7+ 17.5 . -7.70

317.3 (100)

-

30.0

7 45 + 6.06 * -3.34

306.8 (71)

-

49.3

4 80+4.23 ’ -2.23

300.1 (75)

-

69.7

5 g6 + 5.63 . -2.90

298.9 (80)

-

73.7

6 13+4.87 ’ -2.72

299.7 (71)

-

80.1

3 66+ 1.65 . -1.13

293.9 (46)

-

Co - Ni, continued

80.1

853... 1353

63Ni diffusion Ni:

3.7

Composition at %

1338...1563

Temperature K

D rn2se1

Fig.

Ref.

1.92.10-12 1.15.10-‘2 1.76. IO-” 1.60. IO-l2 3.79 * lo-” 3.95 * lo-” 3.35 * IO-” 3.30.10-‘1

-

75Sl

Co - Ti; terminal phase “Co diffusion Ti: 92.6 95.1 96.7 98.4 92.6 95.1 96.7 98.4 Composition at %

1186

1478

Temperature range [K]

DO 10e4 m2 s-l

Ti: 92.6

1076... 1484

(2.50+;$.

95.1

1076..+ 1572

96.7 98.4

Q

Fig.

Ref.

lO-2

162.8 (75)

57

75Sl

(I.41 ‘i:;;).

10-Z

160.3 (50)

1166... 1617

(l.58+;$).

lO-3

140.2 (38)

1237 ... 1777

(1.26+;:;;).

lO-3

145.3 (67)

kJ mol-’

44Ti diffusion

_Lanaolt-bxlw.eln .._” New Series III/26

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

228

Composition at %

Temperature range [K]

DO 10T4 m2s-’

Q

Fig.

Ref.

203 188 174

58

88N

59

64D

kJ mol-’

Co,Ti; intermediate phase, Ll z (Cu,Au) structure 6oCo diffusion Ti 21.5 22.8 24.0 Co-U;

1074.0... 1332.2 1074.0... 1322.6 1074.0... 1321.9

4.3. 10-z 1.2. 10-z 3.7. 10-3

terminal phase

235U diffusion u: X99.5...% 99.77 1095, 1113

For D see Fig. 59

Cr - Fe; primary/terminal phaseextending over the whole composition range in the temperature range studied 5’Cr diffusion in paramagnetic a-phase o *8+o.05 1073... 1673 . -o.04 Fe: 81 o 19+o.03 . -0.02 0.64 (7)

84 87

218.1 (38) 231.9 (29)

“Cr diffusion in paramagnetic y-phase Fe: 94 1073...1673 , .21 +0.73 -046

70Bl

237.3 (100)

3 21 +0.83 . -0.66

98

70Bl

216.8 (59)

244.5 (50)

s9Fe diffusion in ferromagnetic a-phase Fe: 80.25 848...919 0.65 84.78 868...950 1.25 90.87 848...999 9.27

217.3 226.5 230.6

-

68R

s9Fe diffusion in paramagnetic y-phase Fe: 90.87 1173..*1313 0.12

237.4

-

70R

s9Fe diffusion in paramagnetic a-phase Fe: 80.25 963 ... 1098 0.18 84.78 999 ... 1050 0.27 94.95 1073...1173 0.85 96.91 1040...1173 6.7 98.57 1040~~~1173 2.8 99.13 1040...1173 1.2

208.0 215.6 237.3 255.8 249.1 241.1

-

68R

Cr -Ni;

74K

primary and terminal phase

s’Cr diffusion in primary phase Ni: 18 1423.~~1688 S’Cr diffusion in terminal phase Ni: 52.3 ” 1223... 1473 61.6 65.6 70.6 76.4 78 1123...1473 85.7 1223... 1473 95.3 1223...1473 63Ni diffusion in terminal phase Ni: 52.3 1223... 1473 61.6 65.6

71A

0.28

259.5

2.64 2.16 2.42 2.91 6.10 0.61 5.66 6.37

284.2 284.0 288.0 288.5 295.5 264 293.6 292.1

-

8lR2

1.74 1.43 1.35

288.9 290.4 289.5

-

8lR2

Bakker

8lR2 79D 8lR2

(continued) Land&-B6mstein New Series 111’26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

229

DO 10m4m2 s-l

e kJ mol-’

Fig.

Ref.

rangeKl

285.4 293.8 259 289.3 279.5

-

81R2

1123... 1473 1223... 1473 1223... 1473

1.02 2.95 0.15 2.31 1.32

Temperature

Cr - Ni, continued Ni: 70.6 76.4 78 85.7 95.3

79D 81R2

Cr - Zr; terminal phase ’ ‘Cr diffusion Zr: 97.4

1233... 1371

0.19

191.3

-

73Tl

g5Zr diffusion Zr: 92.14 95.92 96.51 97.95

1227... 1218 ... 1196... 1200...

1.59.10-z 1.39.10-z 2.05. IO-’ 5.16. 1O-3

173.4 (26) 169.2 (45) 169.0 (87) 165.5 (75)

60

81Pl

61

72B

62

82H

1516 1516 1518 1497

Cu -Fe; primary phase 64Cu diffusion Fe: 0 ... 2.4

1293

For D see Fig. 61

Cu - In; primary phase 64Cu diffusion In: 0.4 0.8 1.2 ., 1.7 Cu -Ni;

1005... 1145

220 200 200 190

2 0.4 0.6 0.2

primary/terminal phase extending over the whole composition range in the temperature range studied

64Cu diffusion Ni: 1

1053...1163

1.86

204.7

-

67S2

21.5

1146...1385

1.9+2.0

231.5 (80)

63

64M, 77B2

5416

1258... 1483

2.3 -lo (10,

252.4 (13)

87

1327...1632

7-03 1.5+o.4 .

263.7 (3)

64

64M, 77B2

.’

63Ni diffusion Ni: 21.5

1187... 1386

. oo63+o.012 -0.010

208.0 (21)

54.6

1298... 1476

17+11 -7

279.6 (63)

87

1379... 1618

35+17 -11

‘313.5 (71)

Cu - Pt; primary/terminal phase extending over the whole composition range in the temperature range studied ., _ 64Cu diffusion 1172...1319

1.l+1.8 -o 7

221.0 (105)

24.6

1220... 1369

. -042 053+1.01

229.0 (163)

49.4

1273 ... 1566

o.027 + 0.022 -0.012

213.5 (71)

74.5

1371...1658

37 o .67 -o + 0.83

269.6 (50)

Pt: 9.8

I&dolt-BBmstein New Series III/26

Bakker

65

77B2

(continued:

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

230

Q

Fig.

Ref.

oo93+“.42 . - 0.076 oo*g+o.041 . -0.013

220.2 (180)

66

77B2

1307...1560

oo66+0.126 . - 0.044

249.1 (126)

1413...1655

o.022+“~081 -0.017

252.4 (197)

0.4 0.6 0.7

200 200 200

67

82H

8.57. 1O-4 1.99.10-4 1.36. 1O-4

43.8 (56) 30.4 (42) 24.30 (364)

68,69

70H, 84B

0.4 0.07 0.06 0.03

200 180 180 170

70,71

82H

Temperature range fK1

DO lop4 m2s-’

Pt: 9.8

1179.**1331

24.6

1219..+1367

49.4 74.5

Zomposition it %

kJ mol-’

Zu - Pt, continued 195Ptdiffusion

215.2 (126)

Cu-Sb; primary phase 54Cudiffusion Sb: 0.3 0.5 0.8

1005~~~1145

Cu,Sb; intermediate phase, p-phase, DO, (BiF,) structure 54Cu diffusion Sb: 21 25 29

770 . . .900

Cu- Sn; primary phase 64Cu diffusion Sn: 0.4 0.8 1.1 1.7

1014... 1145

Cu,Sn; intermediate phase, y-phase, DO, (BiF,) structure

64Cu diffusion Sn: 16.6 18.0 19.8 20.2

811... 1008 873...998 873...998 897...992

0.0083 (17) 0.014 0.0036 0.018 (3)

83.0 (19) 74.5 84.6 82.0 (10)

72,74 73,74 73,74 72,74

80P 68E 68E 80P

1‘%n diffusion Sn: 16.6 18.0 19.8 20.2

839...998 873...998 873.e.998 903.s. 1003

0.22 (19) 0.33 0.092 0.035 (16)

117.8 (68) 122.2 113.4 107.1 (29)

72,74 73,74 73,74 72,74

80P 68E 68E 80P

129.3 (4)

75

68E

208.0 (21)

75

68E

Cu,Sn,; intermediate phase, &-phase,y-brass-type structure

64Cu diffusion Sn: 20.5

710... 850

4.7 (13)

11%n diffusion Sn: 20.5

770... 840

Bakker

Land&-BBmstein New Series III/26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

DO 10e4 m2se1

Q

231

Fig.

Ref.

76

7OP

kJ mol-’

Cu - Zn; primary phase 67Cu diffusion Zn: 0...4

I 1167,122O

For D seeFig. 76

8.6

873 .+. 1074

162.0 (84)

-

72K2

8.6

873...1074

oo57+o.100 . -0.036 o t5+0.06 . -oo5

177.0 (25)

-

72K2

10.1

1022...1252

o 64+o:07 . -oo7

190.9 (8)

-

680

14.9

783 ... 1084

160.0 (109)

-

72K2

20.5

1021...1213

176.6 (29)

-

680

28.8

873 ... 1074

133.5 (134)

-

72K2

30.2

973...1175

164.5 (25)

-

680

37.1

907... 1074

o.oo56+ 0.0100 - 0.0037

135.6 (67)

-

72K2

D

E

Fig.

Ref.

65Zn diffusion Zn:

Composition at %

Temperature K

o.075 + b.220 -0.056 o.35+o.12 -oog 0028+~.120 . - 0.023 o 32+o.10 . -oo8

m2s-l

64Cu/67Cu diffusion, isotope effect E Zn: 3.6 1169.4 29.8 1166

3.75.10-14 4.31 . 10-13

0.699 (7) 0.632 (9)

-

7OP

65Zn/6gZn diffusion, isotope effect E Zn: 4.89 1169.7 30.6 1168.8

1.31 . IO--l3 1.67. lo-l2

0.389 (10) 0.446 (8)

-

7OP

Composition at %

Temperature range [K]

DO low4 m2s-’

Fig.

Q

Ref.

kJ mol-’

CuZn; intermediate compound, disordered bee structure and ordered B2 (CsCl) structure 64Cu diffusion in the disordered structure Zn: 45.65 . ..48.00 770... 1090 0.011

92.3

77

56K

65Zn diffusion in the disordered structure Zn: 45.65 ... 48.00 772 ... 991 0.0035

78.6

77

56K

64Cu diffusion in the ordered B2 structure Zn: 45.65...48.00 654..‘715 180 565.~. 654 80

158.6 150.8

77

56K

65Zn diffusion in the ordered B2 structure Zn : 45.65 . . .48.00 649 . . .723 78000 537...649 163

185.1 152.0

77

56K

Composition at %

Temperature K

Fig.

Ref.

64Cu/67Cu diffusion, isotope effect E in the disordered structure Zn: 46.2 835.6 1.70.10-12 0.325 (9)

-

7OP

65Zn/6gZn diffusion, isotope effect E in the disordered structure Zn: 49.0 833.3 4.46. lo-l2 0.24 (1)

-

67P (continued)

Landolt-Biimstein New Series III/26

D

E

m2s-l

Bakker

232

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Composition at %

Temperature K

E

D m2s-’

Fig.

Ref.

CuZn, continued 64Cu/67Cu diffusion, isotope effect E in the ordered B2 structure Zn: 46.8 683 1.77.10-‘4 0.325 (IO)

-

7OP

65Zn/6gZn diffusion, isotope effect E in the ordered B2 structure Zn: 47.2 683.6 4.38 . lo-r4 0.20 (I)

-

67P

Composition at %

Temperature range [K]

DO IOm4m2s-’

,Q

Fig.

Ref.

kJ mol-’

Fe - Ge; primary phase 5gFediffusion Ge: 4.8

1173..*1473

4.8

242.8 (42)

-

67LI

0.090 0.105 0.058 0.066 0.110 0.35 0.64 0.85 0.60

265.4 262.9 255.8 254.9 262.0 275.4 282.1 277.5 276.7

-

73N

oo55+o.014 . -0.012 0.020+ 0.0°9 -0.007 o oo96+ 0.0034 - 0.0007 oo17+o.o11 . -0.007 oo72+o.031 ’ -0.027 029+o.11 ’ -0.08 0.190 0.120 0.073

249.5 (80)

-

70N

235.3 (71)

-

222.3 (71)

-

229.4 (88)

-

248.2 (113)

-

266.6 (138)

-

261.6 251.6 242.0

-

73N

263 (11)

-

77R

257 (19)

-

266 (20)

-

264 (20)

-

Fe - Mn; primary phase “Fe diffusion in primary phase Mn: 1.04 1263...1513 2.03 2.97 4.90 7.04 10.41 18.15 25.50 33.98 54Mn diffusion in primary phase Mn:

1.04

983...1573

2.03 2.97 4.90 7.04 10.41 18.15 25.50 33.98

1263...1513

Fe-MO; primary phase sgFe diffusion in primary, paramagnetic phase MO: 0.32

0.64 0.90 1.5

953...1173

15.5+32 -10 23.6+16’ - 21 28.5+210 - 25 47.7+ 340 - 42

Bakker

Land&-BCmstein New Series III/26

Ref. p. 2761 4 Self-diffusion Composition at %

Temperature range [K]

Fe - Ni; primary/terminal 5gFe diffusion Ni: 14.9 29.7 45.3 60.5 70.0 75.3 79.8 90.0 63Ni diffusion Ni: 14.9 29.7 45.3 60.5 70.0 75.3 79.8 90.0

lo3Pd diffusion Pd: 10 20 30 40 50 55 60 70 80 90

binary

alloys and intermediate phases (Tables)

Q

DO 10m4 m’s-’

Fig.

233 Ref.

kJ mol-’

phase extending over the whole composition range in the temperature range studied

1258 -.+ 1578

2.13 9.98 8.75 28.77 11.99 20.28 12.30 17.99

286.3 305.7 301.8 311.3 302.7 309.9 304.2 307,l

(180) (105) (77) (122) (94) (72) (55) (174)

78

81M

1258 ... 1578

1.88 2.36 8.04 7.76 13.90 13.31 8.73 7.67

289.4 291.9 303.4 300.5 305.3 307.3 301.5 299.6

(139) (120) (152) (123) (62) (138) (89) (196)

79

81M

Fe - Pd; primary/terminal 5gFe diffusion Pd: 10 20 30 40 50 55 60 70 80 90

in homogeneous

phase extending over the whole composition range in the temperature range studied

1373 ... 1523

1373...1523

0.79 0.93 0.66 0.95 0.95 0.79 0.69 0.60 0.91 0.91

259.5 (130) 269.6 (134) 275.9 (147)

0.70 1.84 1.66 1.05 0.70 0.67 0.79 0.73 0.79 0.37

278.8 284.6 279.2 270.8 264.6 263.7 266.2 266.6 271.3 268.3

277.5 271.7 262.5 264.1 262.5 260.0 258.7

(110) (163) (159) (147) (130) (147) (134)

(172) (155) (167) (147) (130) (142) (142) (134) (151) (151)

80, 84

77F*)

81,84 ‘:

82, 84

77F*)

83,84

“) Remark: The values of the pre-exponential factors and activation energies(for s9Feand lo3Pd diffusion) were obtained by :omputer calculations based on the results given in Fig. 84.

Land&-Biimstein New Series III/26

Bakker

234

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276 Temperature range [K]

Do 10e4 m2s-’

Q

Fig.

Ref.

03+0.8 . -o.22

263 (38)

-

79C2

o.1 +0.2 -0.07 o.1 +0.2 -0.07 o o4 + 0.07 . -0.04

254 (25)

-

259 (21)

-

240 (21)

-

O06+“‘3 . -o,0599

251 (71)

-

5.69

o o4 + 0.05 ’ -0.02

254 (17)

-

14.8

0.008+ “02 -0.006

224 (25)

-

1.1+26 _ 1o

264.1 (343)

-

20

0.34+ l2 - 0.33

265.0 (327)

-

25

1.17+130 - 1.16

265.4 (477)

-

30

0.28+7’1 -0.27

264.1 (335)

-

34

o.15+1.2 -0.13 1.3+1.5 -0.5 1*13+o.79 -0.47 2.1 + 3.9 -1.4 o.85 + 0.74 -0.40

264.1 (234)

-

289.7 (327)

-

284.2 (59)

-

292.2 (121)

-

286.7 (71)

-

0.34+ 3.5 -0.31

280.9 (222)

-

0.51

216.8 (84)

-

67Ll

85

75M2 *)

-

71D*) 81Rl

Composition at % Fe-Pt;

kJ mol-’

primary phase (solution in y-phase of Fe)

5gFediffusion Pt: 2.92

1386...1528

5.69 8.0 8.3 lg7Pt diffusion Pt: 2.92

15

1406.e. 1569

1173...1693

40 45 50 55 60

79C2

75K

Fe - Sb; primary phase sgFe diffusion Sb: 2.5

1169.e.1370

Fe - Si; primary phase “Fe diffusion in ferro- and paramagnetic phase Si: 7.64 806... 1366 For D see Fig. 85 *) Remark: Single crystal.

“Fe diffusion in ferromagnetic phase Si: 3 980... 1030 0.60 (30) 10 875...957 5.59

224.7 (54) 219.1

l ) Remark: Single crystal

(continued) Bakker

Iandolt-BGmstein New Series III/26

235

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

DQ

10m4m’s11

Q

Fig.

Ref.

276 276 282.5 215.9 (54) 232.3

86, 87 86, 87 -

81T 81T 702 71D*) 68L

250 (11)

86

77M *)

229.8

-

68L

kJ mol-’

Fe - Si, continued 5gFe diffusion in paramagnetic phase 1.03 1063... 1373 Si: 1.48 76.7 1.87 1063... 1373 63.2 3 1173...1523 0.23 (7) 3 1030... 1173 1.63 4.7 1073... 1573 5.5

1013...1373

72+17 . _ 51

6.3

1073... 1573

1.65

6.4

1013...1373

-3,1 3.15+6.8

238 (11)

86

77M *)

6.55

1063... 1373

5.2

242

86,87

81T

7.64

1173... 1373

-028 1.38+o.35

228.1 (25)

85

751112 *)

7.8

1053...1373

86+18 . _ 58

244 (11)

86

77M *)

8.2 8.64 10

1073 ... 1573 1063 ... 1373 1005...1178

0.50 4.93 0.25

213.1 236 209.6

68L 86, 87 81T 81Rl

11.1

1173...1373

063+o.19 .

212.2 (33)

-

75M2 *)

11.3

1073 ... 1573

1.11-oll .

213.9

-

68L

11.6

1053...1373

063+1’8 .

212 (13)

86

77M *)

11.7 12.1

1073...1573 1063... 1373

1.46-047’ 0.8

216.4 213

68L 86, 87 81T

15.3

1133...1373

21+7.5 . -16

219 (16)

86

77M *)

19.2

1093...1373

-18 3.4+3.7

216 (8)

86

77M *)



.

*) Remark: Single crystal.

Composition at %

Temperature K

E

D

Fig.

Ref.

m2sm1

5515gFediffusion in single crystals, isotope effect E in the ferromagnetic and paramagnetic phase 71D 0.366 (48) 6.50 (32). lo-l7 980 Si: 3 0.339 (45) 1.04 (5). 10-16 996 0.336 (44) 1.35 (7). 10-16 1008 0.343 (45) 1.91 (IO). 10-16 1016 0.339 (41) 3.06 (15). IO-l6 1023 0.343 (38) 3.23 (16) * IO-l6 1039 0.346 (37) 6.18 (22). 10-16 1062 0.349 (36) 7.70 (28). lo-l6 1076 0.346 (35) 8.94 (32). lo-l6 1083 0.377 (34) 2.42 (9). 10-l’ 1128 0.397 (40) 5.77 (21) . lo- l5 1175 Remark: The Curie temperature is 1029K.

Land&-Biirnstein New Series III/26

Bakker

236

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

Composition 3t %

Temperature range [K]

Do 10m4m2s-’

Q

Fig.

Ref.

88

83K

kJ mol-’

primary phase

Fe-h;

5gFediffusion Sn: O... 2.7 Fe-Ti;

1168

For D see Fig. 88

primary phase

5gFediffusion Ti: 2 2

1173...1473

2.8

242.0 (42)

-

67Ll

1273... 1673

0.56+‘14 -0.12 o 27 + 0.04 . -0.03

216.4 (63)

-

70Bl

204.7 (42)

-

o.40+“.5 -0.2

208.9 (234)

-

1173...1773 1173...1466

1.4 I.87

236.9 (42) 240.3 (42)

-

67LI

1273... 1723

3 g2+0.82 . -0.68 3 ()(-)+0.49 ’ -0.42 2 28 + 0.40 . -0.34 2 12+0.25 . -0.22 , 66 + 0.49 ’ -0.38

241.1 (54)

-

70B2

238.6 (42)

-

236.1 (46)

-

236.5 (29)

-

234.0 (75)

-

4 6 primary phase

Fe-V;

“Fe diffusion V: I.8 5.3 ‘*V diffusion v:

2 5 9 14 19

Fe - Zr; terminal phase

5gFe diffusion Zr: 96.5 98.0 99.5

lOgO... 1600 1120... 1600 1120... 1580

7.4 (3) ’ 10-3

108.1 (19) same values same values

1276...1515 1188...1470 1196...1520 1218,..1515 1258...1518

5.26. lO-2 2.9. 10-3 1.62. lO-3 2.08. lO-3

155.5 (132) 140.8 (73) 146.0 (72) 150.9 (I 34)

1.52. lO-3

149.0 (65)

89

87Hl

90

81PI

91,92

76D

g5Zr diffusion Zr: 93.63

96.46 98.36 98.65 99.02 GaNi;

intermediate phase, B2 (CsCI) structure

67Ga diffusion Ni: 47.28 48.76 50.01 50.73 51.01 52.40

1085... 1384

0.1230 (2317) 0.7874 0.0010 (19) 0.0122 (329) 0.1087 (2656) 5.1430 (209524)

191.5 209.4 146.5

166.4 189.6 222.0 (continued)

Bakker

Land&BBmstein New Series 111126

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

237

Temperature range [K]

Do

Q

Fig.

10m4rn’s-l

kJ mol-’

978 ... 1380

0.0029 (38) 0.0126 (117) 0.0130 (192) 0.0936 (1220) 0.1353 (1187) 0.0174 (84) 0.0107 (95) 0.0121 (37)

143.1 154.3 156.0 172.5 175.3 158.2 153.7 153.9

93,94 76D

238Pu diffusion diffusion in s-phase Pu: 96.6 847...917

6.98. 1O-4

56.1

-

71w

diffusion in g-phase Pu: 96.6 613...781

76.4

152.0

-

71w

414.1 (87)

95

84V

Ref.

GaNi, continued 63Ni diffusion Ni: 47.28 48.76 49.33 50.01 50.45 50.73 51.01 52.40

Ga - Pu; terminal phase

GaV,; intermediate phase, Al 5 structure 48V diffusion V: 75.6

1298 ... 1449

15200

Hf - Zr; primary/terminal phase extending over the whole composition range in the temperature range studied ‘*‘Hf diffusion in single crystal diffusion parallel to the hexagonal axis Zr: 4.0 1493... 1883 0.86 1347... 1493 7.1. lo-”

370.0 (134) 85.0 (268)

96

72D

diffusion perpendicular to the hexagonal axis Zr: 4.0 1493 ... 1883 0.28 1347... 1493 8.9. IO-lo

348.3 (200) 104.2 (553)

97

72D

Hg - Pb; terminal phase ‘03Hg diffusion Pb: 96 “‘Pb

428.s.568

o 7g+o.17 . -0.14

90.0 (8)

98

73w

487...568

o.76 + 0.21 -0.14

105.1 (13)

98

73w

diffusion

Pb: 99 Composition at %

Temperature range [K]

DO" 10e4 m’s-’

Q.

kJ mol-’

Dab low4 m’s-’

Qb

Fig.

Ref.

314.7 (251) 318.5 (241) 293.4 (241) -

99

83Hl

kJ mol-’

InPd; intermediate phase, B2 (CsCl) structure i14”‘In diffusion Analysis in terms of two exponentials: D(T) = Doa exp( - Q,/RT) + Pd: 49 1094...1270 0.0084 (44) 192.1(125) 50 996... 1326 0.0050 (27) 181.5(106) 53 996... 1417 0.016 (8) 191.1(116) 56 1039... 1472 0.14 (3) 215.3 (29)

Dabexp(- QJR T) 5.0 (39). IO2 10.6 (62). IO2 20.0 (ill) -

-

(continued)

Land&-Bhstein New Series III/26

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

238

Composition at %

Temperature range [K]

DQ

Q

Fig.

Ref.

lop4 m*s-’

kJ mol-’

1056... 1274 1098... 1326 1122...1424 1056...1379

0.12 (2) 2.30 (55) 0.60 (13) 0.20 (4)

207.5 (29) 243.3 (29) 222.0 (19) 205.6 (19)

99

83Hl

57.0 222.0 53.1

100 101 102

79A

Fig.

Ref.

-

75Sl

Q

Fig.

Ref.

103

75Sl

InPd, continued ro9Pd diffusion Pd: 49 50 53 56

MnPt,; ordered phase, Ll z (Cu,Au) structure s4Mn diffusion Pt: 65 75 82

1026... 1284 1026... 1283 1020... 1284

2.3.10-r’ 3.10-2 2.1 * 10-10

Composition at %

Temperature K

D

Mn -Ti;

m*s-’

terminal phase

54Mn diffusion Ti: 79.4 82.1 86.7 90.3 86.7 90.3

1171

1513

8.83. IO-l4 9.67. IO-l4 1.54.10-13 1.86.10-‘3 1.44.10-11 5.64. IO-”

Temperature range [K]

DO

Ti: 79.4

1083... 1525

(5.47;;:;).

IO-’

208.0 (75)

82.1

1070... 1570

(2.60+;:;;).

lo-*

176.2 (42)

86.7

1076... 1617

(2.06+;:;;).

lo-*

172.0 (54)

90.3

1137...1720

(1.90’;:;;).

lo-*

171.2 (96)

Composition at %

10m4m*s-l

kJ mol-’

44Ti diffusion

Mn -Zr;

terminal phase

54Mn diffusion Zr: 98 98.5 99 99.5 “Zr diffusion Zr: 98 98.5 99 99.5

1173...1473

0.08 (3) +10-j 0.46 (12). IO-’ 1.38 (41). lO-3 2.92 (73). lO-3

104.6 (27) 120.1 (30) 129.5 (37) 135.7 (27)

104

79P2

1173...1473

3.36 (97). 2.17 (61). 1.20 (30). 0.71 (20).

125.3 (35) 121.8 (28) 116.7 (34) 112.3 (27)

105

79P2

lO-4 lO-4 10-4 10-a

Bakker

land&-Btimsfein New Series III/26

239

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition It %

Temperature range [K]

Do 10m4rn’s-l

Q

Fig.

Ref.

207.2 210.6 218.5 228.6

-

71F

229.8

-

198.4

-

kJ mol-’

MO- Ni; terminal phase )gMo diffusion Ni: 77 80 82 84 92

63Ni diffusion Ni: 77 80 82 84

0.20 0.25 0.45 1.30 1.31

1373...1573

0.12 0.19 0.34 0.63 2.55

1223...1573 1223 ... 1623 1223 ... 1623 1273 ... 1673

92 MO-W; studied

1373 ... 1573 1223 ... 1573 1223 '.* 1623 1223 ... 1623 1273 ... 1673

204.3 211.0 218.5 236.1

71F

primary/terminal phase extending over the whole composition range in the temperature range -

ggMo diffusion w: 0.1 15 20 25 35 45 50 56 65 75 80 85

99.9 la5W diffusion w: 0.1 15 20 25 35 50 65 75 80 85

99.9

2073 ‘.. 2673 1673 . ..2673 1673...2673 1673...2673 1773...2673 2173...2673 1973... 2773 2173 ... 2573 2073 ... 2873 2073 .*. 3073 2073 *.. 3073 2073 . . .3073 2473 +.. 3073 2073.‘.2673 1673...2673 1673 ... 2673 1673 ... 2673 1773 ... 2673

1973...2773 2073 ... 2873 2073 ... 3073 2073 ... 3073 2073 ... 3073 2473 ... 3073

468.8 443.7 427.0

142 265 146 47 28 0.12 12 0.17 1.3 0.2

397.6 385.1 431.2 368.4

447.9

0.11

360.0 353.7 343.3

0.08 0.0025

326.5

-

69F

-

69F

-

68s

67L2 69F 67L2 69F

334.9

297.2

0.0085 1.4 1.7 2.2

305.6 312.3 322.3 355.8

6.9

397.7

14 16 20 22 25 24

427.0 485.6

498.1 510.7 544.2

Nb - Ni; terminal phase 63Ni diffusion Ni: 90 92 98.8

Land&-Bknstein New Series 111126

1303 ... 1503

281 260 255

1.80 0.20 0.12

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

240

Zomposition 1t %

Temperature range [K]

DO 10m4m2s-’

Q

Fig.

Ref.

kJ mol-’

VbNi,; intermediate phase, DO, (P-TiCu,) structure “Nb diffusion in single crystals Ni: 75 1543.s.1623

240

447.9

-

75Ml

“Ni diffusion in single crystals Ni: 75 1363.s.1643

0.18

304.7

-

75Ml

Vb-Ti;

primary/terminal phase extending over the whole composition range in the temperature range studied

“,‘95Nb diffusion fi: 10 35 50

2000.‘.2473 1773. ..2273 1473...2073

SeeFig. 106 SeeFig. 106 SeeFig. 106

64.3

1279...1657

70

1373.e.2073

o.29*+o.195 -0.117 SeeFig. 106

80.4

1222... 1565

(1.18+;:;;).

85 90

1150~~*1515 1230...1515

SeeFig. 106 SeeFig. 106

94.6

1222...1784

(l.79+;$.

95

1230...1573

See Fig. 106

1279.e. 1657

(2.51:;:;;).

80.4

1222...1565

94.6

1222... 1784

106,107 106,107 106,107

63G 63G 63G

106,108

79Pl

106,107

63G

106,108

79Pl

106,107 106,107

63G 63G

106,108

79Pl

106,107

63G

247.1 (43)

108

79Pl

(3.15~;:~~)~ 1O-3

175.6 (52)

108

79Pl

(l.27+$.

149.1 (24)

108

79Pl

258.4 (61)

lO-2

1O-3

198.1 (67)

160.0 (33)

“4Ti diffusion Ti: 64.3

10-l

lO-3

Nb- W; primary/terminal phase extending over the whole composition range in the temperature range studied p5Nb diffusion w: 5 IO 30

1873... 2273

Composition at % W

Temperature K

psNb diffusion w: 2 5 10

2680 (20)

‘*‘W diffusion w: 2 5 10

2680 (20)

2334 164 0.0257

544.2 489.8 355.8

-

67L3

Fig.

Ref.

1.277 (7). IO-l2 1.065 (4). lo-l2 0.760 (4) . lo- l2

-

86M

4.35 (20). lo-‘3 3.30 (8). IO-l3 2.38 (6). IO-l3

-

68M

D

m2s-’

Bakker

Landolf-BBmstein New Series III/26

242

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) [Ref. p. 276

:omposition 1t %

Q

Fig.

Ref.

373.0 (234)

-

72Kl

344.5 (540)

-

(.46+5.1 -2.4 > ’ lo-*

469.7 (151)

-

633.e.673 633...663 613...653

0.871 . 1O-7 0.923.10-* 0.929. lo-’

83.7 67.0 46.0

-

72s

Temperature

DO

Fig.

Ref.

range[Kl

10m4m*s-l

Temperature range [K]

DO 10v4 m*s-l

kJ mol- ’

ae- W; terminal phase “W diffusion ii’: 78

2208...2773

89 94 Sb,Sn,; intermediate phase, p-phase ‘r3Sn diffusion jn: 41 43 45 Composition at % SC-&;

Q

A

kJ mol-’

kJ mol-‘K-l

primary/terminal phase extending over the whole composition range in the temperature range studied

)5Zr diffusion The following measurementsare analyzed by D(T) = Do exp (- Q/R T) exp (A/R T*) Zr: 86.4 1400... 1900 1.3 341.7 17.18. lo4 111 93.3 1280... 1900 1.0 335.9 16.31 . lo4 Composition at %

87H2

Temperature

DO

Fig.

Ref.

low4 m*s-l

Q

range[Kl

kJ mol-’

Sn- Zn; primary phase 1‘3/‘23Sn diffusion Zn: 0.9

420...490

89+7.3 . -4.0

104.6 (23)

112

66B

65Zn diffusion Zn: 0.9

350...455

20+1.0 ’ -0.5

71.0 (15)

112

66B

Ti-V;

primary/terminal phase extending over the whole composition range in the temperature range studied

44Ti diffusion v: 10 20 30 40 50 60 70 80 90

1173...1875 1173.s.1796 1223... 1848 1273... 1848 1273.e.1849 1273...1874 1373... 1918 1373... 1941 1423... 2023

Arrheniusplot is curved

113

68M

48V diffusion v: 10 20 30 40

1173.s.1823 1173...1848 1223...1846 1223... 1848

Arrheniusplot is curved

114

68M

(continued) Bakker

Land&-Bknslein New Series III/26

243

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Tables) Composition at %

Temperature range [K]

DO

10e4 m2 s-l

Q

Fig.

Ref.

114

68M

kJ mol-l

Ti - V, continued v: 50 60 70 80 90

1323... 1846 1323... 1845 1373... 1875 1423... 1923 1423..’ 2020

Ti - Zr; primary/terminal phase extending over the whole composition range in the temperature range studied 44Ti diffusion Zr: 49

1060... 1920

I15

Arrheniusplot is curved

87H2

U - Zr; primary/terminal phase extending over the whole composition range in the temperature range studied 235U diffusion Zr: 41 61 73 89

1173 ... 1325 1173 ... 1338

8.96 0.007 0.00365 7.5. 10-4

245.3 168.7 160.7 141.9

-

68F

1173...1338

7.5. 10-7 3.8 . 1O-6 2.4. IO-’ 3.9. 10-4 0.028 0.12

83.7 99.2 118.5 146.5 190.5 205.5

-

68F

1428...2047

064+I.20 ’ -0.42

312.6 (153)

II6

81P2

1578 ... 1888

86 (25) 72 (22) 68 (22) 58 (15)

383.2 (109) 379.4 (110) 376.7 (106) 373.0 (105)

117

84P

48V diffusion in terminal phase 1166... 1480 Zr: 98.0 98.5 99.0 99.5

0.7 (2). 10-5 1.5 (3). 10-5 3.0 (6). IO-5 5.5 (11). 10-5

94.2 (10) 100.6 (18) 106.9 (21) 112.5 (24)

118

82P

g5Zr diffusion in primary phase 1578...1883 Zr: 0.5 1.0 I.5 2.0

115 (38) 153 (52) 195 (64) 242 (80)

373.0 (100) 376.0 (103) 378.6 (107) 380.8 (112)

119

84P

“Zr diffusion in terminal phase 1167... 1476 Zr: 98.0 98.5 99.0 99.5

14.0 (40). 10-5 9.3 (25) . IO-’ 5.9 (15). 10-5 4.5 (13) * 10-5

120.8 (33) 116.8 (31) 112.0 (29) 109.0 (26)

120

82P

g5Zr diffusion Zr: 15 22 41 61 73 89

V - Zr; primary and terminal phase 48V diffusion in primary phase Zr: 0.5 0.5 1.0 1.5 2.0

Land&-Biimstein New Series III/26

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

[Ref. p. 276

Figures for 4 10 m2 6 4 2

10

-I

10 6 6 4 2

10-15 1.00

1.05

1.10

1.15

1.20

.lOJK-’ 1.30

Fig. 3. Ag-Cd (30 ... 38 at % Cd). “OrnAg diffusion coeflicient (full lines) and “‘Cd diffusion coefficient (dashedlines) vs. reciprocal temperature [68G]. 0

1

2

3

4

5

6

Ag-

7

8 ot% -

Fig. 1. Ag-AI (90.3...99 at % Al). ‘romAg diffusion coefficient vs. Ag concentration at various temperatures [68H].

1.6 .10-“3 mvs

6 6

1.2

I 4 m

I 0.8 a

2

0.1

01 0

10-14 I 20

I 40

I 60

I I 80 at% 100

Au Fig. 2. Ag-Au (8...94 at % Au). “OrnAg diffusion coeflicient (open circles) and 198A~diffusion coefficient (full circles) vs. Au concentration at 1148K [63M].

0.85

0.89

0.93 0.97 1.01.10-3K-‘1.05 l/lFig. 4. Ag-Cu(0.17...8.15at %Cu). “omAgdiffusioncoefkicnt vs. reciprocal temperature [77B2].

Bakker

Landoh-BBmstcin New Series 111i26

245

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 2d3 m2/sI 1ll-'2

m2/5

I

I

I

A-

P..

I

h

An

r-t,

I

lo-l3 8

I

6

4 4

2

I

~hI lo-" 8 6 4

4\ 2

2

I

I

0.85

0.90

I

I

I

\\

1Pl

0.80

0.95

1.00

W3 K-'

1.10

0.85

0.90

0.95

1.00 l/T-

l/T-

Fig. 5. Ag-Cu (0.85 ... 3.36 at % Cu). “omAgdiffusion co-

efficient vs. reciprocaltemperature[77B2].

1.05

.10-3K'

1.15

Fig. 6. Ag-Cu (1.38 ... 4.43 at % Cu). “OrnAg diffusion coefficient vs. reciprocal temperature [77B2].

lo-‘-‘2

I”

m2/s

m2/s 6 4

I

I

I

3.0

.10-3,(-l

64

Q 2

I

10-13 B

Q

lo-l3 2.6

6

2.7

2.8

2.9 l/T-

4

3.2

Fig. 8. Ag,Hg, (55 at % Hg). ‘03Hg diffusion coeffkient vs. reciprocal temperature [77S].

2

1.25,

I

I

0.95 0

0.2

0.4

I

I

I

10-14 a

$15

0.

j

0.88

0.91

0.94 l/T -

0.97

.,0-3K-l

1.03

Fig. 7. Ag-Cu (1.75 ... 6.56 at % Cu). llomAg diffusion coefficient vs. reciprocal temperature [77B2].

Fig. 9. Ag-In (0.151. ..0.943 at % In). “OrnAg diffusion coefficient relative to the silver self-diffusion coefficient vs. In concentration at 1054 K [85K]. Different symbols correspond to two runs of measurements. Land&-B6rnstein New Series III/26

Bakker

0.6 In -

0.8 at%

1.0

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

246

[Ref. p. 276

10-12 _ m7/s .

-13 >

10

\

1o-l3

I -14 _ a 10 lo-‘& 10-15 I Q 10-16

48

45

40

52

56

lo-l5

ot% 60

MgFig. 10. AgMg (41.l ... 57.2at % Mg). “OrnAg diffusion co:flkient vs. Mg concentration at various temperatures [64D]. lo-l6

I

Ag - Sn

10-l’ 0.8

0.9

1.1 1.0 l/l -

1.2.10-3K-’1

Fig. 11. Ag-Sb (0.53...1.42 at % Sb). “OrnAg diffusion coefficient vs. reciprocal temperature [55S].

8 at% 10 6 SnFig. 12. Ag-Sn (1 . ..8.67 at % Sn). “OrnAg diffusion coefficient relative to the silver self-diffusion coefficient minus 1 vs. Sn concentration at various temperatures [83H2]. 2

4

0.8 at% 1.0 0.6 0.4 Sn Fig. 13. Ag-Sn (0.218...0.773 at % Sn). “OrnAg diffusion coeffkient relative to the silver self-diffusion coeflicient vs. Sn concentration at 1052K [85K]. Different symbols correspond to two runs of measurements.

Bakker

0

0.2

Landolf-BBmstein New Series III!26

247

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 10-12 m2/S

I

Ag - Sn

13

10-12 m2/s 14 -13

IO jot% Sn I

4.1 3 15 _

a

0.8 lo-l4

0.108

I6

1.1540JK-' 1.20

1.9:

Fig. 14. Ag-Sn (0.108... 6 at % Sn). rromAg diffusion coefficient vs. reciprocal temperature [78G].

0.85

0.90

0.95

1.00 l/T-

1.05

@K-'

1.15

Fig. 15. Ag-Sn (0.11, 1.7 at % Sn). rr3Sn diffusion coefticient vs. reciprocal temperature [78G].

10-12 m2/s 6

I

I

Ag -Zn

, 2.8

28.

2

1o-13 8 6

I

I a

4

2.2

22

2

I a

a

2.0

20

'T 6

1.8

18

4

1.6

16 14 0

2

1.1, 1

2

3

4 at%

1.65 40-3K-'

5

Fig. 16. Ag-Zn (1.1...4.1 at % Zn). ‘lomAg diffusion coefficient vs. Zn concentration at various temperatures [67R].

Land&-Biirnstein New Series III/26

1.75

l/T -

Zn -

Fig. 17. Ag-Zn (99.11 ... 99.65at % Zn). ‘romAg diffusion coefficient vs. reciprocal temperature parallel (D,,) and perpendicular (D,) to the c axis [69S].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

248

[Ref. p. 276

10-“[

KS/s

2

10-12

\ 2 \

10-l’

I el

I 6 ,o-li Q6 4

-13 10 1.0

2

1.1

1.2 l/l-

1.3

1.4.lO-‘K-’ 15

Fig. 19. AgxZn, (61,62 at % Zn; y-phase). “OrnAg diffusion coefficient vs. reciprocal temperature [71S]. lo-‘) l.LO

1.45

1.50

1.55 l/l -

1.60

.10-JK“

1.70

Fig. 18. Ag-Zn (98.6,99.43 at % Zn). 6sZn diffusion coefficient vs. reciprocal temperature parallel (D,,) and perpendicular (D,) to the c axis [69S].

10‘‘amk

10-n 2.5 48

54 56 01% 58 co Fig. 21. AlCo (49 ... 57 at % Co). “Co diffusion coefficient vs. Co concentration at 1623 K [51N].

I Q

50

52

10-u 10-l’ m2/s

I

Al - Fe

10-u 10-n 1.0

14 .1O-3K-’ 1.5 1.3 l/l Fig. 20. Ag,Zn, (61 at % Zn; y-phase). 6sZn diffusion coefficient vs. reciprocal temperature [71S]. 1

1.2

I ~ 10-u

lo-l4

Fig. 22. AI-Fe (75 at % Fe). “Fe diffusion coeflicient vs. b reciprocal temperature [75L].

lo-l5 0.65

0.70

0.75

0.80

0.85.10-‘K-’ 0.90

l/T-

Bakker

Land&-BBmstein New Series III/26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 10-12_ m21s

10-13

IO‘"

Y

_

249

I

m2/s

AlFe

.

i L

t

82ot%Fe o 90ot%Fe ,94ot% Fe

Y 10-14 _ ?I 10-15 _

I

\

I a

0.85.1O-3 K-’I 0.75 0.80 l/T Fig. 24. AlFe (51.5 ... 65.9 at % Fe). 55Fe diffusion coefficient vs. reciprocal temperature [75L]. 0.65

10

0.70

10

10

2

1o-13 8 6

10-19 0.7

4

- .

0.9 1.0 1.1 .lO-‘K-’ 1.3 l/l Fig. 23. Al-Fe (82 .. .94 at % Fe). “Fe diffusion coeffcient vs. reciprocal temperature [81Rl]. Arrows indicate Curie temperatures. 0.6

0.8

2

I

10-l'"

a*

6 4 2

2

lo-l5 8 6

10-l'" 6 6 4

4

2

1o-gIl;

I

-2

0.80 l/TFig. 26. AlNi (50.0 ... 58.7 at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature for various Ni concentrations (in at %): Curve f: 50.0; 2: 53.2; 3: 54.5; 4: 55.5; 5: 58.0; 6: 58.5; 7: 58.7 [71Hl].

11-1, 6 4

2

6 I

I

I

I

0.64

0.68 l/l-

0.72

/Jo-17

0.60

Landok-BBmstein New Series III/26

I

14

Fig. 25. AlNi (48.3 ... 50.0 at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature for various Ni concentra0.76.10-3K-’ 0.80 tions(inat%):Curve1:48.3;2:48.6;3:49.0;4:49.2;5:50.0 [71Hl].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

250

[Ref. p. 276

Fig. 28. AINi, (73.2...76.2 at % Ni). “3Ni diffusion coeffi- b cient vs. reciprocal temperature for various Ni concentrations (in at %): Curve I: 76.2; 2: 74.7; 3: 73.2 [71H2].

2.11f2I

m’/s 1;-‘2

1

AlNi I

A, //

2

10-15 8 6 I 4

4

1i-‘6 6 4

6

I

1

4.1o-l* 0.60 1;-‘5

10'.Dm2,‘s

6

I

0.65

0.70

I

I

0.75

I 0.90

0.80

40JK-’

I

AINi3

4

1557K A 1

10-“6 8 6

4.10-"7 66

, II

,y -1

I

I

48

50

I

I

I

I

I

I

52 54 Ni -

56

lo- 14 _

I I

L 1427

58 at % 60

Fig. 27. AlNi (48.3 ... 58.7 at % Ni). 63Ni diffusion coefficient vs. Ni concentration (48.3 ... 58.7 at % Ni) at various temperatures: Curve I: 1623K; 2: 1573K; 3: 1523 K; 4: 1473K; 5: 1423K; 6: 1373 K; 7: 1323K; 8: 1273 K [71Hl].

oc 1471 L27 -? 394 -v -v 374

t I I5 _ 1394 ~ lo-

318 9

1290 L-

290 9

lo- 16 _

1190 LFig. 29. AINi, (73.2 ... 76.2 at % Ni). 63Ni diffusion coefli- b :ient vs. Ni concentration at various temperatures [71H2].

10-lI7 73.1 3

Bakker

73.5

7

74.tj Ni -

75.0

75.5 0

251

Ref. p. 2761 4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures) lom2/

IO+ m2/s

i.”

I

Al Ni,

lo-’

IO-

a

I a

A

10-1’8 IO-‘91 0.6

lo-’

P * 0.7

1.0 .IO’K-’ 1.1

0.9

0.8 1/T-

Fig. 31. AlNi, (74 ... 76 at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature for various Ni concentrations (in at %): Open circles: 74; triangIes: 75; full circles: 76. Solid line: result from [75B] for 75 at % Ni; dashed line: result from [71H2] for 75 at % Ni.

10-l

10“ [

0.90 l/T-

Fig. 30. AINi, (74.8 at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature [75B].

Y

10-12-

o

0

8L2.5

10-L

m2/s

792.2

!,Io-13~

I o-l3

10-l 4 10-14 , ~I lo-‘! 10-'5 0

1

2

3

4 ot%

Zn -

lo-l6

Fig. 33. Al-Zn (1.16 ... 3.76 at % Zn). 65Zndiffusion coefficient vs. Zn concentration at various temperatures [77Bl]. 10-l

10-l’1 23.5

Landok-B&stein New Series III/26

24.0

24.5

25.0 Al -

25.5

at%

;!6.5 4 Fig. 32. AINi, (z 74 ... x 76 at % Ni). 63Ni diffusion coef-

ficient vs. Al concentration at various temperatures [87H3].

Bakker

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

[Ref. p. 276

10' m*/

lo>

4 .l(p I lo-' a

ml/s 3 2 I a

10-l \ \

11 0

I 1

I

I

I

I

2

3

4 at%

5

lo-' 1.1

1.2

1

1.4

1.5

h

*l[ i-‘K 1

l/1 __)

ln -

Fig. 34. Al-Zn (1.16...3.76 at % Zn). Linear plot of the 65Zn diffusion coefficient vs. Zn concentration at various temperatures [77Bl].

Fig. 35. Al -Zn (2.15,3.76 at % Zn). 65Zn diffusion coefficient vs. reciprocal temperature [77Bl].

1P m2/s 10-”

,0-x

I a ,pI

10-l’

10-p 50 at% 60 Zn -

Fig. 36. Al-Zn (lo... 58.5 at % Zn). “5Zn diffusion coeflicient vs. Zn concentration at various temperatures [7X1].

Fig. 37. AI -Zn (24.25 at % Zn). 65Zn diffusion coefficient vs. reciprocal temperature [SOC].

Bakker

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) &lo-"2 m2/s

mVs 6

lo-l2 8

253

I

AuCd I .

I

I

I I

/I ,

_

821.7K_,A --&---

6

_-/ /

10 8 6 4

46

L7

48

49

50 at%

51

Cd -

Fig. 39. AuCd (47.5 ... 50.5 at % Cd). “‘Au diffusion coefficient and “‘Cd diffusion coefficient vs. Cd concentration at various temperatures [67G]. Full symbols: Au diffusion; open symbols: Cd diffusion. , o-l;

m2/s

10-y\

I 1.2

1.3

1.4 1/T -

1.5

1.6~10-3K-'1.7 ,o-lZ

Fig. 38. AuCd (47.5 ... 50.5 at % Cd). rg5Au diffusion coefficient, “‘Cd and ‘r5Cd diffusion coefficient vs. reciprocal temperature [67G]. Open triangles: “‘Cd diffusion in the 47.5 at % Cd compound; full triangles: “‘Cd diffusion in the 47.5 at % Cd compound; open circles: Au diffusion in 47.5 at % Cd compound; open squares: “‘Cd diffusion in the 49.0 at % Cd compound; full circles: Au diffusion in the 49.0 at % Cd compound; diamonds: “‘Cd diffusion in the 50.5 at % Cd compound; full squares: Au diffusion in the 50.5 at % Cd compound. 10-1’3 m2/s

I 6

TX-j-

Au-Cu I

1o-l4 1 Q , o-l!

1 I lo-"

,i-‘44 0

5

IO

15 Au -

20

25 at% 30

Fig. 41. Au-Cu (72.5 ... 97.5 at % Cu). rgsAudiffusion coefficient and Wu diffusion coeftkient vs. Au concentration at 1133 K [78H]. Full circles: Au diffusion; open circles: Cu liffusion. Landolt-Biimstein New Series III/26

lo-l7 C

0.9

1.c l/T -

Fig. 40. Au-Cu (75 at % Cu). lg5Au diffusion coefficient vs. reciprocal temperature [77B2]. Open circles: [65B]; full circles: [69A].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

254 10-l’ m2/s ml/s

[Ref. p. 276

lo-11 m21 5

Au -To

1\

10’-12

b c\

oI 10’.13 -

10‘” a lo-‘3 1.k

10.14 _

2.0 alO-‘K-’ 2.2 1.8 l/T Fig. 42. Au-Ta (1.2 at % Ta). lg5Au diffusion coeftkient vs. reciprocal temperature [75G2]. [X(32]. 1.6

10-15 1.05

10“ m21

1.15

1.25 l/T-

1.35.lO-“K-l 1.

Fig. 43. AuZn (49.0 ... 51.Oat % Zn). “‘Au diffusion coefficient and 65Zn diffusion coefficient vs. reciprocal temperature [71G]. A: Au diffusion in the 49.0 at % Zn compound; A: Zn diffusion in the 49.0 at % Zn compound: o: Au diffusion in 50.0 at % Zn compound; l : Zn diffusion in the 50.0 at % Zn compound; V: Au diffusion in the 51.0 at % Zn compound; V: Zn diffusion in the 51.0 at % Zn compound.

lo-’

~I 10“

10“

OS 10-l

69

50

0 48.0

51 ot%

2nFig. 44. AuZn (49.0 ... 51.8 at % Zn). “‘Au diffusion coefticient and 6SZndiffusion coeflicient vs. Zn concentration at various temperatures [71G]. Open circles: Au diffusion; full circles: Zn diffusion.

48.5

49.0

49.5 50.0 Zn -

50.5 at%

51.5

Fig. 45. AuZn (48.37...51.01 at % Zn). ‘95”99Au isotope effect Efor diffusion vs. Zn concentration at various temperatures [83H3]. Full triangles: 757 K; open triangle: 814 K; circles: 876 K.

Bakker

Land&-BBmsfein New Series III!26

Ref. p. 2761 4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures) 0.3

1 o-li

I

mVs

255



Be-Cu \

I 0.2 ,o-l: u 0.1 I

0

49.0

49.5

50.0

50.5 Zn -

51.0

at%

52.0

?ig. 46. AuZn (49.18...51.85 at % Zn). 65/6gmZnisotope :ffect E for diffusion at various temperatures (see table) ac:ording to [83H3].

-14

10

Q , 0 -l!

10-16

1.i

1 1.1

t

10-17L

2

0.7

3 I.( --, 2

0.9

1.0 l/T-

1.1

0.2

0.6

0.4

0.8 at%

1.0

1oq3 m2/s

Cd -

?ig. 48. Cd-Pb (99.1 . ..99.995 at % Pb). “‘Cd diffusion :oefficient relative to the lead self-diffusion coefficient vs. Cd :oncentration at 470.7 K [79Cl].

I f-o-~e

730°C I

9iO°C

IO.14 10-15 1o-16 I Q

10-1'1 10-18 10-19

0.6

Fig. 49. Co -Fe (50 at % Fe). Upper part: “Co diffusion coeffkient (full circles) and s9Fe diffusion coefficient (open circles) vs. reciprocal temperature [70F]. Full triangle: “Co diffusion [68w]; open triangles: s9Fediffusion [68w]. Lower part: ss’5sFeisotope effect E for diffusion vs. reciprocal temperature [70F]. Land&-B&m&n New Series III/26

1.240"K-'1.3

Fig. 47. Be-Cu (1.6 at % Cu). Be tracer diffusion coefficient vs. reciprocal temperature parallel (I]) and perpendicular (I) to the c axis according to [77B2] based on [73L].

a o.! 0.E 0

0.8

Bakker

-0.2 I 0.6

0.7

0.8

0.9 l/T-

1.0

256

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

10’ ml/

[Ref. p. 276

10-l’ m2/s

10-12

10 lo-’

I a

10“

10-l‘ a

10-’

lo-l5

lo-’

\ ‘,

lolo-

0.8

0.9

1.0

1.1.lo-)KJ 1.2

0.7

0.8

l/1Fig. 50. CoGa (40.0 at % Ga). 6oCo diffusion coefficient (full circles) and 67Ga diffusion coeflicient (open circles) vs. reciprocal temperature [8OS].

0.9 l/l -

1.0

1.1.10-3K-’1.2

Fig. 51. CoGa (44 at % Ga). 6oCodiffusion coefficient (full circles) and 67Gadiffusion coefficient (open circles) vs. reciprocal temperature [SOS].

lo-” m2/s

mVs

lo-‘j

10-12

10-l‘

10-l)

10-l'

I lo-l5 a

I a

10-1’6

lo-‘& lo-‘5

1.1.1W3K-1.2 1.0 0.9 l/1Fig. 53. CoGa (52.0 at % Ga). 6oCo diffusion coefficient (full circles) and “‘Ga diffusion coefticient (open circles) vs. reciprocal temperature [8OS]. 0.7

Fig. 52. CoGa (50.0 at % Ga). 6oCo diffusion coefficient (full circles) and 67Ga diffusion coefficient (open circles) vs. reciprocal temperature [8OS].

Bakker

0.8

257

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 10. m2/ 10-1'2 10-1'2, mVs

1

\: lo-

IO-l3 lo-l3

IOP lo-l4 I -10-

I a 10-1'5 lo-"6

IO-l7 t IO-'* 0.7

lo0.8

0.9

1.0

1.1 40" K“ 1.2

j

t

0.

0.75

l/T -

Fig. 54. CoGa (54.8 at % Ga). 6oCo diffusion coefficient :full circles) and 67Ga diffusion coefficient (open circles) vs. :eciprocal temperature [8OS].

0.80 l/T -

0.85 *10-3K-'

O.!

Fig. 55. Co-Mn (5.22, 10.24 at % Mn). 54Mn diffusion coefficient vs. reciprocal temperature [771].

10-l' m2/s 6

\3\

I

\\

.

Co-P I A 92.6 at% Ti

1o-l2 m2/s '1

1723K

IO 8

Co-Ni

I Q 6

1o-l3

4

2

I -14 Q Q IO

IO 8 6

IO-15 -15 IO

I 10-161 lo-'6 0

4

I

I

20

40

I co-

60

I\d

Fig. 56. Co -Ni (3.7. .. 80.1 at % Ni). 6oCodiffusion coefticient vs. Co concentration at various temperatures [69M].

Land&-Biimstein New Series 111126

0.5

80 at% 100

0.6

0.7 l/T-

0.8

0.9 .W3K-' 1.0

Fig. 57. Co-Ti (92.6...98.4 at %). 44Ti diffusion coefficient vs. reciprocal temperature [75Sl].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) I

I

I

I

I

I

I

I

I

I

I

I I

I I

0.80

0.85 l/l-

m”sl Co?Ti

[Ref. p. 276

-15

‘P t 6 I 1 I

I I

!

!

I

I I I I FH

10-166 0.70

0.75

01 0

0.90 -10-3K-’ 1.00

Fig. 58. Co,Ti (21.5 ... 24.0 at % Ti). 6oCo diffusion coeflicient vs. reciprocal temperature [88N]

I 0.1

I 0.2 co-

I 0.3

I I 0.4 ot % 0.5

Fig. 59. Co-U (x 99.5 ... x 99.7 at % U). 235U diffusion coefficient vs. Co concentration at various temperatures

WPI.

1.00

10‘ t 0.95 z 0 :a90 0

10‘ 0.60

0.65

0.70

0.75 l/l-

0.85 0

0.80 alO-‘K-’ 0

0.5

1.0

1.5

2.0 ot% 2.5

Fe -

Fig. 60. Cr-Zr (92.14...97.95 at % Zr). g5Zr diffusion coefficient vs. reciprocal temperature [81Pl].

Fig. 61. Cu - Fe (0.2 ... 2.4 at % Fe). 64Cu diffusion coefficient relative to the copper self-diffusion coefficient vs. Fe concentration at 1293K according to [72B].

Bakker

Land&-Bctnmfein New Series 111’26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 4s .10-1” m2/s 3.5

10. m,2

259

I

L Cu-Ni

3.0 I 2.5 Q 2.0 1.5 IO' 1.0

I

0.5

I

I

I1005K

/

1.5 2.0 2.5 at% 3.5 In Fig. 62. Cu - In (0.4 ... 3.1 at % In). @Cu diffusion coefficient vs. In concentration at various temperatures [82H]. 0.5

1.0

I

0.65

0.70

87.0at%Ni 54.60i

IOAl-LLLL

-II

I

0.60

0.75 0.80 .lo”K-“- 0 l/7Fig. 63. Cu-Ni (21.5 ... 87 at % Ni). 64Cudiffusion coefficient vs. reciprocal temperature according to [77B2], based

,o-l;

-r-l-

m2/s 10-l m2/I 5

I

9.8at%Pt

Cu-Ni ,o-l:

I m

1o-14 Pt ?BSot%Pt 1 ,o-l5

0. l/T-

0.65

0.70

0.75

0.80 -lo-3K-’ 0.90

l/T-

Fig. 64. Cu-Ni (21.5 ... 87 at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature according to [77B2], based on [64M]. Land&-Bijmstein New Series III/26

0.60

Fig. 65. Cu - Pt (9.8 . .74.5 at % Pt). 64Cudiffusion coeffcient vs. reciprocal temperature [77B2].

Bakker

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

260 ‘C?

[Ref. p. 276

I

d/s cu- Pt

10”

I Q

0

III

l

0.55

~~~~!

0.60

0.65

0.70 l/l-

0.75

0.80 .10-3K-’ 0.90

Fig. 66. Cu -Pt (9.8 . ..74.5 at % Pt). ‘gsmPtdiffusion coefficient vs. reciprocal temperature [77B2].

I

6

I

I

SbFig. 67. Cu-Sb (0.3 ... 1.7 at % Sb). 64Cu difl‘usion COGcient vs. Sb concentration at various temperatures [82H].

!

25ol%Sb

t

10-1’1 lo-‘01

I

I

I

I !

Zlot% Sb

1.10

1.14

1.22

1.18 l/l

1.26@K-’ 1.30

-

Fig. 68. Cu,Sb (21 . ..29 at % Sb). 64Cu diffusion cocfficicnt vs. reciprocal tcmperaturc [7OH].

29 ot% 27 25 Sb Fig. 69. Cu,Sb (21 ...29 at % Sb). 64Cu diffusion coefficient vs. Sb concentration at various temperatures [70H].

Bakker

‘9

21

23

Landolt-BCmslein New Series 111’26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

261

IO.'3 m2/s

3.0

lo-l4

I

Q I a

1.7ot% Sn

2.0

l.lot% Sn 0.8 at% Sn

,o-l'

1

2.5

I.5

0.4ot% Sn

10-b'

i

0

1.00

40‘3K-'

1.

I/T-

Sn-

Fig. 70. Cu- Sn (0.4 ... 1.7 at % Sn). 64Cu diffusion coeffi:ient vs. reciprocal temperature [82H].

Fig. 71. Cu - Sn (0.4 .. .3.0 at % Sn). 64Cu diffusion coefficient vs. Sn concentration at various temperatures [82H].

10-1tl r m2

10-l’ m2h

I 10-l a

I :r16.6at% Sn

I do

latO/oSn

,o-l;

0.95

1.00

1.05

1.10 I/T-

1.15

.IO-jK-'

Fig. 72. Cu,Sn (16.6, 20.2 at % Sn). Yu diffusion coefticient (full circles) and l13Sn diffusion coefficient (open circles) vs. reciprocal temperature [8OP].

Land&-Biirnstein New Series III/26

IO'.12 1.000

1

1.025

1.050

1.075 I/T-

1.100 dK-'

1.150

Fig. 73. Cu,Sn (l&19.8 at % Sn). Wu diffusion coefficient (no symbols) and l13Sn diffusion coefficient (open circles) vs. reciprocal temperature [68E].

Bakker

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

262

c

Cu3Sn

I

I

[Ref. p. 276

I 10.11 m2/‘s i

lo-

10-l’ 8 j.lO-“l

I

I

I

4

I

I

I

I

T-l

I 10’ Q

lo-

10-“1 15

I 17

I 19

21

10‘

I I 23 ot% 25

,

1 i

1.20

1.30

Fig. 74. Cu,Sn (16.6...20.2 at % Sn). 64Cudiffusion coefli:ient (full circles) and ‘13Sn diffusion coefficient (open cir:les) vs. Sn concentration at various temperatures [68E, 8OP].

6.0t 3.7 JO-‘4

I

I

1

2

I

I

1.35

.@K-’

1)

l/l -

Sn -

Fig. 75. &Cu,Sn, (20.5 at % Sn). 64Cu diffusion coefficient (open circles) and l13Sn diffusion coefficient (full circles) b‘S. reciprocal temperature [68E]. I

I

1.0

1.2

I

I

I

d/s I 3.3 Q 2.9 2.5 0

3 4 01% 5 ln Fig. 76. Cu-Zn (0.6...4.2 at % Zn). 67Cu diffusion coeficient vs. Zn concentration at various temperatures [7OP].

0.8

1.4 1.6 1.8 .10-3K-’ 2.2 l/T Fig. 77. CuZn (45.46... 48 at % Zn). 64Cu diffusion coefficient (full circles) and 65Zndiffusion coeffkient (open circles) vs. reciprocal temperature [56K].

I Bakker

Landok-ESmstein New Series III!26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

263

Fig. 79. Fe-Ni (z 0 ... 90 at % Ni). 63Ni diffusion coefticient vs. Ni concentration at various temperatures [81M]. Open circles: [81M]; open squares: [76Z]; full circles: [7532]; full squares: [63F]; open triangles: [67D], full triangles: mean values.

1o-l5

lo-"1 I a

10-1’5

1 4 1o-14

1Cl-l3 m2/s

lo-l5 mVs

lo-‘6

IP

10-"5

I a

aI 10-16

10-17 I

0

I

I

I

20

40

60

Fe

0 lo-l5

0

m2/s

0

NI-

I

I

80 at% 100 Ni

lo-l6

“A”

I

1o-l6

a

lo-l7

10-181 0 Fe

20

40

60 NI-

80 at% 100 Ni

4

Fig. 78. Fe-Ni (5 ... 90 at % Ni). 5gFediffusion coefficient vs. Ni concentration at various temperatures [81M]. Open circles: [81M]; open squares: 16601;full circles: [55N]; full squares: [63F]; open triangles: [72K3], full triangles: mean values.

I

2

a

10 6

Fig. 80. Fe-Pd (lo...50 at % Pd). “Fe diffusion coefficient vs. reciprocal temperature [77F]. The Arrhenius curves were obtained by computer calculations based on the results given in Fig. 84. Land&-Biirnstein New Series III/26

Bakker

0.600

0.625 0.650

0.675 l/T-

0.700 .lOJK’

0.7:

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

264 2*10ml/

[Ref. p. 276

4 Fig. 81. Fe-Pd (55...90 at % Pd). 59Fe diffusion coeficient vs. reciprocal temperature [77FJ.The Arrhenius curves were obtained by computer calculations based on the results given in Fig. 84.

Fe- Pd

10’ 8 6 4

I el

2

1tY 8

4

6 4

2

10-l 0.

2*10-n,

625

0.650

0.675) l/1-

1

1

m2’slFe-Pd 1

1

4

0.700 .lO-‘K-’ 0.750

2

10-1’5

0.600

0.625

0.650

0.675

0.700 W3K”

0.750

Fig. 82. Fe-Pd (lo...50 at % Pd). lo3Pd diffusion coefficient vs. reciprocal temperature [77F]. The Arrhenius curves were obtained by computer calculations based on the results given in Fig. 84.

For Fig. 83 see next page.

Pd-

4 Fig. 84. Fe-Pd (lo...90 at % Pd). 59Fe diffusion coefftcient (full lines) and ro3Pddiffusion coefticient (dashed lines) vs. Pd concentration at various temperatures [77F].

Bakker

Land&BBmstein New Series Ill/26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

265

4 Fig. 83. Fe-Pd (55 ... 90 at % Pd). lo3Pd diffusion coeff, cient vs. reciprocal temperature [77F]. The Arrhenius curve> were obtained by computer calculations based on the result5 given in Fig. 84.

10-l' m2/s IO-l2

0.600

0.625

0.650

10 m2

0.675

0.700

.10‘3K-' 0.750

I

Fe-S

10 0.7 b

0.8

0.9

1.0

1.1 l/T -

1.2

I.3 40-3lc'

1.5

Fig. 85. Fe-Si (7.64 at % Si). “Fe diffusion coeffkient vs. reciprocal temperature [75M2]. Full circles: mechanical sectioning; open circles: chemical sectioning; open triangles: Zener relaxation; full triangles: magnetic Zener relaxation. The dashed line is the high-temperature extrapolation.

I 10 a

10

lo0.75

Landolt-tlknstein

New Series III/26

0.80

0.85 0.90 1/T-

0.95 *lo-

4 Fig. 86. Fe-Si (1.87 ... 19.2 at % Si). 59Fediffusion coefficient vs. reciprocal temperature for various Si concentrations (in at %): Curve 1: 0; 2: 1.87; 3: 6.55; 4: 8.64; 5: 12.1; curve a: 5.5; b: 6.5; c: 7.8; d: 11.6; e: 15.3;f: 19.2. Curves I...5 1.05 from [81T], curves a.. .f from [77M].

Bakker

4 Self-diffusion in homogeneousbinary alloys and intermediate phases(Figures)

266

[Ref. p. 276

10“’ m>/s 1173 K I’ 1ll23K

r’

10”

11073K *

/’

I Q 10-‘5

0

20 .,p mVs 15

I 10 Q

2.5

5.0

7.5 Si -

10.0

12.5of% 15.0 .

Sn -

Fig. 87. Fe-Si (1.4... 12.1 at % Si). “Fe diffusion coeflicient vs. Si concentration at various temperatures [81T].

Fig. 88. Fe-Sn (0.2...2.7 at % Sn). “Fe diffusion coefficient vs. Sn concentration at 1168 K (83K].

lo-l0

I Q

.

L A

10-l’

T-

Ao. ----SC ” A

l- .. *

10‘” 0.5

0.6

0.7

0.8 l/T-

0.9 .lO-‘K“ 1.0

Fig. 89. Fe - Zr (96.5 ... 99.5 at % Zr). “Fe diffusion coefficient vs. reciprocal temperature [87Hl]. Full triangles: 96.5 at % Zr; open triangles: 98 at % Zr; open circles: 99.5 at % Zr; full circles: 100 at % Zr.

98.65 I 0.60

0.65

0.70

0.75 l/T -

0.80

.10-3K-’

a

Fig. 90. Fe-Zr (93.63...99.02 at % Zr). gsZr diffusion coefficient vs. reciprocal temperature [81Pl].

Landolt-BCmstein New Series III!26

267

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

=-l--l-

1-11

IO-”

I

2/s

m2/s

GaNi

3-12

o-13

IO" mvs

. .a I a

VI-'

o-l"1

10“

p5

47

I a

48

49

50

51

52 at%

:

NIFig. 92. GaNi (47.28. .. 52.40at % Ni). 67Gadiffusion toe ficient vs. Ni concentration at various temperatures [76D]

o-16

10-l

IO"' m2fs

,p

I

GaNi 1380K I

lo-" 0.7

I

0.8

*

f

la-l2 IT

1285

0.9 l/l -

Fig. 91. GaNi (47.28. ‘52.40 at % Ni). 67Gadiffusion coefficient vs. reciprocal temperature [76D].

For Fig. 93 see next page.

1o-l5

Fig. 94. GaNi (47.28*.. 52.40 at % Ni). 63Ni diffusion coef- b ficient vs. Ni concentration at various temperatures [76D]. Landolt-Bbmstein New Series III/26

Bakker

47

f

48

49

N50w51

[Ref. p. 276

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

268

c

10“ r m2k

IV3 GC 0

10-l

I=2

\

I Q

1 n

0 \

lo-

\

1

0

lo0.68 1

0.70

0.72 l/l-

0.74

0.7640°K' 0.78

Fig. 95. GaV, (75.6 at % V). 48V diffusion coefficient vs. reciprocal temperature [84v].

1

t

10“‘

\\

lo-"

t

l/l

0.9 -

1.0 JO-jK-' 1.1 l/l-

Fig. 93. GaNi (47.28... 52.40at % Ni). 63Ni diffusion coefficient vs. reciprocal temperature [76D].

Fig. 96. Hf-Zr (2.1 at % Zr). ls’Hf diffusion coefficient vs. reciprocal temperature in single crystals, parallel to the c axis [72D].

Bakker

Landok-B6mstein New Series III!26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) IV" m2/s

T0

IO-13 m2/S

I

Hf- Zr

r

-

-

K-r

-

10-14

IO“!

269

I m

-

IO‘-15 _ I IO-'" m

--

10-16 a 10-12 m2/S

,o-l;

-13 _

IO

\ 4

I

1-c

-

I:

-

-

li+

0.50

0.55

0.60 l/T-

0.65

0.7040" K“ 0.75

Fig. 97. Hf-Zr (2.1 at % Zr). isiHf diffusion coefficient vs. reciprocal temperature in single crystals, perpendicular to the c axis [72D].

I 10-14 _ m

IO-15 _

IO-16 c 0.65

10-1'2 m2/s

0.85 .I0

0. l/T-

I-

d I5 0.65 0.75 0.85 ~10. l/T-

Fig. 99. InPd (49 ... 56 at % Pd). “4mIn diffusion coefficient (open circles) and iosPd diffusion coefficient (full circles) vs. reciprocal temperature [83Hl]. Fig. (a): 49 at % Pd, (b): 50 at % Pd, (c): 53 at % Pd, (d): 56 at % Pd.

1o-l3

10'5 mVs

\

I -IO-l4

\

\ ~I lo-l6

I

MnPt,

=-

10-1'5

lo-l6 0.17

0.18

0.19

0.20 l/T-

0.21

l-.-2 .. .10-JK-'

Fig. 98. Hg-Pb (96 and 99 at % Pb). 203Hgdiffusion coeficient (open circles) and ‘i”Pb diffusion coefficient (full cirdes) vs. reciprocal temperature in Hg-Pb with 96 at % Pb md 99 at % Pb, respectively [73w]. Land&-Bhstein New Series III/26

lo-l7 0.75

0.23

0.80

0.85

O!

Fig. 100. MnPt, (65 at % Pt). 54Mn diffusion coeflicient vs. reciprocal temperature [79A].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

270 10-l’ m’/s

[Ref. p. 276

lo-l5 ml/s

I

MnPt3

,p!

~I lo-l6

I a

lo-l1 0.75

10-”

0.90 0.95 .,o”K-’ 1.05 l/T Fig. 102. MnPt, (82 at % Pt). 54Mn diffusion coefficient vs. reciprocal temperature [79A].

\

\_

,(p; 0

0.80 0

0.80

0.85

.95

Fig. 101. MnPt, (75 at % Pt). S4Mndiffusion coefficient vs. reciprocal temperature [79A].

lomZI

Mn-Ti

10’

tr

:

.

10”

I Q 10-l 0.66

0.70

0.74 l/T-

0.78

0.8240” K-’0.86

Fig. 104. Mn-Zr (98...99.5 at % Zr). 54Mn diffusion coefficient vs. reciprocal temperature [79P2]. 10-l’

,o-l!

0

A

0.f

A 0.i

l/l-

0.l

4 Fig. 103. Mn -Ti (79.4 ... 90.3 at % Ti). “Ti diffusion coefficient vs. reciprocal temperature for various Ti concentrations (in at %): full triangles: 79.4; open triangles: 82.1; full circles: 86.7; open circles: 90.3 [75Sl].

Bakker

Land&-BBmstein New Series III/26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

271

IO-’ 8 6 I 4 Q

’ 250 CI

2

I

I

20

40

\I.

I

IO-’ 8 6 4.1o-1” 0.66

0.70

0.74 l/T-

0.78

0.82.10-dK’I1.86

Fig. 105. Mn-Zr (98 ... 99.5 at % Zr). g5Zr diffusion coefficient vs. reciprocal temperature [79P2].

60 80 at% 100 Ti Fig. 106. Nb-Ti (lo...95 at % Ti). Activation energy and pre-exponential factor for g4/g5Nbdiffusion vs. Ti concentration. Open circles: [63G]; full circles: [79Pl]. 0

10-l m2/1

10-l

10-l

k0

I Q 10-l

10-l

0.8.10-jK-’ l/T-

Fig. 107. Nb-Ti (10 1..95 at % Ti). 95Nb diffusion coefti:ient vs. reciprocal temperature [63G]. Fig. 108. Nb-Ti (64.3...94.6 at % Ti). g4/g5Nb and 44Ti p liffusion coefficient vs. reciprocal temperature [79Pl]. Land&-Blirnstein New Series III/26

Bakker

10-l’ 0

I 0.60

0.65

0.70 l/T-

0.75 -lOJK-’

0

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

272 10-10

10.”

rnzfs

m2k

[Ref. p. 276

I

9

Pb-T1

10“’ 1o-l4

lo-” ~I lo-l5 I ~I lo-l3

I lo-‘6

lo-”

10-17. 0

60 80 ot% II TLFig. 110. Pb-TI (5...87 at % Tl). zl”Pb diffusion coeflicient (circles) and 204TIdiffusion coefficient (triangles) vs. TI concentration at various temperatures [61R].

lo-l5

10-1’6 0.5

10-l

0.8 0.9 .10-K-’ 1.1 l/lFig. 109. Nb-Zr (71.9...94.5 at % Zr). g5Zr diffusion coeficicnt vs. reciprocal tempcraturc for various Zr conccntrations (in at %): open circles: 71.9; full circles: 83.7; triangles: 94.5 [8782].

a6

0.7

2.10.’

m2/5

40

Sn-;n

10-l

-r

m2/:

10-l

10-l

I Q 0

10-l

\

9

,o-l"

10-l” 2.6 2.4 2.8.lO”K-’ 3.0 l/TFig. 112. Sn-Zn (0.9 at % Zn). 1’3”*3Sn diffusion coeflicicnt (lower curve) and 65Zn diffusion cocflicient (upper curve) vs. reciprocal temperature [66B]. 2.2

I 0.7 l/l-

0.8

0.9 *lO”K-’1.0 4 Fig. 111. SC- Zr (86.4,93.3 at % Zr). “Zr diffusion coeflicient vs. reciprocal temperature [87H2]. Bakker

land&B6mstein New Series 111’26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 4.10-11m21s

4.10.11 II12/s

Ti-V

IO--11 _

IO-

12-

II

]-11 _

II

)42 _

-13 _

10.

II

]-l3-

\\ $

I Q

I Q

‘\

14 _

lo-

273

1C,-14

_

-30

0

10

-20

'40

I5 _

lo-

IO-15

lo-' 16 0.4

0.5

0.7

0.6

IC,-16

0.8 .10-3K-'I

0.4

l/T-

Fig. 113. Ti-V (10 ... 90 at % Ti). 44Ti diffusion coefficient vs. reciprocal temperature [68M]. 10-l'I m2/5

_

0.b

u.7

0.8 WK-'

l/T-

Fig. 114. Ti - V (10 . . .90 at % Ti). 48V diffusion coefficient vs. reciprocal temperature [68M].

,

Ti -Zr

;r

lo-"

10-l I a lo-':

IO-'4

1oP5 1.7

Land&-BBmstein New Series III/26

Fig. 115. Ti - Zr (49 at % Zr). 44Ti diffusion coefficient vs. reciprocal temperature [87H2].

Bakker

4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures)

274

[Ref. p. 276

10

10

10

10

0.8+lO”K-’0.9 0.6 0.7 l/T Fig. 116. V-Zr (0.5 at % Zr). 48V diffusion coefficient vs. reciprocal temperature[81P2]. 0.1

0.5

lom2/ 6 0.58 0.60 40-3K-’ 0.6L l/7Fig. 117. V-Zr (0.5...2 at % Zr). 48V diffusion coeflicient vs. reciprocal temperature for various Zr concentrations (in at X): open circles: 0.5; open triangles: 1.0; full triangles: 1.5; full circles: 2.0 [84P]. 0.52

i

0.68

0.71

0.76 l/l-

0.77

0.54

0.56

0.80 .lO”K-’ 0.86

Fig. 118. V-Zr(98.0...99.5 at % Zr). 48Vdiffusion cocfficient vs. reciprocal temperature for various Zr concentrations (in at %): full triangles: 98.0; open triangles: 98.5; full circles: 99.0; open circles: 99.5 [82P].

Bakker

Land&-BGmstein New Series Ill!26

Ref. p. 2761 4 Self-diffusion in homogeneous binary alloys and intermediate phases (Figures) 10-l

275

I

m2/5

- V-Zr

I

I

\I -7r

10-l13_ 9 8 1 6

4.10-‘51 0.52

5100.54

0.56

0.58 l/T-

0.60

~10-~K-’ O.Ei$

Fig. 119. V-B (0.5 ... 2.0 at % Zr). g5Zr diffusion coefficient vs. reciprocal temperature for various Zr concentrations (in at %): open circles: 0.5; open triangles: 1.0; full triangles: 1.5; full circles: 2.0 [84P].

Land&-Biimstein New Series III/26

14

I3.67

0.71

0.75 l/T-

0.79

3W3K-’ 0.8i 0.8:

Fig. 120. V-Zr (98.0...99.5 % Zr). “Zr diffusion coefficient vs. reciprocal temperature for various Zr concentrations (in at %): Curve I: 98.0; 2: 98.5; 3: 99.0; 4: 99.5 [82P].

Bakker

276

References for 4

References for 4 51N 55H 55N 55s 56K 57Y 61Hl 61H2 61R 63F 63G 63M 64D 64M 64P 64s 65B 66B 660 67D 67G 67Ll 67L2 67L3 67P 67R 67Sl 6782 68E 68F 68G 68H 68L 68M 680 68R 68s 68W 69A 69F 69M 69s 70A 70B 1 70B2 70F 70H 70N 7OP 70R 70s 702

Nix, EC., Jaumot, FE.: Phys. Rev. 83 (1951) 1275. Hoffman, R.E., Turnbull, D., Hart, E.W.: Acta Metall. 3 (1955) 417. Neiman, M.B., Shinyaev, A.Ya.: Dokl. Akad. Nauk. SSSR 102 (1955) 969. Sonder, E.: Phys. Rev. 100 (1955) 1662. Kuper, A.B., Lazarus, D., Manning, J.R., Tomizuka, C.T: Phys. Rev. 104 (1956) 1536. Yanitskaya, M.E., Zhukovitskii, A.A., Bokshtein, S.Z.: Dokl. Akad. Nauk. SSSR 112 (1957) 720. Hagel, W.C., Westbrook, J.H.: Trans. AIME 221 (1961) 951. Huntington, H.B., Miller, N.C., Nerses, V: Acta Metall. 9 (1961) 749. Resing. H.A., Nachtrieb, N.H.: J. Phys. Chem. Solids 21 (1961) 40. Fraden, E: B.S. Thesis, Massachusetts: Inst. of Technology, 1963. Gibbs, G.B., Graham, D., Tomlin, D.H.: Philos. Mag. 8 (1963) 1269. Mallard, WC., Gardner, A.B., Bass, RX, Slifkin, L.M.: Phys. Rev. 129 (1963) 617. Domian, H.A., Aaronson, HI.: Trans. AIME 230 (1964) 44. Monma, K., Suto, H., Oikawa, H.: Nippon Kinzoku Gakkaishi 28 (1964) 192. Peterson, N.L., Rothman, S.J.:Phys. Rev. 136 (1964) A 842. Sato, K.: Sci. Rep. Fat. Lit. Sci., Hirosaki Univ. 11 (1964) 9. Benci, S., Gasparrini, G., Germagnoli, E., Schianchi, G.: J. Phys. Chem. Sol. 26 (1965) 687. Bergner, D., Lange, W: Phys. Status Solidi 18 (1966) 67. Okada, T: Radioisotopes 15 (1966) 169. De Reca, E.W, Pampillo, G.: Acta Metall. 15 (1967) 1263. Gupta, D., Lazarus, D., Lieberman, D.S.: Phys. Rev. 153 (1967) 863. Lai, D.A.E, Borg, R.J.: US A.E.C. Report: UCRL-50314 (1967). Larikov, L.N., Tyshkevich, VM., Chorna, LX: Ukr. Fiz. Zh. 12 (1967) 983. Lyubimov, VD., Geld, P.V, Shveikin, G.P., Sutina, Yu.A.: Izv. Akad. Nauk. SSSR,Met. (1967) 84. Peterson, N.L., Rothman, S.J.:Phys. Rev. 154 (1967) 558. Rothman, S.J.,Peterson, N.L.: Phys. Rev. 154 (1967) 552. Santoro, C.J.: Bull. Am. Phys. Sot. 12 (1967) 104. Smirnov, O.A., Ivanov, L.I., Abramyan, E.A.: Izv. Akad. Nauk. SSSR,Met. (1967) 168. Ebcling, R., Wcver, H.: Z. Metallkd. 59 (1968) 222. Fedorov, G.B., Smirnov, E.A., Zhomov, EL: Metall. Metalloved. Chist. Met. 7 (1968) 124. Gardner, A.B., Sanders, R.L., Slitkin, R.L.: Phys. Status Solidi 30 (1968) 93. Heumann, Th., Biihmer, H.: J. Phys. Chem. Solids 29 (1968) 237. Lai, D.YE, Borg. R.J.: UCRL Report No. 50 516 (1968). Murdock, JE, McHargue, C.J.: Acta Metall. 16 (1968) 493. Oikawa, H., Anusavice, K.J., DeHoff, R.T, Guy, A.G.: ASM Trans. Q. 61 (1968) 354. Ray, S.P.,Sharma, B.D.: Acta Metall. 16 (1968) 981. Shinyaev, A.Ya.: Izv. Akad. Nauk. SSSR,Met. (1968) 109. Wanin, M., Kohn, A.: C. R. Acad. Sci., Ser. C 267 (1968) 1558. Alexander, WB.: Studies on Atomic Diffusion in Metals, Ph. D. Thesis, Univ. of NC., USA (1969), cited in [77B]. Frantsevich, I.N., Kalinovich, DE, Kovenskii, I.I., Smolin, M.D.: J. Phys. Chem. Solids 30 (1969) 947. Million, B., Kucera, J.: Acta Metall. 17 (1969) 339. Santoro, C.J.: Phys. Rev. 179 (1969) 593. Ananin, VM., Gladkov, VP., Zotov, VS., Skorov, D.M.: At. Energ. 29 (1970) 220. Bowen, A.W, Leak, G.M.: Metall. Trans. 1 (1970) 2705. Bowen, A.W., Leak, G.M.: Metall. Trans. l(l970) 2767. Fishman. S.G., Gupta, D., Lieberman, D.S.: Phys. Rev. B2 (1970) 1451. Heumann, Th., Meincrs, H., Stiier, H.: Z. Naturforsch. 25a (1970) 1883. Nohara, K., Hirano, K.: Proc. Int. Conf. Sci. and Technol. Iron and Steel, Tokyo, Sept. 1970,Section 6 (1970) 1267. Peterson, N.L., Rothman, S.J.:Phys. Rev. B2 (1970) 1540. Ray, S.P.,Sharma, B.D.: Trans. Indian Inst. Met. 23 (1970) 77. Spasov, A., Ivanov, G.: God. Solii. Univ. Khim. Fak. 65 (1970/1971) 39. Zemskii, S.V.,Grigorkin, VI., Moskaleva, L.N.: Izv. Vyssh. Ucheb. Zaved., Chern. Metall. 13 (1970) 106.

References for 4 71A 71D 71F 71G 71Hl 71H2 71M 71s 71w 72B 72D 72H 72J 72Kl 72K2 72K3 72M 72P 72s 73L 73N 73Tl 73T2 73w 74A 74B 74K 75B 75Gl 75G2 75K 75L 75Ml 75M2 75Sl 7582 7533 76D 762 77Bl 77B2 77F 771 77M 77R 77s 78G 78H 79A 79B 79Cl 79c2 79D Landolt-Bihstein New Series III/26

277

Askill, J.: Phys. Status Solidi (a) 8 (1971) 587. DeCormales, C.O., DeReca, N.E.W: .I Phys. Chem. Solids 32 (1971) 1067. Frantsevich, I.N., Kalinovich, DX, Kovenskii, II., Smolin, M.D.: Proc. Europhysics Conf., Lodding, A., Agarwall, ‘I: (eds.),Verlag Z. Naturforsch., 1971, p 100. Gupta, D., Lieberman, D.S.: Phys. Rev. B 4 (1971) 1070. Hancock, G.E, McDonell, B.R.: Phys. Status Solidi (a) 4 (1971) 143. Hancock, G.E, McDonell, B.R.: Phys. Status Solidi (a) 7 (1971) 535. Million, B., Kucera, J.: Czech. J. Phys. B 21 (1971) 161. Seith, W, Heumann, Yh., Wever, H.: Z. Metallkd. 62 (1971) 294. Wade, WZ.: J. Nucl. Mater. 38 (1971) 292. Bocquet, J.L.: Acta Metall. 20 (1972) 1347. Davis, B.E., McMullen, WD.: Acta Metall. 20 (1972) 593. Hirano, K. and Cohen, M.: Trans. Jpn. Inst. Met. 13 (1972) 96. Jeffery, R.N., Gupta, D.: Phys. Rev. B 6 (1972) 4432. Korolev, A.A., Pavlinov, L.V, Gavrilguk, M.I.: Fiz. Met. Metalloved. 33 (1972) 295. Kucera, J., Million, B., Peskova, J.: Phys. Status Solidi (a) 11 (1972) 361. Kutnetsov, E.V: Uch. Zap. Gor’k. Gos. Univ. 148 (1972) 38. Million, B.: Z. Metallkd. 63 (1972) 484. Patil, R.V., Sharma, B.D.: Trans. Indian Inst. Met. 25 (1972) 1. Shcherbedinskii, G.V, Ipatova, VM., Grechnyi, Ya.V, Yakovlev, S.G.:Dopov. Akad. Nauk. Ukr. RSR. Ser. A 34 (1972) 759. LeHazif, R., Edelin, C., Dupouy, J.M.: Metall. Trans. 4 (1973) 1275. Nohara, K., Hirano, K.: J. Jpn. Inst. Met. 37 (1973) 51. Tiwari, G.P., Saxena, M.C., Patil, R.R: Trans. Indian Inst. Met. 26 (1973) 55. Tiwari, G.P., Sharma, B.D., Raghunathan, VS., Patil, R.R: J. Nucl. Mater. 46 (1973) 35. Warburton, WK.: Phys. Rev. B 7 (1973) 1330. Assassa,W, Guiraldenq, P.: C. R. Acad. Sci. Ser. C 279 (1974) 59. Bristotti, A., Wazzan, A.R.: Rev. Bras. Fiz. 4 (1974) 1. Kucera, J., Million, B., Ruzickova, J., Foldyna, V, Jakobova, A.: Acta Metall. 22 (1974) 135. Bronfin, M.B., Bulatov, G.S., Drugova, LA.: Fiz. Met. Metalloved. 40 (1975) 363. Gbdeny, I., Beke, D., Kedves, EJ., Groma, G.: Phys. Status Solidi (a) 32 (1975) 195. Gupta, D., Rosenberg, R.: Thin Solid Films 25 (1975) 171. Kucera, J., Million, B.: Phys. Status Solidi (a) 31 (1975) 275. Larikov, L.N., Geichenko, VV, Fal’chenko, VM.: Diffusion Processesin Ordered Alloys, Naukova Dumka Publ., Kiev 1975, Nat. Bur. Stand. New Delhi: Amerind. Publ. Co., 1981. Maramatsu, EI: Trans. Nat. Res. Inst. Met. 17 (1975) 21. Mirani, H.VM., Harthoorn, R., Zuurendonk, TJ., Helmerhorst, S.J.,De Vries, G.: Phys. Status Solidi (a) 29 (1975) 115. Santos, E., Dyment, E: Philos. Mag. 31 (1975) 809. Shinyaev, A.Ya.: Diffuzionnye Processy v Splavach, Nauka, Moscow, 1975, p. 100. Shinyaev, A.Ya.: Izv. Akad. Nauk. SSSR Met. (1975) 162. Donaldson, A.T., Rawlings, R.D.: Acta Metall. 24 (1976) 285. Zemskii, S.V, Lvov, VS., Makashova, L.S.: Fiz. Met. Metalloved. 41 (1976) 775. Beke, D.L., Godeny, I., Kedves, EJ., Groma, G.: Acta Metall. 25 (1977) 539. Butrymowicz, D.B., Manning, J.R.,Read, M.E.: Diffusion Rate Data and Mass Transport Phenomena for Copper Systems,INCRA Monograph V, Washington: Nat. Bur. Stand., 1977. Fillon, J., Calais, D.: J. Phys. Chem. Solids 38 (1977) 81. Iijima, Y, Hirano, K.: Philos. Mag. 35 (1977) 229. Million, B.: Czech. J. Phys. B 27 (1977) 928. Ruzickova, J., Million, B.: Kovove Mater. 15 (1977) 140. Shires, P.J.,Hines, A.L., Okabe, T: J. Appl. Phys. 48 (1977) 1734. Gas, P., Bernardini, J.: Ser. Metall. 12 (1978) 367. Heumann, Th., Rottwinkel, T: J. Nucl. Mater. 69-70 (1978) 567. Ansel, D., Barre, J., Meziere, C., Debuigne, J.: J. Less Common Met. 65 (1979) Pl. Bose, A., Frohberg, G., Wever, H.: Phys. Status Solidi (a) 52 (1979) 509. Carlson, P.T, Padgett jr., R.A.: Ser. Metall. 13 (1979) 355. Cermak, J., Kucera, J.: Kovove Mater. 17 (1979) 3. Dehaunay, D., Huntz, A.M., Lacombe, P.: Ser. Metall. 13 (1979) 419. Bakker

References for 4

278 79Pl 79P2 8OC 8OP 80s 81M 81Pl 81P2 81Rl 81R2 81T 82H 82P 83Hl 8382 83H3 83K 84B

Pontau, A.E., Lazarus, D.: Phys. Rev. B 19 (1979) 4027. Pruthi, D.D., Anand, MS., Agarwala, R.P.: Philos. Mag. A 39 (1979) 173. Cermak, J., Ciha, K., Kucera, J.: Phys. Status Solidi (a) 62 (1980) 467. Prinz, N., Wever, H.: Phys. Status Solidi (a) 61 (1980) 505. Stolwijk, N.A., Van Gend, M., Bakker, H.: Philos. Mag. A 42 (1980) 783. Million, B., Ruzickova, J., Velisek, J., Vrestal, J.: Mater. Sci. Eng. 50 (1981) 43. Patil, R.V, Tiwari, G.P., Sharma, B.D.: Philos. Mag. A 44 (1981) 717. Pelleg. J.: Philos. Mag. A 43 (1981) 273. Raghunathan, VS., Sharma, B.D.: Philos. Mag. A 43 (1981) 427. Ruzickova, J., Million, B.: Mater. Sci. Eng. 50 (1981) 59. Treheux, D., Vincent, L., Guiraldenq, P.: Acta Metall. 29 (1981) 931. Hishino, K., Iijima, Y,‘Hirano, K.: Acta Metal!. 30 (1982) 265. Pruthi, D.D., Agarwala, R.P.: Philos. Mag. A 46 (1982) 841. Hahn, H., Frohberg, G., Wever, H.: Phys. Status Solidi (a) 79 (1983) 559. Hehenkamp, T, Faupel, E: Acta Metall. 31 (1983) 691. Hilgedieck, R., Herzig, C.: Z. Metallkd. 74 (1983) 38. Kumagai, A., Iijima, Y, Hirano, K.: DIMETA 82, Kedves, EJ., Beke, D.L. (eds.),Trans. Tech. Publ., Switzerland, 1983, p. 389. Bakker, H.: Diffusion in Crystalline Solids, Murch, G.E., Nowick, AS. (eds.),Academic Press, 1984, p. 250.

84P 84V 85K 86M 87Hl 87H2 87H3 88N

Pruthi, D.D., Agarwala, R.P.: Philos. Mag. A 49 (1984) 263. Van Winkel, A., Lemmens, M.P.H., Weeber,A.W, Bakker, H.: J. Less Common. Metals 99 (1984)257. Kiihler, U., Neuhaus, P., Herzig, C.: Z. Metallkd. 76 (1985) 170. Mundy, J.N., Ockers, S.T, Smedskjaer,L.C.: Phys. Rev. B 33 (1986) 847. Herzig, C., Neuhaus, J., Vieregge, K., Manke, L.: Mat. Science Forum 15-18 (1987) 481. Herzig. C., Kiihler, U.: Mat. Science Forum 15-18 (1987) 301. Hoshino, K., Rothman, S.J.,Averback, R.S.:Symp. Diffusion Processesin High Technology Materials, Cincinnati, Ohio, Oct. 12-14, 1987. Nakajima, H., Nakamura, Y., Koiwa, M., Tagasuki, T, Izumi, 0.: Scri. Metall. 22 (1988) 507.

Land&-B6mstein New series III,/26

Ref. p. 3661

5.1 Introduction

279

5 Chemical diffusion in inhomogeneousbinary alloys 5.1 Introduction In this chapter are listed data on chemical diffusion processesin inhomogeneous binary alloys. Only data for essentially ‘bulk’ samples (5 2um) are given, thus ‘thin-film’ data are not presented. Use of tables For a given metal pair, the metal having the chemical symbol earlier in the alphabet always comes first. All alloy concentrations are expressedin atomic percentagesunless specifically given as otherwise e.g. weight percent. The tables give data for the interdiffusion coefficient d, sometimes also called the chemical diffusion coeficient or mutual diffusion coefficient, see section 1.4.3. In many casesthe interdiffusion coefficient 0” is conveniently expressed by an Arrhenius equation: 6=D” exp(- Q/RT)

(5-l) where Do is the pre-exponential, Q is the activation enthalpy, R is the gasconstant (R = 8.3145J mol-’ K- ‘) and Tis the absolute temperature. Long extrapolations beyond the temperature range given are not generally recommended. In some cases,intrinsic, sometimes known as partial, diffusion coefficients are also given in the tables. These are denoted by, for example D,, and D,,. The intrinsic diffusion coefficients are related to b, see Eq. 1.30 in 1.4.4.The intrinsic diffusion coefficients can also be conveniently expressedby an Arrhenius equation, e.g. D,,=Dk ew(- Q&T) (5.2) At the limit of the concentration of one metal component approaching zero, the interdiffusion coefficient approaches the impurity diffusion coefficient, see Chapter 3. Ideally, in an impurity diffusion experiment, the impurity is present at very low concentration, so low that it does not chemically affect the host. When these conditions are obviously not met, the experiment is strictly a chemical diffusion experiment and the data are presented in the tables here. The following methods for measuring interdiffusion coefficients are used in the tables. Method A Use of the Boltzmann-Matano analysis gives the concentration dependence of the interdiffusion coefficient 8, see section 1.6.1.2.2.(The Hall analysis [53H2] is sometimes used near terminal concentrations). Method A is by far the most common and reliable method. Early work used sectioning and chemical analysis but since about 1965 most concentration profiles have been obtained with the electron microprobe. Method B When it is evident or assumedthat the interdiffusion coefficient d is not a function of concentration an analytical solution is used, the usual one is Eq. 1.47 in 1.6.1.2.2. Method C The interdiffusion coefficient is calculated by using measurements on rates of migration of phase boundaries, typically using the Wagner equation of parabolic growth kinetics [69W2]. Method D The interdiffusion coefficient is determined by an electrochemical method. There are several variations of such a method, all of them indirect and relaxational in nature. Method E The interdiffusion coefficient is determined by in-diffusion and out-diffusion followed by determination of concentration profile, and use of the Boltzmann-Matano analysis or Eq. 1.47 of the General Introduction, see also section 1.6.1.2.4. Method F The interdiffusion coefficient is determined by total gain or loss of material or rate thereof, this is really an indirect form of Method E. Method G The interdiffusion coefficient is determined by ferromagnetic relaxation, seesection 1.6.2.1.a. Method H The interdiffusion coefficient is determined by X-ray diffraction analysis, see section 1.6.1.2.3. Method I The interdiffusion coefficient is determined by a resistometric method, see section 1.6.1.2.3.

Landolt-B6mstein New Series III/26

Murch, Bruff

280

5.1 Introduction

The full list of alloys, treated in chapter 5, is presented below. In contrast to the tables in section 5.2, the alloys are given here in the order A - B and B-A. In this way it is immediately clear which Ni systems,for example, occur in the tables.

List of alloys System

Page

System

Page

System

Page

System

Page

Ag-AI Ag-Au Ag-Cd Ag-Cu Ag-Ga Ag-Hg Ag-Mn Ag-Pb Ag-Pd Ag-Zn

282f. 283 283 283f. 284 284 284 284 285 285

Ce-Mg Ce-Pu Ce-U

294 294 294

284 288 297 302f. 31Of. 321 321

282 f. 285 285 286f. 287 287 287f. 288 288 288 288 f. 289 289 290 290 f. 291

285 291 295 295 295 ff. 297 297 297 298 298 298 298 298

301 31Of. 311 312f. 314 314 315 315f. 316 316f. 317 317 317 317f.

Mn-Ag Mn-AI Mn-Co Mn-Cu Mn-Fe Mn-Ni Mn-Ti

AI-Ag Al-Be Al-Co AI-Cu Al-Fe AI-Li Al-Mg Al-Mn AI-Na AI-Nb AI-Ni AI-Pu AI-Si AI-Ti Al-Zn Al-Zr

Co-Al Co-Au Co-Cr co-cu Co-Fe Co-Mn CO-MO Co-Ni Co-Pd Co-Pt Co-Ti co-v co-w

Fe-Cu Fe-Mn Fe-MO Fe-Ni Fe-Pd Fe-Sb Fe-Si Fe-Sn Fe-Th Fe-Ti Fe-U Fe-V Fe-W Fe-Zn

Cr-Co Cr-Fe Cr-Mo Cr-Ni Cr-Ti Cr-U

295 299f. 300 300 301 301

Ga-Ag Ga-Cu Ga-Pu Ga-Ti

284 301f. 318 319

Ge-Nb

319

Hf-Ti Hf-W Hf- Zr

319 319 319

MO-CO Mo-Cr MO-Cu MO-Fe Mo-Nb Mo-Ni MO-OS Mo-Pd Mo-Pt Mo-Re Mo-Ta Mo-Ti MO-U MO-W Mo-Zr

297 300 302f. 311 107f. 322 322 322f. 323 323 323 323 324 324 325

Na-AI

288

284

291

Au-Ag Au-Co Au-Cu Au-Fe Au-In Au-Ni Au-Pd Au-Pt Au-Sn

283 291 291 292 292 292 293 293 293

In-Au In-Cu In-Ni In-Pb

292 302 319 320

La-Mg La-U

320 320

Be-AI Be-cu Be-Fe

285 293 294

287 294 294 320 320 320 320

288 319 321f. 325 325 325 325f. 326f. 327 328 328 329

293

Li-AI Li-Bi Li-Cd Li-Mg Li-Sb Li-Si Li-W

Nb-Al Nb-Ge Nb-Mo Nb-Ni Nb-Pd Nb-Sn Nb-Ta Nb-Ti Nb-U Nb-V Nb-W Nb-Zr

Ba-U

283 f. 286f. 291 293 294 295 301 301f. 302 302f. 303 303f. 304 304 305 305 305ff. 307 307ff.

Hg-Ag

As-Fe

Cu-Ag Cu-AI Cu-Au Cu-Be Cu-Cd cu-co Cu-Fe Cu-Ga Cu-In Cu-Mn Cu-MO Cu-Ni Cu-Pd Cu-Pt Cu-Sb Cu-Si Cu-Sn Cu-Ti Cu-Zn Fe-Al Fe-As Fe-Au Fe-Be Fe-Co Fe-Cr

287 291 292 294 295 ff. 299 f.

Mg-AI Mg-Ce Mg-La Mg-Li Mg-Ni Mg-Pu Mg-U

287 f. 294 320 320 320 321 321

Ni-AI Ni-Au Ni-Co Ni-Cr Ni-Cu Ni-Fe Ni-In Ni-Mg Ni-Mn Ni-Mo Ni-Nb Ni-Pd

288f. 292 297 300 303f. 312f. 319 320 321 322 325 329f.

Bi-Li

294

Cd-Ag Cd-Cu Cd-Li

283 294 294

Murch, Bruff

Landok-Bhstein New Series III/26

5.1 Introduction

281

System

Page

System

Page

System

Page

System

Page

Ni-Pt Ni-Si Ni-Sn Ni-Ta Ni-Th Ni-Ti Ni-U Ni-V Ni-W Ni-Zn

330 330 33Of. 331 331 331 331 332 332 333

Pu-Ga Pu-Mg Pu-Ti Pu-u Pu-Zr

318 321 334 334 335

Ta-Ti Ta-W

336 337

Th-Fe Th-Ni

316 331

U-Sm U-Sr U-Ti u-w U-Zr

336 336 337 339 339

Re-Mo Re-Pt Re-W

323 334 335

Rh-W

336

298 328 332 334 337f.

322

Pb-Ag Pb-In Pb-Sn Pb-Tl

284 320 333 334

Sb-Cu Sb-Fe Sb-Li

305 314 320

Pd-Ag Pd-Au Pd-Co Pd-Cu Pd-Fe Pd-Mo Pd-Nb Pd-Ni Pd-Ti Pd-V

285 293 298 304 314 322f. 325 329f. 334 334

Si-Al Si-Cu Si-Fe Si-Li Si-Ni Si-U

289 305 315 320 330 336

Sm-U

336

290 298 301 307 316f. 319 319 321 323 326f. 331 334 334 336 336 337 337f. 339

v-co V-Nb V-Ni V-Pd V-Ti

OS-MO

Ti-Al Ti-Co Ti-Cr Ti-Cu Ti-Fe Ti-Ga Ti-Hf Ti-Mn Ti-Mo Ti-Nb Ti-Ni Ti-Pd Ti-Pu Ti-Sn Ti-Ta Ti-U Ti-V Ti-Zr

w-co W-Fe W-Hf W-Li W-MO W-Nb W-Ni W-Re W-Rh W-Ta w-u

298 317 319 320 324 328 332 335 336 337 339

334

336

Pu-Al Pu-Ce

289 294

Ta-Mo Ta-Nb Ta-Ni

323 325f. 331

293 294 301 317 320 321 324 327 331 334 336

285 290f. 307ff. 317ff. 333

Sr-U

U-Ba U-Ce U-Cr U-Fe U-La U-Mg U-MO U-Nb U-Ni u-Pu U-Si

Zn-Ag Zn-Al Zn-Cu Zn-Fe Zn-Ni

293 298 304 323 330 334

293 305ff. 315f. 325 330f. 333 336 336

Tl-Pb

Pt-Au Pt-Co Pt-Cu Pt-Mo Pt-Ni Pt-Re

Sn-Au Sn-Cu Sn-Fe Sn-Nb Sn-Ni Sn-Pb Sn-Ti Sn-Zr

Zr-Al Zr-Hf Zr-Mo Zr-Nb Zr-Pu Zr-Sn Zr-Ti Zr-U

291 319 325 329 335 336 339 339

Landolt-Biimstein New Series III/26

Murch, Bruff

5.2 Chemical diffusion tables Composition at.%

A&! 0.5 1.0 1.5 2.0 2.5 3.0 3.5 6.5 8.5 1.76 3.98 0.869 1.76 4.0 0.518 1.84 0.86 1.85 4 7 64 g:,

61.90

DO

Q

d

Dl

D2

10S4 m*s-r

kJmol-’

rn*s-l

m*s-’

m*s-’

0.21 0.30 0.33 0.55 0.78 1.5 3.0 11.0 16.0 0.21 0.21

121 124 125 129 131 136 141 155 159 113 113

7.3.10-14 1.8. lo-l3 3.8 . IO- l4 1.16.10-13 1.73.10-‘2 9.2 . IO- l2 -

1.22.10-13 7.87. lo-l4 3.20 . lo- l3 2.75 - lo- l3 1.85 . IO- l3 7.78 . IO- l3 6.61 . 10-13 11.22. 10-13 9.94.10-13 1.22.10-12 5.01 - 10-12 -

-

773 ..a 868

;0.10-‘4 4.9. 10-14 1.6. lo- l3 1.6. lo-l3 1.2. 10-13 3.9 * 10-13 4.1 * 10-13 5.3 * 10-13 5.0.10-13 -

773

1.3

121

-

Temperature range K

AI

;02.10-‘2 1.141 . lo-” -

DL =

D;, =

2.2 * 10-s QA, = 113

2.4. 1O-4 QA, = 124

Method/Remarks

Fig.

Ref.

l=Ag,2=Al Method A

-

57H

Method A

-

70K2

Method C

-

75Y

Method A Further data at pressures up to 3 GPa given in reference.

-

84M

808

845 868 770 808 770 808 770 808 633...713 753.a.833 731... 828

1.63

1.53

-

-

-

648...793

0.14 2.42. IO-’ -

175 155 -

See Fig. 1.

-

-

1036... 1238 1079e.. 1290 1173

-

-

See Fig. 2. 3.8. lo-l3

7.3.10-13

1.7.10-13

1213 1213

4.7. 10-3

131

-

-

-

923... 1168

0...25 5.5 8.0 9.8 14.8 18.9 24.8 27.7 32.7 33.8

-

See Fig. 3. 3.4. lo-” 5.2. IO-” 7.4.10-11 1.2.10-‘0 1.7 * lo-‘0 7.3 . 10-10 8.04. 10-I’ 4.7. 10-g

-

-

2.14. IO-” 2.72. IO-” 3.29. IO-” 5.62.10-l’ 9.12.10-‘I 1.91 . lo-I0 2.78. IO-” 5.53 . 10-10 6.61 * 10-10

2.9. IO-” 3.97. IO-” 5.07.10-‘I 1.04. 10-10 1.89~10-10 4.61 . IO-” 7.31 . 10-10 1.66.10-g 2.09. lo-’

900..* 1053 873

-

-

CL

6...30 =O... 6 zo...17 zO...24

-

-

See Fig. See Fig. See Fig. See Fig.

&

CU 1.2. 10-z 0.52

149.0 183.8

-

0...20

Ag

Au

50.8 0 . . .8.77 xO...lOO 5O.e.85 63.5

Ag

Cd o... 5

1

0...2

4. 5a. 5 b. 5c.

883...933 1179 1087 1073

990... 1140 1023 .... 1073

-

87C

-

2

425 50E 52S, 53Hl 54B

-

50K

3 -

59Ml 731

4 5a 5b 5c

73U2 78B

-

50K 67C2

Method D Data listed are for 15at.% Al. Slight dependence on concentration, see reference. l=Ag,2=Au Method A Method A Method A

1

Method A l=Ag,2=Cd Reanalysis of earlier data Method B Method A Method A 0” determined from intrinsic diffusion coefficients.

Method A Method A Many intrinsic diffusion coefficients given in reference. 1 =Ag,2=Cu Method B Method B

(continued)

Composition at.%

AlZ

0.**2

DO

Q

10m4m’s-’

kJmol-’

Cu (continued) 1.2 0.1 1.7 1 2 2.5 3.1 4 6.8 6 98.5 6.8 99 3.1 99.5 1.6 99.9 0.88 0.21

1.1 xo...3 go--- loo

m2s-’

-

192 196 200 203 210 216 208 201 195 184.5 143c*, G,: atomic fraction Ag) SeeFig. 6. See Fig. 6.

Method/Remarks

m2s-’

Temperature range K

-

818.e. 1043

-

Method A b available at higher concentrations, e.g. up to 18 at.% Cu at 1043 K and down to 95 at.% Cu, see reference.

974*** 1273

Method A

0.28 . lo- l3 -

1174 1023 1193

D,

D2

m2s-’ -

1.56. lo-t3 -

-

Fig.

Ref.

71B

-

7302

Methods A. H 6 Concentration profiles determined from microprobe and X-ray intensity bands. See figure for effect on b(C).

76U

Ag

Ga 1.9..- 3.5

0.42

163

-

873 --. 1213

Method B

77B2

Ag

Hg 56

3.181 . IO-”

32.5

-

313.e.388

Method A

86L

Ag

Mn 0 . . a8.5

0.18

180

-

849... 1206

Method A

69B1

-

63 -

1.5 - 10-12 3.13 * 10-12 5.43 * 10-12 9.14 * 10-12

493 ... 558 493 538 518 493

Method B Do not reported.

32s

Pb Ag 0.**0.12

-

Pd In solid solution 50

6.36. 1O-4

85

-

-

-

7ooe.e 1000

Method B

-

335

1.5. 10-6

103

-

-

-

898... 1198

Method A

-

7ON2

1.64. lo-’ -

69 -

See Fig. 7. 2.45 . IO-l3 8.75. IO-l3 1.7.10-13 1.7. IO-” See Fig. 8.

-

-

673..*883

l=Ag,2=Zn Method A

7

55Hl

923 973 873

Method E

-

59G

Method A

-

70Hl

8.1 . IO-” -

2.3. IO-” -

823 ... 1023

Method A

8

73U2

See Fig. 9.

See Fig. 9.

-

-

583...673

9

78Sl

-

-

See Fig. IOa.

Method A Do and Q depend on couple used, see figure. Method C

IOa

81W

-

-

See Fig. lob.

lob

-

-

See Fig. 10~.

IOC

See Fig. 11.

See Fig. 11. -

52 126

163 169

-

550

180

-

10.5

295

-

Zll 50 40 . . .55 26.5 26.5 u P CL

40 4.e. 30

CL

74 to sfq phase boundary 31..*39 wt. %(P) 46...51 wt. %(y) 55...81 wt. %(&) 0.e. 18

Al

Al 0...5

Be 0.005 wt.% 0.0075 wt. % 0.91 wt.%

673

823 ... 1023

Method A

11

86S2

773...908

Methods B and C

-

51B

1273 -.. 1473

Method A

-

85G

co

Composition at.% Al

Q

d

D,

D2

10s4 m’s-’

kJmol-’

m*s-l

m*s-*

rn*s-l

0.29 0.19 0.131 0.231 0.287 0.364 0.588 1.033 1.293 0.85 2.1 1.6. IO6 2.2 0.56 0.18 0.432 0.306 0.425 0.393 0.424 0.556 0.13

130 115 185 188 188 187 189 194 191 136 138 231 149 128 126 194 187 187 183 181 179 113

-

-

-

-

SeeFig. 12. 0.65

SeeFig. 12. 177 -

-

-

-

-

D'&=

D& =

0.13.10-4 Q,,, = 163

2.2.10-4 Qc. = 182

cu 0..*0.215

z25

DO

P 2.5 *** 5.0

0 2 4 6 8 10 12 Y2

6 ”

L2 Jl2

0 0 . . . x2

X0 2 4 6 8 10 74 . . +80

6.0. lo-l4 1.31 .10-9 -

-

-

Temperature range K 778...908 923 ... 1023 782 814 985 -.a 1270

Method/Remarks

1 =Al,2=Cu Method B Method C Method B

Fig.

Ref.

-

61Ml 64A 70H2

Method A Empirical equations for Do and Q given in in reference.

700

673 ... 808

Method C

71F

977-e. 1277

Method A

72C 75M2

823.a.1113

Method A Slight dependence of B on concentration. Method A Method A

853-e. 1273 1073 a.. 1223

-

75Pl

12 -

75P2 83R

I I I$

I I IZ

5.2 Chemical diffusion in inhomogeneous binary alloys (Tables)

I I I I I I I

Ref. p. 3661

I I I I I I

%a 1ddd

Murch, Bruff

$1 .Y F4

I I I I I I I

I I I I IIS

I I I I I I

I I I I I I

Land&-B6mstein New Series III/26

287

Composition at.% Al Y

Al

Method/Remarks

-

690...818

Method A Further data at pressures up to 3.3 GPa given in reference.

83M

-

-

873.e.923

Method A

15

43B

Q

B

Dl

D2

10m4rn’s-’

kJmol-’

m2s-l

m2s-’

m2s-’

125 124 127 122 122

-

-

-

See Fig. 15.

Mg (continued) ZO 0.42 1.0 0.49 2.0 0.61 3.0 0.32 4.0 0.45 Mn

0.02~~~0.15 Al

Temperature range K

DO

Na

Fig.

Ref.

0.*.0.002

1.1

134

-

-

-

823.0.923

Method F

-

50R

33 25

Nb Nb,AI Nb,AI

2.0. 10-3 2.5

230 366

-

-

-

1473-e. 1773

Method C

-

75A

Al

Ni

1.87 1.5 4 10 -

268 197 172 50 201 230 268 272 -

-

-

-

1372+..1553 701... 883 928..- 1273 928..- 1273 928 ..a 1273 1533

Method B Method C

16

56s 675

Method A

-

72W

1273 ... 1573

Methods A, C

735

1143 1203 1273 1143 1203 1273

Method C

75H

Al

0..*0.7 Y 6 ; 2 4 6 8 NiAl N&Al

62 86

See Fig. 16. See Fig. 16. See Fig. 16. See Fig. 16. 1.2 * 10-13 1.5.10-‘3 1.5.10-13 1.1 . 10-13 2.1 . 10-12 6.0. IO-l2 1.1 . 10-11 1.5 . lo- l4 6.3. IO-l4 3.5. lo-”

NiAI(G) (36 . . .54) N&AI(s)

3.7. 10-z

See Fig. 17 See Figs. 18a...d. 5.0.10-l5 6.3. IO-” 2.95 . IO- l4 3.6 . lo- I4 1.16. lo-l3 266 24 . IO-l5 3.8.10-l’ 11.5.10-15 24.0. IO-l5 55.0.10-‘5 234 1.5. 10-15 3.0.10-15 7.9.10-15 16.0. IO-l5 37.0.10-‘5 234 See Fig. 19. 123

1.3

257

2.25. 1O-4

107

-

-

1 ... 19 Ni,AI, w 0...5

Al

Pu

3...9.1

6

Al

Si wO...O.48

See Fig. 20.

~0~~~0.5

0.346

124

xo...o.5

2.02

136

wo.31 ... 0.51

-

-

-----------

-

-

-

-

D;, =

D$ =

5.07.10-4 QA, = 143

3.95.10-4 Qsi = 140

1223 ... 1423

Method A

17, 18

7835

1223 1273 1323 1373 1423 1273 ... 1223 1273 1323 1373 1423 1223 ... 1223 1273 1323 1373 1423 1223 ... 1323...

1423 1573

Method A

SOY2

1073 ... 1273

Method C

19 -

1323 ... 1473

Method A

-

85G

623...790

Method B

-

69T

743...853

1 = Al, 2 = Si Method B

43B 79F

1423

1423

617...904

Method B

20 -

753 ... 893

Method A

-

82s

73Bl

Composition at.%

Al 2 12.0 10.0 3.8 TiAl, Al

DO

Q

iJ

Dl

D2

lob4 m2s-’

kJmol-’

m2s-’

m2s-’

m2s-’

Temperature range K

1.4. 10-5 9.0. 10-5 1.6. 1O-5

92 107 99

-

-

1256.e. 1523

1 = Al, 2 = Ti Method A

60G

8.10-’

95

-

1.411~10-* -

4.61.10-’ -

1107...1173 1523 789.e.915

Method C

73v

-

128

1.84 . IO- l5 3.98 . IO- l5 12.7 . IO- I5 4.92. IO-l4 1.49 * 10-13 6.1 . IO-r3 1.95.10-1s 4.85 . IO- l5 19.3.10-15 6.96 . IO- l4 1.74 * 10-13 6.1 - lo- l3 3.64 . lo- *s 6.12. lo-l5 21.6. lo-l5 6.92. lo-l4 2.12.10-13 3.64.10-15 6.12 . IO- l5 2.0.10-‘4 7.48. IO-l4 2.2. 10-15 6.66.10-1s 7.08 - lo-l4 1.10. to-15 5.1 * to-14 -

-

-

Method A

59H

Ti i u B

Zn x0

9

9.1

18.1

18.2

37.6 x0*** x 3.1

1.33

603 633 673 713 758 1086 603 633 673 713 758 1086 603 633 673 713 758 603 633 673 713 758 633 713 633 713 673.e.868

Method/Remarks

Method I

Fig.

-

Ref.

80M

X0 Al

AU

-

1373*.. 1573

Method A

78G

4.3 0.58

220 247

-

1223 a.. 1653

Method A

0.22

183

-

973 ..* 1323

Method H

5.7. 10-4 -

115 -

-

700 ... 1000

Method B

1006+.. 1130

Method A

50 50

2.36 +1O-6 7.94 * 10-E -

57 45 -

823.e.973 573...723 323 ... 1023

Method A Method A

0.5 4.2 7.2 11.2 14.6 21.8 28.3 38.6 55.3 63.9 79.0

8.99 . IO- 3 12.4. 1O-3 15.6. 1O-3 21.7. 1O-3 29.9f10-3 53.6. 1O-3 89.1 . 1O-3 0.214 0.828 1.69 6.092

133 136 138 141 144 149 154 161 173 179 191

-

659..-827

Method D

Fe cf. Y co X0 CU In solid solution lo.*.90

AuCu (disorordered) (ordered) IO...90 wt.%

82M

169 179 189 192 192 283 272 382

A1,Zr 3 Al,Zr,

AU

Method A Data at pressures up to 3GPa given in reference.

9.2.10-3 2.3. 1O-2 5.2. IO-’ 7.6. IO-’ 8.0. IO-’ 9.2 3.4 1.6. lo5

-

-

Zr

M3Zr5

0.6 . . .4.6

757...881

124 121

8 10 12 14 16

As

-

0.406 0.28

3.5

-

-

-

-

See Fig. 21.

-

-

-

See Fig. 22.

-

-

-

-

-

-

-

-

-

-

-

1473 **. 1573 1373 ... 1573 1273 ... 1573 1273 ... 1573 -

76B2

77F 335 21

69B3,69B4 70Kl

22 -

71P 81L

Composition at.% Fe 0.~.15.6 X0 5***40 AU 3

In

33

AuIn,

50

AuIn

69

Au,In,

80

Au.&

91 Ni 2 IO 20 30 40 50 55 60 65 70 75 98 0-e. 100

DO

Q

d

Dl

D2

10m4 m’s-’

kJmol-’

m’s-’

m2s-’

m2s-’

See Fig. 23.

-

4.7 * 10-l’ 9.9 * 10-l’ 7.0 * 10-16 1.8 - IO-” 2.6. IO-l6 3.6. IO-l6 5.8. IO-l6 5.8. IO-” 4.9 * 10-l’ 7.8. IO-” 2.4 1 10-l’ 6.2. IO-”

-

2.4. 10-l’ 5.0.10-15 2.9. IO-l5 7.4.10-1s 6.6.10-16 9.1 . 10-16 9.8. IO-l6 9.8. IO-l6 6.8 * 10-l’ 1.1 . 10-16 2.8.10-” 7.1 . 10-l’

415 424 415 424 415 424 415 424 415 424 415 424

-

-

1123...1198

1198

l.157.10-4

102

0.19 -

172

4.3. 10-2 3.9. 10-2 9.5. 10-2 7.8. IO-* 2.2. 10-2 1.3. 10-2 5.9. 10-3 6.8. 10-2 1.4. 103 2.0 . IO’ 6.1 . 10s 1.8. lo4 -

173.3 173.8 183 183.8 175.9 177.5 174.6 204.3 305.6 402.8 439.6 356.7 -

See Fig. 24.

Temperature range K

Method/Remarks

Fig.

Ref.

1026... 1276

Method B

-

44K

973 .a. 1323

Method H

-

77F

973 ... 1273

Method A

23

831

l=Au,2=In Method A

-

64P

Method A

-

57R

Method A

24

67L5

D,, calculated assuming

Au

Pd In solid solution

1.11.10-3

157

-

3.2. 1O-4

153

-

1.23. 1O-3

163

-

-

98 ‘. 96 .. 94 92 90 ‘~ 88 .86 84 -. 82 80 2...8

0.62 1.0 0.73 0.67 0.60 0.58‘ 0.53 0.52 0.47 0.43 0.37

229 234 232 232 231 231 231 231 231.. 230. 262

-

-

94.9

-

-

-

D;,=O32 QAu= I&

D;t=9.0.1d-2

Sn 0 ... 1.75 o... 1.4

-

-

See Fig. 25. See Fig. 25.

-

-

Ba o...solubility limit

U Y

0.112

171

Be o...x15 x33 ~48 75

CU u P

174 115 130 138

-

-

i

1.9. 8.4. 5.4. 1.2.

-

P

-

-

-

D;, =

50 Au

Pt In solid solution

Au

33



-

-

IOOO... 1250

Method B

-

335

-

899 ... 1313

Method A

-

70N2

-

1000... 1250

l=Au,2=Pt Method B

-

1198..+ 1328

-

-

--

Method A Data for 0” resulting from rolled Pt used in couples are also given in reference.

61B

-

-

335

.’

:

QR = 226 :

10-l 1O-2 10-z 10-3

3.5.10-6 QBe = 121

Method A

-

1090 1129

25

72H2

-

1123 ... 1313

Method C

-

64T

-

823...1113 923...1113 823.e.1113 823...1113

-

63R

-

D& =4.5. IO-’ Qcu = 105

‘l=Be,2=Cu Method A



Composition at.% Be

Bi

Ref.

-

-

1073 .** 1373

Method A

-

64L

See Fig. 26.

-

-

653-a-873

Method D Seereference for 6(T) details.

26

77W2

27

38R

6;

D,

4

10s4 m2s-r

kJmol-’

m2s-*

m2s-’

Fe 0 . . .0.2

1.0

226

-

Li Li,Bi

-

Cll

Cd

Li 35 **e47.5 Mg

Pu Ce 3.74 *** 7.17wt.% Ce O.**solubility limit

Fig.

Q

Cd 0.075 . . . 0.525 0.5

Ce In solid solution

Method/Remarks

m2s-’

Temperature range K

DO

U y

-

-

See Fig. 27.

-

-

773.0.853

Method A

3.5 * 10-3

122

-

-

-

773...1123

Method B Data from A. Klein presented by 0. Kubaschewski [50K]

-

-

See.Fig. 28.

-

-

774-e. 802

Method D

450

176

-

-

-

823...871

Method C

1.31 .10-t

124

-

-

-

676.e. 801

Method B

3.92

278

-

-

-

1073 ..a 1273

Method C

50K

28

84L

co

co 0.1

C-3 0...40

0...15.2wt.% 0...28.3wt.% 0...25 CU

2 1.12 1.75 2.02 2.20 0.98 1.35 1.63 3.21 4.12 4.92 co o..* 100 10 20 30 40 50 60 70 80 90

Fe

0.443

266

-

-

-

1273... 1633

8.4. 1O-2 8.0 ’ IO-’ 0.14

254 250 253

-

-

-

1273... 1573

Method A (0” reported to be a function of concentration but dependence is very slight) Method B

1273 ... 1573

Method A

0.6 5.7

214 243

-

-

-

1073.** 1346

see remarks

seeremarks 6.8 . 10-l’ 1.5.10-l’ 2.2.10-l’ 9.0.10-18 5.1 . 10-16 6.4. IO-l6 3.8 . lo-l6 4.5.10-16 9.6. lo-l6 3.6 . lo- l6

-

-

1158

1273

Method A Data for intermediate compositions are also given in reference. Method B Do = 1.0 * 10m4m2sm1 and Q = 275 kJmol-’ calculated from 2 points only.

-

-

See Fig. 29.

-

-

1409..+ 1629

1.5. 10-3 2.9 * 10-3 4.4. 10-3 5.8. 1O-3 7.0. 10-3 8.8. 10-3 11.5.10-3 12.0.10-3 13.1 .10-3

219 215 212 216 215 217 218 218 219

-

-

-

1273... 1673

-

52W

63D1,63D2 73Gl 73B2

-

84A

l=Co,2=Fe Method A

29

Method A

-

69B3, 69B4 73Ul

(continued)

Composition at.%

co 3 5 15 20 25 30 3.5 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65 70 80 85 90 95 45 52

Fe CL

Y

DO

Q

b

D,

4

10S4 m2s-’

kJmol-’

m*s-*

m*s-’

m*s-’

-

-

3.01 .10-‘5 1.76.10-”

1.33 * 10-14 4.18.10-”

(continued) 3.02 . 10’ 4.13 * lo4 1.15. 10s 1.52. 10’ 3.02 - 10’ 5.89. IO’ 1.4 * 10s 1.54 * 104 4.34 * 103 1.02. 103 3.67 . lo* 84.4 30 45.2 21.6 10.5 5.33 2.54 1.01 4.21 5.67 2.5 2.7 1.53 5.75 0.871 0.783 1.37 2.11 5.01 5.72 -

318 343 361 366 373 378 363 339 323 306 292 274 261 329 319 319 303 293 276 270 273 276 277 281 294 276 273 281 291 306 318 -

-

Temperature range K

Method/Remarks

Fig.

Ref.

1123...1168

Method A

-

77H

1073***1168 1073+.. 1228

993... 1228

993 *a* 1141 1323-e. 1573

1273 .a. 1573

1228 1168

-

56 i7 io ZO

Mn 5 5 10 20 30 40

7.79 0.78 3.07 0.70 0.721 0.627

296. 273 284 257 248 241

-

33 :0

:0

-

MO o..* 15 wt.%

0.23

263

3

2.48

295 See Fig. 30.

xo*..go

-

szo... 100

-

-

10 20 30 40 50 60 70 80 90 zo-..

1.76 1.61 1.89 1.50 0.48 0.166 0.140 0.725 1.94 -

299 295 295 290 273 258 254 273 285 -

-

Ni 10 . . .90

IO...90

100

-

-

See Fig. 31. See Fig. 32.

See Fig. 33. See Fig. 34.

9.0.10-‘6 5.5.10-16 8.2. 10-l’

2.09 * 10-15 1.45. 10-lS 5.29.10-16

1141 1123 1073

-

-

1133 ... T, (ferro) T,.-. 1150 (para) 1133...1423

-

-

1273 .-. 1573

Method B

-

63Dl

1273 ... 1573

Method A

-

74H

1428... 1673

Method A

30

53H

1423 ... 1578

Method A

31

67B2

1409 ... 1629

Method A

32

67B3, 69B4

1153...1573

Method A

-

711

7711

-

D& =

Do

2.2 * 10-s Q, = 263

9.8. 1O-s QMn = 229

-

-

-

-

-

l=Co,2=Mn Method A

-

Mn

=

1373

Method A

33

73H

1373... 1673

Method A

34

73Ul

Composition at.%

co

Pd

10 20 30 40 50 60 70 80 90 IO***90 co

co Co,Ti Co,Ti CoTi

DO

Q

b

Dl

4

10-4mZs-1

kJmol-’

m2se1

m2s-*

mzs-*

-

Pt 0.e. 100 5 10 20 30 40 50 60 70 80 90

-

-

0.872 1.27 0.887 0.746 0.667 0.639 0.536 0.447 0.465 0.516

286 288 279 275 274 274 272 272 274 277

21

-

-

Ti 4.s.8 21 30 . . a32 46.e. 50 90***95(L3)

15.0 5.3 * 10-z 0.28 4.4 * 10-4 67

281 167 218 173 207

13.7 * 10-15 25.6. IO-” 55.0 * 10-15 12.0 * 10-14 14.5 * 10-14 12.0 - 10-14 70.7.10-14 28.2. lo-l4 13.9.10-14 See Fig. 35.

-

See Fig. 36. -

-

Ok=

Temperature range K

Method/Remarks

Fig.

Ref.

1423

Method A

-

66B

1153*.. 1466

Method A

35

721

1398..*1573 1271... 1673

1 =co,2=Pt Method A Method A

36 -

67B2 801

Method C

-

76V

D;=

2.25. 1O-4 8.09. 1O-4 1473 e-e1673 Qc, = 278 QR = 291 -

1173***1413

973 .a. 1123

co co Cr IO...20 o..-11 11 15 5.4 37 42 52 62 72 81 91 0...7.1 13.7 15.5 16.8 18.2 19.3 20.7 12.1 13.9 15.3 16.8 18.0 19.1 O.e.28.3

V 0...14.8wt.%

2.1 . IO-’

222

W 0...14.6wt.%

8. 1O-3

238

1.48 7.1 . 10-5 1.2. 10-3

230 170 219 240 252

Fe u y u u u u u

y See remarks

u Y

2.4 6.27

-

-

1373 **. 1573

Method B

-

-

-

1373 ... 1573

Method B

-

-

-

-

I =Cr,2=Fe Method A

-

1.7. IO-” 1.42. IO-’ 1.22 * lo-’ 1.53 * 10-7

0.8. IO-” o.95.1o-g 0.9.10-7 l.o~Io-’ -

1096... 1713 1223 ... 1423 1096 1323 1688 1713 1523

Method A

-

6OPl

1173...1473

Method B

-

63D1,63D2

1473

Method A Fe samples are actually steels with 0.014 % C, 0.18 % Mn, and O.l6%Si.

70s

948-e. 1758

Method B

-

74A

8.0. IO-” 5.6. 10-l’ 2.78.10-l’ 1.17.10-‘I 7.1.10-‘0 4.9.10-10 4.64. 10-l’ 1.1 . 10-12 1.16. 10-l’ 1.30.10-‘2 1.23. IO-” 1.20 * 10-12 1.14 * 10-12 3.5.10-12 3.76. IO- I2 3.76. IO-” 3.68. IO-” 3.68. IO-l2 3.56. IO-l2 -

-

-

-

63DI,63D2 63D1, 63D2

(continued)

L

Composition at.% Cr

I7 20 22 24 26 28 30 32 34 36 38 40 42 44 46 47.8 X0 5 10 I5 20 25

MO

Cr

Ni

o*** 10.3 wt. % s-.-45 5 ... 20

Method/Remarks

Fig.

Ref.

1453

Method A

-

74c

1044... 1124 1049... 1124 1039... 1124 984-e. 1124 974-e. 1124 974.e. I124

Method A

-

85B

-

1323 ... 1473

Method B

-

71HI

-

-

1373 *** 1573

Method B

SeeFig. 37. SeeFig. 38. -

-

1268 ... 1573 1268-e. 1573

Method A

Q

b

D,

D2

IOm4m2s-t

kJmol-’

m2s-l

m2s-*

m2s-’

299 292 279 280 269 269

7.5 . IO- 1X 7.5 . IO- 1X 7.0.10-*3 6.4. IO-l3 5.8. IO-l3 5.2 . IO- l3 4.8 . IO- l3 4.3 * 10-13 4.1 . 10-13 3.8 . IO- l3 3.4 . IO- l3 2.8 . IO- l3 2.3 . IO- l3 2.0.10-13 1.7.10-‘3 1.5.10-‘3 -

2.27. lo-” -

0.66 * lo-” -

2.9. 1O-3

257

-

0.6

257

SeeFig. 37. SeeFig. 38.

Fe (continued) CL 1.69. IO3 8.24 . IO2 2.21 . 102 2.56. IO2 60 15

Cr SoIid solution range

Temperature range K

DO

37 38

63D1, 63D2 67U

Cr 9

Ti P

-

-

3.6. IO-’

Cr 0. . . solubility limit

U y

0.7

142

-

3.7. 10-g

2.8. IO-’

1258

Method A

-

62P

-

1173...1273

Method C

-

60M

l=Cu,2=Fe

Fe xO...6

-

See Fig. 39.

-

-

See Fig. 39.

D&= 6.1 . 1O-4 Qn, = 268

21.0 1.3.103 300.0 0.19 0.091

251 301 284 273 193

-

0.504

208

-

1073 ... 1323

Ga CuGa,

1.34.1o-2

43

-

2.5 4.9 7.6 10.3 13.1 15.9

3.0. 10-4 1.8. 1O-3 1.6. IO-’ 1.8. IO-’ 1.3. 10-l 8. IO-’

134 142 153 167 157 146

DoGa = 11.1 .10-5 QGa = 155

0.5 1 CL k-

cu

0;. = 2.7. 1O-4 QFe = 266

-

Y

97 *-. 99.5(E)

0.**7.4wt.% O...2wt.%

0;. = 8.9 +1O-4 QFe = 314

0;” = 3.6 1 1O-4 Qc, = 274

2.6 wt. %

12.5

-

-

-

-

I

D& = 6.5. IO-’ Qcu = 140

1173 ... 1323

Method A

39

71K

1133 ... 1283

Method A

-

74Tl

1045 **. 1153 1198 ... 1323 923 ... 1073

Metliod

B

-

77s

Method B.

-

7883

313 . ..433

1 =Cu,2=Ga Method C

-

70T2

773...973

Method A

-

74Wl

(continued)

Composition at.%

DO

Q

10m4m2sS1 kJmol-’

cu

cu

cu

Ga (continued) 16.3

d

Dl

D2

m2s-’

m2s-i

m2s-r

D& = 1.2. 1O-6

0;. = 8.6. 1O-6

-

-

18.4

-

-

-

X0... 0.3 In 1 2 3 4 5 6 7

0.58

194

-

0.93 1.2 1.8 5.8 9.8 11.0 18.0

188 188 189 195 198 196 198

-

Mn O.e.28 3.3 6.0 6.85 9.0 10 20 30 40 50 72 76 80

0.52 5.66 17.5 4.62 9.22 2.11 * 102 1.4 * 106 2.42 . 10’ 2.78 . 10’

177 207 211 198 209 241 366 400 408

0.54.10-‘3 0.61 . lo- l3 0.71 . 10-13 1.18. lo-l3 -

Qcu = 135

D& = 6.3. IO+

Qcu = 136 -

QGa= 135 -

-

Method/Remarks

Fig.

Ref.

74Wl

Method A

Qo.= 14

D& = 4.7. 1O-6

-

Temperature range K

973... 1323

Method B

-

77B2

-

949***1119

Method A

-

81H2

-

913.e. 1093 1123

l=Cu,2=Mn Method B Method A

-

67C2 7ow

1021... 1203

Method A

-

7714, 7712

949.a. 1089

Much data on intrinsic diffusion coefficients are given in reference from 0.6 at.% In to 4.6 at.% In and at temperatures x lOOOK.

408 397 397

-

-

-

29

-

-

D& = 12.0.10-4 Q, = 210

0;” = 1.7.10-4 QMn = 190

1043 ... 1118

77

-

-

Dk = 1.3. IO7 Q, = 490

0;” = 1.4. 10’

1171... 1203

0.37 0.56 0.51 0.53 0.66 1.17 1.33 2.34 10.7 93.6 41.0 2.1 0.14 7.0. 10-z 0.16

187 187 183 181 181 186 189 197 216 241 239 218 198 195 204

0.6. IO-l3 0.8.10-13 0.88 . IO- l3 1.04.10-‘3 -

-

Qm = 40 -

2.82. 1O-6

146

-

-

-

82 84 86

3 5 6.0 6.85 9.0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 CU MO 0.016.. .5.45 CU 70*.* 100

2.11 . 107 7.12. IO6 6.06 * IO6

-

85A

1173...1548

Method B

-

55B 52T

-

-

1196..* 1322

-

See Fig. 40. -

3.7.10-14

1.7.10-14

1333

Method A

40 -

-

See Fig. 41.

See Fig. 41.

See Fig. 41.

1273

Method A

41

o... 100

Method A

1 =Cu,2=Ni Method A

Ni

83

850 750-s. 850 850 850 850 750s.. 850

54B 67L3 (continued)

Composition at.%

CU Ni O***loo o... loo o*** loo

DO

Q

d

Dl

D2

10m4m*s-l

kJmol-’

m*s-r

m*s-’

-

See Fig. 42. See Fig. 43. See Fig. 43.

-

-

See Fig. 44. See Fig. 44. 6.09. IO-l4 2.3 . IO- l3 .exp(-5.94X,,) .exp(-6.13X,3 Xni is mole fraction Ni See Fig. 44. See Fig. 44.

(continued) . -

0..- loo o-.. 5 -

o*** 100 CU IO*..90 10 20 30 40 50 60 70 80 90 O.--l00

Pd

-

50 6 a.. 95

-

-

-

-

-

-

-

0.48 -

224 -

See Fig. 47.

4.2. lo3 0.67

233 233

-

Pt

0..*‘13.9 1.5 ... 2.5

See Fig. 45. 2.7. lo-l5 4.9.10-15 8.5 . IO- Is 1.53.10-14 4.01 . 10-14 8.88 . lo- I4 1.54. 10-13 1.65 . IO- l3 1.28 . lo- l3 See Fig. 46.

Method/Remarks

Fig.

Ref.

m*s-i

Temperature range K

-

983-s. 1339 1273 1193

Method A Method A b(c) near 100% Cu depends on calculational method used, see figure.

42 43

69B2 71M2

See Fig. 44. 6.11 . lo-l4 =exp(-9.08X,3

1273 1273

Method A Method A

44 -

72Hl 78H

See Fig. 44.

1273

Method A

44

8212

-

-

1151... 131 1292

Method A Method A

45 -

52T 66B

1204.e. 1334

46

69B3, 69B4

.-

-

1048...1313 1173

Method A See figure for d(C) at 1204 and 1334K. Method A Method A

-

70N2 74T2

-

-

1314...1674 1023... 1348

Method B Method B

47 -

44K 72F2

Sb

1.0 2.0 3.0 1.0

CU

0.32 9.4. 10-Z 3.0. 10-2 -

1.7

.-

0.6

-

Si ~0~~~10 a/a+K boundary

11.4

CU 6

Sn w37wt.%

Y & rl

28 ... 33 wt.% -

Cu,Sn

(4

1

o... 33 wt.%

-



C!u,,Sn,

-

‘-

.I74 160 147 -

1.3. IO-” 6.9. lo-‘* -

-

-

663

1 =Cu,2=Sb Method A

-

56H

‘, 949 -:‘1040

Method A

-

81Hl

2.9 . IO- l4 6.1 . lo-l4 2.15. IO-l4 4.05.10-14 7.8. IO-l4 2.5. lo-l4

1005 1040 970 1005 1040 1005 Method A Method C

48 -

38R 68A

l=Cu,2=Sn Method C d values in 6 phase are averaged.

64s 49, 50a,b

-

-

1.8. IO-l4 3.7.10-14 0.5.10-14 1.85 . IO- l4 3.7.10-14 1.3.10-14

-

See Fig. 48. L

-

-

973 ... 1075 938 ... 1048

7.7.10-14 3.6 . IO-l3 1.0.10-l* 1.1 . lo-” 1.65. lo-‘1 1.3. 10-l’ See Fig. 50a. 4.3.10-16 3.7.10-15 2.7. lo-l6 2.2.10-15 See Fig. 51.

See Fig. 49. See Fig. 50b. -

See Fig. 49. See Fig. 50 b. -

701 714 731 780 818 845 979 453 483 453 483 523...623

199

78

2.4. lo-” 1.0.10-14 2.2 ’ 10-14 1.6. IO-l4 3.0 . lo- l4 2.9’. IO-‘*

473 573 673 723 673 723

Method C Do not given. Method A Activation energies for interdiffusion of Cu,Sn and Cu,Sn, given in reference.

51

70F

-

75L

(continued) i ,’

Composition at.%

DO

Q

10s4 m2sw1 kJmol-’ CU

Sn (continued) 34***38wt.% Cu,Sn Cu,Sn, 62~~~lOOwt.% 00.07 2.10-2

40.--bowt.%

a

90 87 156

6

Dl

D2

m2s-’

m2sv1

m2s-*

2.4. lo-” 1.0 * lo-t4 2.4. IO-l4 5.1 * lo- l4 9.0 * lo- l6 3.5 * lo- *s 1.2 * lo- *z 3.8. lo-l2 3.0 * 10-l’ 7.5 * 10-15 3.0.10-1s 4.0.10-‘5 3.1 . 10-1s 3.0.10-13 2.0 * 10-12 5.2. IO-‘* 2.0. IO-” 3.4.10-1s 4.0.10-‘5 -

-

-

-

-

-

-

-

-

-

-

-

-

Temperature range K

Method/Remarks

473 573 673 723 473 573 673 723 473.0.723 473 573 673 723 473 573 673 473... 673 473 573 673 723 lOOO*.*1100

Method A

Method A

-

7501

-

7502

Fig.

Ref.

75L

. 1013.3Ns.

(IV,,: atomic fraction Sn) 1.43 * 10-4 70 1.55. 1O-4 65

E rl

1 2 3 4 5 6 0.6

0.295 0.240 0.313 0.265 0.666 1.02 -

177 173 173 169 174 175 -

-

-

463e.0493

Method C

-

9.3 * 10-14

973...1101

Method A

6.1 . lo-l4

973 ... 1057 1089

80H

0.9

-

14.5(P)

9.11

134

Y

-

-

1.25 . lo- I4 3.7 * 10-14 4.1 .10-‘4 1.35.10-14 4.9.10-14 6.5 . IO- l4 1.5. 10-14 5.2. IO-I4 5.5 . lo- I4 2.1 . 10-14 Docu = 2.58. 1O-4 tmQcu = 103 See Fig. 52. 1.10-‘5

-

-

3.10-15

-

-

0.693 0.934 1.41 1.92

196 199 204 208

-

-

-

7.1 . 10-14 3.7.10-12 9.1 . 10-13 See Fig. 53. See Figs. 54a... c.

4.7.10-12 1.2.10-12 See Figs. 54a...c.

1.0.10-13 6.3 +IO-I2 See Figs. 54a...c.

2.6 3.1

4.9

Cu,Sn (E) Cu,Sn 6-l)

Ti ZO 0.5 1.0 1.5

Cu

Zn P Y E

cf.

-

-

1.4 1.7

Cu

-

-

84 2...28 28 1 5 10 16 20 25 28

-

-

5.6. IO-’ 6.2. IO-’ 8.3 . lo-’ 9.5. 10-2 9.0. 10-2 3.1 . 10-2 1.6. 1O-2

167 167 165 158 152 136 124

-

2.4 . IO- I4 1.0~10-13 1.1 . lo-‘3 2.9 . lo-l4 1.2.10-13 1.5. 10-13 4.3 . lo- I4 1.8. IO-I3 2.0.10-13 6.5 . IO-I4

Dzn = 3.05. 1O-3 Qsn = 144 -

1014 1089 1014 1089 1014 1089 1101 1014 874. . . 993

Method A

52

8OYl

493

Method C Non-parabolic growth, possible grain boundary diffusion dominated.

-

84C

Method A

-

7713

668

1 =Cu,2=Zn Method C

-

53Hl

1163

Method A

53

54B

1053 ... 1188

Method A

54a . ..c

55H2

973 ... 1283

997... 1188 (continued)

Composition at.% CU u

g (disordered) Y

S (disordered) P (ordered)

Zn 10 15 20

DO

Q

B

Dl

D2

10m4m2s-’

kJmol-’

m2s-’

m2s-’

m2s-’

170 170 170

-

-

-

D!?"= 0.81

D& = 2.1

Qcu = 178 -

Q& = 178 1.4.10-12 1.5. lo-” 6.7 . lo- l2 1.1 * lo-‘0 4.6 . IO- lo 1.8 . IO- lo -

648 753.e.983

SeeFig. 58.

(continued) 0.13 0.21 0.36

28

1.7

172

-

4.4..-48

1.8.e. 1.3. 10-2 2.45. lO-2 2.44.10-2 1.71 * 10-2 2.45. lO-2 l.14.10-2 0.99.10-2 0.62. lO-2 0.19.10-2 0.28. lO-2 -

83 . . .76

-

98 95 91 91 84 80 74 65 64 -

-

See Fig. 55a.

1.4.10-13 1.6. IO-l2 7.2 . lo- l3 9.5.10-12 8.1 . IO- *’ 2.1 . lo-” -

800.. 85(~) 48 6.9. 1O-2

78

See Fig. 55 b. -

-

48

1.4. IO3

150

M... 47.5 (p’)

-

SeeFig. 59. SeeFig. 57.

59 60 61 62 63 64 65 65.5 66.5 65.3 65.7 65.7 67.2 68.2 68.2 62*.*66(y)

-

SeeFig. 58.

Temperature range K

Method/Remarks

Fig.

Ref.

973...1183

Method E

-

55R

773.e. 1073

Method A

56L

648 . . .923

Methods A and C

6lM2

698.0. 923 798-e. 923 648 748 698 798 923 848 648

Method A

55 ab

69U

56

71Ul

591 .*a720

Method A Seefigure for b dependence at 877 K.

734-e. 924

Method A

57.e. 75F 59

41.5...

-

See Fig. 59. See Fig. 57.

See Fig. 58.

See Fig. 58.

602...718

-

-

523...673

Method A

60

76F

-

-

-

-

-

748.e.827

Method C

61,

76s

48.5 (P) 79 ... 86(E) 45 . ..49(P) 55...

E

66.5 (Y)

6 0.9

-

-

-

See Fig. 60. See Fig. 61. See Fig. 62. 2.5. IO-” 3.0.10-12 4.6. 10-l’ x1.0~10-‘0 9.7 . lo- l4 1.1 . 10-13 1.2. lo-‘3 1.2.10-13 1.4.10-13 1.4.10-13 -

-

-

-

-

4.10-14 9.10-14

2.3 3.2 3.5 4.6 4.7 5 9 15

0.412 0.285 0.614

196 182 184

X0

0.966

201

-

2

1.10

200

-

4

1.14

198

-

6

1.15

196

-

8

1.13

194

-

10

1.02

191

-

;: : :;I:: ; : g::: -

9.6. IO-l4 1.1 . 10-13 1.2.10-13 1.2.10-1: 1.4.10-13 1.4.10-13 -

0;" =

62

748 768 827 842 1168

1105... 1213

966... 1183

-

82H

Method A Data at pressures up to 3 GPa also given in reference. Method A

84T

Method A 0” = 8.9. IO-l4 * exp(8.9AJz,)m2s-’ @L : mole fraction Zn)

87s

11.3.10-5 Qz,, = 203 DoZn = 15.3.10-S Qz,, = 203

Do Zn=

19.0.10-5 I c+ I 203 Z” 20.2. 1o-5 i Qz,, = 201 DoZn = 22.1 * 1o-5 i Qz,, = 200

D;, = 21.8. 1O-5 Qz,, = 198

(continued)

Composition at.% CU

Fe Y

Y CL CL

Zn

DO

Q

d

D,

D2

10e4 m2s-’

kJmol-’

m2s-’

m2s-r

(continued)

I

Method/Remarks

m2s-l

Temperature range K

D,o,=

966.a. 1183

Method A

12

0.957

188

-

-

14

0.920

186

-

-

16

0.671

181

-

-

12.6. lO-5 i Qzm= 185

18

0.518

176

-

-

I

20

0.346

170

-

-

22 24 26 28 30

0.228 0.14 0.0796 0.0366 0.0128

164 157 150 140 128

-

-

-

4 + 0.02 wt. %C 14 + 0.02 wt. %C

0.57

276

-

-

-

0.54

273

-

-

-

xo***o.59 1.9.e. 3.6 In solid solution 5 10 15 20

6.8 * 10-2 3.467 IO

246 241 250

-

-

-

1423 ..a 1533 1203...1533 1063 a.*1458

5.95 3.04 3.37 2.89

314 303 305 301

-

-

-

1363.v.1523

Mn

Fig.

Ref.

87s

17.3 * 10-s Qzn = 193

0;" =

14.0~10-~ I Qzn = 189

0;. =

0;. = 10.1.10-S

1323 ..a 1723

1 =Fe,2=Mn Method A An empirical eqn. for d is given in reference. Further d data at 1.25wt.% C and also at 1473K are given. Method B

4lWl

45H

Method C

-

69P

Method A

-

70Tl

25 30 35 40 45 50 55 38 41.2 38.0 36.4 5 10 15 20 25 30 24

2.83 2.53 3.12 2.44 2.17 1.96 2.04 7.2.10-’ 1.75.10-Z 0.3 0.163 7.2. 1O-2 0.12 -

297 295 299 294 291 286 289 -

251 264 270 262 249 251 -

-

9.07. lo-‘5 3.36. lo-l5 5.29.10-16 3.48. IO-l6 -

D;, = 0.27 QFe= 269

Fe CL

MO 0 **. 5.05

;0 95 95...97 2.5 (u) 4.1 5.0 5.7 7.5 8.3 4.4 4.4 4.4 & R CF

0.785 3.6 2.29 2.19 18.1 3.6 4.2 4.0 4.8 3.8 4.0 73.2 62.3 2.35 . lo2

226 240 238 236 256 257 260 262 263 268 270 336 346 380

-

6.03. IO-l5 3.52 +IO- l4 1.68 * 10-13 -

2.42 . IO- l4 8.04. IO-l5 1.55. lo-‘5 6.22. lo-l6

-

Do = ?.26. 1O-2 QMn = 241

-

1.78. lo-l4 9.24.10-14 3.87. lo-l3

1523 1443 1363 1283 1123 ... 1573

Method A

-

73N

948 ... 1758

l=Fe,2=Mo Method B

-

74A

1373 ... 1573

Method A

-

74H

1073 *.. 1573

Methods A and C B values extend to 15 at.% at 1300°C in ref. d for y phase (estimated from growth rate of E) given in reference.

-

77N2

1273 ... 1473

1373 1473 1573 1265e.. 1635 1515.e. 1673 1515 ... 1673

DO

Q

b

Dl

D2

10-4m2s-1

kJmol-’

m*s-’

rn*s-l

m*s-’

Temperature range K

Ni o*** loo

-

-

-

1423-e. 1583

1

-

10

5.3 8.9 15.0 24.5 41.5 58.5 38.5 44.5 49.5 -

See Fig. 65. See Figs. 63, 64. 2.9. lo-‘* 2.75 . lo- l6 318 317 316 316 316 316 306 308 312 -

-

973 1073 1273-a. 1561

-

-

1.1 .10-‘5 2.5.10-l’ 4.6. lo-l5 -

0.25. lo-l5 1.2 * 10-15 6.7. IO-” -

1373

-

DFe=

Dii =

-

QNL=

Composition at.%

Fe u Y

20 30 40 50 60 70 80 90 12 37 76 O***lOO

See Fig. 66.

1409...1629

Fig.

Ref.

53H

Method A

63... 65 -

Method A

66

67B1, 6984

Method/Remarks

1 = Fe, 2 = Ni Method A

65G

1.6. 1O-4 304

5*.*95

-

-

See Fig. 67.

3.6. 1O-4 QFc = 274 -

1373.e. 1578

Method A

67

67B2

O.-e loo

-

See Fig. 68.

See Fig. 68.

See Fig. 68.

1473

Method A

-

5.0 * 10-15 7.8. IO-l5 1.2 * 10-14 1.8 . lo- l4 2.6 - lo- l4 3.6 - lo- l4 4.6 + lo- l4 4.8. lo-l4 4.2. lo-l4

1.0. 10-14 1.9. 10-14 2.8 . lo- l4 3.8. IO-l4 4.8. IO-l4 5.6. IO-l4 6.2. lo-l4 5.6. lo- l4 4.4.10-14

3.0 * 10-15 3.6. 10-l’ 4.2.10-” 5.2. 10-l’ 6.2.10-” 8.0.10-” 9.6 . IO- l5 1.2 * lo- l4 1.6. IO-l4

1473

Method A

68 -

67L4

10 20 30 40 50 60 70 80 90

-

0.32

-

70K3

10 20 30 40 50 60 70 80 90 0 ... 100

0.2 0.15 0.26 0.30 0.38 0.41 0.56 0.71 0.63 See Fig. 69.

264 263 262 258 256 254 254 255 254

-

-

-

-

-

923 ... 1223

Method A

69

74B3

IO...90 wt. % 7.5 wt.% 7.5 wt.% 12.5 wt.% 12.5 wt.%

-

-

See Fig. 70.

-

-

1223 ... 1373

Method A

70

84G

-

-

2.7. 10-l’ 4.4.10-19 3.6. 10-l’ 2.3. IO-”

-

-

86D

-

1184 1124 1075 1030

Method B

-

83N

1.6. IO-” 1.2.10-21 4.0.10-22 9.0.10-16 1.5.10-16 1.1 . 10-18 3.3 . 10-20 6.8.10-21 1.1 . 10-21

-

-

Method B (Reference [83N] is closely related to [86D]) Method B

978 923 883 1126 paramagnetic 1078 > 978 927 ferromagnetic 877 827

17.5 wt.% 22.5 wt.% 27.5 wt.% 0.5 wt.% 0.5 wt.% 1.0 wt.% 1.0 wt.% 1.0 wt.% 1.0 wt.%

-

-

978 .-. 1699

Method A

908 ... 1699

86D

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

5.2 Chemical diffusion in inhomogeneous binary alloys (Tables)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Murch, Bruff

[Ref. p. 366

Iandolt-Btimsrcin New Series III./26

Fe Y

Si O...lwt.%

a

3 wt.% 5 wt.% 8.5 wt.% 4 5 8 18

u

17 17 35

249 247 249

4.10-‘0 1.7.10-g 2.67 . ;;I:: 7.87 . 2.66 . 10-12 -

1.8

209

-

-

-

-

-

7 ... 21

See Fig. 71. -

18 u

CL

Fe

0 . . .4.7 + 1.8% V to stabilize u phase 8.35 8.69 9.04 9.38 9.73 10.07 10.41 SIR xl wt.% 3 wt. % . . . solubility limit - e.g. 17 wt.% at 1123K

_ -

-

-

0;. =

Dzi = 2.2

5.6. 1O-4 QFe = 226 -

Qsi = 209 -

0;. =

D,91 = 2.2. 10-4 Qsi = 209 -

I -

l=Fe,2=Si Method B

-

52B

Method C

-

53F

1073 ... 1673

Method A

-

67V

1423 ... 1473

Method C

-

67M

1403 ... 1493

Method A

71

680

1173...1673

Method A

-

70B

1479 1566 1423

0.735.(1 + 12.4X,,) (Xsi: atom fraction Si)

219

-

5.6. 1O-4 QFe = 226 -

1403 ... 1493

1.82 1.87 1.77 1.62 1.52 1.55 1.66

215 214 213 212 211 211 211

-

-

-

1173 ... 1373

Method A

-

72M

12.9. 10 3.16. IO6 1.59. 106

345 356 356

-

-

-

1003...1173 1003~~-1113 1113...1173

Method A

-

73T

(continued)

Composition at.%

Fe

CL Y c?

Fe ci Y

Y CL

Q

0

Dl

D2

10-4m2s-1

kJmol-*

m2s-’ .

m2s-’

-

Sn (continued) 0...80 wt. % Sn FeSn, 81...100 wt. % Sn 0...9 -

0.3 ..+ 1.6 wt. %

Y Fe

DO

-Ill Th,Fe, Ti 0.7 * ** 3.0 o.e.o.7 2 85 90 95 0 *. .0.4 wt. %

-

Method/Remarks

Fig.

Ref.

m2s-’

Temperature range K

3.0 * lo-l9

-

473

Method A

-

75L

1.0 * 10-16 9.3 * 10-16 1.2 * 10-16 2.1 * 10-16 1.9 * 10-14 9.1 * 10-14 2.4. 10-l’ 2.0 * 10-l”

-

573 673 723 473 573 673 723 473

Method A

81Y

Method E

72 -

Method B

-

86Sl

-

-

-

0.931 5.04.10-5 0.8

221 136 160

4.4*10-‘7 6.2 . lo- l6 3.6 . lo- *’ See Fig. 72. -

2.32

185

-

-

-

1235-e. 1473

1.34.102

207

-

-

-

823 ... 1073

Method C

-

7834

3.15 0.15 68 3.6 0.77 0.6 8.5. IO’

247 250 260 213 192 188 377

-

-

1348-a. 1498

Method A

-

59M2

-

973.e.1573 973-e. 1323 973-e-1573 1173.e. 1573 1423 a.. 1573

Method A

-

68H3

Method B

-

6882

2.89 . IO2

274

-

-

1123...1323

Method C

79 -

-

573 673 723 473e.o 723 1073*** 1373

-

1183... 1680 1273-e. 1580 1033... 1235

81A

76T

-

-

-

-

222 252 217

-

P

4.41 .10-Z 2.08 3.23

Fe O**.solubility limit

U y

1.3

133

-

1063 ... 1273

Method C

-

60M

Fe u

V 0.7 5.0 10.0 15.0 20.0 25.0 30.0 In solid solution

0.61 3.9 1.1 0.7 0.71 0.63 0.59 3.4

266 237 223 219 220 220 221 221

-

1223 ... 1523

Method A Atmospheric pressure data only. Reference contains data up to 40 k bar pressure for the y phase.

-

65Hl

973 ... 1273

Method C

-

7886

11.52

592

-

2473 ... 3073

Method F

-

45v

1.6 0.13

244 268

-

948 ... 1758

Method B

-

74A

-

-

5.2. IO-l6 6.1 . IO- l6 1.14.10-‘5 1.44.10-15 6.78. IO-” 6.0 . IO- l6 7.9 . lo- l6 1.41 .10-‘5 1.75.10-15 8.39. IO-” -

1273 1289 1322 1333 1425 1273... 1425 1273 1289 1322 1333 1425 1273 ... 1425

Method A

Fe,Ti FeTi

Fe 0...0.026 wt. % ct Y

W

Fe Y

Zll

0...2.9

1

1 2

2

257 -

260

-

-

-

-

-

-

-

-

-

-

-

-

-

73B3

(continued) L

Composition at.% Fe CL

L

6.8.e.9.9 8.5 9.0 9.5 10.0 10.5 11.0 II.5 12.0 12.5 13.0 21.5...22.5 31 ... 32 Ga 3.o.s.7.9

0.48 . ‘. 2.6 0.73 - *. 1.97wt. %

Zn

Temperature range K

Method/Remarks

-

1223 1282 1333 1368 1424 1223.m.1425 513...593 513***595 741 .a. 798

Method A

-

623 .+. 790

DO

Q

d

Dl

D2

IOm4rn*s-l

kJmol-t

m*s-’

m*s-*

m*s-’

226 75 75 64 72 80 79 80 78 74 75 75 78 80 92

5.7 . IO- l4 1.4. 10-13 3.82 . IO- ” 5.81 . lo-‘* 1.37 * lo-‘* -

-

156 55 138

-

-

(continued) 4.25 . IO-’ 3.99 * 10-3 2.97 * 10-3 7.88. 1O-3 1.39. lo-* 5.53.10-3 2.82. IO-’ 1.02. 1O-3 5.81 . 1O-4 6.98. 1O-4 1.26. 1O-3 8.21 . 1O-3 2.04. 1O-4 1.05.10-J I.3 5.3 * 10-4 9.8. lo-*

833.e.913 673 ..a 807

Fig.

Ref.

73B3

Method C Method C Method A

-

7303 7301 77WI

Method B Method A Method A

-

68E 7lH2 67R

Ref. p. 3661

Land&-Biimstein New Series III/26

I

I

8 29 r.k 8 VI

I

I

5.2 Chemical diffusion in homogeneous binary alloys (Tables)

I

I I I I I I I I I I I I I I I I I

G8: l I lItihlc.4

I I I I I I I I I I I I I I I I I

IIIIIIIIIl

Murch, Bruff

I

319

Composition at.% In

Method/Remarks

Fig.

Ref.

m2s-*

Temperature range K

-

388.e.446

Method A

76

76Cl

-

388.e.446

DO

Q

b

D,

D2

low4 m*s-’

kJmol-’

m2s-*

m2s-’

2.9. 1O-3

57

Pb Dp. =

41 x20*.*50

1.1.10-6

-

-

t Q,. = 61 SeeFig. 76. -

2.2. 10-2

102

-

-

-

813.e.871

Method C

-

66L

La In solid solution

Mg

La In solid solution O*..solubility limit

U y

117

233

-

-

-

1123.a.1363

Method C

-

59A

y

118

233

-

-

-

1123...1363

Method C

-

64T

Li 34*** 50

Mg

-

-

SeeFig. 77.

-

-

768...800

Method D

77

84L

Li Li,Sb

Sb -

x 19 **a29 SeeFig. 78.

-

633...900

Method D

78

77W2

Li X0

Si 2.5. 10-s

63.2

-

-

-

1073 ... 1623

Method F

-

6OP2

Li !ZO

W 5.0

174

-

-

-

1365 a.. 1500

Method B Li concentration not given but probably small.

63L

Mg O...l

Ni 0.44

234

-

-

-

1323s.. 1573

Method B

-

57s

Mg

PU 0.01

0.562 1.124 1.686

Mg Mn 0 ... 4

U 0.025

-

-

2.45. IO-’ 1.05.10-2 3.6. 1O-4

119 118 94

6.1 . 10-l’ 2.5. lo-l4 1.3~10-13 -

-

-

1.2.10-1s 3.3 . 10-15

7.5

281

-

-

-

693 748 807 693...807

Method A

-

63C, 65C

-

673 773

Method A

-

63C

-

1376... 1570

l=Mn,2=Ni Method B

-

56s

1073 ... 1323 1173 1223 1273 1323

Method A

79

79Yl

Method A

-

60G

-

65H2

Ni

-

-

See Fig. 79. -

4.62 . IO- l5 10.4.10-‘5 32.4.10-l’ 66.3. IO-”

1.4 . 10-15 4.83. lo-l5 12.2 * 10-15 27.5. IO-”

1 .10-3

147

-

-

-

1103...1463

1 . IO3 1 . IO3 1 .I03

553 573 578

-

-

2073 ... 2436

X0

-

-

-

DoMO= 9.2. 10-z QMo= 549

19.9

-

-

-

5...25 19.7

Mn 8

Ti P

MO WO 50 ~100

Nb

16.2

~100

-

-

-

-

-

-

DoMO= 1.4. 10-l 1 QMo= 571 DoMa= 1.1 . 10-l i QMo= 563 D;, = 4.0 . 10-4 QM,,= 481

l=Mo,2=Nb Method A Values of Do and Q taken from smoothed curves given in reference.

Dib = 1.3 QNb = 586 DR = 1.9 . 10-l QNb = 548 D&, = 1.0 . 10-l QN,, = 582

(continued)

Composition at.% MO 20 40 60 80 20 . . .80 10

Nb

DO

Q

b

D,

4

low4 rn’s-’

kJmol-’

m2sTt

m2s-’

m2s-’

429 413 411 345 399 -

8.75. IO-r6

-

-

-

1.67. lo-l6 SeeFig. 80. SeeFig. 81. SeeFig. 82.

-

-

(continued) 13.5 3.8 2.1 5.2 * 10-2 1.5 -

90 IO...80 x10***90

-

See remarks

x10..*90

MO 0 . . .0.93 0-m.13.5 wt. % 5 15

Ni

MO OS lo... 100 vol. % MO

Pd 61 66 71 75 80 85

3.0 0.853

288 270

-

1.56 0.97

283 278

-

-

-

SeeFig. 83.

5.5 * 10-s 4.0 - 10-s 5.0 * 10-s 2.4. 1O-4 1.6. 1O-3 1.6. 1O-2

188 165 178 201 219 253

-

-

-

-

-

-

-

-

Temperature range K

Method/Remarks

Fig.

Ref.

1673-a-2648

Method A

-

66W

1573

Average of data given. Method A

67P1, 67P2

1253 1373-e. 1773 1473...2173

Method A Method A Method A Curved Arrhenius plots, see reference.

80 81 82

69s 7ov 73B4

1423 ... 1673 1373...1573

Method B Method B

-

1273 ... 1568

Method A

-

57s 63D1, 63D2 74H

2147...2450

Method A

83

73E

1273 ... 1873

1 =Mo,2=Pd Method A

-

722

90 95

0.9 0.14

293 283

-

85 MO

MO MO

MO O...lO solid solution range 0 10 20 30 40

-

-

DL = 1.5. 1O-6 Dgd = 1.2 . 1O-7 QMo= 260 QPd = 193

Pt u P E rl Y

-

8.0. lo-l6 1.63. IO-” 3.59.10-15 6.27. IO-l5 1.05.10-‘4

-

-

1773

Method C

-

77M

Re 0 ... 100

-

See Fig. 84.

-

-

1773

Method A

84

77M

Ta Ta rich MO rich

4.68. IO-’ 4.16. IO-’

251 234

-

2173...2573

Method A

-

701

Ti p CL

1.23. 1O-4 3.42. IO-*

139 119

-

1173 ... 1973 873 ..+ 1073

l=Mo,2=Ti Method B

-

62E

w2.10-2 x2.10-2 z2.10-2 w9.10-2 z 10-2

197 209 218 264 255

1483 ... 1873

Method A Further data for Do and Q are given in reference but the scatter is large.

-

65H2

1173 1773 1623 1373 ... 1673

Method A

85 86 87 -

69F

P

tzlO0

-

11.1

-

X0

-

20...50 30...50 30...50

1.64. 1O-4

0 ... x 40

-

-

-

-

-

D;,=40 QMo= 481

Dii =6.3. 1O-3 QTi = 211

-

Die = 1.0. 1O-2 D$ = 1.8 . 1O-3 QMo= 204 QTi = 161

205

See Fig. 85. See Fig. 86. See Fig. 87. -

D;, = 2.5.10-2 QMo= 197 - -

-

Method B

73s

Composition at.% MO 2 4 6

U Y

8 IO I2 I6 20 24 26 MO

DO

Q

10m4m2s-’

kJmol-’

2.2 0.58 20 I6 28 3.2 9.6. IO-2 3-10-3 4.5.10-4 2.1 . Io-4

IO wt.% 20 wt.% 30 wt.% 40 wt.% 50 wt.% 60 wt.% 70 wt.% 80 wt.% 90 wt.% IO wt.% 20 wt.% 30 wt.% 40 wt.% 50 wt.% 60 wt.% 70 wt.% 80 wt.% 90 wt.%

4.48 2.41 0.64 0.48 0.30 0.17 0.14 8.0. IO-2 5.0.10-2 0.52 0.24 5.6. IO-2 1.1 * 10-3 3.8 . 1O-3 7.5 * 10-3 4.0 * to-3 1.7 * 10-4 4.6. IO-4

3.4. lo-l3 1.4.10-'2 1.6. IO-l2 3.4.10-12 -

1123...1323

Method A

-

2273...2773

Method A

-

71N

1973.e.2673

Method A Polycrystalline data given here. Single crystal data also given in reference.

76KI

m2s-’

m2s-’

m2s-’

199 192 222 230 238 219 191 165 162 142

-

5.2. lo-l4 2.1 . 10-13

491 481 459 458 451 441 438 430 422 448 425 405 394 382 372 386 355 344

-

-

W

Ref.

Method/Remarks

02

-

Fig.

Temperature range K

D,

58Al

1123 1223 1123...1323 1273 1123...1323 1323 1123...1323

MO

Zr O...lO

Mo,Zr Nb

449 233

-

3.3. 10-8 3.0. 10-5

71 163

Pd

Nb

2.2. 10-z

Ta 10 90 x10...90 10 20 25 35 40 45 55 60 65 70 75 90

!O wt. %

-

65H2

-

-

-

1173...1303

Method C

-

75Ml

See Fig. 88. See Fig. 88. See Fig. 88.

-

-

88

71U2

-

1473 1473 1473

Method A

232

-

-

-

1573 ... 1623

Method C

-

71Rl

-

1.58. IO-l7 2.76 .+,-Is

-

1573

Method A

-

67P1, 67P2

-

See Fig. 89. -

-

1573...2073

Method A

2273 ... 2653

Method A

89 -

7ov

-

1673 1773 1873 1973 2073 2173 1673...2173

Method A Values of d and Q extrapolated to 0 and 100 wt.% Nb are given in reference.

-

74W2

Sn

Nb,Sn

Xb

1923...2108 1098... 1718

Method B and C

-

-

;d,Nb P

1.1 . 10-z 1.34.1o-2 1.0. 10-z 9.3. 10-3 1.0. 10-2 1.56. lo-’ 1.26. 1O-2 2.0. 10-z 3.16. IO-’ 4.4. 10-z 5.6. lo-’ 1.24. IO-’

-

-

Ni

NbNi, NbNi Nb

1.6 1 .10-3

343 352 343 347 352 360 364 373 385 394 398 414 293

6.0. lo-l6 1.77.10-15 1.6 . IO-l4 4.3.10-14 7.7.10-14 1.8. IO-l3 -

-

-

-

-

74s

-

(continued)

Composition at.% Nb 40 wt.%

60 wt.%

80 wt. %

Nb

DO

Q

B

Dl

D2

10T4 m2sm1

kJmol-’

m2sS1

m2s-’

7.6. lo-l6 2.3.10-" 2.3. IO-l4 6.1 . IO-l4 1.12 * lo-‘3 2.8. IO-l3 9.4*10-'6 3.1 . 10-15 3.1 . 10-14 8.7. lo-l4 1.63 . IO- l3 4.2. IO-l3

-

313

-

1 -

322

l.18~IO-15 4.1*10-'5 4.4.10-14 I.25 -10-13 2.4. IO-l3 6.2.10-13 -

Ta (continued) -

308

-

-

-

1 -

-

-

-

Method/Remarks

m2s-’

Temperature range K

-

1673 1773 1873 1973 2073 2173 1673...2173 1673 1773 1873 1973 2073 2173 1673...2173 1673 1773 1873 1973 2073 2173 1673...2173

Method A

Ti

Ref.

74W2

74W2

1 =Nb,2=Ti

D;, = X0

2.5 -10-j

293

-

20 40 60 80

2.5.10-3 3.2. lo-’ 3.8. lo-’ 3.8. 1O-3

263 239 209 184

-

Xl00

Fig.

3.8. lo-’

167

-

3.8. IO-’ QNb = 164 -

-

-

Dsf = 5.0. IO-' Qr,= 259

1273.a.1863

Method A Values here taken from smoothed plots given in reference.

-

65H2

DoNb =

81.1 -

-

3.48 . 10-15 3.9.10-14

-

See Fig. See Fig. See Fig. See Fig.

~0~~~100

-

See Fig. 92.

IO...90

See Fig. 93. -

10 90

-

lo...60 IO..*70 40..*90 x10...90

Nb

U(Y) 2 12 18 22 28 38 46 54 62 68 74 78 82 93

2.8 . IO’ 2.3 . IO’ 9.6. lo6 9.1 . 10-z 0.113 0.149 6.4. lo-’ 0.45 0.84 1.94 0.82 1.16 1.19 * 10-4 1.63. 1O-4

623 604 586 308 305 305 285 293 287 292 253 252 140 126

97

2.31 . 1O-4

125

-

85. 90. 87. 91.

2.2. 10-7 QN,, = 177 -

-!

Dii = 1.7. IO-’

( QTi = 164

D;, = 7.1 . 10-7 Qm= 39

0; = 3.82. lo-’ Qu = 30

1573

Method A

1173 1273 1623 1373 ... 1573

Method A

Method A

85 90 87 91

1273 ... 1473

Method B

92

71P

1273 ... 1673

Method A

93

75u

-

63P

1773 ... 1923

1673 ... 1873 1573 ... 1423 ... 1423 ... 1348 ...

1773 1673 1663 1573

1223 ... 1448 1165s.. 1398 966... 1298

l=Nb,2=U Method A Further data are available in the reference.

67P1, 67P2 69F

7ov

Composition at.% Nh

DO

Q

d

D,

D2

10v4 m’s-’

kJmol-’

m2s-’

m2sS1

m2s-’

--

V

X0

1.6. IO-*

410

20 40 60

1.95 * 10-2 2.3. 1O-2 2.8. IO-’

343 293 268

80

3.3 * 10-2

264

-

-

85

DE, =

Temperature range K

Method/Remarks

Fig.

Ref.

1 =Nb,2=V

D;= 2.9. 1O-4 ( Qv = 405 -

1678.a.2023

Method A Values have been taken from smoothed plots given in references.

65R, 65H2

67P1, 67P2

D;= I

4.9 * 10-6 QNb = 278

4.2 - IO+ QV = 253

D;= 2.6. 10-j QV = 247

DE, = 100

-

1573

Method A

10 90

1.4.10-15 2.3. IO-l4

xlO***90

See Fig. 94.

-

-

1573 a** 1773

Method A

94

7ov

See Fig. 95.

-

-

1473

Method A

95

7lU2

1.39 * 10-1s

-

-

1573

Method A

3.74 . lo- l9

-

-

See Fig. 96. -

-

-

1573e.02073

Method A

-

-

2273 ... 2673

Method A

-

o*.-90 Nb

8.6. 10-6 QNb = 275 -

W 10

-

-

90 xlo*~*90

-

-

10 20 30 40 50 60 70 80 90

81.45 22.2 1.97 1.4. 10-2 7.4. 10-J 3.0. to-3 1.8. IO-’ 1.0 * 10-3 6.0. lO-4

440 419 376 280 272 255 247 236 228

wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.% wt.%

-

---

67P1, 67P2 96 -

7ov 71N

Nb X0

197

-

4.0. 10-z

209

-

23

-

-

40 60 80

0.1 0.3 2.0

255 301 347

10.0 10 90 ~10~~~90 x5...85

Ni

-

20

-

30

40

50

-

-

1.74.10-15 2.5. lo-l4

-

-

10

-

-

-

-

See Fig. 97. 0.68 .10-15 1.30.10-‘5 1.79.10-15 1.86.10-14 1.03~10-15 2.01 . 10-15 3.37.10-15 3.0. 10-14 1.52. IO-l5 3.54.10-15 7.39.10-15 7.04 . lo- l4 1.72. IO-l5 5.37.10-15 1.17.10-14 9.82. lo--l4 1.97.10-15 6.61 * 10-15 1.61 . IO-l4 1.58. IO-l3

-

1718.+.1963

Method A

1573

Method A

1373 ... 1573

Method A

97

7ov

1173...1973

Method A

98

73R

1132 1223 1292 1423 1132 1223 1292 1423 1132 1223 1292 1423 1132 1223 1292 1423 1132 1223 1292 1423

Method A

-

66B

65H2

D;, = 3.8 ’ 1O-7 Qzr = 185 -

389

See Fig. 98 b. See Fig. 98a.

Pd

-

l=Nb,2=Zr

DO Nb = 1.1 . 10-6 QNb = 191

-

D;, = 2.2. 10-4 Qzr = 415 -

-

67P1, 67P2

(continued)

Composition at.% Ni

Pd

60

70

80

90

O...lOO Ni o-.- 14.9

Ni

Q

b

Dl

D2

low4 m*s-*

kJmol-’

m2s-’

m2s-’

-

1.40 * 10-15 5.42 . IO- I5 1.56 1IO-l4 1.31 * 10-13 0.84. IO-l5 3.06 . IO- l5 1.13.10-‘5 1.04.10-‘3 0.56 . IO- l5 1.90.10-‘s 5.58 . IO-” 5.87 . IO- l4 o.s.lo-‘s 1.25.10-1s 2.30. IO- l5 3.50. lo-l4 SeeFig. 99.

68 -

180 -

SeeFig. 100.

1.5

258

-

-

-

4.5.10-14 4.8. IO-l4 5.0. lo-‘4 5.5 * lo-‘4 5.8. IO-l4 6.0. lo-l4 6.5 3IO- l4 7.0.10-‘4

(continued) -

Pt

0.e. loo Ni

DO

Si o*** < 1 Sll 0

1 2 3 4 5 6 7

Method/Remarks

m2sv1

Temperature range K

-

-

1132 1223 1292 1423 1132 1223 1292 1423 1132 1223 1292 1423 1132 1223 1292 1423 1385

Method A

Method A

-

-

1316... 1674 1223 ... 1573

-

1393 .-. 1573 1373

Fig.

Ref.

66B

99

69B4

Method A Method A

100

44K 67B2

Method B

-

57s

-

8211

1 =Ni,2=Sn Method A Data determined from figure in reference. Some intrinsic data also given at 1373 K.

-

1 2 3 4 5 6 7 0.8 1.5 2.2 4.5

-

259 257 255 251 253 251 250 -

-

1.9.10-14 2.2.10-14 1.8 . lo- l4 3.0 . IO- l4

2.6 . lo- 3 2.1 0.1 1.7. 10-5 0.9 . 10-z

231 307 250 134 334

-

-

2.5 2.3 2.3 1.9 2.5 2.4 2.3

Method A

-

841

1423 ... 1573

Method C

-

77P

-

823 ... 1073

Method C

-

7884

-

1377... 1555

Method B

56s

773 **. 1173

Method C Phase growth data for TiN, and Ti,Ni given in reference. Method C

68H4

-

1223 ... 1423

;4.10-14 3.7. 10-14 4.2 . lo-l4 6.0. IO-l4

1373

-

-

-

1223 ... 1473

Ni Ta,Ni TaNi TaNi, TaNi, TaNi,

Ta

Ni

Th ThNi

1.6. IO-’

74

Ti 0 . . .0.9

0.68

61

-

-

5.48. IO-’

103

-

-

141 142 137 138

-

-

-

193

-

-

-

1123 ... 1273

Method C

180 222 130

-

-

-

803 ... 1003 803 ... 1003 803 ... 1003

Method C Do is multiplied by 6,, where 6, is the range of solubility in the phase.

Ni

TiNi

6 50 51 52

P TiNi

Ni 0 . . . solubility limit

UY U,Ni U,Ni, mi5

2.5 . lo2

s:e marks

8.5 . IO2 7.4.10-3

-

1073 ... 1213 923 ... 1213

-

74B4

Composition at.% Ni

V 0.~. 14.8 wt. % 5*..95 25 33 60 65 In solid solution

Ni

w 0.v. 1.5 O.-e14.6 wt. % 1 2 3 4 5 6 7 8 9 10 11 12

Method/Remarks

Fig.

Ref.

m2s-’

Temperature range K

-

-

1273...1573

Method B

-

1083 ... 1448 1343 ... 1448 1083 ... 1293 1223... 1448 1083...1163 1253 ..- 1448 1083 ... 1223 1253 ... 1448 1083 ... 1223 773 ... 1273

Method A Method A

101

-

-

63D1, 63D2 78Kl 78K2

Method C Limited data on d for other VfNi phases given in reference.

-

7836

-

1426-v. 1562 1273 ... 1573

Method B Method B

-

-

1273-e. 1589

Method A

-

56s 63D1, 63D2 69Wl

DO

Q

B

D,

D2

10v4 m2s-r

kJmol-’

m2s-’

m2s-’

0.287

248

-

36 4.2. 1O-6 1.2 * 10-3 2.0 - 10-s 0.2 7.0 * 10-4 6.8 * 10-2 6.0. 1O-4 1.6. 1O-4

301 87 165 117 234 167 227 172 132

SeeFig. 101. -

11.1 0.862

322 295

-

2.24 2.16 2.11 2.07 2.04 2.01 1.98 1.95 1.94 1.92 1.90 1.89

303 303 304 304 304 305 305 306 306 306 307 307

-

-

Ni

Zll Is...95

1.05. IO3

180 .exp(-14.24X,,) (XNi: mole fraction) 15 255 20 255 6 75 u 79 :6-.90(y) 243 P 55 . ..6O(B) 6 7.1 . 10-z 85 1.2. 10-l 91 Y’,,, 3.0. 10-z 97 Y l.e.40 Pb

Sn

1.82.10-” 2.63. 10-l’ 1.35.10-14 2.29.10-14 1.0. 10-13 3.31 . 10-15 4.68. IO-l5 2.45 . lo- I4 4.16. lo-l4 1.86. IO-l3

I SeeFig. 102a. SeeFig. 102b. SeeFig. 102~. SeeFig. 103.

-

1 -

In solid solution (PI u solid 7.0 solution

99 101

3.12. lo-l5 6.9. IO-l5 1.96. IO-l4

O...lO

-

SeeFig. 104.

-

-

-

-

-

-

882... 1281

Method A

-

69A

1169 1203 1266 1293 1373 1169... 1373 1169 1203 1266 1293 1373 1169...1373 700..*758 1203 790... 1073 883 1173...1273 1203 483...873

Method A

-

74B5

Method A and C Do values not given.

77B3 102a

Method C

102c 7882

1073 -.. 1323

Method A

103

518...558 518 538 558 443...454

Method B Do not reported.

32s

Method A B increases with concentration. Equation for Do(C) given in reference. Method A 104

60C

523

102b

79Y2

87M2

DO

Q

B

D,

D2

10s4 m’s-’

kJmol-’

m2s-’

m2sW1

m2s-’

-

87 -

2.7. IO-” 1.5. to-14 3.13.10-‘4

-

1.26 alo-’ 1.6.10-* 3.6. lO-4 1.6. 1O-6 6.4. 1O-4

132 45 129 84 145

-

-

-

-

Temperature range K

Method/Remarks

Fig.

Ref.

-

493.a.558 493

Method B Do not reported.

-

32s

-

-

973 ... 1273 973...1173

Method A Several intrinsic diffusion coefficients given in reference.

-

73L

SeeFig. 105.

-

-

1473

Method A

105

7lU2

-

SeeFig. 106.

-

-

1773

Method A

106

77M

9.4. 10-4 2.3. 1O-3

124 128

-

1173.0.1373

Method B

-

71L

Pu U 0.35 wt.%

0.17.10-7

57

-

683.e.813

Method A

-

1.75wt.% 3.50wt.% 5.25wt.% 7.0 wt.% 8.75wt.% 10.50wt.% 12.25wt.% 14.0wt.% 15.75wt.% 17.15wt.%

0.14. IO-’ 0.15.10-7 0.18. IO-’ 0.28 . IO-’ 0.44.10-7 0.88.10-7 1.18. IO-’ 2.0. IO-’ 2.57. IO-’ 1.83. lo-’

56 57 59 64 68 75 79 84 86 84

-

65D, 65C, 67D

Composition at.% Pb

TI

In solid solution (Iv Pd

Ti B Y 6 E rl

Pd 2..-98

V

Pt

Re 0-a. loo

Pll

2 15

Ti B

-

-

538 558

Ref. p. 3661

I I I I I

I

I

I

I

I

Murch, Bruff

I

5.2 Chemical diffusion in homogeneous binary alloys (Tables)

I I I I I I I

I I I I I I I

I I I I I I I

Land&-Biimstein New Series III/26

335

Composition at.% Rh 3 6o

Method/Remarks

Fig.

Ref.

-

1573+..2073

Method A

-

64R

-

-

1123...1323

Method C

-

60M

-

-

-

1073 *** 1313

Method C

-

64T

64 125 -

-

9.18 . IO- *’

2.65 - 10-l’

1277... 1523 1363-v. 1523 1523

1 =Sm,2=Ti Method A Between 1.0 and 8.0 at.% Sn, d increases linearly.

-

60G

3.0. 10-4

92

-

-

873...1123

Method B

-

53R

6.9. 1O-4

153

-

-

1373 ... 1573

2.38

197

-

-

1073 ... 1273

Method C

-

59A, 64T

8.62. IO-’

202

SeeFig. 85. SeeFig. 90. -

-

1173 1273 1373 ... 1673

Method A

85 90 -

69F

Q

I3

Dl

4

10s4 m’s-’

kJmol-’

m’s-’

m2s-’

m*s-l

1.3. 10-6 1.5 * to-6 2.5. 3.1 . 10-6

243 175 182 174

-

-

20

188

-

4.08 . IO’

229

8.4. IO-’ 2.7. 1O-4 -

W

CL

Zi( 1) E Si Gzo...

Temperature range K

DO

U y

solubility limit Sm U 0 .. . Y solubility limit Sn

1.0 8.0 2.0

Ti B

Zr Sn In solid CL solution 0...3.9 p

Sr U y zo*.. solubility limit Ta IO*** 35 IO.-* 55

Ti 0 ... z30

Method B

73s

Ta

W 10 wt.% 20 wt. % 30 wt. % 40 wt. % 50 wt. % 60 wt. % 70 wt. % 80 wt. % 90 wt. %

10 20...80 90 30 Ti 10 20 30 40 50 60 70 80 90 95 16.5 18.0

U Y

Ti

V 2.0 3.5 Solid solution range o... 10

7.0. 10-4 1.0. 10-4 1.22.10-5 6.08.10-6 3.34.10-6 1.66.10-6 1.5. 10-6 1.23. lO-‘j 2.2. 10-7 1.0 1.0 1.0

309 302 262 254 245 231 232 229 198 544 553 502

-

-

1.1 . 10-Z 1.4. 10-3 1.6. 1O-3 4.0. 10-3 9.5. 10-3 2.6. 1O-3 2.6. 1O-3 2.2. 10-3 1.1 . 10-3 4.6. 1O-4 -

153 138 146 161 176 165 165 157 142 126 -

6.0. 1O-3 -

166

1.25. IO-’

173

-

2273 . . .2673

1 = Ta, 2 = W Method A

-

71N

1573...2373

Method A

-

85R

-

6OAl

-

-

D;a = 1.8. 1O-4 QTa = 554

D;= 1.7. 10-S Q, = 511 1223 ... 1348

-

-

-

-

-

-

-

-

-

5.8. IO-l3 1.2.10-13 2.9. IO-l3 4.1 . 10-13

2.2.10-12 4.7. lo-‘3 9.5 . lo- l3 1.6. lo-l2

1348 1223 1273 1323

-

-

L9l . 10-19 4.7. lo-l9 -

1.31 .10-g -

14.9.10-g -

1173...1521 1523 873 973 1173... 1573

1 = Ti, 2 = U Method B Q values (but not Do values) for intrinsic diffusion coefficients are given in reference.

1 = Ti, 2 = V Method A Method B

60G -

62E (continued)

Composition at.%

DO

Q

IO 20 30 40 50 60 70 80 90

V (continued) 15***90 10**~90 so***90 50***90 8.3. lO-4 1.5. 10-3 4.4. 10-J 1.3. 10-2 2.4. lO-2 1.1 . 10-2 8.1 . lO-2 4.1 * 10-4 1.6. lO-4 -

68

11.1

-

20.2 36.0 38.0 55.1 76.4 88.0

-

20 . . .80

Fig.

Ref.

-

1173 1273 1623 1773 923e.a1083

Method A

85 90 87 86

69F

1.23. IO-’ QTi = 158

-

923 ... 1083

-

1273...1673

Method A

-

-

1623

Method A Extensive intrinsic diffusion data given in this reference and also in [78C] for 1173Kto 1773K.

1177.e. 1476

-

1173.e.1573

m2s-’

m2s-’

m2s-’

198 199 204 207 203 187 153 140 124

SeeFig. 85. SeeFig. 90. SeeFig. 87. SeeFig. 86. -

-

-

-

SeeFig. 107. -

lo**.90

Method/Remarks

4

10v4 m2sw1 kJmol-’ Ti

Temperature range K

Dl

-

3.1 .10-‘2 2.82. IO-l2 1.64. lo-l2 1.06. lo-l2 4.61 . IO-l3 1.54 * 10-13 1.64. IO-l4 SeeFig. 108. SeeFig. 109. -

-

74Bl

Method A Data should not be extrapolated outside temperature range.

923.e.1323

Dti =

-

107 -

75u

Method A

108

76K2

Method A Data should not be extrapolated outside temperature range.

109

77Bl

76C2

Ti cf. P 10 25

Zr O...lO o... 10

-

3.2 . lo- I4 -

5.1 . IO- l4 -

1 = Ti, 2 = Zr 873 .-. 1073 Method B 1173.*.1573 1103...1323 Method A Two regions in 1103...1323 923...1103 Arrhenius plots 1103 1.. 1323 Two regions in 923...1103 Arrhenius plots 1 Two regions in 1103 ... 1323 923...1103 Arrhenius plots 1 1103...1323 Two regions in 923...1103 Arrhenius plots 1 1103...1323 Two regions in 923...1103 Arrhenius plots 1103...1323 1073 1173.e.1573 Method A

389

-

-

-

2243 . . .3003

Method F

68Sl

134 120 110 115 124 124 124 144 172 197 -

Method A

57A

1223 ... 1313

Method A

1 3 5 7 9 11 13

1.82. 1O-4 1.78. 1O-4 2.95. 1O-4 8.72. 1O-4 1.07.10-3 1.0. 10-3 9.35.10-4

119 123 131 146 149 149 149

-

See Fig. 111. -

1223 ... 1348

-

-

5 ... 90

9.5 * 10-4 1.3. 10-4 3.5. 10-s 4.0. 10-s 8.0. lo-’ 6.3. lo-’ 5.5. 10-s 3.2. 1O-4 7.8. 1O-3 8.7. 1O-2 -

-

1223 ... 1723

Method A

40 50 65 80 90 50.5 20...80 U zlo-3

W

U Y

Zr 10 20 30 40 50 60 70 80 90 95

1.6. 10-l’ 1.8. IO-’ 1.4. 10-Z 3.3 . 10-3 5.10-7 2.7 . 1O-3 1.2. IO+ 2.4 . 1O-3 1.7.10-6 1.6 . 1O-3 2.0.10-6 1.5 . 10-3 2.2.10-6 1.3. 10-3 -

49 168 165 147 66 143 72 141 74 137 75 135 75 132 See Fig. 110.

1.8. IO-’

-

-

-

-

62E

-

74B2

110

76Bl

111 -

60A2 67P3

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

340

[Ref. p. 366

Figures for 5

ml/s 4 3 I .10-1: m’/s 2

3

I

la

2

I 1

IQ 1

0 0 Ag

20

60 Au -

Fig. 1. Ag-Au. 53Hl]. 10-lI1 mv!j

40

0

80 at% 100 Au

Interdiffusion coefficient at 1173 K [52S,

20

80 at% 100 60 Ag AgInterdiffusion coefficient at 1213 K [54B].

Au Fig. 2. Ag-Au.

40

I r

AS-Cd 053K

10-l

. b.

‘.

,0-l';

I7

;OOO K

:. l . .

0

,~t 10-l

m?s

0 n

+

7 900K

,0-K

v v 10-l

0

I IQ

v

10-l’

,o-l!

10’

25of% 30

0 Ag

CdFig. 3. Ag-Cd. Interdiffusion coeffkicnt from 900... 1053 K [59Ml]. Different symbols denote different starting

5

10

15 Cd-

20

25 at% 30

Fig. 4. Ag-Cd. Interdiffusion coefficient at 883 and 933 K [73U2].

couples.

Murch, Bruff

Land&-BBmstein New Series III,/26

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

Fig. 6. Ag-Cu.

Interdiffusion coefficient at 1023 K [76U].

-y---i.-+_ ‘\.,. \ ‘1. ----

20 Xl-'3 m% 0 CU

10 8 6

2

92

4 Ag -

probe X-roy 96 at% 100 Ag

I 14 4 2

a

0 Ag

1

2

3

4

5

at%

//

7

883 K I

0

Cd-

Zn Fig. 7. Ag - Zn. Interdiffusion coefficient from 673 .883 K [55Hl]. 10-12 m2/s

b 4

Cd-

10 15 20 at% 25 5 Cdc A; Fig. 5. Ag-Cd. Interdiffusion coefficient at 1179.5 K (a), 1087 K (b) and 1073 K (c) [78B]. Different symbols denote different samples. Lmdolt-Biirnstein New Series III/26

25 at% 30 10 15 20 0 5 ZnAg Fig. 8. Ag - Zn. Interdiffusion coefficient from 823 . 1023 K [73U2].

Murch, Bruff

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

342

[Ref. p. 366

120 kJ Et 100 I 5

30

32

34

a 10-l’-

lo-’ 0* e,-Zn 6~ y-Zn I 76

38 wt%

40

I

I

m2’s Ag-Zn (~1 I

60 73

36

Zn -

79

82

85 at%

I b

8

ZnFig. 9. Ag -Zn (E).Activation energy Q and pre-exponential Do for interdiffusion [78Sl].

b

I

‘tr ia

1

Ag-Znia)

160

j

I

I

I

Ag-Zn(c)

lo-' 12

IIo-( nII/S

D

Zn 10" I1 m2/!

I 14 r5 I %2

120 0 4

5

10 Zn -

15

ot%

IICT6 20

10-l 111; C

Fig. 11. Ag -Zn (a). Activation energy Q and pre-exponential Do for interdiffusion [8682]. 10‘; m2/

10-l

0 ln -

Fig. 10. Ag-Zn. Interdiffusion coefficient at 673 K in Ag -Zn (fi) (a), in Ag -Zn (r) (b) and in Ag-Zn (E) (c) alloys [81w].

AI-CU

0 cu

5

10 Al-

15 ot%

20

4 Fig. 12. AI-CL Activation energy Q and pre-exponential Do for interdiffusion [75P2].

Murch, Bruff

Landolt-BBmsfein New series III/26

Ref. p. 3661

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

loml/

lo4;

lo-7 T m2/1 j

Li -

v

53

at%

55

Al Li,+s

10'

-T-r

t !Q

A 1=873 K 833 778 733 688K

10-1 10.'

I 1Q

10-g 10“

10“

10" -0.12

-0.06

0

Al-

Fig. 13. Al-Fe. 1373 K [70Nl].

0.06

0.12

0.18

0

S-

Interdiffusion coefficient from 1073..’

Fig. 14. AI-Li.

Interdiffusion coefficient from 688 ... 873 K

[79W

m2/s

1 AI-Ni

I.

I

I

I

lo-l4

a

I 10-15 10-16

o S-phasein -phasein S-Nicouples~ S-Nicouple

0

01

0.4 wt%

0.5

jig. 15. Al-Mn. Interdiffusion coefficient from 873 ... 123K [43B]. im’day-’ = 1.16~10-5mZs-‘.

Fig. 16. Al -Ni. Interdiffusion coefficient vs. reciprocal temperature [67Jl.

Murch, Bruff

0.8

1.2

J 1.4W3 K' 1.6

Mn -

LandolGB6mstein New Series III/26

0.3

10-201 0.6

1.0 l/T-

Al

0.2

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

[Ref. p. 366

For Fig. 17 see next page 10"

10-l

rn'h

mk

Al-ii

(6)

1373K

I

n

VI-'

10-l

10"

10-l

I '.a

I 'Q 10'

10'

10-l

10'

10-l 10-l rnV

lo-'

lo-'

I g10-'

I ,olo-

\ \ K, .

d !d 10-l

10'

10‘

C

lo-'

40

50

45

55 at%

I

40 Al -

Al -

Fig. 18. AI-Ni (6). Interdiffusion coefficient at 1273 and 1373 K(a), at 1223and 1423 K(b) and at 1323 K (c). Fig. (d) shows interdiffusion coefficient and intrinsic diffusion coeffL cients at 1373 K [ 78851.Different symbols indicate different starting

couples.

Murch, Bruff

LandoM36mstein New Series III/26

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

10-l’ d/S

,o-li

I ,Q1o-‘:

10-l”

,o-l~

36

39

Fig. 17. Al-Ni

42

45 Al-

48

0

51 at% 54

4

(6). Activation energy Q for interdiffusion

[7835].

12

8

Ni

16 at%

20

Al -

Fie. 19. Al-Ni. Interdiffusion coefficient from 1323... 1573 K [8OY2]. 10-1'2

d/s 1130K \

1o-l3

I

1Al - Si

day

1aI 1o-l4

6

4 laI

lo-‘5

2’ ---

0.1

783 743K

-

0

0 Al

F

0.2

0.3

0.4 wt % 0.5

Si -

Fig. 20. Al- Si. Interdiffusion coefficient from 743 ... 853 K [43B]. Im’day-’ = 1.16~10-5mZs-‘. Land&-Biimstein New Series III/26

10-16 0 cu

20

60

40 Au -

at%

1 Au

Fig. 21. Au- Cu. Interdiffusion coefficient from 1006. . . 1130K [69B4].

Murch, Bruff

5 Chemical diffusion in inhomogeneousbinary alloys (Figures)

346

[Ref. p. 366

m2

Au-

,0-l'!

10 10‘” 10-l’

I b 1123

lo-“B

1098 lo-‘9

10

10-20

1048

10-2’ lo-” 10-233

0

cu Fig. 22. AU-CL 1023 K [71P].

lo-” m2/r

,o-l:

20

10 40 ot% ! 30 80 wt% 100 10 20 FeAu Au Au Fig. 23. Au-Fe. Interdiffusion coefficient from 973 ... Interdiffusion coeffkient from 323.‘. 1273 K [831]. 60

40

yT--r

f &O-l’

,o-l!

lo-” 0 Au

20

40

60 Ni -

80 ot% 100 Ni

Fig. 24. Au-Ni. Interdiffusion coefticicnt at 1198 K [57R]. Different symbols denote diffcient starting couples.

0.4 Au Fig. 25. Au-Sn. 1129 K [72H2].

Murch, Bruff

1.2

0.8

1.6 ot% 2.0

SnInterdiffusion coefficient at 1090 and

LandoMi6mstein New Series III,/26

341

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

,igL!I!EEU -18

-12

-15

-9

-6

-3

0 1o-23

Fig. 26. Bi - Li. Interdiffusion coeffkient at 653 K [77W2]. 2.5 40-e m2/s 2.0

0.10 0

cu

0.15

Fig. 27. Cd-Cu. 853 K [38R].

. 0 34

802K I 38 36

m2/s

0.45 at%

0.60

Interdiffusion coefficient from 773 ...

10-13

44 at% 48 42 Li Fig. 28. Cd-Li. Interdiffusion coefficient at 774 and 802 K [84L]. 8 .10-‘5

0.30 Cd-

40

I

ml/s 6

44 2

Co-Ni lo-l4

I1 8 la 66 la 4

240130

2

10-1'5 8

I

1001

I

0 20 40 60 80 at% 100 Ni Ni co Fig. 30. Co -Ni. Interdiffusion coefficient from 1428..’ 1673 K [53Hl]. Landolt-BBmstein New Series III/26

4wl6~ n

I

I

I

80 at% lO[ CO Fig. 29. Co-Fe. Interdiffusion coefficient from 1409.. 1629 K [69B3, 69B4].

Murch, Bruff

Fe

20

40

co-

60

5 Chemical diffusion in inhomogeneousbinary alloys (Figures)

348 7

A!;:

I

2xl-'3 mvs

1578K 0,

Co-Ni

[Ref. p. 366

I

Co-Ni

1529K

10-l’ 8 6

lo-‘& 6 6

1 0 0 20 60 80 _~ 01% 100 Ni co Ni Fig. 31. Co-Ni. InterdiRusion coeflkient from 1423... 1578 K [6782]. 10-l’” m%

l:-ls5” n

m-l NiNi Fig. 32. Co-Ni. Interdiffusion coefficient from 1409... 1629 K [6783,6984]. 7n

LO

co

6 I

lo-12 ‘S m21

4

I

Co- Pd

14 2

lo10-15 0 20 LO 60 80 ato/0 100 co Ni NI Fig. 33. Co-Ni. Interdiffusion coeflicient at 1373 K (73H]. 10-12 m2/s

13

I4 _

lo-'

I I b

Co-Ni I

lo-

15 _

lo- 16 _ !C

10-l‘

.I7

10“

0

co

Fig. 35. Co-Pd. 1466 K [721]. 10-15 0 co

20

LO Ni -

60

80 ot% 11 4 Fig. 34. Co-Ni. 1673 K (73UlJ.

Murch, Bruff

20

40

60 t PdInterdiffusion coefficient from 1153...

Interdiffusion coeffkient from 1373...

Land&-BBmslein New Series III/26

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

Co-'Pt

I

I

I

I

2.0 40-4 mvi

290 kJ ii

1.5

280

-21.5

270 I o

I 1.0 =& I -22.5 a -23.0 -c

a5

-23.5

0 0 Ni

10

20

250 40 ot% 50

30 Cr -

Fig. 37. Cr. -Ni. Activation energy Q and pre-exponential Do for interdiffusion in Cr-Ni alloys (Ni base) [67U].

-24.5 -25.0 0 co

260

10-13 mz/s 20

40

60

80 at%

Pi -

100 Pt

Fig. 36. Co-Pt. Interdiffusion coefficient from 1398... 1573K[67B2].D”incm2s-‘.

IO-14

I a

10-1'5

lo-l6 0 Fe

2

4

6 cu -

96

98

100 cu

Fig. 39. Cu-Fe (E and y). Interdiffusion coefficient from 1173...1323 K[71K]. z-10-'3 m2/s IO-13

0

5

10

15

20 at% 25

8

Ni -

6

Fig. 38. Cr-Ni. Activation energy Q and pre-exponential Do for interdiffusion in Cr-Ni alloys (Cr base) [67U].

4

Cr

I

2

Ia I;-'" 6 4

2

Fig. 40. Cu-Ni. 1322 K [52T]. Landolt-Biirnstein New Series III/26

Interdiffusion coefficient from 1196...

,

10-15 70

Murch, Bruff

75

80

85 cu-

90

95 IIt% 100 cu

[Ref. p. 366

5 Chemical diffusion in inhomogeneousbinary alloys (Figures)

350 10-l3m*1s

10-1'2 m*fs

10’lb _

lo-l3

I

I Q

---

10-’I5

(1

Cu-Ni

Hall method

lo-"

I 1-a

10-“60

40

80 at% 100 Ni Fig. 41. Cu-Ni. Interdiffusion coeffkient and intrinsic difhsion coefficients at 1273 K [67L3]. 20

CU

60

10-l'

NI-

lo-'

10-l

20

0 Ni

i&f

0.20

.10-‘4

Cu-Ni

P

4

10-l m2/s

60 cu -

Fin. 42. Cu-Ni. 1339 K [69B2].

8

40

Interdiffusion coefficient from 983...

T

cu-$i

m*/s

80 ot% 100 cu

0.16 10-13

I lo-l4 Q

d

0

20

Ni

Fig. 43. Cu-Ni. 1193 K [71M2].

40

60 cu -

80 ot% 100 cu

10-v

,

lo-"

,

Interdiffusion coefficient at 1273 K and

Fig. 44. Cu-Ni. Interdiffusion coeffkicnt and intrinsic dif- ä fusion coefficients at 1273 K (72H1, 82121.

Murch, Bruff

0 Ni

LL 40

cu-

80 at%

100

cu

Landolt-B6msfein New Series III,/26

351

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

1O-12

I

m2’s Cu- Pd

10-12 10-'2 m%

l33(K cl326 "a, e dl241 -. -

2

10-1'5 0 Pd

Fig. 45. Cu-Pd. 1311 K [52T].

80 ai% II

Fie. 46. Cu-Pd. Interdiffusion coefficient from 1204... 13?4 K [69B3,69B4].

Interdiffusion coefficient from 1151 ..

, o-l:

16

m2/s

I

.10-'4

m2/s CU- Si I 12

‘aIIYl



1023K

41

\

12 /

m2/s 8

0 3 .lly4

40

ai%

60 Pd -

II f

.10-'4

I --

,A

mVsI

I

I

I

0 cu

2

4

6 SI -

Fig. 47. Cu -Pd. Interdiffusion coefficient at 1173K [74T2]. 1O-10 m2/s

10-l' 7.

I

8

10 at% 12

Fig. 48. Cu- Si. Interdiffusion coefficient from 973 ... 1075 K [38R].

. 0

c 0" 10-12 3 el

lo-l3

10-14. 11.5

:

12.0

13.5

12.5 l/T -

Land&BBmstein New Series III/26

4 Fig. 49. Cu-Sn (6). Intrinsic diffusion coefficients in alloys with sz37 wt._._% Sn from 701 ... 845 K [64S]. Different symbols denote different starting couples.

14.5

Murch, Bruff

5 Chemical diffusion in inhomogeneousbinary alloys (Figures)

352 10”ImVs

[Ref. p. 366

I

Cu-Sri(y)

lo-‘3, 10-l lo-! mV

I

m2kcu: n

2a I lo-l4

t CYp” 4”

\

, \

10-l1 I 25

28

31

34

37 wt% 40

Sn Fig. 50. Cu-Sn (r). Interdiffusion coeffkient (a) and intrinsic diffusion coeflicient (b) at 979 K [64S]. Different symbols denote different runs.

10-151 14

17 l/l-

18

19 *lo-’ 1 i

Fig. 51. Cu,Sn. Interdiffusion coefficient vs. reciprocal tern perature [7OF].

10“ m’/l 6 4

5 .,o-1 2

m2A;i

4

1

I j

1 b;-$

I j

I ;rEi(K

15

16

I

1

1

10.li

13

1L

0 0 CU

17 al% 18

Sn?g. 52. Cu-Sn (B and v). Interdiffusion coefficient from 174...993 K (SOYl].

Fig. 53. Cu-Zn [54B].

Murch, Bruff

5

10

15 20 25 at % ln (a). Interdiffusion coefficient at 1163 K

Landolt-Kmstein New Series 111126

Ref. p. 3661

353

5 Chemical diffusion in inhomogeneous binary alloys (Figures) 2*10-1’ d/s IO-11 8

1 I

I

lllS3K

I

IDU I

64

b 2

lo-‘*

58

55

61

a

64

67 at% 70

90

95 at% 100 Zn

Zn-

12.5

I

=I

10.0 15

1o-~3 b

75

i

I

I 80

85 Zn-

I

Fig. 55. Cu - Zn. Interdiffusion coefkient in Cu-Zn (r) (a) and Cu-Zn (E) (b) alloys at 648 K [69u]. Different symbols refer to different starting couples.

I 20

//

Q

I

I

20

at%

15 IO 5 0 0

cu

10

30

43

49

46

52 at% 55

Zn-

Fig. 54. Cu - Zn. Interdiffusion coefficient and intrinsic diffusion coefficient at 1053 K (a), 1128 K (b) and 1188 K (c) [55H2]. Solid lines are from smoothed Arrhenius plots. Land&-Biirnstein New Series III/26

40

Zn-

Fig. 56. Cu-Zn (S). Interdiffusion coefficient at 877 K [71Ul]. Different symbols denote different starting couples.

Murch, Bruff

[Ref. p. 366

5 Chemical diffusion in inhomogeneousbinary alloys (Figures) 10” m'l

lo10’

-12

t 10 6

10’

-2 c!?

I b

-13

10 -

10‘ 10-14 -

O01, l

10’

10‘

DC”

-15

10 1.0

1.2

10‘-11 m21s

I

1.4 1.6 1.8 .lO”K-’ 2.0 l/lFig. 58. Cu-Zn (b and p’). Intrinsic diffusion coeffkients vs. reciprocal temperature [75F]. 40

42

44

46

48 at%

50

ln Fig. 57. Cu-Zn (p and p). Interdiffusion coefficient from 602 . ..924 K [75FJ.

r

Cu-Zn

10

160 !!! mol

I 10 kl

140

I D 120

10

100

80 40

42

44

46

48

ot% 50

10

84

87

at%

ln Fig. 59. Cu-Zn. 175Fl.

Activation energy Q for interdiffusion

Fig. 60. Cu-Zn. 673 K [76F].

Murch, Bruff

Interdiffusion coefficient from 523 ...

Land&B6mstein New Series III,/26

Ref. p. 3661

5 Chemical diffusion in inhomogeneous binary alloys (Figures) IO-'0 m2/s

1P 59 Zn(b). Interdiffusion coefficient from 748. ..

Fig. 61. Cu-Zn 827 K [76S].

60

Fig. 62. Cu-Zn 827 K [76S].

.,$ mVs

61

62

63 64 65 66of%67 Zn(y). Interdiffusion coeffkient from 748 1..

I Fe-Ni

I 20 .1p m% 3-



Fe-Ni

Ia 10 0 0 Fe

I 2

la

20

Fig. 64. Fe-Ni. [53Hl]. 01 0 Fe Fig. 63. Fe-Ni. [53Hl].

I 20

40

60 80 at% 100 NI Ni Interdiffusion coefficient at 1583 K

I 40

60 80 at% 100 Ni Ni Interdiffusion coefficient at 1423 K

300 %I 275 5I 250 225 200 0 20 40 60 80 at% 100 Fe NI Ni Fig. 65. Fe-Ni. Activation energy Q for interdiffusion :53Hl].

0 Fe Fig. 67. Fe-Ni. 1578 K [67B2].

For Fig. 66 seenext page. La”aolt-Bornstel”

New Series III/26

Murch, Bruff

20

40

60 80 at% IC NiL Interdiffusion coefficient from 1373...

356

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

[Ref. p. 366

A be 00” v DNi 80 at% 100

60 Ni Fig. 68. Fe-Ni. fusion coefficients 10’

40

60

of%

Ni -

Fig. 66. Fe-Ni.

lntcrdiffusion coefticicnt from Diffcrcnt symbols rcfcr to diffcrcnt

1629 K [67Bl]. :ouples.

Interdiffusion coeflkient at 1473 K [67L4].

and intrinsic

dif-

I

m2/ 10-16. 0 Fe

Ni

Fe- Ni

1.

100 Ni

1409 ‘.. starting

lo-’

I

Fe-Ni

m2/s

0

I

I

I

20

40

60

I

Fe -

Ni Fix. 70. Fc-Ni. 1373 K [84G].

I

80 wt%

Interdiffusion

coeflkicnt

‘\

from

100 Fe

1223...

10‘3 m2/s

\

DO \

200 0 Fe

‘1

20

40

60 Ni -

80 at%

100

.

Ni

Fig. 69. Fe-Ni. Activation D” for intcrdiffusion [74B3].

energy

Q and pre-exponential

Fig. 71. Fe-Si. Activation D” for interdiffusion [680].

energy

Q and prc-exponential

b

Murch, Bruff

il 17

01%

10.‘ I G

10-s 21

Ref. p. 3661

5 Chemical diffusion in inhomogeneous binary alloys (Figures) lo-’

I

m2/!>

Fe-Sn

1o-12

I_ ,aI 10-11

10-11

1 3

1o-15 I

L _1

Fe Fig. 72. Fe-k 1373 K [MY]. 10. m2/

4

8 at%

b

IO

Sn -

Interdiffusion coefficient from 1073...

Hf -Ti

I

I

11

1 17 77

I2

3 !

I JL!

: Hall method

0 Hf

Fig. 73. Hf-Ti. Land&-BBmstein New Series III/26

60

80

at%

TI -

Interdiffusion coefficient from 1273... 2273 K [87L].

Murch, Bruff

100 Ti

357

358

5 Chemical diffusion in inhomogeneous binary alloys (Figures) 250

$

I a

11 4o-7 m2/s

I

Hf-Zr

/

Q

200 --=.\

/

/

/

/

\

10-13

d/s

I 100 a

/ y

[Ref. p. 366

In- Ni

0

(aI 1o-'C

" \

150_ U

9

.~

20

60

40

a0 at%

10-15 .;1

0.70

100 Hf

lr HfFig. 74. Hf-Zr. Activation energy Q and pre-exponential Do for interdiffusion [75B]. 10-1:

0.82

0.78

0.86*0.90

l/T -

Fig. 75. In-Ni. Interdiffusion coefficient vs. reciprocal temperature [80B]. 10 .,o -10

/

m2h

0.71,

C46K

mV5 8

G

G2

6 I

10-l'

aa &K

4

I la

lo-" Li -

Fig. 77. Li -Mg. [84L]. lo-"

I

20

Ot%

In

In -

I

Fig. 76. In -Pb. 446 K [76Cl].

coefficient at 768 and 800 K

Interdiffusion

Interdiffusion coefficient from 388 ... -7.2

I

Mn-Ni

I \I 280 m'/s 6

I.1' 3+6

I

4 I Ia i

270

26 I & 7.8 .E

a 260

/

a 1

I.6

kJ mol

10-e

8.0

250

00

8.2

240 -1.0

0

-0.5

0.5

*lo-'

0 Ni

1.0

6-

Fig. 78. Li-Sb. Interdiffusion coefficient at 633 K [77W2].

5

10

15 Mn -

20

25 at%

30

Fig. 79. Mn -Ni. Activation energy Q and pre-exponential Do for interdiffusion [79Yl]. Do in m*s-I.

Murch, Bruff

Ref. p. 3661

m2/s 6

4 2 I lo-'* 1~ 0

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

I

I

I

10-l' m2/s

I

Mo-Nb 10-l

,~I 10-l'

6

lo-"9

10-d/ 0 MO

20

40

60

80 at%

Nb-

100 Nb

IO‘*[

Fig. 80. Mo -Nb. Interdiffusion coefficient at 1253K [69S].

Nb 10-l" mVs

Mo-

Fig. 81. MO-Nb. 1773 K [7Ov].

10-l' m2/s

MO

Interdiffusion coefficient from 1373...

I

MO-OS I

lo-'"I1 0 MO

20

40

60 Nb -

Fig. 82. MO-Nb. 2173 K [73B4].

80 at%

,o-l;

Nb

Interdiffusion coefficient from 1473...

t '~I 1o-l3

I -k--!-k 2450K I

\

10-l'" -25/~+

-261 0 MO

lo-l5 20

40

60 Re-

Fig. 84. MO-Re. Interdiffusion 77M]. 0” in cm’s-‘. Land&-Bihstein New Series III/26

80 at% 100 Re

coefficient at 1773 K

40

60 Mo-

80 ~01% 100 MO

Fig. 83. MO-OS. Interdiffusion coefficient from 2147... 2450 K [73E].

Murch, Bruff

[Ref. p. 366

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

360 2w’ m7/! 10-l

Me=V

_/

80 01% 100 ME MeFig. 86. Interdiffusion coeffkient in MO-Ti and Ti -V allays at 1773 K [69F]. a

I 10-l’ m2/s

60 MeFig. 85. Interdiffusion coefficient in Mo-Ti, ‘fa--Ti, and Ti -V alloys at 1173 K [69F]. 20

40

Me

10-1'5

Nb-Ti,

f~I 10‘”

, o -1;

10-l"

80 ot% 100 60 ToTo Interdiffusion coefficient at 1473 K

20 2*10-‘3r m% 10-1’3

Me- Ti

I

I

I

I

40

Nb Fig. 88. Nb-Pd. [71U2]. lo-l3 m2/s

10-l’ I kl 1o-l!

’ I’ 1 I’ ---I$ PdlHb/ I /4[I 7-: Od‘III I’11 -11 III 11 -p-k III III III

lo-‘6 0 Ti

40

60

MeFig. 87. Interdiffusion coefficient in Mo-Ti, Ti-V alloys at 1623 K [69F].

80 at% 100 Me Nb-Ti,

and

10-l” 0 Pd Fig. 89. Nb-Ta. 2073 K [7Ov].

Murch, Bruff

1 II II II II

60

20 Nb-

80 ot% Nb

Interdiffusion coefficient from 1573..

Iandolt-BMnsfem New Series III/26

Ref. p. 3661

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

361

I

Me-Ti

Ti -

Nb Fig. 91. Nb-Ti. 1573 K [7Ov].

60

40

Ti

Me-

Fig. 90. Interdiffusion coefficient Ti-V alloys at 1273 K [69F]

in Nb-Ti,

Interdiffusion

coeffkient

at 1373 and

80 at% 100 Me Ta-Ti,

and

10-4 m2/s

I

kJ mol

Nb- Ti

10-5 I % U6

10-1

I50020

Nb

I

0

Ti -

ri

Fig. 93. Nb -Ti. Activation energy Q and pre-exponential Do for interdiffusion [75UJ.

IO,

m2/s

6

1473K

I

P

0

20

40

Ti

Fig. 92. Nb-Ti. 1473 K [71P]. Land&-Biirnstein New Series III/26

60 Nb-

Interdiffusion

coefficient

80 at% 1 Nb at 1273 and

lo-l5 0 Nb Fig. 94. Nb-V. 1773 K [7Ov].

Murch, Bruff

20

40

60 v-

Interdiffusion

coefficient

80 at% 100 V at 1573 and

[Ref. p. 366

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

362

zq.

,p!

mVs

1P ml/s

1

l *. 0.

.

(,

..-

.

1o-‘5

.

.

.

t~ lo-”

10‘‘6 I b 10-‘7

.

lo-’

60

40

20 V

10-‘*

at% Nb

Nb-

Gg. 95. Nb-V. InterdifTusion coefficient at 1473 K [71U2]. 10-‘9

lo- 13 IT?/s

0

Nb Fig. 96. Nb-W. 2073 K [7OVJ.

LO

80 ot% 100

60

W

w-

Interdiffusion coeflicient from 1573...

lo- lb 1 m

250 lo-

15 _

0 I -

P 12/S

Lr7

10‘M

0

Nb Fig. 97. Nb-Zr. 1573K [7Ov].

20

I 0 Q

60

40

Zr Intcrdiffusion cocflicicnt at 1373 and

o4

0-9

ot% 100 Nb

Zr Nb Fig. 98. Nb-Zr. Activation energy Q and pre-exponential Do for interdiffusion [73R].

Pd

Ni-

80 at% 1004 Fig. 99. Ni -Pd. Interdiffusion coefficient at 1385 K [69B4] Ni Different symbols refer to different starting couples.

Murch, Bruff

LandolbB6mstein New Series 111126

363

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661

I Ni-Zn (a)

$ji

I

-22

?Q

2 1

-23

a

Zn-

aI -24 c

-2:

0 75

78

81

84

87 at % 90

Zn-

b -2E

-2;

80 at% 100 60 20 40 Pt Ni Pt Fig. 100. Ni-Pt. Interdiffusion coefficient from 1223. I573 K [67B2]. d in cm2sm1.

44 O-l3

m2/s

T-

I

Ni-V

<

lo-l3

1 0

Ni Fig. 101. Ni-V. 1448 K [78Kl]. Land&-BBmstein New Series III/26

20

40

60

54

56

60 at% 58 Zn Fig. 102. Ni-Zn. Interdiffusion coefficient in Ni-Zn (a: alloys at 1203 K (a), Ni-Zn (y) alloys at 883 K (b), ant Ni-Zn (p) alloys at 1203 K (c) [77B3].

c

h-

0 52

80 at%

vInterdiffusion coefficient from 1083...

Murch, Bruff

364

5 Chemical diffusion in inhomogeneous binary alloys (Figures) 1C1.12r Ill’f/s

10-0

[Ref. p. 366

“r

_

10-14 I ‘a

:

0

/

Pb

10-15 -

2

4

6

8

01% 10

Sn -

Fig. 104. Pb-Sn. Interdiffusion coefficient at 523 K for two runs [87M2].

;

10-12

4

10-16 -

m2/s

4

lo-”

10’-17 0 10 20 30 50 at% 50 Ni ln Fig. 103. Ni-Zn. Interdiffusion cocflicicnt from 1073... 1323 K [79Y2].

Fig. 105. Pd-V. [71U2].

Interdiffusion

coefficient at 1473 K b

1 kl 10-14

lo-15)

0

20

40

V

60

Pd -

80 ot%

100 Pd

300 kJ mol

lo-'

I 250

ml/s

0 -25

I ‘a +

200

I 1U5&

-5

-26

-27

0

Pi

20

150

40

60 Re -

Fig. 106. Pt-Re. Interdiffusion [77M]. din cm%-‘.

80 ot%

0

100 Re

coefficient at 1773 K

V

20

40

60 Ti -

10-f 80 at% 100 Ti

Fig. 107. Ti-V. Activation energy Q and pre-exponential Do for interdiffusion [75u].

Murch, Bruff

5 Chemical diffusion in inhomogeneous binary alloys (Figures)

Ref. p. 3661 1O-1' ml/s

lo-‘?

r

365

300

I

10”

kJ iii

Ti -V

m2/s

250

1o-4 I %

I a

10-5

200

T

,g:

I el

150 -

0

10-"

20

40

Ti

10-6 80 at% 100 V

60 V-

Fig. 109. Ti-V. Activation energy Q and pre-exponential Do for interdiffusion [77Bl].

,0-l'

2

Ti-Zr

40-6 m2/s

00 A

190

I

1o-“t

60 Ti -

Fig. 108. Ti-V. 1476 K [76K2].

1.9

L

0

/

80 ot % 1 Ti

Interdiffusion coefficient from 1177...

Ti -

Fig. 110. Ti-Zr. Activation energy Q and pre-exponential Do for interdiffusion [76Bl].

4-l o-l2 ml/s

x

U -Zr

lo-li

IL CT a=

l

ou

0

DZr

A

ou

A

OZr

‘223

K

‘273

K

I

1

lo-l3

Fig. 111. U - Zr. Intrinsic diffusion coefficients at 1223 and b 1273 K [60A2]. Land&BBmstein New Series III/26

lo-l4

Murch, Bruff

I

0

Zr

20

40

60 U-

80 at%

1 u

366

5.3 References for 5

5.3 References for 5 32s 335 38R 41M 41Wl 41W2 425 43B 44K 45H 45v 50E 50K 50R 51B 52B 52s 52T 52W 53F 53Hl 53H2 53R 54B 55B 55G 55Hl 55H2 55R 56H 56L 56s 57A 57H 57R 57s 58Al 58A2 59A 59G 59H 59Ml 59M2 6OAl 6OA2 60C 60D 60G 60H 60M 6OPl 6OP2 61B 61Ml 61M2

Seith, W., Land, J.G.: Z. Metallkd. 24 (1932) 193. Jost, W.: Z. Phys. Chem. B21 (1933) 158. Rhines, EN., Mehl, RF.: Trans. Am. Inst. Min. Eng. 128 (1938) 185. Mehl, RF., Rhines, EN., Von den Steiner, K.A.: Met. Alloys 13 (1941) 41. Wells, C., Mehl, RF.: Trans. Am. Inst. Min. Eng. 145 (1941) 315. Wells, C., Mehl, RF: Trans. Am. Inst. Min. Eng. 145 (1941) 329. Johnson, WA.: Trans. Am. Inst. Min. Eng. 147 (1942) 331. Buckle, H.: Z. Electrochem. 49 (1943) 238. Kubaschewski, O., Ebcrt, H.: Z. Electrochem. 50 (1944) 138. Ham, J.L.: Trans. Am. Sot. Met. 35 (1945) 331. Van Liempt, J.A.M.: Rec. Trav. Chim. Pays-Bas 64 (1945) 239. Ebert, H., Trommsdorf, G.: Z. Electrochem. 54 (1950) 294. Kubaschewski, 0.: Trans. Faraday. Sot. 46 (1950) 713. Ransley, C.E., Neufeld, H.: J. Inst. Met. 78 (1950) 25. Buckle, H., Descamps,J.: Rev. M&tall. 48 (1951) 569. Boltz, W, Mead, H.W., Birchenall, C.E.: Trans Metal. Sot. AIME 194 (1952) 1070. Seith, W, Kottmann, A.: Angew. Chem. 64 (1952) 379. Thomas, D.E., Birchenall, C.E.: J. Met. 4 (1952) 867. Weeton, J.W.:Trans. Am. Sot. Met. 44 (1952) 436. Fitzer, E.: Z. Metallkd. 44 (1953) 462. Heumann, T., Kottmann, A.: Z. Metallkd. 44 (1953) 139. Hall, L.D.: J. Chcm. Phys. 21 (1953) 87. Resnick, R., Balluffi, R.: U.S. Report S.E.P. 118, August 1953. Ballufi, R.W, Seigle, L.L.: J. Appl. Phys. 25 (1954) 607. Byron, E.S., Lambert, XE.: J. Electrochem. Sot. 102 (1955) 38. Grobner, P: Hutn. Listy 10 (1955) 200. Heumann, T., Lohmann, P.: Z. Electrochem. 59 (1955) 849. Horne, G.T, Mehl, RF.: Trans. Am. Inst. Min. Eng. 203 (1955) 88. Resnick, R., Balluffi, R.W: Trans. Am. Inst. Min. Eng. 203 (1955) 1004. Heumann, Von Th., Heinemann, E: Z. Electrochem. 60 (1956) 1160. Landergren, U.S., Birchenall, C.E., Mehl, RF.: Trans. Am. Inst. Min. Eng. 206 (1956) 73. Swalin, R.A., Martin, A.: J. Metall. Trans. AIME 206 (1956) 567. Adda, Y, Philibert, J., Faraggi: Rev. Metall. 54 (1957) 597. Heumann, Th., Dittrich, S.: Z. Electrochem. 61 (1957) 1138. Reynolds, J.E., Averbach, B.L., Cohen, M.: Acta Metal!. 5 (1957) 29. Swalin, R.A., Martin, A, Olsen, R.: Trans. Am. Inst. Min. Eng. 209 (1957) 936. Adda, Y, Philibert, J.: C.R. Acad. Sci., Paris 246 (1958) 113. Adda, Y, Philibert, J.: Rep. CEA-880, March, 1958. Adda, Y, Levy, X, Hadari, Z., Tournier, J.: Mem. Sci. Rev. Metall. 57 (1959) 278. Guy, A.G.: Trans. Metall. Sot. AIME 215 (1959) 279. Hilliard, J.E., Averbach, B.L., Cohen, M.: Acta Metall. 7 (1959) 86. Manning, J.R.: Phys. Rev. 116 (1959) 69. MO!!, S.H., Ogilvie, R.E.: Trans. Metall. Sot. AIME 215 (1959) 613. Adda, Y, Philibcrt, J.: Acta Metall. 8 (1960) 700. Adda, Y, Mairy, C., Andreu, J.L.: Rev. Metall. 57 (1960) 550. Cordus, H., Kakuk, M.: Z. Anorg. Allg. Chem. 306 (1960) 121. DeLuca, L.S.: U.S. Rep. KAPL-M-LSD-1 August 1960. Goold, G.: J. Inst. Met. 88 (1960) 444. Heumann, T, Bohmer, H.: Arch. Eisenhiittenwes. 31 (1960) 749. Moss& M., Levy, V, Adda, Y: CR. Acad. Sci. Paris 250 (1960) 3171. Paxton, H.W, Pasierb, E.J.: Trans Metall. Sot. AIME 218 (1960) 794. Pell, E.M.: Phys. Rev. 119 (1960) 1014. Balk, A.: Acta Metall. 9 (1961) 643. Murphy, J.B.: Acta. Metall. 9 (1961) 563. Mehl, RF, Lutz, C.E: Trans Metal!. Sot. AIME 221 (1961) 561. Murch, Bruff

5.3 References for 5 62C 62E 62P 63C 63Dl 63D2 63L 63P 63R 64A 64L 64P 64R 64s 64T 65C 55D 55G 55Hl 55H2 55R 56B 56L 56W 57Bl 57B2 57B3 57Cl 57C2 57C3 57D 57J 57Ll 57L2 67L3 67L4 67L5 67M 67Pl 67P2 67P3 67R 67U 67V 68A 68E 68Hl 68H2 68H3 68H4 68K 680 68R 68Sl

367

Costas, L.P.: USA Rep. TID-16676, 1962. Elliot, R.P.: USA Rep. AD290336 March 1962. Peart, R.E. Tomlin, D.H.: J. Phys. Chem. Solids 23 (1962) 1169. Calais, D., Beyeler, M., Mouchnino, M., van Craeynest, A., Adda, Y: C.R. Acad. Sci. Paris 257 (1963) 1285. Davin, A., Leroy, V, Coutsouradis, D., Habraken, L.: Rev. Metall. 60 (1963) 275. Davin, A., Leroy, V, Coutsouradis, D., Habraken, L.: Cobalt 19 (1963) 51. Love, H.M., McCracken, G.M.: Can. J. Phys. 41 (1963) 83. Peterson, N.L., Ogilvie, R.E.: Trans. Metall. Sot. AIME 227 (1963) 1083. Reinbach, R., Krietsh, E: Z. Metallkd. 54 (1963) 173. Asundia, M.K., West, D.R.E: J. Inst. Met. 92 (1964) 428. LeHazif, R., Donze, G., Dupouy, J.M., Adda, Y: Rev. Metal1 61 (1964) 467. Powell, G. W, Braun, J.D.: Trans. Metall. Sot. AIME 230 (1964) 694. Rapperport, E.J., Merses, V, Smith, M.E: U.S. Rep. MI-TDR-64-61, March 1964. Starke, E., Wever, H.: Z. Metallkd. 55 (1964) 107. Tournier, J.: Rep. CEA-R-2446, October 1964. Calais, D., Dupuy, M., Mouchnino, M., Portnoff, A.Y, Van Craeynest, A.: in: Plutonium 1965, Kay, A.E., Waldron, M.B., (eds.),London: Chapman and Hall, 1965, p. 358. Dupuy, M., Calais, D.,: Mem. Sci. Rev. Met. 62 (1965) 721. Goldstein, J.I., Hanneman, R.E., Ogilvie, R.E.: Trans. Metall. Sot. AIME 233 (1965) 812. Hanneman, R.E., Ogilvie, R.E., Gatos, H.C.: Trans Metall. Sot. AIME 233 (1965) 691. Hartley, C.S., Steedly, J.E., Parsons, L.D.: ‘Diffusion in BCC Metals’, Am. Sot. Met. 1965, p. 51. Reiss, R.C., Hartley, C.S., Steedly, J.E.: J. Less-Common Met. 9 (1965) 309. Borovsky, LB., Marchukova, I.D., Ugaste, Yu.E.: Phys. Met. Metallogr. 22 (1966) 43. Lal, K., Levy, W: C.R. Acad. Sci. Paris 262 C (1966) 107. Wyatt, B.S., Argent, B.B.: J. Less-Common Met. 11 (1966) 259. Badia, M., Vignes, A.: C.R. Acad. Sci. Paris 264 (1967) 1528. Borovskiy, I.B., Marchukova, I.D., Ugaste, Yu.E.: Phys. Met. Metallogr. 24 (1967) 51. Badia, M., Vignes, A.: C.R. Acad. Sci. Paris 264 (1967) 858. Caloni, O., Ferrari, A.: Z. Metallkd. 58 (1967) 892. Cahoon, J.R., Youdelis, WV: Trans. Metall. Sot. AIME 239 (1967) 127. Caloni, O., Ferrari, A.: Trans. 2nd Nat. Conf. Electron Microprobe Analysis, Boston, 1967, Paper No. 21. Dupuy, M.: CEA Rep. R3439 1967. Janssen,M.M.P., Rieck, G.D.: Trans. Metall. Sot. AIME 239 (1967) 1372. Lal, K.: CEA Rep. CEA-R-3136, 1967. Lauthier, J.C., Van Craeynest, A., Calais, D.: J. Nucl. Mater. 23 (1967) 111. Levasseur, J., Philibert, J.: CR. Acad. Sci. Paris 264 (1967) 277. Levasseur, J., Philibert, J.: C.R. Acad. Sci. Paris 264 (1967) 380. Lifshin, E.: Trans. 2nd Nat. Conf. Electron Microprobe Analysis, Boston 1967, Paper No. 23. Mitani, H., Onishi, M., Kawaguchi, M.: J. Jpn. Inst. Met. 31 (1967) 1341. Prokoshkin, D.A., Vasil’yeva, E.V, Vergasova, L.L.: Fiz. Met. Metalloved. 23 (1967) 1134. Prokoshkin, D.A., Vasil’yeva, E.R, Vergasova, L.L.: Metalloved Term. Obrab. Met. 12 (1967) 44. Pavlinov, L.V.: At. Energ. 22 (1967) 290. Rafalski, A.L., Harvey, M.R., Reifenberg, D.H.: Trans. Am. Sot. Met. 60 (1967) 721. Ugaste, Yu. E.: Fiz. Met. Metalloved. 24 (1967) 442. Vignes, A., Philibert, J.,Badia, M., Levasseur,J.: Trans. 2nd Nat. Conf. Electron Microprobe Analysis, Boston, 1967, Paper No. 20. Aaronson, H.I., Domian, H.A., Brailsford, A.D.: Trans. Metall. Sot. AIME 242 (1968) 738. Edwards, G.R., Tate, R.E., Hakkila, E.A.: J. Nucl. Mater. 25 (1968) 304. Harvey, M.R., Rafalski, A.L., Reifenberg, D.H.: Trans. ASM 61 (1968) 629. Hirano, K., Hishunima, A.: J. Jpn. Inst. Met. 32 (1968) 516. Hirano, K., Ipposhi, Y: J. Jpn. Inst. Met. 32 (1968) 815. Hirano, K., Ouchi, K.: J. Jpn. Inst. Met. 32 (1968) 613. Kimmel, G., Bar-Or, A., Rosen, A.: Trans. ASM 61 (1968) 703. Onishi, M., Mitani, H.: Kinzoku Hyomen Gijutsu 19 (1968) 146. Remy, C.: CEA-R-3573,1968. Schwegler, E.C.,: Intl. J. Mass Spec.: Ion Physics 1 (1968) 191.

Land&-Bhstein New Series III/26

Murch, Bruff

368 68S2 652 69A 69B 1 69B2 69B3 69B4 69F 69H 69P 69s 69T 69U 69Wl 69W2 70B 70F 70Hl 70H2 701 70Kl 70K2 70K3 70Nl 70N2 700 70R 70s 7OTl 70T2 7OV 7OW 71B 71F 71Hl 71H2 711 71K 71L 71M1 71M2 71N 71P 71Rl 71R2 71s 71Ul 71U2 72C 72Fl 72F2 721 72Hl 72H2

5.3 References for 5 Swisher, J.H.: Trans. Metal]. Sot. AIME 242 (1968) 2433. Zelikman, A.N., Kotlyar, A.A., Kznetsov, Yu G.: Izv. Akad. Nauk SSSR, Met. 1 (1968) 197. Andreani, M., Azou, P., Bastien, P.: MCm. Sci. Rev. Metal]. 66 (1969) 21. Barclay, R.S., Niessen, P.: Trans. ASM 62 (1969) 721. Brunel, G., Cizeron, G., Lacombe, P.: C.R. Acad. Sci., Paris 269C (1969) 895. Badia, M., Vignes, A.: Rev. Met. 66 (1969) 915. Badia, M.: Thesis, University of Nancy, 1969. Fedetov, S.G., Chudinov, M.G., Konstantinov, K.M.: Fiz. Met. Metalloved 27 (1969) 873. Harvey, M.R., Rafalski, A.L., Reifenberg, D.H.: Trans. ASM 62 (1969) 1014. Pivot, J.P.,Van Craeynest, A., Calais, D.: J. Nucl. Mater. 31 (1969) 342. Steeb, S., Keppeler, R.: Z. Naturforsch. 24A (1969) 2607. Tate, R.E., Edwards, G.R., Hakkila, E.A.: J. Nucl. Mater. 29 (1969) 154. Ugaste, Yu.E.: Fiz. Met. Metalloved. 27 (1969) 663. Walsh, J.M., Donachie, M.J.: Met. Sci. J. 3 (1969) 68. Wagner, C.: Acta Metal]. 17 (1969) 99. Borg. R.J., Lai, D.YE: J. Appl. Phys. 41 (1970) 5193. Fidos, H., Schreiner, H.: Z. Metallkd. 61 (1970) 225. Hurley, A.L., Dayananda, M.A.: Metal]. Trans. 1 (1970) 139. Hall, M.G., Haworth, C.W.: Acta Metall 18 (1970) 331. Ivanov, A.N., Krasilnikova, G.B., Mitin, B.S.: Phys. Met. Metallogr. 29 (1970) 204. Khobaib, M., Gupta, K.: Ser. Metall. 4 (1970) 605. Kaekonen, H., Syrjaenen, E.: J. Mater. Sci. 5 (1970) 710. Kohn, A., Levasseur, J., Philibert, 1, Wanin, M.: Acta Metall. 18 (1970) 163. Nishida. K., Yamamoto, T, Nagata, T: J. Jpn. Inst. Met. 34 (1970) 595. Neukmann, 0.: Galvanotechniek 61 (1970) 626. Oikawa, H., Obara, T, Karashima, S.: Metall. Trans. 1 (1970) 2969. Remy, C., Dupuy, M., Calais, D.: J. Nucl. Mater. 34 (1970) 46. Sulaev, E.T, Kurasov, A.N., Karpov, N.A., Rabinovich, A.V.: Izv. Akad. Nauk SSSR,Met. 4 (1970) 209. Tsuji, A., Yamanaka, K.A.: Nippon Kinzoku Gakkaishi 34 (1970) 486. Tikhomirova, O.I., Ruzinov, L.P., Pikunov, M.V, Marchukova, I.D.: Fiz. Met. Metalloved. 29 (1970) 796. Vergasova, L.L., Prokoshkin, D.A., Vasileva, E.V.: Izv. Akad. Nauk SSSR,Met. 4 (1970) 198. Whittenberger, J.D., Dayananda, M.A.: Metall. Trans. 1 (1970) 2023. Barreau, G., Brunel, G., Cizeron, G., Lacombe, P.: Mem. Sci. Rev. Metal]. 68 (1971) 357. Funamizu, Y., Watanabe, K.: Trans. Jpn. Inst. Met. 12 (1971) 147. Holloway, P.H., Mohanty, G.P.: J. Phys. Chem. Solids 32 (1971) 2656. Harvey, M.R., Doyle, J.H., Rafalski, A.L., Reifenberg, D.H.: J. Less-Common Met. 23 (1971) 446. Iijima. Y, Hirano, K.: J. Jpn. Inst. Met. 35 (1971) 511. Krishtal, M.A., Mokrov, A.P., Belobragin, Yu.A.,Volkov,K.V: Fiz. Khim. Obrab. Mater. 3(1971) 109. Languille. A.: Mem. Sci. Rev. Metal]. 68 (1971) 435. Moreau, G., Carnet, J.A., Calais, D.: J. Nucl. Mater. 38 (1971) 197. Marchukova. I.D., Miroshkina, M.I.: Fiz. Met. Metalloved. 32 (1971) 1254. Nechiporenko, YP., Krivoruckko, XM., Mitrofanov, AS., Kondratov, YT.: Phys. Met. Metallogr. 32 (1971) 86. Polyanskii, VM., Podgorskii, B.N., Makarovets, O.D.: Svar. Proizvod. 3 (1971) 9. Ronami, G.N., Gryzunov, VI., Baranov, LA., Konovalov, N.T, Sokolov, VI., Vorob’eva N.S.: Izv. Akad. Nauk SSSR,Neorg. Mater. 7 (1971) 1490. Ronami, G.N., Gryzunov, VI., Sokolov, VI., Vorob’eva, N.S.: Issled. Mater. Novoi. Tekh. (1971) 36. Shamblen, C.E., Rosa, C.J.: Metal]. Trans. 2 (1971) 1925. Ugaste, Yu E., Pimcnov, VN.: Phys. Met. Metallogr. 31 (1971) 140. Ugaste, Yu E., Lazarev, E.M., Pimenov, VN.: Izv. Akad. Nauk SSSR,Met. 2 (1971) 211. Cahoon, J.R.: Metall. Trans. 3 (1972) 1324. Funamizu, E Watanabe K.: Trans. Jpn. Inst. Met. 13 (1972) 278. Fogelson, R.L., Ugai, YA., Pokoev, A.V: Phys. Met. Metallogr. 33 (1972) 194. Iijima. Y, Hirano, K.: Trans. Jpn. Inst. Met. 13 (1972) 419. Heumann, Th., Grundoff, K.J.: Z. Metallkd. 63 (1972) 173. Herzig. Chr., Heumann, Th.: Z. Naturforsch. A27 (1972) 1109. Murch, Bruff

Landolt-Kmstein Nen Series 111’26

5.3 References for 5 72M 72P 72W 722 73Bl 73B2 73B3 73B4 73E 73Gl 7362 73H 731 73J 73L 73N 7301 7302 7303 73R 73s 73T 73Ul 73U2 73v 74A 74Bl 74B2 74B3 74B4 74B5 74c 74H 74s 74Tl 74T2 74Wl 74W2 75A 75B 75F 75H 75L 75Ml 75M2 7501 7502 75Pl 75P2 75u 75w 75Y 76Bl 76B2 76Cl

369

Mirani, H.VM., Maaskant, P.: Phys. Status Solidi Al4 (1972) 521. Pinnel, M.R., Bennet, J.E.: Metall. Trans. 3 (1972) 1989. Whittenberger, J.D.: Metall. Trans. 3 (1972) 2010. Zaiss, W., Steeb, S., Krabichler, T: Z. Metallkd. 63 (1972) 180. Bergner, D., Cyrener, E.: Neue Huette 18 (1973) 356. Bruni, F.J.,Christian, J.W: Acta Metall. 21 (1973) 385. Buduvov, S., Kovatchev, P., Kamenova, Z.: Z. Metallkd. 64 (1973) 652. Brunsch, A., Krabichler, T, Steeb, S.: High Temp.-High Pressures5 (1973) 199. Erley, W, Wagner, H.: Phys. Status. Solidi. A 19 (1973) 23K. Green, A., Whittle, D.P., Stringer, 1, Swindells, N.: Ser. Metall. 7 (1973) 1079. Gomez, J.P.,Remy, C., Calais, D.: Mem. Sci. Rev. M&tall. 70 (1973) 597. Hirai, Y, Tasaki, Y, Kosaka, M.: Nagoya Kogyo Gijutso Shikensho Hokoku 22 (1973) 125. Iorio, N.R., Dayananda, M.A., Grace, R.E.: Metall. Trans. 4 (1973) 1339. Janssen,M.M.P.: Metall. Trans. 4 (1973) 1623. Lamparter, P., Krablicher, T, Steeb, S.: Z. Metallkd. 64 (1973) 720. Nohara, K., Hirano, K.: J. Jpn. Inst. Met. 37 (1973) 51. Onishi, M., Wakamatsu, Y: J. Jpn. Inst. Met. 37 (1973) 1279. Oikawa, H., Takei, H. Karashima, S.: Metall. Trans. 4 (1973) 653. Onishi, M., Wakamatsu, Y, Sasaki, T: J. Jpn. Inst. Met. 37 (1973) 724. Ronami, TN., Gryzunov, VI.: Vestn. Mosk. Univ. Fiz. Astronomiya 14 (1973) 367. Shapovalov, VP., Kurasov, A.N: Izv. Akad. Nauk SSSR,Met. 2 (1973) 234. Treheux, D., Giuraldenq, P.: C.R.Acad. Sci. Paris C277 (1973) 1299. Ustad, T, Sorum, H.: Phys. Status. Solidi A20 (1973) 285. Ugaste, Yu E., Pimenov, VN., Khlomov, VS.: Fiz. Met. Metalloved. 36 (1973) 211. Van Loo, EJ.J.,Rieck, G.D.: Acta Metall. 21 (1973) 61. Alberry, P.J.,Haworth, C.W: Metal. Sci. 8 (1974) 407. Brunsch, A., Steeb, S.: High Temp.-High Pressures 6 (1974) 155. Brunsch, A., Steeb, S.: Z. Naturforsch. A. 29 (1974) 1319. Balakir, E.A., Zotov, Yu. P., Malysheva, E.B., Panchishniyi, VI.: Russ. Metall. 5 (1974) 198. Bastin, G.E, Rieck, G.D.: Metall. Trans. 5 (1974) 1817, 1827. Budurov, S., Kovatchov, P.: Z. Metallkd. 65 (1974) 435. Carter, G.E: J. Less-Common Met. 37 (1974) 189. Heijwegen, C.P., Rieck, G.D: Acta Metall. 22 (1974) 1269. Shinyayev, A.Ya, Kopaleishvili, N.T: Phys. Met. Metallogr. 38 (1974) 212. Tsuji, S., Yamanaka, K.: J. Jpn. Inst. Met. 38 (1974) 415. Tenney, D.R., Talty, P.K.: Metall. Trans. 5 (1974) 241. Wilhelm, M.: Z. Naturforsch. A 29 (1974) 733. Weisweiler, W., Nageshwar, G.D.: High Temp.-High Pressures.6 (1974) 229. Agafonov, V, Sokolovskaya, E.M., Kulakov, VI., Gapeev, A.K.: Vestn. Mosk. Univ. Khim. 16 (1975) 121. Balakir, E.A., Zotov, Yu. P., Malysheva, E.B. Panchischnyi, VI., Podgorskii, B.N., Sharapov, 88: Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 4 (1975) 162. Funamizu, Y, Watanabe, K.: J. Jpn. Inst. Met. 39 (1975) 1087. Hickl, A.J., Heckel, R.W: Metall. Trans. A 6A (1975) 431. Lubyova, Z., Fellner, P., Matiasovsky, K.: Z. Metallkd. 66 (1975) 179. Muramatsu, P.Y, Roux, E, Vignes, A.: Trans. Jpn. Inst. Met. 16 (1975) 61. Matsuno, N., Oikawa, H.: Metall. Trans A 6A (1975) 2191. Oikawa, H., Hosai, A.: Ser. Metall. 9 (1975) 823. Onishi, M., Fujibuchi, H.: Trans. Jpn. Inst. Met. 16 (1975) 539. Pimenov, VN., Akkushkarova, K.A., Ugaste, Yu E.: Fiz. Met. Metalloved. 39 (1975) 821. Pimenov, VN., Akkushkarova, K.A., Gurov, K.P.: Fiz. Met. Metalloved. 39 (1975) 328. Ugaste, Yu E., Zaikin, Yu A.: Fiz. Met. Metalloved. 40 (1975) 567. Wakamatsu, Y, Onishi, M., Miura, H.: J. Jpn. Inst. Met. 39 (1975) 903. Yamane, T, Takahashi, J., Yashiki, H.: Keikinzoku 25 (1975) 167. Balakir, EA., Zotov, Yu P., Malysheva, E.B., Panchishnyi, VI., Voevodin, VP.: Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 3 (1976) 152. Bozic, B.I., Lucic, R.J.: J. Mater. Sci. 11 (1976) 887. Campbell, D.R., Tu, K.N., Robinson, R.E.: Acta Metall. 24 (1976) 609.

Land&-Blirnstein New Series III/26

Murch, Bruff

370 76C2 76D 76F 76K 1 76K2 76s 76T 76U 76V 77Bl 77B2 77B3 77F 77H 7711 7712 7713 7714 77M 77Nl 77N2 77P 77s 77Wl 77W2 78B 78C 78G 78H 78Kl 78K2 78Sl 78S2 7833 78S4 7885 7836 79F 791 79N 79w 79Yl 79Y2 80B 80F 80H 801 80M 80W 8OYl 8OY2 81A 81Hl 81H2 81L

5.3 References for 5 Carlson, P.T: Metal!. Trans. A 7A (1976) 199. Dainyak, B.A., Kostikov, VI.: Izv. Vyssh. Uchebn. Zaved. Chern. Metal!. 11 (1976) 15. Funamizu, Y.F., Watanabe, K.: Trans. Jpn. Inst. Met. 17 (1976) 59. Krishtal, M.A., Rykova, L.L.: Fiz. Khim. Obrab. Mater. 3 (1976) 120. Kale, G.B., Khera, SK., Tiwari, G.P.: Trans. Indian Inst. Met. 29 (1976) 422. Sorensen, O.B., Maahn, E.: Met. Sci. 10 (1976) 385. Tsuji, S.: J. Jpn. Inst. Met. 40 (1976) 844. Unman, J., Houska, CR.: J. Appl. Phys. 47 (1976) 4336. Van der Straten, P.J.M., Bastin, G.E, van Loo, EJ.J.,Rieck, G.D.: Z. Metallkd. 67 (1976) 152. Balakir, E.A., Zotov, Yu. P., Malysheva, E.B., Panchishnyi, VI., Voevodin, VP.: Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 3 (1977) 5. Borovskiy, I.B., Marchukova, I.D., Ugaste, Yu E.: Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. l(l977) 172. Budurov, S., Wassilew, G., Thi Kuk, N.: Z. Metallkd. 68 (1977) 226. Fogelson, R.L., Kazimirov, N.N., Sochnikova, 1.V: Phys. Met. Metallogr. 43 (1977) 1105. Hirano, K., Iijima, Y., Araki, K., Homma, H.: Trans. Iron Steel Inst. Jpn. 17 (1977) 194. Iijima, Y, Taguchi, O., Hirano, K.I.: Metall. Trans. A 8A (1977) 991. Iijima, Y, Hirano, K.I., Sato, K.: Trans. Jpn. Inst. Met. 18 (1977) 835. Iijima, Y, Hoshino, K., Hirano, K.I.: Metal! Trans. A 8A (1977) 997. Iijima, Y, Hirano, K.I., Sato, K.: J. Jpn. Inst. Met. 41 (1977) 142. Matveyeva, M.P., Volkova, R.M., Marchukova, I.D., Boshenov, VA.: Phys. Met. Metallogr. 43 (1977) 179. Nishida, K., Murohashi, H., Yamamoto, T: J. Jpn. Inst. Met. 41 (1977) 1101. Nohara, K., Hirano, K.: Tetsu To Hagane 63 (1977) 926. Pimenov, V.N., Ugaste, Yu E., Akkushkarova, K.A.: Russ. Metal!. 1 (1977) 155. Salje, G., Feller-Kniepmeier, M.: J. Appl. Phys. 48 (1977) 1833. Wakamatsu, Y, Samura, K., Onishi, M.: J. Jpn. Inst. Met. 41 (1977) 664. Weppner, W, Huggins, R.A.,: J. Solid State Chem. 22 (1977) 297. Butrymowicz, D.B., Manning, J. R.: Metall. Trans. A 9A (1978) 947. Carlson, P.T: Metall. Trans. A 9A (1978) 1287. Gukelberger, A., Steeb, S.: Z. Metallkd. 69 (1978) 255. Heumann, Th., Damkiihler, R.: Z. Metallkd. 69 (1978) 364. Khlomov, VS., Pimenov, VN., Ugaste, J., Gurov, K.P: Fiz. Met. Metalloved. 46 (1978) 668. Khlomov, VS., Pimenov, VN., Gurov, K.P.: Fiz. Met. Metalloved. 46 (1978) 199. Shimozaki, T., Onishi, M.: J. Jpn. Inst. Met. 42 (1978) 1083. Shimozaki, T, Onishi, M.: J. Jpn. Inst. Met. 42 (1978) 402. Salje, G., Feller-Kniepmeier, M.: J. Appl. Phys. 49 (1978) 229. Scheidler, G.P., Osthoff, W, Singh, S.P.: Z. Metallkd. 69 (1978) 591. Shankar, S., Seigle, L.L.: Metall. Trans. A 9A (1978) 1467. Scheidler, G.P., Osthoff, W: Z. Metallkd. 69 (1978) 495. Fujikawa, S., Hirano, K., Fukushima, Y: Metal!. Trans. A 9A (1979) 1811. Iijima, Y., Igarashi, T., Hirano, K.: J. Mater. Sci. 14 (1979) 474. Nishida. K., Murohashi, H., Yamamoto, T: Trans. Jpn. Inst. Met. 20 (1979) 269. Wen, C.J., Boukamp, B.A., Huggins, R.A., Weppner, W: J. Electrochem. Sot. 126 (1979) 2258. Yokota, M., Harada, R., Mitani, H.: J. Jpn. Inst. Met. 43 (1979) 793. Yamamoto, T, Takashima, T, Nishida, K.: J. Jpn. Inst. Met. 43 (1979) 1196. Budurov, S.J.,Boshinov, W.S.,Kovatchev, P.D.: Krist. Tech. 15 (1980) K22. Fujiwara, Y, Katayama, M., Hara, K., Osugi, J.: High Temp.-High Pressures.12 (1980) 643. Hoshino, K., Iijima, Y, Hirano, K.: Trans Jpn. Inst. Met. 21 (1980) 674. Iijima, Y, Taguchi, O., Hirano, K.: Trans. Jpn. Inst. Met. 21 (1980) 366. Minamino, Y, Yamane, T, Tokuda, K.: Z. Metallkd. 71 (1980) 90. Wen, C.J.,Weppner, W, Boukamp, B.A., Huggins, R.A.: Metall. Trans. B 11B (1980) 131. Yokota, M., Nose, M., Mitani, H.: J. Jpn. Inst. Met. 44 (1980) 1007. Yamamoto, T, Takashima, T, Nishida, K.: J. Jpn. Inst. Met. 44 (1980) 294. Arita, M., Ohyama, M., Goto, KS., Somero, M.: Z. Metallkd. 72 (1981) 244. Hoshino, K., Iijima, Y, Hirano, K.: Trans. Jpn. Inst. Met. 22 (1981) 527. Hoshino, K., Iijima, Y, Hirano, K.: Philos. Mag. A 44 (1981) 961. Lantelme, E, Belaidouni, S.: Electrochim Acta 26 (1981) 1225. Murch, Bruff

Land&El6mslein New Series 1111’26

5.3 References for 5 81N 81W 81Y 82H 8211 8212 82M 82s 831 83M 83N 83R 84A 84C 84G 841 84L 84M 84T 85A 85B 85G 85Ml 85M2 85R 86D 86L 86Sl 8632 87C 87L 87Ml 87M2 87s

Land&-Bijmstein New Series III/26

371

Nanba, M.: J. Electrochem. Sot. 128 (1981) 420. Williams, D.S., Rapp, R.A., Hirth, J.P.: Metall. Trans. A 12A (1981) 639. Yamamoto, T., Takashima, T., Nishida, K.: J. Jpn. Inst. Met. 45 (1981) 985. Hoshino, K., Iijima, Y, Hirano, K.: Metall. Trans. A 13A (1982) 1135. Iijima, Y, Kikuchi, M., Hoshino, K., Hirano, K.: in: Yamada Conf. on Point Defects and Defect Interactions in Metals, Takamura, J., Doyama, M., Kiritani, M., (eds.)Amsterdam: North Holland, 1982, p. 566. Iijima, Y, Hirano, K., Kikuchi, M.: Trans. Jpn. Inst. Met. 23 (1982) 19. Minamino, Y., Yamane, T, Koizumi, M., Shimada, M., Ogawa, N.: Z. Metallkd. 73 (1982) 124. Sarkhel, A.K., Seigle, L.L.: Metall. Trans. A 13A (1982) 1313. Iijima, Y., Hirano, K., Ohzeki, T., Suzuki, K.: in: Diffusion in Metals and Alloys, Kedves, EJ., Beke, D.L., Switzerland: Trans Tech, 1983, p. 401. Minamino, Y, Yamane, ‘I, Shimomura, A., Shimada, M., Koizumi, M., Ogawa, N., Takahashi, J., Kimura, H.: J. Mater. Sci. 18 (1983) 2679. Narayan, C., Goldstein, J.I.: Metall. Trans. A 14 (1983) 2437. Romig, A.D.: J. Appl. Phys. 54 (1983) 3172. Arita, M., Nakamura, M., Goto, KS., Ichinose, Y: Trans. Jpn. Inst. Met. 25 (1984) 703. Cogan, SF, Kwon, S., Klein, J.D., Rose, R.M.: J. Mater. Sci. 19 (1984) 447. Ganesan, V!, Seetharaman, V, Raghunathan, YS.: Mater. Lett. 2 (1984) 257. Iijima, Y, Hoshino, K., Kikuchi, M., Hirano, K.: Trans. Jpn. Inst. Met. 25 (1984) 234. Langen, G., Schwitzgebel, G., Ruppersberg, H.,: Mater. Res. Bull. 19 (1984) 1141. Minamino, Y, Yamane, T, Ueno, S., Koizumi, M., Ogawa, N., Shimada, M.: Metal Sci. 18 (1984)419. Takahashi, T, Kato, M., Minamino,Y, Yamane,T., Azukizawa, T, Okamoto., T., Shimada, M., Ogawa, N.: Z. Metallkd. 75 (1984) 440. Aubin, J.L., Ansel, D., Debuigne, J.: J. Less-Common Met. 113 (1985) 269. Braun, R., Feller-Kniepmeier, M.: Phys. Status Solidi A 90 (1985) 553. Green, A., Swindells, N.: Mater. Sci. Technology 1 (1985) 101. Minamino, Y, Yamane, T, Takahashi, T: J. Mater. Sci. Lett. 4 (1985) 797. Moreau, C., Allouche, A., Knystaustas, E.J.: J. Appl. Phys. 58 (1985) 4582. Romig, A.D., Cieslak, M.J.: J. Appl. Phys. 58 (1985) 3425. Dean, D.C., Goldstein, J.I.: Metall. Trans. A 17 (1986) 1131. Lee, K.H., Shin, M.C., Lee, J.Y: J. Mater. Sci. 21 (1986) 2430. Sarafianos, N.: Mater. Sci. Eng. 80 (1986) 87. Shimozaki, T, Ito, K., Onishi, M.: Trans. Jpn. Inst. Met. 27 (1986) 160. Chryssoulakis, Y, Lantelme, I?, Alexopoulou, A., Kalogeropoulou, S.,Chemla, M. : Electrochim. Acta 32 (1987) 699. Le Gall, G., Ansel, D., Dubuigne, J.: Acta Metall. 35 (1987) 2297. Minamino, Y, Yamane, T, Araki, H.: Metall. Trans. A 18 (1987) 1536. Mei, S., Huntington, H.B., Hu, C.K.: Ser. Metall. 21 (1987) 153. Shimozaki, T, Shuto, H., Onishi, M.: Trans. Jpn. Inst. Met. 28 (1987) 191.

Murch, Bruff

312

6.1 Fick’s law, ternary interdiffusion

and intrinsic diffusion coefficients

[Ref. p. 435

6 Diffusion in ternary alloys In this chapter diffusion data are compiled for ternary alloys. Becauseternary diffusion is not treated in the General Introduction the main concepts and methods employed in ternary diffusion studies are briefly covered below.

6.1 Generalized forms of Fick’s law, ternary interdiffusion and intrinsic diffusion coefficients An extended form of Fick’s law, as proposed by Onsager [310,450], is employed for the general treatment of diffusion in multicomponent systems.For a unidirectional diffusion in a 3-component system,the interdiffusion flux ji of component i referred to a laboratory fixed frame of referenceis expressedas a linear function of two independent concentration gradients by

Since the interdiffusion fluxes of only two of the components are independent in a ternary alloy, only 4 interdiffusion coefficients, I?:, , B:, ai,, a:, are needed.The superscript 3 in @ refers to the component taken as the dependent concentration variable. a:, and & are referred to as the main or diagonal interdiffusion coefficients, while a:, and a:, correspond to the cross or nondiagonal coefficients. The laboratory coordinate is equivalent to the volume fixed frame, if there are no volume changes on mixing. Similarly, the intrinsic diffusion flux Ji of component i relative to a lattice-fixed frame (Kirkendall frame) is expressedby J,=-$Di% j=1

(i=l,2,3)

where Dz are the ternary intrinsic diffusion coeflicients. Since the interdiffusion and intrinsic fluxes are related through the lattice or marker velocity u, the interdiffusion coefficients can be expressedin terms of the intrinsic coefficients by [62G] d,!j=L$-Xi

i

k=l

Dzj

(i,j=l,2)

(6.3)

where the molar volume, V,, is assumedconstant (Xi: molar fraction ofcomponent i). In general, all the diffusion coeficients are functions of composition. The D: are inter-related through 3 atomic mobilities and thermodynamic data (see6.5).

6.2 Solutions of diffusion equations for constant ternary interdiffusion coefficients The differential equations corresponding to Fick’s second law are obtained by the substitution of Eq. (6.1) in the continuity equation (1.6) of chapter 1 and for the case where & can be assumed constant over a composition range of interest, they are given by

acizbs ,, a% s+Bf2 at

3

(i=1,2).

(6.4)

For ternary systems involving interdiffusion of substitutional and/or interstitial elements, Eq. (6.4) has been solved for selected boundary conditions corresponding to experimental diffusion couples.

Dayananda

Landolt-B6mstein Nea Series Ill’26

Ref. p. 4351

6.2 Solutions of diff. equations for constant ternary interdiff. coefficients

313

6.2.1 Infinite, solid-solid diffusion couple An infinite solid-solid couple is assembledwith disks of terminal alloys of compositions CT and C; and diffusion annealed isothermally at temperature T for time t. The concentrations of the components initially exhibit a step function at the plane of contact of the alloys (Matano plane) at t = 0, and the concentration profiles developed within the diffusion zone can be expressedin terms of error functions by [56F, 58K] C,=a erfX 2&G

where u&

[

+b erf x+c q/G

(6.5a)

C,=d erfz +e erfX+f 2Ju,t. L/G

(6.5b)

o”:,(c: -c;)-{(B;,-D:,)-d}

b=; [cc-c;

cc: y

1

-2a]

c=$ [Cl +CJ

d=&~:,(c:-c;,-{(a:,-a:,,-a)(cyiq e=; [c; -c; j=;

-2d]

EC: +c;1

Based on the thermodynamic requirements and the stability of solutions of the diffusion equations, the four interdiffusion coefficients satisfy the relations [63Kl, 70K] a:,+0”2,>0 (b:,+o”~,)z~4(~::,~::,-6:,b~,) (a:,a;,-s:,b:,)~o.

(6.6) (6.7) (6.8) Eqs. (6.6) through (6.8) assure that no negative values of concentrations appear as solutions of the diffusion equations. The &s as constants can be evaluated from the experimental ternary concentration profiles on the basis of method of moments [55B]. An alternative and easier procedure is first to evaluate the main coefficients, o”:, and o”,“, with binary couples involving 1-3 and 2-3 components, respectively, and employ these values to determine the cross-coefficients from ternary couples [63K2].

Land&-BBmstein New Series III/26

Dayananda

374

6.2 Solutions of diff. equations for constant ternary interdiff. coefficients

[Ref. p. 435

6.2.2 Darken-type couple The solution in Eq. (6.5) can be further simplified [57K] for a solid-solid couple referred to as Darken-type [49D], if component 1 is initially uniform and the concentration of component 2 has a step function at the a2c, . Matano plane (x=0) at t=O. For such a couple, one may neglect the term a:, axz m (6.4) and the approximate solutions become: Cl=!

(CT +C;)+A

where

[

erfX2m

(

2A-~j+c’)

erf*]

(6.9)

(G-G)

&2

*=(6:,--a;,)

(6.10)

2

and C,=Cl

+i (C; -C,‘)

I-erfX [

295

1 .

6.2.3 Semi-infinite, vapor-solid diffusion couple For a ternary vapor-solid couple set up with a semi-infinite sample of composition CT in contact with a vapor source such that at t > 0 the surface concentrations are maintained at Cf, the solution for the concentration profiles is expressedby Eqs. (6.5a) and (6.5b) with the following relations for the various constants.

a=;[q,(c;-c;)-(jj;,-@, -6)y6’) 1

b=i[c,,(C;-C:)-(d:,-d:,+~) yc:)1 c=c: d=; ol:,(c:-c;)-(6:,-6:,-6) yci) 1 [

u,, u2 and b are given by the samerelations as indicated earlier. The above solution is basedon the assumption that the diffusion disk shows negligible expansion due to mass input from the vapor phase. However, such expansions can be taken into account [65D, 68Dl] in the determination of interdiffusion coefficients.

6.2.4 A layered couple with one-dimensional periodic boundary condition or a finite diffusion couple A layered couple with alternating layers of two alloys is considered. The initial conditions correspond to a uniform concentration of component 1 at CT and to a periodic step-function of wavelength 2L for the concentration of component 2 varying between Ci and C;. The boundary condition also represents an impervious walled finite system lying between - L and + L. For such a system,the cross-effectof component Y -0 1 on component 2 may be ignored by setting D,, - and the solutions [65K] are given by:

c

m (-Um+l -&e:~-,-a:,cr m?l (2m-1) cos6mx[e

=c++~G-c;m2

1

1 II (a:, -a:,,

I

(6.12)

and

c JG 2

+w+; 2

(C’-C-) 7-t 2

2 (- urn+’ e-6:,5~rcos~ x ’ m=~ (2m-1)

m

(6.13)

where r

=(2m-Un m

L

Dayananda

.

(6.14)

Land&-B6mstein New Series lllf26

6.3 Concentration-dependent

Ref. p. 4351

ternary interdiffusion

375

coefficients

6.2.5 Transient equilibrium or quasi-steady state solution The concept of quasi-steady state or transient equilibrium was used by Kirkaldy and coworkers [62K, 64B] in the study of interdiffusion in ternary austenites with finite couples consisting of a layer of a binary substitutional Fe-base alloy welded between two layers of an Fe-base plain carbon alloy. If 8:, a@, (1 =carbon, 2=substitutional element), component 1 may reach a quasi-steady state with respect to a slowly diffusing component 2 after a period of time and

or (6.15) where Cp and CF refer to the concentrations in the outside and middle layers of the couple. The ratio of the coefficients in Eq. (6.15) is assumed to be evaluated at the mean concentrations, (Cy + Cy)/2 and (Cy)/2. For dilute alloys, &/@, may be estimated from thermodynamic data on the basis of the relation [64B]:

0”:2 e12xl s:,=- l+ellxl where e,, and e,, refer to Wagner’s thermodynamic interaction parameters [52w].

6.3 Concentration-dependent ternary interdiffusion coefficients 6.3.1 Interdiffusion

data at composition points of intersection of diffusion paths

The Boltzmann-Matano analysis described in chapter 1 for binary couples is extended [57K, 672, 65D] to ternary solid-solid and vapor-solid couples to yield:

Cl d1’xdCi

2). ci(i=ly

= - 2t

(6.17)

The molar volume is assumed constant in the diffusion zone and (x=0) is identified at the common Matano plane identified on the basis of Eq. (1.44)of chapter 1 for any of the components. Since there are 4 concentrationdependent &‘s, they cannot be determined from a single couple; in fact, two couples chosen to have a common composition developed in their diffusion zones are needed. Such a common composition can be identified as a point of intersection (C,, C,) of the composition paths or diffusion paths for a pair of couples shown schematically on a ternary isotherm in Fig. 1. The four equations set up from the two couples by evaluating the integrals and derivates in Eq. (6.17)at (C,, C,) are solved to evaluate o”:, , B:,, a;, and o”:, at the composition (C,, C,).

a

b

Fig. 1. Schematic diffusion paths (composition paths) for (a) a pair of solid-solid diffusion couples, A vs. B and C vs. D and (b) a pair of vapor-solid diffusion couples, A vs. B and C vs. pure 3 component. The diffusion paths of each pair intersect at a common composition (C, , C,) where Eq. (6.17) can be employed to evaluate the four ternary interdiffusion coeffkients, i?:, , o”:,, o”il, and o”:, . Land&-Bhstein New Series III/26

Dayananda

6.3 Concentration-dependent

376

ternary interdiffusion

coefficients

[Ref. p. 435

The four ternary coeflicients 6;‘s can be transformed to alternative setsof four coefficients depending on the choice of the component employed for the dependent concentration variable. The transformation relations [67Z, 70K] are expressedby +f&-pj =&-a/, = - aj, .

(6.18) (6.19) (6.20)

The limiting values of the ternary coefficients on the three binary sides and three corners of the ternary diagram have been established [63S, 70K]. The limiting values of the major coefficients sFi are (6.21)

lim GFi=fii-, c, - 0 where &,

is the binary interdiffusion coefficient for i-k

system. Also, (6.22)

where DFu-L, is the tracer diffusion coeflicient of component i in a binary j - k alloy. The limiting values of the cross-coefficients a: are (6.23)

lim Q=O. ci+o

6.3.2 Interdiffusion coefficients at maxima and minima in concentration profiles If the concentration profile of a component (say 1) develops a maximum or minimum, as normally encountered in Darken-type couples, z=O

at such sections, and Eq. (6.17) yields:

Cl xdC, I

I+

[ 1Cl(i=‘72).

= - 2t 6,5, 2

(6.24)

Eq. (6.24)allows the determination of two of the coefficients directly at the compositions of the extrema in the profile of component 1. An expression similar to Eq. (6.24) is used to calculate partial interdiffusion data at extrema for component 2.

6.3.3 Ratio of 6i3i/B~i at a zero-flux plane for component i During isothermal diffusion in a ternary or multicomponent diffusion couple the interdiffusion flux of a component can go to zero at a section within the diffusion zone and exhibit a change of flux direction from one side of the section to the other [79D]. Such a plane where z=O is referred to as a zero-flux plane (ZFP) for component i. For ternary solid-solid and vapor-solid couples, z at any section x can be determined [83D, 85D2] directly from the concentration profiles by ~(x)=~c,~~~-xdCI I

(i=l,2,3)

without the knowledge of interdiffusion coefficients. At a ZFP for component i, CdZFP)

ct .f,- xdCi=o

(6.26)

and it follows from Eq. (6.17) ai3, ac, ac, 1ZFplo,, = - a:, .

(6.27)

Hence, the ratio of the cross to the main interdiffusion coefficients can be directly determined from the slope of the ternary diffusion path at a ZFP composition. A ZFP developed for a component in an experimental ternary diffusion couple is shown in Fig. 2. The ZFP phenomenon has been identified in several multicomponent systems[83K, 84K, 85D2,85K]. A ZFP for a component normally develops in an “isoactivity couple” characterized by similar thermodynamic activities for the component in the terminal alloys.

Dayananda

Landott-BBmsfein New Series III/26

Ref. p. 4351

6.4 Determination

of ternary intrinsic diff. coefficients with inert markers

377

0.6 I q

0.4

- 0.5

-200

-150

-100

-50

0

50

100 pm 150

Fig. 2. Concentration profiles and profiles of interdiffusion fluxes ji” calculated from Eq. (6.25) for a single phase c(~ (30.10 at.% Cu-44.70 at.% Ni-25.20 at.% Zn) vs. cllz (80.61 at.% Cu-19.39 at.% Ni) ternary diffusion couple annealed at 1048K for 2 days. Ni exhibits a zero-flux plane (ZFP) located by the requirement that area A = area B and area C = area D on the basis of Eq. (6.26). Note that the directions of .& are different on the two sides of the ZFP for Ni [84K].

6.4 Determination of ternary intrinsic diffusion coefficients with inert markers A direct integration of Eq. (6.2) with respect to t yields [52H, 63PJ ,+‘.li&=-2t; d

D;z j=l

1

marker

(6.28) plane

(i =



2’

3,

where Ai refers to the cummulative intrinsic flux of component i past a marker plane identified at a constant composition and moving parabolically with time. The gradients X,/ax and X,/ax are evaluated at the marker plane and Ai can be determined graphically from appropriate areas under the profiles (Heumann’s method [52H]). To determine the six Dz’s two independent couples characterized by marker planes of identical or similar compositions are needed; such a pair of couples have their diffusion paths meet or intersect at the composition point (C,, C,), the common composition of the marker planes. Practically it is difficult to set up a pair of solid-solid couples with identical marker composition. However, it is easier to realize this requirement with vapor-solid couples set up with two different alloys exposed to the same vapor source. Inert markers placed initially at the vapor-solid interfaces get embedded in the diffusion disks, remain close to the interface and are found at compositions close to that of the interface. In Fig. 3 are shown schematic concentration profiles for a vapor-solid couple with inert markers employed in the determination of intrinsic diffusion coefficients. From the intrinsic coefficients, the interdiffusion coefficients can be calculated from Eq. (6.3). Land&-Biirnstein New Series III/26

Dayananda

378

6.5 Lij phenomenological coefficients, atomic mobilities, vacancy wind parameters

[Ref. p. 435

Fig. 3. Schematic concentration profiles for a ternary vaporsolid couple with inert markers; x, and x, refer to the positions of the vapor-solid interface and the marker plane at time 1.The cumulative intrinsic fluxes, A,, A, and A,, past the marker plant can bc determined directly from the profiles [65D].

6.5 Lij phenomenological coefficients, atomic mobilities and vacancy wind parameter The general flux-force relations for an n-component alloy is given by [310,70K]

II-l Ji = - c L,, 2 ]=I

(6.29)

where the (n-l) independent forces are defined in terms of gradients of chemical potentials, pj. If the cross interactions between i and j are ignored in the lattice-fixed frame, Eq. (6.29) is simplified to (6.30) where fli refers to the atomic mobility. On the basis of this simple atomic mobility model the intrinsic coetlicients Dl?jare expressedby [65Z, 68D2] Q+cipi

-g

(6.31) J Dayananda [68D2] has shown that the three atomic mobilities for a ternary system can be experimentally determined from values of cumulative intrinsic fluxes Ai past a marker plane with a single couple on the basis of the relation

/+Ai

plnnc 1marker

(6.32)

2tC.?!5 1ax

provided the thermodynamic data are available. An alternate procedure is to set up steady-state diffusion profiles in a thin membrane of a solvent metal exposed to vapors of the diffusing species [7Ow]. Under steady-state conditions .Jiin Eq. (6.30) becomesconstant and /& can be evaluated over the entire composition range of the diffusion membrane with the knowledge of Ji and thermodynamic data. Dayananda

Landok-B6mstein New Series 111126

Ref. p. 4351

6.6 Tracer diffusion coefficients; 6.7 Use of the tables and figures

379

If the diffusional interaction between the components on the lattice-fixed frame cannot be ignored, Eq. (6.32) is modified to [71D]. Ai = - 2tcipi $+apixi

5 Aj j=l

1

(6.33)

marker plane

where c(is a vacancy wind parameter describing the interactions in terms of the vacancy wind effect [68M, 70M]. The three pi and the parameter a in Eq. (6.33) can be determined with a pair of independent ternary diffusion couples characterized by marker planes of similar composition. Such experimental data currently available are limited.

6.6 Tracer diffusion coefficients Tracer diffusion measurementsin ternary alloys with the techniques discussedin chapter 1 are also limited. Expressions are available for the calculation of ai and L,, coefficients from tracer data or atomic mobilities [67Z, 70M]. The expressions for & in terms of the & on the basis of atomic mobility model are:

o”:1=xIwI-xI(~1-8311

~-x,x,@&-P,)

2

D”:,=x,[P,-x,(P1-&)1

g-X,XAkP,)

2

1

2

(6.34)

1

(6.35)

2

(6.36)

~,32=X2[P2-Xz(P2-/L)l g-X,X,W,)~. 2

(6.37) 2

6.7 Use of the tables and figures The order in which the alloy systemsare arranged in this chapter is alphabetical. For a given ternary system, the element having the chemical symbol earlier in the alphabet always comes first. For example AgAlZn is tabulated before AgCdZn and NiFeAl must be transformed into AlFeNi and is then found after AlCuZn. The alloy compositions are expressedin atomic percentages,unless indicated otherwise. The data are distributed into four sections (tables) with the titles of -

Ternary interdiffusion coefficients (Sect.6.8.1) Ternary intrinsic diffusion coefficients (Sect.6.8.2) Atomic mobilities and vacancy wind parameters (Sect.6.8.3) Tracer diffusion coefficients for ternary alloys (Sect.6.8.4). The tables have a central function. From the tables referencesare made to the figures.

Land&-B&stein New Series III/X

Dayananda

6.8.1 Ternary interdiffusion

380

[Ref. p. 435

coefficients (Tables)

6.8 The diffusion tables 6.8.1 Ternary interdiffusion coefficients Composition at. %

T

81 Ag 0.49 0.57 0.78 0.91 1.0 1.1 1.3 I.3 1.5 1.6 1.8 2.0 2.1 2.3 2.5 3.0 3.0 3.7 4.0 4.8 0.44 0.58 0.64 0.83 0.95 1.1 1.3 1.4 1.4 I.4 1.7 2.0 2.0 2.2 2.6 2.7 3.0 3.8 3.9 5.1 0.45 0.59 0.75 0.92 0.95 0.98 1.3 1.3 1.4

Al Zn (fee) 2.8 3.2 2.5 2.9 4.9 2.2 2.5 6.1 1.9 4.3 2.2 1.5 5.4 3.8 1.7 3.3 4.6 3.9 2.4 2.8 (fee) 2.7 3.3 2.4 3.0 4.7 2.1 2.5 1.9 4.2 6.2 2.3 1.4 5.4 3.5 1.7 3.1 4.6 3.9 2.3 2.8 (fee) 2.8 3.4 2.5 4.7 3.0 2.2 2.8 6.2 1.9

765

785

796

Remarks

2s-,

K

1.5 1.5 1.6 1.4 1.4 1.4 1.2 1.3 1.3 1.1 1.0 1.0 1.2 1.2 0.79 1.1 1.1 0.96 0.65 0.67 2.6 2.6 2.1 2.5 2.4 1.7 I.7 1.7 2.3 2.2 I.7 1.6 2.0 2.0 1.4 1.7 1.7 1.2 1.2 0.85 2.8 3.8 2.8 3.1 2.9 2.5 2.5 3.0 2.2

o”:,

o”:,

Fig.

Ref.

a

In units of lo-l3 mzsP1 1.8 -0.05 -0.65 1.8 -0.07 -0.79 1.7 -0.10 -0.59 1.8 -0.09 -0.60 1.7 -0.09 -0.74 2.0 -0.24 -0.34 2.0 -0.10 -0.33 2.2 -0.10 -1.4 1.9 -0.20 -0.44 1.9 -0.11 -0.60 1.9 -0.24 -0.35 2.0 -0.28 -0.28 2.0 -0.09 -1.3 2.1 -0.12 -0.51 I.9 -0.30 -0.26 2.1 -0.17 -0.60 2.7 -0.24 -0.67 2.5 -0.25 -0.76 2.2 -0.43 -0.44 2.4 -0.37 -0.61 3.1 -0.13 -0.58 3.1 -0.15 -0.42 2.8 -0.08 -0.73 2.9 -0.26 -0.61 3.6 -0.27 -2.0 2.8 -0.64 2.9 -0.09 -0.62 2.9 -0.14 -0.63 3.6 -0.52 -1.8 3.5 -0.18 -2.3 3.0 -0.11 -0.60 3.2 -0.70 -0.47 3.6 -0.41 -2.4 3.9 -0.57 -1.6 3.4 -0.44 -0.60 4.2 -0.50 -1.2 4.0 -0.21 -1.7 4.2 -0.59 -1.4 3.9 -0.81 -0.89 4.5 -0.90 -1.1 3.5 -0.22 -2.1 3.6 -0.45 -2.0 3.8 0.03 -1.2 4.1 -0.23 -2.9 4.1 -0.07 -1.0 3.6 -0.03 -1.1 3.8 -0.01 -1.0 4.6 -0.32 -2.9 4.2 -0.20 -0.84 Dayananda

1 = Ag; 2 = Zn; 3 = A! Solid-solid couples with intersecting diffusion paths; the interdiffusion fluxes of Zn and Ag are reduced down each other’s gradient; the negative &s indicate Zn and Ag attract each other in Al. Bf, increaseswith Zn concentration and decreaseswith Ag.

84Ml

4 Solid-solid couples with intersecting diffusion paths; &, is more sensitive to Ag content than to Zn; @, is more influenced by Zn.

84M

Solid-solid diffusion couples with intersecting diffusion paths; the cross coefficient B:, becomes appreciable in magnitude compared to B:, .

84Ml

(continued) Landolt-BCmstein New Series 111126

6.8.1 Ternary interdiffusion

Ref. p. 4351

T

Composition It. %

Remarks

Al

Zn (continued) 4.1 3.1 1.6 2.2 2.3 2.4 3.7 2.8 5.4 2.6 1.9 2.1 3.1 2.2 4.8 2.3 2.5 1.9 4.0 2.0 3.0 1.5

R2

El

Q2

-0.42 -0.06 -0.40 -0.60 -0.42 -0.51 -0.46 -0.64 -0.50 -0.68 -0.74

-1.9 -0.69 -0.88 -2.2 -2.4 -0.77 -1.6 -2.7 -1.0 -2.2 -0.98

4.9 4.3 4.4 4.7 5.1 4.6 4.9 4.6 4.9 5.0 6.0

808

3.7 4.4 3.0 3.4 3.4 2.9 3.0 3.2 3.5 4.0 3.1 2.7 3.1 4.1 2.6 2.6 2.9 2.1 2.4 3.0

-0.02 -0.16 -0.11 -0.18 -0.10 -0.29 -0.60 -0.29 -0.09 -0.29 -0.74 -0.61 -0.53 -0.69 -1.2 -1.1 -0.77 -0.75 -1.1 -0.85

-0.81 -2.5 -1.5 -1.7 -2.2 -0.71 -0.78 -1.3 -2.7 -2.4 -1.3 -0.88 -1.7 -3.2 -1.85 -2.0 -2.3 -1.1 -2.3 -1.6

5.5 5.4 4.3 4.6 5.8 5.5 5.8 5.2 5.3 7.1 5.5 5.7 6.7 6.6 5.8 6.3 6.7 6.7 6.7 7.6

0.46 (fee) 2.75 832 3.23 0.56 2.49 0.69 2.93 0.85 4.65 0.92 2.15 1.01 2.57 1.27 6.22 1.33 1.85 1.35 4.15 1.37 2.19 1.76 1.36 1.96 5.31 1.99 2.09 3.55 2.49 1.67 3.01 2.73 4.39 2.85 3.68 3.60 3.66 2.25 2.62 4.62

6.5 6.8 6.6 6.4 7.3 6.5 6.1 7.7 5.4 5.6 5.9 5.2 6.5 5.4 5.4 5.3 5.7 4.7 4.3 3.3

-0.17 -0.29 -0.26 -0.31 -0.39 -0.68 -1.1 -0.76 -1.2 -0.60 -1.9 -0.44 -1.4 -1.2 -1.1 -1.5 -0.87 -1.3 -1.1 -2.4

-1.8 -2.8 -0.98 -2.4 -4.2 -2.1 -3.3 -6.4 -1.7 -3.3 -2.7 -0.85 -4.1 -3.4 -1.9 -2.5 -3.5 -3.0 -1.8 -1.9

7.9 8.7 8.9 9.1 10.0 8.7 9.4 10.0 9.3 10.0 11.0 8.7 12.0 11.0 11.0 12.0 11.0 12.0 12.0 13.0

0.43 (fee) 2.7 3.3 0.55 2.4 0.74 2.8 0.90 4.7 0.91 2.3 0.93 1.2 2.6 1.9 1.3 4.2 1.4 6.5 1.4 2.3 1.6 1.5 1.9 2.1 3.6 2.1 5.7 2.4 1.7 2.8 3.1 3.1 4.7 2.3 3.8 4.0 3.9 2.8 4.9

Land&B6mstein New Series III/26

Fig.

Ref.

K R

Ag 1.5 1.9 1.9 1.9 2.1 2.5 2.8 2.8 3.7 3.8 4.9

381

coefficients (Tables)

Dayananda

84Ml

Solid-solid couples with intersecting diffusion paths; the @s increase with T. Approximate Q values over T-range 765...832 K determined for average values of each coefficient : Q for 8:,=126kJmol-’ Q for &, = 126kJmol-’ Q for ~~,=115kJmol-1 Q for 8:, = 128kJmol-‘.

84Ml

Solid-solid couples with 5 intersecting diffusion paths; the negative cross-coefficients indicate that the interdiffusion fluxes of Ag and Zn are reduced down each other’s gradient; B:, varies little with Zn and 8& varies little with Ag.

84M1, 84M2

6.8.1 Ternary interdiffusion

382 Composition at.%

Remarks

T

Cd

r(fcc) 2.9 3.0 3.1 3.3 3.5 3.8 3.8 4.2 4.4 6.5 6.7 7.0 7.1 8.5 9.0 9.8 10.2 10.5

2.1 0.43 0.73 3.2 1.8 3.1 0.61 0.93 3.0 2.3 1.11 2.4 I.3 2.3 2.5 0.99 0.89 1.9 0.53 1.0 0.86 1.2 1.1 2.1 2.3 0.74 1.7 I.2

Zn 10.8 873 11.4 11.8 12.3 13.1 14.4 14.7 16.3 18.1 Il.6 12.1 12.8 13.3 16.4 11.3 12.0 12.5 13.0

0’:2

&

Ref.

a:2

In units of IO-i4 m2 s-i

Cu

0.7 a(fcc) 66.3 998 2.1 90.1 2.4 81.6 44.6 2.5 2.7 66.6 41.8 3.0 3.0 88.6 81.0 3.9 35.1 4.2 58.5 4.8 79.8 5.9 62.9 9.5 11.8 6.1 12.9 60.3 18.0 35.1 34.0 13.1 36.6 6.3 14.0 15.7 56.2 1.2 58.6 7.5 6.2 59.3 59.3 7.3 59.5 6.0 Il.2 71.9 72.7 3.6 78.1 13.8 34.5 5.9 2.1 36.9

4g

Fig.

K a:,

Au

[Ref. p. 435

coefficients (Tables)

2.4 0.04 -0.21 0.04 0.11 -0.01 0.73 0.81 0.20 0.18 0.75 0.29 -0.03 0.08 0.20 0.17 1.7 0.57 0.53 0.81 0.28 0.42 1.04 1.9 0.73 1.11 I.8 I.6 2.8 0.09 1.7 0.86 1.1 2.1 0.39 0.22 0.96 0.57 0.28 0.83 0.77 0.21 0.50 0.70 -0.28 0.81 0.04 0.19 0.07 -0.60

1 = Cu; 2 = Ag; 3 = Au 1.8 0.85 1.3 3.3 1.5 2.0 0.93 1.4 2.8 3.0 I.5 3.6 3.1 4.0 I.3 2.4 0.91 0.76 1.3 0.63 I.6 1.4 0.42

In units of lo-l4 m2s-* 0.74 0.82 0.91 1.0 I.2 I.5 1.4 I.6 3.3 1.4 1.7 2.4 2.3 4.4 2.3 4.0 4.5 4.9

0.77 0.80 0.67 0.71 1.3 1.0 2.0 4.8 2.4 0.98 0.90 0.71 I.4 4.5 2.2 1.4 1.9 2.6

0.01 0.06 0.10 0.11 0.13 0.24 0.13 0.03 0.60 0.18 0.36 0.61 0.50 I.4 0.50 2.5 2.8 2.9

0.98 0.86 0.79 0.89 1.2 1.1 1.7 3.7 2.1 I.5 I.4 I.5 2.0 5.5 3.3 2.2 2.9 4.1

Dayananda

6 Solid-solid diffusion couples; intersecting diffusion paths; compositions where only b:, and @, are reported correspond to extrema in Ag concentration profiles; Bf, is nearly independent of Ag content for low Ag alloys; Bz, correlates with thermodynamic properties and Ag exhibits up-hill diffusion down a Cu gradient.

672

l=Zn;2=Cd,3=Ag Vapor-solid diffusion 7, 8 couples with intersecting diffusion paths; Ag-Cd-Zn alloy chips used as vapor sources in contact with Ag or Ag-8.7 at.% Zn alloy disks; appreciable cross effect between Zn flow and Cd gradient resulting in up-hill diffusion of Zn up its own concentration gradient in several couples; d:, and @, show maxima when plotted against Ag concentration at C,,/C,, = 3.8.

72C

Land&-BCmstein New Series III,/26

6.8.1 Ternary interdiffusion

Ref. p. 4351 Composition at. %

s;

rn’s-l Ql

Al

Remarks

T

K

Co Cr [wt.%]

0.3 (fee) 5.1 1373 4.0 11.1 2.4 0.3 4.9 4.9 1.5 8.7 3.3 1.7 6.5 4.4 1.9 7.1 3.3 1.9 7.9 4.3 2.0 7.8 4.2 2.1 11.4 5.4 2.1 7.4 4.6 2.2 12.1 4.9 2.2 12.5 5.2 2.3 11.4 5.2 2.4”) 11.5 5.6 2.4”) 11.5 5.6 2.4 11.5 5.7 2.5 11.8 5.9 2.5 2.2 7.1 2.6 13.4 5.5 2.6 9.9 5.2 2.8=) 9.9 5.5 2.8a) 9.1 6.1 2.9 9.2 5.8 3.0 3.3 10.0 4.1 2.9 9.4 4.2”) 2.9 6.8 4.2”) Ni

0”:2

El

-0.2 1.0 0.009 0.47 0.043 2.5 1.4 1.8 1.9 0.88 2.4 4.1 0.45 1.2 1.3 1.4 2.7 0.04 4.7 1.0 2.5 1.7 0.5 0.62 0.45 0.084

Fig.

Ref.

62 1 = Al; 2 = Cr; 3 = Co

In units of 10-15m2s-1 -1.5 8.7 0.14 0.3 0.43 0.61 0.51 0.44 0.19 0.52 0.51 0.56 0.65 0.74 0.61 0.63 0.68 0.09 1.3 0.7 0.57 0.64 0.85 1.7 1.4 0.73

383

coefficients (Tables)

2.4 2.6 1.9 1.1 1.6 1.4 1.6 1.7 1.7 1.4 2.3 2.3 2.0 2.2 2.0 1.7 1.9 3.0 2.6 2.4 1.8 1.7 2.2 2.1 2.1 2.0

Solid-solid diffusion 9 couples with intersecting diffusion paths. Several of the reported data are not included here due to large errors arising from small concentration gradients or small angles between diffusion paths at the common composition point of couple pairs; Cr interdiffusion is enhanced down an Al gradient and vice versa, as indicated by mostly positive crosscoefficients. “) Two runs

80Rl

1 = Al; 2 = Cr; 3 = Ni

Al

Cr

In units of lo-l4 m2s-’

3.21 3.59 3.77 3.83 4.49 5.16 5.33 5.72 6.71 7.66 8.46

6.74 (fee) 1373 1.61 1.27 19.90 9.22 1.67 1.34 20.83 1.53 24.05 16.70 1.70 1.92 29.17 1.96 17.21 2.58 18.23 2.07 13.54 2.47 13.66

0.35 0.29 0.44 0.29 0.33 0.56 0.43 0.58 0.80 0.58 0.81

1.02 1.46 0.94 1.12 1.14 0.91 1.34 0.55 0.73 0.73 0.90

0.89 0.89 1.05 1.02 1.05 0.23 1.15 0.81 0.97 0.99 1.00

Solid-solid diffusion couples with intersecting diffusion paths; both cross coefficients are positive; o”,“, can be larger than o”,“, .

87Nl

2.45 2.46 2.62 2.65 2.80 2.84 2.90 2.96 3.23 4.38

14.65 (fee) 1473 7.61 8.21 14.61 14.04 5.97 13.90 6.75 7.13 13.36 13.25 6.40 13.05 6.30 33.49 7.16 7.50 33.31 10.40 32.36

1.40 1.57 0.97 1.18 1.31 1.11 1.13 0.39 0.66 2.85

4.66 4.58 3163 3.61 3.70 2.97 3.68 4.96 5.74 5.09

3.96 3.94 3.67 3.66 3.68 3.47 3.71 4.81 5.94 4.96

Solid-solid diffusion 10 couples with intersecting diffusion paths; o”Tl is approximately 4 times greater than o”:,, while o”& and o”;, are of the same magnitude.

87Nl

(continued)

Land&-Biirnstein New Series III/26

Dayananda

6.8.1 Ternary interdiffusion

384 ,Composition at.%

Remarks

T K o”:,

Al 4.40 4.40 4.46 4.49 4.53 4.55 4.56 4.64 4.72 4.80 4.83 4.90 4.92 4.93 4.97 4.97 5.01 5.24 5.46 5.62 5.70 5.79 5.94 5.97 5.98 5.99 6.11 6.13 6.17 6.18 6.22 6.74 6.86 6.89 7.01 7.06 7.10 7.78 8.08 8.10 8.12 8.12 8.24 8.32 8.33 8.40 9.31 9.42 9.55 9.66

Ni Cr 31.53 31.63 34.31 34.58 15.38 25.61 15.20 14.70 14.19 13.80 25.46 13.26 24.55 24.68 2.48 12.77 24.46 1.93 1.58 18.00 9.05 3.32 15.92 15.58 2.70 15.40 14.14 13.94 13.39 2.10 12.33 4.41 3.85 16.35 16.11 2.88 15.96 5.65 27.40 17.21 14.10 17.15 13.86 31.44 13.72 16.54 29.05 14.34 14.08 10.89

(continued) 10.94 11.41 13.05 10.87 11.63 8.62 12.73 8.41 7.91 9.39 9.00 7.84 10.88 8.55 8.43 8.07 11.77 10.75 10.76 9.36 12.44 8.73 15.96 16.83 13.18 9.60 9.55 11.20 8.97 11.66 9.79 9.16 15.94 11.31 11.15 12.72 11.15 2.73 10.93 13.14 14.62 14.61 12.75 15.98 11.60 13.89 7.70 17.68 11.10 15.72

a2 2.74 2.55 2.80 2.83 2.26 2.01 2.44 1.73 1.64 1.89 2.15 1.69 2.37 2.02 1.89 1.68 3.31 3.18 3.31 2.57 2.91 2.37 3.44 3.42 3.78 2.77 2.86 3.00 2.78 3.34 3.05 2.89 4.28 3.45 3.25 3.66 3.25 8.84 1.31 4.22 5.14 4.88 4.10 3.83 3.49 4.60 0.16 6.62 3.50 3.15

o”:, 4.02 4.82 7.02 8.35 6.14 8.44 6.04 3.98 3.70 4.23 7.48 3.85 5.94 2.91 1.32 2.45 6.93 1.49 1.08 3.33 -0.11 2.03 8.19 7.62 3.00 4.31 3.86 4.58 4.40 1.88 2.49 1.86 5.44 5.47 4.52 3.49 5.17 2.30 1.20 4.95 4.91 6.76 4.40 10.31 6.43 5.97 7.41 5.20 7.61 2.69

[Ref. p. 435

coefticients (Tables) Fig.

Ref.

& 4.79 4.78 4.63 3.89 3.84 5.86 3.81 3.47 3.37 3.43 4.24 3.95 4.09 3.71 3.59 3.05 5.33 3.56 3.30 3.86 3.01 3.20 4.32 4.12 3.36 3.86 3.71 3.74 3.60 2.94 3.40 3.80 3.05 5.43 4.55 2.18 4.91 4.39 1.23 5.13 4.91 5.95 4.62 7.67 5.82 5.65 6.61 5.55 6.71 4.30

The large positive o”:, implies enhancement of Cr interdiffusion down an Al concentration gradient. Both o”:, and a:, increase with increasing Al concentration but show little dependenceon Cr.

87Nl

(continued)

Dayananda

Landok-BBmstein New Series III/26

Ref. p. 4351

6.8.1 Ternary interdiffusion

T

Composition at.% Al

Cr

9.75 9.76 9.77 9.78 10.17 10.18 10.21 10.28 10.31 10.34 10.34 10.40 10.41 10.43 10.46 10.53 10.56 10.57 10.58 10.64 10.64 10.65 10.70 10.74 10.76 10.76 11.03 11.24 11.24 11.25 11.34 11.38 11.38 11.39 11.45 11.47 11.59 11.60 11.78

19.72 13.63 19.70 11.31 10.73 20.80 12.73 18.37 20.66 14.69 19.12 13.56 13.55 21.60 12.22 20.41 10.62 10.16 18.89 8.05 8.07 8.05 21.18 14.88 21 .lO 22.84 19.86 20.38 22.02 9.34 21.86 18.16

0.19 0.51 0.82 0.93 0.94 1.48 1.48 1.57 1.62

coefficients (Tables) Remarks

385

Fig.

Ref.

K Ni

10.50 20.81 20.08 19.37 21.42

10.10 10.51 34.50 (fee) 25.30 46.37 35.15 35.43 33.95 46.96 35.73 35.92

(continued) 20.01 16.10 21.73 12.43 19.08 21.80 13.02 19.94 21.17 21.85 24.37 18.25 18.02 21.83 15.52 23.58 19.44 13.86 24.05 10.17 21.03 12.33 21.82 26.58 23.30 25.70 25.07 24.14 24.91 17.15 28.11 29.11 23.97 9.60 31.51 30.83 29.14 20.54 26.90 3.01 3.84 4.33 4.77 6.21 6.09 4.87 6.03 5.87

4.31 5.97 5.84 4.27 9.04 6.45 4.56 6.84 5.52 6.15 6.64 6.09 3.50 7.04 5.88 7.07 5.69 5.62 5.63 10.90 5.53 5.40 6.95 2.02 7.87 7.52 6.77 7.78 6.32 9.52 7.95 6.39 11.22 13.44 13.20 10.22 7.93 9.74 8.14

-

5.89 4.99 7.42 3.24 2.46 10.05 2.80 5.04 8.51 5.64 8.30 5.54 5.21 5.71 7.65 12.50 2.93 6.14 6.48 2.88 5.88 3.46 5.34 8.00 8.61 9.57 9.81 3.60 11.52 6.08 9.33 3.69 2.42 12.10 -2.86 8.39 6.91 7.43 1.70 -2.79 2.36 4.67 1.92 5.65 4.24 2.60 11.71 6.35

87Nl

6.05 5.52 7.41 4.22 3.72 6.77 4.52 8.12 5.33 6.52 8.44 7.12 3.93 8.54 6.99 8.84 5.77 6.40 7.31 7.25 5.78 5.75 8.80 3.35 11.05 8.43 6.17 8.62 9.90 7.08 8.75 4.63 4.55 5.74 4.55 4.73 7.68 7.59 10.91

-

At maxima of Cr concentration profiles.

87Nl

(continued)

Land&-BBmstein New Series III/26

Dayananda

6.8.1 Ternary interdiffusion

386 Composition at. %

Remarks

T

Al 1.79 2.02 2.22 4.65 4.05 4.38 6.24 7.34 10.65

Ni Cr 13.33 26.36 25.74 14.19 19.52 32.61 11.56 0.87 7.31 -

1.2 1.2 1.3 1.8 1.3 3.4 7.1 11.8

10.9 (fee) 1373 24.3 35.4 11.7 24.9 1473 33.6 27.6 8.8

Al

(continued) 5.65 5.67 6.91 7.82 -

1.2 Cu

Cu

0”:2

s:,

s:,

1.86 2.90 3.18 2.69 5.36

3.30 9.15 6.04 3.65 -

2.82 5.01 3.26 3.84 5.54

~:,I~:*

Fig.

Ref.

In units of IO-r4 rn’s-’ -8.0

-

1 = Cu; 2 = Mn; 3 = Al 0.09

In units of lo-r3 m2s-’ 777

87N2

At ZFP for Al.

0.30

Zn

At maxima of Al concentration profiles.

At ZFP’s for Cr.

~:,I~:,

Mn

87Nl

Determined at compositions corresponding to ZFP’s for Cr.

1.73 1.79 1.13 1.07 0.81 1.42 1.16 0.78

829.5 17.8

Al

[Ref. p. 435

K &I

6.4

coefficients (Tables)

2.91

1.65

-

3.4

1.65

-

Darken-type couple: Al-3.8 wt.% Cu-1.15 wt.% Mn vs. Al-3.7 wt.% Cu; Cu interdiffuses up a Mn cont. gradient; @, taken as zero and the remaining coefficients obtained from a best fit to the cont. profile ofCu.

61K

l=Zn;2=Cu;3=Al 1.23

Darken type couple; Al-l 1.8 wt.%Zn-3.66 wt.%Cu vs. Al-12.6 wt.%Zn; with o”:, assumedzero, the other coefficients calculated from a best tit to the experimental concentration profile of Zn. (0.454+ Darken-type couple: 0.067% Al-l 1.8 wt.%Zn-3.66 wt.%Cu vs. Zn) Al-3.32 wt.%Cu; based on a tit to the experimental concentration profile of Cu.

63K2

(continued)

Dayananda

Landolt-BBmstein New Series 11I,f26

6.8.1 Ternary interdiffusion

Ref. p. 4351

T

Composition at. %

o”:, Al

CU

Zn

o”:,

0”:1

o”,“,

1.4 0.8 2.1 4.4 0.2 0.2 9.0 12.8 -6.003 0.06 0.01 0.3 0.3 0.5 1.3 0.06 1.0 1.0 0.08 1.1 0.05 1.3 0.1 0.1 0.04 2.2 2.0 0.5 0.8 0.1 0.2 0.02 1.0 0.03

0.003 0.01 0.1 0.2 0.1 0.2 0.3 0.4 0.07 0.3 0.3 0.2 0.3 0.5 0.6 0.01 0.8 0.9 0.5 1.0 0.5 0.7 0.4 0.7 0.8 1.7 0.9 0.8 1.3 1.0 2.7 2.1 1.3 -0.03

1.1 1.2 2.3 2.8 1.1 1.2 5.1 5.9 0.8 1.2 1.2 1.5 1.5 2.4 3.3 1.3 2.4 4.4 1.8 5.5 1.8 3.2 1.6 1.9 2.0 5.3 5.1 2.9 3.4 3.6 4.7 4.1 4.5 2.5

Fig.

Ref.

(continued)

0.4 a(fcc) 5.7 1173 1.6 1.9 0.5 6.7 1.3 3.7 13.3 1.4 4.5 14.8 1.0 1.5 2.5 1.7 2.0 1.0 10.1 1.9 19.4 11.3 1.9 20.2 2.1 0.7 0.9 2.2 0.8 0.5 2.3 0.8 0.3 2.5 1.4 4.6 3.3 1.5 3.9 2.2 4.1 7.7 4.9 2.7 9.3 5.4 2.8 1.3 2.2 5.4 5.6 4.4 6.0 11.4 6.3 1.1 1.3 6.5 12.2 4.9 6.6 1.2 0.8 6.7 3.1 6.7 7.0 1.5 2.3 7.5 1.4 1.3 7.7 1.4 0.9 8.1 8.0 4.5 5.1 8.8 8.6 9.7 2.1 3.1 3.4 3.0 11.2 1.3 2.1 11.4 1.3 2.4 11.7 1.4 2.5 12.6 4.5 12.6 3.7 3.5 14.5 1.6 Al

Fe

39.0 41.5 43.0 43.5 47.0 47.0 47.0 47.0 30.0 32.0 42.0 42.0 42.0 44.5 47.5 50.0

19.0 P(bcc) 1277 20.5 48.5 32.0 8.0 26.0 26.5 35.0 61.5 40.0 4.0 18.5 19.0 12.5 21.5 0.5

Land&B8mstein New Series III/26

Remarks

9,-1

K

387

coefficients (Tables)

1.6 1.6 16.4 3.6 1.2 2.7 3.3 4.4 1.3 7.7

1.2 -1.2 -5.9 1.7 0.3 0.7 0.2 -0.2 -28.6 -4.6 21.9 -1.0 -1.2 0.5 -

-0.4 0.4 0.3 0.5 -1.3 0.5 0.7 0.3 -0.5 -10.9

85T

1 = Al; 2 = Ni; 3 = Fe

In units of IO-l5 m’s1l

Ni

I= Zn; 2 = Al; 3 = Cu 11 Solid-solid couples with intersecting diffusion paths; appreciable repulsive interaction between Al and Zn identified by positive cross coefficients; limited studies carried over T- range of 1043.0. 1203K. At Cu-5.3 at.% Al-5.7 at.% Zn, the Q [kJmol- I] values for the coefficients, o”:, , o”:, , o”&, and & are, respectively, 196, 196, 198, and 200, with corresponding Do [10-4m2s-1] values of 1.28, 0.57, 0.42 and 2.07. At Cu-8.2 at.% Al-8.0 at.% Zn, the reported Q [kJmol-‘1 values for the four coefficients are, respectively, 189, 194, 202 and 199, with the corresponding Do [10e4 m2 s-l] values of 1.14, 1.08, 1.58 and 3.74.

0.8 0.6 2.5 1.2 0.5 1.1 0.8 1.6 3.4 1.3 16.2 0.9 0.7 0.6 -

Dayananda

Solid-solid diffusion 12 couples with intersecting diffusion paths; significant interaction among the components, as Al and Ni interdiffuse up each other’s concentration gradient. The crosscoefficients change signs across the p phase field; the main coefficients appear to be functions of the parameter Fe/(Fe + Ni).

76M

(continued)

6.8.1 Ternary interdiffusion

388 Composition at.%

Remarks

T

0”:2

a1

Ni (continued) Fe 17.5 P(bcc) 1273 42.1 86.2 24.5 88.4 26.0 43.2 16.7 9.94 14.5 4.07 15.5 4.45 10.0

-36.7 -22.0 -17.9 -11.6 - 9.2 - 5.54 - 1.24

- 47.6 -105.8 -122.7 - 27.5 - 15.0 - 1.79 - 1.66

71.8 38.8 29.1 14.9 13.3 11.4 3.78

7.0 8.0 8.0 8.6 9.0 9.2 12.2 12.5

57.5 y(fcc) 48.5 50.0 45.7 49.5 43.8 31.8 29.0

2.07 2.33 1.86 2.43 1.78 2.40 2.57 1.93

-1.09 -0.92 -0.88 -0.88 -1.45 - 1.07 -1.02 -1.06

-0.68 -0.99 -0.97 -1.36 -1.12 -1.72 -3.23 -2.10

1.25 1.64 1.59 2.02 1.75 2.09 2.21 2.25

C

Co

R2lR

0.85 1.16 1.85 2.43 2.62 3.08

4.78 (fee) 1323 0.01 4.77 0.01 4.75 0.03 4.69 0.04 4.73 0.05 4.68 0.07

Layered finite couple; quasi-steady state method; C interdiffusion slightly enhanced down a Co gradient.

C

Cr

1 = C; 2 = Cr; 3 = Fe

1.05 1.11 2.24 2.91

1.33 (fee) 1323 -0.08 2.13 -0.09 1.32 -0.18 1.31 -0.21

Fe

Fe

Solid-solid y/p multiphase 12 79c couples with intersetting diffusion paths; significant cross-interactions between Al and Ni; for alloys with >5 at. %Fe variations of the main coefficients expressedby log,,,@, [cm’s-‘1 = - 2.80XNi - 10.32X,, - 5.08 log,,@,[cm2s-‘1 = - 1.25X,, - 10.45X,, - 5.95. o”:, > B:, for most compositions; variations of the coefficients with composition in y not as significant as in 8 phase.

l=C;2=Co;3=Fe

R2lR

@2/R, 2.59 (fee) 1.58 1068 -0.10 2.85 0.91 1.59 2.66 2.02 2.84 2.98

Ref.

B:2

Al 27.0 27.0 27.3 31.5 32.5 33.5 35.5

Fe

Fig.

K a:,

C

[Ref. p. 435

coefticients (Tables)

Mn

13

64B

Layered finite couple; 13 quasi-steady state method for the determination of the ratio of cross to main coefficients; the negative ratios indicate that C interdiffusion is reduced appreciably down a Cr gradient.

64B

l=C;2=Mn;3=Fe

62K

13

Quasi-steady state method with layered finite couple; C diffusion slightly reduced down a Mn gradient.

1.57 1126 -0.08 1.6 1188 -0.03 -0.04 1.59 1.57 -0.08 1.58 1261 -0.05 1.57 -0.08 1.57 -0.10

Dayananda

Land&-Btimstein Ne\r Series 111’26

Ref. p. 4351

6.81 Ternary interdiffusion

coefficients (Tables)

Composition at.% C

Fe

2.22 (fee) 2.68 3.02 1.05 1.25 1.83 1.84 2.10 2.23 2.33 2.55 2.73 2.77 C

Cr

(fee) 9.0 9.0 9.0 9.2

Landolt-Bihstein New Series III/26

R/~:l

Ni 0.94 1083 1.87 1175 1.87 1.89 1323 0.95 1.88 0.94 1.88 0.94 1.88 0.94 1.87 0.94

Fe Si (fee)

2.73 (fee) 1.78 1.39 2.83 1.86 2.54 3.08 I.97

Co

Remarks

1.82 1.85 1.84 1.82 1.84 1.83 1.82 1.83

1323

1126 1188 1261 1331

@,/l?~, ratios determined 13 by quasi-steady state method with layered finite couples; the ratios appear to be independent of temperature over the range 1083... 1323 K; interdiffusion of C enhanced down a Ni gradient.

0.12 0.05 0.05 0.07 0.09 0.08 0.10 0.09 0.10 0.09 0.09 In units of 10-l’ m’s1i 0.34 0.023

0”:2/0”:1 0.24 0.08 0.15 0.26 0.17 0.24 0.28 0.18

Ni 21.4 1573 6.0 11.0 39.5 14.0 59.0 13.0 78.0

Fig.

Ref.

1 = C; 2 = Ni; 3 = Fe

0.10 0.10

4.8

389

13 Layered finite couples; quasi-steady state method; carbon interdiffusion in Fe-C - Si austenites appreciably enhanced down a Si concentration gradient; the ratio of the coefficients independent over the temperature range investigated.

In units of lo-l4 m’s11 -0.01 -0.06 -0.26 -0.25

1 = C; 2 = Si; 3 = Fe Darken type couple: Fe-3.89 wt.%Si-0.478 wt.%C vs. Fe-O.05 wt.% Si-0.441 wt.% C; 13 day anneal; up-hill diffusion of carbon against its own concentration gradient; fii3j calculated from a fit to the experimental profiles by Kirkaldy ignoring the term involving & ; a large interaction between C and Si gradient.

-0.1 -2.6 -4.5 -5.1

64B

49D, 57K

62K

1 = Cr; 2 = Ni; 3 = Co 2.0 5.0 5.0 7.0

Dayananda

Solid-solid diffusion couples with intersecting diffusion paths; Ni interdiffusion is reduced down a Cr gradient, as indicated by a large negative @, .

66L

6.8.1 Ternary interdiffusion

390

T

Zomposition It.%

Remarks

Fe

Ni

4.9 (fee) 72.5 1409 5.3 0.9 56.4 4.8 ,I.1 57.2 4.9 :3.0 18.2 2.4 13.8 55.0 4.8 16.5 3.5 1.8 !0.4 10.3 2.2 !4.9 6.0 1.95 !5.1 34.9 4.5 !5.4 66.1 5.35 !6.0 32.7 4.55 !6.8 32.4 4.8 !8.7 40.4 5.0 10.3 31.3 5.0 54.0 15.7 4.4 16.0 8.5 3.5 39.6 28.5 4.7 39.7 51.0 4.9 10.0 51.o 4.9 51.5 26.0 4.65 55.0 15.8 4.6 57.0 14.0 4.55 52.2 25.6 4.65 56.5 16.3 4.6 7.0 36.7 3.0 34.6 6.3 37.2 51.6 5.0 56.5 25.4 4.7 1.6 a(fcc) 2.2 9.2 10.3 11.4 11.5 15.2 23.7 25.0 25.5 29.2 29.2 30.1 30.3 30.6”) 30.6”) 31.1 33.3 35.5 36.5 38.5 44.8 48.0

[Ref. p. 435 Fig.

Ref.

K a:,

Zo

coefficients (Tables)

72.3 1588 8.5 68.3 6.7 4.8 35.6 31.4 4.0 19.7 3.4 70.2 6.8 15.5 3.8 25.3 4.7 49.0 6.5 66.5 6.7 31.2 6.4 67.3 6.4 41.9 6.6 61.5 6.6 40.7 6.4 40.7 6.8 65.6 6.1 30.2 6.1 35.4 6.5 19.9 5.4 6.25 29.0 27.8 6.4 13.5 5.3

o”:,

@*

a2

In units of lo-l5 m2s-’ 0.3 1.1 1.1 0.8 1.25 0.6 0.95 1.0 2.2 0.9 2.0 3.4 2.0 1.7 1.9 1.45 2.5 1.4 1.5 3.0 2.7 2.75 3.0 3.3 1.5 -

5.9 6.9 6.9 1.05 7.0 0.15 0.45 0.3 2.8 4.7 2.8 2.8 4.2 2.8 0.8 0.3 2.1 2.2 3.9 2.1 0.7 0.65 2.15 1.0 3.0 4.2 1.9

1 = Co; 2 = Ni; 3 = Fe 13.0 10.8 11.5 2.1 11.0 1.0 1.4 1.1 6.1 10.2 6.1 6.15 6.7 6.1 2.75 2.1 4.7 6.6 7.7 4.5 2.8 2.5 4.8 2.65 1.75 -

In units of 10-14mZs-’ 21.0 12.0 0.25 11.5 19.0 1.0 4.1 8.0 0.9 3.0 7.1 0.5 1.5 3.9 15.0 0.9 7.3 1.4 1.3 3.5 2.3 2.1 5.7 2.2 9.3 5.1 1.6 4.8 10.0 2.8 2.9 6.8 4.2 8.8 0.2 2.8 3.4 8.0 1.9 4.2 9.3 2.6 3.9 8.1 2.9 4.0 7.6 0.2 4.0 8.8 2.7 2.7 6.7 2.7 7.3 3.2 3.1 2.1 5.7 2.9 2.6 6.6 2.4 2.1 6.0 4.9 3.6 1.6

Dayananda

Solid-solid diffusion couples with intersecting diffusion paths; the interdiffusion fluxes of Co and Ni are enhanced down each other’s gradient; the large positive crosscoefficients as’s indicate that Co and Ni repel each other in Fe.

67s

Solid-solid couples with 14,15 69V intersecting diffusion paths; up-hill diffusion of Co down a Ni concentration gradient and vice versa. o”:, increases from the Fe corner to the Ni-rich part of the ternary isotherm; @, increases towards the Co-rich corner; @, and i?:, both indicate a maximum on the Fe-Ni side at 75 at.% Ni; data are consistent if DC,> D& w D& for ternary alloys. “) Two measurements withdifferent couples. (continued) Landoh-BBmstein New Series W/26

6.8.1 Ternary interdiffusion

Ref. p. 4351 Composition at. % Co Fe 48.0 48.3 51.5 54.5 60.5 65.7 67.9 68.0 74.0 2.1 3.8 6.6 28.8 40.5 47.0 56.5 56.5 74.2 Co

2.15y(fcc) 3.20 3.35 3.00 3.70 4.2 5.10 6.00 6.00 6.30 6.40 6.70 7.50 8.95 9.00 9.20 9.25 9.35 10.00 10.00 10.00

Land&Biimstein New Series III/26

391 Fig.

Ref.

m*s-’ Ni (continued) 46.5 6.7 46.5 6.6 21.0 6.8 9.8 5.3 27.0 6.9 27.8 6.3 25.7 6.5 4.9 5.3 2.9 5.2 33.1 3.5 55.0 6.5 72.2 7.2 50.1 5.5 38.0 3.6 26.8 6.5 3.7 -

V Fe [wt.%]

Fe

Remarks

s;

48.8 (fee) 1.2 1273 1.77 47.2 . . 4.5 2.98 46.1 6.6 2.69 45.1 6.7 8.0 11.5 42.85 3.56 13.8 42.1 1.08 Cr

coefficients (Tables)

Ni 81.10 1373 6.2 73.70 6.8 36.65 4.9 38.00 5.8 68.70 7.0 65.15 7.3 56.85 8.1 48.50 5.1 24.30 3.7 22.80 3.9 43.60 6.8 39.80 5.5 68.30 4.4 82.10 5.1 24.00 4.7 36.00 3.6 17.45 3.7 28.55 5.1 42.40 5.6 49.00 4.7 55.90 7.5

2.0 2.0 3.6 4.1 4.1 2.5 2.8 4.1 4.2 2.1 4.0 2.8 4.4 4.2

2.6 2.3 1.8 1.0 1.5 1.3 1.1 0.6 0.3 3.1 10.0 7.8 1.9 -

7.4 7.2 4.5 3.6 5.1 5.2 5.0 3.4 2.7 9.8 3.2 7.7 3.0 3.0

0.72 1.6 1.6 7.3 1.8 3.6

0.05 4.3 5.5 5.01 4.3 0.66

-3.3 -0.3 0.5 -1.1 -1.6 -0.3 -0.3 -1.1 -0.1 -2.1 -0.7 0.2 0.1 -0.2 -0.2 0.5 -1.1 -1.8 -0.5 -0.8

Solid-solid diffusion couples with intersecting diffusion paths; the interdiffusion of V is enhanced down a Co gradient and vice versa.

82A

1 = Cr; 2 = Ni; 3 = Fe

In units of IO-l5 m2se1 -0.4 -0.4 -0.1 0.2 -0.3 -0.2 -0.2 -0.4 -0.3 -0.1 -1.9 -1.1 0.5 -0.2 -0.1 0.3 0.3 -0.6

At extrema in Ni or Co profiles.

1 = V; 2 = Co; 3 = Fe

In units of IO-l5 m2sA1 0.77 3.03 3.8 5.0 3.46 3.85

69V

10.3 10.8 3.6 4.1 10.0 9.2 7.6 5.9 2.6 2.9 5.2 4.9 9.3 7.7 1.8 2.7 0.9 2.7 3.5 3.9 7.3

Dayananda

Solid-solid diffusion 16,17 85Dl couples with intersecting diffusion paths as shown in Fig. 16. @, has its highest values around 8. lo-l5 m2s-’ for alloys with about 60 at.% Ni and decreases in value as the composition changes towards either the Ni or Fe corner of the ternary isotherm; the cross coefficients S:, and o”& are mostly negative and an order of magnitude smaller than the main coefticients, o”:, and a;,, which vary more with Ni concentration than with Cr concentration. (continued)

6.8.1 Ternary interdiffusion

392 /Composition at.%

T K

Cr

Ni (continued) 5.2 59.35 4.6 63.80 4.2 67.80 4.3 82.50 4.5 34.15 4.9 50.00 4.0 73.55 4.2 67.35 40.20 5.7 4.3 77.05 5.9 47.00 51.oo 5.3 5.7 32.10 4.6 34.80 7.3 53.50 48.65 8.2 5.0 56.50 4.7 71.55 5.9 38.80 53.80 8.0 4.1 67.00 7.8 50.00 5.9 46.10 42.15 6.0 4.9 58.05 43.85 7.3 5.4 70.40 52.25 6.1 5.5 48.00 6.3 46.10 4.2 66.60 4.9 60.70

Ni [wt. %1”

2.10 (fee) 2.76 3.1 6.7 7.8 8.5 8.8 8.9 10.0 10.5 11.4 11.5 12.1 12.1 12.1 12.4 12.7 13.5

Remarks

$,-, a:,

Cr Fe 10.15 11.10 12.40 12.40 12.65 13.33 14.65 15.80 16.20 16.25 16.80 17.50 18.00 18.80 18.60 19.20 19.60 19.90 20.20 20.40 20.50 21.50 21.60 21.80 22.00 22.55 22.80 22.95 23.80 24.2 24.50 26.80

coefficients (Tables)

4.04 1523 11.3 10.8 3.75 7.1 0.90 9.55 1.98 1.40 8.8 8.1 0.98 8.4 0.79 9.3 1.99 1.65 9.2 2.00 9.6 1.81 9.4 2.02 9.6 8.9 1.00 1.01 8.6 1.92 9.5 1.05 8.7 9.7 2.05 8.8 1.20

a:2

a:,

-1.0 -1.1 -1.1 -3.3 0.9 0.1 -2.0 -1.6 0.2 -3.4 0.7 -0.8 0.6 0.8 -0.7 -1.0 -1.8 -2.0 0.6 -1.0 -2.0 -1.2 -1.6 0.3 -1.5 -0.5 -0.7 -0.8 -0.6 -0.3 -1.1 -2.1

2.3 2.1 0.2 0.5 -0.3 -0.7 0.7 -0.5 -1.1 -0.1 -0.5 -1.0 -1.6 -0.6 -0.1 -1.5 -2.2 -0.5 -1.1 -0.7 -0.4 -0.7 -1.2 -0.8 -2.2 -1.5 -1.7 -0.9 -0.2 0.1 -0.7 -1.4

2.0 1.9 1.3 0.6 1.4 1.5 1.0 1.7 1.1

Fig.

Ref.

a:2 85Dl

9.1 9.7 9.6 9.8 2.8 3.9 8.9 6.9 4.1 9.5 4.6 5.5 3.6 3.2 7.5 6.9 6.4 6.9 3.8 6.6 7.5 6.6 5.6 4.2 6.2 4.8 4.1 4.5 4.3 4.1 4.7 6.1

In units of lo-l4 m2sV1 2.7 2.3 1.9 3.0 2.8 2.4 2.8 6.9 8.0 7.0 7.7 6.4 8.9 8.1 7.3 11.5 6.1 7.9

[Ref. p. 435

18.7 18.4 13.1 11.4 14.5 16.3 12.0 16.7 13.4

Dayananda

1 = Cr; 2 = Si; 3 = Ni Solid-solid diffusion 18 couples with intersecting diffusion paths; o”:, and a:, are similar at high Cr concentrations; the positive cross-coefficients indicate that Cr and Si interdiffusion fluxes are enhanced down each other’s gradient; o”:, increases with Cr concentration.

82J

Landolt-Bcknstein New Series Ill,26

Ref. p. 4351

6.8.1 Ternary interdiffusion

T

Composition at.%

q

K Ql

CU

Mn

coefficients (Tables) Remarks

m2sW1 o”:, El

Mn

Ni

Zn

a(fcc) 1.2 6.9 1123 8.7 1.8 10.3 18.2 2.4 8.1 11.4

cqfcc) 1.3 1.6 1.8 3.1 3.1 3.3 3.9 4.0 4.3 4.5 4.5 4.9 5.4 5.7 6.3 6.8 7.2 7.8 8.1 8.4 8.9 9.9 10.2 10.3 10.3 12.0 12.5 12.9 13.7 14.2 14.5 15.1 15.1

4.1 1073 2.0 5.9 2.5 6.7 2.6 3.1 2.4 10.5 6.3 11.0 6.9 4.0 3.0 12.4 8.8 9.5 5.4 2.3 2.4 13.3 9.1 5.1 3.8 2.8 3.2 1.7 2.6 6.4 5.0 2.0 3.6 7.2 6.3 3.8 4.2 3.9 3.8 8.3 8.9 2.5 3.3 9.4 10.5 2.8 4.6 4.8 5.7 9.7 11.1 5.3 6.8 10.9 16.9 3.3 6.0 5.9 8.3 3.5 6.3 12.1 19.9 6.3 8.2 12.6 19.8

Fig.

1 = Cu; 2 = Ni; 3 = Mn Solid-solid diffusion 19 couples with intersecting diffusion paths; the composition points of intersection where the 0”; were calculated are not available; data shown on the Ni - Mn - Cu isotherm (seeFig. 19).

0.4 -0.4 0.5 0.4 2.6 3.4 0.4 2.3 1.4 0.4 3.0 0.5 0.2 0.3 1.5 0.1 1.9 0.4 0.7 2.1 0.5 3.0 0.3 0.7 3.0 0.9 3.6 0.4 1.2 0.5 6.2 1.7 3.9

80Y

1 = Zn; 2 = Mn; 3 = Cu

In units of IO-l4 m’s1l 0.68 1.1 2.6

Ref.

&

1173

cu

393

-0.02 -0.17 - 0.08

9.0 14.6 12.2

Vapor-solid diffusion couples with intersecting diffusion paths; errors in S;, values can be as much as 100%.

65D

0.3 0.1 0.2 0.4 0.7 1.0 0.4 1.0 1.4 0.9 2.0 0.6 0.7 0.8 1.8 0.6 2.2 1.5 1.5 3.0 1.0 5.2 0.6 1.8 2.9 1.9 2.5 0.8 2.7 1.2 5.5 6.7 6.6

2.5 3.6 3.4 2.7 5.4 5.6 3.4 7.4 5.7 3.1 7.1 4.2 3.6 3.3 5.3 3.7 6.5 4.7 5.0 8.3 4.4 8.2 4.8 6.2 10.1 7.5 12.7 5.9 9.5 6.4 15.2 9.6 15.8

Solid-solid diffusion 20 couples with intersecting diffusion paths; positive cross coefficients indicate that interdiffusion fluxes of Zn and Mn are enhanced down each other’s gradient.

86T

(continued)

Landolt-Biirnstein New Series III/26

Dayananda

6.8.1 Ternary interdiffusion

394 Composition at.%

Remarks

T

Mn Zn (continued) 15.6 3.8 7.0 17.9 7.1 13.8 18.6 4.3 7.9 19.8 7.6 12.5 31.0 4.6 10.8 21.9 8.0 15.0 22.5 4.8 10.4 24.1 8.6 15.3 26.7 5.4 13.7 28.5 5.6 13.9

Cu

Ni Sn [wt. %]

(fee)

4.7 13.7

Zn 24 20 19 14 23

10 18 40 40

15 22 24 26

48 48

23 24

0”:2

a:1

0”:2

0.6 0.9 0.9 1.4 0.9 1.1 1.2 1.0 1.4 1.6

1.5 4.8 3.6 4.8 2.6 3.4 4.2 4.6 10.1 7.9

7.1 12.1 8.3 11.9 9.7 12.9 10.6 13.3 11.8 12.3

Ref.

1048

1.3 0.18

2.9 8.1 5.1 6.6 6.0

2.1 3.3

15.3 1048 27 43 19.5 15.8 35.5 23.0 47.7 26.9 30.1 8.9 9.0 12.4 8.6 16.0 8.9 12.4 4.0 10.8 3.9 10.8 3.9

-

4.96 1.23

5.0 -

In units of 10-l’ m2sW1 -1.8 -0.5 3.0 -0.4 -2.8 0.8 -0.8 1.2 -1.7 -0.5 -6.9 0.6 -0.6 -9.6 5.2 -2.8 -1.9 -1.3 -2.7 -18.8 -14.5 -16.9 -12.8 - 5.3 - 1.4 - 1.2 - 0.9 - 2.0 - 0.3 - 0.3

-

86T

1 =Ni;2=Sn;3=Cu

In units of lo-l4 m2sT1

8.0 1063 5.0

Cu Ni a(fcc) 37 42 43 46 47

a(fcc) 3.7 3.9 4.9 15.9 18.1 19.0 21.8 30.1 31.9 32.1 34.1

Fig.

K R

cu

[Ref. p. 435

coefficients (Tables)

-3.8 -1.9

3.1 2.1 4.4 2.3 -

- 2.6 -13 -11.4 -19.4 -10.2 - 6.7 - 8.8 - 7.7 - 5.9 - 5.8 - 4.8

8.9 13 9.5 11.1 7.4 0.6 3.5 2.3 2.4 0.7 0.6

Darken-type couples with an initial 6 wt.% step in Sn or Ni at x = 0; Kirkaldy analysis with o”f2 = 0; strong interaction between Sn and Ni indicated by up-hill diffusion of Sn against a Ni cont. gradient. The data are considered approximate. l=Zn;2=Ni;3=Cu 21 Solid-solid diffusion couples at composition points of intersecting diffusion paths. The cross coefficients are essentially negative.

72B

77s

At maxima and minima in Zn concentration profiles. At maxima and minima in Ni concentration profiles. Solid-solid diffusion 21 couples; intersecting diffusion paths; the negative a:, becomes negligibly small for Ni-rich alloys with low Zn; &,/@, ranges over 0 to O-0.5, while @,/fi:, varies over -l.Oto -8.0.

82K

(continued)

Dayananda

Land&-BBmstein New Series III!26

6.8.1 Ternary interdiffusion

Ref. p. 4351

-3

Dll Cu

Ni 38.7 44.8 51.3 61.6 63.6 70.0 80.6 81.8

Zn (continued) 2.3 5.0 21.3 9.5 4.8 21.2 2.4 13.7 12.0 2.3 1.5 6.0 1.3 9.8 1.5 12.0

18.1 31.0 64.4 14.8

28.8 2.7

n(fcc) 1.3 5.1 1048 19.0 23.1 1.3 11.1 4.4 6.4 19.9 5.2 6.7 17.0 9.5 9.6 8.2 6.8 9.9 6.2 5.7 10.0 4.8 10.1 3.6 5.2 10.3 1.8 4.3 6.2 10.5 3.6 5.0 10.8 1.9 11.4 24.2 42.0 12.5 12.5 9.7 14.4 4.6 4.9 5.0 15.3 4.8 17.2 2.8 3.7 17.5 5.6 8.4 18.0 2.9 6.4 3.0 19.0 3.1 24.5 4.1 0.9 a(fcc) 12.9 35.6 56.0 78.1

26.0 1048 17.0 15.0 10.5

@2

&l

-0.1 -0.9 -2.0 -0.1 -

-

-1.2 -5.2 -2.7 -1.8 -0.8 -1.3 -1.0 -0.2 -0.3 -0.5 -0.4 -4.6 -4.5 -0.6 -0.7 -0.4 -2.4 -0.9 -0.3 -

Fig.

Remarks

0”; rn’s-l

T K

Composition st. %

395

coefficients (Tables) Ref.

o”L

5.1 6.4 6.9 2.5 1.1 1.4 1.1 1.1

-10.2 - 1.9 - 1.2 - 1.7 - 0.9 - 1.1 - 1.1 - 1.1 - 1.2 - 1.2 - 1.3 - 3.2 - 0.9 - 0.7 - 2.6 - 0.7 - 0.3 - 0.8 - 0.3

0.3 4.6 2.3 0.7 1.8 0.4 0.4 0.5

The large negative ratio 21 of o”~,/& reflects the fact that along lines of constant Ni concentration, the thermodynamic activity of Ni is decreasedby increase in Zn but increased by increase in Cu concentration.

-

At maxima in Ni concentration profiles.

1.0 1.9 1.7 1.9 1.4 1.8 1.0 0.9 0.7 1.0 0.7 2.8 1.5 0.9 1.5 0.9 1.0 0.4 0.4 0.2

21 Solid-solid diffusion couples with intersecting diffusion paths; diffusion temperatures ranged over 1023... 1133 K; the variation of the coefficients [m’ s- ‘1 at 9.9 Ni-4.9 Zn [at.%] are expressedby:

o”X% -2.4 -4.2 -4.8 -3.7

82K

83T

194RT kJmol-’

o”:, = 1.75 * lo-’ exp -

190RT kJmol-’

L?:, = 2.96. 10e6 exp [ -

191RT kJmol-’

o”,“, = 3.48. 10e6 exp [ o”:, = 2.3. lo-’ exp

208RT kJmol-’

Ratios of cross/main interdiffusion coefficients determined at zero-flux planes (ZFP) for Ni, developed in Ni-isoactivity couples.

1 1 1 1

84K

0”:,/0”:3

16.1 12.9 23.7 22.9 31.0 20.8

0.8 0.9 1.2 1.0 1.0 1.0

Determined at ZFP’s for Cu observed in Cu-isoactivity couples.

10.5 21.5 33.9 32.7

1.2 1.2

Determined at ZFP’s for Zn.

6.6 16.5 23.8 25.2 30.0 53.4

(continued)

Land&-Biirnstein New Series III/26

Dayananda

396

6.8.1 Ternary interdiffusion

Composition at.%

Remarks

T

Ni

Zn

o”:,

(continued)

o”:,

1.0 5.3 1133 101.6 2.0 6.0 123.8 2.9 6.4 110.3 5.9 16.7 294.1 9.0 8.8 74.2 9.8 6.2 45.7 9.9 5.3 40.9 10.0 3.9 35.9 10.1 4.0 41.3 10.4 2.3 30.3 10.7 2.3 34.6 14.4 11.1 51.7 15.6 5.2 27.6 16.5 5.5 36.8 17.6 5.9 26.0 18.2 4.8 23.9 18.3 3.2 18.4 24.1 18.6 3.3 20.2 3.4 17.7 24.5 3.9 15.3 1.7 11.8 2.3 6.4 3.1 5.2 4.5 6.5 5.6 16.7 7.7 12.1 11.0 5.3 16.2 17.8 25.1 9.8 11.3 22.5 30.5 5.5

u(fcc)

Fig.

Ref.

o”:,

m% -4.0

Determined at ZFP’s for Ni.

-2.6 u(fcc)

[Ref. p. 435

K Gl

Cu

coefficients (Tables)

0.25 8.10 1173 0.60 7.68 4.32 7.51 7.82 7.49 9.12 7.44 9.92 7.38 0.50 9.15 4.25 10.22 9.52 11.51 10.72 11.78 22.00 14.29 22.33 14.33 16.40 15.48

349.2 9.3

19.5 21.4 14.5 15.2 10.8 14.1 20.3 51.2 28.7 17.2 9.7 12.1 34.6

-12.0 -22.4 -20.2 -65.8 - 8.8 - 5.6 - 6.1 - 3.2 - 4.4 - 1.6 - 2.1 - 2.0 - 2.6 - 5.9 - 2.6 - 2.2 - 1.1 - 1.7 - 1.1 - 1.2 -63.7 -22.8 -12.0 -17.2 -65.5 - 20.4 - 5.4 -43.0 - 3.2 -

1.4 0.7 2.4 -13.8 -10.0 - 7.6 - 6.8 - 6.2 - 1.6 - 3.8 - 1.1 - 4.2 0.7 - 0.1 - 3.8 - 1.2 - 1.0 2.0 - 4.1 - 3.0 -21.4 - 2.0

In units of lo-l4 m’s-’ - 8.0 0.7 - 6.3 -0.5 1.4 - 3.2 -1.0 - 1.9 -0.9 - 1.4 -1.0 - 1.2 - 7.2 1.9 -12.3 -6.7 -3.1 - 6.1 -1.8 - 3.4 -8.5 - 1.4 - 1.8 -4.7 - 5.1 -9.3

7.1 7.1 8.0 16.6 7.8 4.6 5.0 5.5 4.5 3.2 2.9 5.1 3.7 4.1 5.5 3.6 1.6 1.2 1.7 1.3

Solid-solid diffusion couples with intersecting diffusion paths.

10.6 7.8 6.5 8.7 16.6 7.4 4.7 14.0 2.4

At maxima and minima in concentration profiles of Zn.

-

2.2 2.1 1.7 1.2 1.1 1.0 3.8 2.4 1.8 2.3 1.7 3.3

84K 22

84T

At maxima in concentration profiles of Ni. 4.7 Solid-solid diffusion couples with intersecting diffusion paths.

73w

(continued)

Dayananda

Land&BCmstein New Series 111’26

Ref. p. 4351 Composition at. %

T

0”;

K

m2s-l 0”:1

Cu

Cu

Ni 18.20 25.00 9.11 9.92 21.80 9.00 9.95 35.32 10.25 11.42

Zn (continued) 15.40‘ 19.0 12.52 10.1 7.75 11.7 7.94 14.1 12.10 11.5 9.10 13.1 9.33 15.4 16.68 7.3 12.45 27.2 12.82 20.6

Sn

Zn

(fee) 1.7 2.8 3.7 4.2

o”:, -

3.4 1.2 0.8 1.1 1.5 2.0 2.6 1.4 3.7 2.1

Remarks 0”:1

o”,“,

-8.6 -2.6 -0.8 -1.0 -4.7 -1.9 -2.6 -2.8 -2.4 -1.8

3.0 1.2 1.3 1.3 1.7 2.6 2.4 1.4 1.9 1.3

In units of lo-r4 m2 s 1

15.0 1023 3.8 10.5 3.1 8.4 3.4 3.6 2.7

4.1 4.5 4.6

9.4 1.7 3.4

2.1 2.6 3.1 3.2 3.5

11.2 11.9 14.3 8.7 9.5

4

5

1094 2.6

6

5

771 2.4

Fe Ni a(bcc) 0.0 0.0 0.0 0.69

coefficients (Tables)

6.8.1 Ternary interdiffusion

5.4 2.3 2.6

397 Fig.

Ref.

73w

1 = Zn; 2 = Sn; 3 = Cu

2.1 0.76 0.35 0.19

0.03 0.3 1.1 0.9

0.68 1.4 3.5 2.1

Vapor-solid couples with 23 intersecting diffusion paths; Cu- Sn and Cu - Sn - Zn alloys with a nominal Cu/Sn ratio of 97/3 employed as diffusion disks and vapor sources; up-hill diffusion of Sn.

-

3.5 1.3 2.3

-

At maxima in Sn profiles.

0”:2/0”:1

9.0 9.7 5.0 4.8 4.6

Determined at ZFP compositions

In units of lo-l3 m2s-l 24 5 0.78 0.97 1.5+ Darken-type couples; O.l6C& cross coefficients assumed constant; &, In units of lo-l6 m2s-l essentially independent of C,,; B,“, strongly IO.9 4.3 0.77+ 0.24 C& dependent on C,,; Sn flows down a Zn gradient ; multilayered finite couples also employed to increase the sensitivity for the cross coefficients and data shown as plots.

P In units of IO-l4 m2sv1 1.95 1173 4.20 2.0 5.0 2.2 6.10 2.34 4.79 1.26

68Dl

65K

1 = P; 2 = Ni; 3 = Fe 73H

(continued) Land&-Biimstein New Series III/26

Dayananda

6.8.1 Ternary interdiffusion

398 Composition at.%

Remarks

T K a:,

Fe

Ni

x(bcc) 0.0 0.0 0.0 0.41

x&c) 0.0 0.0 0.0 0.10 0.10 0.28 0.30 0.30 0.36 0.37 0.44 0.47 0.58 0.60 0.70 0.71 0.74 0.79 0.80 0.81 0.90 0.91 0.91 0.91 1.13 1.41 1.58

o”:,

a:,

[Ref. p. 435

coefficients (Tables) Fig.

Ref.

a:*

P (continued) 1.95 1273 2.0 2.2 2.30

2.15 2.55 2.80 3.27

In units of IO-l3 m2sW1 -0.15 0.775

1.95 1373 8.0 2.0 9.6 2.2 11.5 1.86 3.70 2.39 12.8 1.86 3.70 2.36 13.1 2.93 14.6 2.32 13.1 2.95 14.9 2.73 13.9 3.70 1.86 2.88 15.8 2.57 13.0 2.50 12.3 3.70 3.03 17.5 1.86 2.65 13.6 2.84 14.3 3.03 15.0 2.76 15.0 3.12 17.0 3.01 16.3

In units of IO-l3 rn’s-l 2.50 5.70 -0.61 3.98 3.10 6.90 -0.40 4.18 -0.62 4.76 -0.44 4.30 5.20 -0.67 4.55 7.20 3.30 5.45 4.80 4.53 8.00 5.85 -0.76 3.50 -0.42 -0.47 5.55 6.50 6.30

y(fcc) 11.8 0.44 1173 6.0 0.48

2.65 4.65

In units of IO-l5 m*s-l 0.018 0.047 0.011

y(fcc) 12.4 0.43 1273 5.64 0.49

2.21 1.45

In units of IO-l4 m*s-’ 0.014 0.026 -0.002 0.015

y(fcc) 4.7 4.7 6.7 7.8 7.8 8.0 8.4 9.0

5.9 7.5 7.10 7.4 7.5 -

In units of IO-l4 m*s-’ 0.012 0.082 0.031 0.308 0.051

0.51 1373 0.68 0.44 0.29 0.47 0.0 1.70 0.0

Dayananda

73H

Solid-solid diffusion 25 couples with intersecting diffusion paths and Darken-type couples; experimental error too large to evaluate the cross coefficients o”:, ; the addition of P increases the main coefficients; temperature dependence expressedby: for ct (2.3 at.% P, 0.05 at.% Ni) &,[mzs-‘] = 2.72.10e4 -218.6kJmo!-’ *exp RT ( > @,[m*s-‘1 = 0.62.10T4 -215.6 kJmol-’ *exp RT >

73H

Solid-solid couples; 25 73H intersecting diffusion paths; o”:2 measured by Darken-type couples, o”:, not measured due to large errors; P additions increase the main coefficients; temperature dependence of coefficients given by: . (continued) Landok-B6mstein New Series III/26

Ref. p. 4351

6.81 Ternary interdiffusion

,Composition at. %

T K

0”; rn’s-’ 0”:1

Fe

Ni 9.0 9.5 9.60 10.0 10.7 10.7 11.0 11.5 12.0 12.0 12.2 12.2 12.2 12.2 12.2 13.0 13.6 14.25 14.25 14.25

coefficients (Tables)

P (continued) 1.03 10.0 1.05 10.1 1.70 0.96 10.2 1.70 0.0 0.90 9.87 0.0 0.91 9.74 0.43 9.4 0.51 9.5 0.62 9.6 0.36 9.3 1.70 1.70 0.47 9.1 0.38 6.15 0.89 8.82 1.26 9.18 3.28

Remarks

@2

0”:1

a;2

0.020 0.10 0.02 -

-

0.225 0.261 0.404 0.057 0.225 0.448 0.061 0.216 0.063 0.202 0.482 0.487 0.140 -

399 Fig.

Ref.

For y (0.45 at.% P, 73H 12.5 at.% Ni): D:, [m2s-‘1 = 0.51 . 10e4 - 230.3kJmol-’ +exp RT ( > Dz,[m2s-1] = 1.13. 10T4 - 287.2kJmol-’ . exp RT ( > For y (0.45 at.% P, 6 at.% Ni): &[m2s-‘1 = 0.53. 10m4 - 284.7kJmol-’ . exp RT >

In units of lo-l3 mzsW1 0.002 0.075

y(fcc) 11.l

0.45 1473

Ti

V

Zr

17.5 21.0 37.0 37.0 37.0 37.0 39.0 41.0 44.0 48.5 49.5 54.0 54.0 54.0 55.0 55.0 55.0 55.5 56.0 56.5 57.5 57.5 57.5 58.0 58.0 58.0

5.0 (bee) 1073 12.4 2.6 5.0 11.7 1.8 3.0 7.3 0.3 4.0 8.1 0.6 5.5 9.0 1.6 7.5 9.2 2.0 5.5 8.7 1.5 57.0 0.03 -0.16 55.0 0.03 0.03 50.5 0.04 0.17 49.5 0.04 0.02 9.0 5.7 1.0 2.5 9.5 5.5 16.0 6.8 3.3 37.5 0.16 0.18 42.0a) 0.10 0.07 42.0a) 0.07 0.07 6.0 5.3 0.9 4.5 5.2 0.4 2.1 27.0 1.9 6.21 0.25 36.5 39.08) 0.13 0.2 39.0y 0.13 0.18 17.0 3.6 2.1 33.5 0.54 0.7 0.12 - 0.004 40.5

1 = V; 2 = Zr; 3 = Ti

In units of IO-i4 m2 s-i -0.8 -0.6 -0.2 -0.2 -0.1 -0.01 -0.2 0.005 0.004 0.004 0.007 -0.6 -0.4 -0.2 0.1 0.05 0.03 -0.7 -1.1 0.6 0.2 0.01 0.02 1.0 0.33 0.02

2.8 2.8 3.9 3.9 2.8 2.1 2.2 0.09 0.12 0.15 0.24 2.4 2.0 1.0 0.23 0.44 0.43 2.8 3.5 1.0 0.47 0.23 0.25 1.4 0.63 0.36

Solid-solid diffusion 26 couples with intersecting diffusion paths; o”:, increases with Zr content at a constant V level; the cross-coefficients are quite sensitive to V and Zr levels for Ti-rich alloys; at about 30 at.% V and 15 at.% Zr the crosscoefficients become comparable to the main coefficients. “) Two runs.

74B

(continued)

Landolt-BBmstein New Series III/26

Dayananda

6.8.1 Ternary Composition at.%

coefficients

Ti

V

59.5 60.0 60.0 60.5 63.0

65.0 66.0 66.0 66.5 67.0 67.5 67.5 67.5 67.5 68.0 69.5 70.0 71.5 73.0 74.0 74.5 77.0 77.5 78.0 78.5 80.5 81.0 82.0 82.0 84.5 85.0 86.0

27.5 35.0 38.5 22.0 17.5 13.5 14.0 27.5 32.0 24.5 8.0 20.0 6.5 16.5 6.5 6.5 8.5 13.0 29.5 18.0 12.0 19.0 19.0 13.0 19.0 19.0 15.0 14.0 14.0 9.0 14.5 9.0 9.0 9.0 8.5 8.5

Zr

54.0 58.2 63.3 63.6 63.9 66.7 67.2 70.35 76.4

38.0 28.2 21.1 6.1 18.1 (bee) 13.3 13.0 28.64 19.4

(Tables)

Remarks

T K a:,

64.0 64.0 64.0 64.0

interdiffusion

(continued) 1.2 0.17 0.14 1.9 2.0 3.8 3.8 0.82 0.2 1.1 2.7 2.0 2.5 2.0 2.7 2.2 2.5 3.4 0.4 1.7 3.1 1.4

1.1 1.8 0.7 0.7 1.4 1.7 1.5 2.2 0.94 2.3 1.5 1.7 2.2 2.0

-

a:2 1.7 0.14 -0.007 1.8 1.5 2.1 1.9 0.6 -0.07 0.8 0.3 0.7 0.3 0.8 0.6 0.01 0.3 2.4 -0.55 0.54 2.2 0.18 0.18 0.32 0.1 -0.01 0.8 0.26 0.16 0.08 -0.47

o”:, 0.6 0.12 0.02 1.2 0.7 0.9 1.3 0.4 0.08 0.54 2.0 0.6 1.5 0.9 1.4 1.8 2.0 1.5 0.03 0.6 1.4 0.54 0.50 0.7 0.3 0.33 0.7 0.65 0.68 0.4 0.5

[Ref. p. 435 Fig.

Ref.

&

1.0

0.1

1.0

0.02 -0.55 -0.53 -0.54

1.3 0.5 0.7 0.4

0.56 0.46 1.5 1.8 2.5 2.5 1.2 0.7 1.4 4.4 1.7 3.5 2.1 3.3 3.8 3.5 3.3 0.9 2.0 3.6 2.0 1.9 3.2 1.9 2.0 2.3 2.7 2.7 4.1 2.7 4.4 4.4 4.2 4.2 4.6

0.09 1.2 1.8 0.7 1.5 2.0 2.2 -0.83 -0.08

-

0.11 0.9 1.6 3.1 1.8 2.9 3.1 1.3 1.8

Dayananda

74B

At extrema in V concentration profiles.

6.8.2 Ternary intrinsic diffusion coefficients (Tables)

Ref. p. 4351

401

6.8.2 Ternary intrinsic diffusion coefficients Composition at.%

T

0;

K

m2s-i 0231 @2

D:l Cd Zn 42 ;“fcc) 5.0 24.6 17.5 873 5.7 8.4 9.2 9.4 13.0 13.5 18.4 21.6

11.0 24.4 11.1 18.0 18.1 11.2 11.1 11.2

D:,

Remarks D:l

7.1 1.9

0.46 5.7 0.69 1.0 2.8 0.76 1.3 2.7

0.48 12.7 0.68 1.9 3.0 0.76 1.4 2.8

1 =Zn; 2=Cd; 3=Ag

0.39 2.4 0.18 1.0

-1.1 -0.55

--3.8 1.2 Pairs diffusion of vapor-solid couples

0.02 2.2 0.09 0.25 2.0 0.35 1.1 2.7

-0.22 -2.3 -0.14 -0.72 -1.3 -0.23 -0.60 -1.8

-0.43 -4.1 -0.43 -1.1 -2.2 -0.28 -1.0 -2.5

0.59 6.5 0.72 1.5 3.7 0.94 2.9 7.2

Ref.

&

In units of lo-l3 m2 s-l 0.90 1.7

Fig.

27,28 72C

exposed to the same alloy vapor source. The marker planes of complementary couples agreed within + 0.25 at.% Zn or Cd and the average composition reported; parabolic motion of markers observed with time; Di's increase in magnitude with Cd concentration at constant Zn levels and with Zn concentration at constant Cd levels. Zn diffused up its own concentration gradients in several couples; Cd increasesthe chemical acitivity of Zn in Ag.

In units of IO-i0 m2 s-l ;bcc) 1::; :;:: 21.7 23.6

1.2 3.1 1.3 1.4 0.46 0.85

Co

Cr

Ni

(fee)

9.0 9.0 9.0 9.2 17.2 24.9

21.0 1573 7.0 39.5 12.0 59.0 15.0 78.5 15.0 58.3 21.0 58.4 44.0

Land&-Biirnstein New Series III/26

0.21 2.0 0.08 1.1 0.11 0.99

-0.47 --1.7 -0.19 1.8 Intrinsic coefficients diffusion in j3 are -0.15 -0.66 2...3 orders of magnitude larger than those in c1 alloys. l=Cr;

In units of lo-r4 m2se1 0.24 0.37 0.4 0.02 1.1 1.3

2.0 3.0 3.0 6.0 6.0 7.0 14.0 10.0 6.0 13.0 21.0 15.0

- 0.01 - 0.22 - 3.2 - 4.4 - 5.1 -24.0

Dayananda

-0.9 -2.0 -3.9 -6.8 -7.0 -8.0

2=Ni; 3=Co

Solid-solid couple 29 pairs with similar marker compositions; marker motion normally towards the Cr and/or Ni-rich side of couples.

66L

zomposition It.%

Remarks

T K D:,

Cu

[Ref. p. 435

6.8.3 Atomic mobilities and vacancy wind parameters (Tables)

402

Mn

13.5 1123 10.1 19.2 14.2

cu

Zn

[fee) 1.7 2.1

D:t

D:2

D:t

1.5 1.5

0.04 3.5 0.2 4.8

-1.0 -0.6

l=Zn; -0.3 -1.5

9.7 4.3

3.1 D& > D;l;, at all T with D&/D& g 2.5 and D&/D& z 1.8. 3.28 2.77 2.5 1233 ... 1673 0.58

32

80R2

15 22 15+1.4Si Cu

Ni

1.8 1.1 4.8

45 45 20

293 291 310

0.96 0.92 0.62 .1(-j-14

Zu

99.999 90.25 80.08 70.94 90.08 82.72 72.04 65.06 80.28 69.68 63.95 55.17 71.73 60.97 47.12 40.30

9.92 12.55. 11.21 10.82 19.72 19.42 20.80 20.59 28.27 29.49 33.08 30.70

9.75 19.92 29.06 4.73 16.75 24.12 10.90 15.25 24.24 9.54 19.80 29.00

Cd7 -

0.30 0.55 0.63 0.16 0.27 0.36 0.33 0.21 0.15 0.18 0.00 0.11 0.34 0.55 0.58 0.72

202.2 200.1 192.2 169.6 209.3 206.0 195.9 184.2 205.2 200.6 190.1 183.8 218.6 218.6 212.7 210.6

1013...I318 1059...1283 1018~~~1210 993*.*1177 1177...I323 1058.e.1276 1013...1276 1056...1216 1105...1361 1073.e.1323 1025...1276 1021...1222 1181... 1386 1177...1323 1139...1338 1080..- 1239

99.999 90.25 80.08 70.94 90.08 82.72 72.04 65.06 80.28 69.68 63.95 55.17 71.73 60.97 47.12 40.30

9.92 12.55 11.21 10.82 19.72 19.42 20.80 20.59 28.27 29.49 33.08 30.70

9.75 19.92 29.06 4.73 16.75 24.12 10.90 15.25 24.24 9.54 19.80 29.00

Ni6’j

i.94 1.06 0.22 0.12 0.31 0.13 0.16 0.08 0.06 0.12 0.09 0.1 0.29 0.42 0.33 0.31

232.8 219.0 195.1 180.9 218.6 207.7 200.1 189.2 206.0 208.1 201.8 196.4 226.9 227.8 221.1 216.0

1128 ... 1328 1064... 1268 1050~~~1219 1012~~~1168 1202... 1379 1052...I300 1057...1272 1067.s.1232 1128..-I370 1110~~~1314 1110~~~1286 1064... 1256 1174...1407 1177..*1347 1143..:I323 1158++.1268

3.55 (1185) Tracer electroplated on large grained (1 ... 3 7.20 (1177) mm), polycrystalline homogeneous alloys; 17.9 (1177) lathe sectioning and activity analysis; empiri49.3 (1177) cal relation for D& [cm' s- '1 at 1173 K: 2.02(1177) log IOD& = - 3.53X;,116 +3.6X;;p2 -9.46; 2.50(1177) variation of Q& with composition: 7.03 (1177) Q&=2014.7 (1+2.37x4,;=) $1 -O.O7X;;2g) 14.0 (1177) -1809.9 kJmol-l. 1.14(1177) 2.10 (1177) 3.54(1177) 8.56(1185) 0.74 (1181) 1.03 (1177) 1.84 (1175) 3.22 (1177)

33(a), 34

72A

33(b), 35

72A

.10-‘4

0.82 1.86 4.6 9.88 1.02 0.79 2.02 3.21 0.53 0.76 0.89 1.89 0.29 0.34 0.43 0.78

(I 176) Tracer electroplated on polycrystalline homoge(1173) neous alloys; lathe sectioning and activity (1179) analysis; empirical relation for D& [cm2 s - '1 (1168) at 1173 K: log,,D&= -4.05$i3 +3.28Xi;07 (1202) -9.96. (1174) (1174) (1176) (1177) (1179) (1169) (1174) (1174). (1177) (1169) (1174)

(continued)

Composition at.%

Tracer Do* .10-4~2~-1

Cu

Ni

99.999 89.9 79.5 69.8 90.7 80.4 70.2 60.1 81.8 70.8 60.6 50.3 71.4 61.2 50.8 40.7

9.3 9.3 9.3 9.1 18.2 18.8 18.6 18.7 28.6 28.2 28.2 27.9

Zn

Q’ kJmol-’

Temperature D* (T [K]) range m2s-r K (measured)

(continued) Zn6’

10.1 20.5 30.2 10.3 20.5 30.8 10.4 20.8 31.0 10.6 21.0 31.4

0.24 0.64 0.35 0.32 0.36 0.49 1.41 0.39 0.89 0.36 1.09 0.73 1.37 1.44 1.17 1.13

188.8 190.9 176.7 164.5 200.1 195.9 196.4 173.3 214.8 199.7 201.4 187.2 226.5 220.2 208.9 198.5

1073 **. 1313 1021 -.- 1252 1021 .a. 1213 973...1175 1068.e. 1313 1023... 1278 1023 a.. 1249 973 .** 1174 1068... 1278 1073*** 1313 1073... 1284 1021 ... 1213 1143*** 1353 1128...1314 1073... 1278 1033...1249

Remarks

Fig.

. I()- 14 3.86 (1119) Tracer electroplated on polycrystalline homogeneous alloys; lathe sectioning and activity 23.3 (1174) analysis; empirical relation for 49.3 (1173) D&[cm2s-‘1 at 1173 K: 158.0 (1175) log,&” = -3.20X,, +5.21 Xi:‘-9.0; 3.85 (1270) variation of Q& with composition: 9.55 (1270) QL=122.3X~i03-2211.0X~b8 +190.5 kJmol-‘. 10.5 (1121) With few exceptions Q$, > Q& > Qz”. 61.6 (1174) 2.51 (1173) 5.34 (1173) 12.8 (1175) 33.5 (1174) 1.24 (1173) 2.30(1173) 9.72 (1207) 15.1 (1172)

33(c), 36

Ref.

72A, 66D

409

6 Diffusion in ternary alloys (Figures)

Ref. p. 4351 0.87

Al-Ag-Zn ,

Figures for 6

"AI D

.,o-z7

AgAg

6

fiA’Al Agln

/

-0.6

a-0.81

Al

12

3

4

5

6

8a-*9

7

Al b

a

12

3

4

5

6

7

5

6

7

8-W

9

“Al

0 ZnAg

Al

12

3

4

5

C

/

,

6

7

/

do-*'J 4.2

I

8 -10-29

Al

A Fig. 4. Al- Ag-Zn. Ternary interdiffusion coeffkients (0” in IO-r3 m’s-‘) and iso-interdiffusion coefficient lines at 785K; (a) o”&,, (h) a&,, (c) &A,,, and (d) I?&,. Binary B values are also included on the Al - Ag and Al - Zn sides in (a) and (d) [84Ml].

AL-Ag-Zn

.,oe27 1

12

3

4

d

xz,-

X1,-

Fig. 5. Al - Ag -Zn. Ternary interdiffusion coefficients (D in 10-l” m’s-‘) and iso-interdiffusion coeffkient lines at 832 K; (a) at:,,, (h) &, (c) @A,,, and (d) &, . Binary d data also included on the Al - Ag and Al - Zn sidesin (a) and (d) [84M2]. ‘I

o"Al AgAg

*.O

3

Al-

a

1

2

3

4

5

6

fJ.10-* 9

7

Al

12

l

-1.1

l

3

4

- 1.5

l -0.87

-1.5

5

6

7

b

xzno"Al ZnAg

.4 /

Al

c

12

Land&-Bhnstein New Series III/26

3

4

5

xz,-

6

7

1

8.10.* 9

AL

d Dayananda

12

3

4

5

xz,-

6

7

8 .lO-* 9

Ag-Au-Cu

“AU

0CUCU

20

Fig. 6. Ag- Au-Cu. Ternary interdiffusion coefficients (d in lo- I6 ma s- ‘) and iso-interdiffusion coefficient lines at 998 K; (a) @&, and (d) (b) @&p (c) &&/&?&, The open circles in (c) &JD&. correspond to the estimated ratio of a Cu the coefficients on the basis that fi”, varies little with Ag content; and the dashed contours in (d) represent the ratio of the thermodynamic derivatives,

c cu

20

b Cu

4 All

4

d cu

4

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

a

b

Fig. 7. Ag - Cd - Zn. Diffusion paths for vapor-solid couples at 873 K; fip coefficients were determined at several intersec. tion points such as those made by the paths in (a) with those in (b) [72CJ. For Fig. 8 seenext page

12

I 9

9

IL LY

L l.Y 6

6

3

3

0

0 IE

.15 wt%

Wi%

12

12

I

9

6

CA1 -

lAl

-

Fig. 9. Co- Al-Cr. Approximate contour maps for interdiffusion coefficients (0” in lo-l5 m* s-r) for Co-rich Co-Al-Cr dloys at 1373K; (a) B&,, (b) @c,, (c) fi&,,. and (d) @& [80Rl]. I

Landolt-Bornstem New Series III/26

Dayananda

412

I

6 Diffusion in ternary alloys (Figures)

I

4

ii’Ag ’ II

II

II

I

II

I

09 -:= Ia * 0

76

78

80

82

81

[Ref. p. 435

86 a-2 88

4 Fig.8. Ag-Zn-Cd. Interdiffusion Ag-Zn-Cd alloys with a C&cT=873 K.

ratio of 3.8 I726

X-Ag

ZSI-

Al-Cr-Ni

$jp7 -\45.0*10-*

a

22.5

0

b

-204\ .*

22.5

c-x

45.0 *lo-2

22.5 cr ?g. 10. AI-Cr-Ni. Variation of ternary interdiffusion coeflicients with composition for Ni-base Al-Cr-Ni 1473K; (a) El ,,,, (b) @‘,$,, (c) &,, and (d) 6&, [87Nl]. d

Dayananda

-x

0

Cr

0 alloys at

Land&-BBmstein New Series III,l26

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

Al-Cu-Zn

1.3 .I.4 \\ %.2 $4

. 1.0 09

CU

p

25 -10-Z /

5

2.4 .2is\,

\2.l

\

2.0

10

a

.3.5

l *

'.

/

-CU 0 ZnAl

2nln

, -3.2

15 10-2

XAI-

5

cu b

10

15 w2

xAl-

-cu 0Al ln

- cu 'ALAI

1.0

E /i;

/

I

$0.07 0.3I-0.3

cu n

Fig. 11. Al-Cu-Zn. Cu-rich Al-Cu-Zn

Land&BBmstein New Series III/26

. 0.3

0.8 *I

I

$01 1 l O.4 .p5 zo.7 /

0.5 0.6

5

!;.2.7

-1.3

.2.'

.-0.03 /

,

10 “-

“Al -

J.3

15 *lo-* _

d

xAl-

Ternary interdiffusion coefficients and iso-interdiffusion coefficient lines (8 in lo- ‘s mz s-l) for alloys at 1173 K; (a) &‘,, (b) &, (c) 6&, and (d) fi$, [85T].

Dayananda

6 Diffusion in ternary alloys (Figures)

414

[Ref. p. 435

Ni

10

20

30

40

50

60

70

80 40-290

Fe

Ni b

10

20

30

40

50 XF.-

60

70

80 -10-290

Fe

/

Ni







20

30

40

C

/





10



50 k---L





\,

60

70

80 alO” 90

Fe



Fe 50 60 70 80 10-290 20 30 40 Ni 10 d 1, Fig. 12. Al-Fe-Ni. Ternary interdiffusion coefficients (din 10-15m2s-1) for p @cc)and y (fee) Al- Fe-Ni alloys; (a) a&,,(b) a:;,,,(c) fi&,, and (d) B&i; data identified by l and o correspond to 1277 [76M] and 1273K [79C], respectively. Dayananda

Land&-BCmstein New Series III!26

6 Diffusion in ternary alloys (Figures)

Ref. p. 4351 0.4

415

Co-Fe-Ni

0.3

0.2

I

0.1

r< r,

0 Ni Fe Fig. 14. Co -Fe-Ni. Experimental diffusion paths for solid-solid diffusion couples at 1588K with several composition points of intersection [69v].

-0.1

-0.2

-0.3 0

1

2

xc-

3

.10-*

4

Fig. 13. C-Co-Fe, C-Cr-Fe, C-Mn-Fe, C-Ni-Fe, C - Si - Fe. Variation of @,/@, with carbon concentration for austenites in the ternary systems; 1 = C; 2 = Co, Cr, Mn, Ni or Si; and 3 = Fe. The solid lines represent the estimation based on Eq. (6.16) [62K], [64B].

Fe

IO

20

30

40

For Fig. 15 see next page.

50

60

70

80 -1o‘2 90

Ni

Fig. 16. Fe -Ni - Cr. Experimental diffusion paths for diffusion couples in the y (fee) region annealed at 1373K for 7 days [85Dl]. Letters A ... T indicate alloy compositions used for the assembly of couples.

Land&BBmstein New Series III/26

Dayananda

416

6 Diffusion in ternary alloys (Figures)

Fe

a

10

Fe 0-COCO

co

Co-Fe-Ni

20

30

40

50

60

70

80 -lo-* 90

Ni

INi -

D”Fe CoNi

co

10 b

[Ref. p. 435

20

30

40

50

60

70

80.10m290

Ni

xNi -

Fig. 15. a-Co-Fe-Ni (fee). Ternary interdiffusion coefficients (d in IO-l4 m2 s-l) and iso-interdiffusion coefficient lines on the ternary isotherm at 1588K; (a) a&,,, (b) DTzN,,(c) a:&, and (d) @&, [69v]. The data on the Fe -Co and Fe -Ni sides in (a) and (d), respectively, correspond to binary d values [69v].

Dayananda

Landolt-BBmstein New Series III!26

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

417 “Fe 0 NiCo

in 4.i Fe

d

3.1 .

"

"

10

20

30

40

50

"

60

70

80

10

20

30

40

50

60

70

80 w

Fig. 15c, d.

Land&-Bihstein New Series III/26

Dayananda

90 010~~Ni

90

.Ni

6 Diffusion in ternary alloys (Figures)

a

XNi

[Ref. p. 435

-

.~/ ,$&/;:l5.q,/;7.3 ,$I”!;;~-;;o.&,o c/ ‘Y, / ” ” ” ” ” ” Fe m.

10

b

20

30

40

50

INi

60

70

80 40“ 90

Ni

-

Fig. 17. Cr-Fe-Ni. Variation with composition of the main ternary interdiffusion coefficients (d in lo-” m* s-l), (a) I?,$, and (b) 6:&j at 1373 K [85Dl]. Iso-interdiffusion coefficient lines are also shown.

Dayananda

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

.,$ m2/s IO

.,$ _

ov 0

m2/s 20

C

4

8

12

16 wt%

Ccr Ccr Fig. 18. Cr -Ni - Si. Variation of the ternary interdiffusion coefficients with Cr and Si concentrations for Ni-rich Cr -Ni-Si alloys at 1523 K. (a) @c, and binary 0” for Ni-Cr as functions of Cr concentration; (b) @c, as a function of Si concentration; (c) D& as a function of Cr concentration; (d) @& as a function of Si concentration, and (e) Bgsi and binary 0” for Ni - Si as functions of Si concentration [82J].

Land&-Bhstein New Series III/26

Dayananda

e 3 cSi -

4 wt%

5

[Ref. p. 435

6 Diffusion in ternary alloys (Figures)

Ni

a

c Fig. 19. Cu-Mn-Ni. Ni-rich Cu-Mn-Ni

b

A” -

d

Xc,-

Ternary interdiffusion coefficients (6 in 10-l’ m* s-l) and iso-interdiffusion coefficient lines for alloys at 1173K; (a) @&, (b) @!&, (c) D2zu, and (d) @hi [8Oyl.

Dayananda

LandolbB6mstein New Series Ill!26

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

CU

cu b

a

421

IO

20

-cu DMnZll

cu

c

io

20 'M"-

-10"

40-*

30

xMn -CU

0MnMn

30

d

XM"----

Fig. 20. Cu-Mn-Zn. Ternary interdiffusion coefficients and iso-interdiffusion coefficient lines (0” in lo-l4 m’s-‘) for Cu-rich CL(fee) Cu -Mn - Zn alloys at 1073K ; (a) i&, , (b) &$,,, , (c) fizz”, and (d) @&,“. The binary 0” values for Cu - Zn and Cu-Mn alloys are included in (a) and (d), respectively [86T].

Land&Biirnstein New Series III/26

Dayananda

6 Diffusion in ternary alloys (Figures)

-Ni-Zn

0-CU lnln

/

0.40 .-‘, 0.39

Ni

a

[Ref. p. 435

10

20

30

40

50

--

l

60

70

80 -10-2 -90







‘(i”

50

60

70

80 *lo-2 90

cu

XC”-









10

20

30

40

1 01 “3’ U.UP’I/0.03

a?2

cu

XC”-

Fig. 21. cc-Cu-Ni -Zn (fee). Ternary $erdifTusion coefficients and iso-interdiffusion coefficient contours (6 in !:31;;1m’s-‘) at 1048K;(a) a$,, (b) - D,,,i, (c) - @&, and (d) &a,. Open circles: [77S],full circles: [82K] and triangles:

Dayananda

Landolt-BBmstein New Series III!26

6 Diffusion in ternary alloys (Figures)

Ref. p. 4351

/

/

*VP ,///

0.70-_

/ 80

0.20 -+

0.14 go

0.69.

-\ al’9

011 ---.,

/ ‘Ni

169

cc(fcc)

&OS

^ n7’ 0.64 T‘-. ---2 0.90s (

o~a28-0.17

-\

V

IO

20

+. -1

-\ 0.51

l

1.33 4;\ 1.1I

0.67 .A

\

A [email protected] Oq$.oa

V

V

40

50

60

70

l

O.iZ-. Of7 $7

l

a0.03

"

20 0.26

.

'1

V

0

\ \,

'

.

-0.48

.--\ 30

.

A’\

0.32

0.88

. 0.59

-.

Cl14



;2-\ ..

l 0.7?\

0 0.69

--.

t1

o%$~‘2

/

l 0.25-

0.19

-

423

0

80 *IO-’

XC”-

-cu 0NiNi

‘-L,o3 0% 0.07- -__-_

0.360 .0.46 0.12O Q.rJ8

. 0.07 -----

i.“.“r. .0.06 --OS,2 .----, 0.04

l ois

-

0.06

ct(1m,

. 0.23 *..

----&'A, Y.“”

-

---l

0.04

--2.

-1

-0.07

-c-

a02n

0.03

Ni u

V

V

IO

20





30

40



50 AC”-

Fig. 21 c, d.

Land&Bhnstein New Series III/26

Dayananda



60



70

“.‘“;

O.OP

81

424

6 Diffusion in ternary alloys (Figures)

[Ref. p. 435

cu

a

INi

10

cu

b

-

20

C

XNi

-10-2 30

10

cu

d

-

2-i xNi

.lU2

30

-

Fig. 22. Cu-Ni-Zn. Ternary interdiffusion coeffkients and iso-interdiffusion coefficient tines (d in to-r5 mss-1) at 1133K ; (a) a&. , @) - &,r, (c) &$,, and (d) @&. The binary d for Cu - Zn and Cu - Ni alloys are also included in (a) and (d), respectively [84T]. 16 .10-2

I

1

I

Cu-Sn-Zn

14 12

t

10

I 458 9, 4

-1

0

I

I

I XI

1

2

3 x/fi

4 -

5

I

d--

I

6

7 .10-7m/s”2 9

Dayananda

Fig. 23. Cu-Sn-Zn. Experimental and calculated concentration profiles for a vapor-solid couple diffused at 1023 K for 4days; the ternary coefficients (in IO-l4 m*s-‘) used for the calculation are: fi&. = 3.5, Bh& = 0.7, a&, = 0 75, &” = 2.0 [68Dl].

Land&-B?msfein New Series 111126

Ref. p. 4351

0

12

6 Diffusion in ternary alloys (Figures)

3

4

5X-* 6 .1_0-'

425

p

-CU Dsnsn

Sn1n

IO

40

5

30 20

2

0 0

12

/

/

3

4

a

/

I

5W26 0

1

2

I 4

3

I 5 do-* 6

Xl, -

0

12

3

4

5.10-* 6 0

b

1

2

3

4

5.W* 6

Fig. 24. Cu-Sn-Zn. Isodiffusion coefficient contours for ternary interdiffusion coefficients. (a) T=1094 K, 0” in IO-l4 m2 s-l, (b) T= 771 K, d in 10-l’ m’s-’ [65K].

Land&Biirnstein New Series III/26

Dayananda

[Ref. p. 435

6 Diffusion in ternary alloys (Figures)

5? -

a+ liq. I

2-

i& 49 -

.1.1 .RO

atbcc)

37

2-

l-

b "d

I a5

I 1.0

I 1.5

I 2.0

I 2.5

I 10

I

I

15 .10-* 4.0

*Hi -

Fig. 25. Fe-Ni -P. Isodiffusion coefficient contours for (a) @i, (b) &TNi for c( @cc) Fe-Ni-P alloys (b in 10-‘3m2s-1) and for (c) fi& (in alloys IO-l4 m2s-‘) and (d) bFr NlNl(in lo- l6 m*s-‘) for y (fee) Fe-Ni-P at 1373K (73HJ.

Dayananda

Land&-BBmsIein New Series III/26

427

6 Diffusion in ternary alloys (Figures)

Ref. p. 4351

I

oIC

I

I

I

I

I

I

51-2-

y +liq.

17 / 0-i 0

1

3.1 ,

2

4

6

5.1

8

Fig. 25c, d.

Landolt-Biimstein New

Series III/26

Dayananda

5.7_,

10

6.1s L3J

12

14 -1O-2 16

[Ref. p. 435

6 Diffusion in ternary alloys (Figures)

428

a -1i

/

60/ ,'

Dv2r

/ ,4y2.0 l 0.6

IO-*

ao;

Ti

b

20

40 xv -

t.17

0.y

3.'

"

60

-10-2

80

Fig. 26. Ti-V-Zr. Isodiffusioncoellicient contours(b in 1O-‘4 m* s-‘)at 1073K;(a) DT,,. (b) DTz,, (c)@v, and (d) D&. The binary d values for Ti -V and Ti -Zr alloys arc included in (a) and (d), respectively [74B].

Dayananda

Land&BBmstein New Series III~26

Ref. p. 4351

429

6 Diffusion in ternary alloys (Figures)

-Ii D zrv

Ti

L

13 “‘“”

0.02.

20 ”

u

.0.02 -

40

A” -

Ti

d Fig. 26 c, d.

Land&-BBmstein New

SeriesIII/26

Dayananda

0.007. fOO4

0.004 . .o.oos "

60

-IO-*

80

6 Diffusion in ternary alloys (Figures) 25 .,a-~

I I

I

Ag-Cd-Zn

!

Surface movement Zn .

l-l!

II

Cd o (3d)

A (5d)

i

0

[Ref. p. 435

:

II

I

I

I

I

I

0.5

1.0

1.5

2.0

2.5

3.0

q

(8d)

W7 m/s1’2 4

0

250

b

a x/p---Fig. 27. For figure caption seenext page.

500

750 s”‘10

-c-

.,o-‘3 mVs 6

I

2

%=

: xi-‘” mVs 3

0 0

5

10

a

15

20

0 0

25 -lo-* 30

.,&!

20

25 010.~ 30

20

25 *lo-* 30

8

02

I

4

r&T ; .;O-I-;

CT-: d 4 .,I)-13 m*h 3

6

2

4

1

2

0

c

15 ‘Cd-

m*/s 12

4

0

10

.,o!

m*/s 6

I

5

b

xCd-

5

10

15

X*n----

20

0 0

25 *lo-* 30

d

Fin. 28. For fkure caption seenext Dage. Dayananda

5

10

15

X2,Land&-B6mstein New Series III/26

Ref. p. 4351

6 Diffusion in ternary alloys (Figures)

4 Fig. 27. Ag - Cd - Zn. (a) Concentration profiles of Zn and Cd for the vapor-solid couple with Ag disk exposed to an alloy (70.0 Ag- 11.OZn- 19.0 Cd). Circles, triangles and squares correspond to 3, 5 and 8 days of diffusion time, respectively. The refiles satisfy the requirement that Ci is a function of x/ 9 t. (b) Marker burial and surface movement for the couple are functions of ,/i [72C].

431

10-'2 m2/s

~ 2 1P3 8 6 4 2

I g.1~ 4 Fig. 28. a-Ag - Cd - Zn. Variation of intrinsic diffusion coef- s.-, ficients at 873 K as functions of Cd concentration at (a) ~j- s s 11 at.% Zn, and(b) 18 at.% Zn; and as functions of Zn con4 centration at (c) 5 at.% Cd and (d) 9 at.% Cd. 1 = Zn, 2 = Cd, 3 = Ag [72C]. 2

1P 8 6 4

Fig. 29. Co - Cr - Ni. Variation of intrinsic diffusion coeffi- b cients at 1573K as functions of Cr concentration at a Ni concentration of 59 at.% [66L].

2 1P

0

5

10

15 xc, -

20

25 -10-2 30

3.0 .107 m/sN

0

a

5

10

15

20

25 ~10-~ 30

0

5

10

0

5

IO

15

20

25 -1O-230

15

20

25 .1O-2 30

“”

3.0 401 m/sN

d

X1,-

Fig. 30. u-Ag - Zn - Cd. Atomic mobilities of Zn and Cd at 873 K as functions of Cd concentration with (a) 11 at.% Zn, (b) 18 at.% Zn, and as functions of Zn concentration for alloys with (c) 5 at.% Cd and (d) 9 at.% Cd [75C]. Land&-Biirnstein New Series III/26

Dayananda

432

6 Diffusion in ternary alloys (Figures)

[Ref. p. 435 iu 2

pnn 2

0.4 4A

a

0.5

-4

b

Fig. 31.Cu-Mn-Zn. Isomobilitylines (/?,in lO’ms-‘N-l) for (a) Zn and (b) Mn at 1123K [7Ow]. For Fig. 32 see next page.

a

cu

b

10

20

30

x,i-

4 Fig. 33. Cu-Ni -Zn. Isotracer diffusion coeffkient contours (D* in 10-13 mz s-l) for (a) D&,(b) D&and (c) 02, for Cu-rich Cu -Ni - Zn alloys at 1173K [72A].

Dayananda

Ref. p. 4351

10-l m*/I

6 Diffusion in ternary alloys (Figures)

1400 "C 1300 I

-T 1200

-T

1000

1100

1400 "C 1300 10-'* I I m*/s

I’

Cr-Fe-Ni l-l--

IO-'

12013

I

\ \\

-14

10

I *&-

\

*c;-

\ t\

10-l

,o-l5

10-16

10-l

.58

0.68

0.63

b -1 2ocI

, o-l:

IO

1101 3

10-l"

m*A

. K 1s .

\

-Ii-.-l

10-l

0.58 0.63

1' 1

lo-l3

10-l

a

433

0.68

0.73

-1c

l/T-

1400 "C 1300 I I

1200

1000

m*/s

, o-l:

c \ IO" \

t vv 5

I *<

\

,o-l'

t * ?\ ,-

0 %. \

v

\ \ .

10-16

1O-16

,o-li

10-17 0.

.,o” K-1 0. 0.63 0.68 d l/TFig. 32. Cr - Fe -Ni. Plots of logD* vs. l/T for tracer diffusion of Ni, Fe and Cr in (a) 15 Cr-65 Fe-20 Ni, (b) I5 Cr-40 Fe-45 Ni; (c) 22 Cr-33 Fe-45Ni (open symbols are for 20 Cr-35 Fe-45 Ni from [73G]) and (d) 15Cr-63.6 Fe-20Ni- 1.4Si alloys, respectively [80R2]. All concentrations in at.%. 0.

c

Landolt-Bornstem New Series III/26

0.63

0.68 l/T-

0.73

.l

t-1

[3.83

Dayananda

6 Diffusion in ternary alloys (Figures)

434

[Ref. p. 435 -1

-1 10-“2 mvs 6 b

2

Fig. 34. Cu-Ni -Zn. Temperature dependence of D& for alloys with approximately 20 at.% Ni; (I): 80.28Cu-19.72Ni; (2): 69.68Cu- 19.42Ni-10.90Zn; (3): 63.95Cu-20.80Ni - 15.25Zn and (4): 55.17Cu-20.59Ni-24.24Zn [72A].

-1

0.95 .W3K-’ 1.05 0.85 l/TFig. 36. Cu-Ni-Zn. Temperature dependence of 0;. for alloys with approximately 20 at.% Ni; (I): 81.8Cu-18.2Ni; (2): 70.8Cu-18.8Ni-10.4Zn; (3): 60.6Cu-18.6Ni-20.8Zn and (4): 50.3Cu - 18.7Ni -31 .OZn [72A]. 0.65

0.75

lo-l2 m2/s 6 4

2

10-15 6.1 i-16

0.65

0.85 l/l -

4 Fig. 35. Cu -Ni -Zn. Temperature dependence of D& for alloys with approximately 20 at.% Ni; (I): 80.28Cu-19.72Ni; (2): 69.68Cu-19.42Ni-10.90Zn; (3): 63.95Cu-20.80Ni- 15.25Zn and (4): 55.17Cu-20.59Ni-24.24Zn [72A]. 0.95 .lO-)K’ 1.05

Dayananda

Land&-BBmstein New Series III/26

6.9 References for 6

435

6.9 References for 6 310 450 49D 52H 52W 55B 55Gl 5562 55L 56F 57G 57K 58K 61K 62G 62K 63Kl 63K2 63P 63s 64B 65D 65K 652 66D 66L 67s 672 68Dl 68D2 68M 68s 69Sl 6982 69V 70K 70M 7ow 71D 71H 72A 72B 72C 73G 73H 73Pl 73P2 73w 74B 75c 76M 77B

Onsager, L.: Phys. Rev. 37 (1931) 405. Onsager, L.: Ann. N.Y. Acad. Sci. 46 (1945-46) 241. Darken, L.S.: Trans. AIME 180 (1949) 430. Heumann, T.: Z. Phys. Chem. 201 (1952) 168. Wagner, C.: Thermodynamics of Alloys, Reading, MA, U.S.A.: Addison Wesley Publishing Company, Inc. 1952. Baldwin, R.L., Dunlop, P.J., Gosting, L.J.: J. Am. Chem. Sot. 77 (1955) 5235. Gruzin, P.L., Noskov, B.M.: Probl. Metallogr. Phys. Met. 4 (1955) and AEC.Tr.2924, p. 355. Gertsricken, S.D., Dekhtyar, 1.Y: Proc. 1955 Geneva Conference 15 (1955) 99. Linnenbom, V., Tetanbaum, M., Cheek, C.: J. Appl. Phys. 26 (1955) 932. Fujita, H., Gosting, L.J.: J. Am. Chem. Sot. 78 (1956) 1099. Gruzin, P.L., Polikarpov, I.A., Federov, G.B.: Fiz. Metal. Metalloved. 4 (1957) 94. Kirkaldy, J.S.: Can. J. Phys. 35 (1957) 435. Kirkaldy, J.S.: Can. J. Phys. 36 (1958) 899. Kirkaldy, J.S., Mason, G.R., Slater, W.J.:Trans. Can. Inst. Min. Metall. 64 (1961) 53. Guy, A.G., Smith, C.B.: Trans. Am. Sot. Met. 55 (1962) 1. Kirkaldy, J.S., Purdy, G.R.: Can. J. Phys. 40 (1962) 208. Kirkaldy, J.S., Weichert, D., Zia-Ul-Haq: Can J. Phys. 41 (1963) 2166. Kirkaldy, J. S., Zia-Ul-Haq, Brown, L.C.: Trans. Am. Sot. Met. 56 (1963) 834. Philibert, J., Guy, A.G.: C.R. Acad. Sci. 259 (1963) 2281. Shuck, F.O., Toor, H.L.: J. Phys. Chem. 67 (1963) 540. Brown, L.C., Kirkaldy, J.S.: Trans. TMS-AIME 230 (1964) 223. Dayananda, M.A., Grace, R.E.: Trans. TMS-AIME 233 (1965) 1287. Kirkaldy, J.S., Brigham, R.J., Weichert, D.H.: Acta Metall. 13 (1965) 907. Ziebold, TO., Cooper, A.R.: Acta Metall. 13 (1965) 465. DeHoff, R.T., Guy, A.G., Anusavice, K.J., Lindemer, T.B.: Trans. TMS-AIME 236 (1966) 881. Leroy, V.: La diffusion a l’etat solide -Application au systemeternaire Ni -Co - Cr, Centre National de Recherches Metallurgiques, 1966. Sabatier, J.P.,Vignes, A.: Mem. Sci. Rev. Metall. 64 (1967) 225. Ziebold, TO., Ogilvie, R.E.: Trans. TMS-AIME 239 (1967) 942. Dayananda, M.A., Kirsch, P.F., Grace, R.E.: Trans. TMS-AIME 242 (1968) 885. Dayananda, M.A.: Trans. TMS-AIME 242 (1968) 1369. Manning, J.R.: Diffusion Kinetics for Atoms in Crystals, Princeton: D. Van Nostrand Co., Inc., 1968. Smith, A.F., Gibbs, G.B.: Met. Sci. J. 2 (1968) 47. Strostriim, C., Hillert, M.: J. Iron & Steel Eng. 207 (1969) 77. Smith, A.F., Gibbs, G.B.: Met. Sci. J. 3 (1969) 93. Vignes, A., Sabatier, J.P.: Trans. TMS-AIME 245 (1969) 1795. Kirkaldy, J.S.: In: Adv. in Mater. Res., Vol. 4, Herman, H. (ed.) New York: Interscience Publishers, 1970, p. 55. Manning, J.R.: Metall. Trans. 1 (1970) 499. Whittenberger, J.D., Dayananda, M.A.: Metall. Trans. 1 (1970) 3301. Dayananda, M.A.: Metall. Trans. 2 (1971) 334. Hancock, G.F.: Phys. Status Solidi 7 (1971) 535. Anusavice, K.J., DeHoff, R.T.: Metall. Trans. 3 (1972) 1279. Bastow, B.D., Kirkwood, D.H.: J. Inst. Met. 100 (1972) 24. Carlson, P.T., Dayananda, M.A., Grace, R.E.: Metall. Trans. 3 (1972) 819. Guiraldenq, P., Poyet, P.: Mem. Sci. Rev. Metall. 70 (1973) 715. Heyward, T.R., Goldstein, J.I.: Metall. Trans. 4 (1973) 2335. Perkins, R.A., Padgett, Jr., R.A., Tunali, N.K.: Metall. Trans. 4 (1973) 2535. Perkins, R.A.: Metall. Trans. 4 (1973) 1665. Wan, Chung-Chu: Ph.D. Thesis, 1973, University of Florida, Gainesville, FL, U.S.A. Brunch, A., Steeb, S.: Z. Metallkd. 65 (1974) 765. Carlson, P.T., Dayananda, M.A., Grace, R.E.: Metall. Trans. A 6A (1975) 1245. Moyer, T.D., Dayananda, M.A.: Metall. Trans. A 7A (1976) 1035. Beke, D., Godeny, I., Kedves, F.J.: Acta Metall. 25 (1977) 539.

Land&-BBmstein New Series III/26

Dayananda

436 17s 79c 79D 80Rl 80R2 80Y 82A 82J 82K 83D 83K 83T 84K 84M1 84M2 84T 85Dl 85D2 85K 85T 86T 87Nl 87N2

6.9 References for 6 Sisson, Jr., R.D., Dayananda, M.A.: Metall. Trans. A 8 A (1977) 1849. Cheng, G.H., Dayananda, M.A.: Metall. Trans. A 10A (1979) 1415. Dayananda, M.A., Kim, C.W.: Metall. Trans. A 10A (1979) 1333. Roper, G.W, Whittle, D.P.: Met. Sci. 14 (1980) 21. Rothman, S.J.,Nowicki, L.J., Murch, G.E.: J. Phys. F 10 (1980) 383. Yokota, M., Harada, R., Mitani, H.: Trans. Jpn. Inst. Met. 21 (1980) 573. Angelo, P.C.: Ph.D. Thesis, 1982, Dept. of Metallurgy, Indian Institute of Science,Bangalore, India. Johnston, G.R.: High Temp. - High Pressures14 (1982) 695. Kim, C.W.: Ph. D. Thesis, 1982, School of Materials Engineering, Purdue University, W. Lafayette, Indiana, U.S.A. Dayananda, M.A.: Metall. Trans. A 14A (1983) 1851. Kim, C.W., Dayananda, M.A.: Metall. Trans. A 14A (1983) 857. Takahashi, T., Kato, M., Minamino, Y., Yamane, T.: Z. Metallkd. 74 (1983) 727. Kim, C.W., Dayananda, M.A.: Metall. Trans. A 15A (1984) 649. Minamino, Y., Yamane, T., Tsukamoto, K., Takahashi, J., Kimura, H.: Z. Metallkd. 75 (1984) 943. Minamino, Y., Yamane, T., Tsukamoto, K., Takahashi, J., Kimura, H.: Trans. Jpn. Inst. Met. 25 (1984) 142. Takahashi, T., Kato, M., Minamino, Y., Yamane, T: Met. Sci. 18 (1984) 580. Duh, J.G., Dayananda, M.A.: Diffusion and Defect Data 39 (1985) 1. Dayananda, M.A.: Proc. Symp. entitled “Diffusion in Solids - Recent Developments,” held in Detroit, U.S.A. 1984.Dayananda, M.A., Murch, G.E. (eds.),The Metallurgical Society AIME, 1985. Kansky, K.E., Dayananda, M.A.: Metall. Trans. A 16A (1985) 1123. Takahashi, ‘I, Kato, M., Minamino, Y, Yamane, T.: Trans. Jpn. Inst. Met. 36 (1985) 462. Takahashi, T., Kato, M., Minamino, Y, Yamane, T.: J. Jpn. Inst. Met. 50 (1986) 243. Nesbitt, J.A., Heckel, R.W.: Metall. Trans. A 18A (1987) 2075. Nesbitt, J.A., Heckel, R.W.: Metall. Trans. A 18A (1987) 2061.

Dayananda

Land&-BBmstein New S-criesIII!26

Ref. p. 4681

7.1 General remarks

437

7 Diffusion in amorphous alloys 7.1 General remarks The amorphous alloys in this chapter are more precisely denoted as amorphous metallic alloys. They are also called metallic glassesif they have been produced by rapid quenching from the melt. Amorphous alloys are thermodynamically not stable and may undergo structural transitions such as relaxation and crystallization during thermal annealing treatments. In the course of these transitions, usually controlled by diffusion processes,the extraordinary properties of the amorphous alloys are significantly changed or even destroyed by the process of thermal annealing. Diffusion studies on amorphous alloys can also be accompanied by structural transitions. Therefore, diffusion experiments in these materials are difficult to perform. The experiments are limited to very short diffusion lengths, often not more than about 10 nm, becausethe diffusion time at high temperatures is limited by the onset of crystallization, whereas at low temperatures the penetration is limited by the low diffusivity. An additional difficulty in the diffusion measurements arises from the change of the diffusivity in the amorphous state as a function of the annealing time if structural relaxation takes place. In amorphous alloys, the structural change is explained mainly by rearrangements of the short-range order in the course of annealing treatments. Fig. 1 [88H5] shows that the diffusivity change can be significant in materials which have been produced by melt spinning. t-

,p”

0.5 I

1.0 I

1.5 I

2.0 I

2.5405s : I

“Fe in Feg’Zrg I

lo-‘* \.

I

T= 673 K I

I

) 5gFe in Fe91Zrg

I

I 5gFe in FeTaSiqB12

I



633

_I lo-l9 LQ 1o-2o

59r- 1:- r^

1o-2’ 59r,.:,

1o-22

7-ILL

C^

Fig. 1. Instantaneousself-diffusion coefficients, or(t), vs. the diffusion annealing time measured in different amorphous alloys at various diffusion temperatures [88H5]. All amorphous alloys have been produced by melt spinning. The materials show relaxation effects which have significant influence on the self-diffusivities. Upper abscissa scale is for dashed lines, lower scale is for solid lines.

cm

----l--&i

563 --- 4s--- ;;;K Zr in FeTRZrlz

5gFe’in‘Fe7gW,B;, I 1o-23l 0 0.5 1.0

1.5

2.0

2.5-10”s

Becauseof the time dependenceof the diffusion coefficients the values deduced from the penetration profiles are time-averaged values, (D). If (0) (t) is known as a function of the annealing time t, the instantaneous tracer diffusion coefficient o(t) follows from D(t)=(D)+t

Land&-Biirnstein New Series III/26

HorvPth

a@‘> 7.

(7.1)

438

7.2 The effect of different production methods

[Ref. p. 468

Only in experiments with adequate preannealings or in materials with negligible relaxations, (D) is close to D(f). Since a!! measureddiffusion coefficients are more or less time-averaged values, for simplification in the following, (D) is replaced by D. The method by which an amorphous alloy has been produced seemsto play an important role in the diffusion measurements.This is true also for the side of the specimen on which the experiment is carried out. Numerous unconventional diffusion investigations, mostly by indirect methods, have been applied to evaluate the diffusion coefficients. Such items aggravated of course the valuation of the data. The reliability of individual sets of diffusion data depends here very much on the method of investigation. Today it is clear that meaningful! diffusion results are achieved mostly in relaxed or isoconfigurationa! amorphous states. These states can be established in most amorphous materials by carefully studied annealing treatments, denoted as preannealing treatments. This procedure for obtaining reliable diffusion measurements was not recognized sufficiently until rather late [85Hl, 85Pj. Unfortunately, in most of the diffusion investigations on amorphous alloys, the problems of structural transitions have not been noticed, or have been ignored. The latter obviously arises from an underestimation of its consequencesfor the diffusion results. In spite of the lower reliability of a number of studies, it is helpful to consider as much as possible useful information about diffusion. This gives in many casesat least an idea about the numbers for the diffusion quantities and if necessarya platform for more accurate studies in this difficult diffusion field. Under these circumstances, the comparison and examination of the diffusion data had to been done with an appropriate generosity. Diffusion studies of gasesin amorphous alloys have not been considered. For instance, the we!! investigated diffusivity of hydrogen depends strongly on its concentration in the host system.The dependenceof diffusion coefficients even on rather low concentrations of the diffusing specieswould not tit into the presentation of the tables. For diffusion of hydrogen in amorphous alloys the reader is referred to the reviews in [82K2,82K3,87Kl, 87K2]. Reviews of diffusion in amorphous alloys are given in [83Ll, 83C1, 85C, 88Ml].

7.2 The effect of different production methods A wide composition range of amorphous alloys has been produced owing to the rapid developments of the production techniques. Most of the amorphous alloys contain transition metals as components, either in combination with each other or with metalloids, rare-earth elements,actinides or non-transition metals. There is also a group of amorphous alloys consisting of non-transition metals only, but their diffusion properties have not been investigated so far. Amorphous alloys are often produced by rapid quenching from the melt, mostly by melt spinning on a metal wheel. The so-called splat quenching of melt drops is less important for production of larger amounts. A significant feature of the amorphous materials produced by rapid quenching is that they may have different properties on the two sides of the foil due to the different quenching rates. The side which had direct contact to the wheel or cooling substrate during quenching may have experienced a higher cooling rate than the opposite side. Contradictory results of different studies in someinvestigations have been attributed to this effect. Compositions of amorphous alloys which cannot be produced or only with great difficulty by rapid quenching can be produced in many casesby co-sputtering or co-evaporation. Moreover, the production of amorphous alloys atom by atom may be an explanation of the obviously more relaxed structure of the co-sputtered or co-evaporated materials in comparison to the rapidly quenched alloys. This follows from the significant relaxation effects on the diffusion coefficients often found in rapidly quenched alloys. Therefore, those diffusion investigations which have been performed in preannealed (relaxed) rapidly quenched alloys or in co-sputtered or co-evaporated alloys have to be regarded as more meaningful. Other lesscommon methods to produce amorphous alloys are electrolytic deposition, irradiation damaging, and ion-beam mixing. The local composition and the structure of amorphous alloys produced in theseways are usually poorly defined. The alloys are not favourable for sound diffusion investigations becausethe experimental results may suffer from the inhomogenities of the structure. The most recent method to produce amorphous alloys is the solid-state reaction of mixtures of appropriate metals. The solid-state reaction starts either from multilayer thin crystalline metal films or from mechanically alloyed mixtures of crystalline powders. In some cases,diffusion coeffkients have been deduced for amorphous regions which have been produced by solid-state reactions. Reviews of this researchfield are given in [86J,88B1, SSJ.889, 88821.

Hodth

Landolt-BBmstcin New Series 111126

Ref. p. 4681

7.3 Methods of diffusion investigations on amorphous alloys

439

7.3 Methods of diffusion investigations on amorphous alloys Since the reliability of the results listed in the tables depends on the experimental method even more than in other diffusion fields, the most frequently applied methods on amorphous alloys are briefly mentioned. From this, the strengths of the individual investigation methods may become more evident. More details about the various experimental methods are given in chapter 1 of this volume. Conventional methods like mechanical sectioning are not adequate to measure steep diffusion profiles. The sectioning is too coarse for profiles measurable in amorphous alloys. In many cases,atoms can be detected most sensitively if they are radioactive. The most sensitive method for micro-sectioning of a diffusion profile is the ion-beam-sputtering technique. A combination of both, the radiotracer technique with ion-beam-sputtering, has been successfully applied in many experiments to measure the diffusion coefficients in amorphous alloys directly. Fig. 2 shows how unambigously the diffusion coefficient can be determined from a Gaussian profile. In a plot of the logarithm of the concentration versus the depth squared the slope is proportional to l/D (seealso Eq. 1.11 of chapter 1). A technique similar to the above is the radiotracer technique in combination with high-frequency sputtering @f-plasmasputtering). In a number of experiments secondary-ion-mass spectroscopy (SIMS) has been used for the direct measurement of the diffusion profiles. Fig. 3 shows a typical diffusion profile. Although this method is well established and has been improved in the recent years for measuring steepdiffusion profiles, the sensitivity of the radiotracer methods usually cannot be reached. Since in self-diffusion experiments the concentration of enriched stable isotopes can be measured with great background problems only, SIMS is mainly used for investigation of foreign-atom diffusion.

104

I h 103 Z ?z 50 uC ti F 102

g=12ih k

1

\

; 15 10

h

1

J

0

150

300

450

0

60 nmL 750

X2Fig. 2. “Fe tracer diffusion profiles in amorphous Fe,,W,B,, (0) and Fe,,B,, (0) at 593 K for non-preannealed specimens. The parameters shown on the profiles are the diffusion times [88H5]. The diffusion coefficients may be evaluated directly from the slope of the diffusion profiles. X: penetration depth. Land&-Bhstein New Series III/26

30

60

90

x-

120

150nm 1SO

Fig. 3. Typical SIMS profiles for the spreading of a Cu tracer impurity layer in amorphous Ni,,Zr,, after annealing at 573 K [86Hl]. The diffusion coefficient of Cu is evaluated from the broadening of the concentration profile (dashed line). The full line representsthe concentration profile before diffusion. X: depth.

Horvith

[Ref. p. 468

7.3 Methods of diffusion investigations on amorphous alloys

440

This is also true for Auger-electron spectroscopy (AES) studies, which are usually applied in combination with ion-beam sputtering. The results suffer from concentration gradients which are present during the measurements. Fig. 4 shows profiles in an amorphous alloy measured by the AES method. Rutherford backscattering (RBS) of He+ has been used in caseswhere the diffusion of heavy atoms in amorphous alloys of lighter atoms was investigated. In this method, the energy spectrum of the backscattered ions is measured, and has to be transformed to a diffusion profile (Fig. 5). The results which may be achieved by RBS are not regarded as sensitive as the radiotracer method. Nuclear reaction methods have been used to measurethe boron diffusion for instance, which is very difticult to measure with the direct methods mentioned above.

* -+ T

*a orb. units 4.0

iron

.

4 Fig. 4. Typical AES profiles obtained on sputter etching through a 390 nm layer of Si deposited on amorphous Fe,,B,, after annealing for 2 h at 623 K [83L2]. (The sputter time I is proportional to the depth of the profiles.) The peak to peak signals have to be standardized for the evaluation of the concentration profiles which the diffusion coefftcients are determined from.

150r

is8

392

396

400

404 408 Chonnels -

412

416

420

424

Fig. 5. RBS spectra taken with perpendicularly incident 2MeV He+ ions: Hg in amorphous Pd,sCu,Si,, before (0) and after (0) diffusion at 681 K for 48 h. Depth scale: one channel corresponds to 2.1 keV, equivalent to 1.9 nm [88B4]. The diffusion coefficients are evaluated from the concentration profiles obtained from the difference of the RBS spectra.

Hodth

Landolf-B6mstein New Series III/26

Ref. p. 4681

7.4 Use of the tables and figures

441

X-ray scattering methods have been applied in several studies to measure the interdiffusion coefficient of compositionally modulated multilayer thin films of amorphous or crystalline materials. This is a powerful technique to measure very small interdiffusion coefficients. Crystallization investigations, in particular primary crystallization applying transmission-electron microscopy (TEM), have been used to measure diffusion coefficients as well. Diffusion data deduced from indirect experiments should be considered with some caution. However, since in many casesgood agreement with directly measured values could be achieved such data appear valuable. From indirect techniques only interdiffusion coefficients can be determined.

7.4 Use of the tables and figures The diffusion data on amorphous alloys have been classified in tables starting in alphabetical order with the data on cobalt-base alloys followed by the tables of copper-, iron-, nickel-, palladium-, silicon-, and zirconiumbase alloys. The first column of the tables contains the host amorphous alloy and the production method if this has been given in the paper. The second column shows the diffusing element. In many cases,e.g., for interdiffusion measurements,this element cannot be stated. For rapidly quenched amorphous alloys, a preannealing treatment (column 3) must be regarded asnecessary for a reliable and well defined diffusion measurement. Exceptions are those investigations in which the dependence of the diffusion coefficients on the diffusion time was measured (e.g.,Fig. 1). In the next columns (4 and 5), the temperature range of the diffusion experiment and the diffusion coefficient at 573 K, if possible, are given. In most cases,the latter was extrapolated from the Arrhenius function for D(T) (Eq. 1.50 of chapter 1) for the sake of comparison. If 573 K is far away from the investigated temperature range, D at 573 K has to be regarded with care. In cases,when D at 573 K was taken as a data point from the paper, it may deviate slightly from a value obtainable from the Arrhenius parameters Do and Q of the tables (columns 6 and 7). These data points were taken in caseswhere the reliability for D seemedto be increased through that. Very often the Do (preexponential factor) and Q (activation enthalpy) values had to be taken from the figures becausethey were not given explicitly. Therefore, small deviations from the values which the authors may have obtained are possible. Uncertainties in the data given in the papers have not been taken into account. The remarks column (8) will help to estimate the reliability of the diffusion results. In most of the experiments, chemical-diffusion coefficients (D) have been obtained from interdiffusion experiments or steep penetration profiles. The penetration depth, 2(0”t)“‘, is typically in the order of several tens of nm. In many cases,the diffusing element was deposited on the specimen surface in thicknesses of the same order of magnitude as the penetration depth. These experiments have remarks like “concentration gradient” or “interdiffusion”. Diffusion of isolated atoms is found by tracer investigations (diffusion coefficient D*). In some of the papers, the term “marker” has been used instead of tracer. Markers conventionally designate the “inert particles” which are incorporated at the interface of two materials to measurethe Kirkendall shift (seechapter 1.4 of this volume in the general introduction). Only results which seemvery reliable have been given in the Arrhenius plots in the figures (column 9). The referencesare given in column 10.

Land&BBmstein New Series III/26

Horviith

7.5 Diffusion Host system (produced by)

Diffusant

Preannealing temperature p]/ time [s]

Diffusion temperature K

tables for amorphous D [m2/sl/

at temperature p]

DO m2/s

alloys Q

Remarks

Fig.

Ref.

kJ/mol

7.5.1 Diffusion in cobalt-base amorphous alloys Co90Zrlo

-

-

*I

6.6. lo-241573

1.8. lo+3

290

Concentration gradient; 0” indi- rectly from rates of primary crystallization; *): the temperature regime has not been given

88K2

Cc&, 1 (melt spinning)

To

633/*)

633

1.10-m...

_

_

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing at different periods of time

88Ml

(production method not mentioned)

‘+3&d,, (co-sputtering) Co,oJ320

5.4 * 10-19

5’Co

63313600

515.e.695

3.6. 10-20/573

8.03.10-'

147

Radiotracer; sectioning by ionbeam sputtering

6

88Ml

i9=Au

63313600

632.0.684

1.67. 1O-25/573

4.15.10-2

256

Radiotracer; sectioning by ionbeam sputtering

-

90D

To

6231345600

498.e.602

3.3. lo-=/573

1 . IO-”

115

Implanted radiotracer; sectioning by &plasma sputtering

6

82Gl

-

-

573.e.693

1.2. lo-201573

7.2. 1O-3

195

Concentration gradient; d indi- rectly from rates of primary crystallization; B diffusion is assumed for d; Do from Fig. 9 of [81K2]

81K2

-

-

*I

8.4. 1O-2'/573

4 * 10-s

193

Concentration gradient; 0” indi- rectly from rates of primary crystallization; *): the temperature regime has not been given

88Kl

(melt spinning)

Co,,Bz,

B

573 ... 6331 3600 . . .7200

568 ... 623

8.3 . 10-20/573

1.3 * 10-14

57

Concentration gradient; AES; Do from Fig. 3 of [88M2]

-

85M, 88M2

Si

573 .-. 6331 3600.. .7200

573 ... 623

1.2. lo-2o/573

4.1. lo-l2

93

Concentration gradient; AES; Do from Fig. 3 of [88M2]

-

85M. 88Mi

-

-

523

3.10-21... 1 .10-21

_

_

Interditfusion of thin crystalline films of Co and Zr through amorphous Co,,Zr,,; d indirectly from X-ray scattering; *): the composition of the alloy may vary

86K2

(melt spinning)

Co60Zr40 *) (solid state reaction)

7.5.2 Diffusion in copper-base amorphous alloys Cu,oAg,o/

-

308

5.7. lo-=... 1.4.10-2s

_

-

Interdiffusion of thin amorphous films; d indirectly from resistivity measurements; in unrelaxed material, d is a function of diffusion time

-

84R

317

1.2. lo-=... 5.2. 1O-25

_

-

Interdiffusion of thin amorphous films; d indirectly from resistivity measurements; in unrelaxed material, B is a function of diffusion time

-

84R

321

1.4. lo-24... 8.3. 1O-25

_

-

Interdiffusion of thin amorphous films; d indirectly from resistivity measurements; in unrelaxed material, d is a function of diffusion time

-

84R

308...321

3.6. IO-“/573

7.3 * 10-7

113

Interdiffusion of thin amorphous films; d indirectly from resistivity measurements; *): diffusion data from the isoconfigurational (relaxed) state

-

84R

Cu,oAg,o

(co-evaporation)

-

-

-

*)

DO

Host system (produced by)

Diffusant

Preannealing temperature [K]/ time [s]

Diffusion temperature K

D[m*/sll at temperature [K]

Q

Remarks

m2/s

kJ/mol

CuGL

-

-

713

5.3. lo-‘91713

-

-

Concentration gradient; d indirectly from crystal-growth rates; Zr diffusion is assumed for b

80F

Cu50Zr50 (melt spinning)

Ag

-

590... 658.5

6.7. 10-22/573

1.3 . lo- l5

69

Concentration gradient; AES; b on the “wheel side” of the material

87S5

Ag

-

590.m-658.5 7.5. 10-22/573

1.2.10-‘4

79

Concentration gradient; AES; d on the “non-wheel side” of the material

8785

Au

-

59O.a.658.5 4.4. 10-21/573

1.7. 10-7

149

Concentration gradient; RBS; d on the “non-wheel side” of the material

8735

(splat quenching)

Fig.

Ref.

7.5.3 Diffusion in iron-base amorphous alloys Fe,,%

*9Fe

-

633

2.9. lo-=... 4.1 . 10-19

_

_

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

59Fe

-

673

3.6. IO-rs... 2.4. IO-l8

_

_

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

5gFe

673/9000 or 633164800

473.e.773

3.5 * lo-201573

3.1 * 10-7

142

Radiotracer; sectioning by ionbeam sputtering

7

87H3, 88P

g5Zr

673/9000

593.a.743

1.8. 10-2’/573

2.1 . 10-3

242

Radiotracer; sectioning by ionbeam sputtering

7

88H5, 88P

(melt spinning)

Fe90Zrlo

-

-

*I

3.1 . lo-271573

20

305

Concentration gradient; 0” indirectly from rates of primary crystallization; *): the temperature regime has not been given

-

88K2

%JL

Si

-

571,646

4.5. lo-231573

1.4. 10-7

170

Concentration gradient; AES

-

83L2

%A3

Si

-

571, 646

9 * lo-231571

-

-

Concentration gradient; AES; no diffusion detected at 646 K

-

83L2

WA4 (melt spinning)

Si

63217200

571,646

4.5.10-231573

1.4. 10-7

170

Concentration gradient; AES; d independent of preannealing

83L2

-

-

483 ... 650

7.8 ’ 10-21/573

2.10-4

180

Concentration gradient; d indirectly from rates of primary crystallization; B diffusion is assumed for d

-

8OK2

-

-

639.e.659

5.2. 1O-23/573

8.5 * lo+20

474

Concentration gradient; 4 indirectly from crystal growth rates; B diffusion is assumed for D; Do and Q from Fig. 7 of [82N)

-

82N

-

-

523

1 .;p1,‘-;,

-

-

Interdiffusion of thin amorphous films; d indirectly from X-ray scattering; in unrelaxed material, d is a function of diffusion time

-

8262

-

-

573

8. 10-23 . . . 3.10-24

-

-

Interdiffusion of thin amorphous films; d indirectly from X-ray scattering; in unrelaxed material, d is a function of diffusion time

-

82G2

(melt spinning)

(melt spinning) (melt spinning)

Fe85B15ho/ Pds5%)50

(co-sputtering)

(continued)

Host system (produced by)

Diffusant

Preannealing temperature [K]/ time [s]

Diffusion temperature K

D [m%l/ at temperature [K]

Q

Remarks

Fig.

Ref.

m2/s

kJ/mol

DO

(Fe,5B15)50/(Pd,5Si15)50 (continued) (co-sputtering)

-

523/*)

483.e. 543

4.5 . 10-241573

2.7. lo+

195

Interdiffusion of thin amorphous films; d indirectly from X-ray scattering; Do from Fig. 5 of [8262]; *): preannealing for different periods of time

-

8202

Fe85B15

P

-

488.e. 543

2.7 - 10-2’/573

4.5 * 10-s

178

Tracer: SIMS

-

81E

Feloo-Al Feloo-yB, x, y = 15...62; (co-sputtering)

-

-

573

2.9. I()-20... 5.10-21

-

Interdiffusion; AES; in unrelaxed material, b is a function of diffusion time; (a at a B concentration of 30%)

86s

-

-

525.a. 624

1.2. IO-=/573

7.3. 10-6

173

Interdiffusion; AES; Do and Q at a B concentration of 30%; Do from Fig. 6 of [86S]

-

86s

525.~. 624

1 . IO-2’/573

3.7 - 10-i’

72

Interdiffusion; AES; Do and Q at a B concentration of 45 %; Do from Fig. 6 of [86S]

-

86s

(melt spinning)

Fe85P15

-

-

573,603

I.6 . IO- 19/573

I -10-2

184

Concentration gradient; b indirectly from rates of primary crystallization; P diffusion is assumed for 6; Do and Q from Fig. 6 of [82K4]

-

82K4

Fe8,B16

Si

63217200

571,646

4.5 . lo-231573

I.4 * 10-7

170

83L2

-

-

483... 660

7.8. IO-211573

2.10-4

180

Concentration gradient; AES; d independent of preannealing Concentration gradient; ij indirectly from rates of primary crystallization; B diffusion is assumed for d

(melt spinning)

(melt spinning)

80K2

-

-

483.s.663

I. lO-22/483 4. lo-‘91573 2 . IO- “1663

-

180

-

-

523...663

1.8. 1O-21/523 2.2. lo-291573 3.8 . IO- “1663

-

-

Fe84BC 6 10 (melt spinning)

-

-

483.e.613

2. 1O-22/483 1 . lo-‘91573 5. 10-18/613

-

190

Concentration gradient; d indirectly from rates of primary crystallization; B diffusion is assumed for b; curved Arrhenius plot for B;(T)

80K2

Fe84P 10C 6 (melt spinning)

-

-

633...703

1.3. lo-231573

23

266

Concentration gradient; ij indirectly from rates of primary crystalliztion; B diffusion is assumed for 6; Do and Q from Fig. 6 of [82K4]

80K2, 82K4

Fes2B18

Au

-

575e.e645

1.5. lo-211573

8.9. IO-”

129

Concentration gradient; AES

-

8732

Au

-

575... 645

1.4. lo-211573

2.3. IO-”

112

Concentration gradient; RBS and AES

-

8784

Au

6531600

576... 645

9.2. lo-=/573

1.5. 10-I’

123

Concentration gradient; RBS; d independent of preannealing; Do from Fig. 2 of [8833]

8883

Au

-

575... 645

1.3. lo+/573

4.7.10-l’

116

Concentration gradient; RBS

-

8884

Au

6531600

575e.e645

1.3 . lo-211573

8.9. IO-”

119

Concentration gradient; RBS

7

8884

cu

6531600

576... 638

9.8. 10-21/573

2.10-7

Concentration gradient; AES; fi independent of preannealing; Do from Fig. 2 of [8833]

7

8833

kJ%C8

(melt spinning)

Concentration gradient; d indirectly from rates of primary crystallization; B diffusion is assumed for d; curved Arrhenius plot for D”(T) Concentration gradient; B indirectly from rates of primary crystallization; metalloid diffusion is assumed for d; curved Arrhenius plot for D:(T)

80K2

82K4

(melt spinning)

146

(continued)

DO

Remarks

Fig.

Ref.

(5.9 * lo- 14) (74)

Concentration gradient; RBS; no clear Arrhenius behavior for d(T)

-

8884

8.0 . lo- 2’/573

2.5. lo+

159

Concentration gradient; RBS

-

88S5

600 . . .640

2.2. lo-2’/573

0.31

221

Concentration gradient; RBS

7

8835

-

559...6448

2.7. lO-21/573

5.7 * 10-4

190

Concentration gradient; AES

-

83L2

Si

57317200

598...696

1.4. lo-211573

2.9 - 1O-2

212

Concentration gradient; AES; b independent of preannealing

82L

-

-

613-e-678

6. 10-20/613 3.10-‘91643 2 - lo- ‘a/678

-

-

Concentration gradient; d indirectly from rates of primary crystallization; B diffusion is assumed for 6; curved Arrhenius plot for 6(T)

80K2

Fe81B,3.5Si3.5C2 Si

-

623.a.723

4.6. 1O-22/573

1.7 - 10-l’

72

Concentration gradient; AES; d indirectly from Si segregation to a free surface

86V

Fe80.5B19.5 (melt spinning)

Si

-

571,646

4.5 . lo-231573

1.4 * 10-7

170

Concentration gradient; AES

-

83L2

Fe80B20 (melt spinning)

198A~

-

554, 594

1 .,10102~;3.

-

-

Radiotracer; sectioning by ionbeam sputtering

-

8lVl

Au

-

546 . . .643

4.4 * lo-2’1573

2.1 . lo-’

150

Concentration gradient; AES

-

8732

Au

-

546.e-643

3.4 * lo-211573

1.3. lo-’

149

Concentration gradient; RBS

-

8733

Au

6231900

546-e. 643

3.1 * lo-=/573

2.2 * 10-7

152

Concentration gradient; RBS

7

8733

Host system (produced by)

Diffusant

Preannealing temperature [K]/ time Is1

Diffusion temperature K

at temperature [K]

m2/s

Fe,,B,, (continued) (melt spinning)

Pb

-

601... 636

1.1 * lo-201573

Sb

-

575.**640

Sb

6231600

Si

Fe82B12Si6

Fe82M02B16 (melt spinning)

D[m’/sl/

Q

kJ/mol

(melt spinning)

(melt spinning)

Au

6231900

546.e.643

3.1 . lo-=/573

1.2. 10-7

149

“Fe

-

543, 562

-

-

“Fe

-

593

3 . 10-221543 2. 1O-21/562 2.4. lo-21 . . . 2.4. 1O-22

-

-

“Fe

593121600

543...655

3 . lo-=/573

7.9. 10-2

235

Pb Si

63217200

546...582 571, 646

1.3. lo-201573 4.5. lo-=/573

4.3 1.4. 10-7

225 170

-

-

623...673

7.8. 1O-21/573

2 * 10-4

180

Fe80B 12Si8 (melt spinning)

-

-

633 ... 693

1 . lo-‘*/573

1.1 . 10-4

154

Fe7gB21 (melt spinning)

Si

-

571,646

4.5 . lo-231573

1.4. 10-7

Fe7gWlB20 (melt spinning)

“Fe

-

593

1.5. 1()-21... 7.1 * 10-23

-

Fe78Bi3Sig (melt spinning)

5gFe

673/*)

673

6.3. IO-20... 9.10-21

Concentration gradient; RBS; d independent of preannealing; Do from Fig. 2 of [8883] Implanted radiotracer; sectioning by ion-beam sputtering Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time Radiotracer; sectioning by ionbeam sputtering Concentration gradient; RBS Concentration gradient; AES; d independent of preannealing Concentration gradient; B indirectly from rates of primary crystallization; B diffusion is assumed for ij

-

8833

-

81V3

-

88H5, 880

7 -

88H5, 880 8783 83L2

-

80K2

Concentration gradient; 0” indirectly from rates of primary crystallization; B diffusion is assumed for 0”

-

83C2

170

Concentration gradient; AES

-

83L2

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

880

Radiotracter; sectioning by ion- 89U beam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing (continued) for different periods of time

Host system (produced by)

Preannealing temperature [K]/ time [s]

Diffusion temperature

67417200

B

Diffusant

Fig.

Ref.

m2/s

Q

Remarks

at temperature [K]

kJ/mol

551.+. 783

1.8. IO-“/573

4.6. lo-’

202

Radiotracer; sectioning by ionbeam sputtering

8

87H3, 89U

-

573.s.633

6.8 . lo- ‘91573

5.9. 10-s

109

Concentration gradient; SIMS

-

84D

B

6331600

573...633

1.1 . IO--201573

4.3 * 1o+a

259

Concentration gradient; SIMS

8

84D

Fe77.5B22.5 (melt spinning)

Si

63217200

571, 646

4.5. lo-231573

1.4. IO-’

170

Concentration gradient; AES; 6 independent of preannealing

83L2

Fe7,B2, (melt spinning)

Si

-

571, 646

4.5 . lo-231573

1.4 * 10-7

170

Concentration gradient; AES; partial crystallization occurred at646K

83L2

Fe,$,,

Si

573 ... 6331 3600*..7200

583.a.613

7.10-201573

2.5. 10-l’

28

Concentration gradient; AES; Do from Fig. 3 of [88M2]

-

85M, 88M2

Fe74B26 (melt spinning)

Si

571,646

4.5 * lo-231573

1.4 * lo-’

170

Concentration gradient; AES; partial crystallization occurred at646K

83L2

Fe s5.sNi18.5B 26 (melt spinning)

B

473.0.593

4.3 . lo-=/573

3 * lo-‘3

97

Concentration gradient; d indirectly from deboriding by oxidation of the surface in combination with photometric analysis

88B5

Feb2Nih2B 16

-

592***707

7.2. 10-21/573

0.1

210

Concentration gradient; d indi- rectly from rates of primary crystallization; B diffusion is assumed for 6; Do from Fig. 2 of [80Kl]

Fe,,Bi,Si, (continued) (melt spinning) “Fe

Fe7,P1,C7

Db2/sl/

DO

K

(melt spinning)

(melt spinning)

(melt spinning)

-

80Kl

Fe41Ni41B18

-

-

650, 678

3. lo-“/650 2. lo-‘*/678

-

-

Concentration gradient; 0” indirectly from rates of primary crystallization; B diffusion is assumed for 0”

-

80K2

-

6331240

573...673

2.2. 10-2l/573

1.1 . lo+3

260

Concentration gradient; 0” indirectly from rates of primary crystallization; B diffusion is assumed for 0”

-

82K4

“Fe

613/*)

613

6.4. IO-21 . . . 1 .10-21

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing for different periods of time

87P

5gFe

573 ... 633/*)

552... 643

7.9 ’ lo-231573

1.1 . 10-2

221

Radiotracer; sectioning by ion- 8 beam sputtering; *): preannealing for different periods of time

85P, 87P

-

-

592... 707

7.2. 1O-21/573

0.1

210

Concentration gradient; d indi- rectly from rates of primary crystallization; B diffusion is assumed for fl; Do from Fig. 2 of [80Kl]

80Kl

-

6331240

593.a.713

2.2. lo-211573

1.1 . 1o+s

260

Concentration gradient; 0” indirectly from rates of primary crystallization; B diffusion is assumed for d

-

82K4

Au

-

573...685

1.3. lo-221573

9.4. 10-5

196

Concentration gradient; RBS

-

82A1

Au

6581300

573..*685

9. lo-231573

1.9 * 10-4

201

Concentration gradient; RBS

8

82Al

Au

6581300

573...685

1.2. lo-221573

1.6. 1O-4

199

Concentration gradient; RBS; B independent of preannealing; d, Do, and Q include the data of non preannealed states

82Al

(melt spinning)

Fe4,Ni4,B2,

(melt spinning)

(continued)

Host system (produced by)

DO

Fig.

Ref.

m2/s

Q

Remarks

at temperature [K]

kJ/mol

613...643

1.5. 10-‘9/613 7.5. lo-I91633 8 ’ lo-I81643

-

-

Concentration gradient of B isotopes; SIMS; curved Arrhenius plot for B(T)

-

80C

-

478...553

9.9.10-2r/573

3.1 . 10-6

159

Concentration gradient; 6 indi- rectly from boriding and deboriding by oxidation of the surface in combination with photometric analysis

84B

59Fe

573/*)

573

7.5. IO-=... 4.5.10-23

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing for different periods of time

85H2, 89U

“Fe

593/*)

593

2.0. I(-)-=... 3.3.10-22

_

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing for different periods of time

86H2

59Fe

613/*)

613

4.3.1()-21... 1.4. 10-t’

_

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time; *): preannealing for different periods of time

86H2

59Fe

573 - -. 633/*)

571 . . * 643

5.5. IO--231573

2.7. lO-2

227

Radiotracer; sectioning by ion- 8 beam sputtering; *): preannealing for different periods of time

85H1, 86H2

“Ge

-

570, 591

< 1 . lo-22/570

-

-

Radiotracer; sectioning by ionbeam sputtering

81Vl

Diffusant

Preannealing temperature [K]/ time Is1

Diffusion temperature K

658/300

B

Fe,,Ni,,B,, (continued) 1°B (melt spinning)

D[m2/sl/

-

Fe40Ni40P14B6

s2P

573 . . .633/*)

573.e.644

1.3 * lo-231573

1 . lo+4

295

Implanted radiotracer; sectioning by ion-beam sputtering; *): preannealing for different periods of time; D* is roughly independent of preannealing

-

-

592...707

7.2. 10-21/573

0.1

210

Concentration gradient; d indi- rectly from rates of primary crystallization_; B diffusion is assumed for D; Do from Fig. 2 of [80Kl]

80Kl

5gFe

-

541-e. 617

2.5. 10-21/573

1.10-3

193

Implanted radiotracer; sectioning by ion-beam sputtering

81V3

“Fe

-

423...573

1.7. lo-211573

2.6 . IO- l6

57

Radiotracer; “Kriukov-Joukhovitsky- and Gruzin method”

83s

P

-

623

5.10-20... 1 .10-2l

-

-

Concentration gradient; AES; d indirectly from P segregation to a free surface

76W

P

523/*)

45Oe.3800

5.1 ’ 10-231573

7.10-6

188

Concentration gradient; AES; 4 indirectly from P segregation to a free surface; d independent of preannealing; *): preannealing for different periods of time

81B

=P

-

553 ... 573 I) 5.5 * lo-=/573 573 ... 583 II) 2.4. 10-22/573 583 1.. 613 III) 4.3 . 10-22/586

1 . lo+6 -

299 -

Implanted radiotracer; sectioning by ion-beam sputtering; D* has been observed in three amorphous stages: I) - III)

81V2

=P

-

443...529

1.8. 1O-22/573

2.4. IO-l3

100

Radiotracer; “Kriukov-Joukhovitsky- and Gruzin method”

-

83s

-

-

633 ... 833

7.7 * lo-=/573

4.1 . 1o+‘O 370

Concentration gradient; 0” indirectly from crystal-growth rates; Do from Fig. 8 of [81M]

-

81M

(melt spinning)

8

-

86H3

(continued)

Host system (produced by)

Preannealing temperature [K]/ time Is]

Diffusion temperature K

‘Dh2/sl/

m2/s

Q

Remarks

at temperature [K]

kJ/mol

-

623..+653

6.6 * lo-2’/573

2.7. 1O+4

270

Concentration gradient; fi indi- rectly from crystal-growth rates; metalloid diffusion is assumed for d; Do and Q from Fig. 12 of [8IT]

-

-

650...675

3.9 * IO-241573

2.5. IO+6

327

Concentration gradient; d indirectly from crystal-growth rates; P diffusion is assumed for d

P

523/*)

450-.. 800

I.5 * IO-22/573

7.4. 10-6

183

Concentration gradient; AES; d indirectly from P segregation to a free surface; d independent of preannealing; *): preannealing for different periods of time

Diffusant

Fe,,Ni,,P,,B, (continued) (melt spinning) -

Fe31%oCr16

DO

V2PJ3,

(melt spinning)

Fig.

-

Ref.

82F

7.5.4 Diffusion in nickel-base amorphous alloys B

5231600

413 .a.473

2.1 * IO-2o/413 3.4 * IO-201453 3 ’ IO-‘91473

-

-

Concentration gradient; SIMS; no Arrhenius behavior for @T)

-

84D

Ni,,P,,Si, (melt spinning by single roller technique) (melt spinning by twin roller technique)

B

6131600

503.*.533

3.3 . IO-‘91573

1.5.10-9

106

Concentration gradient; SIMS

9

84D

B

6131600

503...533

3. IO-‘91573

2.6. IO-’

109

Concentration gradient; SIMS

-

84D

NW& (melt spinning)

B

5231600

413.a.473

4.5 * lo-is/573

2.10-12

62

Concentration gradient; SIMS

9

84D

Ni80P20 (melt spinning)

Au

-

442 . . .506

1.4. lo-2o/573

1.5. 10-S

132

Concentration gradient; AES and RBS

-

88B2

Ti

-

473... 527

1.2. lo-“/573

8.6. 10-s

163

Concentration gradient; AES

-

88B3

-

-

463 .-..660

8.8 * lo-‘91573

5.10-g

107

Interdiffusion of thin crystalline films of Ni and Zr through amorphous Ni,,Zr,,; d indirectly from DSC measurements; *): the composition of the alloy may vary

-

87H2

Au

-

633...733

4.6. 10-23/573

3.3. 10-S

163

Implanted tracer; RBS; Do from Fig. 3 of [86Bl]

-

86Bl

Bi

-

673 ... 763

1.2. lo-231573

1.3. lo-lo

143

Implanted tracer; RBS; Do from Fig. 3 of [86Bl]

-

86Bl

(co-evaporation)

cu

-

573

1.5 ’ lo-2i/573

-

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

(melt spinning)

Hg

-

663...748

1.4. 10-241573

1.9. 10-4

221

Implanted tracer; RBS; Do from Fig. 3 of [86Bl]

-

86Bl

Pb

-

648...773

2.10-231573

7.7 * lo-lo

149

Implanted tracer; RBS; Do from Fig. 3 of [86Bl]

-

86Bl

Au

-

613.v.773

2 ’ lo-231573

4.2. 1O-6

190

Concentration gradient; RBS

-

82A1, 82Kl

Au

7731600

613...773

3.6. 10-23/573

4.9. 10-7

177

Concentration gradient; RBS

9

82A1, 82Kl

Au

7731600

613...773

2 * lo-231573

1.5. 10-6

185

Concentration gradient; RBS; d independent of preannealing; b, Do, and Q include the data of non preannealed states

82A1, 82Kl

Ni,,B,,Si, (melt spinning)

NW&

*I

(solid state reaction)

Ni.dh

(melt spinning)

W4W6

(melt spinning)

Host system (produced by)

Diffusant

Preannealing temperature [KJ/ time [s]

Diffusion temperature K

Fig.

Ref.

m2/s

Q

Remarks

at temperature [K]

kJ/mol

Nib4Zrj4Pd, *) (ion-beam mixing)

Au

-

723-a. 780

3.5 * lo-241573

8.9 . IO- *

180

Implanted tracer; RBS; Do and Q from Fig. 3 of [86B2]; *): the composition of the alloy may vary

-

86B2

Ni62.gZr37.1

cu

-

573

1.1 . lo-=/573

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

Ni62Zr38 *I (ion-beam mixing)

Au

-

623,673

2.5. lo-=/573

1.5 * 10-6

184

Implanted tracer; RBS; Do and Q from Fig. 3 of [86B2]; *): the composition of the alloy may vary

-

86B2

Ni,,Zr,,Pd, *) (ion-beam mixing)

Au

-

653.e. 783

3.5 . lo-241573

8.9. IO-*

180

Implanted tracer; RBS; Do and Q from Fig. 3 of [86B2]; *): the composition of the alloy may vary

-

86B2

Ni61Zr3g/‘%Zr6,

Ni

-

528e.a573

5.9 * lo-211573

-

105

Interdiffusion; RBS; Q from Table 1 of [86Hl] if an Arrhenius law is assumed for d

-

86Hl

Zr -

-

528s..573

< 5.9 * lo-=/573

-

Interdiffusion; RBS

-

86Hl

528...573

9.1 * lo-2o/573

-

(99)

Interdiffusion; RBS; Q from Table 1 of [86Hl] if an Arrhenius law is assumed for d

-

86Hl

Ag

-

723 ..a 873

4.7. 10-21/723 1.9. IO-“/783 2.3 . lo- ‘s/873

-

212

Concentration gradient; AES; curved Arrhenius plot for &T)

-

85A

D W/U

DO

(co-evaporation)

(co-evaporation)

Ni60m40

(melt spinning)

(splat quenching)

(melt spinning)

Ni5g.5m40.5

Ag

-

723...873

1.2 * lo-‘31573

6.9 +IO-’

184

Concentration gradient; AES; no clear Arrhenius behavior for D(T); Do and Q from Fig. 3 of [86A]

-

86A

Ag

8731300

723...873

2.2 . 10-241573

1.3. 10-7

184

Concentration gradient; AES; no clear Arrhenius behavior for d(T); Do and Q from Fig. 3 of [86A]

9

86A

Al

-

723.s.873

1.2. lo-231573

2.5. IO-l1

135

Concentration gradient; AES; Do and Q from Fig. 4 of [85A]

-

85A

Pb

-

723...873

4.6 . lo- ‘O/723 1.5. lo-‘*/773 4.3. 10-18/873

-

-

-

85A

-

871

4.2. 10-20/871

Concentration gradient; AES; curved Arrhenius plot for D;(T) Concentration gradient; 0” indirectly from crystal-growth rates

-

83C3

-

903.e.943

5.3. lo-381573

5.9. lO+l’

538

Concentration gradient; 6 indirectly from crystal-growth rates; Do from Fig. 3 of [87L]

-

87L

Au

-

670+.. 873

8.7. 10-22/573

1.4.10-‘3

90

Concentration gradient; RBS

-

82Kl

Au

8731300

675...877

2.W22/573

9.1. IO-l3

106

Concentration gradient; RBS

82Kl

Au

8731300

670... 877

6.2 . lo- “/573

3.5 . lo-l3

96

Concentration gradient; RBS; d independent of preannealing; b, Do, and Q include the data of non preannealed states

9 -

-

723 ... 873

3 . IO-“/723 7. IO-“/823 5. IO-17/873

81Kl

723136000

823

4. lo-“/823

Implanted tracer; nuclear reaction “B(p, @Be; no clear Arrhenius behavior for D*(T) Implanted tracer; nuclear reaction ’ ‘B(p, ar)‘Be

(melt spinning) 82Kl

81Kl (continued)

Host system (produced by)

Diffusant

Ni,,,,Nb,o., (continued) i*B (melt spinning)

Fig.

Ref.

m2/s

Q

Remarks

at temperature [K]

kJ/mol

573.e.873

2 * lo-=/573 3 * lo-‘91773 2. IO-“/873

-

-

-

86Kl

8781420

623.e.853

5.2 * lo-=/573

3.9. 10-J

240

Implanted tracer; nuclear reaction “B(p, @Be; no clear Arrhenius behavior for D*(T) Imuianted tracer: nuclear reaction ’ ‘B(p; a)*Be

9

86Kl

Preannealing temperature [K]/ time [s]

Diffusion temperature K

-

D[m2/sl/

DO

Ni58.5Zr41.5 *)

Ni

-

498 ... 598

3.5 * lo-‘91573

7 * 10-7

135

Interdiffusion of thin crystalline tilms of Ni and Zr through amorphous Ni,,.,Zr,,.,; d indirectly from X-ray scattering; *): the composition of the alloy may vary

-

87Sl

NLPb

Au

-

723

2. 10-23/723

-

-

Implanted tracer; RBS

-

81P

W5~45 (co-sputtering)

Au

-

763.e.873

1.8. 1O-3o/573

5.1. lo+2

356

Concentration gradient; RBS; Au diffusion is obtained by assuming 6,, : d,, = 100; Do from Fig. 7 of [82D]

Ni54.9Zr45.1

cu

-

573

2.9. lo-‘l/573

-

-

Tracer co-evaporated; SIMS

Ni50Zr50 (co-evaporation)

Au

-

573

4.3 * lo-241573

-

-

Tracer co-evaporated; RBS

86Hl

Au

-

573...653

1.7 * lo-231573

1.5. 10-a

164

Tracer co-evapoorated; RBS; D* from Fig. 1 of [87Hl]

87Hl

Au

-

573.e.649

4.8 - 10-24/573

1.5 * 10-s

170

Tracer co-evaporated; RBS

10

88H1, 88H2

Bi

-

573

5 ’ 10-24/573

-

-

Tracer co-evaporated; RBS

-

88H3

(solid-state reaction)

(co-sputtering) 82D, 83D

-

(co-evaporation)

88H1, 88H2

6OCo

568/l 73 000

486.a.643

1.8. IO-“/573

3.6. 1O-7

135

Tracer; ion-beam sputtering; D* independent of preannealing

10

88H1, 88H2, 88H6, 88H7

Cr

-

573

2.1 . lo-221573

-

-

Tracer co-evaporated; SIMS

-

87Hl

Cr

-

573

1.6. lo-**/573

-

-

Tracer co-evaporated; SIMS

-

88H3

cu

-

573

2.6. IO-*‘/573

-

-

Tracer co-evaporated; SIMS

-

86Hl

cu

-

473...653

2.5. lo-*l/573

1.8. IO-’

145

Tracer co-evaporated; SIMS; D* from Fig. 1 of [87Hl]

-

87Hl

cu

-

473 ... 653

3.1 . lo-*i/573

1.8. 1O-7

151

Tracer co-evaporated; SIMS

10

88H1, 88H2

Fe

-

573

8.4 . IO- **I573

-

-

Tracer co-evaporated; SIMS

-

87Hl 88H1, 88H2

Fe

-

*)

3 * lo-=/573

7.5. 10-7

158

Tracer co-evaporated; SIMS; *): the temperature regime has not been given

-

(solid state reaction) *)

Ni

-

573

5.6. IO-*l/573

-

-

Interdiffusion of thin crystalline films of Ni and Zr through amorphous Ni,,Zr,,; d indirectly from RBS; *): the composition of the alloy may vary

-

87Hl

(co-evaporation)

63Ni

-

526.e.638

3.6. IO-*‘/573

1.7. 10-7

139

Tracer; ion-beam sputtering

10

88H1, 88H2, 88H6, 88H7

Ti

-

573

1.6. 1O-23/573

-

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

523/*)

45Oe.e800

1.4. lo-**/573

2.9 * 10-7

168

Concentration gradient; AES; d indirectly from P segregation to a free surface; d independent of preannealing; *): preannealing for different periods of time

-

81B

Ni36Fe32Cr14P12B6P (melt spinning)

(continued)

Host system (produced by) Ni,,Fe,,Cr,,P,,B, (melt spinning)

Diffusant

Preannealing temperature w]/ time [s]

(continued) -

-

-

Diffusion temperature K

D [m2/sl/

DO m2/s

Q

Remarks

Fig.

Ref.

at temperature [K]

kJ/mol

623.e.648

1.8 - 10-22/573

17

252

Concentration gradient; fi indirectly from crystalgrowth rates; Do from Fig. 6 of [81H]

-

81H

573..:653

4.1 . lo-2973

5.8

243

Concentration gradient; fi indirectly from crystalgrowth rates; metalloid diffusion is assumed for d; Do and Q from Fig. 4 of [82K4]

-

82K4

7.5.5 Diffusion in palladium-base amorphous alloys Pd85Si15h1/

-

-

523

3.8. lo-25 . . . 4.10-26

-

-

Interdiffusion of thin amorphous films; B indirectly from X-ray scattering; in unrelaxed material, d is a function of diffusion time

80R

ll”Ag

-

460... 552

8.1 . 1O-22/573

2*10-‘0

125

Implanted radiotracer; sectioning by &plasma sputtering

75G

-

484

4.8. IO-25 . . . 1.10-26

-

-

Interdiffusion of thin films; d indirectly from X-ray scattering; in unrelaxed material, d is a function of diffusion time

80R

484/*)

484, 511

7.8. 1O-24/573

1.3. 10-s

167

Interdiffusion of thin films; d indirectly from X-ray scattering; *): preannealing for different periods of time

80R

(Fe85B15h9 (co-sputtering)

Pd81Si19

(splat quenching)

Pd80Au7%3)70/Fe30 (co-sputtering)

-

-

Pd80Si20

195A~

573/90000

498...543

6. 10-24/498 6.7. 1O-23/531 2.4. 1O-22/543

-

183

6Li

-

513 ... 563

2. lo-2o/513 2.4. lo-“/543 6. 10-18/563

1.1o+l*

385

500

2.3 . lo- 26/500

-

-

(co-evaporation)

(splat quenching)

(not mentioned) Pd,,Cu,Si,, (melt spinning)

P48Si22*I

(ion-beam mixing at 73 K)

Implanted radiotracer; sectioning by if-plasma sputtering; no clear Arrhenius behavior for D*(T) Implanted tracer; nuclear reac- tion 6Li(n, ol)T; no clear Arrhenius behavior for D*(T) d indirectly from steady-state creep measurements

82Gl

76B

72M

Au

-

533 ... 588

1.4. lo-211573

1.3. 10-S

175

Implanted tracer; RBS; Do from Fig. 3 of [87B]

-

87B

Au

-

533 ... 598

9.4. lo-221573

3.10-3

203

Implanted tracer; RBS; Do from Fig. 3 of [88B4]

-

88B4

Bi

-

553 ... 598

1.4. lo-221573

3.9 . IO+ lo

356

Implanted tracer; RBS; Do from Fig. 4 of [88B4]

-

88B4

Hg

-

553...598

1 . lo-221573

3.4 * lo+2

269

Implanted tracer; RBS; Do from Fig. 4 of [88B4]

-

88B4

Ir

-

558.~. 598

8.8. lo-23/573

1.1 . 10+13 385

Implanted tracer; RBS; Do from Fig. 3 of [88B4]

-

88B4

Pb

-

553 ... 598

2.3. lO-22/573

4.1 . lo+4

288

Implanted tracer; RBS; Do from Fig. 4 of [88B4]

-

88B4

Pt

-

533 ... 598

2.1 . lo-=/573

3.5. 10-9

134

Implanted tracer; RBS; Do from Fig. 3 of [88B4]

-

88B4

Tl

-

553...598

1.8. 1O-22/573

1.1 . lo+2

261

Implanted tracer; RBS; Do from Fig. 4 of [88B4]

-

88B4

w

-

558.~. 598

4.1 . lo-231573

4.9. lo+5

308

Implanted tracer; RBS; Do from Fig. 3 of [88B4]

-

88B4

Au

-

573.m.633

6. 1O-22/573 1.6. 10-20/613 1.5. 10-20/633

-

-

Implanted tracer; RBS; no Arrhenius behavior for D*(T); *): the composition of the alloy may vary

-

86B2 (continued)

Host system (produced by)

Diffusant

Preannealing temperature [K]/ time [s]

Diffusion temperature K

D [m”/sl/ at temperature [K]

Pd,,Si,, (continued) (ion-beam mixing at 295 K *)

Au

-

573.e.633

Au

613/5400

Au

Pd,,.5Cu6%6.5

DO

Q

Remarks

m2/s

kJ/mol

4.3 . IO-=/573 9.5. 10-21/613 3. 1O-2o/633

-

-

573.a.633

2.6 - I0-22/573 1 . 10-20/613 3.2. IO-2a/633

-

-

Implanted tracer; RBS; no clear Arrhenius behavior for D*(T); *): the composition of the alloy may vary Implanted tracer; RBS; no clear Arrhenius behavior for D*(T)

-

533.a.613

3.8 . IO-2’1573

1.4. 10-14

72

Implanted tracer; RBS; Do from Fig. 2 of [78c]

-

78C,

Au

6231300

533.a.653

1.4. IO-221573

6.8. 10-E

161

Implanted tracer; RBS; Do from Fig. 2 of [78c]

-

78C

Au

-

533.e.653

3.3 . IO-=/573

3 * 10-S

175

Concentration gradient; RBS

-

82Al

Au

6231300

533.a.653

3.1 . IO-=/573

1.2. 10-5

171

Concentration gradient; RBS

6

82Al

Au

6231300

533-a-653

3.2. IO-21/573

1.9. 10-5

173

Concentration gradient; RBS; b independent of preannealing; d, Do and Q include the data of non preannealed states

82AI

Au

-

553.e.653

3.2. 10-2’/573

6.7 - 1O-4

190

Implanted tracer; RBS; Do from Fig. 4 of [86B2]; *): the composition of the alloy may vary

-

86B2

Au

583/I 800

553-e-653

1.9. IO-=/573

4 * 10-4

190

Implanted tracer; RBS; Do from Fig. 4 of [86B2]

-

86B2

Au

-

553,588

8.1 . 10-21/553 4.7. IO-2a/588

-

-

Implanted tracer; RBS; *): the composition, of the alloy may vary

-

86B2

(splat quenching or melt spinning)

(melt spinning)

Pd,,Si,, *I

(ion-beam mixing at 303 K)

P44Si26l )

(ion-beam mixing at 73 K)

Fig.

Ref.

86B2

86B2

7.5.6 Diffusion in silicon-base amorphous alloys Si,,Ti,, *) (solid-state reaction)

-

-

623...673

6.1 . 1O-22/573

2.4. 10-4

193

Interdiffusion of thin crystalline films of Si and Ti through amorphous S&T&; d indirectly from TEM; *): the composition of the alloy may vary

-

88H4

7.5.7 Diffusion in zirconium-base amorphous alloys Zr80C020 (melt spinning)

-

-

*I

2.9. 10-‘8/573

0.6

190

Concentration gradient; d indirectly from rates of primary crystallization; *): the temperature regime has not been given

-

88K2

Zr80Fe20

-

-

*)

1.2. lo-‘S/573

2

200

Concentration gradient; d indirectly from rates of primary crystallization; *): the temperature regime has not been given

-

88K2

Zr,6Fe24

59Fe

-

563

7.6. IO-21 . . .

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

(melt spinning)

(melt spinning)

6.6.10-22

59Fe

-

573

1.1()-19...

2.5. 1O-21

59Fe

563/10 800

493.. 613

2.8. 1O-21/573

0.6

223

Radiotracer; sectioning by ionbeam sputtering

11

87H3, 88P

95Zr

563110800

533 . . 613

3.9. lo-221573

7.10+6

310

Radiotracer; sectioning by ionbeam sputtering

11

87H3, 88P

Host system (produced by)

Diffusant

Preannealing temperature [K]/ time Is1

Diffusion temperature K

Db2/sl/

DO

at temperature [K]

m2/s

Zr,,Fe,,

‘9Fe

-

563

1.2. lo-21... 1.6. 1O-22

59Fe

563/8100

533***593

9sZr

-

Au

Q

Remarks

Fig.

Ref.

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

2.8 . lo- 22/573

26

252

Radiotracer; sectioning by ionbeam sputtering

11

88P

563

9.1 . 10-22 . . . 1.5 * 10-22

-

-

Radiotracer; sectioning by ionbeam sputtering; in unrelaxed material, D* is a function of diffusion time

-

88P

-

553.e.613

1.3 * lo-2r/573

3.3 * 10-s

180

Concentration gradient; RBS

-

82A1, 82A2, 82Kl

Au

6131600

553.e.613

5.9 * lo-=/573

0.44

229

Concentration gradient; RBS

11

82A1, 82A2, 82Kl

Au

6131600

553-s-613

1.3 * lo-=/573

2.2 * 10-4

189

Concentration gradient; RBS; 6, Do, and Q include the data of non preannealed states

-

82A1, 82A2, 82Kl

(co-evaporation)

63Ni

-

493.a.573

3.3 . lo-201573

1 .10-s

115

Radiotracer; sectioning by ionbeam sputtering

-

88C

(melt spinning)

Pb

-

553.e.613

1.7. lo-‘91573

5.8 . lo+’

269

Concentration gradient; RBS

-

82A2

Pb

6131600

553.e.613

8.4 . lo- 20/573

1.2 * lo+4

254

Concentration gradient; RBS

11

82A2

Pb

6131600

553.e.613

1.1 . lo-‘9/573

8.3. 1O+4

262

Concentration gradient; RBS; d independent of preannealing; 6, Do, and Q include the data of non preannealed states

-

82A2

Pt

-

552.9.612

6.8 * lo+/573

34

238

Concentration gradient; RBS

-

82A2

(melt spinning)

Zr66.J% 3 (melt spinning)

kJ/mol

H

Pt

6131600

552...612

2.9. lo-‘l/573

2.2

229

Concentration gradient; RBS

Pt

6131600

552...612

4. lo-211573

8.6

234

Concentration gradient; RBS; d independent of preannealing; d, Do, and Q include the data of non preannealed states

Zr6J%

Au

-

564...608

2.7. lo-“/573

1.1 . lo+2

259

Zr&L (co-evaporation)

cu

-

573

1.8. 10-20/573

-

WA%.5 (melt spinning)

-

-

635

4. IO-la/635

Zr61.7Ni3s.3

cu

-

573

ZMQ (melt spinning)

Au

-

550...619

Au

-

600

Au

-

cu

-

11 -

82A2

Implanted tracer; RBS; Do and Q from Fig. 4 of [86Bl]

-

86Bl

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

-

-

Concentration gradient; d indirectly from rates of primary crystallization

-

82s

-

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

8. IO-‘l/573

8.7. 1O-7

154

Concentration gradient; AES

-

8782

1.4. 10-20/600

-

-

Concentration gradient; AES

-

8734

600

1.6. 10-20/600

-

-

Concentration gradient; RBS

-

87S4

573

2.7. IO-‘l/573

-

-

Tracer co-evaporated; SIMS

-

88H1, 88H2

(melt spinning)

(co-evaporation)

Zr55.6NL4.4

(co-evaporation)

82A2

[Ref. p. 468

7 Diffusion in amorphous alloys (Figures)

466

Figures for 7 -T

700 K 650

600

500

550

4 Fig. 6. Diffusion coeflicients in cobalt- and palladium-base amorphous alloys. The Arrhenius lines have been evaluated from the data given in the Tables 7.5.1 and 7.5.5 for Do and

Q.

Curve I: “Co in Co,,Zr,,

(produced by melt spinning)

[88Ml];

Curve 2: Au in Pd,,,,Cu,Si,,,, (produced by melt spinning) [82Al]; Curve3: “Co in Co,,Gd,, (produced by co-sputtering)

::-:::I 1.5

1.5

[82Gl];

1.6

1.7 . ._

1.8

1.9

.10-3K-' 21

l/1 -

Curve 4: lg5Au in Co,,Zr,, [90D].

(produced by melt-spinning)

-1 104"6

750 K 700

650

600

550

500

mVs 10“'

lO“5. 1.2

1.3

1.6

1.5

1.6

1.7

1.8

1.9

2.0

.lO+K“

2.2

Fig. 7. Diffusion coefficients in melt spun iron-base amorphous alloys, The Arrhenius lines have been evaluated from the data given in Table 7.5.3 for Do and Q. Curve 1: “Fe in Fe,,Zr, [8783, 88P]; Curve 2: Cu in Fe,,B,, [88S3]; Curve 3: Sb in Fe,,B,, [8835]; Curve 4: Au in Fe,,B,, [8783]; Curve 5: Au in Fe,,B,, [88S4]; Curve 6: 5gFein Fe,,B,, (8885,880]; Curve 7: “Zr in Fe,,Zr, [88H5, 88P].

HorvPth

Landoh-Bhmstein New Series III/26

7 Diffusion in amorphous alloys (Figures)

Ref. p. 4681

,o-,7

800 K 750 I I II

-T 700 II

650

600

550

467

1

IO-251 1.2

1.3

1.4

1.5 1.6 l/T -

1.7

W3K4

1.9

Fig. 8. Diffusion coefficients in melt spun iron-base amorphous alloys. The Arrhenius lines have been evaluated from the data given in Table 7.5.3 for Do and Q. Curve I: B in Fe,,P,,C, [84D]; Curve 2: “Fe in Fe,,Ni,,B,, [85P, 87P]; Curve 3: 5gFe in Fe,,Ni,,B,, [85Hl, 86H2]; Curve 4: Au in Fe,,Ni,,B,, [82Ai]; Curve 5: a2P in Fe,,Ni,,B,, [86H3]; Curve 6: sgFe in Fe,,B,,Si, [87H3, 89U].

1.1

1.5

1.3

1.7 l/T-

1.9

2.1

-lOJK-'

Fig. 9. Diffusion coefficients in melt spun nickel-base amorphous alloys. The Arrhenius lines have been evaluated from the data given in Table 7.5.4 for Do and Q. Curve f: B in N&P&, [84D]; Curve 2: B in Ni,,P,,Si, [84D]; Curve 3: Au in Ni,,Zr,, [82Al, 82Kl]; Curve 4: rrB in Ni 59.Wzto.sWW; Curve 5: Ag in Ni,,Nb,, [86A]; Curve 6: Au in Ni,,,,Nb,,,, [82Kl].

-T 650 K

,o-~7

m*/s

600 ,

550 ,

\

lo-l9 -y

'

' \

I ~ 10-2' IO.22

Horvi%th

\

\ \

17

\

1.5

Land&-Biirnstein New Series III/26

500

\

10-1'8

10-20

b Fig. 10. Diffusion coefficients in the co-evaporated amorphous alloy Ni,,Zr,, . The Arrhenius lines have been evaluated from the data given in Table 7.5.4 for Do and Q. Curve f: “Co in Ni,,Zr,, [88Hl, 88H2, 88H6, 88H7]; Curve 2: 63Ni in Ni,,Zr,, [88Hl, 88H6, 88H7]; Curve 3: Cu in Ni,,Zr,, [88Hl, 88H2]; Curve 4: Au in Ni,,Zr,, [88Hl, 88H2].

2.5

1.6

1.7

1.8 l/T-

1.9

2.0 .W3K-'

468

7.6 References for 7 4 Fig. 11. Diffusion coefficients in melt swn zirconium-base amorphous alloys. The Arrhenius lines have been evaluated from the data given in Table 7.5.7 for Do and Q. Curve 1: Pb in Zr,,,,Ni,,,, [82A2]; Curve 2: “Fe in Zr,,Fe,, [87H3, SSP]; Curve 3: Pt in Zr,,,,Ni,,,, [82A2]; Curve 4: “Zr in Zr,,Fe,, 18783, SSP]; Curve 5: Au in Zr,,,,Ni,,, [82Al, 82A2, 82KlJ; Curve 6: “Fe in Zr,,Fe,, [SSP].

K'

7.6

72M 75G 76B 76W 78C 80C 80F 80Kl 80K2 80R 8lB 81E 81H 81Kl 81K2 81M 81P 81T 81Vl 81V2 81V3 82Al 82A2 82D 82F

2.2

References for 7

Maddin, R., Masumoto, T.: Mater. Sci. Eng. 9 (1972) 153. Gupta, D., Tu, K.N., Asai, K.W.: Phys. Rev. Lett. 35 (1975) 796. Birac, C., Lesueur, D.: Phys. Status Solidi (a) 36 (1976) 247. Walter, J.L., Bacon, F., Luborsky, F.E.: Mater. Sci. Eng. 24 (1976) 239. Chen, H.S., Kimerling, L.C., Poate, J.M., Brown, W.L.: Appl. Phys. Lett. 32 (1978) 461. Cahn, R.W., Evetts, J.E., Patterson, J., Somekh, R.E., Kenway Jackson, C.: J. Mater. Sci. 15 (1980) 702. Freed, R.L., Vander Sande, J.B.: Acta Metall. 28 (1980) 103. Kiister, U., Herold, U.: J. Phys. (Paris) 41 (1980) C8-352. KBster, U., Herold, U., Hillenbrand, H.-G., Denis, J.: J. Mater. Sci. 15 (1980) 2125. Rosenblum, M.P., Spaepen,F., Turnbull, D.: Appl. Phys. Lett. 37 (1980) 184. Baer, D.R., Pederson, L.R., Thomas, M.T.: Mater. Sci. Eng. 48 (1981) 283. Edelin, G., Tete, C.: Ser. Metall. 15 (1981) 739. von Heimendahl, M., Kuglstatter, G.: J. Mater. Sci. 16 (1981) 2405. Kijek, M., Ahmadzadeh, M., Cantor, B., in: Proc. Int. Conf. Metallic Glasses: Scienceand Technology, Vol. 2, Hargitai, C., Bakonyi, I., Kemtny, T. (eds.), Central Research Institute of Physics, Budapest, 1981, p. 397. Kiister, U., Herold, U., Nolte, F., Weissenberg,H., in: Proc. Int. Conf. Metallic Glasses: Scienceand Technology, Vol. 2, Hargitai, C., Bakonyi, I., Kern&y, T. (eds.), Central Research Institute of Physics, Budapest, 1981, p. 253. Morris, D.G.: Acta Metall. 29 (1981) 1213. Peercy, P.S., Doyle, B.L.: Bull. Am. Phys. Sot. 26 (1981) 389. Tiwari, R.S., Ranganathan, S., von Heimendahl, M. : Z. Metallkde. 72 (1981) 563. Valenta, P.: Thesis, UniversitHt Stuttgart, 1981. Valenta, P., Maier, K., Kronmiiller, H., Freitag, K.: Phys. Status Solidi (b) 105 (1981) 537. Valenta, P., Maier, K., Kronmiiller, H., Freitag, K.: Phys. Status Solidi (b) 106 (1981) 129. Akhtar, D., Cantor, B., Cahn, R.W.: Acta Metall. 30 (1982) 1571. Akhtar, D., Cantor, B., Cahn, R.W.: Ser. Metall. 16 (1982) 417. Doyle, B.L., Pecrcy, P.S., Wiley, J.D., Perepezko, J.H., Nordman, J.E.: J. Appl. Phys. 53 (1982) 6186. Fernengel, W., Kronmiiller, H., Rapp, M., He, Y.: Appl. Phys. A 28 (1982) 137. HorvAth

Land&-BErnskin New Series III,/26

7.6 References for 7 82Gl 8202 82Kl 82K2 82K3 82K4 82L 82N 82s 83Cl 83C2 83C3 83D 83Ll 83L2 83s 84B 84D 84R 85A 8X 85Hl 85H2 85M 85P 86A 86Bl 86B2 86Hl 86H2 86H3 86J 86Kl 86K2 86s 86V 87B 87Hl 87H2 87H3 87Kl 87K2 Landolt-BBmstein New Series III/26

469

Gupta, D., Tu, K.N., Asai, K.W.: Thin Solid Films 90 (1982) 131. Greer, A.L., Lin, C.-J., Spaepen,F., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki, K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 567. Kijek, M., Akhtar, D., Cantor, B., Cahn, R.W., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki, K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 573. Kirchheim, R., Sommer, F., Schluckebier, G.: Acta Metall. 30 (1982) 1059. Kirchheim, R.: Acta Metall. 30 (1982) 1069. Kiister, U., Herold, U., Becker, A., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki, K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 587. Luborsky, F.E., Bacon, F., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki, K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 561. Nunogaki, K., Katao, Y, Kiritani, M., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 509. Scott, M.G., Gregan, G., Dong, YD., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Masumoto, T., Suzuki, K. (eds.), Japan Inst. of Metals, Sendai, 1982, p. 571. Cantor, B., Cahn, R.W., in: Amorphous Metallic Alloys, Luborsky, F.E., (ed.), London: Butterworth, 1983, p. 487. Chang, C.F., Marti, J.: J. Mater. Sci. 18 (1983) 2297. Collins, L.E., Grant, N.J., Vander Sande, J-B.: J. Mater. Sci. 18 (1983) 804. Doyle, B.L., Peercy, P.S., Thomas, R.E., Perepezko, J.H., Wiley, J.D. : Thin Solid Films 104 (1983) 69. Limoge, Y, Brebec, G., Adda, Y, in: DIMETA 82 - Diffusion in Metals and Alloys, Kedves, F.J., Beke, D.L., (eds.), (Diffusion and Defect Monograph SeriesNo. 7), Switzerland: Trans. Tech. Publications, 1983, p. 285. Luborsky, F.E.: J. Appl. Phys. 54 (1983) 5732. Schuehmacher, J.J.,Guiraldenq, P.: Acta Metall. 31 (1983) 2043. Brodowsky, H., Sagunski, H.: Z. Phys. Chem. N. F. 139 (1984) 149. Doi, M., Itoh, Y, Chang, D.-Y, Imura, T.: Phys. Status Solidi (a) 83 (1984) 529. Reda, I.M., Wagendristel, A., Bangert, H.: J. Non-Cryst. Solids 61/62 (1984) 985. Akhtar, D., Misra, R.D.K.: Ser. Metall. 19 (1985) 603. Cantor, B., in: Rapidly Quenched Metals, Steeb, S., Warlimont, H. (eds.), Amsterdam: Elsevier, 1985, p. 595. Horvath, J., Freitag, K., Mehrer, H., in: Rapidly Quenched Metals, Steeb, S., Warlimont, H. (eds.), Amsterdam: Elsevier, 1985, p. 751. Horvath, J., Pfahler, K., Ulfert, W., Frank, W: J. Phys. (Paris) 12 (1985) C8-645. MiDe, U., Methfessel, S., in: Rapidly Quenched Metals, Steeb, S., Warlimont, H. (eds.), Amsterdam: Elsevier, 1985, p. 775. Pfahler, K., Horvath, J., Frank, W., Mehrer, H., in: Rapidly Quenched Metals, Steeb, S., Warlimont, H. (eds.), Amsterdam: Elsevier, 1985, p. 755. Akhtar, D., Misra, R.D.K. : Ser. Metall. 20 (1986) 627. B&tiger, J., Dyrbye, K., Pampus, K., Torp, B.: Int. J. Rapid Solid. 2 (1986) 191. Bettiger, J., Mikkelsen, N.J., Nielsen, S.K., Pampus, K.: J. Non-Cryst. Solids 83 (1986) 35. Hahn, H., Averback, R.S., Rothman, S.J.: Phys. Rev. B 33 (1986) 8825. Horvath, J., Mehrer, H.: Cryst. Lattice Defects Amorph. Mater. 13 (1986) 1. HorvLth, J., Freitag, K., Mehrer, H.: Cryst. Lattice Defects Amorph. Mater. 13 (1986) 15. Johnson, WL.: Prog. Mater. Sci. 30 (1986) 81. Kijek, M.M., Palmer, D.W., Cantor, B.: Acta Metall. 34 (1986) 1455. Krebs, H.U., Samwer, K.: Europhys. Lett. 2 (1986) 141. Stobiecki, F., Palmer, W, Reill, W., Roll, K., Hoffmann, H.: J. Non-Cryst. Solids 88 (1986) 209. Van Wyk, G.N., Roos, WD.: Appl. Surf. Sci. 26 (1986) 317. Bettiger, J., Pampus, K., Torp, B.: Europhys. Lett. 4 (1987) 915. Hahn, H., Averback, R.S., Fu-Rong Ding, Loxton, C., Baker, J.: Mater. Sci. Forum 15-18 (1987) 511. Highmore, R.J., Evetts, J.E., Greer, A.L., Somekh, R.E.: Appl. Phys. Lett. 50 (1987) 566. Horvath, J., Pfahler, K., Ulfert, W., Frank, W., Kronmiiller, H.: Mater. Sci. Forum 15-18 (1987) 523. Kirchheim, R.: Acta Metall. 35 (1987) 281. Kirchheim, R., Stolz, U.: Acta Metall. 35 (1987) 281. Horviith

470 87L 87P 87Sl 8782 8783 8784 8785 88Bl 88B2 88B3 88B4 88B5 88C 88F 88Hl 88H2 88H3 88H4 88H5 88H6 88H7 88J 88Kl 88K2 88Ml 88M2 880

88P 88Sl 88S2 8833 88S4 88% 89U 90D

7.6 References for 7 Limoge, Y.: Mater. Sci. Forum 15-18 (1987) 517. Pfahler, K., Horvlth, J., Frank, W.: Cryst. Lattice Defects Amorph. Mater. 17 (1987) 249. Schultz, L., in: Science and Technology of Rapidly Quenched Alloys, Tenhover, M., Tanner, L.E., Johnson, W.L. (eds.), Materials Research Society, 1987. Sharma, S.K., Mukhopadhyay, P., Kuldeep, Amimesh, K. Jain: J. Non-Cryst. Solids 94 (1987) 294. Sharma, S.K., Kuldeep, Amimesh K. Jain: Thin Solid Films 152 (1987) 511. Sharma, S.K., Banerjee, S., Kuldeep, Amimesh K. Jain, in: Proc. Int. Conf. on Thin Films, New Delhi, 1987. Stelter, E.C., Lazarus, D.: Phys. Rev. B 36 (1987) 9545. Bakker, H., Loeff, PI., Weeber,A.W., in: Proc. Int. Conf. on Diffusion in Metalis and Alloys (DIMETA 88) Balatonfiired, Hungary, 1988; Defect and Diffusion Forum 66-69 (1989) 1169. BohiE, V., Majkovl, E., Luby, S., Sandrik, R., Veseljr,M., in: Proc. Int. Conf. on Diffusion in Metalls and Alloys (DIMETA 88) Balatonfiired, Hungary, 1988; Defect and Diffusion Forum 66-69 (1989) 567. BohaE, V., Luby, S., Majkovi, E., Veseljr,M., in: Proc. Int. Conf. on Diffusion in Metalls and Alloys (DIMETA 88) Balatonfiired, Hungary, 1988; Defect and Diffusion Forum 66-69 (1989) 561. Bottiger, J., Dyrbye, K., Pampus, K., Tot-p, B., Wiene, P.H.: Phys. Rev. B 37 (1988) 9951. Brodowsky, H., Fieischhauer, J., Maaz, J., in: Glasiger Zustand metallischer Systeme, Deutsche Forschungsgemeinschaft, 1988, p. 120. Chandrashekhar, G.V., Gupta, D., Newcomb, S., Spit, F.M.H., Tu, K.N.: Defect and Diffusion Forum 59 (1988) 261. Frank, W., Horvith, J., Kronmiiller, H.: Mater. Sci. Eng. 97 (1988) 415. Hahn, H., Averback, R.S., Hoshino, K., Rothman, S.J.: unpublished. Hahn, H., Averback, R.S., Shyu, H.-M.: J. Less-Common Metals 140 (1988) 345. Hahn, H., Averback, R.S.: Phys. Rev. B 37 (1988) 6533. Holloway, K., Sinclair, R.: J. Less-Common Metals 140 (1988) 139. Horvith, J., Ott, J., Pfahler, K., Ulfert, W.: Mater. Sci. Eng. 97 (1988) 409. Hoshino, K., Averback, R.S., Hahn, H., Rothman, S.J.: Defect and Diffusion Forum 59 (1988) 225. Hoshino, K., Averback, R.S., Hahn, H., Rothman, S.J.: J. Mater. Res. 3 (1988) 55. Johnson, W.L.: Mater. Sci. Eng. 97 (1988) 1. Ktister, U., in: Glasiger Zustand metallischer Systeme, Deutsche Forschungsgemeinschaft, 1988, p. 140. Kiister, U., Blank-Bewersdorff, M.: J. Less-Common Metals 140 (1988) 7. Mehrer, H., Dbrner, W, in: Proc. Int. Conf. on Diffusion in Metalls and Alloys (DIMETA 88) Balatonfiired, Hungary, 1988; Defect and Diffusion Forum 66-69 (1989) 189 and private communication. MiBe, U., Methfessel, S., in: Glasiger Zustand metallischer Systeme, Deutsche Forschungsgemeinschaft, 1988, p. 160. Ott, J., Horvath, J., Frank, W: to be published. Pfahler, K., Horvlth, J., Frank, W.: to be published. Schultz, L.: Mater. Sci. Eng. 97 (1988) 15. Schwarz, R.B., Johnson, W.L.: J. Less-Common Metals 140 (1988) 1. Sharma, S.K., Banerjee, S., Kuldeep, Amimesh K. Jain: Appl. Phys. A 45 (1988) 217. Sharma, S.K., Banerjee, S., Kuldeep, Amimesh K. Jain: Acta Metall. 36 (1988) 1683. Sharma, S.K., Kuldeep, Amimesh K. Jain: Mater. Sci. Eng. 100 (1988) 145. Ulfert, W., Horvath, J., Frank, W: Cryst. Lattice Defects Amorph. Mater. 18 (1989) 519. Diirner, W., Mehrer, H.: private communication.

Horvith

Land&Bhstein New Series III/26

Ref. p. 5001

8.1 Introduction

471

8 Diffusion of C, N, and 0 in metals 8.1 Introduction Becausethey usually dissolve interstitially in metals, C, N and 0 have diffusion coefficients that are mostly much larger, at similar temperatures, than the coefficients for self and substitutional solute diffusion. This, and the fact that these diffusants are gases,or readily available in gas or vapour form (e.g.CO,, CH, etc.), have an impact on the choice and availability of methods used to measure their diffusion coefficients. We consider here, briefly, the methods discussedgenerally in chapter 1 and comment on their use and applicability for C, N and 0 diffusion.

8.1.1 Direct methods 8.1.1.1 Steady-state methods These are particularly appropriate for C, N and 0. The steady-state concentration gradient may be measured directly or calculated from equilibrium solubility data. The flux may be measured by standard gas flow methods or, with suitable electrodes supplying and removing diffusant in an electrochemical cell that can sometimes be devised, by measurement of electrical current. The time delay method is also often used, entailing measurement of the time to reach the steady state.

8.1.1.2 Non-steady-state methods 8.1.1.2.1 Thin layer methods Of the three diffusants, only for C is there a suitable isotope for the usual application of this method using radiotracers viz. 14C. Because of its weak S emission the residual activity method (Gruzin-Seibel) is often adequate and therefore frequently employed, although the 14Cactivity profile is sometimesdirectly determined. 8.1.1.2.2 Diffusion couple methods These are sometimes used, although not so commonly as with substitutional alloys. Both the simple erfc solution (Grube) and the Matano-Boltzmann method of analysis have been employed. Although the initial concentration distribution is not the step function of conventional diffusion couples, we include here “couples” prepared by ion implantation for there is the same principle employed of comparing concentration distributions before and after diffusion. The Nuclear Reaction Analysis (NRA) method, so useful for the determination of C, N and 0, is also experimentally a natural complement to the ion implantation method of sample preparation. The two techniques are frequently employed together. 8.1.1.2.3 In-diffusion and out-diffusion methods Under the heading of in-diffusion are to be included those caseswhere reaction of the sample with the source of diffusant occurs leading, in addition to the inner primary solid solution layer that is always present, to the growth of one or more outer layers of other phases, corresponding to the intermediate phases existing in the system at the diffusion temperature. For example, carbide, oxide or nitride phase layers may occur on samples into which C, 0 or N is being diffused. If c (x) has been determined, d(c) can be calculated for each of the phases by the Matano-Boltzman method (Eq. 1.43of the General introduction). However, such complete concentration data may not be available and approximations are then made to achieve an analysis of the experiment. Thus it is assumed,at least, that the phase boundary concentrations are those appropriate to phase equilibrium. With the positions of the phase boundaries known and some assumedform for c(x), perhaps linear in x, Eq. 1.43can be used to obtain d(c). Otherwise, an average diffusion coefficient for each phase can sometimes be deduced from measurements of the rate of migration of each phase boundary and knowledge of the boundary concentrations. Also included here are measurementsof D by observation of internal oxidation (or nitridation) whereby the rate of in-diffusion of 0 (or N) is monitored by observing, as a function of time, the depth to which a third relatively immobile element, dissolved in very dilute substitutional solution, becomesoxidised. Occasionally, the rate of de-oxidation of an oxidised third element is studied. Land&BBmstein New Series III/26

Le Claire

412

8.1 Introduction

[Ref. p. 500

By out-diffusion in the present context is simply meant outgassing for N and 0, decarburising for C, processesthat usually entail samples containing diffusant in primary solid solution so that the simple erf solutions apply for the analysis of the results. When a suitable electrochemical cell can be contrived wherein diffusion in the sample determines the overall cell transport, the progress of in- or out-diffusion may be monitored through measurementsof the cell current. Alternatively, a surface concentration change can be followed by measurement of the cell EMF or a surface potential.

8.1.2 Indirect methods For the diffusion of C, N and 0 in beemetals by far the most commonly employed indirect methods are those basedon the Snoek effect -internal friction methods and, at the lower temperatures, measurementsof anelastic stressor strain relaxation. The latter technique provides values of D at temperatures that may extend down to ambient, and even below. Thus, with mass flow (direct) measurementsmade up to the highest temperatures, the diffusion coefficients of C, N and 0 in many bee metals are known over temperature ranges much more extensive than for most other metal systems.C, N and 0 diffusion data can therefore provide material for very searching tests of the linearity of the Arrhenius relation for interstitial diffusion. As with all the indirect methods, the deduced values of D are model sensitive. For the interpretation of Snoek effect based measurements on bee metals it is usually assumed that the solute atoms occupy octahedral interstitial sites. Apart from occasional measurementsby magnetic relaxation methods, little use is made in the study of C, N and 0 diffusion of the other indirect methods referred to in chapter 1.

8.1.3 Summary of methods I Ia Ib

Steady-state methods: Gradient determined directly. Gradient via equilibrium (solubility) data. Time to steady-state method. Flux measured electrochemically.

t; II IIa IIb

Thin layer methods: c vs. x determined by sectioning. Residual activity method (Gruzin-Seibel) Diffusion couple methods: With determination of c vs. x curve and Matano-Boltzmann analysis, or D, assumedconstant, from an analytical solution. In multiphase samples, D calculated from phase boundary displacement rates and boundary concentrations.

III IIIa (i) III a (ii)

In-diffusion and out-diffusion methods. In (i), out (ii): D calculated from c vs. x curves. D calculated from total gain or loss, or rate thereof. With multiphase layers, D calculated from phase boundary widths and displacement rates. D calculated from internal oxidation (i), or de-oxidation (ii), rates. Diffusion monitored electrochemically.

IV IVa IVb IVc IVd IVe

Indirect methods: Snoek effect. Internal friction or elastic after-effects. Magnetic after-effects

V Va Vb

IIIb

The code (numbers and letters) assigned to each method is employed in the Tables to indicate the method used in determining the results quoted. Where appropriate, additional information on the method may be added . in the “Method/Remarks” column. All measurementsmay be assumedto have been made on polycrystalline material (“pc”), unless otherwise indicated by the abbreviation “SC”(single crystal). The temperature range quoted is the range over which measurementswere made and used by the author to calculate the quoted values of Do and Q. Extrapolation too far outside this range may not in some casesgive reliable values for D, as will be evident from some of the graphical presentations. Le Claire

Iandolt-BBmstein New Series III/26

473

8.2.1,2, 3.1 Alkali, alkaline earth, scandium group metals

Ref. p. 5001

8.2 Diffusion tables for C, N, and 0 in metals Q

Solute Do 10m4rn’s-l

Temperature range K

kJ mol-’

Method/Remarks

Ref.

8.2.1 Alkali metals - Group IA Li, Na, K, Rb, Cs, Fr There are no reported measurements of the diffusion rates of C, N or 0 in the alkali metals.

8.2.2 Alkaline earth metals - Group IIA Be, Mg, Ca, Sr, Ba, Ra Diffusion in Be C

3.2. lO-5

158.6

D = 2.0. IO-l4&se1 = 2.2. IO-l3mzsml = 1.3 * 1O-‘3 m2se1 D N 5. lo-14 mzs-1

N 0

“Highly pure Be.” D sensitive to purity. See[79Z]

1273 1373 1473I 1298

IVa (i),

14C

70G 7262

III a (ii)

62P 57M

-

< 573

“No measurable diffusion”

52.3

773 .+.873

IIb,

14C

762

773 ... 1023

IIb,

14C,99.95%

68P

Diffusion in Mg C

2.1 . 10-7

N 01

No data available.

Diffusion in Ca C

2.7. lO-3

N 01

97.5

No data available.

Diffusion in Sr - No data available. Diffusion in Ba - No data available. Diffusion in Ra - No data available.

8.2.3 Scandium group and rare earth metals 8.2.3.1 Scandium group metals - Group IIIA SC,Y, La, AC Diffusion in SC C

4.5 D= = = =

205 5.0. lo-” m2sm1 1.6. 1O-1o m2s-’ 1.5. 10eg m2s-’ 2.9. IO-’ m2se1

1273... 1573(a) 1488(cc) 1568(a) 1648(P) 1713(P)

IIb,

14C

742

IIIa (ii),

14C,very low C concentration

76Sl

(continued) Land&-BBmstein New Series III/26

Le Claire

8.2.3.2 Rare earth metals

474 Solute Do

Q

10m4m2s-’

kJ mol-’

[Ref. p. 500

Method/Remarks

Ref.

IIIa (ii), very low N concentration

76Sl

IIIa (ii), very low 0 concentration

76Sl

Combined data of [66C] and [76D], recalculated. SeeFig. 1

76D

III a (ii),

14C

66C

IIb,

14C

76D

IIIa(ii),

very low N concentration

66C

Temperature range K

Diffusion in SC,continued N

D

Diffusion c

D= = = =

6.2.10-" m2sm1 2.5 . lo-10 m2sm1 1.4 * 10eg m2s-’ 1.5. 10eg m2s-’

1488(u) 1568(u) 1633(P) 1698(8)

D= = = =

2.8 . IO-‘0 m2s-’ 1.3. 10mgm2s-’ 6.6. 10mg m2s-’ 1.7 +lOm8m2s-’

1498(u) 1573(or) 164303 1693(P)

in Y

1.7. 104

272

D=1.4.10eg m2s-’ = 5.0. lo-’ m2s-’ = 1.32.10-** m2s-’ -= 9.71 .10-*’ m2s-’ N

3

D = 3.1.10-10 m’s1’ = 5.3. 1O-‘o m2s-’ = 3.8. low9 m2s-* 9.4. 10-j D= = = = =

Diffusion

86.7

1.3 . 1()-‘0 m2s-1 2.0. 10mgm2sW1 9.7.1O-‘O m2sb1 1.1 . lop9 m2s-’ 2.6. lob9 m2s-’

0

Diffusion

1508(u) 1733(or)I 1273(u) 1388(ci)I 1508(or) 1623(a) 1733(a)I ll73.*.1733(or) 1173(u) 1673(u)I 1508(u) 1623(u) 1733(CL) I

Combined data of [64Bl] and [66C]. SeeFig. 1

-

IVb(i)

64Bl

IIIa (ii), very low 0 concentration

66C

IIb,

14C

82D

IIIa (ii),

14C,very low C concentration

78s

in La

83.7 4.1 . 10-3 D = 4.7. lo-” m2s-’ = 7.4. lo-” m2s-* = 7.6. lO-‘O m2s-* v

1273... 1733(or)

723...1128(8) 1083(l-9 11230) 1148(y)I

D = 4.6. IO-” m2sw1 = 5.2.10-” m2se1 = 4.6.1O-‘O m2s-*

1083(8) 1123(p) 1148(y)I

IIIa (ii), very low N concentration

78s

D = 6.6. I()-” m2s-’ = 1.7. 10m10m2se1 = 1.3. low9 m2s-’

1083(PI 1123(p) 1168(Y)

IIIa (ii), very low 0 concentration

78s

in AC

- No data available.

8.2.3.2 Rare earth metals Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu - No data available.

Diffusion

in Ce

Diffusion

in

Pr - No data available.

Diffusion

in

Nd - No data available.

Diffusion

in Pm

- No data available. Le Claire

Landok-BBmsfein New Series III/26

Ref. p. 5001

8.2.3.2 Rare earth metals

Solute Do

Q

low4 rn’s-’

kJ mol-’

Temperature range K

475

Method/Remarks

Ref.

IIb,

14C

83D2

III a (ii),

14C,very low C concentration

72P

Diffusion in Sm C N 0I

3.6

146.4

773...1173(01)

No data available.

Diffusion in Eu - No data available. Diffusion in Gd C

N

D= = = = =

5.8. lOA” m2se1 1.6. lO-‘O m2se1 2.3 . lo-10 m2sv1 1.2. 10Mgrn2se1 1.2. 10eg m2s-’

D= = = =

9.0. 1.9. 2.7. 8.3.

10pl’ m2sM1 lO-‘O m2se1 10-IOm2s-1 1O-1o m2se1

D = 3.8. 1O-1o rn2s-’

0

= 6.7 * 10-10 m2s-’ = 8.7. lO-‘O m2sT1 = 6.9. IO-’ m2sm1

1323(cc) 1398(ct) 1473(ol) 151803) 1538(P) 1323(a) 1398(a) 1473(a) 1538(P) 1323(a) 1398(a) 1473(a) 15% (l-9

IIIa (ii), very low N concentration

72P

IIIa (ii), very low 0 concentration

72P

873 .*+1430

IIb,

14C

83Dl

953 ... 1473

IIb,

14C

85D

14C,very low C concentration

69P3

Diffusion in Tb - No data available. Diffusion in Dy - No data available. Diffusion in Ho C N 0>

2.8. 1O-2

125.6

No data available.

Diffusion in Er C N 0>

1.14.10-2

117.2

No data available.

Diffusion in Tm - No data available. Diffusion in Yb - No data available. Diffusion in Lu

C

N 0

Land&-Biimstein New Series III/26

= 1.6. j()-1o m2sm1 = 1.7. fOelo m2s-’ D= 1.2. lO-‘O m2se1

1723 1873 1603i

IIIa (ii),

= 5.9. 1O-1o m2s-’ D= = 6.3. 3.0. 10-‘Om2s-’ lO-‘O m2se1 D = 1.3. 10eg rn’s-’ = 2.0. 10mgm2sm1 = 5.1 . 10e8 m2se1

1723 1873 1573I 1603 1723 1873

IIIa (ii), very low N concentration

69P3

IIIa (ii), very low 0 concentration

69P3

Le Claire

476

8.2.4 Titanium group metals

Solute Do 10m4rn*s-l

Q kJ mol-’

Temperature range K

Method/Remarks

[Ref. p. 500 Ref.

8.2.4 Titanium group metals - Group IVA Ti, Zr, Hf Diffusion in Ti 5.06 7.9. 10-4 6.0. 10-j 3.2. 10-j 3.02. 1O-3

182.1 127.7

1013...1113($ 873 ... 1073 (u)

94.6 79.1 83.7

1603...1873@) 1223 .+. 1923(p) 1373...1673@)

0.21 0.21 1.2. 10-2

224.0 221.8 189.5 184.2 238.6 141.5 101.3 154.1 148.2

723 . +.973 (u) 1573...1813(u) 1173...1843(0() 1573...1943(0() 1623...1973(0() 1173...1843@) l603...1853(g) 1773...1943@)

1.47.10-2 0.2 3.5. 10-2 2.0. 10-3

0.155 2.04.10-2 0.45 0.408 0.778 0.14 0.45 8.3. 1O-2

0.15

201.0 196.9 203.5 138.2 150.7 130.6 138.2

2.0. 10-2

115.0

1573...1873@) 573...1223(@ 923...1148@)

l203...1418(a) 1023...1423@) 1223...1423(@ 1403...1623@) 1223...1623@) l608...1848(p)

III b, av. D over a-camp. range IIb, 14C IIIa (ii), very low C concentration IIb, 14C IIb, 14C SeeFig. 2 III a (ii), IVc (i) IVc (i), IIIb IVc (i), IVa (i), III a (ii) IIIb IVc (i) SeeFig.

ion implanted couples av. D over ar-camp.range av. D over u-camp. range av. D over solubility range

56W 72N 75c 65K 66N2 83A 79v 54w 71R 69EI 54w 75c 71R 79v

3

IVa (i), av. D over solubility range III a(i), av. D over solubility range III b, av. D over solubility range D indep. of concentration IVa (i) III a (ii) Combined data [56C, 69S] IIIa (ii), very low 0 concentration SeeFig. 4

83D3 77D 70R 731 69s 56C 69s 75c

II b, II b, IIIa (ii) IIb, IIa,

75A 72N 65P 75A 65A

Diffusion in Zr 2.0. 10-3 151.59 128.5 3.5. 10-S 111.8 4.8 . 1O-3 133.1 8.9. 1O-2 3.6. IO-2 143.2 D = 3.9 . lo-10 m2sm1 = 5.0. lO-1o m2sm1 = 8.7.10-10 m2sm1 0.56 241.4 0.15 226.5 4.6. IO-4 166.2 8.0. 1O-2 222.3 0.3 238.6 5.7. 10-3 135.6 1.5.10-2 128.5 D = 3.3. lo-lo m2sw1 = 5.4. lO-1o m2sv1 = 1.2 310mgm2s-’

873...1123(~) 873...1138(~)

1173...1523@) 1143...1523@) 1373.*.1873(g) 1898 (P) 1973

(PI (l-9

14C 14C 14C 98.6% Zr

IIIa (ii), very low C concentration

7OSI

2073

.’* (u)

773 973 923...1123(@

l173...1373(or) 1373...1773@) 1623...1973@)

1173...1373@) 1193...1913@)

(PI (P) 2073(P) 1898 1973

SeeFig. 5 IIIa (ii), IVa (ii), IVa (i) IVc (i), IVa (i) IVa (i),

ion implanted couples av. D over u-camp. range av. D over u-camp. range av. D over p solubility range

IIIa (ii), very low N concentration

84A 66R 71P 711 69El 71P 54M 7OSl

SeeFig. 6

Le Claire

Land&BBmstein New Series Ill.l26

Ref. p. 5001

82.5 Vanadium group metals

Solute Do

Q

lop4 m2sT1 kJ mol-’ 0

1.32

201.8

6.61 . 1O-2 184.2 16.5 229.0 3.92 213.4 2.63. 1O-2 118.1 0.98 171.7 D = 1.4 * IO-’ rn’8-l = 3.0. 10eg m2sm1 = 3.8. 10-gm2s-1

Temperature range K 563 ... 1773(ct) 563 . . - 923 (a) 923 ... 1773(a)I 1273... 1689(a) 1273... 1773(p) 1323... 1473(p) 1898(P) 1973(P) 2073(P)

477

Method/Remarks

Ref.

Various. Best single representation of data. 23 Refs. More precise bimodal representation of the same data. IVc (i) IIa, IIIa (ii) and IIIb D indep. of cont. IVb (i) IIIa (ii), very low 0 concentration

77R 81P 77P2 67Dl 7OSl

SeeFig. 7

Diffusion in Hf C

N

0

74 312.3 D = 2.5. lo-l1 m2s-’ = 3 2. lo-” m2se1 0.8 ’ 211.4 4.2. 1O-2 167.5 2.4. 1O-2

242.3

1393... 2033 (a) 1923(a) 1983(a) 2073 ... 2373 (p) 2093 . . .2403 (p) 823.+.1173(x)

IIb, Hf + 1.5 wt% Zr

68M

III a (ii), Hf + 3 wt % Zr, very low C concentration

73c

IIb, 14C,Hf + 1.5 wt % Zr SeeFig. 8a

68M

IIIa (ii), Hf + 3 wt % Zr, ion implanted couples

84A

IIIa (ii), Hf + 3 wt % Zr, very low N cont.

73c

D = 1.3. lo-” m2s-’ = 2.0. lo-l1 m2se1 = 2 8. lo-l1 m2sp1 8.0. 1013 124.3

2103 ... 2383 (p)

IIIa (ii), Hf + 3 wt % Zr, very low N cont. SeeFig. 8b

73c

0.66 -

773...1323(@ 1973, 1673(a)

IVb (i) and c, purity not specified IVb (i), measurementsconfirm [64P]. Numerical values not quoted. IVa and b(i)

64P 67K2

IVa (i), Hf + 5 wt % Zr

63W

2.1”) D= = = = 0.32

212.8 3.8. 7.6. 1.6. 17. ’

221.9 lo-l5 m2se1 IO-l4 m2s-’ lo-lo m2s-’ lo-lo m2s-’ 171.2

1923 (cl) 1958 (a) 1983 (a) 1

1023 ... 1223(ct) 1073(a) 1223(cc)I 1943(a) 1983(cc)1 2088 . ..2403@)

73P

III a (ii), Hf + 3 wt % Zr, very low 0 concentration III a (ii), Hf + 3 wt % Zr, very low 0 cont. SeeFig. 9

73c 73c

3 Corrected.

8.2.5 Vanadium group metals - Group VA V, Nb, Ta Diffusion in V C

8.8 . 10-3

116.364

333 ... 2098

Combined data [59P] (Va), [67Sl] (IIIa(ii)), [6882] (IVa (i)) SeeFig. 10

7282

N

4.17. 1O-2 5.02. 1O-2

148.46 151.05

333 .**2098 440... 1923

7282 77B1, 80Bl

1.1 * 10-2 7.6. 1O-2

145.1 158

Combined data Combined data [67Sl] (IIIa (ii)) Combined data Combined data SeeFig. 10

“)440...630 630...2098

[59P] (Va), [67Sl] (IIIa(ii)) [54P, 69M, 77Bl] (Va), [54P, 69M, 77Bl] (Va) [67Sl, 84Kl] (IIIa(ii))

84Kl (continued)

Land&-Biirnstein New Series III/26

Le Claire

[Ref. p. 500

8.25 Vanadium group metals

478 Solute Do 10v4 rn’s-l

Q kJmol-’

Temperature range K

Method/Remarks

Ref.

Combined data [59P] (Va), [67SI] (JIIa(ii)) Combined data [54P, 69M, 77Bl] (Va), [67Sl] (JHa(ii)) Combined data [77Bl] (Va), [79L] (JVe) 30 data points SeeFig. 10

7282 77B1, 80BI 79L

Diffusion in V, continued 0

2.46.10-* 2.66.10-*

123.490 124.717

333 ... 2098 358 .+.2098

1.56.10-*

123.0

358 ... 2098

‘) The collected results are best represented by two Arrhenius lines, one above, one below about 630 K. For discussion of deviations from simple Arrhenius behaviour in the diffusion of C, N and 0 in V, Nb and Ta, see [78F, 79F, 80M, 80B2]. Diffusion in Nb 1.0. 10-2

141.92

403...2613

1.8. lo-* 9.32 . lo- 3

159.1 146.53

1873...2393 1373... 1673

2.56 10-2

543...1873

6.3 . I 0-2

161.5

623...1873

5.86. 1O-3

109.65

296.~. 1823

6.95. 1O-3

110

296... 1823

4.2. 1O-3

107.2

303 ... 1773

1.7. 10-2

108

873... 1373

6.7. 1O-3

161.6

463 ... 2953

2.57. IO-*

180

3.7. 10-J 8.5. lo-’

156.8 164.5

5.21 . 1O-3

158.48

483...1673

8.7. IO-3

170.8

2473 ... 3243

Combined data [59P] (Va), [6732] (JVa (i)), [72Sl] (IIIa(ii)) IVb (ii), av. D, 0 concentration x I % IIb 14C See’Fig. 1I

72SI 72H 66Nl

Combined data [53A, 53M, 59P, 66H2, 66V, 70A, 70M, 73A, 77B2] (Va), [59A] (JVa (i)). I9 data points Combined data [53M, 66H2, 70M] (Va), [59A] (JVa (i)), [84Kl] (HIa (ii)) SeeFig. 12

77B2, 80BI

Combined data [53A 53M, 59P, 66H2, 66V, 70A, 70M, 73A, 77B2,3] (Va), [59K, 61K, 73M] (IVa (i)), [65L] (IV b (ii)), [77Kl] (JVe) 40 data points Data of [79L] (IVe) with data used in [77B3]. 123 data points Combined data [66H2,70M, 77B3,81 W, 8301 (Va), [77Pl] (IVa (i)) IVd and e(ii) SeeFig. 12

77B3, 80Bl

Combined data [59P, 6IFj (Va), [6682] (IVa (i)), [72Sl] (HIa (ii)) IIb 14C See’Fig. 13

72Sl

84KI

79L 830 79K

Diffusion in Ta C

N

1473...1873 ‘)483 ... 630 630...1573

Combined data [53A, 56P, 78B] (Va) Combined data [53A, 53M] (Va), [61Al] (JVa (i)), [77H2] (HIa (ii)) Combined data [53A, 53M, 56P, 78B] cc)iiyl Al] (IVa (i)). 21 data points

66Nl

84Kl 78B, 80Bl 8OV

See Fig. 14

‘) Seefootnote, Sect.8.2.6, Diffusion in V. Le Claire

Landok-BSmsfein New Series III/26

8.2.6 Chromium group metals

Ref. p. 5001 Solute Do

0

10-4m2s-1

kJ mol-’

Temperature range K

1.05.10-2

110.43

298 ... 1673

3.5. 10-3

99.3

873 ... 1873

1.1 . 1or2

115.5

873 ‘.. 1373

Q

479

Method/Remarks

Ref.

Combined data [42K, 53A, 53M, 56P, 69C, 78B] (Va), [57Gl] (IIIa(ii)), [61Al] (IVa(i)) 26 data points Combined data [77K2] (IVe (i)), [79K] (IVa (ii)) IVe (ii) SeeFig. 14

78B, 80Bl 79K 86L

8.2.6 Chromium group metals - Group VIA Cr, MO, W Diffusion in Cr C

8.3. 1O-3 8.74. 1O-3 4.0. 10-l 9.0. 10-3

N

3.0. 1.6. 9.6. 7.0.

117.2 110.9 163.3 110.9

63G 662 672 68B2

328 . ..445 338...463 1273... 1673 573...823 1329 1413 1506I

Va Va IVd, internal nitridation III a (ii), ion implanted couples

62M 67Kl 72A 84K2

IVa (i)

64B2

m2se1 w 155 155

1623

IVb (ii) Theoretical estimate Deduced from [55C] and [63S]

55c 63s

171.7 171.7 164.5 115.85

1473 ... 1873 1783 . ..2243 1618..+2033 493...543

IIb, 14C IVb (i), pc and SC IV b (ii) Via rate of C precipitation. Results suggest non-linear Arrhenius for C in MO See[76K] III a (ii), 14C,very low C concentration IV b (ii) SeeFig. 17

66N2 67R 70K

author’s solubility data

68F 69El 705 72W

D w 5. lo-l3

5.10-4

1773 1873 1773 1773

IVa (i), (ii) Va (423 ... 435 K), IVa(ii) (1423 ... 1873 K.) IVa (ii), samples saturated with H IIb 14C See’Fig. 15

10-4 101.7 1O-2 115.1 1O-3 119.3 10-4 134.2 D = 2.6. lo-11 m2s-1 = 4.1 . lo-l1 m2sm1 = 7.9. lo-” m2sm1

0

1073... 423 ... 1473 ... 1473 ...

SeeFig. 16

Diffusion in MO C

2.04. 1O-2 3.4. 10-2 4.0. 10-2 2.10-3 3.3 . 10-2 1.04.10-2

N

0

153.0 139.00

2.3. 1O-2 3.0. 10-3 4.3. 10-3 2.98 . lo- 3

2163...2593 1533...2283

138.2 115.9 108.9 102.6 D = 1.8. lo-l5 m2s-’ = 2.8. lo-l2 m2sm1 2.11.10-2 120.4

1100...2500 1773...2273 1573...2273 1323...2198 873 9731 1373...2273

3.0. 10-2 2.8. 1O-2

~400~~~500 -

Land&-Biirnstein New Series III/26

130 105.2

Ib, IVb (ii) IVb (ii) IVb(ii),

av. D over sol. soln. range

75Y 7632 78L

IVb (ii)

78A

IVb (ii) SeeFig. 18

82K

Va Va

68Bl 64Ml

Le Claire

8.2.7 Manganese group metals, 8.2.8 Iron group metals

480

[Ref. p. 500

Method/Remarks

Ref.

kJmol-’

Temperature range K

0.3 9.22.10-3 8.91 . IO-’ 3.15.10-3 3.45.10-j

207.7 169.1 224.0 172 158.3

1523...1723 2073 ... 3073 1473...1873 373...673 1773... 2073

IVa (i), see[7233] for criticism IIIa (ii), 14C IIb 14C Va’ IVa(i), sc SeeFig. 19

64A 65K 66N2 68SI 72S3

7.0 10-3 5.4 1.1 . 10-J 1.2. 10-z 2.4. 10-j 2.37. 1O-3 4.3

138.2 259.6 97.6 134.2 118.9 149.9 224.0

2073 ... 2873 1073... 2473 1073s.. 2473 1773...2273 1673...2473 1273.‘. 2073 873... 1073

Ib, solubility from [44N] Ib, author’s solubility data Data of [68F2], solubility from [69FI] IVd, internal nitridation IVb (ii) IV b (ii) IIIa (ii) SeeFig. 20

68C 68F2 705 691 70J 7ow 84K2

IVb(i)

61A2, 64L 635 64L

Solute Do 10-4m2s-1

Q

Diffusion in W

D x 1 . 10‘-11 1.3. 10-4

m2s-1

1973

x 100.5 100.5

Va Deduced from [61A2] and [63Jl

x 1973

8.2.7 Manganese group metals - Group VII A Mn, Tc, Re Diffusion in Mn - No data available. Diffusion in Tc - No data available. Diffusion in Re C

0.1

221.9

1570...2050

IVb(ii)

68D

N

0.14

153.7

1673.s.2073

IVb (ii)

72J

0 - no data available.

8.2.8 Iron group metals - Group VIII Fe, Ru, OS Diffusion in Fe C

3.94 10-3

80.22

233 ... 623 (a)

1.67. IO-3

78.08

233 ... 347(a)

Combined data [58R, 64M23 (Vb), [5OW3, 54H, 54T, 56G, 66L2] (Va). 29 points Combined data [58R, 64M2] (Vb), [5OW3, 54Tj (Va). 23 points

66L2 7633

SeeFig.21

Ik Claire

Land&-BBmsfein Ne\v Series III,/26

Solute Do 10m4rn’s-l

481

8.2.8 Iron group metals

Ref. p. 5001

Temperature range K

Q kJ mol-’

Method/Remarks

Ref.

The Arrhenius plot for C in a-Fe is linear only at the lower temperatures; there is distinct positive curvature at higher temperatures, evident from the data of [69L] (Va, SC.),[49H, 49S,64H] (IIIa(ii)), [62S] (IVc(ii)) over the range 680 ... 1140 K. SeeFig. 21. [7633] considers the linear region more limited than does [66L2] and presents a relation for D valid over the whole a-range, namely log D [m2s-‘1 = - 4.9064 - 0.5199X + 1.61 1O-3X2 with X = 104/T(Tin K) 0.45 0.668 0.234

154.1 156.84 147.81

a-range 1123...1578(~) 1198...1673&) y-range

All data referred to above. 83 points.

7633

III a(i), limiting values, cont. + 0 IVb(ii), 0.47 at % C Reassessmentof [5OWl], cont. --) 0

5OWl 64s 86A

Diffusion in the y-range is strongly concentration dependent. [5OWl] and [64S] measure and report D(c). [86A] has reassessed[5OWl] and reports the following relation for D as a function of T and concentration over the whole y-range. D = 4.53. 10m7 (1 + y,(l - y,)8339.9/T}exp{-

with N

(T-’

- 2.221 . 10m4)(17767 - 26436~~))

y, = x,/(1 - x,), x, = mol fraction of C, Tin K

7.8. 1O-3

79.1

4.88. 1O-3

76.83

773 . .. 1183(o$ 1663... 1743(s) 226...1183(01)

1.26. 1O-3

73.44

223 ... 323 (a)

Combined data [54F] (IVb (ii)), [56B] 6462 (IVb(i)), [6462] (IVb(i), (ii)) I Combined data [61M, 66B] (Vb), [5OW2, 66L2 54F, 54H, 54T, 56G, 57G3, 63W2,66L2] (Va), [54F, 66P] (IVb (ii)), [6462] (IVb (i, ii)) I 45 points 7633 Combined data [61M, 66B] (Vb), [5OW2, 54F, 54H, 54T, 63W2] (Va). 24 points SeeFig. 22

[66L2] considers the Arrhenius plot linear over the whole a-range. /76S3]claims to identify a small curvature above x 323 K and presents a relation valid over the whole c1-and &range. log D [m2s-‘1 = - 5.948 -0.4334X + 6.08 1O-4X2 with X = 104/T(Tin K) 168.56 0.91 167.1 111.12 92.1

All data referred to above. 52 points

76S3

1173...1623(7)

Combined data [54F] (IVb (ii)), [51D, 64Gl] (IVa (i))

64Gl

IVd, Fe + 0.072 wt % Si IVd, Fe + 0.9 % P (P-stabilised cl-Fe) IVd, Fe + 0.43 and 0.90 wt % Ti. Data extrapolated to zero sol. cont. 5.75 168.94 1173...1573($ IVd, Fe + 0.1% Al Fe + 0.069. . .0.274 wt % Al. 1223...1373($ IVd, Fe + 0.07.. .0.92 wt % Si [84T]. 1.3 166 i Data extrap. to zero sol. cont. 3.72. 1O-2 97.68 1623...1773(6) IVd, Fe + 0.1% Al Note: Data for the a-range are probably valid too for the &range. SeeFig. 23 0

0.4 0.1 3.78. 1O-3

c1... &range

973...1123(@ 1173...1563(~) 1023...1123@)

Diffusion in Ru - No data available. Diffusion in OS - No data available.

Land&-Biirnstein New Series III/26

Le Claire

69B 6833 86T2 6783 86Tl 6783

8.2.9 Cobalt group metals, 8.2.10 Nickel group metals

482 Solute Do 10e4 m2s-’

Q kJ mol-’

Temperature range K

[Ref. p. 500

Method/Remarks

Ref.

8.2.9 Cobalt group metals - Group VIII Co, Rh, Ir Diffusion in Co C

0.21 1.765 0.31 0.53 0.63 0.0589

144.9 173.8 153.7 161.2 161.5 167*)

873..+1673 1123...1373 1073... 1673 1223...1323 1210...1320 976... 1673

IIIa(ii), 0.12 wt% C IVb(ii), 0.1% C IVa (i), 0.1 wt% c IVb(i) “Vacuum metallurgical technique” II b, 14C,*) forced Arrhenius fit to experimental data; better description: (140 kJ mol-‘) (1 + 0.109 s2) D=7.6.10m6exp RT -I s = magnetic long range order parameter

63K 64s 66H2 68L 77L 891 m2s-1

1

0.0872 N-No

data available.

0

67.8 10.0

149.3

241.2 221.1

723 ..- 1073

1323...1573 1323...1573

IVa (i), 14C SeeFig. 24

9oc

IVd, Co + 0.08 wt % Si Co + 0.55 wt % Si IVd, SeeFig. 24

72G2 7262

Diffusion in Rh - No data available. Diffusion in Ir - No data available.

8.2.10 Nickel group metals - Group VIII Ni, Pd, Pt Diffusion in Ni 2.48 0.08 0.12 0.13 0.98 0.366

168.3 138.2 137.3 144.4 161.2 149.36

1003... 1293 873...1173 873... 1673

0.048

145.7

373...803

2.05

169.1

1210...1320

1153...1403 1123*..1373

IV b (ii) II b, 14C III a (ii), 14C,0.1 wt% c II b, 14C IVb(i) IVb(ii), 0.1 wt % C. Data also for NiFe alloys 0.5 wt % C. Diffusion of C in Va, b, C-C pairs “Vacuum metallurgical technique”

52L 5762 63K 65s 66Ll 66Sl 67D2 77L

See Fig. 25 3.10-6 1.82. IO4

95.6

423...773

301.4

D=4.0.10-13m2s-’ = 1.8. lO-12 m2se1 = 5.6. lO-12 m2s-’

III a (ii), ion implanted samples

87L

1173.**1573

IVd(i),

67G

1323 1373 1423

IVb(i)

Ni + 0.7 to 4.49 at% Cr Extrap. to zero Cr cont.

69A

(continued) Le Claire

Land&BCmstein New Series III,/26

Ref. p. 5001

483

Temperature range K

Method/Remarks

Ref.

D = I ’32. lO-‘O rnzsml 2.06 182 2.68 . IO5 297.4

1073... 1473 623 .++1273 1666 1273... 1573 1273... 1623

69B 712 72Rl 72K 73Ll

6.2. IO4 4.9 . 10-2

1273... 1623 1123...1673

IVd (ii), SC,Ni + 0.058 wt % Si IV b (ii) IVe (ii) IVe (ii) IVd (i), Ni + 0.02.. .2 at % Be. Extrap. to zero Be cont. Alternate talc. of data of [73LI] IVe (i) SeeFig. 26

Solute Do 10e4 rn’s-l 0

8.2.11 Noble metals - Group IB

7.9 . 104

12.1

Q kJmol-l 309.4

241

292.6 164

73L2 87P

Diffusion in Pd C N-No

Some qualitative observations

7OS2

data available. IVe

98

0

85P

Diffusion in Pt c N-No 0

Some qualitative observations

7OS2

data available. 9.3 326.6 D= 18...44.10-15m2s-1 . .

1708... 1777 297

IC

IVe (i)

72V 69H

82.11 Noble metals - Group IB Cu, Ag, Au Diffusion in Cu C-No

data available.

N-No

data available.

0

1.7. 10-2 2.4 +IO-2 8.6. 10-2

67.0 77.9 85.4

1073... 1300 1073... 1273

5.8. 1O-3 9.68 . 1O-3 1.16. 1O-2

57.4 61.23 67.3

873 ... 1273 830... 1280 973 ... 1300

IVe (i) Ib (e), solubility data from [69Pl] Data of [74R] recalculated, solubility data from [77HI] IVd (ii), solubility data from [77Hl] IVe (ii) IVe (ii) SeeFig. 27

69P3 74R -

IV b (ii)

62E

Ib(e) IVe (ii) Ic SeeFig. 28

68B3

79K 81A 83N

Diffusion in Ag C-No

data available.

N-No

data available.

0

3.66. 1O-3 46.1 D = 2.7. 10-gm2s-1 = 2.9. 10mgm2s-l 4.9 . 10-3 48.6 4.67. 1O-4 33.88

680... 1140 1083 1093 1036... 1J210 523 ... 675

Diffusion in Au - No data available.

Land&-Biirnstein New Series III/26

Le Claire

72R2 73G

8.2.12, 13,14,15 Group II B, group III B, group IVB, actinide group metals

484 solute Do

10m4m2sm1 kJ mol-’

Ref.

Method/Remarks

Temperature range K

Q

[Ref. p. 500

8.2.12 Zinc group metals - Group IIB Zn, Cd, Hg Diffusion in Zn C

1.0. 10-s 1.6. IO-*

N-No

data available.

76D 762

IIb 14C IIb’ 14C See’Fig. 29

439...656 589...663

50.2 30.6

0 -No data available. Diffusion in Cd - No data available.

8.2.13 Aluminum group metals - Group IIIB Al, Ga, In, TI There are no reported measurements of the diffusion rates of C, N or 0 in any of the group IIIB metals.

8.2.14 Group IVB metals Sn, Pb There are no reported measurementsof the diffusion rates of C, N or 0 in any of the group IVB metals.

8.2.15 Actinide group metals AC, Th, Pa, U, Np, Pu Difiusion in AC - No data available. Diffusion in Th 6lP2

l713..*1953(g)

IVa (i), 0.4 wt % C. D decreasesslightly with increase in C cont. IIIa(ii)

94.2 71.2

1173...1673(@ 1723...1988@)

IVb(i) IIIa(ii)

54G 69P2

1.3. 102

205.2

1273... 1473(u)

61Pl

1.3. 10-3

46.05

1713... 1973(g)

IVd (ii), deoxid. with Ca of Th containing ThO, particles IIIa(ii)

2.7. 10-2”)

159.1

1273... 1473(or)

2.2 * 10-2

113.0

N

2.1 . 10-s 3.2 . IO- 3

0

C

69P2

69P2

‘) Estimated from reported D values. Do not quoted in [6lP2]. Diffusion in Pa - No data available.

Le Claire

LandolbB6mstein New Series III/26

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

Solute Do

Methods/Remarks

Ref.

kJ mole1

Temperature range K

123.0

l130...127O(y)

IIIa (ii),

76S2

Q

10-4m2s-’

485

Diffusion in U C

0.218

N-No

data available.

14C

0 -No data available. Diffusion in Np - No data available. Diffusion in Pu - No data available.

Figures for 8

-T

-1

,o-B 1500"C 1300 1200 1100 1000

900

m2/s

10-n m2/s

10-12 IO-"0 0.55 0.60 0.65 0.70 0.75 0.80 .10-3K’ 0.90 l/TFig. 1. Y. Diffusion coefficients for C and 0 diffusion in u-Y vs. (reciprocal) temperature.

Land&-Biimstein New Series III/26

0.8 0.9 1.0 40-3K-’ 1.2 l/TFig. 2. Ti. Diffusion coefficient for C diffusion in CL-and P-phaseTi vs. (reciprocal) temperature.

Le Claire

0.5

0.6

0.7

8.2 Diffusion of C, N, and 0 in metals (Figures)

486

0.5

0.6

0.7

0.8

0.9 l/l-

1.0

1.1

1.2

.@K-'

[Ref. p. 500

1.4

Fig. 3. Ti. Diffusion coefficient for N diffusion in CL-and P-phaseTi vs. (reciprocal) temperature.

Le Claire

Land&-BBmslein New series III,/26

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures) ,o-B 1600 1400“C1200 I I I

487

I’

1000 I

801 I

‘500 I

600 I

m2’s [75Cl 169Sl J

10-q

I

I

Ti

\

I

I

I

I

I

Fig. 4. Ti. Diffusion coefficient for 0 dif- b fusion in CL-and P-phaseTi vs. (reciprocal) .remperarure. ~. ~-I--

67 1o-‘gl 0.5

0.6

0.7

0.8

0.9 1.0 ,I,,IT ---

1.1

I

I

1.2 W3;-’

I

600 I I

1.4

I

10-16 Fig. 5. Zr. Diffusion coefficient for C dif- b fusion in CL-and P-phase Zr vs. (reciprocal) temperature. Land&-BBmstein New Series III/26

IO-17 0.4

0.5

0.6

Le Claire

0.7

0.8 0.9 l/T -

1.0

1.1 .10-3K-’ 1.3

488

8.2 Diffusion of C, N, and 0 in metals (Figures)

0.4

0.5

a6

0.7

0.8 l/T-

0.9

1.0

[Ref. p. 500

1.1

Fig. 6. Zr. Diffusion coefficient for N diffusion in a- and p-phase Zr vs. (reciprocal) temperature.

Le Claire

Land&-B6mstein New Series III/26

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

489

4 Fig. 7. Zr. Diffusion coefficient for 0 diffusion in w and P-phase Zr vs. (reciprocal) temperature.

0.4

0.5

0.6

2000"c1600 IO-8 ,(I mV: 10-g

0.7 1200 I

0.8 l/l

1000 I

0.9

1.0

Fig. 8. Hf. Diffusion coefficients for C diffusion (a) and N diffusion (b) in c(-and .10-3K-' 1.3 P-phase Hf vs. (reciprocal) temperature.

1.1

v

-T

2000"C1600 I ,I

1200 I

1000 I

-T

473Cl

lO"O 10-l' 10-1'2 10-1'3

I

10-14 10-1'5 10-16 10-17 10-18 10-19 10-20 10-n ttit, 0.4

0.5

0.6

0.7

0.8

0.9

1.0 40%'

;I 1.2 4

l/T Land&-Biimstein New Series III/26

Le Claire

0.5

0.6

0.7

0.8 l/T-

0.9

1.0 40-3K-'

1.2

8.2 Diffusion of C, N, and 0 in metals (Figures)

490 0

1000

800

[Ref. p. 500

600

Fig. 9. Hf. Diffusion coefficient for 0 dif0.1

a5

0.6

0.7

0.8 l/l

0.9

1.0

1.1

.lO-"K'

1.3 fusion in u- and p-phase Hf vs. (recipro-

cal) temperature.

-

-1 1800 "C 1100 1200 1000

0.4

0.5

0.6

II.7

0.8 0.9 l/T -

I

I

1.0

1.1

I

40-3K4 1.3

4 Fig. 10. V. Diffusion coefficient for C, N, 0 diffusion vs. (reciprocal) temperature.

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

lo-* ,

-7 2400 2000°C1600 1400 1200 III I, I, I I

101 I

800 I

600 I

10-g

Nb -

1o-l0

--tt

10-l' I

a

lo-'*

0.3

0.4

0.5

0.6

0.7

I

I

0.9

1.0

.I o-2K-1

l/T-

Fig. 11. Nb. Diffusion coefficient for C diffusion vs. (reciprocal) temperature.

-T

,o-g 1600 1400°C1200

1000

E100

600



t

0.8

1.0

1.1

1.2

.10-3K-1

l/7-

Fig. 12. Nb. Diffusion coefficient for N and 0 diffusion vs. (reciprocal) temperature.

Landolt-B6mstein New Series III/26

Le Claire

[Ref. p. 500

8.2 Diffusion of C, N, and 0 in metals (Figures)

492

-1 10-q

1600

2600 "C 2000

1200

600

800

1000

m2/s

10-l'

lo-" t Q

I I6i~ii I

I-----, I

lo-'3

I

I I

\I I \

lo-"

10“"

10-16 0.3

0.4

0.5 l/T-

Fig. 13. Ta. DiffusioD

coefficient

for C diffusion

vs. (reciprocal)

temperature.

-1 10-8, 2800 ,

(1600 I 1400 ,

,"C , 2000 ,

1200 , ,

1000 I,

m’kl8OYl’ lo-'

"\

1o-'7 0.3

Fig.14. ature.

j

800 I'

I

0.9

1.0

I

600 '

I

.

I 0.4

0.5

Ta.Diffusioncoenicicnts

0.6

0.7 l/l-

0.8

.10-3K'

1.2

forNandOdiffusionvs.(reciprocal)temper-

Le Claire

Landolf-BBmstein New Series III/26

8.2 Diffusion of C, N, and 0 in metals (Figures)

Ref. p. 5001

800

10-14 0.5

0.6

0.7

0.8

0.9 l/T-

493

600

1.0

1.1

.l O-3K-'

1.3

Fig. 15. Cr. Diffusion coeffkient for C diffusion vs. (reciprocal) temperature.

-1 ,o.B

1400"C 1000 800

600

400

300

1.50

1.75

200

100

m2/s 10-1'0 1o-12 - [iA

0.50

'

0.75

'

1.00

1.25

2.00 l/T -

2.25

2.50

2.75

3.00

Fig. 16. Cr. Diffusion coeffkient for N diffusion vs. (reciprocal) temperature.

Landok-Biimstein New Series III126

Le Claire

.10-JK-'

3.50

494

8.2 Diffusion of C, N, and 0 in metals (Figures)

[Ref. p. 500

Fig. 17. MO. Diffusion coefficient for C diffusion vs. (reciprocal) temperature, T = 220 .. .270 “C is experimental range in [75yl.

10-n )

2000“C 1600

1200 I,

lOhO I,

800

600

1

10-1’0 I 10”’ Q 10-12 10-l’) [78Al \,

lo-” 10-15 0.3

0.8 0.9 1.0 40-jK-’ 1.2 0.7 l/l Fig. 18. MO. Diffusion coefficient for N diffusion vs. (reciprocal) temperature. 0.4

0.5

a6

Le Claire

Landolt-BCmstein New Series HI/26

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

495

-1 “C 2400 2000 1rP 2800 I I I I

1600 I

I

1200 I

I

m2/s 10-g

W

. \/[65K

1

I

IO-‘0

I

\

cl

i >\I

10-l' -

I [72s'31

\.

rr, .I

;l;3;p; 0.35

0.40

I

I

I

yJA’ 0.45

0.50

0.55

0.65 40”K4

0.60

0.75

l/T Fig. 19. W Diffusion coefficient for C diffusion vs. (reciprocal) temperature. T = 100 ... 400 “C is experimental range in [68Sl].

c-T

,om8 2600 IllI 22OO”C1800 11 1 1400 1 m% jpc1 ,>

600 I

800 I

1000 I

I

W

(f68Fl recolculoted)

I" 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

.W3K-’

l/TFig. 20. W. Diffusion coefficient for N diffusion vs. (reciprocal) temperature.

Land&-BBmstein New Series III/26

IA?Claire

1.2

8.2 Diffusion of C, N, and 0 in metals (Figures)

496

104

[Ref. p. 500

800 II 600°C I , 41

m7/s_

lf~-~~,o-2b-*

10-26 0.5

- I64Hl + I49Sl 16251 . I69LI 1.0

1.5

2.0

2.5 l/l

3.0

3.5

.lO-jK-’

4.5

-

Fig. 21. Fe. Diffusion coefticicnt for C diffusion in a-Fe vs. (reciprocal) temperature.

-1 1400 1000°C 600 I,, I

.

200

100

0

-50 n

Fe

~1 lo-l6 10-16 10-m lo-?‘22 10-Z’ 0

0.5

1.0

1.5

2.0 2.5 l/T -

3.0

15

40-3K-’ 4.5

Fig. 22. Fe. Diffusion coefficient for N diffusion in a, y and &phase Fe vs. (reciprocal) temperature. Circles: calculated from equation quoted from [76S3].

Le Claire

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

I

IO‘"

497

I

a

II-

0.5

0.6

0.7

0.8

0.9

.I()-aK-'

'

l/l-

Fig. 23. Fe. Diffusion coefficient for 0 diffusion in CL,y and &phase Fe vs. (reciprocal) temperature.

-1 10-q m2/s,

1400 "C 1200 1000 IIII I I \

I

800 I

600 I

I

500 I

1

104'0

[89il\\\ lo-"L

lo-'5 ,n-16

0.5

0.6

0.7

0.8

0.9 l/l

1.0

1.1

1.2

.1O-3K-'

1.4

-

Fig. 24. Co. Diffusion coefficient for C and 0 diffusion vs. (reciprocal) temperature. Two curves for 0 diffusion from [7262] are from samples with different Si content.

Land&-B6mstein New Series III/26

Le Claire

8.2 Diffusion of C, N, and 0 in metals (Figures)

498

[Ref. p. 500

-1 1~00"c1200

1P

1000

500

600

800

m21s lo-'0

10‘"

lo+ a5

0.6

0.7

0.8

0.9

1.0

1.1

40JK-'

1.2

600 I

4 Fig. 25. Ni. Diffusion coefikient for C diffusion vs. (reciprocal) temperature. Line from [6X5] is shown dashed because temperature range is not re1.4 ported.

500 I

1

Ni

5 10‘"

1o-'5

lo-20 0.5

0.6

0.7

0.8

0.9 l/l-

1.0

1.1

1.2

Le Claire

.lo-$(-'

,

4 Fig. 26. Ni. Diffusion coefficient for 0 diffusion vs. (reciprocal) temperature. Land&-BBmstein New Series III/26

Ref. p. 5001

8.2 Diffusion of C, N, and 0 in metals (Figures)

IP

1000“C

-T 800

900

700

600

m2/s 6 4 I 2 a y-9 6 L

/z[74Rl

1

Fig. 27. Cu. Diffusion coefficient for b 0 diffusion vs. (reciprocal) temperature.

lo-“0 0.75

0.80

0.85

0.90

,8b'7gKh,

0.95 1.00 l/T-

[8,A]

1.05

1.10

@K'

1.20

52El \ [73Gl \

Fig. 28. Ag. Diffusion coefficient for b 3 diffusion vs. (reciprocal) tempera:ure.

10-l' 0.8

0.9

1.0

.5

.10-3Kq

1

l/T -

400 "C I,

, o-1:

-T 300 I

200 I

m2/:

Zn -601

I

10“' \

I76Zl

a

IO-"

jig. 29. Zn. Diffusion coeffkient for C diffusion vs. b reciprocal) temperature. Landolt-Biimstem New Series III/26

1.4

Le Claire

1.6

1.8 l/T-

2.0

2.2 .lO-'K“ 2.4

500

8.3 References for 8

8.3 Referencesfor 8 12K MN 49H 49s SOW1 5OW2 5OW3 51D 52L 53A 53M 54F 54G 54H 54M 54P 54T 54W 55C 56B 56C 56G 56P 56W 57Gl 5762 5763 57M 58R 59A 59K 59P 61Al 61A2 61F 61K 61M 61Pl 61P2 62E 62M 62P 62s 63G 63J 63K 63s 63Wl 63W2 64A 64Bl 64B2 64H 64Gl 64G2

Kt, T.S.: Phys. Rev. 74 (1942) 9. Norton, ES., Marshall, A.L.: Trans. Metall. Sot. AIME 154 (1944) 351. Ham, J.L.: Unpublished. Cited in [49S]. Stanley, J.K.: Trans. Metall. Sot. AIME 185 (1949) 752. Wells, C., Batz, W., Mehl, R.F.: Trans. Metall. Sot. AIME 188 (1950) 1174. Wet-t, CA.: J. Appl. Phys. 21 (1950) 1196. Wert, CA.: Phys. Rev. 79 (1950) 601. Darken, LX, Smith, R.P., Filer, E.W.: Trans. Metall. Sot. AIME 191 (1951) 1174. Lander, J.J.,Kern, H.E., Beach, A.L.: J. Appl. Phys. 23 (1952) 1305. Ang. C.Y: Acta Metall. 1 (1953) 123. Marx, J.W.,Baker, J.M., Siversten, J.M.: Acta Metall. 1 (1953) 193. Fast, J.D., Verrijp, M.B.: J. Iron Steel Inst. London 176 (1954) 24. Gerds, A.F., Mallet, M.W.: J. Electrochem. Sot. 101 (1954) 175. Hasiguti, P.R., Kamoshita, G.: J. Phys. Sot. Jpn. 9 (1954) 646. Mallett, M.W., Belle, J., Cleland, B.B.: J. Electrochem. Sot. 101 (1954) 1. Powers, R.W., Doyle, M.V.: Acta Metall. 2 (1954) 605. Thomas, W.R., Leak, G.M.: Philos. Mag. 15 (1954) 986. Wasilewski, R.S., Kehl, G.L.: J. Inst. Met. 83 (1954) 94. Caplan, C., Burr, A.A.: Trans. Metall. Sot. AIME 203 (1955) 1052. Busby, P.E., Hart, D.P., Wells, C.: Trans. Metall. Sot. AIME 206 (1956) 686. Claisse, F., Koenig, H.P.: Acta Metall. 4 (1956) 650. Guillet, L., Hocheid, B.: Rev. Metall. 53 (1956) 122. Powers, R.W., Doyle, M.V.: Acta Metall. 4 (1956) 233. Wagner, EC., Bucur, E.I., Steinberg, M.A.: Trans. Am. Sot. Met. 48 (1956) 742. Gebhardt, E., Seghezzi, H.D., Stegher, A.: Z. Metallkd. 48 (1957) 624. Gruzin, P.L., Polikarpov, YuA., Federov, G.B.: Phys. Met. Metallogr. 4 (1) (1957) 74. Guillet, L., Gence, G.: J. Iron Steel Inst. London 186 (1957) 223. Moore, A., Cher, D.A.: U.K. Rept. A.W.R.E-O-51/57 (1957). Rathenau, G.: J. Appl. Phys. 29 (1958) 239. Albrecht, W.M., Goode, WD. Jr.: U.S.A. Rept. B.M.I. 1360 (1959). Klopp, W.D., Sims, C.T., Jaffee, R.I.: Trans. Am. Sot. Met. 51 (1959) 282. Powers, R.W., Doyle, M.V.: J. Appl. Phys. 30 (1959) 514. Albrecht, W.M., Klopp, W.D., Koehl, B.G., Jaffee, R.I.: Trans. Metall. Sot. AIME 221 (1961) 110. Allen, B.C., Maykuth, D.J., Jaffee, R.I.: J. Inst. Met. 90 (1961) 120. Frantsevich, I.N., Koven’skiy, 1.1.:Dopov. Akad. Nauk. Ukr. SSSR 11 (1961). Kofstad, P., Kjollesdal, H.: Trans. Metall. Sot. AIME 221 (1961) 285. Maringer, R.E.: J. Appl. Phys. 32 (1961) 3665. Peterson, D.T.: Trans. Metall. Sot. AIME 221 (1961) 924. Peterson, D.T.: Trans. Am. Sot. Met. 53 (1961) 765. Eichenauer, W., Muller, G.: Z. f. Metallkd. 53 (1962) 321, 700 (Corrigendum). de Morton, M.E.: J. Appl. Phys. 33 (1962) 2768. Pemsler, J.P., Anderson, R.W., Rapperport, E.J.: U.S. Rept. A.S.D./T.D.R./62-1018 (1962). Smith, R.P.: Trans. Metall. Sot. AIME 224 (1962) 105. Gruzin, P.L., Zemskiy, S.V., Rodina, I.B.: Met. Metallogr. of Pure Metals IV (1963) 243. Jacobs, A.J.: Nature 200 (1963) 1310. Kovenskiy, 1.1.:Fiz. Met. Metalloved. 16 (1963) 613. Stringer, J., Rosenfield, A.: Nature 199 (1963) 337. Wallwork, G.R., Smeltzcr, W.W.:J. Electrochem. Sot. 110 (1963) 943. Wert, C.A., Keefer, D.: Acta Metall. 11 (1963) 489. Aleksandrov, L.N., Shchelkonogov, V.Ya.: Sov. Powder Metall. Met. Ceram. 4 (1964) 288. Borchardt, H.J.: J. Inorg. Nucl. Chem. 26 (1964) 711. Buck, R.H., Waterhouse, R.B.: J. Less Common Met. 6 (1964) 36. Homan, C.G.: Acta Metall. 12 (1964) 1071. Grieveson, P., Turkdogan, E.T.: Trans. Metall. Sot. AIME 230 (1964) 407. Grieveson, P., Turkdogan, E.T.: Trans. Metall. Sot. AIME 230 (1964) 1604. JA Claire

Landolt-BC5msfein Ne\v Series 111126

8.3 References for 8 64L 64Ml 64M2 64P 64s 65A 65K 65L 65P 65s 66B 66C 66Hl 66H2 66Ll 66L2 66Nl 66N2 66P 66R 66Sl 6682 66V 662 67Dl 67D2 67G 67Kl 67K2 67R 67Sl 6782 6783 672 68Bl 68B2 68B3 68C 68D 68Fl 68F2 68L 68M 68P 68Sl 6882 6883 69A 69B 69C 69El 69E2 69H 691 69L Land&-Biirnstein New Series III/Z

Lee, C.H.: Nature 203 (1964) 1163. Ma, Y, Son, J.: Acta Metall. Sinica 7 (1964) 68. Maringer, R.E.: J. Appl. Phys. 35 (1964) 2375, 31 (1960) 2295. Pemsler, J.P.: J. Electrochem. Sot. 106 (1959) 1067, 111 (1964) 1185. Smith, R.P.: Trans. Metall. Sot. AIME 230 (1964) 476. Andrievski, R.A., Zagryazkin, V.N., Meshcheryakov, G.Ya.: Symposium on Thermodynamics and Atomic Transport in Solids, Vienna (1965); Fiz. Met. Metalloved. 21 (1966) 140. Kovenski, 1.1.: Diffusion in BCC Metals (ASM 1965) p. 283. Litman, A.P.: Phys.’ Status Solidi 11 (1965) K47. Pavlinov, L.V., Bykov, B.N.: Fiz. Met. Metalloved. 19 (1965) 397. Shovensin, A.B., Minkevitch, A.H., Scherbinski, G.B.: Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 1 (1965) 95. Bosman, A.J.: Thesis Amsterdam (1960); Acta Metall. 14 (1966) 1659. Carlson, O.N., Schmidt, EA., Peterson, D.T.: J. Less Common Met. 10 (1966) 1. Hoffman, R.A., Wert, CA.: J. Appl. Phys. 37 (1966) 237. Hehenkamp, Th.: Acta Metall. 14 (1966) 887. Lafitau, H., Gendrel, G., Jacque, L.: C. R. Acad. Sci. (Paris) C263 (1966) 1033. Lord, A.E., Beshers, D.N.: Acta Metall. 14 (1966) 1659. Nakanechnikov, AI., Pavlinov, L.V., Bykov, V.N.: Phys. Met. Metallogr. 22 (1966) (2) 73. Nakanechnikov, A.I., Pavlinov, L.V., Bykov, V.N.: Fiz. Met. Metalloved. 22 (1966) 234. Podgurski, H.H., Gonzalez, D.: Unpublished, cited in [66L2]. Rosa, C.J., Smeltzer, WV,!: Electrochem. Technol. 4 (1966) 149. Smith, R.P.: Trans. Metall. Sot. AIME 236 (1966) 1224. Son, P., Ihara, S., Miyake, M., Sano, T.: J. Jpn. Inst. Met. 30 (1966) 1137. Van Ooijen, D.J., Vandergroot, AS.: Acta Metall. 14 (1966) 1008. Zemskiy, S.V., Spasskiy, M.N.: Fiz. Met. Metalloved. 21 (1966) 129. Debuigne, J.: Met. Corros. Ind. 42 (1967) 186. Diamond, S., Wert, C.: Trans. Metall. Sot. AIME 239 (1967) 705. Goto, S., Nomaki, K., Skoda, S.: J. Jpn. Inst. Met. 31 (1967) 600. Klein, M.J.: J. Appl. Phys. 38 (1967) 167. Kofstad, P., Espevic, S.: J. Less Common Met. 12 (1967) 382. Rudman, P.S.: Trans. Metall. Sot. AIME 239 (1967) 1949. Schmidt, EA., Warner, J.C.: J. Less. Common Met. 13 (1967) 493. Son, P., Ihara, S., Miyake, M., Sano, T.: J. Jpn. Inst. Met. 31 (1967) 998. Swisher, J.H., Turkdogan, E.T.: Trans. Metall. Sot. AIME 239 (1967) 426. Zemskiy, S.V., Lyakhin, B.P.: Fiz. Met. Metalloved. 23 (1967) 913. Baranova, VI., Golovin, S.A., Krishtal, M.A., Lerner, M.I.: Fiz. Khim. Obrab. Mater. (1968) (2) 61. Borisov, E.V., Gruzin, P.L., Zemskiy, S.V.: Zashch. Pokrytiya Met. 2 (1968) 104. Bazan, J.C.: Electrochim. Acta 13 (1968) 1883. Conn, P.K., Duderstadt, E.C., Fryxell, R.E.: Trans. Metall. Sot. AIME 242 (1968) 626. Ducros, D., Le Goff, P.: C. R. Acad. Sci. (Paris) C267 (1968) (12) 704. Fromm, E., Jehn, H.: J. Less Common Met. 14 (1968) 474. Frauenfelder, R.: J. Chem. Phys. 48 (1968) 3966. Lafitau, H.: C. R. Acad. Sci. (Paris) C267 (1968) 132. Meshcheryakov, G.Ya., Andriyevskiy, R.A., Zagryazkin, V.N.: Fiz. Met. Metalloved. 25 (1968) 189. Pavlinov, L.V., Gladyshev, A.M., Bykov, YN.: Fiz. Met. Metalloved. 26 (1968) 823. Shchelkonogov, V.Ya., Aleksandrov, L.N., Piterimov, V.A., Mordyuk, V.S.: Phys. Met. Metallogr. 25 (1968) (1) 68. Son, P., Miyake, M., Sano, T.: Tech. Rep. Osaka Univ. 18 (1968) 317. Stewart, A.K., Hepworth, M.T.: Trans. Metall. Sot. AIME 242 (1968) 698. Alcock, C.B., Brown, P. B.: Met. Sci. J. 3 (1969) 116. Barlow, R., Grundy, P.J.: J. Mater. Sci. 4 (1969) 797. Canelli, G., Verdini, L.: Nuovo Cimento B59 (1969) 19. Eremeyev, VS., Ivanov, YuM., Panov, A.S.: Izv. Akad. Nauk SSSR, Met. 4 (1969) 262. Evans, J.H., Eyre, B.L.: Acta Metall. 17 (1969) 1109. Hoare, J.P.: J. Electrochem. Sot. 116 (1969) 1390. Iden, D.I., Himmel, L.: Acta Metall. 17 (1969) 1483. Lord, A.E.: J. Acoust. Sot. Am. 45 (1969) 1382. Le Claire

502

59M 59Pl 59P2 59P3 59s 70A 70G 70J 70K 70M 70R 7OSl 7OS2 7ow 711 71P 71R 712 12A 72Gl 7262 72H 72J 72K 72N 72P 72RI 72R2 72SI 7282 7283 72V 12W 73A 73c 73G 731 73Ll 73L2 73M 13P

74R 742 75A 75c 75Y 76D 76K 76Sl 76S2 7633 762 77Bl

8.3 References for 8 Mondino, M.A., Vassalo, D., de Achterberg, M.C.: J. Mater. Sci. 4 (1969) 1117. Pastoreck, R.L., Rapp, R.A.: Trans. Metall. Sot. AIME 245 (1969) 1711. Peterson, D.T., Carnahan, T.: Trans. Metall. Sot. AIME 245 (1969) 213. Peterson, D.T., Schmidt, EA.: J. Less Common Met. 18 (1969) 111. Sokirianskii, L.F., Ignatov, D.V., Shinyaev, A.Ga.: Fiz. Met. Metalloved. 28 (1969) 287. Ahmad. M.S., Szkopiak, Z.C.: J. Phys. Chem. Solids 31 (1970) 1799. Gladkov, V.P., Zotov, V.S., Papirov, I.I., Skorov, D.M., Tikhinski, G.F.: Poluchenie i Issledovanie Svoistv Chistykh Metallov (Kharkov) F.T.I. Akad. Nauk. Ukr. SSR 2 (1970) 56. Jehn, H., Fromm, E.: J. Less Common Met. 21 (1970) 333. Kunz, J., Reichett, W.: J. Less Common Met. 20 (1970) 327. Miner, R.E., Gibbons, D.E., Gibala, R.: Acta Metall. 18 (1970) 419. Rosa, C.J.: Metall. Trans. 1 (1970) 2517. Schmidt, EA., Carlson, O.N., Swanson, C.E.: Metall. Trans. 1 (1970) 1371. Selman, G.L., Ellison, P.J., Darling, A.S.: Platinum Met. Rev. 14 (1970) 14. Wagner, R.L.: Metall. Trans. 1 (1970) 3365. Iyer, S.K.: Thesis (1971). Univ. of Pennsylvania, USA. Paid&, J., Le Delliou, R.: C. R. Acad. Sci. (Paris) C272 (1971) 249. Repkin, V.D., Kurtukov, G.V., Kornilov, A.A., Bespalov, V.V.: Metalloterm. Protsessy Khim. Met. (1971) 320. Zholobov, S.P., Malev, M.D.: Zh. Tekh. Fiz. 41 (1971) 677. Arnold, J.L., Hagel, W.C.: Metall. Trans. 3 (1972) 1471. Gladkov, V.P., Zolkov, V.S., Skorov, D.M.: Sov. J. At. Energy 32 (1972) 179. Grundy, P.J., Nolan, P.J.: J. Mater. Sci. 7 (1972) 1086. Hoerz, G., Lindenmaier, K.: Z. Metallkd. 63 (1972) 240. Jehn, H., Hohlock, K., Fromm, E.: J. Less Common Met. 27 (1972) 98. Kerr, R.A.: M. SC.Thesis (1972), Ohio State University, USA. Nakanechnikov, A.I., Pavlinov, L.V.: Izv. Akad. Nauk SSSR, Met. 2 (1972) 213. Peterson, D.T., Schmidt, EA.: J. Less Common Met. 29 (1972) 321. Ramanarayanan, T.A., Altstetter, C.J.: Metall. Trans. 3 (1972) 3239. Ramanarayanan, T.A., Rapp, R.A.: Metall. Trans. 3 (1972) 3239. Schmidt, EA., Carlson, O.N.: J. Less Common Met. 26 (1972) 247. Schmidt, EA., Warner, J.C.: J. Less Common Met. 26 (1972) 325. Shepela. A.: J. Less Common Met. 26 (1972) 33. Velho, L.R., Bartlett, R.W.: Metall. Trans. 3 (1972) 65. Weaver, D.E.: USA Rept. UCRL-51182 (1972). Arakelov, A.G., Blanter, M.S., Kissil’, A.Ye., Kovaleva, L.A., Stekachev, I.T.: Fiz. Met. Metalloved. 35 (1973) 826. Carlson, O.N., Schmidt, EA., Sever, J.C.: Metall. Trans. 4 (1973) 2407. Gryaznov, V.M., Gul’yanova, S.G., Kanizius, S.: Russ. J. Phys. Chem. 47 (1973) 1517. Ignatov, D.V., Model, M.S., Sokirianskii, L.F., Shinyaev, A.Y.: Titanium Sci. Techn. IV (1973) 2535. Lloyd? G.J., Martin, J.W.:Met. Sci. J. 6 (1972) 7, 7 (1973) 75. Louthan, M.R., Dexter, A.H.: Met. Sci. J. 7 (1973) 76. McKee, I., Wallwork, G.R.: J. Less Common Met. 30 (1973) 249. Pieraggi, B., Dabosi, F.: J. Nucl. Mater. 46 (1973) 183. Ramanarayanan, T.A., Worrell, W.L.: Metall. Trans. 5 (1974) 1773. Zotov, V.S., Miroshnichenko, T.I., Protasova, A.M.: Diffusion Processesin Metals (Tul’skiy Politkh. Inst.) 2 (1974) 73. Agarwala, R.P., Paul, A.R.: J. Nucl. Mater. 58 (1975) 25. Carlson, O.N., Schmidt, EA., Lichtenberg, R.R.: Metall. Trans. 6A (1975) 725. Yoshioka. K., Kimura, H.: Acta Metall. 23 (1975) 1009. Dubovtsev, R.M., Zotov, V.S., Miroshnichenko, T.I., Nikolayev, N.A.: Fiz. Met. Metalloved. 42 (6) (1976) 1314. Kimura, H., Yoshioka, K.: Mater. Sci. Eng. 24 (1976) 171. Schmidt, EA., Carlson, O.N.: J. Less Common Met. 50 (1976) 237. Schmidt, EA., Carlson, O.N.: Metall. Trans. 7A (1976) 127. da Silva, J.R.G., McLellan, R.B.: Mater. Sci. Eng. 26 (1976) 83. Zotov, V.S., Tseldkin, A.P.: Sov. Phys. J. 19 (1976) 1652. Boratto, F.J.M., Reed-Hill, R.E.: Ser. Metall. 11 (1977) 1107. Le Claire

Land&BBmsfein Ne\v Series III!26

8.3 References for 8 77B2 77B3 77D 77Hl 77H2 77Kl 77K2 77L 77Pl 77P2 77R 78A 78B 78F 78L 78s 79F 79K 79L 79v 792 8OBl 8OB2 8OM 80V 81A 81P 81W 82D 82K 83A 83Dl 83D2 83D3 83N 830 84A 84Kl 84K2 84T 85D 85P 86A 86L 86Tl 86T2 87L 87P 891 9oc

503

Boratto, F.J.M., Reed-Hill, R.E.: Metall. Trans. SA (1977) 1233. Boratto, F.J.M., Reed-Hill, R.E.: Ser. Metall. 11 (1977) 709. Dechamp, M., Lehr, P.: J. Less Common Met. 56 (1977) 193. Horrigan, V.M.: Metall. Trans. 8A (1977) 785. Hirvonen, J., Anttila, A.: Ser. Metall. 11 (1977) 1139. Kirchheim, R., Mathuni, J., Fromm, E.: Z. Metallkd. 68 (1977) 97. Kirchheim, R., Albert, E., Fromm, E.: Ser. Metall. 11 (1977) 651. L’nyanoi, V.N.: Fiz. Khim. Obrab. Mater. 3 (1977) 104. Perkins, R.A., Padgett, R.A.: Acta Metall. 25 (1977) 1221. Perkins, R.A.: J. Nucl. Mater. 68 (1977) 148. Ritchie, I.G., Atrens, A.: J. Nucl. Mater. 67 (1977) 254. Anttila, A., Hirvonen, J.: Appl. Phys. Lett. 33 (1978) 394. Boratto, F.J.M., Reed-Hill, R.E.: Ser. Metall. 12 (1978) 313. Ferraro, R., McLellan, R.B.: Mater. Sci. Eng. 33 (1978) 113. Lorang, G., Langeron, J.P.: High Temp. High Pressures 10 (1978) 165. Schmidt, EA., Martsching, G.A., Carlson, O.N.: J. Less Common Met. 68 (1978) 75. Ferraro, R., McLellan, R.B.: Mater. Sci. Eng. 39 (1979) 47. Kirchheim, R.: Acta Metall. 27 (1979) 869. Lauf, R.J., Altstetter, C.J.: Acta Metall. 27 (1979) 1157. Vadchenko, S.G., Grigor’yev, Yu.M., Merzhanov, A.G.: Russ. Metall. 2 (1979) 150. Zotov, VS.: Fiz. Khim. Obrab. Mater. 4 (1979) 125. Boratto, F.J.M., Reed-Hill, R.E.: Mater. Sci. Eng. 43 (1980) 97. Boratto, F.J.M., Reed-Hill, R.E.: Mater. Sci. Eng. 45 (1980) 290. McLellan, R.B.: Mater. Sci. Eng. 45 (1980) 289. Vadchenko, S.G., Grigor’yev, Yu.M., Merzhanov, A.G.: Izv. Akad. Nauk SSSR, Met. 5 (1980) 223. Albert, E., Kirchheim, R., Dietz, H.: Ser. Metall. 15 (1981) 673. Pawel, R.E., Campbell, J.S.: J. Electrochem. Sot. 128 (1981) 1999. Weller, M., Zhang, J.X., Li, G.Y., K&, T.S., Diehl, J.: Acta Metall. 29 (1981) 1047, 1055. Dubovtsev, R.M., Zotov, V.S., Miroshnichenko, T.I.: Fiz. Met. Metalloved. 54 (1982) 1128. Katlinskii, V.I.: Fiz. Khim. Obrab. Mater. 6 (1982) 134. Anttila, A., R&&en, J., Keinonen, J.: Appl. Phys. Lett. 42 (1983) 498. Deshkevich, Ye.V., Dubovtsev, R.M., Zotov, V.S.: Fiz. Met. Metalloved. 55 (1983) 186. Deshkevich, Ye.V., Dubovtsev, R.M., Zotov, V.S.: Metallofizika 5 (1983) 90. David, D., B&anger, G., Garcia, E.A.: J. Electrochem. Sot. 130 (1983) 1423. Narula, M.L., Tare. V.B., Worrell, W.L.: Metall. Trans. 14B (1983) 673. Okamoto, M.: Acta Metall. 31 (1983) 1169. Anttila, A., RHisanen, J., Keinonen, J.: J. Less Common Met. 96 (1984) 257. Keinonen, J., RHisanen, J., Anttila, A.: Appl. Phys. A34 (1984) 49. Keinonen, J., R&&en, J., Anttila, A.: Appl. Phys. A35 (1984) 227. Takadi, J., Kashiwagi, K., Adachi, M.: J. Mater. Sci. 19 (1984) 3451. Deshkevich, Ye.V., Dubovtsev, R.M., Zotov, VS.: Fiz. Met. Metalloved. 60 (1985) 1206. Park, J.W.,Altstetter, C.J.: Ser. Metall. 14 (1985) 1481. Agren, J.: Ser. Metall. 20 (1986) 1507. Lee, L.J., Altstetter, C.J.: Acta Metall. 34 (1986) 131. Takadi, J., Yamamoto, S., Kikuchi, S., Adachi, M.: Metall. Trans. 17A (1986) 221. Takadi, J., Yamamoto, S., Adachi, M.: Z. Metallkd. 77 (1986) 6. Lappalainen, R., Anttila, A.: Appl. Phys. A 42 (1987) 263. Park, J. W!, Altstetter, C.J.: Metall. Trans. 18A (1987) 43. Iijama, Y, Makuta, F., Agarwala, R.P., Herano, K.: Mater. Trans., JIM 30 (1989) 984. Cermak, J., Mehrer, H.: Z. Metallkde., in press.

Land&-BCmstein New Series III/26

Le Claire

504

9.1 Introduction;

9.2 Methods of measurements (direct methods)

[Ref. p. 510,556

9 The diffusion of H, D and T in solid metals 9.1 Introduction The tables and figures in this chapter present information concerning the diffusion of hydrogen and/or its isotopes deuterium and tritium, in solid metals. Some results of measurementsin the presenceof varying levels of hydrogen concentration are included; however, apart from a few exceptions, those pertaining to the diffusion of hydrogen in alloys and compounds have been excluded. In spite of this restriction, the volume of data compiled is quite large; for example, 150 referencesare cited for iron alone. For convenience, the referencesto each solvent are listed separately. Many of the methods described in chapter 1 of this volume have been applied to the study of hydrogen diffusion. In the following resume some of the advantages or limitations of the methods, as they apply to that solute, are noted. Where possible, referencesare given to reviews or original papers that introduce or typify the use of a measuring technique. An excellent general review is given in [75v]. For a number of solvents, large discrepancies occur among both the observed diffusivities and the related parametersD” and Q. This is particularly true when the results have been obtained from permeation, absorption or desorption measurementsthat are sensitive to the presenceof oxide layers on the specimen surfaces.Recent improvements in these techniques have led to better agreement with data obtained by methods that are inherently free from surface effects. Discrepancies can also arise if the hydrogen is trapped by impurities or lattice defectsin the solvent metal. An excellent review and critique of this and other problems specifically found in the important Fe-H system has been given by Kiuchi and McLellan [83K(Fe)]. In assessingthe results presented in the tables, consideration has been given to the method of measurement, the temperature range covered and the level of agreementamong separatestudies. Those parametersjudged best to represent the intrinsic diffusion of hydrogen in a solvent are indicated by an asterisk (*) in the reference column of the tables. In a few cases,no “best values” are identified. Arrhenius plots of the diffusion coefficients of hydrogen in most of the solvents are given, either for the recommended results, or as a compilation of several results. In the following, the format adopted closely parallels that of the genera! introduction; where appropriate, referenceis made to the relevant sections of chapter 1.

9.2 Methods of measurementsof diffusion coefficients of hydrogen in metals 9.2.1 Direct methods (Seesubsection 1.6.1)

9.2.1.1 Steady-state permeation (Seesubsection 1.2.3,equation (1.20) and subsection 1.6.1.1,equations (1.40, 1.42)) If, in equation (1.20),the steady-state concentrations c,, c2 on the entry and exit surfaces of a permeation membrane are maintained by fixed partial pressuresp, 1, pm2of molecular hydrogen gas, H,, the flux J across the membrane may be written as J=W,,W

(Pi, -PkJ

(9.1) where K,, is Sievert’s constant and d the membrane thickness. Experimental conditions are usually chosen such that dissociation in the gas phase is negligible and p, Jp,,, , ~0. Equation (9.1) then reduces to

J=P/4 ,h

(9.2)

where P=(K,,D) is the permeation constant and p the total pressure on the entry side. Provided the surface processesof adsorption and dissociation are rapid and the flux is not impeded by oxide surface layers, diffusion through the membrane is rate-controlling. The diffusivity, D may then be determined from the measured flux provided K,, is known from solubility measurements. If oxide surface layers impede the flux, erroneously low diffusivities and large activation energies may be deduced. Surface cleaning in UHV, followed by deposition of a thin protective layer of palladium may reduce or eliminate this problem. (See[76Bl (Ta), 76B2 (Ta), 84Z(Pd)J). Landok-BBmstein New Series III/26

Ref. p. 5561

9.2 Methods of measurements (direct methods)

505

9.2.1.1.1 ‘Ikansient permeation methods (Seesubsection 1.6.1.1) Rapid establishment of a fixed hydrogen concentration c1 on the entry side of the membrane by contact with the H, gas induces a transient, time dependent flux J, prior to the final steady-state flux J,. Several methods are used to determine the diffusivity from the characteristics of this time-lag. It may be shown, for example, that J,/J,z(2d/m)

exp(- d2/4Dt)

(9.3)

and for (J,/J,)=OS, D =0.138 d2/t. A UHV, gas-permeation system is shown in Fig. 1.

01

* B 2

-

IO

;T 4

3 4,

b Fig. 1. Schematic diagram of: (a) a UHV, gas-phase permeation system and (b), the permeation specimen [83H (Al)]. f : balloon; 2: H, gas reservoir; 3: quadrupole mass separator; 4: vacuum gauge; 5: ion pump; 6: titanium gettering pump; 7: sorption pump; 8: thermocouple; 9: heater; 10: specimen; 11: aluminum gasket; 12: aluminum disc.

9.2.1.1.2 Electrochemical permeation method In one example of this method the metal to the studied functions as a bipolar membrane electrode in an electrolytic permeation cell. (SeeFig. 2). Hydrogen is generated on the cathode side and the entry concentration c1 is controlled by an applied voltage. On the exit side the potential is maintained positive so that the arriving H atoms are oxidized. The equivalent electrical current generated by the oxidizing processis a sensitive measure of the flux through the membrane. The electro-chemical permeation cell may be operated in several modes including (i) the step method, (ii) the pulse method, and (iii) the oscillation method. These are discussedin [72Z (Pd)], in which analysesare given for the associatedtime-lag relations. Two examples of the latter are indicated in Fig. 3. Electrochemical methods are useful over a relatively limited temperature range and may be subject to surface effects.(But see [82N (Fe)] in which such effects are avoided).

Land&-B6mstein New Series III/26

Kidson

[Ref. p. 510,556

9.2 Methods of measurements (direct methods)

506

4 Fig. 2. Schematic diagram of an electrolytic permeation cell [81S, see 9.3.1.11. M: specimen membrane; G: ground; R, , R,: reference electrodes. Dashed lines represent porous partitions in the cell.

r I valve’ 6 voltmeter

E2

=

G

I

I

1

I 4

Fig. 3(a). Schematic plot of time dependenceof pressure in b an initially evacuated, closed chamber on the exit side of a permeation membrane; the gas pressureon the entry side was established at I = 0. The time-lag. T, defined as the intercept, extrapolated from the steady-state linear rise in pressure is related to the diffusivity D and membrane thickness, d, by T = d*/6 D [73R (Ni)]. (b) Recorded time dependence of the Hi ion current (proportional to the permeation rate) in a continuously pumped chamber on the exit side of a permeation membrane. The ion current was detected by a quadrupole mass spcctrometer (see Fig. 1(a)). The arrow indicates the time at which the hydrogen was evacuated from the entry side of the membrane. The diffusivity D can be evaluated by fitting the transient, build-up of ion current I(/) to (i) A exp(- 1/4r), for small r, (ii) A(1 - 2 exp(- x2 7)) for large T, where T = Df/d*, dbcing the membrane thickness and A a constant P3K WI

a

0

0

f-

5

10

9.2.1.2 Absorption/Desorption

15

20

25 s

30

t-

b

methods

(Seesubsection 1.2.3,equations (1.22a), (1.22b); subsection 1.2.4,equation (1.24) and subsection 1.2.5, equation (1.26)) Cylindrical or spherical specimens are generally used. These methods are applicable at relatively high temperatures; again, care must be used to avoid problems related to surface layers.

9.2.1.3 Concentration profile methods (Seesubsection 1.6.1.2.1) Several methods are available for the determination of the concentration profile C(x, t) of the diffusing hydrogen isotope. They include: (a) secrioning the dirfirsion zone and determining the hydrogen concentration by vacuum-extraction [72K (Zr)]. (b) using tritiwn as the diffusant, (i) sectioning and counting the P-activity in each section [86Q(Ti)] or (ii) preparing a surfaceparallel to the diffusion axis and measuring the P-activity by auto-radiography [62C(Zr)].

Kidson

507

9.2 Methods of measurements (direct methods)

Ref. p. 5561

(c) nuclear reaction analysis (See 1.6.1.2.2(d)) The 15N resonant reaction ‘H(15N, ay)“C has been used to determine hydrogen concentration profiles. The principles of the method are shown schematically in Fig. 4 [80B (Ti)]. (d) neutron radiography The large neutron scattering cross section of hydrogen permits the use of neutron radiography as a means of determining the concentration profile as described in [77Z (Nb)]. (e) X-ray measurements of the lattice expansion associated with increases in hydrogen concentration may be used to measure the concentration profile [72Zl (Ta)]. The method is shown schematically in Fig. 5.

I I -+s 0

X-

0.094

60.3"

0.074

60.4"

0.054

60.5",

0.034

60.6"

a

EN= &es

.: , . .' . . _. ,;:

..,.. ..'." . . ,'. . '

.,

,'..

.,'. _

..: .._

,'

;

,.' _.

:

:

I c

.

I

.

','.

0.014

..

:,

0

_ EN,

> 4,s

.,

:,

_'

*, ,.. . ..

.. :

: .-. :.

‘...

‘.

.. _

25

60.8" mm 50

X-

Fig. 5(a). Schematic diagram showing the principle of the gravimetric method for the measurement of the diffusion of H in a tantalum tube. As diffusion progressesfrom right to left, the associated lattice expansion causes a shift of the lattice planes relative to the balance fulcrum. (b) n: concentration of H along the specimen length; 0: angle of reflection of the (321) Ta lattice planes [72W (Ta)].

,_ :

-‘,_ ,.‘.,‘_,

Eres

Landolt-BBmstein New Series III/26

‘.

,’

0

b

_’ .’

._’

I c3 8 P

c

",

,. .,. ‘. -. -. . ,_ .

i/

b

,.

60.7"

EN- E,,,ocS -

..‘.., .

.._ 4 Fig. 4(a). Schematic diagram of experimental arrangement for determination of concentration profile by use of the resonant nuclear reaction. rH(15N, ay)“C. TC: target chamber; S: specimen; D: y detector; C: collimator; I&: energy of “N beam; E,,,: resonanceenergy of nuclear reaction; S: depth at which EN is reduced to E,,, to produce the reaction. (b) Schematiddiagram showing the principle of measuring the H profile; as the incoming “N beam energy EN is increased, the depth at which the resonant energy E,,, interacts with the H, increases. (c) Example of concentration profile obtained. Fig. 4a, b, c taken from [80B (Ti)].

Kidson

508

9.2 Methods of measurements (indirect methods)

[Ref. p. 556

9.2.1.4 Diffusion couple methods without profile measurements (See subsection 1.6.1.2.3) (a) Grovimetric nre~ho~;a tubular specimen is initially charged with hydrogen over a portion of its length and attached to a highly sensitive balance. As diffusion of hydrogen progressesalong the tube, the associated lattice expansion (see9.2.1.3(e) above) produces a continuously measurable shift in the center of gravity of the specimen, from which the diffusion coefficient is determined [72W (T’a)]. (b) The resistomefric method; (see 1.6.1.2.3) has been applied to hydrogen diffusion. (See, for example, P3S WI).

9.2.2 Indirect methods (See subsection 1.6.2)

9.2.2.1 Relaxation methods (See subsection 1.6.2.1) (a) Go&y-eJ%ct (See 1.6.2.1(b)) Two methods of measuring the Gorsky-effect have been reported: (i) the quasi-static method [6882 (Nb)] and (ii) the dynamic, or internal friction method [69C(Nb)J. These techniques are insensitive to surface problems associated with permeation studies, they have been used over a wide range of temperature and have played a major role in revealing quantum-mechanical aspectsas diffusion. (b) The dif/lrsion-elastic phenomenon is the inverse of the Gorsky-effect. As hydrogen diffuses from one side of thin strip due to a concentration gradient, it produces a macroscopic strain gradient, which can be monitored to determine the diffusivity [76C (Ni)]. The close relationship between the two methods is shown in Figs. 6(a), (b). (c) Moperic ufler eSfect (See 1.6.2.1(a)) The jump frequencies and the associated activation energies of H, D and T have been determined from measurements of the magnetic after effect. (See [82H (Nil]). (d) Resisfivity recovery method The isochronal recovery of electrical resistivity of hydrogen-charged and quenched metal solvent wires, has been used to measure hydrogen diffusion coefficients and to detect hydrogen mobility at temperatures of a few Kelvin [76Yl @Ii)]. (e) Resistivity relaxation

A known concentration gradient may be established by, for example, imposing a temperature-gradient on an initially uniform distribution of hydrogen in a solvent. On removal of the temperature gradient, the kinetics of the return of the hydrogen to a uniform distribution are followed by resistivity changes. The method is independent of surface effects [76H (V)].

4 Fig. 6(a). Schematicdiagramshowingthe principle of the quasi-staticGorsky-effectmethod.E,: instantaneouselastic strain on application hydrogen diffusion

of the load; E.: anelastic, time-depen-

dent strain associatedwith the induceddiffusion of the hydrogenatoms[7OS(V)]. T: relaxationtime,relatedto the diffusion coefficient D and specimenthicknessd through T = d2/(13.55 0).

a Kidson

landok-B6mstein New Series III/26

509

9.3 Further readings

Ref. p. 5561

Original stote of the lattice Direction of diffusion

Absorption

Oesorption

T 8 z f

1

Primary couse

Diffusion flux

Consequence

Inhomogeneous distribution of interstitiols lnhomogeneous elastic deformotion

Acting forces

Only inner stresses

Final stote of the lattice. direction of flux 0

f-

0

--

f-

Fig. 6(b). Principle of the diffusion-elastic effect. The non-uniform lattice expansion associatedwith the diffusion of H from left to right causesa curvature of the specimenat a rate proportional to the diffusion flux [76C (Ni)]. M: moment, y: deflection.

9.2.2.2 Nuclear methods (a) Nuclear magnetic resonance (NMR) (See 1.6.2.2(a)) The extensive use of NMR for the study of hydrogen diffusion in metal-H solid solutions and in metal hydrides is favoured by two properties of the proton; (i) its spin of l/2 produces only dipolar interactions with its surroundings; the lack of quadrupole coupling greatly simplifies the interpretation of the NMR spectra (ii) the strength of the NMR signal is proportional to the gyromagnetic ratio, y. The proton has the largest y of all known, stable nuclei [72C (Nb)]. (b) Quasielastic neutron scattering (QENS) (See 1.6.2.2(b)) This method is also especially suited to the study of hydrogen diffusion. The neutron scattering cross-section of the proton is an order of magnitude larger than that of the deuteron and all other nuclei. Like other nuclear methods, it is independent of surface related problems.

9.2.2.3 Other methods Other indirect methods that have been used to a limited extent include (i) Mhsbauer spectroscopy (see subsection 1.6.3.2(b) and [76H2 (Ta)]). (ii) Perturbed angular correlation (see [85P (Ta)]). (iii) Field emission current fluctuations This method has been used for detailed studies of surface diffusion (see [80D (W)]). (iv) Atom-probe field-ion microscopy (FIM) This method has been used to study the diffusion of implanted hydrogen atoms in tungsten at 29K (see [84M

(w>l>.

9.3 Further readings A number of excellent reviews of both experimental and theoretical studies of the diffusion of hydrogen in metals have appeared in recent years. The experimental work has been greatly stimulated by the development of the Gorsky-effect techniques complemented by nuclear methods. The theoretical studies are motivated by the availability of detailed experimental data, by readily observable quantum-mechanical effects at low temperatures and by the relative simplicity of the proton. The references below cover both areas, as well as the proceedings of conferences and data compilations specific to hydrogen and not listed in chapter 1. Land&-Biimstein New Series 111126

510

9.3 Further readings

9.3.1 Reviews and collected papers Reviews 72B 72C 72G 72V 722 75v 78K 78V 79s 81s 83K 84H 85F 86P

Birnbaum, H.K., Wert, CA.: DfJirsion of Hydrogen in Metals, in: Ber. Bunsenges.Phys. Chem. 76 (1972) 806. Cotts, R.M.: Hydrogen Diffirsion Studies using Nuclear Magnetic Resonance, in: Ber. Bunsenges. Phys. Chem. 76 (1972) 760. Gissler, W.: Quasielastic Neutron Scattering bJ1Hydrogen in Transition Metals, in: Ber. Bunsenges. Phys. Chem. 76 (1972) 770. Vblkl, J.: The Gorsky Eflect, in: Ber. Bunsenges. Phys. Chem. 76 (1972) 797. Zuchner, H., Boes, N.: Elcctro-chemical Methods for Diffusion Measurements, in: Ber. Bunsenges. Phys. Chem. 76 (1972) 783. V61k1,J., Alefeld, G.: Hydrogen DifJlrsion in Metals, in: Diffusion in Solids: Recent Developments. Nowick, A.S., Burton, J.J.(eds.), New York: Academic Press, 1975. Kehr, K.W.: Theory of the Difftrsion of Hydrogen in Metals, in: Hydrogen in Metals I, Alefeld, G., Viilkl, J. (eds.), Topics in Applied Physics 28 (1978) 197. Valkl, J., Alefeld, G.: DiJirsion of Hydrogen in Metals, in: Hydrogen in Metals I, Alefeld, G., V61k1,J. (eds.), Topics in Applied Physics 28 (1978) 321. Springer, T.: Investigations of Metal-Hydrogen System by Means of Neutron-Scattering, in: Z. Phys. Chem. NF 115 (1979) 317. Subramanyan, P.K.: Electrochemical Aspects of Hydrogen in Metals, in: Comprehensive Treatises of Electrochemistry, 4., Bockris, J.O’M., Conway, B.E., Yeager, E., White, R.E. (eds.), New York: Plenum Press, 1981. Kiuchi, K., McLellan, R.B.: The Sohrhiiity and Dif/lrshity of Hydrogen in Well Annealed and Deformed Iron, in: Acta Metall. 34 (1983) 961. Hempelmann, R.: DiJjtsian of Hydrogen in Metals, in: J. Less Common Met. 101 (1984) 69. Fukai, Y, Sugimoto, H.: Dijjjrsion of Hydrogen in Metals, in: Adv. Phys. 34 (1985) 263. Petty, W., Vogl, G.: Potential and Limits of Nuclear Methods in Diffusion Studies, in: Vacancies and Interstitials in Metals and Alloys (Int. Conf., Berlin 1986), Material Science Forum 15-18, 1986.

Collected papers 86A

Ashby, M.F., Hirth, J.P. (eds.): Perspectives in Hydrogen in Mefals, Pergamon Press, 1986.

9.3.2 Diffusion data An on-going compilation of diffusion and thermodynamic data appears in: Physics Data: Gases and Carbon in Metals. E. Fromm (ed.), Berlin: Springer.

9.3.3 Proceedings Some recent proceedings of international conferencesconcerning the diffusion of hydrogen in metals and related topics are listed below: Hydrogen in Metals (Int. Mtg., Jiilich 1972) JUL-conf-6, 1972. L’Hydroghne dons les Metaus (Congr. Int. Paris 1972), Paris: fiditions Science et Industrie, 1973. Effect of Hydrogen on the Behavior of Materials (Proc. Int. Conf., Jackson Lake Lodge 1975),Thompson, A.W, Bernstein, I.M. (eds.), New York: AIME, 1976. Reactirity of Solids (8th Int. Symp., Gothenburg, Sweden 1976), Gothenburg: Chalmers Univ. of Tech., 1976. Hydrogen in Metal.7 (2nd Int. Congr., Paris 1977), Oxford: Pergamon Press, 1977. Internal Friction and Ultrasonic Attenuation in Solid7 (Proc. 6th Int. Conf., Tokyo 1977), Tokyo: Univ. Tokyo Press, 1977. Hydrogen in Metals, I, II, Topics in Applied Physics Vol. 28, 29, Alefeld, G., Valkl, J. (eds.), Berlin: Springer 1978. Hydrogen in Metals (Int. Conf. Wroclaw, Poland) 1983. Properties and Applications of Metal Hydrides (Int. Symp. IV, Eilat, Israel) 1984.

Kidson

Land&-BBmstein New Series III/26

9.4 Diffusion Solvent element

D&rsant

H cont.

DO

Q

10m4rn2se1 kJ mole1

tables for H, D, and T in solid metals Fig.

Temperature range Remarks K

Ref.

9.4.1 Alkali metals Li, Na, K, Rb, Cs, Fr No data available.

9.4.2 Alkaline earth metals Be, Mg, Ca, Sr, Ba, Ra

Data available only for Be and Ba. Be Ba

H

1073...1173

T

2.3. 1O-3

18.42

H

4.0.10-3

19.01

473 ... 1273 473*..893

D (1073...1173 K)x10-13

63P, 64P

m’s11

Tracer

7

67i

99.98% Ba, Cont. profile determined by sectioning and vacuum fusion analysis.

8

68P *

9.4.3 Scandium group and rare earth metals SC,Y, La, Ce, Pr, etc. Data available only for Y and Lu. Y

Lucl

H

3.0. IO2

153.24

1048 -.+ 1223

99.8 % Y, purified by electron-beam melting, cylindrical specimens. Diffusivity determined from electrotransport data.

66C

H

1.03.10-l

64.35

673...773

Cont. profiles determined from epithermal and subthermal neutron beam.

76F

40.52

160...400

99.98% Y. NMR method.

79A

51.14

673,873

99.9995% Y, polycrystalline specimens. Quasielastic neutron-scattering method. D(873K)=7.10-10m2s-1.

84A

H

30.5 at.%

H

21.50 at.%

H

20.0 at.%

49.21

500

NMR.

87L

H

x 17 at.%

27.02

170...420

Polycrystalline specimens. Second-moment NMR measurements.

71B

(7.8 . 10V3)

(continued)

Solvent element Lu

Diffusant

H cont.

DO 10-4m2s-1

Q

Temperature range Remarks K

kJmol-’

Fig.

Ref.

(continued) CY.

H D

z5***20 at.%

54.03 61.75

200...230

Polycrystalline specimens.Internal friction attributed to Snoek effect (but see discussion in [86V)).

u

H D

z 15 at.%

24.12 24.12

I*.*300

Single-crystals, orientations along both a and c axes of the hcp structure. Resistivity and heat capacity were measured.

a

H

x 5 at.%

2.5. IO-’ 2.2. 10-Z

55.48 (a) 55.48 (b)

38O.e.540

1.7. 10-Z 4.7. 10-Z

55.38 60.79

99.999% Lu single-crystals. Gorsky-effect (quasi-static); (a) along a axis. (b) along c axis. 99.9% Lu polycrystalhne specimen.

H D

83V 86D 86V

9 (4, (b)

87V *

10(a) w

54w

9.4.4 Titanium group metals Ti, Zr, Hf Ti u

P u

H

1.8. 10-2

51.83

H

1.95.10-J

27.8

923 -.. 1273

Polycrystalline, cylinder. Concentration profiles determined by sectioning and vacuum extraction for a-Ti. Absorption measurements for p-phase.

H

2.7. 1O-3

59.36

973 *** 1173

Gas volumetric permeation method.

IO(a) (2)

56K

H H

1.45 * 10-Z 3.75.10-a

53.38 35.34

923...1123 1173..+1293

Iodide Ti cylinders. Desorption method.

Na) (3)

58A

H

5.7 * 10-J

36.4

773.e.973

60s

H

1.8. IO-2 1.95 * 10-4

51.81 27.79

> 773

65L

H

3.0 * 10-z

61.54

880... 1100

99.9% Ti, polycrystalline cylinders. Absorption method. D (1173 K) = 1.8. IO-* m’s-‘.

W4 (4)

1.15.10-2

46.02

773.a.973

Permeation.

IO(a) (3

773 ... 1097

H H

68P

I

9.4.4 Titanium group metals

Ref. p. 5571

m 4

hl oi

Land&Bhstein New Series III/26

Kidson

Solvent element Ti

Diffusant

H cont.

DO

10-4mZs-1

Q

kJmol-’

Fig.

Ref.

Temperature range K

Remarks

673

The T tracer was diffused in from the gas phase. Cont. profiles determined by sectioning and monitoring P-activity. D(673K)x2~10-10m2s-1.

864

(continued) CL

T

CL

T

s.05.10-4

30.68

293.a.803

T tracer implanted as a thin layer below an anodically grown oxide film. Cont. profiles determined by serial sectioning and monitoring S-activity.

87s

H

1.09.10-3

47.73

333-e-548

54G

D

7.3. 10-4

47.73

99.8 wt.% Zr (excluding 2.4% Hf) foil 0.127... 0.50 mm thick. Absorption method.

CL

H

4.2. lO-4

23.86

673 ~1.873

Absorption method.

54s

a

H

7.14.10-4

29.56

578 ... 883

Arc-melted iodide Zr cylinders. Cont. profiles determined by radial sectioning, vacuum-fusion method.

57M

u-Zirc.-2

H

2.17. IO-’

35.08

533-s. 833

Zircaloy-2 rod. H cont. profiles determined by sectioning and vacuum-extraction.

60Sl

u P u

H H

4.6. IO-’ 7.0. 10-3

39.65 35.75

473...973 1073...1373

T

1.53.10-J

37.97

422-e. 513

Reactor grade Zr. Cont. profile of tritium determined by autoradiographic method.

62C

B

H

5.32. lo-’

34.83

1033 ... 1283

Arc-melted iodide Zr rods (0.624 cm radius) and spheres (0.764. . .1.029 cm radius). Absorption method.

63G

H

7.0. 10-3

44.59

548...973

Iodide Zr, sponge Zr, Zircaloy 2, 4. Cont. profiles determined from serial sectioning, vacuum extraction. No differences in diffusivity for the 3 materials.

72K

Zru

ZirE-2 Zirc.4

0.1 wt.%

6OS2

*

2.1 . 10-4

58.86

195s..477

Zircaloy-2 foils. Tritium recoil injected from surface, using the 6Li(n, u)‘H reaction. Cont. profiles determined by etch-sectioning and B-counting.

74E

2.8 at.%

4.0*10-2

56.93

500..-823

99.99% Zr foil, electrolytically charged with H. Dynamic Gorsky-effect (internal friction) method.

76M

cl-Zirc.-2 T

0.1 wt.%

1.04.10-a

42.1

473*..1073

Zircaloy-2 foils, 0.25 mm thick. Tritium implanted in collimated zone. Cont. profiles determined by sectioning, vacuum extraction and S-counting.

8OG

a-Zirc.-2

1.6. 1O-3 .. .

Diffusivities measured as in [8OG] as a function of hydrogen content. Effective diffusion coefficient given by D,, = 0.f.; f= = fraction of H in the a-phase.

82K

a-Zirc.-2

T

CL

H

T

0.14wt.% Hf

6.0. 1O-4

T

41.8

473.e.633

97 % Hf, 2.8 % Zr foils, tritium implanted at 90 MeV. Cont. profiles determined from B-activity. Influence of hydrides noted.

12

83K *

9.4.5 Vanadium group metals V, Nb, Ta V

4.4. 10-4

5.69

D

61 rwm by wt. 880 ppm by wt.

3.1 . 10-4

7.04

H

0.2... 4.3

3.5. 10-4

4.82

2.4. 1O-3 2.3. 1O-3

7.52

H

IlO***

99.99% V foils, 20 urn thick. Dynamic (internal friction) Gorsky-effect method. Noted that DJDD increased with decreasing temperature.

69C,7OC

273.0.600

99.987% V, 1.26 mm diameter wire with bamboo structure. Quasi-static Gorsky-effect. Isotope effect not consistent with classical theory of diffusion.

7os,7ov

Data reported by [69C, 7OC] are re-analysed without the assumption of a single-relaxation time.

71D

298

Pd coated V foils. Electrochemical pulse method. D (298K) = 1.96 . IO-’ m2 s-l.

73B

4.a.60

99.98% V wire. Resistivity ratio [email protected] 20 1.* 70. The resistivity recovery, following quenching and annealing showed Q(D)/Q(H) x 1.2e.e1.3, consistent with [7OC,7OS].

74A

at. % H D H H

9.64 10.47

0.6.e.l.O at.%

(continued)

Solvent element

Diffusant

H cont.

DO

Fig.

Ref.

Q

kJ mol-’

Temperature range K

Remarks

tom4 rn’s-i

4.3 * 10-4 4.8. lO-4

6.07 7.95

273 ..a 373

V foils, cleaned in ultra-high vacuum, Pd coated. Electrochemical time-lag method.

768

1.94.10-4

3.86

175 **a300

MRC V foil, 50 urn thick. Resistivity relaxation method. Diffusivity is concentration dependent (MRC: Materials Research Corporation).

76H

8.8 * 10-4

10.59

813.e.1373

Absorption method. A sharp break in the Arrhenius plot at x 870 K was attributed to surface effects.

77E

323.a.383

99.7 % V polycrystalline foil, I mm thick. Neutron radiographic method. Diffusivities more than an order of magnitude below [7OC], [7OS],[76B].

772

= 18 *. . 1000. Quasi-static Gorsky-effect method. No change in D" or Q for this level of impurities. * e300Kle42r = 2.5; marked lowering of diffusity observed.

78F

78V

V (continued) H D H

0.044 *** 1.29 at.%

H H

11.0 at.%

H D

3.1 . 10-4 3.8. lO-4

4.34 7.04

148.e.573

H*

2.2.10-a *

6.27*

236.0.373

2.9 3IO-4

4.15

173.a.666

Best tit of selected literature data obtained from surface-independent methods.

3.1 * 10-4 3.8. lO-4 5.6. IO-4

4.34 7.04 9.07

143-e-573 173.e.573 133.e.373

99.99% V wire; RRR x 20. Quasi-static Gorskyeffect method.

3.1 * 10-4 * 1.63. IO-3

4.63 *0.58

200...340

V single- crystal. Time dependent resistivity method. External stress along (1 I I) axis produces 60-fold* increase in diffusivity at 222 K. Attributed to delocalization of H over 4 neighboring tetrahedral sites.

H

< 0.065 at.%

H D T

< I.4 at.%

H

1.4 at.%

&OOKh?4.2K

78F

13

834

83s

*

Nbcl

H

H D

1.2 at.%

H

H

H

2.15 * 10-2

39.23

573 es-973

99.998% Nb rods and sheet, 0.3 mm thick. Absorption method. Desorption rates indicated surface effects.

59A

5.4. 10-4 5.6. 1O-4

10.61 13.03

270... 560

Nb wire; grain-size x wire diameter. Quasi-static Gorsky-effect method.

6832

5.4. 10-4

10.52

235...830

99.9% Nb sheet, 0.021 mm thick. Dynamic Gorsky-effect (internal friction) method. Deviation from linear Arrhenius plot for Ts 225 K.

69C, 70C

MRC, Zone-refined Nb rods, 12 mm diameter, RRR > 1000. Quasi-elastic neutron-scattering method. Diffusivities for H cont. = 3.2 at.% agree well with [7W [7wl, [7OCl.

70G

3.2 at.% 33 at.%

3.3 . 10-4

11.58

393 ... 583

0.2 . . .4.3 at.%

0.9 . 10-4 5.0. 10-4

6.56 10.23

120... 300 300...600

5.4. 10-4

12.45

240...600

D

99.983% Nb wire, 0.76 ... 1.26 mm diameter, bamboo structure, RRR > 1000. Quasi-static Gorsky-effect. Nonclassical isotope effects observed.

14

7os, 7ov, 75V, 78V *

H

20...400

Single crystal, (100) orientation, RRR x 400, and polycrystalline Nb rods, 6 mm diameter. Internal friction peaks studied. Found Q (Snoek peak) > Q (Gorsky-effect [7OS]).

7ow

H

1173

D (1173 K) = [1.6..-2.7). 10-8m2s-1.

71c, 74c

235...830

Data of [69C], [7OC] re-analysed, without assuming a single-relaxation time. Apparent deviation from linear Arrhenius plot for Tc 225 K is removed (but see discussion in [7OVJ).

71D

510

Nb single-crystals, 2 x 1.2 x 0.4 cm3. Quasi-elastic neutron-scattering method; [loo], [I IO], [ll I] directions. The observed anisotropy of the width functions is not consistent with H atoms occupying tetrahedral nor octahedral sites.

71K

473...973

MRC Nb rods, 4.7 mm diameter. Absorption method. H cont. profiles determined from microhardness measurements.

710

H

H

I-i

1.2. 10-3

11.29

9 at.%

1.77.10-2

41.85

(continued)

Solvent element Nb

Diffusant

H cont.

DO 10-4mZs-1

kJmol-’

Q

Temperature range Remarks K

Fig.

12.3 at.%

6.5 - lO-4

10.61

403 . . a673

Quasi-elastic neutron-scattering method.

72Bl

5.77 * 10-4

12.55

303***1173

Desorption and permeation methods.

72H, 74P, 76C2

Ref.

(continued) H T H

2.9-e-44 at.%

10.61

3460.0475

99.98 % Nb single-crystals and foils, 25 pm thick. NMR, proton spin-lattice relaxation method.

72Ll,72L2

H

0.01 -0-0.15 5.6. IO-’ at.% 2.9 * 10-4 4.1 * 10-4

5.89 8.97 11.87

150.0.225 225 so.320 150.0.320

Resistivity-relaxation method. Break in Arrhenius plot at x 225 K for H confirmed (see [7OS],[7Oq).

72W1, 72W2

W-W

20..-300

Nb, zone-relined; doped with N (0.e. 1.2 at.%) and 0 (0 a.. 0.16 at.%). Internal friction measurements. Q values are for (H-H) pairs, (H-O) pairs. Quantum effects observed at low temperatures.

73Bl

298

Nb foils, 50 *. .350 pm thick; heated in UHV to x 2000 K, Pd-coated. Electrochemical, pulse permeation method. D (298 K) = 2.1 . IO-” m2 s-r.

73B2

313

See [73B2]: Electrochemical, oscillating method. D (313 K) = 2.7 .10-i’ m2 s-l.

73B3

165.e.400

“High purity” Nb foils, 7 pm thick, for dynamic, (d), Gorsky-effect method. Nb sheet, 1 mm thick used for quasi-static (s) Gorsky-effect method. In the absence of hydrides, the deviation from a linear Arrhenius plot at low temperatures [69C], [7OS],[7Ov] was not observed (see [74M2]).

74Ml

180...473

Nb wire, 0.76 mm diameter, RRR: 1500 ... 2000, doped with N. Quasi-static Gorsky-effect method. Find N suppressesthe break in Arrhenius plot reported in [69C], [7OS]and [7Ov]. For N < 0.01 at.%, full curve given by sum of exponentials, having Do and Q values shown.

74M2

D H

(HYG) 16.3 13.40

H

X0

H

X0

H

1.6 at.% 2.2 at.%

2.8. lO-4 2.8. lO-4

8.59 (d) 8.59 (d)

0.095 at.% 0.11 at.% 0.28 at.%

1.7. 10m4 1.6. lO-4 2.4. lO-4

7.82 (s) 7.72 (s) 9.26 (s)

5.0. 10-5 5.2. lO-4

5.98 12.06

H

H

0.01 *.-0.19 at. %

5.89 8.97 11.87

D

150...225 225...320 15O.e.320

99.985% Nb foils, 12.5... 50 pm thick. Resistivity method used to measure heat of transport Q* and H, D diffusivities. Break in Arrhenius plot at Tx 225 K confirms results of [69C], [7OS],[7Ov].

74w

Absence of break in Arrhenius plot reported in [74Ml] attributed to (i) smaller temperature range of study and (ii) impurities.

75A

273... 373

Nb foils, 0.05 ... 0.7 mm thick, Pd-coated in UHV. Electrochemical permeation time-lag method.

76B

180...373

Nb wires, 1.5 mm diameter, RRR: 1500.. .2000, * 0.4 at.% H and 0.7 at.% N added. Quasi-elastic neutron-scattering method. H was trapped by N, diffusivity decreased.Results of [74M2] confirmed.

76R

200...350

Resistometric method for determining diffusivity. Precision and temperature range inadequate to confirm or deny break in Arrhenius plot.

76W

H

H D H

< 0.05 at. % < 0.06 at. %

3.6. 1O-4

10.46

5.0. 10-4

11.72

0.4 at.%

H

H

0.2 at.%

H H D T H

0.11 at.% 0.9 at.% 0.93 at.%

3.6. 1O-4

9.94

14o.e. 300

1.1 . 10-3

14.06

723a.a1100

Absorption method. For Ts 873 K, surface effects were observed.

1.63. 1O-4 5.94.10-4 4.45.10-4

7.72 12.83 13.02

19o.e. 310 233.~~310 233...310

Polycrystalline Nb wire, 1 mm diameter or sheet, 1 mm thick. Quasi-static Gorsky-effect. Lack of break in Arrhenius plot for hydrogen attributed to limited temperature range.

1.2.10-4

6.67

165.e.250

Polycrystalline Nb wire, 1.5 mm diameter. Quasi-elastic neutron-scattering method. Adding about 0.04 at.% N or 0 reduced D below 250 K, confirming [74M2].

77c 77E 14

77Ml

77R

(continued)

Solvent element Nb

Diffusant

H cont.

DO 10-4m2s-t

Q

Temperature range K

Remarks

kJmol-’

6.5 at.% 20.26 at.% 20.89 at.% 25.60 at.% 27.06 at.% 28.17 at.% 4.58 at.% 12.74 at.% 18.63 at.% 24.98 at.% 27.80 at.% 33.02 at.%

4.9. 10-4 8.1 . 1O-4 8.6.10-4 7.2 * 10-4 7.6 - 1O-4 9.8. 1O-4 6.0. 1O-4 7.1 * 10-4 9.0. 10-4 9.6. 1O-4 10.1 .10-4 6.5. 1O-4

11.00 14.76 15.63 16.02 16.50 18.04 13.51 15.15 16.79 18.14 18.24 17.75

435-s. 573 435a.a573 435a.a573 435... 573 435-a. 573 435-e. 573 31o.e. 573 400 . . * 573 45o.e. 573 450-a. 573 450-a. 573 450.*. 573

Quasi-static Gorsky-effect method.

78B1,79V

5.79 9.65

120...260 290...480

79D

21.23 42.5 . . . 48.2

120...305 305...480

99.99% Nb foils, 20 ... 25 urn thick. (Stack of 90 layers of foil used.) NMR, spin-lattice relaxation method. Contributions due to diffusion in both u- and B- phases in 2-phase regions observed.

6.65 8.30

lo*.- 100

Nb foils, 15 urn thick. Quenching and recovery of resistivity method. D (hydrogen, 34 K) = 1 * 10e2’ m2 s-l. D (deuterium, 50 K) = 2 * 10e2’ m2 s-l.

79E

365.e.500

99.99% Nb foil, 50 urn thick. Pulsed-field-gradient spin-echo NMR method. Q increased with decreasing proton cont. for each total (H + D) cont. Conclude diffusion of H is a cooperative process between diffusing atoms.

79F

293..a581

Nb single-crystal rod, 12 mm diameter, [1lo] orientation. Quasi-elastic neutron-scattering method. Interpretation of data requires complex jump-model. D (581 K) = 5. lo-’ m2 s-r.

79Ll

Fig.

Ref.

(continued) H

D

H E 83 H D

H

(H + W Nb 0.20 . . .0.75

H

2.0 at.%

x (2.7) * 10-4

H

H

21.42

1.5 at.%

H, D

T

39 -.. 58

Nb, polycrystalline sheet, cathodically charged with H, and doped with N. Internal friction method. Q values refer to (H-N) pair reorientation.

80Z

0.09 . . .5

99.99% Nb polycrystalline rods, 6 mm diam., doped with 1.26 at.% 0. Neutron scattering measurements used to obtain tunneling matrix element of 18.33 kJ mol-l.

81W

12O.e.450

MRC MARZ grade Nb foils, 0.1 mm thick. RRR > 1000; specimens doped with N from 0.01 . . .0.8 at. %. Quasi-static Gorsky-effect method. H and D diffusivities decreasedwith increasing N; Oriano trapping model inadequate.

82Q

4.4. 10-4

12.83

153...373

MRC MARZ grade Nb foils, 0.1 ... 0.25 mm thick; RRR > 1000, tritium cont. 0.4 at.%. Quasi-static Gorsky-effect method. No break in Arrhenius plot observed for T.

4.4. 10-4 3.1 . 10-4

12.8 14.0

7oo.e. 1400

99.998% Nb, polycrystalline tube, grain size about 1 cm diameter. UHV permeation time-lag method. For 1100 5 Ts 1400 K, @g/D:) z ,/!?. Measured diffusivities affected by surface effects for T< 1100 K.

83Sl

H

SIK

84W2

H, -I-

130...450

99.99% Nb single-crystal rods, [I IO] orientation along rod axis. Specimens doped with N and 0 to act as traps for H. Low temperature specific heat and neutron spectroscopy used to measure tunneling matrix element, giving 18.3 and 20.26 kJ mol- ‘, respectively. NMR; spin-spin and spin-lattice relaxation rates measured to determine diffusivity of H and T Trapping at impurities, dislocations and hydride precipitates observed.

X0

H D

3.3 . . .4.25 at. %

455

99.9 % Nb polycrystalline bar, 0.75 mm thick. Quasi-static Gorsky-effect method, with and without applied magnetic field of 10 T. No effect observed on’ D. D (455 K, 3.3 at.% H) = 2.47. 10m9rn’s-l.

14

834

85M

85V

(continued)

Solvent element Nb

Diffusant

H cont.

DO 10-4mZs-1

Q

kJmol-’

Temperature range Remarks K

Fig.

Ref.

(continued) 285

a

H

Tao!

H

a

H

4.76 at.% x 9.0 at.%

a

H

a

H

z 7 at.% x9-*.40 at.%

3.39.10-4 1.56. IO3 1.396. IO4

58.62 134.8 140.7

773 e-0973 723-a-873

7.5.10-Z

60.29

673...873

5 6.7

200~~~400

5 15.5 26.37

i12

< 1 at.% < 1 at.%

a

H D

a

H

a

H

x 6 at.%

a

KD

x 5 at.%

a

H

0.05 *-- 0.1 at.%

Natl. Res. Corp. Ta powder, x 37 urn diameter. NMR spin-lattice relaxation method. Q values decreasedwith H cont. in a and 8i phases.

65M 65P

66Cl,66C2

673.a.873

Ta membranes, Pd-coated. Permeation method.

675

298

99.9% Ta sheet strip, 0.05 mm thick; one half charged with H. Cont. changes due to diffusion monitored with lattice parameter X-ray method. D (hydrogen, 298 K) = 1.3.10-lo m2s-‘; D (deuterium, 298 K) = 1.4.10-lo m2 s-l.

692

54O.a.870

High purity Ta sheet, 2.3 mm thick, bonded to PdAg duplex membranes on each side. Permeation time-lag method.

70H

11.72 11.72

6.1 . 1O-4

14.65

273-e. 433

7.5. 10-Z

60.29

‘43.46

Electron-beam melted Ta cylinders, 6 *.a7 mm diameter, mechanically polished. Desorption method. Ta foils, Pd-coated. Permeation method.

60K 62M

Internal friction (Snoek effect). D (hydrogen, 298 K) = 1.7 * 10-l’ m’s-i. D (deuterium, 298 K) = 2.2. lo-l3 m2 s-l. Polycrystalline Ta wire, 0.3 mm diameter. Resistivity changes associated with H migration used to determine diffusivities.

1.92 * 10-s 2.5. lo-’

7.5 * 10-s

MARZ grade Nb polycrystalline foils, 50 urn thick, and single crystals. Electrotransport, combined with resistivity measurements used to measure D under hydrostatic pressures from 0 to 3.5 GPa. Diffusivity increased x 10% at. 1 GPa. Both classical and quantum theory predict decreased diffusivity. Desorption method.

66M

CL

H

0.2 ***4.3 at. %

D u

H

u

H

0.12...0.25 at. %

253...573

99.996% Ta polycrystalline wire, RRR > 1000. Quasi-static Gorsky-effect method.

14.47

210...525

99.9 % Ta sheet, 6.. .I1 pro thick; electrolytically loaded with H. Dynamic Gorsky-effect method (internal friction).

71c

20.10

273 ~~~423

Ta wire, 0.3 mm diameter. Improved version of monitoring H cont. changes by resistivity (see

71M

4.4. 10-4

13.51

4.9 * 10-4

15.73

3.0. 10-4

1.7. 10-a

15

70s *

WMI). u

D

3.3 . 10-4

16.98

170*** 390

See [71C]. Linear Arrhenius plot over the range 210 .. .390 K; deviation observed at 170 K.

72Cl

CL

H

13 at.%

1.9. 10-4

10.40

421*..613

Powdered Ta specimens. Quasi-elastic neutronscattering method.

7263

CL

H

5 12 at.%

6.5. 1O-4

15.07

270...330

Ta tube; one end loaded with H, placed on sensitive beam balance. Diffusion determined from shift in center of gravity associated with H migration along the tube. D (298 K) = (I... 2.5) . 10-l’ m2 s-l, decreasing with increasing H content.

u

H

6.64. 1O-4

14.65

300 . . a360

Ta sheet, 0.1 mm thick; one half charged with H. Diffusion monitored by lattice parameter changes with H cont., determined by X-ray method.

7221

P

H

1.4. 10-s 9.2. lo+ 9.7 * 10-4 1.1 . 10-7 2.8 +1O-4

8.1 14.1 20.3 12.7 20.2

87e.e110 110~.~160 160*.*230 78*.*118 118...210

99.95% Ta wire, 0.3 mm diameter. UHV; absorption method. Assumed diffusion in S-phase surface region dominates.

7362

4...60

Ta wire, RRR 3000 a**5000. H or D loaded in UHV system. Mobilities determined from resistivity recovery, following quench. H, D mobility at 10 K best accounted for by polaron model.

73Hl

D

L

U

K D

U

H

2.0. 10-2

20.70

773.e.1173

15

72W

73K (continued)

Solvent element

Diffusant

H cont.

DO 10-4m2s-*

Q

kJmol-1

Temperature range K

Remarks

Fig.

Ref.

Ta (continued) 13 at.% 33 at.%

10.4 15.0

5.0. 10-4 6.4. 1O-4

Powdered Ta, reacted with H, gas. Quasi- and inelastic neutron-scattering methods. Conclude jumps occur from tetrahedral to tetrahedral sites in both phases. Diffusivity in u-phase decreases with increasing H concentration.

73R

273.e. 673

Ta wire, 0.3 mm diameter. See [66M], [71M].

74Ml

584

99.996% Ta single-crystal, [l lo] axis along cylinder axis. Quasi-elastic neutron-scattering method. D (584 K) = 2.8 * 10T9 m2 s-l, in good agreement with [7OS].Results cannot be fitted by any simple jump model.

74R

14.48

273a.a373

Ta membrane, Pd-coated in UHV. Electrochemical pulse permeation method.

76B2

13.50

230.-0400

99.996% Ta foils, electrolytically loaded with H. Q determined from motional narrowing of Miissbauer line.

76H2

15.61

773 ... 1373

Absorption method. Sharp break in Arrhenius plot at z 973 K suggestssurface effects.

77E

4.2 ... 100

MRC MARZ grade Ta wire, 0.125 mm diameter. See [73Hl]. Specimen doped with D quenched and annealed simultaneously with T-doped specimen. Annealing kinetics of D, T similar at each substage; QT > Qb.

77H

323-a-383

“Commercial purity” Ta. Neutron-radiographic method used to measure H cont. profile for diffusivity determination.

772

15.34 17.95

-e 2 at.%

< 0.05 at.%

7.0. 10-4

5 14.5 at.%

1.0. 10-3 D,T

1.7.10-J

18.12

H

5 at.% 10.23 12.04 14.30 19.0 21.5 at.% 3.5 at.% 5.57 7.40 10.95 13.04 15.68 19.0 22.36 at.%

4.1 . 10-4 4.3. 10-4 4.0.10-4 4.0. 10-4 3.0. 10-4 4.0. 10-4 6.6. 10-4 6.2. 1O-4 6.2. 1O-4 5.3. 10-4 5.7. 10-4 5.3. 10-4 5.5. 10-4 4.1 . 10-4

13.32 13.99 14.18 14.47 14.67 16.50 16.31 16.50 16.50 16.50 16.89 17.08 18.43 18.91

270 . . ~440 3oo.e.430 300...470 3OO.e.425 32O.e.415 320... 573 295 ... 573 295.e.573 295...573 330..* 573 295...573 3oo.e. 573 31o.e. 573 33o.s. 573

H

5... 7 at.%

3.47.10-4

14.76

299...873

See [66M], [71M], [74Ml].

78M

H

13.42 24.36 32.71 37.38 39.76 40.37

12.93 12.83 13.12 13.89 13.70 13.78

77...470

Ames Laboratory pure Ta. NMR proton spin-lattice relaxation time method. Phase boundaries in Ta - H system located.

79H

H

ZO

3.86 13.51 3.76 15.44

< > < >

250 250 250 250

Resume of results obtained by several methods, mainly quasi-static Gorsky-effect. Sharp break in Arrhenius curve at x 250 K is confirmed; the effect is reduced by additions of nitrogen.

103 . ..473

Quasi-static Gorsky-effect method. Additions of N (0.02 ... 0.9 at.%) reduce break in Arrhenius plot for H and D diffusion at x 250 K. (See [79v]).

133.e.250 25O.e.373 133 ... 373 133 ... 373

MRC MARZ grade Ta foils, 0.1 ... 0.25 mm thick, RRR > 1000. Quasi-static Gorsky-effect method. No break observed at 250 K for T (nor for D, contrary to [79Vj).

15...30

High purity Ta doped with x 300 ppm 181Hf. Perturbed angular correlation method used to study H trapping at “‘Hf, and H diffusion.

D

D

H, D

ZO

H

X0

D T

w 1 at.%

H

2.0.10-6 4.4.10-4 1.2 * 10-6 4.6. 1O-4

2.8. 4.2. 3.8. 3.7.

1O-6 1O-4 1O-4 10-4

4.05 13.12 14.76 15.63

78Bl

15

79v *

824 15

83Q *

85P (continued)

Solvent element

Diffusant

H cont.

DO

10-4mzs-1

Q

kJmol-’

Fig.

Ref.

Temperature range K

Remarks

20 -. .290 180...290

99.99% Ta polycrystalline foils and single crystals, (11I)-orientation. ‘H implanted at 4 or 7 keV near surface, and detected following anneals by ‘H(“N, cry)‘% resonance reaction. D(20K)=4.10-20m2s-1; D (150 K) = lo-‘* m2 s-l.

85W

4.2 . . .30

Perturbed angular correlation method (see [85P]), used to identify configurations of trapped H atoms. Also, conclude deuterium is immobile below 30 K.

87P

Ta (continued) a

H 26

a

H

9.4.6 Chromium group metals Cr, MO, W Data available only for MO and W. MO

H

5.9. 10-Z

61.55

848 ... 1253

Desorption method.

60H

MO wire, saturated with H. Q deduced from yield point behavior.

6lL

H

37.90

H H

2.0

34.60 74.53

673 ... 1473

99.9 % MO single- and polycrystalline specimens. Permeation method using mass spectroscopy.

H

4.8.10-s

37.68

1123...2023

Do and Q values deduced by [73P] from permeability

[68F] and solubility [720] data. T

1.0. 10-s

64.48

423.e. 823

D

(1.04 . lo-Z)*

(58.0)*

523...730

MO single crystals. Tritium used as tracer to study effects of oxide layer on diffusivity. Found D ([ilo]) < D ([loo]), due to differences in oxide surface layers. 99.8 % MO membrane, 0.127 mm thick. Permeation time-lag and desorption methods. Markedly different diffusivities obtained from “rise” to steady-state and decline * from steady-state permeation measurements; attributed to surface effects.

665 712,732 68F, 720, 73P 74M1, 74M2

75c

H

3.51 .10-Z

58.6

H

523 . . .2023

Desorption method, using mass spectroscopy. Do and Q values averaged from those of present study and selected literature data.

78K1, 78K2

573 ... 1073

Permeation time-lag method; entry of H from ionized gas-phase.Arrhenius curve shows sharp break at x 773 K.

792

H

2.4. 1O-4

10.6

770... 1170

99.95 .. .99.99 % MO membranes, 0.18 mm thick; cleaned by argon etching and/or Pd-coated. Permeation time-lag method. Concludes large Q values reported in literature due to surface effects.

H

7.25.10-4

173.8

1783 ee.2175

W wire filaments. Desorption rate in UHV used to determine difhtsivity.

H

8.1 . IO-’

82.90

H

4.1 . 10-s

37.68

H D

(5. 10-S)

D H

I9= 0.1 0.3 0.6 0.9 I9= 0.3 0.6 0.9

1.55~10-’

2.so.10-5 5.0 . 10-5 1.48. 1O-4 1.16. IO+ 5.8 . IO-’ 5.85. IO-’

82K

*

64M

Commercial W wire, 1 mm diameter. Desorption method [69F] suggestswires were not initially equilibrated.

17(a) (4

64R

1100...2400

99.95% W rod, 3.17 diameter; produced by sintering and rolling. Nominal density > 99.9%. Desorption method.

17(a) U)

69F *

(20.1) (20.3)

143.e.200

Surface diffusivities of H and D on (110) plane of W

17.04 19.55 20.10 21.35 19.93 20.30 22.40

138 ... 160

80D

single-crystal. Field-emission current-fluctuation method. For T< 140 K, H diffuses via pure tunneling.

e* H

16

29

Surface diffusivities (see [SOD]). 0* is a measure of fractional (110) surface coverage by the diffusant. Thermally activated diffusion found for T> 13Oe.e160 K, depending on the isotope and 8. Below these temperatures, tunnelling occurs.

W single-crystal; H implanted normal to (110) planes at 29 K. Field-ion microscopy used to monitor H movements during controlled pulse field evaporation. Volume diffusivity determined as D (29 K) 2 IO-” m2 s-l. Suggests non-classical diffusion.

17(b)

82D

84M

(continued)

Solvent element W

Diffusant

H cont.

DO

Q

kJmol-’

Temperature range K

Remarks

10-4m2s-1

(1.3 * lo-s) (1.3 * 10-q

(19.68) (19.68)

83 a-. 173

W single-crystal. Surface diffusion of H and D on (110) planes measured by field-emission fluctuation method [80D]. Find little anisotropy on (110) planes.

Fig.

Ref.

(continued) H D

85T

9.4.7 Manganese group metals Mn, Tc, Re No data available.

9.4.8 Iron group metals Fe, Ru, OS

Data available only for Fe. Fear

H

2.71 . 1O-4

Do and Q obtained by applying the time-lag analysis

38.52

24E

[40B] to data. See [56S]. u.

H

1.1 * 10-z

36.59

296.e.353

Fe membranes. Analysis for the permeation time-lag method given and used for first time.

18(b) Gv

40B

CL

H

7.6 - 1O-4

9.55

293 ... 1073

Permeation method.

WW (14

47s

u

H

2.17. lo-’

12.10

673.e.1173

“Pure” Fe. Permeation method.

W-4 (3)

50G

u

H

8.85.10-4

12.77

423.e.1173

99.96% Fe rods, vacuum cast; surfaces machined, but not polished. Desorption method.

18(b) (24

56s

u

H

9.3.10-4

11.30

473 **a1047

Armco Fe. Desorption method.

18(b) m

58E

U

H

5.0 * 10-a

14.30

298.e.363

Mild steel (0.09% C, 0.35% Cr); discs; 0.5 **a1 mm thick. Monitored diffusion on exit side with mass spectrometer.

58F

U

H

1.8. lo*

50.24

195 se-473

Cylindrical specimen cut from forgings. Desorption method.

58H

U

H

4.95 * 10-4

6.53

571... 1151

Desorption method.

18(b) (9)

58M

H H H

H

H

1.20.10-3

16.10

1.02.10-3

10.80

6.7. 1O-4

9.17

298...1173 823... 1173 703...998

Desorption method. 99.9 + % Fe. Permeation method.

18(b)

58Z

(24 59s

99.9 + % Ferrovac Fe discs, 6.8 mm thick. Absorption and desorption methods. Surface impurities can influence results. No significant change with cold-work.

18(b)

60C

(23)

1.2. 10-l 1.4. 10-3

32.74 13.40

298..-473 473 ... 1053

99.9 + % Ferrovac Fe; cylindrical specimen, hot-rolled or swaged, then machined. Desorption method. Low temperature behavior attributed to H trapping.

18(b)

3.65. 1O-3

22.40

298..-923

Desorption method.

1809

55J, 605

(2.5)

61L

WI H

2.2. 10-3

13.8

303...363

Permeation time-lag method.

18(b)

61R

WI H

3.9. 10-4

4.52

H

399..-966

99.9% Fe. Permeation time-lag method. Annealed and cold-worked specimen gave same results.

298

Armco Fe membranes, 0.77 mm thick. Electrochemical permeation method. D (298 K) = 8.3. IO-’ m2 s-l.

63D

64W

H

1.42. 1O-3

13.69

523...873

99.8 % Fe foils, 0.214.. .0.568 mm thick. Permeation transient method.

H

6.0. 1O-4

5.57

283 . ..348

Armco Fe, single- and polycrystalline and zone-refined Fe membranes. D (298 K, single-crystal) x 1.3 . D (298 K, polycrystal).

H D H D

6.42. 1O-4 5.55.10-4 6.63. 1O-3 4.85. 1O-3

8.04 8.04 44.80 44.80

573...1183

99.98% Fe spherical specimen. Gas-volumetric desorption method.

i3 H

2.88 . lo- 1 1.1 . 10-z

93.60 15.11

1723 ... 1788

180-4 0

180-4 (13)

63B

65M, 66B

66H

1183 ... 1373

353 *.*453

99.8 % Fe membranes; 1, 0.5 and 0.25 mm thick; specimen surfaces mechanically polished, Pd coated on entry side. Permeation time-lag method.

18(b) (6)

66s 66W (continued)

Solvent element

Diffusant

H cont.

DO 10-4mZs-’

kJmol-’

Q

Temperature range Remarks K

Fig.

Ref.

(8. 10-3)

8.37

4-a. 300

“High-purity” Fe sheet, 1 mm thick, cathodically charged with hydrogen. Internal friction (Snoek peak) method.

67Gl

Fe (continued) a

H

a

H,D

633...833

99.95% Fe tube; 1.87 mm wall. Steady state permeation method. Using solubility data of Sievert for H, D, they find (DJD,) = 1.20.

6762

a

H

298

Johnson-Mathey Co. “pure” Fe discs, mechanically polished; 1 mm thick; surface not Pd coated (see [66Wj). Permeation time-lag method. D (298 K) z 1.5 . 10m9m2 s-l.

68W

a

H

1.14 * 10-3 5.1 * 10-l 1.7 * 10-l

35.60 40.79 36.18

283... 343 296.e.357 296.e.357

99.996% Fe Desorption method. 99.67 % Fe Concludes low diffusivities due to 98.60 % Fe trapping in voids associated with non-metallic inclusions.

a

H

3.24 - 1O-2

18.83

296-a-348

Fe membranes. Electrochemical permeation method.

70B

a

H

2.2 - 10-3

12.97

283...373

99.5% Fe discs, 0.8 mm thick. Permeation time-lag method. Diffusivities not affected by surface conditions.

7oc

H

7.8. lO-4

7.95

Do, Q in the absence of traps; deduced from literature data and trap model.

700

H

6.1 . IO-’

24.8

288...333

Permeation transient method.

H

9.4 * 10-4

11.30

573 --. 1023

“Pure” Fe. Permeation time-lag method.

H

4.74 * 10-4

5.86

599 ... 1089

Desorption method.

H

2.5.10-J

9.21

283-e. 343

Armco, 99.99% Fe. Electrochemical permeation method.

18(b) (26, 26’, 26”)

18(b) W)

69E2

70R2 70s

18(b) (4

71D 71s

Y 6

H H

1.01 .10-z l.09.10-3

47.25 12.54

1184... 1667 1667... 1811

CL

H

9.21 .10-4

11.30

573 ... 1073

72G

u

H

4.15.10-4 4.74.10-4

4.27 5.90

297.a. 973 585 ... 1092

72H, 79D

u

H

8.2

140... 153

Internal friction method.

73c

298

99.9965% Fe. Permeation method. D (298 K) = 7.4. IO-’ m2 s-l.

73D2

313.e.363

Electrochemical permeation method.

73M

295

Armco Fe. Electrochemical permeation method. Diffusivity at 295 K varied with H cont. C as: D (295 K, C)=(4.05~10-g+4.687~10-3 C)m’s-‘. (C in mole fractions)

73Nl

u

72Bl

Average from literature data.

u.

H

u

H

u

H

2.3. IO-’

6.70

32O.e.833

Triply zone-refined Fe, Pd coated. UHV permeation method.

18(b) (4

73N2

CL

H

1.05.10-3

7.49

278...353

Pd-coated Fe. Electrochemical permeation method.

W4 u.3

74A3

u.

H

1.4. 10-Z

17.57

278...333

Armco 99.8% Fe, annealed and plastically deformed specimen. Electrochemical permeation method; exit side Pd-coated.

18(b) WI

74K2

U

H

1.97. IO5 3.71 .10-3

69.50 17.45

298.s.353 353...573

Armco 99.7% Fe. Permeation time-lag method.

74s1, 77s

U

H

5.5. 10-4

5.19

315.a.343

Cold-worked Fe specimen. Permeation method.

74Y

U

H

2.14. 1O-4

6.2

298 ... 573

Desorption method.

18(b) (20)

75Kl

U

H

1.01 .10-3

6.67

342..-619

99.9 + % Fe; Pd-coated. Permeation method.

W-4

75M

U

H

8.3. 1O-4

10.96

643 ... 1023

7582

U

H D

2.29.10-3 1.62. 1O-3

10.46 10.46

297...623

76L

18.4

(8)

(continued)

Solvent element

Diffusant

H cont.

DO

Q

Fig.

Ref.

kJmol-’

Temperature range K

Remarks

10-4mZs-1

1.7 * IO5 3.8. 1O-3

69.04

298.e.353

Ammo Fe. Permeation time-lag method.

353 a**573

18(b)

17.57

77Cl,77C2, 77c3

1.03 * 10-3 3.74.10-J

11.3 34.0

298-e. 1184 1184.e.1667

Do and Q values averaged from selected literature

Fe (continued) CL

ci.

H

H

(19, 193

78K

data.

cc

H D

1.61 . 1O-3 1.52~io-3

7.07 8.08

322..a779

Cpass, zone-refined Ferrovac E Fe, discs, 1.33 mm thick, Pd-coated. UHV permeation time-lag method.

a

H D

1.21 * 10-J 1.15~10-J

7.05 8.60

283...333

99.996% Fe, zone-refined membranes, 0.6.. .1.5 mm thick, Pd-coated. Diffusivities determined from absorption and desorption transients. Linear Arrhenius plots.

78Rl

H

7.5. 10-4

10.13

230-m.1100

Best iit of selected literature data, large deviations for Ts 298 K

78V

H

1.1. 10-3

6.7

230...300

Single- and polycrystalline Fe, Pd-coated. Electrochemical permeation method.

H

3.1 * 10-4

4.6

343.e. 675

“Very pure” Fe membrane. Permeation time-lag method.

79w

2.23. 1O-3

6.7

Cpass, zone-refined Fe; Pd-coated. Electrochemical permeation time-lag method. Comparison of results from annealed and deformed specimen indicate trapping binding energy x 60 kJ mol-‘.

80K

H

x 2. lo-’ at.%

W-4 (4

18(b) WI

784

79H

CL

H

6.2. 1O-4

4.86

283...343

99.9% Fe single-crystal; Ni-coated. Electrochemical permeation method.

18(b) (7)

8lY

a

H

4.2. 1O-4

3.85

2530.. 1040

Anion-exchange and vacuum-floating zone-refined Fe; RRR 5000~~~6000.For T= 253.e.322 K, the alternating current electrochemical permeation method; for T= 673 ... 1040 K, the permeation time-lag method. Trapping seen for T< 290 K.

1864

82N

*

H

1.23. 1O-4 (1 ... 2.52) * 10-3

H D

5.69 (6.7 ... 7.12)

233..-353 323..+823

Best representation of data from statistical analysis of selected literature data. Concludes electrochemical methods, with Pd-coated membranes and desorption methods are reliable.

83K

31.4 (7.1) 31.4 (8.6)

283.a. 333

99.997 % Fe, Zone-refined membranes, cold-rolled to

83R

273...333

H

7.69. 1O-4

5.8

H D

4.43 .10-4 4.28. 1O-4

5.31 6.47

H

6.04. 1O-4

6.99

H

0.6 mm thick, Pd-coated on entry side. Electrochemical permeation time-lag method. (Q) values refer to annealed specimen, see [78Rl]. Trap binding energy z 25 kJ mol- ‘. Annealed Fe specimen contained 30 *.. 110 ppm C; diffusivity independent of C cont. Large decrease in diffusivity on cold-worked specimen. Trap binding energy z 23 *. *27 kJ mol- ‘.

85H

Found D (hydrogen)/D (deuterium) ratio depended on temperature and + 1 with increasing temperature.

85T

500... 1000

Duplex-membranes of Cu/Fe. Permeation time-lag method. Some effects of surface oxide and/or bulk trapping noted.

86T

284,286

Fe membrane. Electrochemical permeation time-lag method. For annealed Fe: D (T, 286 K) = 9. IO-lo m2 s-l. D (H, 286 K) = 4.10-l’ m2 s-l. For 9 % cold-worked Fe: D (T, 284 K) = 3 . IO-” m2 s-l. D(H,284K)=4.10-‘0m2s-1.

87H

9.4.9 Cobalt group metals Co, Rh, Ir Data available only for Co. co a

H

2.49. 1O-3

26.08

1363 ... 1689

Permeation method, using a Sievert’s cell.

H

2.45. 1O-3

25.74

z 1250..a 1820

Permeation; Do and Q values are best lit for combined data of [66S] and [85S].

66s 19 (4

(continued)

Solvent element

Diffusant

H cont.

DO 10s4 m*s-’

Q

kJ mol-’

Temperature range Remarks K

Fig.

Ref.

Co (continued) ci

H

B

H

3.4 - 10-Z 8.3. lO-3

(:i -Fe)

H D T

B

H

0.02 at.%

9.27. lO-4

148...203

H-loaded Co. Magnetic after-effect method. Relaxation processesobserved suggest H atoms are at the orthorhombic sites between near-neighbor solvent atoms.

72D

29.30

303e.0323

Electra-deposited Co layer, 1 urn thick. Electrochemical permeation method. D (303 K) = 1.22. 10-‘4m2s-1 D (323 K) = 2.41 . IO-l4 m2 s-l.

72 K

57.78 49.40

473.e.673 673 ... 823

99.9 % Co foils, 0.4 mm thick; room-temperature P-phase (hcp) contained small amount of high temperature u-phase (fee) and had a strong texture (103) planes parallel to foil. Permeation method.

43.76 50.17 50.13

120~~~220

fee Co-Fe (16 at.%) alloy. Magnetic after-effect method. The relaxation peaks of D, T occur at same temperature, jump frequencies v are v,.,+ vD x vT. 140 < T< 200 K.

23.28

278.a.332

MARZ grade Co foils, 0.109 mm thick. Electrolytic double-cell method.

19 74c (393’)

82H

19 (2)

85s *

9.4.10 Nickel group metals Ni, Pd, Pt Ni

H H

2.0 * 10-l

61.96

1.7. 10-2

45.35

H H H H

1.1 * 10-3 1.5.10-2

35.70 44.38

2.0 - 10-J 2.3. lO-2

36.42 45.35

H H

1.0 * 10-a 4.5. 10-J

23.16 36.01

731.e. 871 473.s.773

Permeation method. Permeation method.

7510.. 1071

Permeation method. Permeation method.

20 (4

29H 32H

20 (7)

35E

52l.e. 673

Desorption method. Permeation method.

673.e.873 653-a. 1259

Absorption method. “Commercial purity” Ni; non-steady rate of desorption.

649...873 358 .-.438

23L 27B

36s 54L 55H

1

H

7.6. 1O-3

41.37

673...973

99.92% Ni. Desorption method.

55R

H

1.07.10-2

42.37

435..-769

High purity, commercial grade Ni. Desorption method.

57El

H

9.5.10-3

43.12

703.e.1123

99.4% Ni. Permeation method; no effect of plastic strain noted.

59G

H D

4.2 . 10-3 4.56. 1O-3

35.17 37.43

576...967

Spherical specimen. Desorption method.

H

5.73.10-3 3.02. 1O-3 4.15.10-3 2.99.10-3

40.19 37.26 40.19 37.26

523.s.623 623...873 523..-623 623...873

Ni membrane, 0.4 mm thick. Permeation time-lag method, using mass spectrometer. Break in Arrhenius plots at the Curie temperature.

H

3.8. 10-3

39.77

298 ... 348

Desorption method.

20 (10) 630

H

5.5. 10-3

37.35

1243 ... 1593

Desorption method.

64R

H D

6.7. 1O-3 4.8. 1O-3

39.78 38.52

658...893

Single-crystalline cylindrical specimen. Desorption method. Conclude H, D occupy octahedral sites.

65E

H

31.90

1353 ... 1669

Desorption method.

H

4.7. 10-3 4.4. 10-3

36.38

673...873

Desorption method.

66s 67D

H

5.22. 1O-3

40.03

473..-693

99.999% Ni single-crystal disc, 0.43 mm thick. Permeation time-lag method. No break at Curie point in Arrhenius plot. See [61B].

67El

H D

5.22. 1O-3 3.97.10-3

40.03 39.37

49O.q.690

See [67El]; measurements on isotope effect; DJDD < $; Results accounted for in harmonic approximation for octahedral-octahedral jumps.

67E2

H

5.39.10-a

40.00

423...1000

99.8 % Ni foils, 6.7 pm to 1.83 mm thick. Steady-state permeation and permeation time-lag methods.

67F

H

3.5. 10-3

43.31

273...328

Zone-refined Ni wires; 8 pm diameter; resistivity-recovery measured, following quench.

36O.e.377

See [67El]; find (DJDD) decreaseswith temperature, and becomes < 1 below x 364 K, in accord with theory in [67E2].

D

H D

20 VI

60E 61B

20 (if)

67s 68E (continued)

r

Solvent element Ni

Diffusant

H cont.

DO

10-4m2s-1

Q

kJmol-’

Fig.

Ref.

Temperature range K

Remarks

583-s-823

Permeation time-lag method. No break in Arrhenius plot observed at Curie point.

68V

(continued) H H

5.4 * 10-J

39.56

473-e-873

Cylindrical and spherical specimen. Absorption method.

69C

H

6.56. 1O-4

36.82

300.. .348

Electrochemical method.

70B

H

(1) 5.4.10-s (2) 5.05 .10-3 (3) 4.65 .10-J (4) 6.5. lo-’

38.11 40.32

473...873

(1) Cylindrical specimen. Absorption method. (2) Spherical specimen. Absorption method.

H

8.1 . lo-’

41.03

362.e. 573

Permeation method.

71Dl

H D T

7.04 * 10-3 5.27 - 1O-3 4.32 - 1O-3

39.47 38.67 38.08

673 ... 1273 773 ... 1273 773 -.. 1273

99.999% Ni single-crystal, spherical specimen. Desorption in UHV. Conclude harmonic approximation inadequate to account for diffusivity ratios of H, D, and T

71K

H

4.02. lo-’

39.31

293.0.673

99.98% Ni strip. Permeation time-lag method. No effect of grain size.

H

6.44. lO-3

40.24

273.e.1669

Best tit of literature data from permeation time-lag, absorption and desorption methods.

73R

H

5.2. 1O-3 9 * 10-4

40.61 29.73

63O.e.1123 523.s.630

99.98% Ni. Steady-state permeation method. Observed change in Do, Q at the Curie transition temperature.

74Bl

H

8.38. 1O-3

41.13

92O.e. 1170

41.50

(3) Cylindrical specimen. Desorption method.

38.59

(4) Spherical specimen. Desorption method.

20 (3, J-96)

20 (8)

70C

72R1, 72R2, 73R

7482

H D T

7.10-3 4.95.10-3 4.04 * 10-3

39.50

3oo.a. 550

99.98% and 99.995% Ni polycrystalline foils and rods. Permeation, desorption and absorption methods used for D and T, on annealed and on cold-rolled specimen. Suggest results represented byD”=(7~10-3/&?)m2s-1; Q = 39.50 kJ mol- ’ (M in atomic mass units).

H

6.87. 1O-3 4.76. 1O-3

40.52 39.56

T>T, T 923 K the observed Q for H and D increase.

70G

H

2.94 - 1O-3

22.02

533.e.913

99.9 + % Pd discs. Gas-volumetric time-lag method. (Found Q increased and Do decreased with increasing Ag additions.)

70H

a

H

4.10-3

24.07

273 ... 333

99.9 % Pd foils. Electra-chemical pulse, time-lag technique. (Q increased, Do decreasedwith increasing Ag content.)

a

H

2.6 - lO-3

22.19

e?

H

a

H

a

H D

a

Pd membranes (0.025 mm) supplied by Englehard Industries. Electrochemical time-lag method. D (299 K) = 1.95 * 10-i’ m’s-‘.

71Bl 7lB2

CL

H D

u

T

u

71B3

3.65. 1O-3 2.5. 1O-3

23.45 21.56

1.05 * 10-z

26.04

289.a.323

H D

2.5 +1O-3 1.7.10-3

21.81 19.88

233 . . .445 218...333

u

H

4.5. 10-3

24.07

273 ... 1273

CL

T

1.02~10--2

26.59

a

H

x 3 at.%

H D

40 at.%

U

CZO

623

2.5. 1O-3

21.23

100*~*500

x 25.9

573,623

2.93 * 10-3

23.43

453.e.793

2.1 . 10-3 5.4. 10-3

21.34 23.50

298

H H H T H D T

273...873

Tritium electrochemically injected on entrance side of membrane. Time-lag monitored on exit side, using B-activity; Tritium need not exit. Coiled, polycrystalline springs, wire diameter 0.5 mm. Quasi-static Gorsky-effect method. Reversed isotope effect confirmed (see [67B], [67Hl). Best fit from selected literature data.

71s

21(a)

71v

72Bl

See [71S].

72B2

Single crystal Pd. QENS method. Octahedral-octahedral jumps confirmed (see [67Sl). 99.99 % Pd bar; 0.08 x 1 x 15 mm3; large grain structure. Quasi-static Gorsky-effect method. Confirm isotope-reversal effect for T> 100 ... 500 K, but normal isotope-effect for Tz 60 K. Single crystal Pd. QENS method. D (573 K) = 2.92. IO-’ m2 s-r D(623K)=3.52.10-gm2s-1

72R

73R .

74c 75P

Frequency response method. Quasi-static Gorsky-effect method.

298

D (298 K) = 6.3 . 10-l’ m2 s-l D (298 K) = 6.8.10-” mzs-1

75s 75v 76Bl

7.2. 1O-3

23.80

273 ..a 323

See [71S]; additions of Ag, V increased Q; additions of Ni did not.

76B2

H

1.32. 1O-3

22.40

296..a341

77H, 79Hl

H D

3.44.10-3 2.46. 1O-3

22.56 21.26

273...313

99.95% Pd foil, 0.27 mm thick. Electrochemical method. Diffusivity decreasedslightly with increasing deformation. Frequency response method.

X0

77s (continued)

Solvent element

Diffusant

H cont.

DO 10-4m2s-1

Q

kJmol-’

Temperature range Remarks K

Fig.

Ref.

Pd (continued) CL

H

T

X0

H

296

99.94 at.% Pd membranes, 0.05***0.39 mm thick. Galvano-static method. D (296 K) = 3.4. lo-” m2s-r.

78E

7.2. 10-J

23.8

273.a. 325

Circular foils, 200 ... 300 pm thick. Method as in [71S]. Effect of alloy additions studied.

78H

6.0. lO-3

24.50

273 0..923

Q, Do averaged from literature data.

78K

113

Specimen loaded with D from gas phase. Nuclear reaction D(d, p) T used to determine deuterium profile. D (113K) = 1.15. 10-16m2s-1.

78M

D

a

H

2.90. lO-3

22.19

4730.. 1548

Best fit from literature data for surface-independent methods.

21 (b)

78V2 *

CL

H

2.83 - 1O-3

21.70

742.e.1219

MARZ-grade Pd foil, 940 urn thick. Permeation time-lag method. Break in Arrhenius plot for T> 923 K, reported in [70G] not observed.

21 @I

79K

a

H

0.001 .a*1 at.%

H

H

H

2.9. lo-’

22.20

10-4 to 1 at.%

12.54 20.26

(4

295

99.999% Pd foil. Electrochemical time-lag method, on annealed and deformed specimens. D (295 K, annealed) = 3.2 . IO- 11 mz s- l, independent of H cont.; D (deformed) decreases rapidly with decreasing H concentration.

302.e. 334

Several electrochemical methods used give excellent agreement with those from Gorsky-effect measurements.

295,322

99.999% Pd foils, annealed and cold-worked. Electrochemical method. Solubility is drastically enhanced at low concentration of H in deformed specimen while diffusivity decreases.

81K1, 81M2

130...220 220...270

99.98% Pd. foil, loaded to x 41 at.% with H (P-phase).Quasi-static Gorsky-effect method. Break observed in Arrhenius plot at x 220 K.

81Ml

80Kl

21 (b) (4

80K2

u

H

u

T

210-3

,%1.5. 10-3

21.48

279..-335

Annealed and cold-rolled specimens. Electrochemical method. Q independent of H concentration for both specimen conditions; Q (annealed) slightly lower than Q (cold-worked).

81S

x 17.50

283...323

Annealed and cold-rolled specimens. Tritium method [71S] to study influence of traps on H diffusivity. Conclude dislocation cores act as trap sites, with binding energy w 18 kJ mol- ‘.

83s

Mossbauer method, using “Fe. H diffusion in region of substitutional Fe impurity is measured.

84W

280.~. 365

Pd foil, 212 pm thick, annealed and cold-rolled. Improved electrochemical methods used. Diffusivity in deformed material decreaseswith decreasing H concentration.

842

570

Cylindrical specimen. Absorption rate measured with capacitance-dilatometer. D (570 K) = 2.95 . 10m9m2 s-l. No change on application of a 10T magnetic field.

85V

77 . . .300

PdHo.,, and PdD,.,, single crystals. Ultrasonic relaxation method. Inverse isotope effect noted.

86L

293

99.99% Pd foils, 0.05 mm thick. Galvanostatic permeation method. Dislocation density varied by CLp B transformations. D (293 K) z 4.2. IO-” m2 s-l.

87B

66G

at. %

P

H

u

H

37at.% 44 at.% 45 at.% lo-4...1

22.29 22.29 24.22 2.6. 1O-3

21.80

at. %

Pt

u

H

P

H D

u

H

22.38 21.13

H

(4.5. 10-y

40.19

323 ... 353

Pt foil, 0.02.. .0.05 mm thick. Electrochemical permeation time-lag method. D (343 K) = 3.4.10-l’ m2 s-l. Do value in parentheses is inferred from a single measurement of D at 343 K and from a measurement of Q.

H

6.0. 1O-3

24.70

600...900

99.999% Pt single crystal disc, 0.15 ... 1.9 mm thick, [IOO] orientation. Electrochemical permeation time-lag method. At 750 K, D (H)/D (D) = 1.16.

22 (2)

68E (continued)

Solvent element

Diffusant

H cont.

DO 10-4m2s-1

kJmol-’

Q

Temperature range K

2.25.10-s

105.1

773.a.873

Remarks

Fig.

Ref.

Pt (continued) H

303

H

H

6.47. 1O-3

26.3

H H

831 .a. 1209

279.e.333 0.05 at.%

8.41 . 1O-2

44.79

284.e. 330

78C “Technically pure” Pt strip, 0.2 mm thick. Diffusion-elastic method. D (303K) = 2.3. IO-l3 m2s-‘. MARZ grade Pt polycrystalline discs, 0.835 mm thick. Electrochemical permeation time-lag method. Pt membranes, galvanostatically charged. Electrochemical permeation method. MARZ grade Pt foils, 25 urn thick. Electrochemical pulse permeation method.

79c

22 (0

79K

81s 22 (3)

851

9.4.11 Noble metals Cu, Ag, Au cu

H

6.8. 10-s

47.31

523...800

99.92% Cu. Desorption method.

55R

H

1.10.10-2 1.15.10-s 6.2. lO-3

38.52

533...923

Desorption method.

40.82 37.85

698...913

99.999% Cu single crystal. Desorption method.

57E 65E

1253

Sievert’s cell. D (1253 K) = 2.32 . 10e8 m2 s-r. Calculated Q.

H D H H H

2.29.10-s

H D T H D

1.13 * 10-s 7.3 * 10-s 6.12. 1O-3 1.06. 1O-2 7.8. 1O-3

H H

5.75.10-J 1.69. lO-3

38.59 47.28 38.88 36.82 36.50 38.43 38.59 37.26 29.98

800... 1000 723..-1198 723 a.. 1073 723 ..a 1073 473.s. 573

99.999% Cu single crystal sphere. Desorption method. Permeation time-lag method.

23

66s 67N 68B 71K

72P, 73P 73K

773.a. 1073 Permeation method.

*

73s

1.06. lo-’ 1.1 . 10-Z

38.43 41.20

1.0. 10-Z

33.91 47.10

2.54. IO-’

75T

770... 1356 573...873

75v 76C, 77C

Permeation method.

43.40

273...300

99.999% Cu single crystal wire. Q determined from resistivity recovery measurements on quenched-annealed specimens.

76W

Do and Q values averaged from selected literature data.

78Kl

H

6.45. lo-’

35.60

555 ... 1356

H

1.1 . 10-Z

38.46

705 . ..924

H

1.1 . 10-Z

35.17

573..-973

Steady-state permeation method. Absorption enhanced by prior dissociation of H, molecules.

H

3.69. 1O-3

36.82

292*..339

Electrochemical permeation method. Cold-worked specimen exhibited higher Q.

300

99.999% Cu foil. Electrochemical method. D(300K)=2.3~10-‘3m2s-‘.

23 (4

79B 79K

23 (5)

82s 85D

H

2.11 .10-Z

44.53

299v.e323

99.9995% Cu foil, 25 urn thick; Pd-coated. Electrochemical pulse method. Do and Q obtained from least-squares fit to present results and those in [71K], [82S], [79B], [76P].

H

9.0. 10-a

43.5

260... 1000

Electrochemical and gas-phase permeation.

86H

H

1.96. 1O-3

28.8

500 ... 1000

Permeation through duplex-membranes.

86T

H

2.82. 1O-3

31.40

661 ... 873

Ag spherical specimen, 2 cm diameter. Desorption method.

373...973

“Super pure” Ag foil, 1 mm thick. Desorption of 4 . IO’l T ions/cm’ implanted at 40 keV; monitored by radioactivity measurements. Release rates lower than in undamaged material.

T

H H L

74G

Permeation method.

500*..740

H

Ag

473.~~873

x 0.05 at.%

23 (6)

24 (2)

851

58E 67M

8.55. 1O-3

30.11

947... 1123

MARZ grade Ag foils, 0.74 mm thick. Permeation time-lag method.

24 (1)

79K

8.4. 1O+5

77.10

28O.s.330

MARZ grade Ag foil, 75 urn thick. Electrochemical current-pulse permeation method.

24 (3)

851

Solvent element

Diffusant

Au

H

H cont.

DO

Fig.

Ref.

10-4m2s-’

kJ mol-’

Q

Temperature range Remarks K

5.6. 1O-4

23.61

773.+.1213

“Fine” Au polycrystalline spherical specimen, 1.6 and 3.0 cm diameter, grain size about 1 mm. Desorption method.

62E

54 . . .80

523.a.873

99.99% Au foils, 0.25 mm thick. Cold-worked as well as annealed foils measured by steady-state permeation and by desorption methods. Conclude deuterium interacts with lattice imperfections.

76C

298

Au membranes and rods. Absorption and electrochemical permeation. D(298K)=5~10-16m2s-*.

77Cl,77C2

D

H

H

1.4 * 10-J

20.51

523 ... 673

Au foils. Permeation time-lag method. H, is dissociated (“atomized”) in gaseous phase to avoid adsorption as rate determining step.

79K, 741

H

4.67. 1O-4

29.63

280-e. 330

MARZ grade foils, 25 urn thick. Electrochemical current-pulse permeation method.

8511

H

4.67. 1O-4

29.63

5.08.10+

22.74

99.9995% Au foil, 25 urn thick. Method as in [8511]. Foils quenched from 1248 K and subsequently aged show changes in Do, Q attributed to H-vacancy trap interactions.

4.42. 1O-4 1.11 .10-s 4.43.10-s 7.02.10+

35.60 26.58 27.71 23.78

Annealed (280 ... 335) Asquenched (280 ... 335) Aged at: 348 473 573 673

25

8512 *

9.4.12 Zinc group metals Zn, Cd, Hg Data available only for Zn. Zn

H

5.8 +1O-3 4.2. 1O-3

5.86 9.21

323.a.523 323 ... 523

99.99% Zn. 99.9% Zn.

68W

H

8.5. IO-*

18.62

298 . . a344

99.99% Zn single crystal. Diffusion perpendicular to c axis.

72K

9.4.13 Aluminum group metals Al, Ga, In, Tl Data available only for Al. Al

H

1.2. lo+5

140

673...773

99.99% Al. Desorption method.

55R

H

2.1 . 10-l

45.63

743...863

99.5 . . .99.994 % Al spheres and cylinders. Desorption method. No significant effect of specimen purity observed.

57E

H

1.1 . 10-l

40.95

673 ... 873

99.999% Al spheres and cylinders. Desorption method.

26 (2)

61E

H

2.of1o-2

50.24

843...903 (740 . . .870)

Al cylinders. Desorption method. (T-range values in parentheses are from Fig. 26, curve 5)

26 0

67M1, 69M

H

1.2. 10-i

60.71

723...873

Desorption and absorption methods on oxidized and unoxidized specimens.

75A

H

2.5. IO-’

90.0

723...863

99.8% Al rods, 12 mm diameter. Desorption method.

77P

H

4.58. lo-’

37.03

623.e.925

99.99% Al. Desorption method. D decreasedif specimens were melted and solidified in a mold prior to measurements. Attributed effect to voids.

T

(i) 2. 10m3 (ii) 9 . 10e3

(i) 42.6 (ii) 51.8

(i) 338 a..472 (ii) 423 . . .796

99.5 % Al cylinders, 6 mm diameter. Tritium tracer introduced by (i) recoil injection using 3He (n, p) T reaction, or (ii) absorption from gas. Diffusivities determined from (i) sectioning, (ii) desorption.

H

1.9. 10-i

40.0

730.~. 863

99.999% Al rods, 10 mm diameter. Hydrogen loaded by solidifying rods in air. Desorption method. Attributes discrepancy with earlier study [77P] to impurities.

26 (4

81P

H

1.01 .10-i

47.70

723..-898

99.995% Al cylinders, 1.25 cm diameter; grain size z 4 mm. Specimen H-charged, electro-polished prior to desorption measurements in UHV system.

26 (4)

820

26 (3)

791,801

81N

(continued)

Solvent element Al

Diffusant

H cont.

DO IOV4mZs-’

kJmol-’

Q

Temperature range Remarks K

2.6 . IO- *

58.86

573 ..a 673

8.5 . IO-’ 9.3 . 10-l 5.3 . 10-l

43.9 48.5 62.7

459.a.525 549.a.654 654.a.753

9.2 . lo- ’

55.25

285.e.296

Fig.

Ref.

26 (7)

83H

(continued) H

AI-U

T

wt.% Li 0.02 0.26 1.12

99.9999%, zone-refined Al discs, 50 *.- 500 urn thick. Both gas-phase and electrochemical charging methods used. Diffusivity calculated from time dependence of permeation rate, measured with a quadrupole mass spectrometer. Q value close to that for vacancy migration in Al, suggests H-vacancy complex at high temperatures. Alloys prepared from 99.99% Al. Foils 0.5 mm thick. Tritium introduced by recoil injection, using 3He(n, p) T and 6Li (n, CL)T reactions. Cont. profiles of T obtained by etch-sectioning and T &activity measurements used to determine diffusivity. 99.995% Al foil, 25 pm thick. Electrochemical pulse permeation time-lag method. Suggest that these results, along with [81P], [6IE], [57E] and [801] refute conclusion of H-vacancy interaction [83H].

83N

26 (8)

861 *

9.4.14 Group IVB metals Sn, Pb Data available only for Pb. Pb

298

H

Re-evaluation of literature data on permeation gives 1.2. 1O-1o 5 D (298 K) 5 8.7.10-l’ m’s-‘.

7oc

9.4.15 Actinide group metals AC, Th, Pa, U, Nb, Pu, etc. Data available for Th and U. Tha UU

H H

2.92. IO-3 I.95 * 10-2

40.82 46.32

573.a.1173 72O.e.940

B Y

::

3.3. 10-4 1.5. 10-J

Y

H

I.9 * 10-t

15.07 47.73 48.53

933 .a. 1023 1023 ... 1273 1020... 1250

Desorption and absorption method.

27

60P * 58M, 68M 68M

U spheres, I.22 mm radius; desorption method.

73P

Solvent element Al

Diffusant

H cont.

DO IOV4mZs-’

kJmol-’

Q

Temperature range Remarks K

2.6 . IO- *

58.86

573 ..a 673

8.5 . IO-’ 9.3 . 10-l 5.3 . 10-l

43.9 48.5 62.7

459.a.525 549.a.654 654.a.753

9.2 . lo- ’

55.25

285.e.296

Fig.

Ref.

26 (7)

83H

(continued) H

AI-U

T

wt.% Li 0.02 0.26 1.12

99.9999%, zone-refined Al discs, 50 *.- 500 urn thick. Both gas-phase and electrochemical charging methods used. Diffusivity calculated from time dependence of permeation rate, measured with a quadrupole mass spectrometer. Q value close to that for vacancy migration in Al, suggests H-vacancy complex at high temperatures. Alloys prepared from 99.99% Al. Foils 0.5 mm thick. Tritium introduced by recoil injection, using 3He(n, p) T and 6Li (n, CL)T reactions. Cont. profiles of T obtained by etch-sectioning and T &activity measurements used to determine diffusivity. 99.995% Al foil, 25 pm thick. Electrochemical pulse permeation time-lag method. Suggest that these results, along with [81P], [6IE], [57E] and [801] refute conclusion of H-vacancy interaction [83H].

83N

26 (8)

861 *

9.4.14 Group IVB metals Sn, Pb Data available only for Pb. Pb

298

H

Re-evaluation of literature data on permeation gives 1.2. 1O-1o 5 D (298 K) 5 8.7.10-l’ m’s-‘.

7oc

9.4.15 Actinide group metals AC, Th, Pa, U, Nb, Pu, etc. Data available for Th and U. Tha UU

H H

2.92. IO-3 I.95 * 10-2

40.82 46.32

573.a.1173 72O.e.940

B Y

::

3.3. 10-4 1.5. 10-J

Y

H

I.9 * 10-t

15.07 47.73 48.53

933 .a. 1023 1023 ... 1273 1020... 1250

Desorption and absorption method.

27

60P * 58M, 68M 68M

U spheres, I.22 mm radius; desorption method.

73P

Ref. p. 5561

9 The diffusion of H, D and T in solid metals (Figures)

549

Figures for 9

0.5

1.0

2.0 X?K-’

1.5 l/T-

2.5

Fig. 7. Be-T. Diffusion coefficient (T in Be) vs. reciprocal temperature [67J(Be)]. Desorption method.

2.1II-” 270 , ,

240 “C 210 II I

-T 180 I

150 I I

120 I I

2.10-8III 1.0

1.2

,o-,, 27O”C240 210 I I , I -7L I, I,,-,?7 6 .=l

90 I 1

2

1.8

.10-3K-’

2.2

-T 180 !

150 I ,

120 I ,

90 I

Lu-H,D

2

U-13

1o-13

(j&4 2.2

2.4

2.6 .10-3K-’ 2.8

1.8

l/T-

2.0

22

2.4

2.6 -lo-3 K’ 2.8

l/T -

Fig. 9(a). Lu-H. Diffusion coefficients (H in CL-Lu)vs. reciprocal temperature, parallel to the u-axis (D,), and parallel to the c-axis (D,) [87V (Lu)]. Quasi-static Gorsky-effect method.

Land&-B6rnstein New Series III/26

1.6 l/T-

Fig. 8. Ba-H. Diffusion coefticient (H in Ba) vs. reciprocal temperature [68P (Ba)]. Concentration profile obtained by sectioning, vacuum-fusion analysis.

4 -

4.10~“14 1.8 2.0

1.4

Fig. 9(b). Lu-H, D. Diffusion coefficients (H, D in a-L@ vs. reciprocal temperature, polycrystalline CL-Lu[87V(Lu)]. Quasi-static Gorsky-effect method.

Kidson

9 The diffusion of H, D and T in solid metals (Figures)

550

-1

1I 2x-s 1600 ,’ “C 800 d/s 10-s

SOC

[Ref. p. 557f.

-1

I200 ’

100

50

2e,o-,o80°C70

I

60

50

40

30

20

10

lll~/s lo-lo 1 6 -4

2

lo-” 2.8

3.0

3.2

3.1 JO-'K-' 3.6

Fig. 10(b). Ti-H. Diffusion coefficient (H in a-Ti) vs. reciprocal temperature [76B (Ti)]. Electrochemical pulse method.

lo-”

I

I

I\

1 \

II

\\

4

loq335 0.5

1.0

1.5

2.0 l/T-

Fig. 10(a). Ti-H, T. Diffusion coefticient (H, T (only curve 15) in a-Ti) vs. reciprocal temperature [83K (Ti)]. References to the numbered curves are: f: [54W (Ti)]; 2: [56K (Ti)]; 3: [58A(Ti)]; 4: (68P(Ti)]; 5: [69K(Ti)]; 6: [735(H)]; 7: [7582(D)]; 8: [75Sl (Ti)]; 9,IO: [76N(Ti); If: [76B(Ti)]; 12: [77P(Ti)J; 13: [77W (Ti)]; 14: [79D(Ti)]; 15: [83K (Ti)].

2.5

-1 lo-l'0

Zr-H

400 "C

300

250

200

150

m2/s 4 2

10-l' 8 6 t 4 Q 2

lo-" 6” 4 2

0 I

,o-‘31 1.4 1.6

I

1.8

I

I

2.0 l/l

2.2

I

.lO-'K-'

2.6

-

Fig. 12. Hf-T. Diffusion coefficient (fin a-Hf) vs. reciprocal temperature [83K (Hf)]. Concentration profiles determined by sectioning, counting B-activity.

2 1/r-

.10-3 K-1

4 Fig. 11. Zr- H. Diffusion coefficient (H in a-Zr) vs. reciprocal temperature [76M (Zr)]. Referencesto numbered curves are: I: [6OS2 (Zr)]; 2: (54s (Zr)]; 3: [57M (Zr)]; 5: [72K (Zr)]; 6: [76M (Zr)]; 7: [54G (Zr)]. Iandolt-BBmstein

New Series 111126

553

9 The diffusion of H, D and T in solid metals (Figures)

Ref. p. 558f.l

Pig. 13. V-H, D, T. Diffusion coefficients (H, D, T in V) b vs. reciprocal temperature [83Q (V)]. Quasi-static Gorskyeffect method.

-1 0 I

300 "C 100 I, II

4.10-* m2/s

-50 I

V- H,D,T

-140 I

-100 I

I

IO-" 3

12

4

6

5

40;3K-'

8

l/T-

10-a

300°C 100

-T -100

-50

0

-140

-160

-180

m2/s

10-g

4I 1o-l0

Fig. 14. Nb-H, D, T. Diffusion coefft- b lOA' cient (H, D, Tin cc-Nb)vs. reciprocal temperature. Quasi-static Gorsky-effect method. Taken from [83Q (Nb)] (T-diffusion) which includes also references for H, D diffusion (see table). v refers to lo-l2 12 [71S (Ta)].

3

5

4

6

7

8

1/T-

For Fig. 15 see next page.

10-B.

900 “C

-T 750 700 650 I I I *' 0% a,%8AO ,o A )

‘t-, . .

I 4 Q

800

l

600 I

500 I

MO-H ‘O

6

550 I ,

:

s.qA

‘\ ‘\_

2

1o-g 0.8

\.

. ‘\

0.9

1.0

1.1

1.2

.10-3K-' 1.3

l/T-

Fig. 16. MO-H. Diffusion coefficient (H in MO) vs. reciprocal temperature [82K(Mo)]. Permeation time-lag method. Different symbols refer to different specimens. Dashed curve from [60H (MO)]. Land&-Bhnstein New Series III/26

Kidson

9

10 .@K-'

12

9 The diffusion of H, D and T in solid metals (Figures)

552

300°C 100 I, II

KS*

m'h

0 -50 ,I I,

I

1 la-H,D,T

1o-l’,

-1 -100 I,

I

I

I

I

2

3

4

5

-1kO 1 I I

I

!

!

7

8

-160 I,

[Ref. p. 560f.

I

I

-180 11

I

I

9

10 *lo-3K" 12

\‘9,4 \

6 l/l-

Fig. 15. Ta - H, D, T. Diffusion cocfftcient (H, D, T in u-Ta) vs. reciprocal temperature. Quasi-static Gorsky-effect method. Taken from [83Q(Ta)] which includes further references(see table). Symbol v at x 300 K is from [71S(Ta)].

,o.72200 "C 1700

d/c

““a 6

..*

I’

1300

I

I.

1100 I

900 I

W -H

I t Qt

I

\.r\, ( h \ I

I

t ‘i -16 6 4

\

4.10-g 0.1

2

I

I

7

9

10-l’ 0.5

0.6

0.7

5

0.8 .10‘3K-' 0.9

11

13#

K-'36.1

l/T-

1/rFig. 17(a). W-H. Diffusion coefftcient (H in W) vs. reciprocal temperature [69F(W)]. References to numbered curves are: I: [69F (W)]; 2: [64R (W)].

Fig. 17(b). W-H, D. Diffusion coefticient (H, D on (110) surface of W) vs. reciprocal temperature [82D (W)]. 19is the fractional coverage of the (110) plane by the diffusants. Field emission, current-fluctuation method.

Kidson

Land&BBmsfein New Series 111126

Ref. p. 563f.l

9 The diffusion of H, D and T in solid metals (Figures) 1o-1 m2/s

-1 4.W" 1600 800 "C 400 , , II m2/s

200 II

II

100

I Q

50 II

II

I

I

0

I

lo-*

I

1o-g

2

I Q 10."O

IO-8 8 6

4.10-g 0.5

1.0

1.5

2.0 l/T-

2.5

3.0

.lO;jK-’

1o-12 0

4.0

Fig. 18(a). Fe-H. Diffusion coeffkient (H in a-Fe) vs. reciprocal temperature [82N (Fe)]. o: Gas permeation, time-lag method; l : Electra-chemical AC method. Deviation from linear plot for T < 293 K is attributed to trapping effects.

0.5

1.0

1.5

2.0 l/T-

2.5

1ur

I

m2/s

0.8

400 I ,

200 I

100 I

50 I

0 1

-40 I

Fe-H

1.2

1.6

2.0

2.4 l/T-

2.8

3.2

3.6

.10-j K-'

Fig. 18(b). Fe-H. Diffusion coeffkient (H in u-Fe) vs. reciprocal temperature measured by a variety of methods and showing the large disparities attributed to surface effects and/or trapping [83K (Fe)]. Referencesto the numbered curves are: I: [73N2(Fe)]; 2: [78QFe)]; 3: [50G(Fe)]; 4; [71D(Fe)]; 5: [63B(Fe)]; 6: [66W (Fe)]; 7: [81Y(Fe)]; 8: [75M (Fe)]; 9: [71M(Fe)]; 10: [58E(Fe)]; f1: [47S(Fe)]; 12: [74A3 (Fe)]; 13: [65M (Fe)]; [66B(Fe)]; 14: [79H(Fe)]; 15: [77K (Fe)]; 16: [74K2 (Fe)]; f 7: [61R (Fe)]; 18,18’: [70R2(Fe)]; 19, 19’: [77C(Fe)]; 20: [75Kl (Fe)]; 2f: [58Z(Fe)]; 22: [56S(Fe)]; 23: [60C(Fe)]; 24: [61L(Fe)]; 25: [6OJ (Fe)]; 26,26’, 26”: [69E2 (Fe)]; 27: [40B (Fe)]. Land&-B6rnstein New Series III/26

4.0

Fig. 19. Co-H. Diffusion coefficient (H, D in Co) vs. reciprocal temperature [85S(Co)]. Tc is the Curie temperature. References to numbered curves are: I: [66S(Co)]; 2: [85S(Co)]; 3,3’: [74C (Co)]. The dashed curve is an extrapolation of curve 2; the solid line is a best fit to combined data from [66S(Co)] and [85S(Co)]. Curves 3,3’ are for D diffusion, curves I,2 for H diffusion.

-1 A-c 800 "C

3.0 W3K-’

Kidson

9 The diffusion of H, D and T in solid metals (Figures)

[Ref. p. 566f.

-1 ,0-q 200 “C 100 I I I ’ m2/s X I

50

0

-25

I’ I-

I ’

I

-50 I(

I

---

2

lo-"0

,

I



6" I 4 M -

-2

lo-" 6

lo-'"I 2.0

I I

I I

r I

I I

I I

1.4

2.0

2.6

10 10-l)

“I”

3.0

3.5 1/r-

4.0

I ~10-~K-' 5.0

Fig. 21 (a). Pd-H. Diffusion coefficient (H, D in Pd) vs. reciprocal temperature [71V(Pd)]. Quasi-static Gorsky-effect method. Note the reversed isotope effect.

n\

h\b

I

0.8

2.5

8

3.2 .lO-jK-' 3.8

l/T-

Fig. 20. Ni - H. Diffusion coefticient (H in Ni) vs. reciprocal temperature [84L(Ni)]. References to the numbered curves are: I: [60E (Ni)]; 2: [29H (I%)]; 3,5,6: [7OC(Ni)]; 4,9: [75V(Ni)]; 7: [35E(Ni)]; 8: [72Rl (Ni)]; IO: [63O(Ni)]; If: [67S(Ni); 12: [84L(Ni)]. Curve 4(T> Tc) and 9(T < Tc) are the best fits to the data; Tc is the Curie temperature.

10-s 10-6 m21s 10-7

1.2

1.6

2.0

2.L

2.8

.lOV

Fig. 21 (b). Pd - H. Diffusion coefficient (H in Pd) vs. reciprocal temperature. References to numbered curves are: f: [79K (Pd)]; 3: [80K2(Pd)]. The dashed curve 2 is from the best fit of a compilation of results, taken from [78V2(Pd)].

10-s 10-s ~I lo-‘0 1o-” 10-12

10” 0.8

1.2

1.6

2.0 l/1-

2.1

2.8 .10-3K-' :

4 Fig. 22. Pt -H. Diffusion coefficient (H in Pt) vs. reciprocal temperature [85I(Pt)]. References to the numbered curves are: I: [79K (Pt)]; 2: [68E(Pt)]; 3: [85I (Pt)].

Kidson

Land&-BBmstein New Series III126

9 The diffusion

Ref. p. 571 f.]

555

of H, D and T in solid metals (Figures)

1o-7 m2/s 1o-E 10-g

I a

lo-"0 10-l'

0.8

0.8

1.2

1.6

2.0 l/T-

2.4

2.8

.@K-'

3.6

1.6

2.0 2.4 l/T-

2.8

.lOJK-'

3.6

Fig. 24. Ag-H. Diffusion coefficient (H in Ag) vs. reciprocal temperature [851(Ag)]. Referencesto the numbered plots are: I: [79K (Ag)]; 2: [58E (Ag)]; 3: [851(Ag)]. The disparities indicate the need for further studies over an extended temperature range.

Fig. 23. G-H. Diffusion coefficient (H in Cu) vs. reciprocal temperature [85I(Cu)]. References to the numbered curves are: f: [79B(Cu)]; 5: [82S(Cu)]; 6: [85I(Cu)]. The data points o are from [71K (Cu)]. Curve 6 was extrapolated beyond the measured T-range to show agreement with results from [71K (Cu)].

10-7 m*/s

24 tl-‘* m*/s

10-a

1O-l* 8 6

10-g

4

1o-l0

I a

1.2

aI 10-l'

2

lo-'*

lo-l3

4

2

IO-l4 2.9

3.0

3.1

3.2 3.3 l/T-

3.4

.10-3K-' 3.6

Fig. 25. Au-H. Diffusion coefficient (H in Au) vs. reciprocal temperature [8512(Au)]. Curve 1 is for an annealed specimen; curve 2 is for a quenched specimen. The decreasein D for the latter is attributed to trapping by vacancies.

Land&-BBmstein New Series III/26

0.8

1.2

1.6

2.0 l/T-

2.4

2.8

.105K'

3.6

Fig. 26. Al-H. Diffusion coefficient (H in Al) vs. reciprocal temperature [86I(Al)]. References to the numbered curves are: f: [81P(Al)]; 2: [61E(Al)]; 3: [8OI(Al)]; 4: [820(Al)]; 5: [67Ml (Al)]; 7: [83H (Al)]; 8: 1861(Al)]. (Curve 8 was extrapolated from the measured low temperature results; seetable).

Kidson

9.5 References for 9 (Be, Ba, Y, Lu)

556

00

0.5

1.0 1.0

1.5

2.0.10-k' 2.5

[Ref. p. 573

Fig. 27. Th -H. Diffusion coefficient (H in Th) vs. reciprocal temperature [60P(Th)]. o: Desorption method; v, A: Absorption method.

l/1-

9.5 References for 9 In this chapter 9 referencesare arranged separately for each substance, starting from Be. An asterisk (*) indicates the reference source of the parameters judged best to represent the intrinsic diffusion of hydrogen in a solvent. Be: 63P 64P 67J

Pemsler, J.P., Anderson, R.W., Rapperport, E.J.: Rep. ASD/TDR/62-1018, Pemsler, J.P., Rapperport, E.J.: Trans. Metall. Sot. AIME 230 (1964) 90. Jones, P.M.S., Gibson, R.: Rep. AWRE O-2/67, 1967.

1963.

Ba:

*68P y: 66C 12F 76F 79A 84A 87L

Peterson, D.T., Hammerberg, C.C.: J. Less-Common Met. 16 (1968) 457. Carlson, O.N., Schmidt, E.A., Peterson, D.J.: J. Less-Common Met. 10 (1966) 1. Frisius, F., Lamann, H.J., Mertins, H., Spalthoff, W., Wille, P.: Ber. Bunsenges. Phys. Chem. 76 (1972) 1216. Frisius, F., Hackbarth, H., Wille, P.: Atomkernenergie 27 (1976) 287. Anderson, D.L., Barnes, R.G., Nelson, SO., Torgeson, D.R.: Phys. Lett. 74A (1979) 427. Anderson, I.S., Heidemann, A., Bonnet, Ross,D.K., Wilson, S.K.P., McKergow, M.W.: J. Less-Common Met. 101 (1984) 405. Lichty, L., Schoeneberger,R.J., Torgeson, D.R., Barnes, R.G.: J. Less-Common Met. 129 (1987) 31.

Lu:

71B 79P 83V 86D 86V *87V

Barr&e, H., Tran, K.M.: C.R. Acad. Sci. 273B (1971) 823. Prakash, S., Bonnet, J.E., Lucasson, P.: J. Less-Common Met. 68 (1979) 1. Vajda, P., Daou, J.N., Moser, P.: J. Phys. (Paris) 44 (1983) 543. Daou, J.N., Vajda, P., Lucasson, P., Burger, J.P.: Philos. Mag. A53 (1986) 511. Vajda, P., Daou, J.N., Burger, J.P. Kai, K., Gscheider, K.A., Beaudry, J.P.: Phys. Rev. B34 (1986) 5154. Volkl, J. Wipf, H., Beaudry, B.G., Gscheider, K.A.: Phys. Status Solidi B 144 (1987) 315. Kidson

Landolt-Bornstem New Series III/26

9.5 References for 9 (Ti, Zr) Ti: 49G

50M 54w 56K 58A 60s 61s 65L 68P 69K 70Kl 70K2 70M 72P 73J 74B 75Sl 7532 *76B 76N 77P 77w 78K 79D 81B 82L 83K 85G

86Q 87s

Zr: 45s 54B 54G 54s 57M 59A 6OSl 6OS2 62C 63G 71P 72F *72K 74E 76F 76K 76M

557

Gulbransen, E., Andrew, K.: Trans. Metall. Sot. AIME 185 (1949) 741. McQuillan, A.D.: Proc. R. Sot. London A204 (1950) 309. Wasilewski, R.J., Kehl, G.L.: Metallurgia 50 (1954) 225. Kusamichi, H., Yagi, H., Yokawa, T., Noda, T.: Nihon Kinzoku Gakkaishi (J. Jpn. Inst. Met.) 20 (1956) 39. Albrecht, W.M., Mallett, M.W.: Trans. Metall, Sot. AIME 212 (1958) 204. Someno, N., Nagasaki, K.: Vat. Chem. 8 (1960) 145. Stalinski, B., Coogan, C.K., Gutowsky, H.S.: J. Chem. Phys. 34 (1961) 1191. Livanov, V.A., Bukhanova, A.A., Kolachev, B.A.: Hydrogen in Titanium. (Israel Progr. Sci. Transl.), Oxford: Pergamon Press, 1965. Papazoglov, T.P., Hepworth, M.T.: Trans. Metall. Sot. AIME 242 (1968) 682. Kolachev, B.A., Nazimov, O.P., Zhuralev, L.N.: Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 12 (1969) 104. Khazakov, D.N., Khokrin, V.M., Kunin, L.L., Ozhegov, P.I., Priselkov, Yu. A.: Zavod. Lab. 36 (1970) 441. Korn, C., Zamir, D.: J. Phys. Chem. Solids 31 (1970) 489. McQuillan, A.D.: J. Chem. Phys. 53 (1970) 156. Philips, I.I., Poole, P., Shrier, L.L.: Corros. Sci. 12 (1972) 855. Johnson, D.L., Nelson, H.G.: Metall. Trans. 4 (1973) 569. Brauer, E., Nann, E.: Werkst. Korros. 25 (1974) 309. Shah, K.K.: Thesis, Univ. Nebraska, USA, 1975. Sukhotin, A.M., Antonavskaya, E.J., Skibnev, E.V., Kornilov, I.I., Nartova, T.T., Magutova, T.V., Shulman, A.K.: Zashch. Met. 11 (1975) 430. Brauer, E., Doerr, R., Ziichner, H.: Z. Phys. Chem. NF 100 (1976) 109. Nazimov, O.P., Zhuralev, L.N.: Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 1 (1976) 160. Park, YK., Lee, L.J., Kim, C.H.: J. Korean Inst. Met. 15 (1977) 338. Waisman, J.L., Sines, G., Toosky, R.F.: Hydrogen in Metals (2nd. Int. Congr. Paris, 1977), Oxford: Pergamon Press, 4 (1977) No. 1 C 11. Katlinski, V.M.: Izv. Akad. Nauk SSSR., Neorg. Mater. 14 (1978) 1674. Doerr, R., Brauer, E., Gruner, R., Rauch, F.: Z. Phys. Chem. NF 116 (1979) 1. Brauer, E., Doerr, R., Gruner, R., Rauch, F.: Corros. Sci. 21 (1981) 449. Lin, L.Y, Huang, X.Y., Li, YK., Hsiao, C.M: Ser. Metall. 16 (1982) 1397. Kunz, W., Miinzel, H., Helfrich, U., Horneff, H.: Z. Metallkd. 74 (1983) 289. Grunner, R., Streb, B., Brauer, E.: Titanium: Scienceand Technology. (Proc. 5th. Int. Conf. on Ti.) 4 (1985) 2571. Quach-Kamimura, T.H., David, D.: J. Less-Common Met. 125 (1986) 59. Shoesmith, M.: unpublished. Schwartz, C.M., Mallett, M.W.: Trans. Am. Sot. Met. 41 (1945) 306. Belle, J., Cleland, B., Mallett, M.W.: J. Electrochem. Sot. 101 (1954) 211. Gulbransen, E.A., Andrew, K.F.: J. Electrochem. Sot. 101 (1954) 560. Schwartz, C.M., Mallett, M.W.: Trans. Am. Sot. Met. 46 (1954) 640. Mallett, M.W., Albrecht, W.M.: J. Electrochem. Sot. 104 (1957) 142. Albrecht, W.M., Goode, W.D.: Rep. Battelle Memorial Inst. BMI-1573 (1959) 10. Sawatzky, A.: J. Nucl. Mater. 2 (1960) 62. Someno, M.: Nihon Kinzoku Gakkaishi (J. Jpn. Inst. Met.) 24 (1960) 249. Cupp, C.R., Flubacher, P.: J. Nucl. Mater. 6 (1962) 213. Galezunas, V.L.: J. Electrochem. Sot. 110 (1963) 799. Paetz, P., Liicke, K.: Z. Metallkd. 62 (1971) 657. Frisius, F., Lahann, H.J., Mertins, H., Spalthoff, W., Willie, P.: Ber. Bunsenges. Phys. Chem. 76 (1972) 1216. Kearns, J.J.:J. Nucl. Mater. 43 (1972) 330. Elleman, T.S., Austin, J. H., Verghese, K.: J. Nucl. Mater. 51 (1974) 321. Frisius, F., Hackbarth, H., Willie, P.: Atomkernenergie 28 (1976) 225. Kubachewski, 0.: At. Energy. Rev. 6 (1976) 263. Mazzolai, EM., Ryll-Nardzewski, J.: J. Less Common Met. 49 (1976) 323.

Land&-Biirnstein New Series III/26

Kidson

558

9.5 References for 9 (Zr, Hf, V, Nb)

82K 87s

Kharatyan, S.L. et al.: Russ. Metall. 1 (1977) 39. Katlinskii, V.M.: Izv. Akad. Nauk SSSR., Neorg. Mater. 14 (1978) 1674. Greger, G.U., Miinzel, H., Kunz, W., Schwierczinski, A.: J. Nucl. Mater. 88 (1980) 15. Sawatzky, A., Ledoux, G., Tough, R.L., Cann, C.D.: Metal-Hydrogen Systems (Proc. Intl. Symp., Miami, 1981) T. Nejat Vezirdglu (ed.), Oxford: Pergamon Press, 1981. Kunz, W., Miinzel, H., Helfrich, U.: J. Nucl. Mater. 105 (1982) 178. Stem, A., Khatamian, D., Laursen, T.: J. Nucl. Mater. 148 (1987) 257.

Hf: *83K

Kunz, W, Miinzel, H., Helfrich, U., Horneff, H.: Z. Metallkd. 74 (1983) 289.

77K 78K 80G 8IS

v: 69C 7oc 70s 7ov 71D 72G 73B 74A 76B 76H 77E 77v 772 78F 78V 79s *83Q 83s 83W 8% Nb: 57P 59A 64R 66C 68SI 68S2 68V 69C 69M 7oc 70G 70R *7os *7ov 7ow 71c 71D 71K 710 71s

Cantelli, R., Mazzolai, EM., Nuovo, M.: Phys. Status Solidi 34 (1969) 597. Cantelli, R., Mazzolai, EM., Nuovo, M.: J. Phys. Chem. Solids 31 (1970) 1811. Schaumann, G., Volkl, J., Alefeld, G.: Phys. Status. Solidi 42 (1970) 401. Volkl, J., Schaumann, G., Alefeld, G.: J. Phys. Chem. Solids 31 (1970) 1805. Doremus, R.H.: J. Phys. Chem. Solids. 32 (1971) 2211. de Graaf, L.A., Rush, J.J.,Flotow, HF., Rowe, J.M.: J. Chem. Phys. 56 (1972) 4574. Boes, N., Ziichner, H.: Phys. Status Solidi 17A (1973) K 111. Abe, F., Hanada, R., Kimura, H.: Ser. Metall. 8 (1974) 955. Boes, N., Ziichner, H.: Z. Naturforsch. 31 A (1976) 760. Heller, R., Wipf, H.: Phys. Status Solidi 33 A (1976) 525. Eguchi, T., Morozumi, S.: Nihon Kinzoku Gakkaishi (J. Jpn. Inst. Met.) 41 (1977) 795. Viilkl, J., Bauer, H.C., Freudenberg, U., Kokkinidus, M., Lang, G., Steinhauser, K.A., Alefeld, G.: International Friction and Ultrasonic Attenuation in Solids (Proc. Int. Conf., Tokyo, 1977). Univ. of Tokyo Press, 1977, p. 485. Zeilinger, A., Pochman, W.A.: J. Phys. F 7 (1977) 575. Freudenberg, U., Volkl, J., Bressers,J., Alefeld, G.: Ser. Metall. 12 (1978) 165. Volkl, J., Alefeld, G.: Hydrogen in Metals I., Alefeld, G., Volkl, J. (eds.), Topics in Applied Physics, 28 (1978) 321. Schober, H.R., Lottner, V.: Z. Phys. Chem. NF 114 (1979) 203. Qi, Zh., Volkl, J., Lasser, R., Wenzl, H.: J. Phys, F 13 (1983) 2053. Suzuki, T., Namazue, H., Koike, S., Hayakawa, H.: Phys. Rev. Lett. 51 (1983) 798. Wipf, H.: DIMET-82 (Proc. Int. Conf., Tihany, Hungary, 1982) Kedves, F.J., Beke, D.L. (eds.), Diffusion and Defect Monogr. 7 (1983) 209. Sakamoto, Y, Baba, K., Suehiro, T.: Ser. Metall. 19 (1985) 871. Paxton, H.W., Sheehan, J.M.: Rep. No. NYO-8040 (A.E.C.), 1957. Albrecht, W.M., Goode, W.D., Mallett, M.W.: J. Electrochem. Sot. 106 (1959) 981. Ryabchikov, L.N.: Ukr. Fiz. Zh. 9 (1964) 293. Cannelli, G., Verdini, L.: Ric. Sci. 36 (1966) 246. Schiller, P., Schneiders,A.: Vacanciesand Interstitials in Metals (2nd. Int. Conf., Jiilich), 1968,p. 881. Schaumann, G., VBlkl, J., Alefeld, G.: Phys. Rev. Lett. 21 (1968) 891. Verdan, G., Rubin, R., Kley, W.: Neutron Inelastic Scattering (4th. I.A.E.A. Symp., Copenhagen) 1968, p. 223. Cantelli, R., Mazzolai, EM., Nuovo, M.: Phys. Status Solidi 34 (1969) 597. Mazzolai, EM., Nuovo, M.: Solid State Commun. 7 (1969) 103. Cantelli, R., Mazzolai, EM., Nuovo, M.: J. Phys. Chem. Solids 31 (1970) 1811. Gissler, W., Alefeld, G., Springer, T.: J. Phys. Chem. Solids 31 (1970) 2361. Rubin, R., Claessen,Y.: Solid State Commun. 8 (1970) 1321. Schaumann, G., Viilkl, J., Alefeld, G.: Phys. Status Solidi 42 (1970) 401. Volkl, J., Schaumann, G., Alefeld, G.: J. Phys. Chem. Solids 31 (1970) 1805. Wert, C., Thompson, D.O., Buck, 0.: J. Phys. Chem. Solids 31 (1970) 1793. Charlot, L.A., Westerman, R.E.: Rep. BNWL-1604, 1971, p. 72. Doremus, R.H.: J. Phys. Chem. Solids 32 (1971) 2211. Kistner, G., Rubin, R., Sosnowska, I.: Phys. Rev. L&t. 27 (1971) 1576. Ogurtani, T.0.: Metall. Trans. 2 (1971) 3035. Sicking, G., Buchold, H.: Z. Naturforsch. 26A (1971) 1973. Kidson

Land&-B6mstein New Series III/26

9.5 References for 9 (Nb) 72Bl 72B2 72C 72H 72Ll 72L2 72Sl 7282 72s 72v 72Wl 72W2 72W3 73A 73Bl 73B2 73B3 73s 74B 74c 74E 74K 74Ml 74M2 74P 74w 75A 75E 75H 751 75K 75s *75v 76A 76B 76Cl 76C2 76L 76R 76W 77B 77c 77E 77Ml 77M2 77R 77v 772

559

Birchall, J.H.L., Ross, D.K.: Hydrogen in Metals (Int. Conf., Ji.ilich), JUL-Conf-6. 1 (1972) 313. Birnbaum, H.K., Wert, C.A.: Ber. Bunsenges. Phys. Chem. 76 (1972) 806. Cotts, R.M.: Ber. Bunsenges. Phys. Chem. 76 (1972) 760. Hickman, R.G.: Rep. UCRL-74057 Rev. 2, 1972. Liitgemeier, H., Arons, R.R., Bohn, H.G.: J. Magn. Reson. 8 (1972) 74. Ltitgemeier, H., Bohn, H.G., Arons, R.R.: J. Magn. Reson 8 (1972) 80. Stump, N., Gissler, W., Rubin, R.: Phys. Status Solidi 54B (1972) 295. Stump, N., Gissler, W., Rubin, R.: Hydrogen in Metals (Int. Conf., Jiilich, 1972), JUL-Conf-6. 1 (1972) 375. Sussman, J.A., Weismann, Y: Hydrogen in Metals (Int. Conf., Jiilich, 1972) JUL-Conf-6. 2 (1972) 744. Volkl, J.: Ber. Bunsenges. Phys. Chem. 76 (1972) 797. Wipf, H.: Dissertation, Univ. of Mtinchen, FRG, 1972. Wipf, H.: Ber. Kernforschungsanlage Jtilich 6 (1972) 437. Wipf, H.: Hydrogen in Metals (Int. Conf., Jiilich, 1972), JUL-Conf-6. 2 (1972) 437. Abraham, P.M. et al.: Rep. ORO-3508-9, 1973. Baker, C., Birnbaum, H.K.: Acta Metall. 21 (1973) 865. Boes, N., Ziichner, H.: Phys. Status Solidi 17A (1973) K 111. Boes, N., Ziichner, H.: Ber. Bunsenges. Phys. Chem. 77 (1973) 708. . Sakamoto, K.: J. Iron Steel Inst. Jpn. (Tetsu to Hagane) 59 (1973) A153. Boes, N.: Dissertation, Univ. of Mtinster, FRG, 1974. Charlot, L.A., Johnson, A.B., Westerman, R.E.: AEC Symp. Ser 31 (1974) 970. Elleman, T.S., Verghese, K.: J. Nucl. Mater. 53 (1974) 299. Kutner, R., Sosnowska, I.: Acta Phys. Pol. 46A (1974) 755. Matusiewicz, G., Booker, R., Keiser, J., Birnbaum, H.K.: Ser. Metall. 8 (1974) 1419. Miinzing, W., Viilkl, J., Wipf, H., Alefeld, G.: Ser. Metall. 8 (1974) 1327. Pennington, C.W., Elleman, TX, Verghese, K.: Nucl. Technol. 22 (1974) 405. Wipf, H., Alefeld, G.: Phys. Status Solidi 23A (1974) 175. Alefeld, G., VBlkl, J., Wipf, H.: Ser. Metall. 9 (1975) 1095. Elleman, T.S., Verghese,K.: Tritium Technol. Relat. Fusion React. Syst. (Proc. Symp., 1974), Smith, W.H., Wilkes, W.R., Wittenberg, L.J. (eds.), 1975. Hanada, R.: Effect of Hydrogen on Behavior of Mater. (Int. Conf., Jackson Lake, Wyoming, 1975), New York: AIME, 1976, p. 676. Iijima, Y, Hirano, K.: Bull. Jpn. Inst. Met. 14 (1975) 599. Kehr, K.W.: Rep. JUL-1211, KFA Jtilich, 1975. Sakamoto, K.: Bull. Jpn. Inst. Met. 14 (1975) 333. Viilkl, J., Alefeld, G.: Diffusion in Solids; Recent Developments. Nowick, A.S., Burton, J.J.(eds.), New York: Academic Press, 1975, p. 231. Abraham, P.M., et al.: Rep. ORO-3508-10, 1976. Boes, N., Zi.ichner, H.: Z. Naturforsch. 31 A (1976) 760. Cantelli, R.: Metall. Ital. 68 (1976) 361. Chandra, D., Elleman, TX, Verghese, K.: J. Nucl. Mater. 59 (1976) 263. Lubchenko, A.F., Pavlovich, V.N., Fishchuk, 1.1.:Fiz. Met. Metalloved. 42 (1976) 1127. Phys. Met. Metallogr. (English Transl.) 42 (1976) 1. Richter, D., Tiipler, J., Springer, T.: J. Phys. F 6 (1976) L93. Westlake, D.J., Ockers, S.T., Regan, D.W: J. Less-Common Met. 49 (1976) 341. Birnbaum, H.K. et al.: Hydrogen in Metals. (2nd Int. Congr., Paris 1977), Oxford: Pergamon Press, 3 (1977) IBl. Cannelli, G., Cane& R.: Hydrogen in Metals (2nd Int. Congr., Paris, 1977), Oxford: Pergamon Press, 3 (1977) lB2. Eguchi, T., Morozumi, S.: J. Jpn. Inst. Met. 41 (1977) 795. Matusiewicz, G., Birnbaum, H.K.: J. Phys. F 7 (1977) 2285. Mazzolai, EM., France, R.: Hydrogen in Metals (2nd Int. Conf., Paris 1977), Oxford: Pergamon Press, 6 (1977) 2Cl. Richter, D., Alefeld, G., Heidemann, A., Wakabayashi, N.: J. Phys. F. 7 (1977) 569. VBlkl, J. et al.: International Friction and Ultrasonic Attenuation in Solids (Proc. 6th Int. Conf., Tokyo 1977), Tokyo: Univ. Tokyo Press, 1977, p. 485. Zeihnger, F., Pochman, WA.: J. Phys. F 7 (1977) 575.

Land&-Biirnstein New Series III/26

Kidson

9.5 References for 9 (Nb, Ta)

560

78Bl 78B2 78L

Bauer, H.C., Vblkl, J., Tretkowski, J., Alefeld, G.: Z. Phys. B29 (1978) 17. Bees, N., Wicke, E.: Ber. Bunsenges.Phys. Chem. 82 (1978) 356. Lottner, V. et al.: Neutron Inelastic Scattering (Proc. Symp. Vienna 1977), Vienna: IAEA, 2 (1978) 339.

78s *78V

Skiild, K.: Hydrogen in Metals I., Alefeld, G., Volkl, J. (eds.), Topics in Appl. Phys. 28 (1978) 267. Volkl, J., Alefeld, G.: Hydrogen in Metals I., Alefeld, G. Volkl, J. (eds.), Topics in Appl. Phys 28 (1978) 321.

79D 79E 79F 79Ll 79L2 79s 79v 8OP 8OZ 81W

82Q 82T *83Q 83Sl 8382 84Wl 84W2 85L 85M 85s 85T 85V 86K 87P 88s

Dais, S., Messer, R.: Z. Phys. Chem. NF 115 (1979) 177. Engelhard, J.: J. Phys. F 9 (1979) 2217. Fukai, Y, Kubo, K., Kazama, S.: Z. Phys. Chem. NF 115 (1979) 181. Lottner, V. et al: J. Phys. Chem. Solids 40 (1979) 557. Lottner, V., Heim, A., Springer, T.: Z. Phys. 32B (1979) 157. Schrober, H.R., Lottner, V.: Z. Phys. Chem. NF 114 (1979) 203. Viilkl, J., Alefeld, G.: Z. Phys. Chem NF 114 (1979) 123. Peterson, D.T., Jensen, C.L.: Metall. Trans. 11A (1980) 627. Zapp, P.E., Birnbaum, H.K.: Acta Metall. 28 (1980) 1523. Wipf, H., Magerl, A., Shapiro, S.M., Satija, S.K., Thomlinson, W.: Phys. Rev. Lett. 46 (1981) 947. Qi, Zh., Volkl, J., Wipf, H.: Ser. Metall. 16 (1982) 859. Tonks, D.L., Silver, R.N.: Phys. Rev. B 26 (1982) 6455. Qi, Zh., Volkl, J., Lassner, R., Wenzel, H.: J. Phys. F 13 (1983) 2053. Sherman, R., Birnbaum, H.K.: Metall. Trans. A 14A (1983) 203. Shirley, A.I., Hall, C.K., Prince, N.J.: Acta Metall. 31 (1983) 985. Wagner, F.E., Priibst, F., Wordel, R., Zelger, M.: Properties and Applications of Metal Hydrides. (Int. Symp. IV, Eilat, Israel), 1984. Wipf, H., Neumaier, K., Magerl, A., Heidemann, A., Stirling, W.: J. Less-Common Met. 101 (1984) 317. LHsser,R.: Z. Phys. Chem. NF 143 (1985) 23. Messer, R., Hopfel, D., Schmidt, C., Seeger,A., Zag, W., Liisser, R.: Z. Phys. Chem. NF 145 (1985) 179. Sakamoto, Y, Baba, K., Suehiro, T.: Ser. Metall. 19 (1985) 871. Teichler, H., Klamt, A.: Phys. Lett. 108A (1985) 281. Verbruggen, A.H., Lont, A., Griessen, R.: J. Phys. F 15 (1985) 1901. Klampt, A., Teichler, H.: Phys. Status Solidi B134 (1986) 533. Pusch. A., Fenzl, W., Peisl, J.: J. Less-Common Met. 129 (1987) 305. Sohn, K.S., Park, T.S., Kim, S.W.: Phys. Rev. B37 (1988) 1155.

Ta:

SOGI 50G2

5lG 58T 59c 60K 61H 61s 62M 65M 65P 66Cl 66C2 66M 67J

Garstens, M.A.: Phys. Rev. 79 (1950) 397. Gulbransen, E.A., Andrew, K.F.: Trans. Metall. Sot. AIME 188 (1950) 586. Garstens, M.A.: Phys. Rev. 81 (1951) 288. Torrey, H.C.: Nuovo Cimento Suppl. 9 (1958) 95. Cheselsky, F.J., Wallace, W.E., Hall, W.K.: J. Phys. Chem. 63 (1959) 505. Klyacho, Yu. et al.: Izv. Akad. Nauk SSSR 49 (1960) 1. Hall, W.K., Wallace, W.E., Cheselsky, F.J.: J. Phys. Chem. 65 (1961) 128. Spalthoff, W.: Z. Phys. Chem. 29 (1961) 258. Mallett, M.W., Koehl, B.G.: J. Electrochem. 109 (1962) 968. Makrides, A.C., Wright, M., McNeil, R.: Final Rep. Contract No. DA-49-186-AMC-136 (D), Harry Diamond Lab., 1965. Pedersen, B., Krogdahl, T., Stokkeland, O.E.: J. Chem. Phys. 42 (1965) 72. Cannelli, G., Verdini, L.: Ric. Sci. 36 (1966) 98. Cannelli, G., Verdini, L.: Ric. Sci. 36 (1966) 246. Merisov, B.A., Khotkevich, V.I., Karnus, A.I.: Fiz. Met. Metalloved. 22 (1966) 308; Phys. Met. Metallogr. (English Transl.) 22 (1966) 163. Jewett, D., Makrides, A.C.: Tyco Lab. Rep.; U.S. Dept. Comm. Clearinghouse, Fed. Sci. Techn. Info. No. N67-30359,

67s 692 70H

1967.

Stalinski, B., Zogal, O.J.: Colloq. Int. C.N.R.S. 157 (1967) 483. Ziichner, H., Wicke, E.: Z. Phys. Chem. NE 67 (1969) 154. Holleck, G.L.: J. Phys. Chem. 74 (1970) 1957. Kidson

Landolt-Btimstein New Series Ill/26

9.5 References for 9 (Ta) *7os 7lC 71H 71M 71s 72B 72Cl 72C2 72Gl 7262 7263 72H 72K 72V 72W 7221 7222 73Bl 73B2 73c 73Gl 7302 73Hl 73H2 73K 73R 74K 74Ml 74M2 74R 74T 742 75A 7511 7512 75K 75M 75v 76Bl 76B2 76C 76Hl 76H2 76W 77E 77H

561

Schaumann, G., Viilkl, J., Alefeld, G.: Phys. Status Solidi 42 (1970) 401. Cantelli, R., Mazzolai, EM., Nuovo, M.: J. Phys. (Paris) 32, Suppl. 7 (1971) C2:59. Herold, A., Mar&he, J.F., Rat, R.C.: C. R. Acad. Sci. C273 (1971) 1736. Merisov, B.A., Serdyuk, A.D., Falco, I.I., Khadzhay, G.Ya., Khotkevich, V. I.: Fiz. Met. Metalloved. 32 (1971) 604. Sicking, G., Buchold, H.: Z. Naturforsch. A26A (1971) 1973. Birnbaum, H.K., Wert, CA.: Ber. Bunsenges. Phys. Chem. 76 (1972) 806. Cantelli, R., Mazzolai, FM., Nuovo, M.: Hydrogen in Metals. (Int. Conf., Jiilich 1972) JUL-Conf-6 II (1972) 770. Cotts, R.M.: Ber. Bunsenges. Phys. Chem. 76 (1972) 760. Gissler, W: Ber. Bunsenges. Phys. Chem. 76 (1972) 770. de Graaf, L.A., Rush, J.J.,Flotow, H.E., Rowe, J.M.: J. Chem. Phys. 56 (1972) 4574. de Graaf, L.A., Rush, J.J.,Flotow, H.E., Rowe, J.M.: Hydrogen in Metals (Int. Conf., Jiilich 1972) JUL-Conf-6 I (1972) 301. Hanada, R., Suganuma, T., Kimura, H.: Ser. Metall. 6 (1972) 483. Kisch, D. et al: Hydrogen in Metals (Int. Conf., Ji.ilich 1972) JUL-Conf-6 II (1972) 400. Volkl, J.: Ber. Bunsenges. Phys. Chem. 76 (1972) 797. Wicke, E., Obermann, A.: Z. Phys. Chem. NF 77 (1972) 163. Ztichner, H.: Z. Phys. Chem. NF 82 (1972) 240. Ziichner, H., Boes, N.: Ber. Bunsenges. Phys. Chem. 76 (1972) 783. Boes, N., Zfichner, H.: Phys. Status Solidi 17A (1973) K 111. Boes, N., Westerboer, U., Ztichner, H.: Ber Bunsenges. Phys. Chem. 77 (1973) 708. Cantelli, R., Mazzolai, EM., Nuovo, M.: Appl. Phys. 1 (1973) 27. Garcia, E.A.: L’Hydrogene dans les Metaux (Congr. Intl., Paris 1972) Editions Scienceet Industrie 1(1973) 238. Guil, J.M., Hayward, D.O., Taylor, N.: Proc. R. Sot. A335 (1973) 141. Hanada, R.: Ser. Metall. 7 (1973) 681. Herold, A., Rat, J.C.: L’Hydrogene dans les MCtaux (Congr. Intl., Paris 1972) Editions Science et Industrie 1 (1973) 49. Katlinskii, V.M., Kotlik, L.L.: Metody Issled. Opred. Gazov Met. (Leningrad 1973) Petrov, A.A., Ivanova, T.F., Vitol, E.N. (eds.), 1973, p. 31. Rush, J.J., Livingston, R.C., de Graaf, L.A. Flotow, H.E., Rowe, J.M.: J. Chem Phys. 59 (1973) 6570. Kutner, R., Sosnowska, I: Acta Phys. Pol. A46 (1974) 755. Merisov, B.A., Khadzhai, G.Ya., Khotkevich, V.I.: Fiz. Met. Metalloved. 37 (1974) 1090; Met. Metallogr. (English Transl.) 37 (1974) 178. Miinzing, W!, Viilkl, J., Wipf, H., Alefeld, G.: Ser. Metall. 8 (1974) 1327. Rowe, J.M., Rush, J.J.,Flotow, H.E.: Phys. Rev. B9 (1974) 5039. Tretchowski, J.: Rep. JUL-1049FF, 1974. Ziichner, H., Boes, N.: Z. Phys. Chem. 93 (1974) 65. Alefeld, B., Kehr, K.W., Springer, T., Lottner, V., Heim, A., Wakabayashi, N.: Fiz. Nizk. Temp. 1 (1975) 638. Iijima, Y, Hirano, K.: Bull. Jpn. Inst. Met. 14 (1975) 599. Ivashina, Yu.K., Nemchenko, V.F., Charnetskii, V.G.: Fiz. Met. Metalloved. 40 (1975) 343; Phys. Met. Metallogr. (English Transl.) 40 (1975) 97. Kehr, K.W.: Rep. JUL-1211. KFA Jtilich, 1975, p. 149. Merisov, B.A., Khadzhai, G.Ya., Khotkevich, V.I.: Fiz. Met. Metalloved. 39 (1975) 324. Viilkl, J., Alefeld, G.: Diffusion in Solids; Recent Developments. Nowick, A.S., Burton, J.J. (eds.) New York: Academic Press, 1975, p. 231. Boes, N., Ziichner, H.: Z. Naturforsch. 31 A (1976) 754. Boes, N., Ziichner, H.: Z. Naturforsch. 31 A (1976) 760. Cantelli, R.: Metall. Ital. 68 (1976) 361. Hanada, R.: Effect of Hydrogen on Behavior of Materials (Proc. Int. Conf., Jackson Lake Lodge, Wyoming 1975) Thompson, A.W., Bernstein, I.M. (eds.), New York: AIME, 1976, p. 676. Heidemann, A., Kaindl, G., Salomon, D., Wipf, H., Wortmann, G.: Phys. Rev. Lett. 36 (1976) 213. Wipf, H.: J. Less-Common Met. 49 (1976) 291. Eguchi, T., Morozumi, S.: J. Jpn. Inst. Met. 41 (1977) 795. Hanada, R.: Ser. Metall. 11 (1977) 843.

Land&Bhstein New Series III/26

Kidson

562 171 r7K 17M 17V 172 18Bl 18B2 18L 18M 78Sl 78S2 78V 79E 79H 79L 79M 790 c79v 30H 30K

32Q ‘83Q Y3W 54F B5P BST BSW

B7P MO: 60H 61L 64M 65M 66J 67G 68F 68G 68V 7121 7122 720 73P 732 74G 74M 1 74M2 74s

9.5 References for 9 (Ta, MO) Ivashina, YuK., Nemchenko, V.F., Nemchenko, A.V.: Fiz. Met. Metalloved. 44 (1977) 212; Phys. Met. Metallogr. (English Transl.) 44 (1977) 189. Kokkinidis, M.: Dipl. Thesis, Tech. Univ. Miinchen, FRG, 1977. Mar&he, J.F., Rat, J.C., H&old, A.: Hydrogen in Metals, (2nd Int. Congr., Paris, 1977), Oxford: Pergamon Press, 3 (1977) 1 B 8. Volkl, J. et al.: International Friction and Ultrasonic Attenuation in Solids (Proc. 6th Int. Conf., Tokyo, 1977) Hasiguti, R.R., Mikoshiba, N. (eds.), Tokyo: Univ. Tokyo Press, 1977, p. 485. Zeilinger, A., Pochman, W.A.: J. Phys. F 7 (1977) 575. Bauer, H.C. et al.: Z. Physik B29 (1978) 17. Boes, N., Wicke, E.: Ber. Bunsenges.Phys. Chem 82 (1978) 356. Lottner, V., et al.: (Proc. Symp., Vienna 1977) Vienna: IAEA 2 (1978) 339. Merisov, B.A., Khadzhai, G.Ya., Khotkevich, V.I.: Fiz. Met. Metalloved. 45 (1978) 440; Phys. Met. Metallogr. (English Transl.) 45 (1978) 187. Skold, K.: Hydrogen in Metals I, Alefeld, G., Volkl, J. (eds.), Topics in Applied Physics 28 (1978) 267. Stoneham, A.M.: J. Nucl. Mater. 69-70 (1978) 109. Viilkl, J., Alefeld, G.: Hydrogen in Metals I, Alefeld, G., Volkl, J. (eds.), Topics in Applied Physics 28 (1978) 321. Engelhard, J.: J. Phys. F 9 (1979) 2217. Hornung, P.A., Khan, A.D., Torgeson, D.R., Barnes, R.G.: Z. Phys. Chem. NF 116(1979) 77. Lottner, V., Heim, A., Springer, T.: Z. Physik B32 (1979) 157. Merisov, B.A., Khadzhai, G.Ya., Khotkevich, V.I.: Fiz. Met. Metalloved. 39 (1979) 324; Phys. Met. Metallogr. (English Transl.) 39 (1979) 88. Orth, H., Diiring, K.P., Gladisch, M., Herlach, D., Maysenhiilder, W., Metz, H., Putlitz, G. zu, Seeger,A., Vetter, J., Wahl, W., Wigand, M., Yagi, E.: Z. Phys. Chem. NF 116 (1979) 241. Volkl, J., Alefeld, G.: Z. Phys. Chem. NF 114 (1979) 123. Hanada, R.: Hydrogen in Metals (Jpn. Inst. Met., Sendai), 1980, p. 185. Koiwa, M., Ishioka, S.: Solid State Commun. 35 (1980) 729. Qi, Zh., Volkl, J., Wipf, H.: Ser. Met. 16 (1982) 859. Qi, Zh., Volkl, J., Lasser, R., Wenzl, H.: J. Phys. F 13 (1983) 2053. Wipf, H.: DIMET-82 (Proc. Int. Conf., Tihany, Hungary, 1982) Kedves, F.J., Beke, D.L. (eds.), Diffusion and Defect Monogr. 7 (1983) 209. Fukai, Y: Jpn. J. Appl. Phys. 23 (1984) L596. Peichl, R., Weidinger, A., Ziegler, P.: Z. Phys. Chem. NF 143 (1985) 197. Teichler, H., Klamt, A.: Phys. Lett. 108A (1985) 281. Weiser, M., Kalbitzer, S.: Z. Phys. Chem. NF 143 (1985) 183. Peichl, R., Zeigler, P., Weidinger, A.: J. Less-Common Met. 129 (1987) 243. Hill, M.L.: J. Metals 12 (1960) 725. Lawley, A., Liebman, N., Maddin, R.: Acta Metall. 9 (1961) 841. Moore, G.E., Unterwald, EC.: J. Chem. Phys. 40 (1964) 2639. McNeil, M.B.: J. Appl. Phys. 36 (1965) 2382. Jones, P.M.S., Gibson, R., Evans, J.A.: Rep. AWRE 16166, 1966. Gibala, R., Wert, C.A.: Rpt. COO-1673-3, 1967. Frauenfelder, R.: J. Chem, Phys. 48 (1968) 3955. Gol’tsov, V.A., Gel’d, P.V., Vykhodets, V.B.: Phys. Met. Metallogr. 26 (1968) 144. Vykhodets, V.B., Gol’tsov, V.A., Gel’d, P.V.: Phys. Met. Metallogr. 25 (1968) 133. Zakharov, A.P., Sharapov, V.M.: Fiz. Khim. Mekh. Mater. 7 (1971) 54. Zakharov, A.P., Sharapov, V.M.: Fiz. Khim. Probl. Krist. 2 (1971) 194. Oates, W.A., McLellan, R.B.: Ser. Metall. 6 (1972) 349. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. Zhakarov, A.P., Sharapov, V.M., Evko, EL: Fiz.-Khim. Mekh. Mater. 9 (1973) 29; Sov. Mater. Sci. (English Transl.) 9 (1973) 149. Guthrie, J.W.et al.: J. Nucl. Mater. 53 (1974) 313. Maksumov, T.M., Petushkov, E.E.: Dokl. Akad. Nauk Uzb. SSR 31 (9) (1974) 32. Maksumov, T.M., Petushkov, E.E.: Dokl. Akad. Nauk Uzb. SSR 31 (10) (1974) 24. Sharapov, V.M., Zhakharov, A.P.: Vzaimodeistvie At. Chastits Tverd. Telom. (Dokl. Vses. Konf., 3rd, 1974). Chevepin, V.T. (ed.), Kiev: Naukova Dumka 2 (1974) 155. Kidson

Iandolt-Btimrtcin New Series Ill/26

9.5 References for 9 (MO, W, Fe) 7X 75Sl 75S2 7533 76s 77s 78Kl 78K2 78M 78Sl 7882 79K 792 *82K w: 57G 60H 62M 64M 64R 67A 68F *69F 73B 73P 732 78M 79K 79P 80D *82D 84M 84W 85T Fe: 20R 24E 27B 35s 40B 47s 50G 52C 54D 55J 56s 57B

563

Caskey, G.R., Louthan, M.R., Derrick, R.G.: J. Nucl. Mater. 55 (1975) 279. Sakamoto, K.: Bull. Jpn. Inst. Met. 14 (1975) 333. Sharapov, V.M., Zhakarov, A.P., Matveev, V.V.: Zhur. Tekh. Fiz. 45 (1975) 2002; Sov. Phys. Tech. Phys. (English Transl.) 20 (1975) 1262. Skrinichenko, T.M., Klibanov, E.L., Kashin, V.I.: Fiz. Khim. Obrabot. Mater. 1 (1975) 40. Sharapov, V.M., Zhakarov, A.P.: Zhur. Tekh. Fiz. 46 (1976) 611; Sov. Phys. Tech. Phys. (English Transl.), 21 (1976) 351. Sharapov, V.M., Zhakarov, A.P.: Hydrogen in Metals. (2nd Int. Congr., Paris 1977), Oxford: Pergamon Press, 3 (1977) lB12. Katlinskii, V.M.: Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 1667; Inorg. Mater. (English Transl.) 14 (1978) 1299. Katlinskii, V.M., Kotlik, L.L.: Izv. Akad. Nauk SSSR, Met. 1978, p. 80; Russ. Metall. (English Transl.) 1978, p. 65. Mazaev, A.A., Avarbe, R.G.: Khimiya i Tekhnol. Neorg. Ftorsoedinenii, Tugoplavk., Lyuminestsentn. Mater. Komp. SOZH, 1978, p. 51. Sharapov. V.M., Zhakarov, A.P.: Zh. Tekh. Fiz. 48 (1978) 1213. Shaw, MS., Lane, N.F.: J. Nucl. Mater. 69-70 (1978) 576. Katlinskii, V.M.: Fiz. Khim. Svoistva Splavov Reniya, M., 1979, p. 138. Zhakarov, A.P., Gorodetsky, A.E., Sharapov, V.M.: Z. Phys. Chem. NF 117 (1979) 245. Katsuta, H., McLellan, R.B., Furukawa, K.: J. Phys. Chem. Solids 43 (1982) 533. Gomer, R., Wortman, R., Lundy, R.: J. Chem. Phys. 26 (1957) 1147. Hickmott, T.W.: J. Chem. Phys. 32 (1960) 810. Mallett, M.W, Koehl, B.G.: J. Electrochem. Sot. 109 (1962) 968. Moore, G.E., Unterwald, EC.: J. Chem. Phys. 40 (1964) 2639. Ryabchikov, L.N.: Ukr. Fiz. Zh. 9 (1964) 293. Aitken, E.A., Brassfield, H.C., Conn, P.K., Duderstadt, E.C., Fryxell, R.E.: Trans. Metall. Sot. AIME 239 (1967) 1565. Frauenfelder, R.: J. Chem. Phys. 48 (1968) 3955. Frauenfelder, R.: J. Vat. Sci. Technol. 6 (1969) 388. Birnbaum, H.F.: Ser. Metall. 7 (1973) 925. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. Zhakarov, A.P., Sharapov, V.M., Evko, EL: Fiz. Khim. Mekh. Mater. 9 (1973) 29; Sov. Mater. Sci. (English Transl.) 9 (1973) 149. Mazaev, A.A., Avarbe, R.G.: Khimiya Tekhnol. Neorg. Ftorsoedinenii, Tugoplavk., Lyuminestsentn. Mater. Komp. SOZH, 1978, p. 51. Katlinskii, V.M.: Fiz. Khim. Svoistva, Splavov Reniya. M. 1979, p. 138. Polizotti, RX, Erlich, G.: J. Chem. Phys. 71 (1979) 259. Di Foggio, R., Gomer, R.: Phys. Rev. Lett. 44 (1980) 1258. Di Foggio, R., Gomer, R.: Phys. Rev. B25 (1982) 3490. Macrander, A., Seidman, D.N.: J. Appl. Phys. 56 (1984) 1623. Wang, S.C., Gomer, R.: Surf. Sci. 141 (1984) L 304. Tringides, M., Gomer, R.: Surf. Sci. 155 (1985) 254. Ryder: Electronics 17 (1920) 161. Edwards: J. Iron Steel Inst. 60 (1924) 9. Borelius, Lindblom: Ann. Phys. 82 (1927) 201. Smithells, Ransley: Proc. R. Sot. 150A (1935)172. Barrer, R.M.: Trans. Faraday Sot. 36 (1940) 1235. Sykes, C., Burton, H.H., Gegg, C.C.: J. Iron Steel Inst. 156 (1947) 155. Geller, W., Sun., T.H.: Arch. Eisenhiittenwes. 21 (1950) 423. Chang, P.L., Bennett, W.D.G.: J. Iron Steel Inst. 170 (1952) 205. Demarez, A., Hock, G., Meuner, EA.: Acta Metall. 2 (1954) 214. Johnson, E.W., Hill, M.: Acta Metall. 3 (1955) 99. Stross, T.M., Tompkins, EC.: J. Chem. Sot. 159 (1956) 230. Baranowski, B., Smialowski, M., Szklarska-Smialowski, Z.: Bull. Acad. Pol. Sci. Ser. Sci. Chim. 5 (1957) 191.

Land&-Btirnstein New Series III/26

Kidson

564 57s 58B 58E 58F 58H 58R 582 59s 60C 605 61L 61P 61R 63B 63D 64D 64w 65K 65M 65s 66B 66C 66H 66s 66W 67B 67C 67Gl 6762 67L 67R 680 68W 69El 69E2 69G 69J 70B 7oc 70Dl 70D2 700 70R 1 70R2 70s 7OW 71c 71D 7IM 71s 72Bl 72B2 72C 72D 72E 72G

9.5 References for 9 (Fe) Shuetz, A.E., Robertson, W.D.: Corros. 13 (1957) 437 t. Bastien, P., Amiot, P.: Rev. Metall. 55 (1958) 24. Eichenauer, W., Kiinzig, H., Pebler, A.: Z. Metallkd. 49 (1958) 220. Frank, R.C., Swets, D.E., Fry, D.L.: J. Appl. Phys. 29 (1958) 892. Hobson, J.D.: J. Iron Steel Inst. 189 (1958) 315. Raczinski, W.: Arch. Hutn. 3 (1958) 59. Zitter, H., Krainer, H.: Arch. Eisenhiittenwes. 29 (1958) 401. Schenck, H., Taxhet, H.: Arch. Eisenhiittenwes. 30 (1959) 661. Carmichael, D.C.,Hornaday, J.R.,Morris, A.E.,Parlee,N.A.:Trans. Metall. Sot. AIME218 (1960)826. Johnson, E.W., Hill, M.L.: Trans. Metall. Sot. AIME 218 (1960) 1104. Lee, R.W., Swets, D.E., Frank, R.C.: Mem. Sci. Rev. Metall. 58 (1961) 36. Palczewska, W., Ratajczyk: Bull. Acad. Pol. Sci. Ser. Sci. Chim. 9 (1961) 267. Raczinski, W, Stelmach, S.: Bull. Acad. Pol. Sci. Ser. Sci. Chim. 9 (1961) 633. Bryan, W.L., Dodge, B.F.: Am. Inst. Chem. Eng. J. 9 (1963) 223. Devanathan, M.A.V., Stachurski, Z., Beck, W.: J. Electrochem. Sot. 110 (1963) 886. Devanathan, M.A.V., Stachurski, Z.: J. Electrochem. Sot. 111 (1964) 619. Wagner, R., Sizmann, R.: Z. Angew. Phys. 18 (1964) 193. Kuznietsov, V.V., Subbotina, N.I.: Electrokhimiya 1 (1965) 1096. McBreen, J.: Thesis, Univ. Pennsylvania, USA, 1965. Schwarz, W., Zitter, H.: Arch. Eisenhiittenwes. 36 (1965) 343. Beck, W., Bockris, J.O’M., McBreen, J., Nanis, L.: Proc. R. Sot. Ser. A290 (1966) 220. Coe, F.R., Moreton, J.: J. Iron Steel Inst. 204 (1966) 366. Heumann, T., Primas, D.: Z. Naturforsch. 21 A (1966) 260. Schenk, H., Lange, K.W.: Arch. Eisenhlttenwes. 37 (1966) 809. Wach, S., Miodownik, A.P., Macowiak, J.: Corrs. Sci. 6 (1966) 271. Boniczewski, T., Moreton, J.: Br. Weld. J. 1967, p. 321. Coe, F.R., Moreton, J.: Br. Weld. J. 1967, p. 313. Gibala, R.: Trans. Metall. Sot. AIME 239 (1967) 1574. Gonzalez, O.D.: Trans. Metall. Sot. AIME 239 (1967) 929. Lord, A.E.: Acta Metall. 15 (1967) 1241. Radhakrishnan, T.P., Shrier, L.L.: Electrochim. Acta 12 (1967) 889. Ono, K., Rosales, L.A.: Trans. Metall. Sot. AIME 242 (1968) 244. Wach, S., Miodownik, A.P.: Corros. Sci. 8 (1968) 271. Erdmann-Jesnitzer, F., Hieber, H.: Arch. Eisenhiittenwes. 40 (1969) 73. Evans, G.M. Rollason, E.C.: J. Iron Steel Inst. 207 (1969) 1484. Gonzalez, O.D.: Trans. Metall. Sot. AIME 245 (1969) 607. Jesnitzer, F.E., Hieber, H.: Arch. Eisenhiittenwes. 40 (1969) 73. Bockris, J. O’M., Genshaw, M.A., Fullenwider, M.: Electrochim. Acta 15 (1970) 47. Choi, J.Y.: Metall. Trans. 1 (1970) 911. Dillard, J.L.: Mem. Sci. Rev. Metall. 67 (1970) 767. Dillard, J.L.: C. R. Acad. Sci. C270 (1970) 669. Oriani, R.A.: Acta Metall. 18 (1970) 147. Raczinsky, W., Talbot-Besnard, S.: C. R. Acad. Sci. C270 (1970) 602. Reiermann, B.K.: Dissertation. Tech. Univ. Berlin D83 GDR, 1970. Salii, V.I., Gel’d, P.V., Ryabov, R.A.: Fiz. Khim. Mekh. Mater. 6 (1970) 96; Sov. Mater. Sci. (English Transl.) 6 (1970) 620. Wach, S., Miodownik, A.P.: Trans. Faraday Sot. 66 (1970) 2334. Chew, B.: Met. Sci. J. 5 (1971) 195. Domke, E.: Dissertation, Univ. Miinster, FRG, 1971. Maas, N.: Thesis, Univ. Miinster FRG, 1971. Subramanyan, P.K.: Thesis, Univ. Pennsylvania, USA, 1971. Bester, H., Lange, W.: Arch. Eisenhiittenwes. 43 (1972) 207. Bester, H., Lange, K.W.: Arch. Eisenhiittenwes. 43 (1972) 283. Cornet, M., Talbot-Besnard, S.: Corros. Trait. Prot. Finition 20 (1972) 523. Dresler, W., Froberg, M.G.: Hydrogen in Metals (Int. Conf., Jiilich 1972) JUL-Conf-6 2 (1972) 826. von Ellerbrock, H.G., Vibrans, G., Stiiwe, H.P.: Acta Metall. 20 (1972) 53. Gel’d, P.V., Ryabov, R.A., Salii, V.I.: L’Hydrogene dans les Metaux (Cong. Int., Paris 1972) Editions Science et Industrie 1 (1973) 167. Landok-BBmstcin New Series III!26

9.5 References for 9 (Fe) 72H 73A 73B 73c 73Dl 73D2 73D3 73G 73H 73K 73M 73Nl 73N2 73P 73Sl 7332 7333 7384 74Al 74A2 74A3 74D 74G 74Kl 74K2 74Sl 74S2 74s3 74v 74Y 75Al 75A2 751 75Kl 75K2 75M 75Sl 7582 7533 75v 76B 76F 76J 76K

565

Heumann, Th., Domke, E.: Hydrogen in Metals (Int. Conf., Jiilich 1972) JUL-Conf-6 II (1972) 492. Asano, S., Fujishima, Y, Ohtani, N.: J. Jpn. Inst. Met. 37 (1973) 301. Bouraoui, R., Cornet, M., Talbot-Bresnard, S.: C. R. Acad. Sci. C277 (1973) 231. Conophagos, E. et al.: L’Hydrogene dans les Metaux (Congr. Int., Paris 1972) Editions Science et Industrie 1 (1973) 97. Demin, V.B., Vykhodets, V.B., Gel’d, P.V.: Phys. Met. Metallogr. 35 (1973) 84. Dillard, J.L., Talbot-Besnard, S.: L’Hydrogene dans les Metaux (Congr. Int., Paris 1972) Editions Science et Industrie 1 (1973) 159. Dresler, W., Froberg, M.G.: J. Iron Steel Inst. 211 (1973) 298. Govindan Namboodhiri, T.K., Nanis, L.: Acta Metall. 21 (1973) 663. Hirano, K., Iijama, Y, Matsuyama, T.: J. Iron Steel Inst. Jpn. 59 (1973) A149. Krishtal, M.A., Snezhnoi, R.L.: Diffuz. Protsessy Met., 1973, p. 91. Mindyuk, A.K., Svist, E.I.: Fiz. Khim. Mekh. Mater. 9 (1973) 36; Sov. Mater. Sci. (English Transl.) 9 (1973) 34. Nanis, L., Namboodhiri, T.K.G.: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron BaseAlloys. (Proc. Conf., Unieux-Firminy, France 1973) Houston, Texas: Nat. Asoc. Corros. Eng., 1977, p. 432. Nelson, H.G., Stein, J.E.: Rep. NASA TN D-7265, 1973. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. Sakamoto, K.: J. Iron Steel Inst. Jpn. 59 (1973) A153. Sidorenko, V.M., Sidorak, 1.1.: Fiz. Khim. Mekh. Mater. 9 (1973) 52; Sov. Mater. Sci. (English Transl.) 9 (1973) 50. Sidorenko, V.M., Sidorak, 1.1.: Fiz. Khim. Mekh. Mater. 9 (1973) 12; Sov. Mater. Sci. (English Transl.) 9 (1973) 372. Sidorenko, V.M., Kachmar, B.F., Borisova, N.S.: Fiz. Khim. Mekh. Mater. 9 (1973) 14; Sov. Mater. Sci. (English Transl.) 9 (1973) 500. Allen-Booth, D.M., Hewiit, J.: Acta Metall. 22 (1974) 171. Allen-Booth, D.M., Hewitt, J.: Ser. Metall. 8 (1974) 769. Asano, S., Hara, K., Nakai, Y, Ohtani, N.: J. Jpn. Inst. Met. 38 (1974) 626. Danauskas, A.V., Matulis, Yu.Yu., Bubyalis, Yu.S.: Liet. TSR Mokslu Akad. Darb., B2 (1974) 43. Gol’tsov, V.A., Podolinskaya, T.A.: Fiz. Khim. Mekh. Mater. 10 (1974) 8; Sov. Mater. Sci. (English Transl.) 10 (1974) 607. Kass, W.J.: Ser. Metall. 8 (1974) 763. Kumnick, A.J., Johnson, H.H.: Metall. Trans. 5 (1974) 1199. Safonov, V.L., Chene, J., Galland, J., Azou, P., Bastien, P.: C. R. Acad. Sci. C 278 (1974) 445. Salii, V.I., Ryabov, R.A.: Fiz. Khim. Mekh. Mater. 10 (1974) 45; Sov. Mater. Sci. (English Transl.) 10 (1974) 522. Sidorenko, V.M., Sidorak, 1.1.:Navod. Metall. Elektro-Khim. Prots., 1974, p. 27. Volkov, V.E. et al.: Fiz. Met. Ikh. Soedin 2 (1974) 3. Yoshizawa, S., Yamawaka, K.: Met. Corros. (Proc. 5th Int. Congr. 1972) Sato, N. (ed.), Houston, Texas: Nat. Assoc. Chem. Eng. 1974, p. 421. Alefeld, G., Wipf, H.: Fiz. Nizk. Temp. 1 (1975) 660; Sov. S. Low Temp. Phys. 1 (1975) 317. Allen-Booth, D.M., Atkinson, S., Bilby, B.A.: Acta Metall. 23 (1975) 371. Iijama, Y, Hirano, K.: Bull. Jpn. Inst. Met. 14 (1975) 599. Konig, H.J., Lange, K.W.: Arch. Eisenhtittenwes. 46 (1975) 237. Kiinig, H.J., Lange, K.W.: Arch. Eisenhtittenwes. 46 (1975) 269. Miller, RF, Hudson, J.B., Ansell, G.S.: Metall. Trans. A 6A (1975) 117. Sakamoto, K.: Bull. Jpn. Inst. Met. 14 (1975) 333. Shretsov, N.I., Levenchenko, V.P., Ryabov, R.A.: Metalloved. Term. Obrab. Met. 3 (1975) 50; Met. Sci. Heat Treat. (English Transl.) 17 (1975) 235. Sidorenko, V.M., Sidorak, I.I., Parkheta, R.G.: Fiz. Khim. Mekh. Mater. II (1975) 28; Sov. Mater. Sci. (English Transl.) II (1975) 642. Volkl, J., Alefeld, G.: Diffusion in Solids, Recent Development. Nowick, A.S., Burton, J.J.(eds.),New York: Acad. Press, 1975, p. 231. Bester, H., Lange, K.W: Arch. Eisenhiittenwes. 47 (1976) 333. Friedrich, K., Kusch, H.G.: Neue Hi.itte 21 (1976) 688. Jerome, M.: Colloqu. Metal1 (Diffus. Milieux Condens. Theor. Appl. 2), 19 (1976) 627. Kufudakis, A., Raczynski, W.: Czech. J. Phys. B26 (1976) 1360.

Land&-Biirnstein New Series III/26

566

9.5 References for 9 (Fe, Co, Ni)

80H 80K 81Y 82N +83K 83R 85H 85T 86T 87H

Louthan, M.R., et al.: Effect of Hydrogen on the Behavior of Materials (Proc. Int. Conf., Jackson Lake Lodge 1975) Thompson, A.W., Bernstein, I.M. (eds.), New York: AIME, 1976, p. 337. Quick, N.R.: Thesis. Cornell Univ., Univ. Microfilms, Mich.: Ann Arbor, No. 76-18, (1976) 191. Rieke, E.M.: Arch. Eisenhiittenwes. 47 (1976) 247. Rieke, E.M.: Reactivity of Solids (8th Int. Symp., Gothenburg, Sweden 1976), Gothenburg: Chalmers Univ of Technology, 1976, p. 298. da Silva, J.R.G.: Rpt. INIS-mf-4733, 1976. Volkov, V.E., et al.: Izv. V.U.Z. Fiz. 19 (1976) 18; Sov. Phys. J. (English Transl.) 19 (1976) 1399. Wipf, H.: J. Less-Common Met. 49 (1976) 291. Chene, J.: Met. Corros.-Ind. 52 No. 622 (1977) 203. Chene, J.: Met. Corros.-Ind. 52 No. 623-4 (1977) 262. Chene, J.: Met. Corros.-Ind. 52 No. 625 (1977) 291. Chene, J.: Met. Corros-Ind. 52 No. 626 (1977) 343. Chene, J. Galland, J., Azou, P.: Hydrogen in Metals (2nd Int. Congr., Paris 1977),Oxford: Pergamon Press 1 (1977) No. 1 A3. Kumnick, A.J., Johnson, H.H.: Acta Metall. 25 (1977) 891. Rieke, E.M.: Hydrogen in Metals (2nd Int. Congr., Paris 1977),Oxford Pergamon Press,5 (1977)No. 2 B8. Safonov, et al.: Izv. Akad. Nauk SSSR, Met. 3 (1977) 76; Russ. Metall. (English Transl.) 3 (1977) 62. Yamakawa, K., Tada, M., Fujita, F.E.: J. Phys. Sot. Jpn. 43 (1977) 102. Birnbaum, H.K., Au, J.J.:Acta Metall. 26 (1978) 1105. Katlinskii, V.M.: Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 1667; Inorg. Mater. (English Transl.) 14 (1978) 1299. Quick, N.R., Johnson, H.H.: Acta Metall. 26 (1978) 903. Raczynski, W.: Phys. Status Solidi 48A (1978) K27. Rieke, E.: Arch. Eisenhiittenwes. 49 (1978) 509. Sabirzyanov, A.V. et al.: Fiz. Svoistva Met. i Splavov 2 (1978) 49. Shaw, M.S., Lane, N.F.: J. Nucl. Mater. 69-70 (1978) 576. Volkl, J., Alefeld, G.: Hydrogen in Metals I, Alefeld, G., Volkl, J. (eds.), Topics in Appl. Phys. 28 (1978) 321. Domke, E.: Dissertation, Univ. of Miinster, FRG, 1979. Hagi. H., Hayashi, Y., Ohtani, N.: Trans. Jpn. Inst. Met. 20 (1979) 349. Masui, K., Yoshida, H., Watanabe, R.: Trans. Iron Steel Inst. Jpn. 19 (1979) 547. Waelbroeck, F., Ali-Khan, I., Dietz, K.S., Wienhold, P.: J. Nucl. Mater. 85-86 (1979) 345. Hayashi, Y., Nagano, M., Ohtani, N.: J. Jpn. Inst. Met. 44 (1980) 48. Kumnick, A.J., Johnson, H.H.: Acta Metall. 28 (1980) 33. Yamakawa, K., Tsuruta, T., Yoshizawa, S.: Boshuko Gijutso 30 (1981) 501. Nagano,M., Hayashi, Y, Ohtani, N.: Ser. Metall. 16 (1982) 973. Kiuchi, K., McLellan, R.B.: Acta Metall. 31 (1983) 961. Raczynski, W.: Hydrogen in Metals (Int. Conf., Wroclaw, Poland), 1983. Hinotani, S., Ohmori, Y.: Trans. Jpn. Inst. Met. 26 (1985) 622. Tahara. A., Hayashi, Y.: Trans Jpn. Inst. Met. 26 (1985) 869. Tanabe, T., Sawada, K., Imoto, S.: Trans. Jpn. Inst. Met. 27(1986) 321. Hagi, H., Hayashi, Y: Nippon Kinzoku Gakkaishi 51 (1987) 591.

co: 66s 72D 72K 74c 76L 82H 85S

Schenck, H., Lange, K.W.: Arch. Eisenhtittenwes. 37 (1966) 809. Dander, W., Kronmueller, H.: Ber. Kernforschungsanlage Jiilich No. 6 (1972) 524. Khristova, I., Pangarov, N.: Izv. Otd. Khim. Nauki Bulg. Akad. Nauk 5 (1972) 387. Caskey, G.R., Derrick, R.G., Louthan, M.R.: Ser. Metall. 8 (1974) 481. Louthan, M.R., Caskey, G.R.: Int. J. Hydrogen Energy 1 (1976) 291. Hohler, B., Schreyer, H.: J. Phys. F 12 (1982) 857. Sutter, P., McLellan, R.B.: Ser. Metall. 19 (1985) 879.

Ni: 23L 27B 29H 32H

Lombard, V.: C. R. Acad. Sci. 177 (1923) 116. Borelius, G., Lindblom, J.: Ann. Phys. 82 (1927) 201. Hendricks, B.C., Ralston, R.R.: J. Am. Chem. Sot. 51 (1929) 3278. Ham, W.R.: J. Chem. Phys. l(l932) 476.

76L 76Q 76Rl 76R2 76s 76V 76W 77Cl 77c2 7X3 77c4 77CS 77K 77R 77s 77Y 78A 78K 78Q 78Rl 78R2 78Sl 7832 78V 79D 79H 79M 7911’

Kidson

Land&-B6mstein New Series III,/26

9.5 References for 9 (Ni) 35E 36s 38P 44G 54L 55H 55R 57El 57E2 59G 60E 61B 62M 630 63s 64R 65E 65s 66C 66s 67D 67El 67E2 67E3 67F 670 67s 68C 68E 68V 69C 70B 7oc 70s 71B 71Dl 71D2 71K 71L 72C

567

Euringer, G.: Z. Physik. 96 (1935) 37. Smithells, C.J., Ransley, C.E.: Proc. R. Sot. A 157 (1936) 292. Post, C.B., Ham, WR.: J. Chem. Phys. 26 (1938) 598. Glagley, H.L., Coleman, H.S.: J. Appl. Phy. 15 (1944) 125. Lieser, K.H., Witte, H.: Z. Phys. Chem. 202 (1954) 321. Hill, M.L., Johnson, E.W: Acta Metall. 3 (1955) 566. Ransley, C.E., Talbot, D.E.: Z. Metallkd. 46 (1955) 328. Edwards, A.G.: Brit. J. Appl. Phys. 8 (1957) 406. Eichenauer, W., Pebler, A.: Z. Metallkd. 48 (1957) 373. Grimes, H.H.: Acta Metall. 7 (1959) 782. Eichenauer, W: Mem. Sci. Rev. Metall. 57 (1960) 943. Belyakov, YuI., Ionov, N.I.: Sov. Phys. Tech. Phys. 6 (1961) 146. Marchand, A.: C. R. Acad. Sci. 254 (25) (1962) 4284. Olsen, K.M., Larkin, C.F.: J. Electrochem. Sot., 110 (1963) 86. Szklarska-Smialowski, Z., Smialowski, M.: J. Electrochem. Sot. 110 (1963) 444. Ryabchikov, L.N.: Ukr. Fiz. Zh. 9 (1964) 303. Eichenauer, W, Loser, W., Witte, H.: Z. Metallkd. 56 (1965) 287. Smialowski, M.: J. Electrochem. Sot. 110 (1965) 444. Cermak, J., Kufudakis, A.: Mem. Sci. Rev. Metall. 63 (1966) 767. Schenck, H., Lange, K.W.: Arch. Eisenhiittenwes. 37 (1966) 809. Dus, K., Smialowski, M.: Acta Metall. 15 (1967) 1611. Ebisuzaki, Y., Kass, W.I., O’Keefe, M.: J. Chem. Phys. 46 (1967) 1378. Ebisuzaki, Y, Kass, W.J., O’Keefe, M.: J. Chem. Phys. 46 (1967) 1373. Ebisuzaki, Y, Kass, W.J., O’Keefe, M.: J. Electrochem. Sot. 46 (1967) 1071. Fischer, W.: Z. Naturforsch. 22A (1967) 1581. Oriani, R.A., Gonzalez, O.D.: Trans. Metall. Sot. AIME 239 (1967) 1041. Scherrer, S., Lozes, G., Deviot, B.: C. R. Acad. Sci. B264 (1967) 1499. Cermak, J., Kufudakis, A.: Mem. Sci. Rev. Metall. 65 (1968) 375. Ebisuzaki, Y, O’Keefe, M.: J. Chem. Phys. 48 (1968) 1867. Vykhodets, V.B., Gol’tsov, VA., Gel’d, P.V.: Tr. Ural. Politekh. Inst. 167 (1968) 114. Combette, P., Azou, P.: C. R. Acad. Sci. C268 (1969) 677. Bockris, J.O’M., Genshaw, M.A., Fullenwider, M.: Electrochim. Acta 15 (1970) 47. Combette, P., Azou, P.: Mem. Sci. Rev. Metall. 67 (1970) 17. Sacris, E.M., Parlee, N.A.D.: Metall. Trans. 1 (1970) 3377. Beck, W., Bockris, J.O’M., Genshaw, M.A., Subramanyan, P.K.: Metall. Trans. 2 (1971) 883. Donovan, J.A., Derrick, R.G., Dexter, A.H., Louthan, M.R.: Rep. DPST (NASA) 71-2, 1971. Dresler, W.: Thesis, Tech. Univ. Berlin, FRG, 1971. Katz, L., Guinan, M., Borg, R.J.: Phys. Rev. B4 (1971) 330. Louthan, M.R., Derrick, R.G., Dexter, A.H.: Rep. DPST (NASA) 71-4, 1971. Combette, P., Renard, M., Grilhe, J.: Hydrogen in Metals (Int. Conf. Jiilich 1972) JUL-Conf-6 II (1972) 821. Dresler, W, Frohberg, M.G.: Z. Metallkd. 63 (1972) 204. Khristova, I., Pangarov, N.: Izv. Otd. Khim. Nauki, Bulg. Akad. Nauk 5 (1972) 387. Robertson, WM.: Ber. Bunsenges. Phys. Chem. 76 (1972) 825. Robertson, W.M.: Hydrogen in Metals (Int. Conf., Ji.ilich 1972) JUL-Conf-6 II (1972) 449. Stickney, R.E., Bradley, T.L., Levin, R.L.: Hydrogen in Metals. (Int. Conf., Jiilich 1972)JUL-Conf-6

72D 72K 72Rl 72R2 72Sl

1(1972) 231.

7282 73c 73D 73K 73P 73R 73Sl

Sussman,J.A., Weissman,Y: Hydrogen in Metals (Int. Conf., Jiilich 1972)JUL-Conf-6 II (1972) 821. Combette, P., Grilhe, J.: L’Hydrogene dans les Metaux (Congr. Int., Paris 1972), Editions Scienceet Industrie 1 (1973) 45. Denim, V.B., Vykhodets, V.B., Gel’d, P.V.: Fiz. Met. Metalloved. 35 (1973) 84; Phys. Met. Metallogr. (English Transl.) 35 (1973) 760. Kazakov, D.N., Kunin, L.L., Litvin0va;N.F.: Izv. Akad. Nauk SSSR, Met. 2 (1973) 91; Russ. Metall. (English Transl.) 2 (1973) 62. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. Robertson, W.M.: Z. Metallkd. 64 (1973) 436. Sidorenko, V.M., Sidorak, 1.1.: Fiz. Khim. Mekh. Mater. 9 (1973) 12; Sov. Mater. Sci. (English Transl.) 9 (1973) 372.

Land&-Biimstein New Series III/26

Kidson

568 MB1 74B2 74G 14L 74Sl 14S2 75A 75B 751 75K 75L 75s 75T *75v 76C 76G 76V 76W 76Yl 76Y2 77R 77T 77Yl 77Y2 78K 78Ml 78M2 78M3 78R 78Sl 78S2 78S3 78Vl 78V2 79B 79c 79G 79H 79Kl 79K2 79s 79T 79Y 8OA 80T 8OY

9.5 References for 9 (Ni) Barmin, N.I., Gel’d, P.V., Levchenko, V.P., Masharov, S.I., Ryabov, R.A., Shvetsov, NJ.: Dokl. Akad. Nauk SSSR 215 (1974) 567; Sov. Phys. Dokl. (English Transl.) 19 (1974) 151. Belyakov, YuI., Zvezdin, Yu.I., Kurdyumov, A.A., Nevdakha, G.G.: Zh. Tekh. Fiz. 44 (7) (1974) 1534. Gol’tsov, V.A., Podolinskaya, T.A.: Fiz. Khim. Mekh. Mater. 10 (1974) 8; Sov. Mater. Sci. (English Transl.) 10 (1974) 607. Louthan, M.R., Donovan, J.A., Caskey, G.R.: Ser. Metall. 8 (1974) 643. Shvetsov, N.I., et al.: Fiz. Met. Ikh. Soedin. 1 (1974) 3. Sidorenko, V.M., Sidorak, 1.1.:Navod. Metall. Elektro-Khim. Prots., 1974, p. 27. Alefeld, G., Wipf, H.: Fiz. Zhidk. Temp. l(l975) 660; Low Temp. Phys. (English Transl.) (1975) 317. Belyakov, Yul., et al.: Zh. Tekh. Fiz. 44 (1974) 1534; Sov. Phys. Tech. Phys. (English Transl.) 19 (1975) 956. Iijama. Y, Hirano, K.: Bull. Jpn. Inst. Met. 14 (1975) 599. Kehr, K.W.: Rep. JUL-1211, 1975. Louthan, M.R., Donovan, J.A., Caskey, G.R.: Acta Metall. 23 (1975) 745. Stafford, SW., McLellan, R.B.: Ser. Metall. 9 (1975) 1195. Tada, M., Yamkawa, K., Fujita, F.E.: Ser. Metall. 9 (1975) 743. Volkl, J., Alefeld, G.: Diffusion in Solids, Recent Developments. Nowick, AS., Burton, J.J.(eds.) New York: Acad. Press, 1975, 231. Cermak, J., Kufudakis, A.: J. Less-Common Met. 49 (1976) 309. Gol’tsov, V.A., Latyshev, V.V.: Fiz. Khim. Mekh. Mater. 12 (1976) 28; Sov. Mater. Sci. (English Transl.) 12 (1976) 484. Vykhodets, V.B., Demin, V.B., Gel’d, P.V.: Phys. Status Solidi A34 (1976) 787. Weiner, J.H.: Phys. Rev. B. B 14 (1976) 4741. Yamakawa? K., Tada, M., Fujita, F.E.: Jpn. J. Appl. Phys. 15 (1976) 769. Yamakawa, K., Tada, M., Fujita, F.E.: Ser. Metall. 10 (1976) 405. Renouprez, A., Fouilloux, P., Stockmeyer, R., Conrad, H.M., Goeltz, G.: Ber. Bunsenges. Phys. Chem. 81 (1977) 429. Tanabe, T., Miyata, Y., Imoto, S.: Technol. Rep. Osaka Univ. 27 (1977) 383. Yamakawa, K.: Jpn. J. Appl. Phys. 16 (1977) 1033. Yamakawa, K., Fujita, F.E.: Jpn. J. Appl. Phys. 16 (1977) 1747. Katlinskii, V.M.: Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 1667; Inorg. Mater. (English Transl.) 14 (1978) 1299. Ma&he, J.F., Rat, J.C., Herold, A.: J. Chim. Phys. 75 (1978) 735. Miiller, W., Hufschmidt, M., Pfeiffer, Th.: Nucl. Instrum. Methods 149 (1978) 73. Morrison, H.M., Blackburn, D.A., Chui, K.M.: J. Nucl. Mater. 69-70 (1978) 578. Ragauskas, R.A., Danauskas, A.V., Matulis, Yu.Yu.: Liet TSR Mokslu Akad. Darb. Bl No. 104 (1978) 25. Sakamoto, Y, Miura, A.: J. Jpn. Inst. Met. 42 (1978) 331. Shaw, M.S., Lane, N.F.: J. Nucl. Mater. 69-70 (1978) 576. Stoneham, A.M.: J. Nucl. Mater. 69-70 (1978) 109. Varaksin, A.N., Puzanova, N.M., Volobuev, P.V.: Fiz. Met. Metallov. 46 (1978) 187; Phys. Met. Metallogr. (English Transl.) 46 (1978) 159. Volkl, J., Alefeld, G.: Hydrogen in Metals I. Alefeld, G., Viilkl, J. (eds.), Topics in Appl. Phys. 28 (1978) 321. Baskes, M.I., Melius, C.F.: Z. Phys. Chem. NF 116 (1979) 19. Cermik, J., Kufudakis, A., Redl, V.I.: Z. Phys. Chem. NF 116 (1979) 9. Gardavska, G., Lejcek, P.: Krist. Tech. 14 (1979) 285. Hauck, J.: Hydrogen in Metals (Int. Mtg. Miinster 1979), Preprints 1 (1979) 190. Katlinskii, V.M.: Fiz.-Khim. Svoistva Splavov Reniya, M., 1979, p. 138. Kurkela, M., Latanision, R.M.: Ser. Metall. 13 (1979) 927. Sakamoto, Y., Miura, A.: Nagasaki Daigaku Kogakubu Kenkyu Hokoku 13 (1979) 109. Tada, M., Fujita, F.E.: Hydrogen in Metals (Proc. 2nd JIM Int. Symp., Minakami, Japan 1979) Suppl. to Trans. Jpn. Inst. Met., 1979, p. 169. Yamakawa, K.: J. Phys. Sot. Jpn. 14 (1979) 114. Atrens, A., Mezzanotte, D., Fiore, N.F., Genshaw, M.A.: Corros. Sci. 20 (1980) 673. Telkov, V.I., Andreev, L.A., Malyutina, G.L.: Russ. J. Phys. Chem. 54 (1980) 1573. Yei, W.M., McLellan, R.B.: Acta Metall. 28 (1980) 1437. Kidson

Landoh-BBmstein New Series III/26

9.5 References for 9 (Ni, Pd) 8lH 81M 82H 83H 83L 83T 84C 84F 84L 84T 85C 85M 86H 86T *87M

569

Hohler, B., Kronmiiller, H.: Philos. Mag. A43 (1981) 1189. Meunier, G., Manaud, J.-P., de Valette, M.: J. Less-Common Met. 77 (1981) P47. Hohler, B., Schreyer, H.: J. Phys. F 12 (1982) 857. Hagi, H.: J. Jpn. Inst. Met. 47 (1983) 1029. Latanision, R.M., Kurkela, M.: Corrosion 39 (1983) 174. Tahara, A., Hayashi, Y: J. Jpn. Inst. Met. 47 (1983) 180. Cummings, D.L., Reuben, R.L., Blackburn, D.A.: Metall. Trans. A 15A (1984) 639. Furuya, Y., Hashimoto, E., Kino, T.: Jpn. J. Appl. Phys. 23 (1984) 1190. Lee, K.A., McLellan, R.B.: Ser. Metall. 18 (1984) 859. Tahara, A., Hayashi, Y: J. Jpn. Inst. Met. 48 (1984) 1152. Cermak, J., Gardavska, G., Kufudakis, A., LejEek, P.: Z. Phys. Chem. N.F. 145 (1985) 239. Matusiewicz, G., Duquette, D.J.: Acta Metall. 33 (1985) 1637. Hagi, H.: Trans. Jpn. Inst. Met. 27 (1986) 233. Tanabe, T., Sawada, K., Imoto, S.: Trans. Jpn. Inst. Met. 27 (1986) 321. Mullins, D.R., Roop, B., Costello, S.A., White, J.M.: Surf. Sci. 186 (1987) 67.

Pd:

1866G 28T 35J 40J 54D 54s 58T 60K 62D 63K 64B 64C 64s 64Wl 64W2 65C 65J 65K 65s 66K 66M 67B 67E 67H 67R 67s 68Kl 68K2 69B2 69K 69W 70A 70B 70G 70H 702 7lBl 71B2 7lB3 71s

Graham, F.: Philos. Trans. R. Sot. London 156 (1866) 415. Tamman, G., Schneider, D.: Z. Anorg. Chem. 172 (1928) 43. Jost, W., Widman, A.: Z. Phys. Chem. B29 (1935) 247. Jost, W., Widman, A.: Z. Phys. Chem. B45 (1940) 285. Davis, W.D.: USAEC Rep. KAPL-1227, 1954. Salmon, O.N., Randall, D.: USAEC Rpt. KAPL-984, 1954. Toda, G.: Hokkaido Univ, Res. Inst. Catalysis J. 6 (1958) 13. Katz, O.M., Gulbransen, E.A.: Rev. Sci. Instrum. 31 (1960) 615. Devanathan, M.A.V., Stachurski, Z.: Proc. R. Sot. Ser. A. 270 (1962) 90. Kiissner, A.: Z. Phys. Chem. NF 36 (1963) 383. Bohmbolt, B., Wicke, E.: Z. Phys. Chem. 42 (1964) 115. Castellan, G.W.: J. Electrochem. Sot. 111 (1964) 1273. von Stackelberg, M., Ludwig, P.: Z. Naturforsch. 19A (1964) 93. Wagner, R., Sizmann, R.: Z. Angew. Phys. 18 (1964) 193. Wicke, E., Bohmholdt, G.: Z. Phys. Chem. NE 42 (1964) 115. Charalambus, S., Goebel, K.: Z. Naturforsch. 20A (1965) 1085. Jewett, D.N., Makrides, A.C.: Trans. Faraday Sot. 61 (1965) 932. Kazanskii, V.B., Mardalishvili, R.E., Strunin, VP.: Zh. Fiz.-Khim. 30 (1965) 821. Simons, J.W., Flanagan, T.B.: J. Phys. Chem. 69 (1965) 3581. Kahrig, E., Kirstein, D., Lange, F.: Ber. Bunsenges. Phys. Chem. 70 (1966) 592. Makrides, A.C., Jewett, D.N.: Engelhard Ind. Tech. Bull. 7 (1966) 51. Bohmholdt, G., Wicke, E.: Z. Phys. Chem. NE 56 (1967) 133. Ebisuzaki, Y, Kass, W.J., O’Keefe, M.: Philos. Mag. 15 (1967) 1071. Holleck, G., Wicke, E.: Z. Phys. Chem. NE 56 (1967) 155. Rubin, L.R.: Engelhard Ind. Tech. Bull. 8 (1967) 18. SkBld, K., Nelin, G.: J. Phys. Chem. Sol. 28 (1967) 2369. Knaak, J., Eichenauer, W.: Z. Naturforsch. 23A (1968) 1783. Koffler, S.A., Hudson, J.B., Ansell, G.S.: J. Met. 20 (1968) 53. Bucur, R.: J. Electroanal. Chem. Interfacial Electrochem. 22 (1969) 127. Koffler, S.A., Hudson, J.B., Ansell, G.S.: Trans. Metall. Sot. AIME 245 (1969) 1735. Wicke, E., Meyer, K.: Z. Phys. Chem. 64 (1969) 225. Arons, R.R., Taminga, Y, de Vries, G.: Phys. Status Solidi 40 (1970) 107. Bockris, J.O’M., Genshaw, M.A., Fullenwider, M.: Electrochim. Acta 15 (1970) 47. Gol’tsov, V.A., Demin, V.B., Vykhodets, V.B., Kagan, G.Ye., Gel’d, P.V.: Fiz. Met. Metalloved. 29 (1970) 1305; Phys. Met. Metallogr. (English Transl.) 29 (1970) 195. Holleck, G.L.: J. Phys. Chem. 74 (1970) 503. Ziichner, H.: Z. Naturforsch. 25A (1970) 1490. Boes, N.: Dissertation, Univ. of Miinster, FRG, 1971. Breger, V., Gileadi, E.: Electrochim. Acta 16 (1971) 177. Buchold, H.: Dissertation, Univ. of Miinster, FRG, 1971. Sicking, G., Buchold, H.: Z. Naturforsch. 26A (1971) 1973.

Land&-BBmstein New Series III/26

570 71v 72Bl 72B2 72G 72R 722 73B 73D 73P 73R 73s 74B 74c 751 75M 75P 75s 75T 75v 76Bl 76B2 76D 76K 76M 76V 76W 77H 77K 77M 77s 78B 78E 78H 78K 78L 78M 78Vl *78V2 79B 79Hl 79H2 79K 80Kl 80K2 8lKl 81K2 81Ml 81M2 81s 82s

9.5 References for 9 (Pd) Volkl, J., Wollenweber, G., Klatt, K.H., Alefeld, G.: Z. Naturforsch. 26A (1971) 922. Birnbaum, H.K., Wert, C.A.: Ber. Bunsenges. Phys. Chem. 76 (1972) 806. Buchold, H., Sicking, G.: Hydrogen in Metals (Int. Conf., Jiilich 1972) JUL-Conf-6 Ii (1972) 391. Gol’tsov, V.A., Kagan, G.E.: L’HydrogZne dans les MCtaux (Congr. Int., Paris) 1972, p. 249. Rowe, J.M., Rush, J.J.,de Graaf, L.A., Ferguson, G.A.: Phys. Rev. Lett. 29 (1972) 1250. Ziichner, H., Boes, N.: Ber. Bunsenges. Phys. Chem. 76 (1972) 783. Boes, N., Westerboern, U., Ziichner, H.: Ber. Bunsenges. Phys. Chem. 77 (1973) 708. Demin, V.B., Vykhodets, V.B., Gel’d, P.V.: Fiz. Met. Metalloved. 35 (1973) 760; Phys. Met. Metallogr. (English Transl.) 35 (1973) 84. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. de Ribaupierre, Y, Manchester, ED.: J. Phys. C 6 (1973) L390. Samsonov, G.V.: Dokl. Akad. Nauk SSSR 208 (1973) 621. Balovne, Yu.A.: Zh. Fiz. Khim. 48 (1974) 719; Russ. J. Phys. Chem. (English Transl.) 48 (1974) 409. Carlile, C.J., Ross, D.K.: Sol. State Commun. 15 (1974) 1923. Iijima, Y., Hirano, K.: Bull. Jpn. Inst. Met. 14 (1975) 599. Mar&he, J.F., Rat, J.C., Herold, A.: C. R. Acad. Sci. C281 (1975) 449. Pugachev, V.A. et al: Zh. Fiz. Khim. 49 (1975) 1781; Russ. J. Phys. Chem. (English Transl.) 49 (1975) 1045. Sekine, K.: Chem. Lett. Jpn. 1975, 841. Takeris, S. et al.: Deposited Dot., VINITI 3479-75, 1975, p. 198. Volkl, J., Alefeld, G.: Diffusion in Solids: Recent Developments. Nowick, A.S., Burton, J.J.(eds.), New York: Academic Press, 1975, p. 231. Boes, N., Ziichner, H.: J. Less-Common Met. 49 (1976) 223. Buchold. H., Sicking, G., Wicke, E.: Ber. Bunsenges.Phys. Chem. 80 (1976) 446. Davis, et al.: Seereference 81s. Kley, Vv!, Drexel, W.: Rep. Comm. Eur. 5466e, 1976. Mar&he, J.F., Rat, J.C., H&old, A.: J. Chim. Phys. 73 (1976) 983. Vykhodets, V.B., Demin, V.B., Gel’d, P.V.: Phys. Status Solidi A34 (1976) 787. Wipf, H.: J. Less-Common Met. 49 (1976) 291. Hasegawa, H., Nakajima, K.: J. Jpn. Inst. Met. 41 (1977) 813. Katlinskii, V.M., Kotlik, L.L.: Splavy Blagorod. Met. 1977, p. 179. Ma&he, J.F., Rat. J.C., Herold, A.: Hydrogen in Metals. (2nd Int. Congr., Paris 1977), Oxford: Pergamon Press, 4 (1977) 1 C2. Sekine, K.: J. Res. Inst. Catalysis Hokkaido Univ. 25 (1977) 73. Balovnev, Yu.A.: Fiz. Met. Metalloved. 45 (1978) 1307; Phys. Met. Metallogr. (English Transl.) 45 (1978) 167. Early, J.G.: Acta Metall. 26 (1978) 1215. Huber, B., Sicking. G.: Phys. Status Solidi A47 (1978) K85. Katlinskii, V.M.: Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 1667; Inorg. Mater. (English Transl.) 14 (1978) 1299. Labes. C., McLellan, R.B.: Acta Metall. 26 (1978) 893. Miiller, W., Hufschmidt, M., Pfeiffer, Th.: Nucl. Instrum. Methods 149 (1978) 73. Varaksin, A.N., Puzanova, N.M. Volubuev, P.V.: Fiz. Met. Metalloved. 46 (1978) 187; Phys. Met. Metallogr. (English Transl.) 46 (1978) 159. Viilkl, J., Alefeld, G.: Hydrogen in Metals I. Alefeld, G., Viilkl, J. (eds.), Topics in Appl. Phys. 28 (1978) 321. Banerjee, S., Lee, M.H.: J. Appl. Phys. 50 (1979) 1776. Hasegawa, H., Nakajima, K.: J. Phys. F 9 (1979) 1035. Hauck. J.: Z. Phys. Chem. NE 114 (1979) 165. Katsuta, H., Farraro, R.J., McLellan, R.B.: Acta Metall. 27 (1979) 11II. Kircheim, R.: Ser. Metall. 14 (1980) 905. Kircheim, R., McLellan, R.B.: J. Electrochem. Sot. 127 (1980) 2419. Kircheim, R.: Acta Metall. 29 (1981) 835. Kircheim, R.: Acta Metall. 29 (1981) 845. Mazzolai, EM., Ziichner, H.: Z. Phys. Chem. NE 124 (1981) 59. McLellan, R.B.: Ser. Metall. 15 (1981) 501. Sakamoto, Y, Tabaru, N.: J. Jpn. Inst. Met. 45 (1981) 1048. Sakamoto, Y, Kawachi, M., Hirata, S.: J. Jpn. Inst. Met. 46 (1982) 530. Kidson

Land&-BBmstein New Series III/26

9.5 References for 9 (Pd, Pt, Cu) 83s 84W 842 85B 85Sl 85V 85W 86B 86G 86L 87B

571

Sicking, G., Glugla, M., Huber, B.: Ber. Bunsenges. Phys. Chem. 87 (1983) 418. Wagner, F.E., Probst, F., Wordel, R., Zelger, M.: J. Less-Common Met. 103 (1984) 135. Ziichner, H., Schoneich, H.G.: J. Less-Common Met. 101 (1984) 363. Bucur, R.V.: Z. Phys. Chem. 146 (1985) 217. Schiineich, H.G., Bilitewsky, U., Ziichner, H.: Z. Phys. Chem. NE 143 (1985) 107. Verbruggen, A.H., Lont, A., Griessen, R.: J. Phys. F 15 (1985) 1901. Wicke, E.: Z. Phys. Chem. NE 143 (1985) 1. Bucur, R.V.: Electrochim. Acta 31 (1986) 385. Gillan, M.J.: J. Phys. C. 19 (1986) 6169. Leisure, R.G., Nygren, L.A., Hsu, D.K.: Phys. Rev. B33 (1986) 8325. Bucur, R.V., Indrea, E.: Acta Metall. 35 (1987) 1325.

Pt:

04R 66G 68E 72s 73D 73G 74P 78C 79c 79K 80H 81s 851 cu: 50H 55R 57E 65E 66s 67N 67T 68B 69s 70s *71K 72P 72s 73K 73M 73P 73s 74c 74G 75T 75v 76C

Richardson, O.W., Nicol, J., Parnell, T.: Philos. Mag. 8 (1904) 1. Gileadi, E., Fullenwider, M.A., Bockris, J. O’M.: J. Electrochem. Sot. 113 (1966) 926. Ebisuzaki, Y., Kass, W.J., O’Keefe, M.: J. Chem. Phys. 49 (1968) 3329. Stickney, R.E., Bradley, T.L., Levin, R.L.: Hydrogen, in Metals. (Int. Conf., Jtilich 1972)JUL-Conf6 1(1972) 231. Demin, V.B., Vykhodets, V.B., Gel’d, P.V.: Fiz. Met. Metalloved. 35 (1973) 760; Phys. Met. Metallogr. (English Transl.) 35 (1973) 84. Gol’tsov, VA., et al.: Metody Issled. Opred. Gazov Met., Petrov, A.A., Ivanova, T.F., Vitol, E.N. (eds.) Leningrad: Propag., 1973, p. 23. Podolinskaya, T.A., Mal’gin, A.V., Federov, G.O.: Tr. Ural Politekh. Inst. 231 (1974) 133. Chou, I.M., et al.: Geochim. Cosmochim. Acta 42 (1978) 281. Cermak, J., Kufudakis, A., Gardavska, G.: J. Less-Common Met. 63 (1979) P. 1. Katsuta, H., McLellan, R.B.: J. Phys. Chem. Solids 40 (1979) 697. Harvie, Ch., Weare, J.H., O’Keefe, M.: Geochim. Cosmochim. Acta 44 (1980) 899. Sakamoto, Y, Kamohara, H.: Nihon Kinzuko Gakkaishi, 45 (1981) 797 (J. Jpn. Inst. Met.). Ishikawa, T., McLellan, R.B.: Acta Metall. 33 (1985) 1979. Himmler, W.: Z. Phys. Chem. 195 (1950) 244. Ransley, C.E., Talbot, D.E.: Z. Metallkd. 46 (1955) 328. Eichenauer, W, Pebler, A.: Z. Metallkd. 48 (1957) 373. Eichenauer, W., Loser, W., Witte, H.: Z. Metallkd. 56 (1965) 287. Schenk, H., Lange, K.W.: Arch. Eisenhtittenwes. 37 (1966) 809. Nikulin, V.K., Potekhina, N.D.: Fiz. Met. Metalloved. 23 (1967) 563. Thomas, C.L.: Trans. Metall. Sot. AIME 239 (1967) 485. Belyakov, Yu.I., Zvezdin, Yu.1.: Uch. Zap. Leningrad Gos. Univ. Ser. Fiz. Nauk 345 (1968) 44. Sidorenko, V.M., Kripyakevich, R.I.: Fiz. Khim. Mekh. Mater. 5 (1969) 191; Sov. Mater. Sci. (English Transl.) 5 (1969) 145. Sacris, E.M., Parlee, A.D.: Metall. Trans. 1 (1970) 3377. Katz, L., Guinan, M., Borg, R.J.: Phys. Rev. B4 (1971) 330. Perkins, W.G., Begeal, D.R.: Ber. Bunsenges. Phys. Chem. 76 (1972) 863. Stickney, R.E., Bradley, T.L., Levin, R.L.: Hydrogen in Metals. (Int. Conf., Jtilich 1972)JUL-Conf-6 1(1972) 231. Kazakov, D.N., Kunin, L.L., Litvinova, N.F.: Izv. Akad., Nauk SSSR, Met. 2 (1973) 91; Russ. Metall. (English Transl.) 2 (1973) 62. McLellan, R.B.: J. Phys. Chem. 34 (1973) 1137. Perkins, W.G.: J. Vat. Sci. Technol. 10 (1973) 543. Sidorenko, V.M., Sidorak, 1.1.: Fiz. Khim. Mekh. Mater. 9 (1973) 12. Caskey, G.R., Pillinger, WL.: Hydrogen in Metals. (Proc. Int. Conf., Champion, PA., 1973) Bernstein, I.M., Thompson, A.W. (eds.), ASM, Metals Park, Ohio, 1974, p. 683. Guthrie, J.W., Bearis, L.C., Begeal, D.R., Perkins, WG.: J. Nucl. Mater. 53 (1974) 313. Talbot, D.E.J.: Int. Metall. Rev. 20 (1975) 166. Vyatkin, A.F., Andreev, L.A., Sharfstein, G.I.: Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 7 (1975) 22. Caskey, G.R., Dexter, A.H., Holzworth, M.L., Louthan, M.R., Derrick, R.G.: Corrosion 32 (1976) 370.

Land&-Biirnstein New Series III/26

Kidson

9.5 References for 9 (Cu, Ag, Au, Zn)

572

76P 76V 76W 77c 78B 78Kl 78K2

Popovick, Z.D., Stott, M.J., Cabotte, J., Piercy, G.R.: Phys. Rev. B13 (1976) 590. Vykhodets, V.B., Demin, V.B., Gel’d, P.V.: Phys. Status Solidi A34 (1976) 787. Wampler, W.R., Schober, T., Lengeler, B.: Philos. Mag. 34 (1976) 129. Caskey, G.R., Derrick, R.G.: Metall. Trans. 8 A (1977) 511. Begeal. D.R.: J. Vat. Sci, Technol. 15 (1978) 1146. Katlinskii, V.M.: Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 1667; Inorg. Mater. (English Transl.) 14 (1978) 1299. Kompaniets, T.N., et al.: Fiz. Tverd. Tela 20 (1978) 3533; Sov. Phys. Solid State (English Transl.) 20 (1978) 2043.

82s 83K 84D 85D 851 86H 86T

Varaksin, A.N., Puzanova, N.M., Volobuev, P.V.: Fiz. Met. Metalloved. 46 (1978) 187; Phys. Met. Metallogr. (English Transl.) 46 (1978) 159. Bugeat, J.P., Ligeon, E.: Phys. Lett. 71 A (1979) 93. Hauck, J.: Z. Phys. Chem. NE 114 (1979) 165. Kurakin, V.A., Kurdyumov, A.A., Lysnikov, V.N., Potapov, M.I.: Fiz. Tverd. Tela 21 (1979) 1060. Teichler, H.: Z. Phys. Chem. NE 114 (1979) 155. Kauer, R., Prakash, S.: J. Phys. F 12 (1982) 1383. Mitchell, D.J.: J. Vat. Sci. Technol. 20 (1982) 1048. Mitchell, D.J., Harris, J.M., Patrick, R.C., Boespflug, E.P., Beavis, L.C.: J. Appl. Phys. 53 (1982) 970. Sakamoto, Y, Takao, K.: J. Jpn. Inst. Met. 46 (1982) 285. Kiuchi. K., McLellan, R.B.: Acta Metall. 31 (1983) 961. Dhawan. L.L., Prakash, S.: J. Phys. E 14 (1984) 2329. DeWulf, D.W., Bard, A.J.: J. Electrochem. Sot. 132 (1985) 2965. Ishikawa, T., McLellan, R.B.: J. Phys. Chem. Solids 46 (1985) 445. Hagi. H.: Trans. Jpn. Inst. Met. 27 (1986) 233. Tanabe, T., Sawada, K., Imoto, S.: Trans. Jpn. Inst. Met. 27 (1986) 321.

Ag: 28s 57s 58E 67M 70M 70s 71s 74E 79K 83M 851

Steacie, E.W., Johnson, F.M.G.: Proc. R. Sot. London All7 (1928) 662. Siegelin, W., Lieser, K.H., Witte, H.: Z. Elektrochem. 61 (1957) 359. Eichenauer, von W., Kiinzig. H., Pebler, A.: Z. Metallkd. 49 (1958) 220. Matzke, H.: Z. Metallkd. 58 (1967) 573. Mindyuk, A.K.: Fiz. Khim. Mekh. Mater. 6 (1970) 60. Sacris, E.M., Parlee, N.A.D.: Metall. Trans. 1 (1970) 3377. Sicking. G., Buchold, H.: Z. Naturforsch. 26A (1971) 1973. Einziger, R.E., Huntington, H.B.: J. Phys. Chem. Solids 35 (1974) 1563. Katsuta. H.: Ser. Metall. 13 (1979) 65. Mahajan, S., Singh, N., Prakash, S.: J. Phys. F 13 (1983) 1449. Ishakawa, T., McLellan, R.B.: Acta Metall. 33 (1985) 1979.

78V

79B 79H 79K 79T 82K 82Ml 82M2

Au: 62E 73D 741 76C 77Cl 77C2 78B 79A 79K 83M 8511 *8512 Zn: 68W

Eichenauer, von W., Liebscher, D.: Z. Naturforsch. 17A (1962) 355. Demin, V.B., Vykhodets, V.B., Gel’d, P.V.: Fiz. Met. Metalloved. 35 (1973) 760; Phys. Met. Metallogr. (English Transl.) 35 (1973) 84. Ionov, N.I., Kompaneets, TN., Kostovanov, A.I., Kurdyumov, A.A.: Fiz. Tverd. Tela 16 (1974) 2541; Sov. Phys. Solid State (English Transl.) 16 (1975) 1654. Caskey, G.R., Derrick, R.G.: Ser. Metall. 10 (1976) 377. Chao, F., Costa, M.: Hydrogen in Metals (Proc. 2nd Int. Congr., Paris 1977), New York: Pergamon Press,9 (1977) 5 A8. Chao, F., Costa, M., Elkaim, P.: C. R. Acad. Sci. C284 (1977) 639. Begeal, D.R.: J. Vat. Sci. Technol. 15 (1978) 1146. Aziz, N.E.A., Kishk, S.S., Farag, N.: Indian J. Phys. A53 (1979) 292. Kurakin, V.A., Kurdyumov, A.A., Lyasnikov, V.N., Potapov, M.I.: Fiz. Tverd. Tela 21 (1979) 1060; Sov. Phys. Solid State (English Transl.) 21 (1979) 616. Mahajan, S., Singh, N., Prakash, S.: J. Phys. F 13 (1983) 1449. Ishikawa, T., McLellan, R.B.: Acta Metall. 33 (1985) 1979. Ishikawa, T., McLellan, R.B.: J. Phys. Chem. Solids 46 (1985) 1393. Wa_gman,D.D., Evans, W.H., Halow, I., Parker, U.B., Bailey, SM., Schumm, R.H.: NBS (U.S.) Tech. Note 270-3, 1968, p. 181. Kidson

Land&-B6mstein New Series Ill/26

9.5 References for 9 (Zn, Al, Pb, Th, U) 71M 72K

573

Moon, I.M.: J. Korean Inst. Met. 9 (1971) 158. Kim, I.B., Moon, I.M.: J. Corros. Sci. Sot. Korea 1 (1972) 51.

Al:

55R 57E 61E 67Ml 67M2 68E 69M 69Y 74A 75A 75v 76P 77P 79D 791 80E 801 81N 81P 81Y 820 83H 83K 83N 84C 85M 861

Ransley, C.E., Talbot, D.E.: Z. Metallkd. 46 (1955) 328. Eichenauer, von W., Pebler, A.: Z. Metallkd. 48 (1957) 373. Eichenauer, von W., Hattenbach, K., Pebler, A.: Z. Metallkd. 52 (1961) 682. Matsuo, S., Hirata, T.: Nihon Kinzoku Gakkaishi 31 (1967) 590; J. Jpn. Inst. Met. (English Transl.) 31 (1967) 590. Matzke, H.: Z. Metallkd. 58 (1967) 572. Eichenauer, von W.: Z. Metallkd. 59 (1968) 613. Matsuo, S., Hirata, T.: Trans. Nat. Res. Inst. Met. (Jpn) 11 (1969) 88. Young, J.R.: J. Vat. Sci. Technol. 6 (1969) 398. Andreev, L.A., Vyatkin, A.F., Zhukhovitskii, A.A.: Zh. Fiz. Khim. 48 (1974) 2359. Andreev, L.A., Vyatkin, A.F., Levchuk, B.V., Telkov, V.I., Rabinovich, A.L.: Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 5 (1975) 123. Vyatkin, A.F., Andreev, L.A., Danilkin, V.A.: Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 3 (1975) 23. Popovic, Z.D., Stott, M.J., Carbotte, J.P., Piercy, G.R.: Phys. Rev. B13 (1976) 590. Papp, K., Kovacs-Csetenyi: Ser. Metall. 11 (1977) 921. DBrr, R., Brauer, E., Gruner, R., Rauch, F.: Z. Phys. Chem. NF 116 (1979) 1. Ichimura, M., Imabayashi, M., Hayakawa, M.: Nihon Kinzoku Gakkaishi 43 (1979) 876. Edwards, R.A.H., Eichenauer, W: Ser. Metall. 14 (1980) 971. Ichimura, M., Imabayashi, M., Hayakawa, M.: Nihon Kinzoku Gakkaishi 44 (1980) 1045; J. Jpn. Inst. Met. (English Transl.) 44 (1980) 1053. Nakashima, M., Aratono, Y, Tachikawa, E.: J. Nucl. Mater. 98 (1981) 27. Papp, K., Kovacs-Csettnyi, E.: Ser. Metall. 15 (1981) 161. Yau, K.L.: Z. Metallkd. 72 (1981) 495. Outlaw, R.A., Peterson, D.T., Schmidt, EA.: Ser. Metall. 16 (1982) 287. Hashimoto, E., Kino, T’.: J. Phys. F 13 (1983) 1157. Kiuchi, K., McLellan, R.B.: Acta Metall. 34 (1983) 961. Nakashima, M., Saeki, M., Aratono, Y, Tachikawa, E.: J. Nucl. Mater. 116 (1983) 141. Choo, W.Y., Bernstein, I.M.: Metall. Trans. 15A (1984) 1953. Myers, S.M., Besenbacher, F., Nsrskov, J.K.: J. Appl. Phys. 58 (1985) 1841. Ishikawa, T., McLellan, R.B.: Acta Metall. 34 (1986) 1091.

Pb:

671 7oc

Ives, D.J.G., Smith, F.R.: Trans. Faraday Sot. 63 (1967) 217. Cadersky, I., Muju, B.L., Smith, F.R.: Can. J. Chem. 48 (1970) 1789.

Th: *6OP

Petersen, D.T., Westlake, D.G.: J. Phys. Chem. 64 (1960) 649.

u: 58M 68M 73P

Mallett, M.W., Trzeciak, M.J.: Trans. ASME 50 (1958) 981. Mueller, W.M., Blackledge, J.P., Libowitz, G.G.: Metal Hydrides, New York: Academic Press, 1968. Powell, G.L., Condon, J.B.: Anal. Chem. 45 (1973) 2349.

Land&-Biirnstein New Series III/26

574

10.1 ‘Mass dependence of diffusion

[Ref. p. 577

10 Mass and pressuredependenceof diffusion in solid metals and alloys 10.1 Mass dependence of diffusion When diffusion of two isotopes of the same element with different massesm, and mp is investigated in the samesolvent under identical conditions the pertaining diffusion coefficients D, and D, will be slightly different. This difference is usually denoted as isotope effect in diffusion. This effect is primarily of interest for more fundamental physical reasons.In particular it is sensitive to the atomistic mechanism of diffusion.

10.1.1 The isotope effect parameter It is common practice to characterize the isotope effect of solute atoms, which may be either self-atoms or foreign atoms, in a given solvent (metallic element or alloy) by the quantity

(10.1)

Ihis quantity is denoted as isotope effect parameter or as strength of the isotope efict. In the present chapter isotope effects of hydrogen diffusion will not be considered. Diffusion data for hydrogen isotopes are collected in chapter 9. This procedure is reasonable from a theoretical point of view as we!!since quantum effectsmay be important for diffusion of hydrogen isotopes, whereas for lithium and heavier diffusers quantum effects are negligible. If hydrogen diffusion is excluded the experimental values of E,., fall between the limits 0 4 or S(Dt)“‘) and curve upwards, a feature known as a “dislocation tail”. In this dislocation tail region In Cvaries linearly with x and from the gradient, which is independent of the anneal time, D,02s can be calculated from the relation (11.1)

D,a2s=DAZ(d !nE/dx)-2.

A is a known constant [81L] that depends very weakly on the ratio a2/fi but that for most practical purposes lies between 0.5 and 0.8. This is probably the most reliable and accurate method for determining D,a2 s. It requires that the diffusion length L (= (D r)‘12)should remain less than the average spacing 2 R between dislocations.

11.2.2 Bulk diffusion enhancement method (Method II) When L %2 R, diffusing atoms enter and leave many dislocations and crystal regions during the diffusion anneal. The averageconcentration, at least at not too great distances,is then still described by the Fick solution for bulk diffusion but with an effective and enhanced diffusion coefficient Dell, given by a weighted mean of D and D,, (11.2) D,,,=D(l -js)+DJs where j is the fraction of sites on dislocations. It follows, since D,$D,

that

D, a2 s = (D,,, - D)/nd

(11.3)

where d is the line density of dislocations - number crossing unit area. If d is not known, but constant, at least ihe activation energy for dislocation diffusion can be determined by this method.

11.2.3 “Type C” diffusion method (Method III) When times are so short that (Dt)“2 @a, diffusion is almost wholly within the dislocations with negligible loss into the surrounding crystal. A thin layer experiment performed under such conditions will show Inc varying linearly with x2 but with a slope determined by D, alone. Thus D, is directly determined without the Le Claire

Land&BBmslein New Series III/26

11.3 Presentation of results

Ref. p. 6291

627

need to know a2. These conditions are difficult to realise becauseof the very short distances involved and the method has only very occasionally been used.

11.2.4 Permeation method (Method IV) In this method one measuresthe rate of permeation of radioactive diffusant across thin single crystal wafers deformed so as to generate dislocations of known configuration and density. If (D t)“’ > 0 cg >c, >c, >c,>c,

z=rj=o cg

Diffusion source : co = const

z

J-

6

p-1 I (Dbt)“2

I

-.

Fig. 1. Typical isoconcentration contours according to Fisher’s approximate solution for diffusion from a constant source. The b value is the same for all these isoconcentration contours [89Kl]. GB: grain boundary. Fig. 2. Schematic illustration of type-A, B and C diffusion b kinetics in a polycrystal containing uniformly spaced grain boundaries. Becauseof the limited space it is not possible to illustrate the condition (Dt)“’ % d for type-A kinetics on a proportionate scale [89Kl]. d: spacing between boundaries; 6: grain boundary width. Land&-Bknstein New Series III/26

TypeB

A.-.-

zcrf””

1006c(Df)“2 3N7

SS

F

752 . . .647

> SN

SS

F

748 ... 627

> 3N8

SS

F

797.s.722 773.s.698 797...673 773-a-673

“‘Ag Ag BC (hkl) TwGB Ag PC

Ag 16” (001) TiGB Ag 18”(112)TiGB Ag PC Al PC

SN

ss

SN > 3N7 >4N

ss NA SS

6N

ss

“‘Ag

6N

ss

793 ... 693 793, 743 743, 693 F 771.~. 563 LMS’ 694 ..a 614 W 829 .a. 623 S 829 ..a 623 W 829 ..a 674 S 829.e.674 W 771 ea.623

‘l”Ag Al

SN -

ss TE

S -

“‘Ag

“‘Ag

F

905 ... 554 -

1.so~10-‘5 1.29. lo-l5 6.00. IO- ls 5.76.10-” 2.00~10-‘6

84.52 84.43 89.96 89.31 71.55

Reported aReal Reported aReal e=9

6 6 6

SIHI

8.95. IO-’

192.3

SlHl

SlHl

8.9S.1O-s

192.3

SlHl

54Tl

7.24.10-’

190.4

54Tl

1.40. IO-l6 5.46. IO-l6 1.20~10-1s 8.83. IO- l6 9.60. IO- l4 1.06. IO-l3 2.70. IO- l3 8.00. IO-= 3.10*10-”

68.62 76.44 80.33 78.12 101.3 101.3 133.9 136.0 75.31

0 = 13”, reported “Real 8 = 16”, reported “Real 0 = 23”, reported aReal c$= 6”, bincorrect 4 = 24”, bincorrect bIncorrect

54Tl

7.24. lo-’

190.4

54Tl

54Tl

7.24.10-’

190.4

54Tl

54Tl

7.24.10-’

190.4

54Tl

63L2 63L2 63L2 68Kl 68S1,2 72Rl 72Rl 72Rl 72Rl 72Rl

8.9Se1O-s 8.95*10-S 8.95 11O-s 2.78 +lo-’ 4.00.10-’ 6.70.10-’

192.3 192.3 192.3 181.5 184.1 189.1

SlHl SlHl SlHl 68Kl 61S2 69Rl

6.70.10-’

189.1

69Rl

6.70.10-’

189.1

69Rl

78Gl 74H2

1.00 * 10-4 -

191.2 -

78Gl -

1.16*10-‘6

63.60

-

3.1S~10-1s 1.30.10-‘” 8.60*10-‘6 3.40.10-‘7

79.08 76.99 74.48 49.37

bUnreliable -

3.10*10-‘7

49.37

-

-

x126

-

6 6 6 6 6 6 6 6 -

3.79.10-l” 80.77 ~f9.S~10-1s x60.2

-

6 -

Al,o,

ssc

PC CP SP PSP

‘4l3+ 020202-

>3N 2N7 2N8 -

ISS ssc ssc

C JC C C

2023 ... 1923 ... 2073 ... 1798 ...

PC

02-

-

OK

-

-

Au SCTF

19’Au

> 5N

ss

S

625 ... 521

PC TF

l95AU 19’Au

> 5N > 5N

ss ss

S S

717...640 450...390

“Cd

2N5

ss

F

420.., 324

llsmCd

5N5

ss

S

408 ... 324

14C

> 6N

SW)

W

CH,C - COOH SGB

14C

6N

ss

CN - C,H, - CN SGB

14C

4N5

co PC

‘Co

Cd PC

C,oH,,

Cr PC cu PC

SGB

1463 1473 1573 1623

-

8.60.10-‘0 w 2.5. 1O-4 4.00.10-6 4.38. 1O-7 8.48. 1O-7 1.00~10-6 “4.30.10-12 d1.40.10-‘6

418.4 z 594* 564.8 439.3 439.3 385.0 “231.0 d61.00

1 at.% Fe-doped 2 at.% Fe-doped 3 at.% Fe-doped 0.7 at.% Ti-doped 0.7 at.% Ti-doped

3.80. lo-l6 3.32. lo-l6 3.10*10-‘6 x 9.10-‘6 2.37. IO-l5

111.9 110.6 84.91 x 96 95.92

Reported aReal Reported aReal

5.00~10-14 5.30.10-14 3.35.10-14

54.39 54.04 46.02

Reported aReal -

476...403

1.70~lo-‘3 1.48. lo-l5

49.00 48.34

Reported aReal

S

297 ... 281

3.00.10-9 3.40*10-9

47.00 46.94

Reported aReal

ss

S

288...253

2.70.10-10 4.84.10-l’

44.00 40.84

Reported aReal

2N2

S(R)

V

973 . ..773

6oCo

4N

ss

F

1023 ... 723 693...623

f7.50.10-I5 ‘3 52.10-16 2.00.10-14 1.20.10-‘4

163.2 141.2 117.2 117.2

Reported aReal cl-phase E-phase

“Cr

3N5

AR

B

1623 ... 1373 ;70.

192.5 152.5

Reported aReal

7 7 7 7 8 8 8 9 9 IO 10 10 11 11 11 12

110.0 107.2 120.0 102.1 104.6

Reported, from T, Recalculated From low T A@‘,, see [69M2] Aflv, see [65Gl]

12 12 12 -

cu

> 3N8

ssc

C

1092..- 833

-

TE

-

-

lo-I3

4.00. lo- I4 2.35*10-‘4 8.80 * 10-14 1.05.10-‘4 1.20.10-14

-

-

8OC2 63Jl 74Vl 77Ll 77Ll 8OWl 8OWl 8OWl

-

-

-

7363

9.10.10-6

174.6

57Ml

7302 74Gl

9.10. IO-l6 9.10.10-6

174.6 174.6

57Ml 57Ml

55Wl

-

-

55Wl

69Gl

-

-

55Wl

77Bl

3.62

142.5

77Bl

81B2

4.90.10-4

59.00

81B2

86Bl

6.80.10-4

57.00

86Bl

5962

Not required

75Bl 75Bl

1.10~10-~

242.7

75Bl

57B2

g7.09. 1O-7

g258.4

57B2

70Bl

3.40. 10-5 200.0 2.00. 10-5 197.2 Not required -

74H2 74H2

54Kl 55Kl -

Matrix

Fe PC

Tracer

“Fe

59Fe

Purity (matrix)

Method

2N6

AR

< 2N

55*59Fe 2N7

“Fe

Eq.

B

T

@QJ"

Qb

K

m3sq1

kJ mol-’

-

9.03**0-‘3 7.77.10-14 3.71 . lo- l4 1.12~10-‘~ 2.02.10-‘2

x 128 165.0 222.9 141.2 141.0 143.9 167.4 159.3 174.5 x 167 x 172 172.3 167.4 172.3 104.6 96.94 139.7 143.9 = 163 174.0 z 163 180.5 159.0 158.3 173.6 177.1

y-Fe, reported RLSF RLSF RLSF Reported, UR RLSF, UR u-Fe, reported “Real a-Fe, DFP y-Fe, reported y-Fe, reported aReal y-Fe, reported “Real y-Fe, reported aReal a-Fe, reported aReal y-Fe, reported aReal y-Fe, reported aReal y-Fe, reported aReal Reported, UR “Real, UR

1.78. lo-l5 9.06.10-*’ 2.34. IO-l4 8.35.10-‘* 5.00. lo- l4 1.66.10-” 5.55~10-‘4 7.55.10-l’

74.48 ** 82.41 81.17 60.02 82.84 69.16 88.70 87.60

Reported, UR RLSF, UR Reported, UR RLSF, UR Reported, UR RLSF, UR Reported, UR RLSF, UR

1473 ... 1273

S(R)

F BG V

1473 ... 1273 1473 .a. 1273 953 a.. 803

ss

F

929...853

3N6 2N7

ss SW AR

4N

SW

F 924.e. 805 F 1289... 1196 F PD 1310...834 1289...1196 F 1287.e. 1191

EG

AK

B-G 13750.. 1223 1125...975

s5*s9Fe 2N7 4N -

Fe SP, 90% TD 94% TD 97% TD 97% TD, stabilized

55*59FE > 2N

S(R)

W

1289...1196

SW

W

1287-e. 1191

SW

SW

Fs’

1432e.e 1222

Fs’

955 . . .774

Fs’

1373 ... 1223

5.25 * lo- l3 9.18. IO-” 5.38. IO-l5 ‘1.80.10-” ‘2 91*10-” 6.;0. IO-” 2.39.lo-l3 4.33.10-13 i&*0-‘3

1.00~10-‘~ 1.84~1o-‘J 1.04~10-‘5 5.73*10-‘6 2.40. lo- l3 3.26.10-l’ 6.79.10-l’

Remarks

Fig.

Ref.

DO

Q

Ref.

4.45.10-5

281.5

57Bl

9.22.10-6

191.5 268.2

57Bl 57Bl

m2s-’ 57Bl

13 13 13 13 13 13 13 13 -

1.40~10-5

kJ mol-’

59Gl

Not required

59Ll

g1.80. IO-’

*266.2

59Ll

59Ll 59L2 59L2

g1.80-10-3 1.85.1O-‘j -

*266.2 251.0 x 260

59Ll 59L2 59L2

59L2

1.85+10+

251.0

59L2

64Bl

-

-

-

64Bl

-

-

-

6503

1.85 .lO+

251.0

59L2

6563

1.85.IO+

251.0

59L2

6551

1.05. lO-4

283.7

6551

6551

2.75. lO-3

254.0

65Sl

75Ml

1.10*10-s

265.7

75Ml

75Ml 75Ml 75Ml

-

TE

-

-

ss S(R) ss

S S S

1023 ... 836 1083 1.. 873 1109...873

1311-

3N7 3N8 3N7 -

ss

W

798...553

1311-

-

ss

W

834... 625

Ni BC 5N

AR

1.00 - lo- ” 3.00*10-1’

192.5 171.7

SGB LAGB

8.10. lo-l4 3.66010-‘~ 2.26. IO- ” 4.05. lo- l8 3.13.10-‘* 1.78.10-l’ 8.46.10-l’

65.69 71.86 z 33.5 32.53 cz 24.1 23.88 x 17.2 17.42 x 19.7 20.23 z 38.2 38.14

Reported aReal 0 = IO”, RLSF 0 = 14”, RLSF 13= 20”, RLSF 0 = 30”, RLSF Reported RLSF Reported “Real -

m3 s-l

W w

1073**.795 1073***773

F

533..*474

F PO 493 .** 393

63Ni 63Ni

Remarks

@DJ"

Method

NiO SC PC

Qb

T K

Purity (matrix)

Eq.

Fig.

reported reported reported reported

2.20 * 10-6 2.20.10-6

246.4 247.0

79Al 81Al

5401

1.17 * 1o-4

107.5

5401

66Sl

6.26.10-’

103.2

60Hl

19

80Gl

1.60.10-’

100.3

72Ml

17 17 18 18 -

68Hl 68Hl

3.00-10-5 3.00~10-s

159.0 159.0

65Cl 65Cl

66Fl

Not required

79Hl

2.62. lo4

841.3

79Hl

79Hl

1.97.104

836.5

79Hl

19 -

62Ll 76Sl 84Sl

7.80.10-5 95.40 Not required 1.69.10-3 108.6

61Ll

71Kl

3.50 * 10-s

625.5

71Kl

86Sl

Not required

66F2

4.50.10-E

176.6

66F2

67Fl 68Fl

2.80*10-’ 1.10*10-s

185.1 150.6

67Fl 68Fl

> SN

AR

F po 493 ..* 393

lo3Pb

SNS

ss

w

473.0.344

6.10. lo- l5 5.87. lo-Is

44.38 43.99

Sb PC

124Sb

3N4 6N

F F

821... 573 841 ea.658

2.94.10-l’ 1.50. 10-l’

%.65 92.88

SIC HPP

C4+

98.2%

S(R) WV CE

C

2473.~. 2173

14C4+

HP

ss

S

2374s.. 2128

F

2374.e. 2128

7.00 * lo- t4 6.64. lo-l4 2.22.10-6 1.38.10-’ 6.35. lo-’ 3.19.10-6

305.4 303.1 563.5 600.7 551.9 584.6

ss LS LS

F V LM

483.e. 404 486-e-415 334-a. 272

3.22.10-” ‘5.5o~lo-‘e 2.45. lo-l3

39.96 44.77 48.96

ss

F

2318..-2119

8.00. 1O-2o -

156.1

Reported ’ Real Reported ’ Real Reported ’ Real bQuestionable bQuestionable -

x 390

-

18 -

1.60. lo-” 9.05. lo- l2 3.00.10-” l.OO.lO-” 3.24.10-”

185.4 189.7 191.6 178.7 186.6

a-U, reported RLSF P-U y-U, reported RLSF

20 20 20

TbO, SGB

4N

llgrnSn llgSn

6N 6N

22fq-j,4+

_

TIC PSP

c

-

CE

C

1773 ... 1473

u PC

235U

3N

SW

F

903.a.773

2N8

SW

F

1023.a.963 1323-a. 1123

kJ mol-’

79Al 81Al

*l”Pb

113.123~~

Q

Ref.

m2s-’

DO

16 16 -

Pb IO” (001) TwGB Pb PC

so PC TF

Ref.

kJ mol-’

66Sl 66Sl 66Sl 66Sl

84Sl

UC PC UC,.,, PC uo, SP

PSP

233u4+

_

233u4+

_

233u4+

RG

237u4+

_

tJ4+

RG

ss ss ss

W, S 2473 ... 1473

7.20. IO-l5

313.4

W, S 2473 ... 1473

1.43 * lo-I3

287.4

-

S

1923 ... 1750

ss

S

2423.‘. 2173

FSS

F -

2423...2173 1973 1.. 1623

4.00. lo- I5 3.11~ lo-= R5.19.10-‘5 1.71. lo-” 4.3o~lo-l2 1.50.10-I3 1.34.10-13 7.05 * 10-16 1.79. lo-l6 R6.90.10-16 3.36. IO-” -

292.8 294.2 197.5 351.0 335.4 290.0 290.4 338.9 323.9 R239.0 373.4

Reported RLSF Incorrect Recalculated Recalculated Reported aReal Reported aReal CCS(IC) Corrected

21

75Rl

21 22 22

75Rl

g6.09- 1O-4 -

586.1 -

67Vl -

66Al

4.00~10-1’

292.9

66Al

66Yl

5.82.10-’

304.2

66Yl

72Bl

Not required

72Wl

Not required

79Rl

Not required

Reported, x = 0.106 Reported, x = 0.045 DFP, x = 0.10 22

70Ml 70Ml

355.6 355.6 355.6 468.6

69Ml 69Ml 69Ml

-

22 22 22

CP

U4+

-

ISS

JC

1373 ... 1173

PSP

IJ4+

RG

CE

C

1723 ... 1523

eu4+

-

ss

S

1923 ... 1548

4.55. IO-l2

x 285 x 193 281.8

2423 .+. 1670 2423 ... 1670 2423 ... 1973

3.33. lo-l3 1.24. lo-l3 2.30 . IO- I2

384.9 378.7 380.7

SGB LAGB -

23 23 23

67Kl 67Kl 81B4

1.43 * 10-6 1.79.10-6 7.96.10-* 5.00. IO+

U&+x

PC

w SPC

185~

>4N > 3N5

S(R) SW

F F S

WC HPP

14C

4N

ss

S F

2643 ... 2238 2643 ... 2238

2.29. lo-” 7.85. IO- I4

297.1 309.6

bIncorrect DFP, bincorrect

-

71Bl

g2.59. 1O-6

g240.2

71Bl

w,c

14c

-

S(R)

F S

1773 a.. 1573 1773 ... 1573

6.54.10-l’ 1.80.10-10

280.3 287.9

-

18

81Tl 81Tl 54W2 54W2 66Bl

382.8 382.8 93.51

81Tl 81Tl

24 24 24

1.83.10-3 1.83.10-3 1.50.10-5

-

67Bl

Not required

PC

zu PC

65Zn

5N 4N -

ss ss ss

F F F

460... 350 428 ... 354 496.e.333

1.10 * lo- l4 1.90. lo- l4 5.50.10-‘4

59.83 61.09 54.39

Zr PC

Zr

3N5

CE

C

893.s.793

z 7.5.10-14

x 112

a

AK AR b

These Arrhenius parameters (derived by us) from the original Arrhenius plot correspond to the actual Arrhenius line drawn there; the reported ones yield a much different line lying away from the experimental data points. Absorption kinetics. Autoradiography. For reasons discussed in detail in [89K2], these data are considered incorrect, unreliable or questionable.

B . BC BG B-G BV ’ C

NTAP

65Al 65Al 81B4

53Sl 62Hl

Bokshtein’s equation. Bicrystal. Borisov-Golikov equation [57Bl] for sectioning method. Borisov-Golikov analysis for absorption kinetics. Borisov’s equation (very similar to Fisher’s equation). Assuming precipitation to be occurring. Coble’s equation. (continued)

Footnotes for 12.2.1, continued CCS(IC) CE CP CVD d DFP Do, Q e EG f F F FF FSS B GGK WI) HP HPP IC KS JC LAGB LMS’ NA NTAP OK PC PCTF PSP

Evaluated from combined creep [79Rl] and sintering [72Bl] measurements. (These data are incorrect, because the sintering data taken from [72Bl] for Arrhenius parameters determination are in error by an order of magnitude.) Indirect estimation from creep experiments. Powder compacts. Chemical-vapour-deposition grown. Assuming precipitation to be absent. Arrhenius parameters derived by us from the original Arrhenius plot. Volume diffusion data used for the evaluation of grain boundary diffusion data. Radioactive, but the particular isotope used is not specified. Electrolytic grade. From the reported, recalculated or derived (from the Arrhenius plot) value of 0: assuming a value of 6 = 0.5 nm for the grain boundary width. Fisher’s equation. Fisher’s solution for application to penetration-depth measurements. Fisher’s equation; stated incorrectly in the original work. Indirect estimation from final-stage sintering kinetics. Evaluated by us from the reported D values or from the corresponding Arrhenius plot. Indirect estimation from grain growth kinetics. (OOI), (011) and (111) directions. High purity. Hot-pressed polycrystal. Incorrect; for reasons discussed in detail in [89K2]. Indirect estimation from initial-stage sintering kinetics. Johnson-Cutler equation. Large-angle grain boundary. Levine-MacCallum equation; stated incorrectly in the original work. Nuclear absorption. No tabular data and no Arrhenius plot given in the original work. Indirect estimation from the oxidation kinetics. Polycrystal. Polycrystalline thin film. Partially-sintered polycrystal.

R

Reported. Reactor grade. Recalculated least-squares tit. Suzuoka’s equation. Single crystalline thin-film containing dislocation networks. Subgrain boundaries. Sintered polycrystal. Swaged polycrystal. Sectioning combined with residual-activity measurements. Serial sectioning. Indirect estimation from steady-state creep measurements. Absolute temperature. Temperature of transition from volume diffusion-controlled creep to grain boundary diffusion-controlled creep. Theoretical density. TD Theoretical estimation. TE Thin film. TF Tilt grain boundary. TiGB Twist grain boundary. TwGB Unreliable; for reasons discussed in detail in [89K2]. UR Analogous to homogeneous volume diffusion. V The Do value [76Ml] used is incorrectly cited in [89#2]: 9.00 . 10e4 m2 s-i W instead of 9.00. 10m5m2 s-i. Thus, the suggestedvalues [89K2] of j?at 1324 and 641 K are not the true ones. The corresponding p values given in the original work [88Nl] are more or less correct. Whipple-Le Claire equation. W (6 D,)', Qb Arrhenius parameters for grain boundary self-diffusion. Activation enthalpy for migration of monovacancies in the lattice. Afl” Reciprocal density of the coincident sites relative to the crystal lattice. sites. z Tilt angle. Twist angle. i * The corresponding value in eV is misprinted in [89K2] as 7.16 in place of 6.16. ** The corresponding value in eV is misprinted in [89K2] as 0.7919 in place of 0.7719. RG RLSF S SCTF SGB SP SPC SW ss ssc T T.

Figs. 6 to 24, see p. 676ff.

Matrix

Tracer

Purity (matrix)

Method

Eq.

T

(~64)~

K

m3 s-l

Qt,

Remarks

Fig.

Ref.

kJmol-’

DO

Q

m2se1

kJ mol-’

Ref.

12.2.2 Data for grain boundary tracer impurity diffusion in pure materials Ag PC

“‘Cd 114mIn 124Sb “‘Sn i2’Te

"OrnAg

Al SP PC

5gFe

5N 5N 5N 5N 5N >4N

Abbreviations

used are explained at the end of the table 3.55*10-‘6 3.90*10-‘6 6.70*10-16 6.00. lo-l6 1.70.10-‘5 1.00~10-9

S(R) S(R) SW S(R) ss

F F F F W

772... 557 764+..469 77l.e.471 776...527 970...650

;SR,

V W

893 ... 523 774... 523

1.98~10~*

BC

W

723 ... 523

67Ga 65Zn

5N 4N >4N

SW ss ss

V F F W

468 . ..404 572.+. 373 633 . ..493 604...425 593...428

ZIl

5N5

EPMA

W

613.e.523

F, W 613 ... 523

AI,03

L

F

613...523

PC

“‘Ag

2N7.

S(R)

S

1733 ... 1100

SP

“Cr3+

4N5

S(R)

-

1773 ... 1473

1.00~10-” 5.85. lo-l2 “2.00~10-‘0 9.30*10-i’ 1.60.10-‘5 3.10.10-‘5 1.60+10-” 6.30. IO-l4 1.00~10-9 See Figs. 27...29 See Figs. 30 . . .33 See Figs. 34 . . .38

2.10.10-a 3.10.10-3 5.00.10-‘2 1.10. lo-”

64.56 63.55 57.11 59.87 42.00 z 58.6 135.1 147.6 100.3 95.18 101.3 31.92 49.79 49.21 90.70 59.82 118.7

392.0 392.0 341.0 350.4

SGB, reported SGB, areal LAGB, reported LAGB, ‘areal TCK LAGB’ LAGB” SGB 31~~~55”(111) TiGBs 10***45” (001) TiGBs 14...45” (001) TwGBs, 31...58” (111) TwGBs Reported “Real Reported aReal

25 25 25 25 25

69Kl 67K2 67K3 69K2 87Gl

5.04.10-5 5.50-10-5 2.34.10-5 4.72. 1O-5 2.10.10-5

176.6 174.8 163.5 170.9 154.7

69Kl 67K2 67K3 69K2 87Gl

26 26 26 26 26 26 26 26 27... 29 30 ... 33 34... 38

69Hl 86B2

Not required 8.20. 1O-3 186.2

85B2

4.90.10-5 1.10~10-4 2.45. 1O-5 2.45. IO- 5

122.3 129.3 119.5 119.5

7OPl 59Hl 83Bl 83Bl

-

-

-

1.40.10-4

128.9

6001

80Al

1.40.10-4

128.9

6001

86Ml

2.40.10-4

331.0

86Ml

84Ll

6.93. IO-”

266.0

83Ll

39 39

86B2 86B2 86B2 75Vl 74Hl 86Gl 87B2 87B2 87B2 76A1, 78A 77Al

Matrix

AW,

6” (0112)TiGB

Tracer

Purity (matrix)

s1Cr3+ 3N4 sgFe3+ 4N5

Method

Eq.

S(R) SW

W

T

(~~4s)~

Qb

Remarks

K

m3s-l

kJmol-’

4.00. lo-is 1.01. IO- l4 2.14. IO- l4

z 170 212.0 225.4 264.0

bUnreliable Reported aReal bUnreliable

39 -

9.50. IO- r6 3.90. IO- ‘* 3.90. lo- l9 “2.00. IO-‘s =1.10~10-” 8.60. IO- l7 1.11 -IO-l6 8.03. IO-‘*

67.78 59.82 59.82 62.72 69.60 104.6 106.1 x 87 87.48+

bQuestionable Upper limit Lower limit Reported aReal Reported ’ Real Reported RLSF

40 40 40 40

75KI 7982 7982 8IVI

169.0 8.00. IO-6 Not required

76H3

-

-

75KI -

76Hl

-

-

-

41

72SI

1.20.10-6

82.01

72SI

42 42 42 -

65A3 61GI 69LI

239.3 4.00.10-6 Not required 259.4 4.00~10-6

65A3

76M2

Not required

43 43 43 43 43 43

60Gl 62Bl

Not required 197.2 7.18.10-’

6OL2

70B2

6.10.10-’

194.6

70B2

79Sl 70KI 69C2

Not required 176.3 2.02.10-s 178.2 3.00.10-6

70Kl 69C2

-

61RI 8IGI

Not required 1.30*10-4 193.5

72GI

1873 a.. 1473 1773 *a* 1473

Ni*+ -WA 30” (001) TiGB

4N6

EPMA

F

1643-e. 1483

Au PC

4N -

SW AES

F HB

809a.e 548 542a.0303

-

ERM

*

423.0.289

Cr

-

AES

-

566-a-484

cu

-

AES

-

473-e. 373

TF

ii”Ag Ag

Cd PC

l lomAg 4N

S(R)

F

473-o. 413

7.40. IO- l5

44.35

co PC

“Fe 63Ni l=W

3N7 2N2 -

S(R) S(R) ss

S V F

1273...1110 1023 ... 853 1073..*913

5.60. lo-l5 “9.50. lo-l5 7.74. IO-l4

131.0 190.8 165.3

CrTF

Au

-

RBS

V

907.e.551

cI.00~IO-24

65.61

NPTAP RLSF -

cl’ PC cu BC(OOI)TiGB

ll”Ag ‘l”Ag

SN 5N4

SW AR

V F

723 ... 523 1067 *.. 790

cl’ PC

‘l”Ag

> 4N4

SW

F

891 a.. 671

CU BC(OOl>TiGB Cu TF PC

“‘Ag

SN

AR

S W

891 ..a 671 1030*.. 816

& 13As dam

5N

RBS S(R) ss

HB F S

573.a.498 816...609 973.a.673

‘lsCd “JIn, 11%1

SN -

AR SIMS

V S

773...613 819,773

c1.55.10-‘g 2.20 * lo- l1 2.80.10-” 7.10*10-‘6 7.96. lo-l6 2.30. IO-” 7.50 * lo- 13 9.39.10-13 ‘1.05 - lo-*’ 7.90.10-‘6 5.00. IO- l6 1.47*10-i* ‘2.57. IO-** x 1.2*10-‘4

71.96 133.9 133.4 134.0 75.31 75.31 75.31 108.8 109.3 60.07 51.67 83.68 39.11 48.53 x 86

b Questionable 0 = 45”, reported “Real, UBC “Real, SBC Reported ’ Real t9 = 45”, reported ’ Real RLSF Reported “Real, UR bUnreliable bUnreliable

BC

Fig.

-

Ref.

8482 84Ll

DO

Q

Ref.

m*s-’

kJmol-’

-

-

3.64 * 10-9

300.0

83LI

-

-

77H4

75KI

Not required

70B2 70RI

69Ll

-

‘l3In ‘IsIn 63Ni

-

SIMS SIMS AR

S 973..-773 S 973..-773 F PD 1098 .a. 923

cu BC(001) (013) TiGB

Ni

5N 4N6

AR EPMA

S T?

1123 ... 1023 1048...948

cu PC

32P

2N8 3N 3N2 5N 5N

ss ss ;;Rj AR

W, S W, S W, S W SpD

984... 847 976... 847 959 ... 847 1098...783 994... 878

4N >4N

W-9 W-9

F w

874.a.614 933.a.773

gCd

-

AES

V

800...500

“Cd

-

AES

V

“‘HP+

3N4

S(R)

-

3N7

S(R)

-

cu BC(OOl)TiGB

35S

cu

124Sb

45” TiGB cu PC 65Zll

CuInSe, PC

Er,O,

PC

2.18.10+ 4.93 * 10-7 7.97.10-S 2.40. IO-” 2.67. IO-l2 1.47. IO-l2 1.20. IO-l2 1.05. IO-l2 3.28. IO-l3 3.24. IO-l3 4.50.10-‘4 x 2.0.10-12 x 5.6.10-13 x 8.5.10-14 z 3.3.10-14 c 7.1 .lO-” z 1.3.10-15 z ‘5.4.10-15 x 8.3.10-16 8.58~10-‘3 1.16. lo- l3 3.16. lo-l5 1.00. IO-I2 1.15. IO-I2 8.03. IO-l3 6.00 * lo- I’ 3.10. IO-l4 3.72. IO- l4

210.5 203.2 278.4 200.7 174.9 165.2 162.6 162.4 157.3 164.6 108.8 x 147 x 136 x 119 z 110 z 98 z 84 z 94 x 78 81.06 78.56 53.25 81.59 87.86 83.66 60.25 96.65++ 98.68

0 = 45” 1bunreliable bUnreliable 0 = IO”, RLSF 8 = 20”, RLSF f3 = 30”, RLSF 0 = 40”, RLSF 0 = 45”, RLSF f3 = 50”, RLSF 0 = 60”, RLSF 8 = 70”, RLSF 8 = 450 Z = 5, 0 = 36.87” Q = 36.68” e = 37.330 e = 37.970 0 = 38.00” f3 = 38.08” 0 = 38.30” 0 = 38.80” DFP DFP DFP Reported RLSF Reported aReal

-

761 ..a 500

c5.30~10-‘3 “3.05. IO-I2 “4.20. IO-”

144.7 154.6 111.0

Reported aReal -

2243 .-a 1874

l.21f10-9

544.8

bQuestionable

43 45 45 45 45 45 43 43 43 43 43 43 43 46 46 -

1966, 1886

6.70. 1O-4

714.6

bQuestionable

-

44 44 44 44 44 44 44 44

84Gl 84Gl 55Yl 55Yl 55Yl 55Yl 55Yl 55Yl 55Yl 55Yl 70Rl 86Al 86Al 86Al 86Al 86Al 86Al 86Al 86Al 7882 7882 7832 73Ml 70Rl

2.19 * 10-5

178.0

83Gl

‘6.32. 1O-3

268.2

55Yl

1.10~10-4 1.70.10-3

225.9 231.5

70Rl7921

7.02. 7.98. 4.38. 2.30. -

lo-’ IO-’ lo-’ lo-’

138.0 138.9 138.0 207.1 -

7882 7832 7882 73Ml 70Rl

69K3 77H2

7.30 * 10-s 3.40.10-s

198.7 190.8

69K3 57Hl

77Kl

Not required

79Kl

Not required

78Sl

i7.70.1012 ‘1.15.10-10 1.48. IO-”

‘1172 ‘248.5 295.4

78Sl 78Sl 78Sl

78Sl

Matrix

Tracer

Fe PC

Purity (matrix)

Method

Eq.

800 ppm 0, 100 ppm S

c2.50.10-14 =5.95*10-‘5 2.50.10-‘4 2.61. lo-l4 2.33.10-13 1.80~10-10 6.02+10-” 4.40. lo- l4 2.25. lo-l4 3.20.10-‘* 4.54.10-‘2 4.27.10-l3 ‘1.46.10-” 3.85. lo- l4 3.23.10-‘* 2.13*10-‘* 2.00~10-‘* 2.11.10-‘2 2.50. IO-‘* 3.47. lo-” 1.21~10-‘* 1.27.10-‘” 3.30*10-‘5 7.05*10-‘5 2.30.10-” 6.00. lo-l6 3.03*10-9

196.6 178.5 138.1 138.3 173.6 217.6 217.7 117.2 123.5 177.8 178.0 167.8 6.355 152.3 181.2 177.8 173.6 173.0 186.2 215.4 176.2 177.6 92.47 93.77 78.66 74.31 218.0

Reported RLSF Reported RLSF bUnreliable Reported aReal Reported, a-Fe aReal Reported, y-Fe ’ Real bQuestionable No APs Reported aReal Reported RLSF Reported RLSF Reported RLSF 190 ppm C, reported “Real 40 ppm C, reported ’ Real -

47 47 47 47 47 47 47 47 47 47 47

2.05. IO-” 2.05.10-” 2.05.10-” 2.20. lo- l2 1.50 - 10-12 1.21*10-‘2

130.5 130.5 130.5 113.0 96.65 96.86

3N

BV

1141 ee.980

H 9wb 63Ni

3N6 TG 3N7 3N5

SW FAM ss SW ss

S V S Fs’ Fs’

1483 .+. 1378 1073 ... 573 1075 *** 993 1403 ..a 1213 969.e.805

Ni

2N6

SA

F

1473 ... 1273

3N8

SA

F

1473 ... 1273

63Ni

3N6

SW

S

156O.e. 1426

3*P

3N6

S(R)

S

1139.a.950

3N2

S(R)

S

1125...925

3N8

S(R)

W

1153...1018

EG

S(R)

S

1098...798 1098 -a- 838 1098...953 1159...963 1025...812

3%

Remarks

(~~4.)~ m3s-*

1310*** 1200

Fe PC, 20 mm 0, 20 ppm S

Qb

T K

Fig.

Ref.

kJ mol-’

DO m2sm1

Q

Ref.

kJmol-’

5962

Not required

61S1,3

1.25.10-4

305.0

61S1,3

65J 67Hl

7.19 * 10-4 2.53. 1O-4

259.5 240.6

65Jl 67Hl

7OLl

5.90. 1O-4

246.9

7OLl

71Ll

9.20~10-~

301.2

71Ll

77Ml 73Sl 85Gl 64Ll 65Jl

4.16~10-~ Not required 5.02 * 10-3 4.40.10-S 1.40*10-4

305.0

77Ml

252.0 278.7 245.6

85Gl 64Ll 6551

70K2

9.00.10-5

270.7

70K2

70K2

1.25. 1O-4

283.3

70K2

77H3

1.09.10-4

296.7

77H3

72R2

7.10.10-’

167.4

63Gl

72R3

7.10. lo-’

167.4

63Gl

83Ml

‘2.87. IO-* “‘13.8 1.35 * 10-4

‘271.0 m332.0 202.5

83Ml 83Ml 60Al

68Rl 68Rl 68Rl 68Al 68Al

Fe PC

H,O PC

35s

3N6

‘13Sn

4N5 3N7

SS SS

S

1073...973 1023 ... 890

65Zn

3N7

SS

S

993...873

137cs+

-

ss

F

267...248 267... 254

1.26. 1O-2 5.01.10-4

64.02 54.39

+&,+

-

ss

F

267...249

4.95.10-3 -

z 67 66.36 w 75

7.96. IO-’ -

76.85 % 77

1.88 -

78.09 w 87

160 -

86.91 x 89 92.01 -

S

1525 ... 1393 1335... 1172

96.23 113.0 117.2 135.1 153.5 125.7

1.10. lo-” 2.20.10-12 3.86. lo- l2 1.91.10-12 4.76. lo-I2 1.55.10-13 See Fig. 47

SW

InSb PC

l13Sn

-

ss

FS’

785...663

2.66. IO3 -

Kc1 BC(OOl)TiGB

&+

5N5

MH

F

923...473

x 10-14

x 51

Ca2+

5N5

MH

F

923...473

z 5.10-14 2.10-I’

z 51 z 23

Tl+

5N5

MH

F

893...523

w 2.10-15 w 3.10-16

w 23 w 38

Tl+

5N5

MH

F

873 . ..473

w

z 46

KI BC (OO1)TiGB

3.10-15

bUnreliable Reported, UR “Real, UR Reported RLSF No APs Pure ice ImM CsCl-doped ice Reported, pure ice RLSF Reported, 1 mM NaCl-doped RLSF Reported, 2 mM NaCl-doped RLSF Reported, 5 mM NaCl-doped RLSF Reported, 10 mM NaCl-doped RLSF No APs fl = 12s.. 14”, NTAP 0 = 1 . . .2”, NTAP ~9= 12... 14”, NTAP 6= l...2”,NTAP 6’ = 12e.e 14”, NTAP t’ = 12.e. 14”, NTAP

47 47 47

71Hl 71Hl

1.70.10-S

221.8

71Hl

7202 82Bl

3.46. 1O-3 5.40 * 10-4

231.4 232.2

7262 82Bl

85H2

Q0”)

81Rl

“56.15 “19.53

63Dl 63Dl

e 56.40

63Dl

48 48

7051 7051

Do CT) “2.50. 1O-4 “3.12. IO-’ “2.85. 1O-4

-

71Jl

48 -

7151

48 -

71Jl

-

7151

-

7151

48 -

61S4

5.50. IO- l2

72.36

61S4

-

67G2

-

41

6702

-

6801 6762

-

19

6762

-

68Gl 6762

-

42

66Dl

-

6762

-

39

6564

-

-

Matrix

Tracer

Purity (matrix)

Method

Eq.

T

W4J"

K

m3s-’

‘8 00. 1O-21 131 2 ‘3:67. lo-” 132:8 x 180

MgO PC

coz+

“95%

RP

-

1373 ... 1073

WS’

‘lCr3+

3N3

S(R)

W

1723 ... 1470

Qb

BC(001)TiGB

MgO PC

Ni2+

“95%

MO PC

14C 51Cr 13’Cs

3N5 3N5 2N7 3N7

“Fe

-

0 ‘SSW

3N5

K+

5N5

SP PC

NaCl

RP

DK AR SW EPMA

3.94.10-13 -

173.7 x 165

2.78. lo-” -

167.7 x 180

2.54. lo-l3 -

165.2 z 185

4.63. lo-l3 c5.95*10-20 ‘4.60. lo-”

182.2 166.0 164.9 297.9 171.1 310.5 230.1 233.8 175.7

-

1373*..1073

S BV BV V

1513...1203 1423 .a. 1273 1373e.e 1273 1873e.e 1408

S

1478.e. 1231

2.24. 1O-6 1.52.10-” 1.81. lo-lo cl.lO~lO-lg c1.70~10-1g 9.00. lo- *a

F S

1743a.o 1423 2173...2023 2423-e. 1973

1.13. lo-l3 c3.90~10-12 5.50.10-12 1.00~10-‘2

179.6 270.0 322.2 318.0

F

923-s-673

z 5.10-15

x 60

923.s.473

x 8.10-”

x 60

~4.10-‘~ y;P-‘e”

x60 38.92 x 23

BC(OOl)TiGB

22Na+

-

ss

Ni2+

5N5

MH

W F

696.s.623 923 s.0473

Remarks

Fig.

Ref.

kJ mol-’ Reported ’ Real 49 e = 5”, Diffusion 11(001) *Real 50 8 = Y, Diffusion I(OO1) *Real 50 e = w, Diffusion (( (001) aReal 50 e = 15”, Diffusion I(OO1) ’ Real 50 Reported aReal 49 300 ppm C Reported RLSF 300 ppm C, reported ’ Real 15.6 at.% 0 bQuestionable NPTAP 8 = 12-m. 14”, NTAP 0 = 12...14”, NTAP 8= l...2”,NTAP 0 = lo”, DFP, UR 6’ = 12.e. 14”, NTAP

51 51 51 51,60 -

DO

Q

m2 s-l

kJ mol-’

Ref.

-

85B3 8301

8301

-

-

-

8301

8301

-

-

-

-

85B3 76Ll 71Ml 71Ml 80G3

4.16.10-s 381.6 1.40*10-a 309.2 1.80.10-3 313.4 Not required

76Ll 71Ml 71Ml

74Ll

3.70.10-7

291.6

74Ll

51 51 51 -

84Nl 65Bl 81B4

-

-

3.18. 1O-4 5.00. lo- ‘I

472.4 380.7

65Bl 81B4

6762

-

48

6762

-

68Gl

-

-

-

68Gl 76H2 6702

-

-

‘4.73. 1O-9 -

=87.02 25

76H2 6702

NbPC

Ni PC

13’Cs 0.75 (Th,= melting point), several mechanisms have been proposed. The first concerns the non-locul swfire d$ir.sion of adsorbed atoms or complexes thereof [70B2]. This mechanism explains a non-linearity in the Arrhenius plot, i.e. an increase in activation energy and pre-exponential factor

Bonzel

Landolt-BCmstein New Series Ill.‘26

Ref. p. 7441

13.3 Anisotropy of surface diffusion

719

with rising temperature. The second mechanism is based on order-disorder transitions (below TM)at the surface which causesa non-exponential increase in the number of diffusable species.This process, also referred to as “surface melting”, leads to higher activation energies of surface diffusion at high temperatures and hence very large surface diffusion coefficients [69R, 85Bl] which are in fact observed experimentally (see 13.5).

‘13.3 Anisotropy of surface diffusion Surfaces of different crystallographic orientation exhibit different potential energy functions. Therefore the enthalpy of migration for adatoms (or terrace vacancies)depends on the orientation of the surface. For surfaces with C3”, C4”, C,, symmetry there is only one value of minimum HM per surface but for C,, symmetry there are two different enthalpies of migration Hy and Hy, representative of two orthogonal directions. Hence there are two kinds of diffusional anisotropy to distinguish: orientational and directional anisotropy of surface diffusion [6362]. Examples for anisotropic surfaces are illustrated in Fig. 3 for a fee crystal. Several low-index faces and a vicinal surface are shown in Fig. 3a where the symmetry is C3”, C,, and C,,. For all surfacesthe enthalpy of migration is expected to be different but surface diffusion is directionally isotropic for (111) and (100) orientations. Only for surfaceswith C,, symmetry, e.g.(110) and (112),a directional anisotropy is observed in addition to the orientational effect. In this case the surface diffusion coefficient is a tensor of second rank [Oij]. Due to the existence of two principal crystallographic axes in the surface the tensor may be transformed into a simpler form. If D, and D, are the maximum and minimum surface diffusion coefficients, respectively, then the diffusion coefficient in a direction @,where @is the angle relative to the direction of maximum diffusion rate, is given by D(Q) = D, cos’@ + D, sin’ @.

(13.12)

A plot of this function is presented in Fig. 3 b [78B3]. An example for the orientational anisotropy of intrinsic surface self-diffusion is shown in Fig. 4 which summarizes data obtained by FIM for Rh adatoms on five different Rh planes [74A]. The activation energies, listed in Table 1, are quite different for these surfaces resulting in several orders of magnitude difference in D, at a given temperature. On (llO), (311) and (331) surface diffusion is one-dimensional in (110) direction since these are surfaces of 2-fold symmetry. An experimental quantitative example for the directional anisotropy of Ni mass transfer diffusion on a stepped W(110) surface at 1170 K is shown in Fig. 5 [82G]. The diffusion is faster along the steps in [OOI] direction than perpendicular to the steps. Also there is a small difference in the diffusion coefficient for atoms jumping “up” compared to jumping “down”. The sameeffect is illustrated in Fig. 6 by scanning Auger patterns of Pd on a stepped W(110) surface that was allowed to diffuse for 15 and 50 minutes at 1028 K [79B]. Predominant spreading occurs parallel to the step direction. Another clear demonstration of the influence of steps on the directional anisotropy of surface diffusion is shown in Fig. 7 for Pd on a W(110) crystal with a slightly rounded surface [79B]. Becauseof this roundness there is a continuous step distribution on the surface with the center of this distribution corresponding to the actual (exact) (110) orientation. Circular Pd deposits (bright spots) were evaporated in a hexagonal array to serve as diffusion sources.The crystal was then annealed at 1050 K for 5 minutes, and the distribution of Pd was imaged by Auger electron spectroscopy.The more or lesselongated Pd distributions around each spot indicate the local step directions becausesurface diffusion occurs predominantly in directions parallel to steps [79B]. Hence this pattern illustrates the anisotropy of surface diffusion due to steps as well as the step distribution on this particular W (110) crystal. The anisotropy of surface self-diffusion is shown in Figs. 8 and 9 for Ni(ll0) and several Cu surfaces, respectively [78B3,81C]. The activation energy of surface diffusion is considerably lower for the (110) direction than for the (001) direction, Fig. 8. The data in Fig. 9 show concentration profiles of 64Cu plotted in semilog fashion. They were obtained after annealing various Cu crystals at a constant temperature of 820 K; anisotropy is observed for (llO), (331), and (511) surfaces [81C].

Land&-Blirnstein New Series III/26

720

13.4, 5 Cluster surface diffusion, Adsorbate-modified

surface self-diffusion

[Ref. p. 744

13.4 Cluster surface diffusion Adsorbed particles diffusing on a crystalline surface interact with each other and can occasionally form clusters. The correlated motion of such clusters, which are formed in the FIM by depositing atoms from the vapor phase (!tence: adlayer is supersaturated), has been studied in detail [SOEl, 88Tl]. Most information has been collected for surfaceswith a channel-like structure, such as W(21 I), but some data is available for W(110) [76Bl, 88w] as we!!. For channelled surfacesthe orientation of the cluster relative to the direction of the channel is important. For example, a diatomic cluster, with the two atoms in adjacent channels, diffuses with a rate that can be larger [76S] or smaller [78K] than that of a single atom. Figure 10 compares the diffusion of single adatoms and W, pairs on a W(211) surface [75G, 74E]. The activation energies are quite different such that at T-e 250 K the diffusion of W, pairs would exceed that of W monomers. For Re monomers and dimers on the same surface the activation energies of surface diffusion were found to be nearly equal, with the rate for pairs always slightly higher than for singles [76S]. The opposite is true for W self-diffusion on W(110); here the diffusion coe!!icients for single atoms are higher than for W, pairs [78K], as shown in Fig. 11.The corresponding activation energies are listed in Table 1. On surfacessuch as W(211) the orientation of the cluster is important. For dimers the two atoms can be in adjacent rows (“cross-dime?‘) or in the samerow. The examples cited above were for cross-dimers.The diffusion of in-row-dimers is usually quite slow compared to that of cross-dimers [85E]. The mobility of larger clusters is generally lower than that of dimers (pairs). Fig. 12 shows as an example the intrinsic surface diffusion coefficients of Pt clusters of various sizes on W(110) [76Bl]. The activation energies increase with increasing size of the cluster.

13.5 Adsorbate-modified surface self-diffusion The chemical composition of a metal surface, i.e. the exact knowledge of impurities on or near the surface, plays a very important role for the rate of surface self-diffusion. This has been documented in a variety of cases. Impurity effects may also occur for hetero-diffusion but these are less well studied. In al! cases one should distinguish results in which impurities have been intentionally introduced on the surface from those where unintentionally added, often unidentified impurities cause deviations from measurementson clean surfaces. Fig. 13 shows an example of intrinsic surfaceself-diffusion data from Ni(ll0) by FIM [801] where the emitter tip was annealed in either UHV or H, ambient. The result is a large increase in D, for the HZ-annealed samples. The directional anisotropy seemsto be of minor importance at theselow temperatures,perhaps becausean atom exchange mechanism [78Bl, 79H] is operative. The exact reason for the H, induced increase in !I is not known. Other drastic examples have been observed with mass transfer diffusion. Fig. 14 shows the increase in Cu self-diffusion with the sample exposed to a partial pressure of Bi [70Hl]. There are four orders of magnitude increase in D, at 1173 K. Similar increaseswere measured for other adsorbates,such as Pb, T!, and S on Cu or Ag surfaces[70Hl]. A summary Arrhenius plot is presented in Fig. 15. Very large surface diffusion coefficients above IO-’ m*/s are observed so that the authors proposed these diffusion coefftcients to be characteristic of partially molten surface layers [69R, 70Hl]. Not only metallic adsorbatescausean increase in D,. Fig. 16 shows that adsorbed Br on Cu also leads to very large surface self-diffusion coef!icients [71D]. The adsorbate effect seemsto change the activation energiesas well as the pre-exponential factors. Elements that reduce the melting point of the substrate generally cause an increase in D, and a decreasein Q. An example for the latter effect is seenin Fig. 17 for W self-diffusion in the presenceof surface Ni [73P, 76R2]. Surface impurities can also decreasethe rate of surface self-diffusion. Typical impurities of this kind are carbon: sulfur and oxygen [72P2,74B, 66A, 84Bl]. The rate of decay of a sinusoidal profile, as a measureof the rate of surface diffusion, is shown in Fig. 18 for Cu(l10) at 890 K in 0, ambient and in UHV or H, ambient [69Bl]. In UHV or H, carbon segregatesto the Cu surface and stops surface diffusion at this temperature but during 0, exposure the carbon is oxidized and removed, and surface diffusion proceeds with a normal rate. Since carbon is a frequently observed surface impurity under vacuum conditions (even in UHV) due to hydrocarbon cracking or carbon segregation from the bulk, it may often play a role as suppressor of surface diffusion. Other impurities, with melting temperatures higher than that of the substrate, may do the same.The critical concentration of theseimpurities for which a suppression setsin is not known becausesystematic studies of this effect have not been carried out. In view of these data it is understandable, however, that different samples (of

Bowel

Land&-Rknstein New Series 111’26

Ref. p. 7441

13.6,7 Cont. dependence in surface hetero-diffusion,

Measuring techniques

721

the same material), annealing history, surface cleaning procedures, vacuum or inert gas environments, etc. can generate different impurities on the surface and thus lead to a large variability in measured surface diffusion coefficients. In all likelyhood this is one of the main reasons for an apparently poor reproducibility in surface self-diffusion measurements.

13.6 Concentration dependence in surface hetero-diffusion For surface diffusion of adsorbed hetero-species in the sub-monolayer to monolayer coverage range one observesoften a strong coverage dependenceof surface diffusion coefficients [85N]. The reason for this behavior lies in particle interactions that may even lead to various ordered phasesat certain coveragesand temperatures. In other words, adlayers of strongly interacting particles are described by a 2-dimensional phase diagram. An example of this effect is given in Fig. 19 for adsorbed oxygen on W(110) [77B]. This figure shows the measured diffusion coefficient versus oxygen coverage at two different temperatures. The variation in D, is over two orders of magnitude. The maximum in D, at 0 M 0.4 is correlated with the growth of an ordered p (2 x 1) - 0 layer up to a maximum coverage of 0.5. A corresponding jump in free energy near 0 E 0.5 is expected to influence D, at this coverage becauseof a related sudden change in chemical potential [77B]. Becauseof such a behavior, the Arrhenius plot for 0 surface diffusion on W(110) is not simple, as shown in Fig. 20 [79C]. Several lines for constant 0 coverage are seen and concomitant changes in activation energies of diffusion can be recognized. A much more elaborate example for Li surface diffusion on W(110) is illustrated in Fig. 21 [82L]. Coverages range from 0.025 to 0.95. This case is convincing in a sensethat the concept of a simple Arrhenius plot for diffusion is no longer applicable. Possible values of D,(T) are not described by a single line but rather by a data field. A similar complicated caseis Ba diffusion on W(110) [88N]. Fig. 22 summarizes D, data versus Ba coverage for several different temperatures. For example, the variation in D, at 110 K is over 3.5 orders of magnitude. Ordered layers of Ba are indicated on the abscissaat several coverages.Becauseof this complex behavior there are large variations in Q and Do with coverage, as shown in Figs. 23 a and b [88N]. Not only are these values coverage dependent but they are temperature dependent in addition. For this reason two sets- at low and high temperature - are plotted in the figures. Most chemisorbed atoms or molecules on metal surfaces exhibit more or less strong interparticle interactions. One expects therefore that the coverage dependenceof surface hetero-diffusion is a general phenomenon. In this context one should note that some diffusion data obtained with techniques that evaluate concentration profiles should be looked at with considerable caution. Although the concentration profile may cover a large range of adsorbate coverage, the resulting D is usually quoted for an average concentration only. This is most likely an oversimplification.

13.7 Measuring techniques 13.7.1 Intrinsic surface diffusion In the experiments utilizing the techniques described below the mean diffusion distance is only of the order of 10 nm or less such that steps do not interfere (except reflect) with the intrinsic diffusion process.

13.7.1.1 The field ion microscope (FIM) is an ideal technique for observing intrinsic surface diffusion of isolated adatoms on a small perfect surface [57Ml], [66E]. Single adatoms are imaged with atomic resolution. By measuring the mean square diffusion distance (Ar”) for a given time of observation, t, the intrinsic diffusion coefficient is determined via

Di = $

(Ar2)

(13.13)

where u is either 2 or 4 for one- and two-dimensional diffusion, respectively. Measuring (Ar2) and t at various temperatures yields the temperature dependenceDi(?) and the activation enthalpy of surface diffusion, H”. This technique is suited for studying self- and hetero-diffusion. Adatoms are not generated thermally but condensed on the surface from an external source. In somecasesthe migration of dimers or larger aggregatesis investigated by FIM.

Land&-BBmstein New Series III/26

722

13.7 Measuring techniques

[Ref. p. 744

13.7.1.2 7%~field electron microscope (FEM) is a technique for measuring hetero-surface diffusion of adsorbed atoms 3r molecules when fitted with a small probe hole that allows a continuous monitoring of the emission current rrom a small area of the FEM tip, typically about 5 nm diameter [79C]. This emission current exhibits current fl~rct~rotiorlsbecauseof density fluctuations of the adsorbed species,causedby surfacediffusion in and out of this area.These fluctuations (or the electron emission flicker noise) are monitored by measuring either the spectral 3ensity [71K] or the autocorrelation function [7362]. The autocorrelation function of the probe hole emission :urrent [71K, 73621. X(t) = (6ln i(0) &In i(t))

(13.14)

is compared to the calculated density fluctuation correlation, f,(r) = (WO) W)>

(13.15)

where the changesin density, 6,1(t) depend on the surface diffusion coefficient Di. The value of Di is determined rrom a match between j.(r) and the experimental J(r). An extension of the autocorrelation measurementis the analysis of the emission statistics from two adjacent probe hole areas by applying a cross-correlation technique [82Dl, 88K]. The advantage is in information on correlations of adparticle movements in space and time. A disadvantage of these FEM current fluctuation techniques is the presenceof a high electric field during the diffusion measurement.It is not easy to prove that the diffusion process is not influenced by this field. These techniques require medium to high concentrations of adspecies.Hence the concentration dependence of Di can bc measured by evaluating the autocorrclation of the current fluctuations at various concentrations of adsorbed species(at a given temperature).

13.7.1.3 The scamir~g electron rmnelir~g microscope can in principle bc used to observe the diffusional displacement of single atoms on flat substrates [82B]. Experiments of this kind, however, have thus far not been reported, presumably becausethere are significant problems with thermal drift at elevated sample temperature. The STM can also be used as a monitor of tunneling current fluctuations across the electron tunneling region, similar to the FEM probe hole observations under 13.7.1.2.In this case current fluctuations due to diffusing foreign atoms or self-adsorbed atoms can be detected and correlated with the rate of surface diffusion. An example with oxygen on Ni(lOO) has been reported [86B, 86G]. The difficulty is here the distinction between diffusion events due to different species.

13.7.1.4 Intrinsic surface self-diffusion can also be studied by quasielastic scattering of low-energy He atom [88F]. The process is analogous to quasielastic scattering of thermal neutrons for measuring volume self-diffusion (compare section 1.6.2).When He atoms are reflected from a surface, some collisions occur with surface atoms that are in diffusive motion. These weakly inelastic collisions will cause a slight energetic broadening in the elastic peak. i.e. in the energy distribution of diffusely scattered He atoms. For random continuous surface diffusion a Lorentzian energy profile with a full width at half maximum (FWHM) is expected [88F, 89FJ: AE = 2hD(Ak)*

(13.16)

where Ak is the component of the momentum transfer parallel to the surface and D the intrinsic surface self-diffusion coefficient in the direction of the diffusion jump (momentum). The amount of broadening is small such that extremely good resolution is required. Also Ak becomes appreciable only at high temperature; therefore measurementsof D seemonly feasible at T/T, > 0.7. In this sensethey are a valuable complement to the FIM adatom technique. This technique has been applied to Pb surface self-diffusion [88F].

Bonzel

Landolt-B~mrtein New Series III.26

Ref. p. 7441

13.7 Measuring techniques

723

13.7.1.5 Relaxation measurements for studying surfacehetero-diffusion of adsorbed speciesare possible by techniques that are capable of distinguishing these speciesin different adsorption sites.The principle of the technique works as follows: A small amount of adsorbate is initially deposited on the surface in a non-equilibrium configuration, i.e. at sufficiently low temperature such that the attainment of equilibrium via surface diffusion is slow. The initially adsorbed speciesare distributed at random in low binding energy (“terrace”) and high binding energy sites (“defects”). At some annealing condition a redistribution from terrace to defectssites towards equilibrium will occur. Techniques that can distinguish adparticles in these two kinds of sites can be utilized to follow this process as a function of time. One of these techniques is He atom scattering from surfacesfor which the scattering cross section for terrace and defect site adsorbed speciesis vastly different [82P]. First a defect-rich surface is prepared by high-energy ion bombardment. Then a low concentration of an atom or molecule is adsorbed at such a low temperature that no surface diffusion takes place. The intensity of scattered He atoms in the specular direction decreasesdue to the presence of adspecies,see Fig. 24, which act as additional diffuse scatterers. On annealing the adspecies become mobile and diffuse to the defect sites where their binding energy is higher than on the flat part of the surface. As the flat parts of the surface becomeclean the intensity of scattered He in the specular beam increases again. The temperature dependenceof this intensity increase is evaluated to yield the pre-exponential factor and activation energy of intrinsic surface diffusion of the adspecies. Another elegant relaxation experiment is carried out with the combined use of a pulsed molecular beam (PMB) and a fast scanning infrared interferometer (IRI) [88R]. The PMB source is used to deposit a small amount of adsorbate on the surface kept at a certain temperature. The IRI follows a site-specific frequency of the adsorbate in real time, e.g. the C - 0 stretch frequency of adsorbed CO. Since CO in terrace sites and in defect sites is characterized by wavenumbers of 2087.5 cm- ’ and 2057.6 cm- ’ respectively, the redistribution of CO from random to equilibrium can be followed. The evaluation of this time dependenceyields the surface hetero-diffusion coefficient. In the example of CO on Pt(ll1) at low coverage an activation enthalpy of CO migration of 18.4 kJ/mol was found [88R]. A similar but not adsorbate-specific possibility for monitoring the surface diffusion from non-equilibrium adsorption sites to an equilibrium distribution exists with measurementsof the workfunction [83S]. This can be done for self-adsorbed atoms or hetero-adsorbed species. Atoms evaporated onto a metal surface at low temperature, typically 100 K, are nearly frozen in place. During warm-up they begin to diffuse and preferentially adsorb at step and kink sites. The work function measured during this process is seen to increase becausethe negative dipole moments associatedwith single atoms or small clusters on the flat terrace of the crystal are being eliminated. Depending on the size of the initial clusters (if they are not all single atoms) the measured surface diffusion can vary between intrinsic and mass transfer diffusion [83S].

13.7.2 Mass transfer surface self-diffusion For mass transfer surface self-diffusion experiments the mean diffusion distance is generally of the order of several pm; this means a relatively high temperature (T/T, 2 0.5) and a large amount of masstransport. Under those conditions someexchange between surface and bulk as well as evaporation occurs. Both of theseprocesses have to be taken into account in the evaluation. In particular the bulk diffusion coefficient will appear explicitely in the evaluation formulas.

13.7.2.1 Radio-active tracer technique (RAT) [70G]. A locally finite or semi-infinite source of radio-active material is deposited on a flat surface, preferably under ultra-high vacuum conditions to ensure cleanliness. Different kinds of sourcescan be used, such as point, edge and half-plane sources(compare chapter 12 on grain boundary diffusion). The concentration profile of the diffused tracer material has to be determined after a given diffusion time at constant temperature. A comparison of experimental concentration profiles and theoretical solutions of Fick’s equation then yields a value of the surface diffusion coefficient together with values of either volume or grain boundary diffusion coefficients. Although the surface diffusion coefficient is basically a mass transfer quantity, a comparison with other masstransfer self-diffusion data often shows poor agreement.This can be due to insufficient surface cleanliness in the caseof radiotracer experiments becausea poisoning of step and kink sites by impurities can lead to a lower apparent activation energy of surface self-diffusion. Evaluation formulas are given in chapter 12.

Land&-Biimstein New Series III/26

Bonzel

13.7 Measuring techniques

724

[Ref. p. 744

13.7.2.2 Copillnrity techiqrres. The principle of these techniques is eq. (13.3)where the chemical potential is given by the Gibbs-Thompson equation [63M]:

(13.17) P(K) = P(O)+ Y(Q QK where ~(0) is the orientation-dependent surface specific energy, Szthe atomic volume, and K the local curvature at the surface.Hence the clean surface has to be perturbed from its lowest energy contiguration in order to cause a mass flow at elevated temperatures from which a surface self-diffusion coefficient can be extracted. It is /essential to have a phenomenological solution of the diffusion equation. These solutions depend on the boundary conditions of the particular experiment that is set-up to measuresurface self-diffusion. Solutions are available for the following surface conditions and shapes: -

sinusoidal or general periodic profile (SPD) [59M] isolated ridge or groove [62K] grain boundary groove (i.e. flat surface of a polycrystalline material) (GBG) [57M2] linear surface facets [61M] conical points (field emitter tips) [65Nl, 87B3] contacting spheres (sintering) or voids inside a solid [65N2].

Most solutions are based on the assumption of a nearly isotropic (constant) surface free energy for the range of orientations present in the surface profile. However, this assumption is violated in caseswhere local minima in y(0), i.e. cusps, occur for low-index orientations. Under those conditions more involved solutions of the diffusion problem have to be used [75B2, 84B2, 84B3, 86P, 86VJ. The solution for the decay of a sinusoidal profile (SPD) by surface self-diffusion, for example, is given by [59M]: A(t) = A, exp(- Bw~I) (13.18) yD N f-2’ B= A, kT

2K WC-.1

where A is the amplitude and 1. the wavelength of the profile, N, the number of surface atoms per unit area? k the Boltzmann constant and t the diffusion time. By measuring the time dependence of the amplitude at constant temperature, the surface self-ditTusion coefficient D, can be determined. Since the profile can be prepared on any surface, the crystallographic orientation dependenceof D, can be measured by this technique. In addition the directional variation of D, on a given surface can also be studied because the profile is one-dimensional and governs the diffusion direction [78B3]. It is important for the above solution that A/i. 5 0.02 or that the slope of the profile is small compared to unity. For surface profiles with A/,? > 0.02 and in particular for orientations where y(0) is strongly anisotropic (in the vicinity of a cusp) a more complete formula for the chemical potential has to be used: m=m+Iy(O)+~}

(13.20)

QK.

Inserting eq. (13.20)into Fick’s law, eq. (13.3),and by using the continuity equation leads to the following differential equation (in one dimension) [84B2] $=g

[1 +($ry”

with

2

[y(O)+%]

(13.21)

ax [ 01

(13.22)

-2

(13.23)

& = j + !?! * “* dxK(x)=

K(x)

(1 +(gyj-3’2.

The differential equation (13.21) has been solved numerically for several functions y(0) [84B2, 84B3] and provided a basis for the evaluation of experimental results [86P]. The technique of the sinusoidal profile decay has the advantage that it is compatible with ultrahigh vacuum environment and surface cleanliness diagnostics. The amplitude can be measured via the intensity distribution of a diffraction pattern generated by the profile [68B2]. Such an in situ determination of A is important from the point of view of maintaining surface cleanliness throughout the entire experiment. Land&-BBmzbin New Series 111’26

Ref. p. 7441

13.7 Measuring techniques

725

The separation of contributions due to surface and volume diffusion as well as other processes,such as evaporation/condensation, viscous flow, is feasible by phenomenological equations [59M].

13.7.2.3 Scanning electron tunneling microscope (STM). This technique is not only capable of imaging single atoms or small clusters on flat surfaces but also larger irregularities, such as indentations or hills, with a lateral resolution of about 1 nm. These small irregularities change their structure due to the minimization of surface free energy, and these changes occur by surface self-diffusion. The process is mass transfer diffusion because adatoms have to be created at sourcesaway from the irregularity and adsorbed (annihilated) at the indentation, for example (or vice versa for a hillock). Such changes have been observed [88J, 88Sl]. It should be possible to generate some well-defined surface structures whose annealing can be observed by STM and evaluated by a phenomenological theory similar to those for macroscopic mass transfer studies.

13.7.3 Hetero surface diffusion - mass transfer 13.7.3.1 Radio-active tracer technique. The principle is the same as for surface self-diffusion (seesection 13.7.2.1for

further details).

13.7.3.2 Scanning techniques. These techniques apply to the typical surface diffusion geometry of an initial localized source of diffusing material A on a well-defined substrate surface B (similar to the geometry for radio-active tracers). The source can be a point or edge source. The diffusion from the source across the surface is treated by solving Fick’s equation with appropriate boundary conditions. Depending on the material A and B and also on the diffusion temperature, some loss of A into the bulk of B or into the gas phase by evaporation may occur and should be accounted for (compare chapter 12 on grain boundary diffusion). There are several scanning techniques with different surface sensitivity and lateral resolution; all of them work only under vacuum conditions: - scanning tunneling electron microscope (STM) with an intentionally degraded resolution of 1 nm, - scanning electron microscope (SEM), maximum resolution about 3 nm, - scanning Auger electron microscope (SAM) with a maximum resolution near 50 nm, - scanning secondary ion (SIMS) microprobe with a resolution of 0.1 pm, - scanning one-dimensional (wire) work function probe with a resolution of w 12 pm [77B], - local X-ray photoemission spectroscopy (XPS) with a resolution of 150 pm.

The techniques SAM, SIMS and XPS provide material-specific signals of highest surface sensitivity whereas the other techniques are indirect with regard to material specificity. In somecasesSEM or SAM is used in conjunction with the growth of thin films of material A on a substrate B [83V, 85F2]. The appearance of various growth forms of islands, depending on temperature, is linked to the energetics at the interface and to surface diffusion. The observation of particle growth or coalescenceas a function of time can be evaluated to yield surface diffusion coefficients [81D].

13.7.3.3 Laser induced thermal desorption (LITD) is suitable for relatively weakly adsorbed atoms or molecules on metal surfacessuch that they can be desorbed by a single laser pulse irradiating the surface. The experiment is carried out as follows [82V]. A clean well-defined metal surface in UHV at low temperature is exposed to a gas or atom beam to achieve a certain coverage.The temperature is then raised to the desired diffusion temperature which, however, should be well below the temperature for desorption. Then a single pulse of a focussed laser beam is aimed at the surface. The energy of this pulse has to be such that the temperature in the irradiated area increasesfar above the desorption temperature of the adsorbed speciesbut not so high that the metal surface becomesstructurally damaged.As a result of the laser pulse an area about equal to the diameter of the light spot will become (nearly) free of adsorbate. Becauseof the concentration gradient set up in this way surface diffusion of adsorbate from outside this area will begin and fill in the area cleared by the laser shot. After a certain elapsed time At a second laser pulse will desorb the amount of adsorbate that has diffused into this area. A measurement of this amount as a function of waiting time at constant temperature can then be evaluated to yield the surface diffusion coefficient.

Land&-Bijmstein New Series III/26

Bonzel

726

13.8 Systematics of surface diffusion coefficients

[Ref. p. 744

The solution of the diffusion problem based on cylindrical symmetry is [85G] S(t) = l-2

m J:(ua)

d

-

u

exp(- Dtu’) du

where S(t) is the normalized amount desorbing after time t from the circular area, a = the radius of the circular area,.I, the Besselfunction of the first kind. A typical value of a is 250...500 pm. This technique measuresa masstransfer diffusion coeficient becausethe diffusion distance is large compared to interstep distances on single crystal surfaces. Therefore diffusing atoms or molecules will sample sites of different adsorption energies. Since the initial coverage of the adsorbate can be varied, the concentration dependenceof D can in principle be determined. An important variation of the LITD technique involves the preparation of an adsorbate covered surfacewith a regular spatial modulation of the coverage. Such a square wave or sinusoidal wave modulated coverage (in one dimension) is produced by laser-induced desorption due to two laser beamsimpinging on the surface at the samelocation and interfering with each other. This optical interference causesa line pattern or grating where the adsorbed molecules are desorbed at maximum intensities and left unperturbed in the dark regions [882]. The grating is produced by a single laser shot with the sample held at temperature. The periodically modulated concentration profile wants to relax by surface diffusion towards a uniform coverage.This processis monitored by shining laser light (of lower intensity) at the grating and by measuring the diffracted intensity as a function oftime. To enhance surface sensitivity one utilizes the optical second harmonic of the incident wavelength [88ZJ. This novel technique was applied to surface diffusion of CO on Ni(l11). The arrangement of the one-dimensional grating on the surface permits the study of directional anisotropy of surface diffusion. On the other hand, reasonably large concentrations of adsorbate are needed to measure changes in the concentration profiles, just as with other relaxation techniques. Hence these techniques are not likely to be very suitable for the investigation of the coverage dependence of surface hetero-diffusion.

13.7.3.4 7%~jield electron microsrope (FEM) has been used to image the diffusion front of an adlayer of atoms or molecules advancing across a region of clean surface [58G]. In this mode of operation the whole emitter tip of the FEM is being imaged, with a resolution of about 2 ... 3 nm. The operation is similar to a scanning device except that the boundary between high and very low concentration of adsorbate can be seenmost clearly due to dilferences in local work function. There are complications with this procedure and the use of FEM tip geometries. First of all, the possibly strong concentration dependenceof surface diffusion leads to a more or less sharp boundary yielding different activation energies [58G]. In addition the surface is quite heterogeneous and curved so that curvature-related driving forces for surface diffusion should be considered. The evaluation of surface diffusion occurring with a sharp boundary is according to the observed mean square diffusion distance in one dimension, 2 = 2 fi, which is a further approximation because the tip geometry does not permit a truly one-dimensional motion of a diffusion front that has a finite width.

13.8 Systematics of surface diffusion coefficients The activation enthalpy of migration of a single adatom is defined as the enthalpy difference between the :quilibrium site and the saddle point configuration. Both of these enthalpies are related to the bond strength between two atoms of this material (energy of cohesion). This latter quantity can to a lirst approximation be derived from the enthalpy of sublimation (or evaporation at TM)of the solid, AH,,,. Therefore one expects the :nthalpy of migration to be a certain fraction of the enthalpy of sublimation. This is easy to understand for self-diffusion but for hetero-diffusion of different species on the same substrate metal one assumesa similar relationship to hold becausechanges in the adsorption enthalpy of different speciesare related to changes in their sublimation enthalpies. Therefore one compares HM of A on B to the enthalpy of sublimation of the adsorbed material.

Bonzel

Landott-Biirnsfein New Series Ill!26

Ref. p. 7441

13.9 Commentary to tables

727

A good demonstration of the utility of such a relationship are intrinsic surface diffusion data for several adatoms on W(211) [SSW]. The Arrheniusdiagram in Fig. 25 summarizes the results and shows that D, is the larger, the smaller AH,,, of the adatom material. The average ratio between HMand AH,,, for these measurements turns out to be 0.107(3). Data for AH,,, were taken from [86K]. Such a result is useful for estimating the activation enthalpy of adatoms that have not been measured. A further remarkable feature with the data in Fig. 25 is the close similarity of the pre-exponential factors Do which are about lo-’ m2/s as expected [SSW]. The same principal approach has been applied to mass transfer surface self-diffusion data [6762] in order to derive a general material-independent expression for the temperature dependenceof D,. Although in this case the activation enthalpy is equal to the sum of migration and formation enthalpy, both of these quantities are related to the interatomic bond strength and hence AH,,, which by itself is proportional to TM.Hence an Arrheniusdiagram of log D, versus TM/Tshould concentrate the data into a “narrow” data band for different metals. Such plots have been constructed independently for fee and bee metals [67G2, 75Bl] and are illustrated in Figs. 26 and 27, respectively. The result is a data band in both casesabout one order of magnitude in D,-width. It is interesting to seethat the activation enthalpy increaseson the averagewith increasing temperature. Various speculations as to the origin of this effect have been put forward: change in diffusion mechanism [6762], non-localized surface diffusion at high temperature [70B2], surface roughening [69Bl] or surface melting [69R] at high temperature. The latter idea has received further support by recent experiments [SSF,89F] and phenomenological theory [85Bl]. The usefulness of figures, such as 26 and 27, is however very limited. Becauseof the variability of surface self-diffusion with orientation, diffusion direction, and surface cleanliness one does not seriously expect data of such different origin to fall into a narrow range when plotted in this fashion. A good correlation could only result if all data were taken under equal conditions of measurement,such as for the intrinsic surface hetereo-diffusion on W(211) in Fig. 25. Adsorbate-modified surface self-diffusion coefficients (section 13.5) have also been compared and summarized in terms of a log D, versus T,/Tplot, as shown in Fig. 28 [70Hl]. Becauseof the presenceof the adsorbate the melting point of the substrate material in the surfacelayer is lowered below TMof the pure element. The lower melting temperature can be estimated from the bulk phase diagram of the B -A binary system,where A is the adsorbate and B the substrate element. For CuPb, for example, the monotectic temperature is 1227 K (compared to TM(Cu) of 1356 K). The Pb-enhanced surface self-diffusion data of Cu were hence plotted against TM/T, with TMchosen to be 1213 K [69R]. Similarly, for Cu(T1) and Ag(S) self-diffusion coefficients “melting” temperatures of 1233 K and 1073 K were assumed, respectively, corresponding to the monotectic temperature of 1241 K in the Cu-Tl system and to 1098 K for the bulk melting point of Ag,S. Under these assumptions the rather different data can be represented by a single curve in Fig. 28 which even corresponds to the samemedium curve in Fig. 26 for “clean” fee metals [67G2]. The implication of this fit in Fig. 28 is, however, that the surface layer of adsorbate covered Cu or Ag is molten at TM/T< 1. No independent proof of surface melting in these systemshas been given. Alternate explanations for the high diffusivities in Fig. 28 were given elsewhere [69Bl, 70B2, 75Bl].

13.9 Commentary to tables Measurements of surface diffusion data can be very reproducible for identical systemsif carried out under well-defined conditions. A convincing example is presented in Fig. 29 for Re diffusion on W(211) showing two independent measurementsin 1976 and 1988 [76S, 88Wj. On the other hand, a cursory inspection of the surface diffusion data listed in the following tables will frequently show a very large variation from one set to another for the same material. Actual values of D calculated from different sets of data for a certain temperature will sometimes vary over several orders of magnitude. A good example for this kind of variation is seenin Fig. 30 for Ni surface self-diffusion data [83B3]. The reason for this variation can be poor experimentation and surface quality control of one research group against another; but more likely there are physical reasons for the observed differences. The latter may be classified into five categories: a) b) c) d) e)

different diffusion coefficients: intrinsic and mass transfer surface impurities (also effecting r(0)) crystallographic surface orientation and diffusion direction orientation dependent faceting due to y(B) anisotropy (only for mass transfer diffusion) concentration dependence (only for hetero-diffusion)

Land&-Biirnstein New Series III/26

Bonzel

13.IO Surface diffusion tables

728

[Ref. p. 744

Becauseof (a) the data are listed in different tables, but even for the intrinsic diffusion data there may be principal differencesarising from the measurementtechnique and coverage(“tracer” versus “chemical” diffusion coefficient) [Sl Ml]. When comparing intrinsic and masstransfer diffusion data one should always rememberthe principal difference in activation energies (eq. 13.4),i.e. that mass transfer diffusion is governed by the sum of energy of migration and formation. Surface impurities can crucially effect surface diffusion coefficients, as outlined in section 13.5.Therefore it is possible that some disparities in different measurements arise from this source due to insufficient surface diagnostics. In the case of mass transfer diffusion impurities can alter y(0) and hence the measured product D,y(O) which cannot be unravelled without an independent measurement of y(0) itself. The other points (c)-(d) have been sufhcicntly discussed and demonstrated in sections 13.3 and 13.6. In summary, unequal diffusion data for the samematerial may not be a sign of poor reproducibility but rather be indicative of incomplete documentation of experimental details. Since documentation, particularly of surface composition and surface orientation, has generally improved during recent years, newer data have been preferentially included in the tables compared to older diffusion data.

13.10 Surface diffusion tables Table 1. Intrinsic surface diffusion data (self-diffusion, hetero-diffusion, cluster diffusion). Metal Diffusing (Substrate) species

Do m’/s

i/m01

Temperature Technique/Remarks range [K]

Ni(311) Ni (331) NI (1lo),,

Ni Ni NI

2.10-10 2.10-7 % 10-13

29 (3) 43 (3) 22 (4)

133...175 I%...182 145...185

Ni(IlO), Ni (1IO),, Ni(IlO),

Ni Ni Ni

z 10-l’ (% 10-S) (x 10-S)

31 (5) x 29 x 25

145...185 81 . ..90 81 . ..90

Ni(II1) Ni (100) Ni(ll1) Rh(111) Rh(311) Rh (1IO),, Rh(331) Rh(lO0) Ir(3Il) Pt(311)

Ni Ni S Rh Rh Rh Rh Rh Ir Pt

(2.10-s) 2.10-E 2.10-7 3.10-s 1.10-6 1. lo-’

107...114 53 ... 63 186...208 177.e.200 202,s. 222 300...324

(i0-J)

x 32 x 61 28.5 I5 (2) 52 (5) 58 (3) 62 (4) 85 (7) 89 67 (19)

Pt (I IO),, Pt(IlO), Pt (331) Pt(311) Pt (I IO),, Pt(llO), Pt(311) PI (1IO),,

Pt Pt Pt Ir Ir Ir Au Au

8. IO-’ 1.10-7 4.10-S 3.10-S -

81 (10) 75 (10) 81 (10) 71 (14) 77 (14) 77 (14) 54 (10) 61 (14)

Ta(ll0) W(ll0) W(321) W(211) W(211)

Pd w W w w

‘3”.;;e-6’)

47 92 84 54 73 (7)

-

l.lO-’ 2.10-i’ 3.10-s

Ref.

80T FIM FIM FIM, (110) diffusion direction (seeFig. 13) FIM, (001) diffusion direction FIM, (110) diffusion, H, treated FIM, (001) diffusion direction, H, treated (seeFig. 13) FIM; estimate FIM; estimate FIM; Do assumed 85K FIM (seeFig. 4) 74A only in (110) direction FIM FIM; Q estimated by assuming Do = k Ta2/2h (110) diffusion direction (001) diffusion direction

83Bl 78Bl

Q estimated by assuming Do = k Ta*/2 h

z 180 288...337 288...337 224...288 255...300

Bonzel

Q estimated by assuming Do = kTa2J2h FIM; Do assumed FIM FIM (seeFig. 10)

8882 66E 75G (continued) Land&-BCmstein New Series Ill:26

13.10 Surface diffusion

Ref. p. 7441

tables

729

Table I, continued

Q

Temperature range [K]

Metal (Substrate)

Diffusing species

Do m”/s

kJ/mol

W(211) W(321) W(ll1) W(211) W(110) W(110) W(ll0) W(ll0) W(l10)

w W w w, w w, w, w H

7.7. 10-7 1 10-E 2.10-15 6.2. 1O-7 1.4. 10-7 7.10-B x IO3 5.10-g

79.6 (25) 260 . . ,320 286 ... 335 79 (8) z 172 260 ... 295 36 (3) 86.9 (6) 295 ..I 320 307 . .. 345 88.8 283 ... 310 78 125 (19) 1135... 1290 143 ... 200 20

W(110)

D

1.3. 10-g

W(110)

0

4.5. 10-s

101

600...720

W(110)

0

lo-*

‘92

500 ... 570

W(l10) W(ll0) W(l10)

Si Ni Ni

3.1 . 10-S

250 ... 280

(2.10-y

68 (7) 47 47

W(211) W(110) W(110) W(110) W(211) W(321) W(l10) W(l10) W(211) W(211) W(211) W(321) W(211) W(110) W(110) W(211) W(211) W(211) W(211) W(l10)

Rh Pd Ta Ta Ta Ta Re Re Re Re Re Re Re, Ir Ir Ir Ir Ir Ir, Pt

3.3 . 10-7 4.4.10-6 9.10-12 1.9. IO-’ 1.5. 10-6 1 ’ 10-6 2.2. lO-7 7.3 . 10-8 4.8. IO-’ 4.5.10-8 8.9 . lo-’ 1 .10-g 2.7. IO-’ 6.1 . IO-’ 5. lo-” 9. lo-” 3.10-7

51.9 (17) 49 68 75 47 65 100 ,97 85 83 80.4 (21) 85 75 75 68 56 64.5 (17) 51 66 65 (6)

W(ll0) W(110) W(110) W(211) W(211) W(211) W(321) W(321) W(ll0)

Pt, Pt, Pt, MO MO MO MO MO, Xe

9 ’ 10-8 1.5. ‘10-7 5.10-7 2.4. 10-l’ 9.3 . lo-” 2.0. 10-7 1.2.10-” 2.3. lo-l6 7. lo-l2

65 (6) 77 (15) 84 (15) 54 55 68.7 (21) 53 25 4.6 (13)

Land&Bhstein New Series III/26

19.7

90.‘.. 180

IgO...

290.. .350 295 . . .360

230 ... 285

220 .. .260 235...260 285 ... 320 300... 335

235 ... 285

54 ‘. ’ 72

Bonzel

Technique/Remarks

Ref.

FIM (see Fig. 25) FIM FIM FIM (see Fig. 10) FIM (see Fig. 11) FIM (see Fig. 11) FIM FEM; removal of edge atoms FEM-CF; at T-e 140 K nearly constant D due to H tunneling FEM-CF; coverage = 0.5; constant D at T< 90 K FEM-CF; coverage z 0.6; also data on directional anisotropy FEM-CF; coverage 0.56; extensive data on coverage dependence (see Fig. 20) FIM FIM FIM; Do assumed; cluster formation at higher temperature FIM (see Fig. 25) FIM FIM FIM FIM FIM FIM FIM FIM FIM (see Fig. 29) FIM (see Fig. 25; 29) FIM FIM FIM FIM FIM FIM (see Fig. 25) FIM FIM FIM (see Fig. 12)

88W 75G

FIM FIM FIM FIM FIM (see Fig. 25) FIM FIM FEM current fluctuation,

75C, 78K 75C, 78K 75Tl 8682 80D 85T

79C

82C 78B2 87Kl 88W 78B2 75T2 70Bl

70Bl 73T 70Bl 76s 88W 70Bl 76s 70Bl 75T2 79B 88W 76Rl 76B1, 70Bl

70Bl 75s 88W

0 = 0.3 8OC

730

13.10 Surface diffusion tables

[Ref. p. 744

Table 2. Mass transfer surface self-diffusion data. Metal

DO

(Substrate) m’/s

Q

Environ- Temperature Technique/Remarks ment range [K]

Ref.

kJ/mol

84C

Gd DY Nb Nb Ta Ta Ta Ta Ta(C)

4.3. 10-s 2.2 31O-3 -

160 (IO) 99 (19) 229 (9) 193 (11) 232 (19) 252 280 267 473

Vat Vat Vat Vat; Ar Vat Vat Vat Vat Vat

Cr CrRe MO Mo(ll0) Mo(lO0) Mo(ll0) Mo(lO0) MO MO (Cl MO(C) MO MO MoRe W

8.3. IO-’ 1.1 . 1O-4 3.9. lo-’ 5.5.10-3 8.9. lo-’ 4.10-2 2.9 1.6. lO-4 9 10-4 3.7.10-2 3.10-s 6.9. IO-* 1.5. lO-3 4.10-4

209 218 216 309 376 289 (42) 402 (8) 234 236 315 202 321 244 303

Ar Ar; He Ar Ar Ar Vat Vat Ar Ar Ar Vat Vat Ar; He Vat

W W W W W(lO0)

8.5. 1O-4 1.1 . IO-’ 2.10-5 8.9. lO-5 7.6

327 132 222 264 536 (33)

Vat Vat H2 Ar Vat

W W W(C) W(Si)

9.10-S -

290 299 820 676

Vat Vat Vat Vat

Re Fe Rh(ll1) Ir(ll1) Ir Ni Ni Ni (100)

5.10-6 5.10’ 4.10-6 8. IO-* 2.6. lO-4

216 250 174 222 188

Vat; Ar H2 Vat Vat Vat Vat Vat Vat

2270.. .2770

Ni (1IO) Ni(ll0) Ni(ll0)

1.3. 10-3 168 (4) 2.4. 1O-3 179 (4) 2.lO-‘j 85

Vat Vat Vat

1196... 1725 1196...1725 IOOO...1380

4.2. lo-*

Vat

1380...1522

;; (IO) 149 (7)

200

547 .+. 647 FEM 481 ‘1. 662 FEM FEM protrusion decay 1470. .. 2570 GBG (seeFig. 27) 1200... 1400 FEM protrusion decay FIM ring rate FEM ring rate 1600.** 2400 FEM tip blunting FEM; Q variable with amount of surface C 1470... 1670 GBG; near (100) (seeFig. 27) 1620...2070 GBG; 35 at % Re 1470..*2770 GBG; near (100) 1870...2670 GBG 1870...2670 GBG 2200.. .2400 SPD 1900.. .2400 SPD (seeFig. 27) 1500... 2770 GBG (seeFig. 27) 1820..*2620 GBG; 0.02 at % C 1820...2620 GBG; 0.003 at % C 1500... 1800 FEM tip blunting 1800...2380 1820...2570 GBG; 33 at % Re x 1832... FEM tip blunting (seeFig. 27) 2700 2870.9.3270 GBG 1970...2570 ‘*‘W tracer SPD, GBG 1970...2770 GBG; near (100) 2600.. *3150 SPD (seeFig. 27) 2100...2850 1900~~~2300

1200... 1500 1700~~~2100 738 ... 1000 510... 750 1070... 1470 1196... 1725

680 72A 68P 65B 74B 81H 74B 69A2 66A 69Al 69A2 70s 72A 66A 76B2 66A 60B 66A 66N 67H 69Al 69B2, 70s 74B 74P 74B

FEM FEM tip blunting FEM; Q variable with amount of surface impurities (C; Si) 72A GBG (seeFig. 27) SPD 642 FEM ring rate 68Bl FEM ring rate FIM ring rate 64B2 FEM protrusion decay 67M2 Single scratch decay (seeFig. 30) 61B SPD; (110) direction 67Ml (seeFigs. 26; 30) SPD; (001) direction SPD; (110) direction SPD; (233) direction 68B2, (seeFigs. 26; 30) 69Bl SPD; (233) direction (seeFigs. 26; 30) (continued)

Iandolt-Bkmstein New Series 111126

Ref. p. 7441

13.10 Surface diffusion tables

731

Table 2, continued Metal DO (Substrate) m2/s

Q

Environment

Temperature Technique/Remarks range [K]

Ref.

kJ/mol

Ni Ni Ni Ni (100) Ni(ll1) Ni(lOO) Ni(ll0) Ni(ll0)

10-6 2.10-2 7.5. 1O-4 8.7. IO-’ 4.101 1.1 . 101 lo2 4.7.10-2

84 199 148 251 269 (19) 270 (11) 278 (29) 188

Vat Vat Vat Vat Vat Vat Vat Vat

1225... 1380 1380... 1690 1073... 1473 1073... 1473 1400. .. 1600 1400... 1600 1400... 1600 1023... 1570

69M

Ni(ll0) Ni(ll0) Ni(ll1) Pt Pt Pt (110) cu cu cu cu

9.10-7 5.10-2 3.10-2 4.10-7 4.0 2.9. 1O-4 6.5. 1O-2 1.8 1.4 10

73 188 159 (17) 108 (10) 90 309 164 171 (8) 203 219 228

Vat Vat Vat Vat Vat Vat Vat H2 H2 H2

773 . .. 1150 1253... 1570 887...1113 1160.. .I580 510...750 1250... 1750 1200...1750 993 . . .1343 1084...1342 1084... 1342 1123... 1333

cu

10-5

cu cu Cu(ll0)

2.10-5 3.10-2 103

75 160 264

02 H2 Vat; H,

Cu(ll0) Cu(ll0) Cu(ll1) Cu(100)

2.6. 1O-5 5.10-2 2.6. 1O-4 2.5. 10-l 2.5. 1O-4

87 250 106 160 117

Vat Vat Vat Vat Vat

780... 1220 920... 1100 750.. . 1100 793... 873 793... 873

Ag

IO4

264

H2

873 ... 1173

Ag Au(110)

5.103 1 . IO2

266 227

H2 HZ2

988...1112 1138. .. 1329

Au Au

8. lo2 -

272 42 . . .84

Vat Vat

1200... 1300 545... 885

Ag

3.10-5

Vat

580...730

Land&-BBmstein New Series III/26

92

49

H2

H2

673 . . .1273 673 ... 1273 870... 1300 1220.. .1330

SPD, random (seeFig. 26; 30) SPD, GBG SPD (seeFig. 30) SPD SPD (seeFig. 30) SPD; (001) direction (seeFigs. 8; 30) SPD; (110) direction (seeFig. 8) SPD; (110) direction (seeFig. 8) 63Ni tracer (seeFig. 30) SPD (seeFig. 26) FEM protrusion decay SPD; (001) direction SPD; (110) direction GBG (seeFig. 26) GBG, near (111) GBG; near (100) Scratch smoothing; near (100); similar data for near (111) GBG; single scratch smooth; similar data for low H, pressure GBG; 5 . lo-’ torr 0, SPD; near (110) SPD (seeFig. 26) SPD SPD; (001) SPD; (110) direction 64Cu tracer; assuming 6 = 2.10-l’ m for thickness of diffusion layer GBG; also influence of S (seeFig. 15) GBG SPD; other orientations show similar activation energies (seeFig. 26) SPD 1g8Au tracer, non-linear Arrhenius-plot l1 ‘Ag tracer

8OJ 76A 78B3

69W 62B 67M2 86P 61G 62C 63s 64Bl

68B3 69B1, 73B 85Fl 72Pl 67P 70H2 65G2, 67Gl 68M 63Gl

13.10 Surface diffusion tables

732

[Ref. p. 744

Table 3a. Mass transfer surface hetero-diffusion, metallic adsorbates. Environ- Temperature Technique/Remarks Q kJ/mol ment range [K]

Diffusing Metal (Substrate) species

Do

W(II0)

Li

10-7

9.6

Vat

114.**150

W(I12)

K

3.10-s

44.4

Vat

960 ... 1300

W(I12)

K

3.10-s

73.4

Vat

850 ... 1000

W(I12)

K

1.7.10-i

53

Vat

W(I12)

K

-

40

Vat

Ni

K

-

43

Vat

W(IOO) W(IO0) W(100) W(II0)

K Rb cs Ba

83 (8)

Vat Vat Vat Vat

820 ... 1180 820 ... 1180 820 . . .1180 loo... 170

W(II1) W(IO0)

La In

Vat Vat

645 ... 862

w W(II0)

Pd Pd

w

cu

6. IO-9

71 (8) Vat

w

Pb

1.10-9

58

Vat

350...550

MO cu

cu Ag

8.7. IO-’

52

Vat

% 10-s

73 (I 5) Vat

770 ... 1070 523...713

Ni

Ag

2.2. 1O-3 67

m*/s

6 ’ 1O-4 1.6. IO-’ 6.10-4

x 10-4 6.4. IO-’

-

87 79 16.4

280

106 100 167... 188

Vat Vat

Vat

395...490

470..*545

870 ... 1I70

500...708

Bowel

Ref.

WF; data are strongly coverage dependent, here for 0 = 0.15 (seeFig. 21) Surface ionization microscope, in (1 I I) direction Surface ionization microscope; in (I 10) direction FEM current fluctuation; coverage 0 = 0.3 FEM current fluctuation in (110) direction FEM current fluctuation increasein Q due to coadsorbed sulfur thermal ion microscope thermal ion microscope thermal ion microscope WF; strong coverage dependence; here for 0 = 0.3 (seeFigs. 22; 23) FEM SAM; strong coverage dependence; here for 0 = 0.25 FEM; curved surface SAM; directional anisotropy; also Au diffusion (seeFigs. 6; 7) FEM; also data near (I IO) and (100) vicinals FEM’probehole; strong coverage dependence; here for Pb surface concentration of x 6 * lOi atoms/cm*; also data in presenceof C SIMS Vapor deposition/oxidation for (100) and (1I I) orientations; for (110) higher values (factor IO) and directional anisotropy ‘i”Ag tracer

82L 83B2

87BI 87B2 85B2 74K 88N

87K2 86M2 84R 79B 65M 8IM2, 8IM3

70A 73R

63GI

LandokBRmslein New Serk 111’26

Ref. p. 7441

13.10 Surface diffusion tables

733

Table 3 b. Mass transfer surface hetero-diffusion, non-metallic adsorbates Diffusing Metal (Substrate) species

Do m2/s

keJ/mo*

Rh(lll)

D

8 ’ 1O-8

15.5...18.0 150...280

Ni(lOO) Ni(lOO) Ni(lOO) Ru(001) Ru(001) Ru(001) Pt(ll1)

H H D H H D D

4.5. 10-7 2.5. lO-7 8.5. 1O-7 6.3 . 1O-8 7.9. 10-E 4.6. IO-* 5.10-5

17 (2) 14.7 18.4 16.8 (20) 15.5 (20) 17.2 (20) 29

W(110) W

H H

1.8. lo-’ 3.2. IO-’

25 40...67

W(ll0)

0

3.8. IO-’

113

933 ... 1153

W(110) W(411)

0 0

3.10-5 3.1b-7

101 220

917 ... 1310 1040... 1440

W(110)

0

3.10-6

104

W

0

8.2. 1O-3 126

W(110) Cu(100) Ni(lOO) Ni(ll1) Ru(001)

N co CO CO CO

1.4.10-6

Rh(lll)

CO

W(110) Pt Ru (001) Ru (001) Ru (001)

co co c-propane c-pentane c-hexane

Land&Biirnstein New Series III/26

Temperature Technique/Remarks range [K]

223...283 211...263 211...263 260...330 230...270 260...300 200...250

6.10-5 1.2.10-g 6.10+

88 8...13 21 29 26

800...900 140 211...263 219...261 210...290

10-6

29.3

240...370

-

151 44 8.4 13.8 18.8

-

256...290

LITD; coverage range 13= 0.02 ... 0.33; data also for H LITD; low coverage LITD LITD LITD LITD; coverage dependence LITD LITD; Q and Do strongly coverage dependent; here 0 = 0.33 FEM; boundary diffusion FEM; boundary free diffusion (low coverage) WF probe; Do and Q coverage dependent; here 0 w 0.4 (seeFig. 19) SEM SEM; also Q data for W (320); coverage dependence FEM; boundary diffusion; similar Q for W (100) FEM; boundary-free diffusion (low coverage) AES LITD; estimate of Q LITD Optical diffraction (grating) LITD; coverage dependence; here for 0 w 0.58 LITD; coverage dependence; here for 8 = 0.40 FEM; boundary diffusion FEM; boundary diffusion LITD; Do assumed as lOA m2/s

Ref. 88S3 85G 87M3 86Ml 87M2 87Ml 86Sl 58G 77B 80B 58G

77P, 80El 82V 86M3 882 88D 8833 58G 67L 88M

134

33 Surface diffusion on metals (Figures)

[Ref. p. 744

Figures for 13 Terrace

Kink ,/ ,/’

.-f lf3

Mo;afomicstep Step od/otom

Terrace vocincy

a -
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF