Differential+Equation+[Practice+Question].pdf
Short Description
Differential+Equation+[Practice+Question].pdf...
Description
IIT – ian’s
P A C E
216 - 217 ,2nd floor , Shopper’s point , S. V. Road. Andheri (West) Mumbai – 400058 . Tel: 26245223 / 09
Practice Question Question based on
Q.1
LEVEL –1
Order and Degree of Differential Equation
(C) dy + dx = 0
(A) 1 Q.8
(B) 2
differential
(C) 3
equation
(D) 6
The order of the differential equation whose
(C) 1
(D) None of these
Q.9
The differential equation of all circles of radius a is of order(A) 2 (B) 3 (C) 4 (D) None of these
Q.10
The order of the differential equation of all circles
(B) 1, 1 (D) 2, 2
The order and degree of the differential equation 2
dy dy y=x + a 2 b 2 isdx dx
(A) 1, 2 (C) 1, 1
of radius r, having centre on y-axis and passing through the origin is(A) 1 (B) 2 (C) 3 (D) 4
(B) 2, 1 (D) 2, 2 Q.11
The order and degree of the differential equation dy 2 4 dx
2/3
=
4
– 4
(B) 3, 3 (D) 3, 2
d 3y
dx dx respectively(A) 4, 1 (C) 1, 1
3
+ 8
d2y dx
degree
d2y
dy +3 dx dx
are-
dx 2
The order and the degree of differential equation d4y
The 2
d2y
(A) 2, 2 (C) 2, 3
Q.6
the
solution is y = a cos x + b sin x + ce–x is(A) 3 (B) 2
The order and degree of differential equation
(A) 1, 2 (C) 2, 1
Q.5
of 3
(D) None of these
1 y 2 dx + y 1 x 2 dy = 0 are respectively-
Q.4
degree
2
d y dy (A) x – x + a = 0 (B) + xy = 0 dx 2 dx
Q.3
The
d2y dy + 1 = 0 is 2 dx dx
A differential equation of first order and first degree is2
Q.2
Q.7
Differential Equation
2
– 8
dy + 4y = 0 are dx
(B) 1, 4 (D) None of these
(A) 1 (C) 3 Q.12
of 2
the
differential
equation
d2y = x2 log 2 is dx
(B) 2 (D) None of these
The differential equation 2
4 d2y dy x 2 + + y = x2 is of dx dx
(A) degree 2 and order 2 (B) degree 1 and order 1 (C) degree 4 and order 3 (D) degree 4 and order 4
The order and degree of differential equation (xy2 + x) dx + (y – x2 y) dy = 0 are(A) 1, 2 (B) 2, 1 (C) 1, 1 (D) 2, 2
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
1
Question based on
Q.13
Linear and Non-linear Differential Equation
Q.18
Which of the following equation is linear? (A)
dy 2 dy (A) y 1 = 2x dx dx
dy + xy2 = 1 dx
dy 2 dy (B) y 1 = 2x dx dx
dy (B) x2 + y = ex dx
(C)
dy + 3y = xy2 dx
(D) x
(C)
Which of the following equation is non- linear(A)
dy = cos x dx
(B)
Q.15
d2y 2
+y=0
Which of the following equation is linear ? 2
d2y (A) 2 + x2 dx
(B) y =
dx
2
(C) Q.20
dy =0 dx
dy dy + 1 dx dx
d y
2
dx 2
Q.17
dx 2
+ 9y = 0
d2y dx
2
d2y dx 2
–x
dy =0 dx
+x=0
(A) 2xy
dy + x2 = y2 dx
(B) 2xy
dy + x2 + y2 = 0 dx
dy + x2 = y2 dx
(D) None of these
(D)
d2y
Q.21
dx 2
The differential equation of all parabolas whose axes are parallel to y- axis is(A)
(C)
d 3y dx
3
d 3y dx
3
=0
+
Q.22
d2x dy
2
=0
(D)
d2x dy 2 d2y dx
2
=c
+2
dy =c dx
The differential equation of family of curve y = Aex + Be–x , where A and B are arbitrarily constants, is (A)
d2y dx
2
+y=0
2
dy + =0 dx
(B)
– 9y = 0
The differential equation of the family of curves represented by the equation x2 + y2 = a2 isdy dy (A) x + y =0 (B) y =x dx dx (C) y
(D)
dx
2
The differential equation of the family of curves
(C) xy
y = 4 sin 3x is a solution of the differential equationdy dy (A) + 8y = 0 (B) – 8y = 0 dx dx d2y
=0
d2y
represented by the equation (x – a)2 + y2 = a2 is-
Formation of Differential Equation
(C)
(B)
2
dy y + = log x dx x dy (D) y –4=x dx
Q.16
dy =0 dx
dy –x=0 dx
(C)
Question based on
+2
2
dy dy (D) + 3 +y=0 dx dx The differential equation of all the non-vertical lines in the xy- plane is-
(A)
dx dy 3 (D) x + = y2 dx dy / dx
(C) dx + dy = 0
d2y
3
dy + y2 = sin x dx
Q.19 Q.14
The differential equation of the family of curves y2 = 4a (x + a), where a is an arbitrary constant, is-
(D) None of these
(C) y
d2y dx 2
(B)
d2y dx 2
=y
2
dy – =0 dx
(D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
2
Q.23
Q.24
The differential equation for the line y = mx + c is (where c is arbitrary constant)(A)
dy =m dx
(B)
(C)
dy =0 dx
(D) None of these
Q.29
(D) y = ex cos x + c
Q.30
d2v
(B) y =
d2v
(C) y =
Q.31 Variable separable method
dy x = isdx y 2
(A) – = c (C) x2 + y2 = c
Q.27
Q.28
The solution of the differential equation
(A) y = tan (x2 + x + c)
2
y3
x2 log x – x2 + c 2
dy = (1 + x) (1 + y2) isdx
The general solution of the differential equation
x3
x2 +c 2
1 2 1 2 x + x log x + c 2 2 (D) None of these
2 dv (C) + =0 2 r dr dr (D) None of these
Q.26
dy = x log x isdx
(A) y = x2 log x –
2 dv (B) – =0 2 r dr dr
Q.25
The solution of
d2v
1 dv (A) + =0 2 r dr dr
Question based on
dy = ex (sin x + cos x) isdx
(A) y = ex (sin x – cos x) + c (B) y = ex (cos x – sin x) + c (C) y = ex sin x + c
dy +m=0 dx
The differential equation of the family of curves v A = + B, where A & B are arbitrary constants, isr
The solution of
(B) y = tan (2x2 + x + c) (C) y = tan (x2 – x + c) x3
y3
(B) + = c (D) x2 – y2 = c
The general solution of the equation (ey + 1) cos x dx + ey sin x dy = 0 is(A) (ey + 1) cos x = c (B) (ey – 1) sin x = c (C) (ey + 1) sin x = c (D) None of these The solution of the differential equation dy = sec2 x dx is(A) y = sec x tan x + c (B) y = 2 sec x + c 1 (C) y = tan x + c (D) None of these 2 The solution of the differential equation dy (1 + x2) = x isdx (A) y = tan–1 x + c (B) y = – tan–1 x + c 1 (C) y = loge (1 + x2) + c 2 1 (D) y = – log e(1 + x2) + c 2
x2 (D) y = tan x c 2
Q.32
The
solution
x sec y
of
the
differential
equation
dy = 1 isdx
(A) x sec y tan y = c (B) cx = sec y + tan y (C) cy = sec x tan x (D) cy = sec x + tan x Q.33
The solution of the equation dy 1 y2 + = 0 isdx 1 x 2
(A) x 1 y 2 – y 1 x 2 = c (B) x 1 y 2 + y 1 x 2 = c (C) x 1 y 2 + y 1 x 2 = c (D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
3
Q.34
Solution of the equation cos x cos y
Q.39
The solution of the differential (1 + cos x) dy = (1 – cos x) dx isx (A) y = 2 tan – x + c 2 (B) y = 2 tan x + x + c x (C) y = 2 tan + x + c 2 x (D) y = x – 2 tan + c 2
Q.40
If
Q.41
The solution of the differential equation sec2 x tan y dx + sec2 y tan x dy = 0 is(A) tan x = c tan y (B) tan x = c tan (x + y) (C) tan x = c cot y (D) tan x sec y = c
Q.42
The solution of
dy = – sin x sin y isdx
(A) sin y + cos x = c (B) sin y – cos x = c (C) sin y. cos x = c (D) sin y = c cos x Q.35
The
general
2
d y 2
=–
1 2
solution
of
the
equation
is-
dx x (A) y = log x + c1x + c2
(B) y = – log x + c1x + c2 1 + c1x + c2 x (D) None of these
(C) y = –
Q.36
Q.37
The general solution of the differential equation dy ey + (ey + 1) cot x = 0 isdx (A) (ey + 1) cos x = K (B) (ey + 1) cosec x = K (C) (ey + 1) sin x = K (D) None of these
x3 +c 3 (C) ey = ex + x3 + c
Q.38
x2 + log cos x + c 2
(B) y = ex + sin x +
x2 + log sec x + c 2
(C) y =
ex
x2 – sin x + + log cos x + c 2
(D) y = ex – sin x +
x2 + log sec x + c 2
= 0, then1 x 2 (A) y + sin–1 x = c (B) y2 + 2sin–1 x + c = 0 (C) x + sin–1 y = 0 (D) x2 + 2 sin–1 y = 1
dy 3e 2 x 3e 4 x = isdx e x e x
The general solution of differential equation dy (4 + 5 sin x) = cos x isdx 1 (A) y = log |4 + 5 sin x| + c 5 1 (B) y = log |4 + 5 cos x| + c 5 1 (C) y = – log |4 – 5 sec x| + c 5 (D) None of these
Q.44
The general solution of differential equation dy = log x is dx (A) y = x (log x + 1) + c (B) y + x (log x + 1) = c (C) y = x (log x – 1) + c (D) None of these
(D) None of these
(A) y = ex + sin x +
1
Q.43 (B) ey = ex + 2x + c
The solution of the differential dy = ex + cos x + x + tan x isdx
dy + dx
(A) y = e3x + c (B) –y = e3x – c (C) y = – e3x + c (D) None of these
The solution of the equation dy = e x–y + x2e–y isdx (A) ey = ex +
equation
equation
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
4
Q.45
Q.46
The general solution of differential equation dy = sin3 x cos2 x + x ex isdx 1 1 (A) y = cos5 x + cosec3 x + (x + 1) ex + c 5 3 1 1 (B) y = cos5 x – cos3 x + (x – 1) ex + c 5 3 1 1 (C) y = – cos5 x – cos3 x – (x – 1) ex – c 5 3 (D) None of these The solution of the differential x(e2y – 1) dy + (x2 – 1) eydx = 0 is(A) ey + e–y = log x –
x2 +c 2
(B) ey – e–y = log x –
x2 +c 2
(C) ey + e–y = log x +
x2 +c 2
Q.50
Q.51
The
solution
(1 + x2)
the
differential
equation
of
the
differential
equation
dy = x (1 + y2) isdx
(A) 2 tan–1 y = log (1 + x2) + c (B) tan–1 y = log (1 + x2) + c (C) 2 tan–1 y + log (1 + x2) + c (D) None of these Q.52
Solution of the equation (ex + 1) y dy = (y + 1) ex dx is(A) c (y + 1) (ex + 1) + ey = 0 (B) c (y + 1) (ex – 1) + ey = 0 (C) c (y + 1) (ex – 1) – ey = 0 (D) c (y + 1) (ex + 1) = ey
Q.53
1 (B) tan–1 x – log (1 + x2) 2
(C) tan–1 x +
of
(A) ey = sin x + 1 (B) ey = cosec x + 1 (C) ey = cos x + 1 (D) ey = – sin x – 1
equation
The solution of the differential equation (1 + x2) (1+ y) dy + (1 + x) (1+ y2) dx = 0 is(A) tan–1 x + log (1 + x2) + tan–1 y + log (1 + y2) = c
+ tan–1 y –
solution
dy = e–y cos x, given that y (0) = 0 is– dx
(D) None of these Q.47
The
1 log (1 + y2) = c 2
The solution of the given differential equation dy + 2xy = y isdx (A) y = ce x x
2
(B) y = ce x
1 + log (1 + y2) = c 2 (D) None of these
Q.54
x
(D) y = ce x
(C) y = cex
1 log (1 + x2) + tan–1 y 2
2
2
d2y
= sec2 x + xex isdx 2 (A) y = log (sec x) + (x – 2) ex + c1x + c2 The solution of
(B) y = log (sec x) + (x + 2) ex + c1x + c2 Q.48
Q.49
The solution of y dx – x dy = 0 is(A) x = cy (C) x = c log x The
solution
dy + y = y2 isdx (A) y = 1 + cxy (B) y = log (cxy) (C) y + 1 = cxy (D) y = c + xy
x
the
differential
equation
(C) y = log (sec x) – (x + 2) ex + c1x + c2 (D) None of these
(B) xy = c (D) None of these of
differential
Q.55 equation
The equation of the curve which passes through 2y the point (1, 1) & whose slope is given by , is x (A) y = x2 (B) x2 – y2 = 0 (C) 2x2 + y2 = 3 (D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
5
Q.56
Q.57
Q.58
Equation of curve passing through (3, 9) which satisfies the differential equation dy 1 = x + 2 , isdx x (A) 6 xy = 3x2 – 6x + 29 (B) 6 xy = 3x3 – 29x + 6 (C) 6 xy = 3x3 + 29 x – 6 (D) None of these The equation of the curve through the point (1, 0) y 1 and whose slope is 2 isx x (A) (y – 1) (x + 1) + 2x = 0 (B) 2x (y – 1) + x + 1 = 0 (C) x (y – 1) (x + 1) + 2 = 0 (D) None of these dy = e–2y and y = 0 when x = 5, the value of dx x for y = 3 is(A) e5 (B) e6 + 1
The
e6 9 2
differential
equation
y
dy + dx
x
=
x y (C) log 1 tan = x + c 2 (D) None of these
Q.63
Question based on
a
differential
equation
The solution of the differential dy x = y (log y – log x + 1) isdx
equation
x (D) tan–1 = log x + c y
Differential Equation of the form dy/dx = f(ax + by + c)
dy The solution of the equation = (x + y)2 isdx (A) x + y + tan (x + c) = 0 (B) x – y + tan (x + c) = 0 (C) x + y – tan (x + c) = 0 (D) None of these
The solution of the differential dy = cot2 (x + y) isdx (A) y = x + 1/2 sin 2 (x + y) + c (B) y = x – 1/2 sin 2 (x + y) + c (C) y = x + 1/2 cos 2 (x + y) – c (D) None of these
The solution of the dy x2 = x2 + xy + y2 isdx
y (C) sin–1 = log x + c x
(A) y = xecx (C) y + ex = 0 Q.66
Q.61
Differential Equation of homogeneous type
y (B) tan–1 = – log x + c x
Q.65 Q.60
dy = (4x + y + 1)2 isdx (A) 4x – y + 1 = 2 tan (2x – 2c) (B) 4x – y – 1 = 2 tan (2x – 2c) (C) 4x + y + 1 = 2 tan (2x + 2c) (D) None of these
The solution of
y (A) tan–1 = log x + c x
(a is any constant) represents(A) a set of circles having centre on the y-axis (B) a set of circles centre on the x-axis (C) a set of ellipses (D) None of these Question based on
dy = sin (x + y) + cos (x + y) isdx
x y (B) log 1 tan = x + c 2
Q.64
(D) loge 6
The solution of
x y (A) log 1 tan + c = 0 2
If
(C)
Q.59
Q.62
(B) y + xecx = 0 (D) None of these
The solution of the equation
equation
dy x y = isdx x y
(A) c (x2 + y2)1/2 + e tan
1
(y / x)
(B) c (x2 + y2)1/2 = e tan
1
(y / x)
(C) c (x2 – y2) = e tan (D) None of these
1
(y / x)
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
6
Q.67
Q.68
The solution of the (x2 + y2)dx = 2 xy dy is(A) x = c (x2 + y2) (B) x = c (x2 – y2) (C) x + c (x2 + y2) = 0 (D) None of these
differential
equation
Q.72
x
The solution of the equation x
dy = y – x tan dx
y isx
Q.73
(D) None of these Linear Differential Equation
(A) 4xy = x4 + c 1 (C) xy = x4 + c 4 Q.70
The
solution
of
the
differential
equation,
Q.74
(B) x3y =
x4 +c 4
The
solution
of
the
differential
equation
The solution of (1 + y2) dx = (tan–1 y – x) dy is (A) xe tan
1
y
= e tan
(B) xe tan
1
(B) xy = x4 + c
y
= (tan–1 y + 1) – c
(D) xy = 4x4 + c
(C) xe tan y = (tan–1 y – 1) + c (D) None of these
1
y
(tan–1 y – 1) + c
1
the
differential
equation
Q.75
dy + y = cos x isdx
1 (cos x + sin x) + ce– x 2 1 (B) y = (cos x – sin x) + ce– x 2 (C) y = cos x + sin x + ce–x (D) None of these
The solution of the differential equation dy x log x + y = 2 log x isdx
(A) y = log x + c (B) y = log x2 + c
The integrating factor of the differential equation dy + y = 2 log x isdx (A) log x (B) log (log x)
(x log x)
(A) y =
Q.71
x4 +c=0 4
dy + y cot x = 2 cos x isdx (A) y sin x + cos 2x = 2c (B) 2 y sin x + cos x = c (C) y sin x + cos x = c (D) 2y sin x + cos 2x = c
y (C) x sin = c x
The solution of dy y + = x2 isdx x
(A) x3y +
x4 =0 4 (D) None of these
(B) x sin y + c = 0
Q.69
dy + 3y = x isdx
(C) x3 y +
x (A) x sin + c = 0 y
Question based on
The solution of the equation
(C) ex Q.76
(D) x
The equation of the curve passing through the origin and satisfying the differential equation (1 + x2)
dy + 2xy = 4x2 isdx
(A) (1 + x2)y = x3 (B) 2 (1 + x2)y = 3x3 (C) 3 (1 + x2)y = 4x3 (D) None of these
(C) y log x = (log x)2 + c (D) y = x log x + c
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
7
Q.77
The x
Q.78
solution
of
the
differential
equation
dy + y = x2 + 3x + 2 isdx
(A) xy =
3 x3 + x2 + 2x + c 3 2
(B) xy =
x4 + x3 + x2 + c 4
(C) xy =
x4 x3 + + x2 + c 4 3
(D) xy =
x4 + x3 + x2 + cx 4
The solution of the equation
dy 1 = isdx x y 1
(A) x = cey – y – 2 (B) y = x + cey – 2 (C) x + cey – y –2 = 0 (D) None of these Q.79
Integrating factor of the differential equation dy + y tan x – sec x = 0 isdx
(A) esin x (C) Question based on
Q.80
1 cos x
(B)
1 sin x
(D) ecos x
Equation reducible to linear form
The solution of differential equation dy + 1 = ex–y isdx
(A) ey = ex/ 2 + ce–x (B) ey = ex + ce–x (C) 3ey = ex/ 2 + ce–x (D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
8
LEVEL- 2 Q.1
The order of the differential equation whose general solution is given by y = (C1 + C2) cos
Q.7
(x + C3) – C4. e x C5 , where C1, C2,C3 , C4, C5 are arbitrary constants, is(A) 5 (B) 4 (C) 3 (D) 2 Q.2
Q.3
dy y 2 x 2 (A) = dx 2x y
(C) Q.4
Q.5
y y – cos2 , then the equation of the curve isx x e (A) y = tan–1 log x
The differential equation of all circles in the first quadrant which touch the coordinate axes is of order(A) 1 (B) 2 (C) 3 (D) None of these The differential equations of all circles passing through origin and having their centres on the x-axis is
d2y dx
2
=
y2 x 2 2 xy
x (B) y = x tan–1 log e e (C) y = x tan–1 log x (D) None of these
Q.8
The solution of the equation (1– x2) dy + xy dx = xy2 dx is(A) (y – 1)2 (1 – x2) = 0 (B) (y – 1)2 (1 – x2) = c2y2 (C) (y – 1)2 (1 + x2) = c2y2 (D) None of these
Q.9
The solution of
dy y 2 x 2 (B) = dx 2x
(D)
dy y 2 x 2 = dx 2 xy
The solution of the equation dy + y tan x = xm cos x isdx (A) (m+1) y = xm+1 cos x + c (m+1) cos x (B) my = (xm + c) cos x (C) y = (xm+1 + c) cos x (D) None of these
The slope of the tangent at (x, y) to a curve passing through is given by 1, 4
dy e x (sin 2 x sin 2 x ) = isdx y (2 log y 1)
(A) y2 (log y) – ex sin2 x + c = 0 (B) y2 (log y) – ex cos2 x + c = 0 (C) y2 (log y) + ex cos2 x + c = 0 (D) None of these Q.10
The solution of the differential equation (sin x + cos x) dy + (cos x – sin x)dx = 0 is(A) ex (sin x + cos x) + c = 0 (B) ey (sin x + cos x) = c (C) ey (cos x – sin x) = c (D) ey (sin x – cos x) = c
The solution of (cosec x log y)dy + (x2 y)dx = 0 islog y (A) + (2 – x2) cos x + 2 sin x = c 2 2
log y (B) + (2 – x2) cos x + 2x sin x = c 2 (log y) 2 + (2 – x2) cos x + 2x sin x = c 2 (D) None of these
(C) Q.6
The solution of the differential equation dy 3x 2 sin 2 x + y = is dx 1 x3 1 x3 1 (A) y (1 + x3) = x + sin 2x + c 2 1 (B) y (1 + x3) = cx + sin 2x 2 1 (C) y (1 + x3) = cx – sin 2x 2 x 1 (D) y (1 + x3) = – sin 2x + c 2 4
Q.11
The solution of the differential equation xy
dy (1 y 2 )(1 x x 2 ) = isdx (1 x 2 )
1 log (1 + y2) = log x – tan–1 x + c 2 1 (B) log (1 + y2) = log x + tan–1x + c 2 (C) log (1 + y2) = log x – tan–1x + c (D) log (1 + y2) = log x + tan–1 x + c
(A)
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
9
Q.12
The solution of
Q.18
2
Solution of the differential equation sin
2
(x 1 y )dx + (y 1 x )dy = 0 is -
dy = a dx
with y (0) = 1 is(A) 1 x 2 + = c (B)
2
1 x – 1 y
(A) sin–1
2
x 1 y = a (C) sin 1 x
=c
(C) (1 + x2)3/2 + (1 + y2)3/2 = c (D) None of these Q.19 Q.13
Q.14
Q.15
The solution of the differential equation cos y log (sec x + tan x)dx = cos x log (sec y + tan y ) dy is(A) sec2 x + sec2 y = c (B) sec x + sec y = c (C) sec x – sec y = c (D) None of these
The solution of the differential equation dy = ex – y + x2e–y is dx (A) y = ex – y + x2e–y + c 1 (B) ey – ex = x3 + c 3
1 3 x +c 3 The solution of the equation
Q.16
Q.17
(C) y = log y + 1
(D) y = xy + c
The solution of dy xy = 2 isdx x y 2 2
(A) ay2 = e x / y (C) y = + + c
2
the
differential
(B) ay = ex/y (D) y = + y2 + c
6
d4y
dy + 8 + 5y = ex 4 dx dx
dy 3 (C) 1 dx
(D) y = x2
2/3
=4
d 3y dx 3
dy dy + 1 dx dx
2
Q.20
The general solution of the differential equation dy 1 cos 2 y + = 0, is given bydx 1 – cos 2x (A) tan y + cot x = c (B) tan y – cot x = c (C) tan x – cot y = c (D) tan x + cot y = c
Q.21
The solution of
dy + dx
1 – y2 1– x2
= 0, is
(A) tan–1 x + cot–1 x = c (B) sin–1 x + sin–1 y = c (C) sec–1 x + cosec–1 x = c (D) None of these
y = log y + c x
(B)
x y (D) sin =a x 1
4
dy y y = log 1 isdx x x y (A) log = cx x
y 1 = a
2 d3y dy (B) 5 3 + 8 1 + 5y = x8 dx dx
1 3 x +c 3
(D) ex – ey =
(B) sin
Which of the following differential equations has the same order and degree? (A)
The slope of a curve at any point is the reciprocal of twice the ordinate at the point and it passes through the point (4, 3). The equation of the curve is(A) x2 = y + 5 (B) y2 = x – 5 2 (C) y = x + 5 (D) x2 = y – 5
(C) ex + ey =
y 1 = a
Q.22 equation
dy + y tan x = sec x isdx (A) y sec x = tan x + c (B) y tan x = sec x + c (C) tan x = y tan x + c (D) x sec x = y tan y + c
The solution of
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
10
LEVEL- 3 Q.1
The degree of the differential equation satisfying
Q.10
The equation of the curve whose subnormal is constant is(A) y = ax + b (B) y2 = 2ax + b 2 2 (C) ay – x = a (D) none of these
Q.11
The solution of
2
2
1 x + 1 y = a(x – y) is(A) 1 (B) 2 (C) 3 (D) none of these
Q.2
The differential equation of all non-horizontal lines in a plane is(A) (C)
Q.3
d2y dx 2
=0
dy =0 dx
(B) (D)
d2x dy 2
when(A) a = 0, b = 0 (B) a = 1, b = 2 (C) a = 0, b 0 (D) a = 2, b = 1
=0
dx =0 dy
The degree of the differential equation
Q.12
2
2 d2y 2 dy + = x sin d y is2 dx 2 dx dx (A) 1 (B) 2 (C) 3 (D) none of these
Q.4
Q.5
1 x 2 + 1 y 2 = (x 1 y 2 –y 1 x 2 )is(A) 1 (B) 2 (C) 3 (D) none of these
(C) y
The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is(A) 1 (B) 2 (C) 3 (D) 4
Q.7
Solution of differential equation (2x cos y + y2cos x) dx + (2y sin x – x2 sin y) dy = 0, is(A) x2 cos y + y2 sin x = c (B) x cos y – y sin x = c (C) x2 cos2 y + y2 sin2 x = c (D) None of the above The solution of the differential equation dy tan y tan y sin y – = , is dx x x2 x y (A) + n x = c (B) + n x = c sin y sin x (C) n y + x = c
Q.9
(A) y
The degree of the differential equation satisfying the relation
Q.6
Q.8
The differential equation of all parabolas having their axis of symmetry coinciding with the axis of X is-
(B) x
The order and degree the differential equation of all tangent lines to the parabola x2 = 4y is(A) 1, 2 (B) 2, 2 (C) 3, 1 (D) 4, 1
(D) n x + y = c
If ƒ(x), g(x) be twice differentiable functions on [0, 2] satisfying f ''(x) = g''(x), ƒ'(1) = 2g' (1) = 4 and ƒ(2) = 3 g(2) = 9, then ƒ(x) – g(x) at x = 4 equals(A) 0 (B) 10 (C) 8 (D) 2.
dy ax h = represents a parabola dx by k
d2y
2
d2x
2
dy + = 0 2 dx dx dy + = 0 2 dy dx d2y
dy + =0 dx 2 dx (D) none of these.
Q.13
Solution of the differential equation 2
x = 1 +xy
3
dy ( xy) 2 dy ( xy) 3 dy + + +.... dx 2! dx 3! dx
is– (A) y = loge(x) + C (B) y = (logex)2 + C (C) y = ± (log e x ) 2 2C (D) xy = xy + k Q.14
The solution of ydx – x dy + 3x2y2dx = 0 is3 3 x x (A) + e x = C (B) – e x = 0 y y (C) –
Q.15
3 x + ex = C y
(D) none of these
The solution of the differential equation xdy – ydx =
x 2 y 2 dx is-
(A) x +
x 2 y 2 = cx2
(B) y –
x 2 y 2 = cx
(C) x –
x 2 y 2 = cx
(D) y +
x 2 y 2 = cx2
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
11
Q.16
The solution of the differential equation 1 dy (1 + y2) + x e tan y = 0, isdx
(A) xe 2 tan
1
y
= e tan
(B) (x – 2) = K e tan (C) 2x e tan (D) xe Q.17
Q.18
1
tan 1 y
y
1
1
y
1
y
+K
= tan–1y + K
Q.24
The degree of the differential equation y32/3 + 2 + 3y2 + y1 = 0 is(A) 1 (B) 2 (C) 3 (D) none of these The differential equation of system of concentric circles with centre (1, 2) isdy (A) (x – 2) + (y – 2) =0 dx dy (B) (x – 1) + (y – 2) =0 dx dy (C) (x + 1) + (y – 2) = 0 dx dy (D) (x + 2) + (y – 1) = 0 dx If sinx is an integrating factor of the differential equation dy/dx + Py = Q, then P can be(A) log sinx (B) cot x (C) sin x (D) log cos x
Q.20
The curve in which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is – (A) an ellipse (B) a parabola (C) a rectangular hyperbola (D) a circle
Q.22
y , then the value of cos is equal to 2 x 1 (A) x (B) (C) log x (D) ex x
y
= e 2 tan
The solution of the differential equation dy x sin x + (x cos x + sinx) y = sin x, dx When y(0) = 0 is (A) xy sin x = 1 – cos x (B) xy sin x + cos x = 0 (C) x sin x + y cos x = 0 (D) x sin x + y cos x = 1 Differential equation for y = A cos x + sin x, where A and B are arbitrary constants, is(A) (C)
d2y dx 2 d2y dx
2
– y = 0
(B)
– 2y = 0
(D)
y y If x sin dy = y sin – x dx and x x
y(1) =
K
Q.19
Q.21
Q.23
d2y dx 2 d2y dx 2
+ 2y = 0 + y = 0
The function f() = d d
dx
1 cos cos x satisfies 0
the differential equation (A) df + 2f() cot = 0 d df (B) –2f() cot = 0 d df (C) + 2f() = 0 d df (D) –2f() = 0 d
Statement type Questions Each of the questions given below consists of Statement-I (Assertion) and Statement-II (Reason). Use the following key to choose the appropriate answer. (A) If both Statement-I, Statement-II are true, and Statement-II is the correct explanation of Statement-I. (B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement-I (C) If Statement-I is true but Statement-II is false (D) If Statement-I is false but Statement-II is true. Q.25
Q.26
Statement-I: The differential equation whose solution is y = c1 e 2 x c 2 + c3 e x c4 , c1,c2, c3, c4 R is of order 4. Statement-II: Order of the differential equation is equal to the number of independent arbitrary constants in the solution of differential equation. Statement-I: y = c1 sin (x + c2) is a general solution of the differential equation
d2y dx 2
+y=0
Statement-II: y = asin x + bcos x is a trigonometric function. Q.27
Observe the following statements: Statement-I: Integrating factor of dy + y = x2 is ex dx Statement-II: Integrating factor of dy + P(x) y = Q(x) is dx
e
P ( x ) dx
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
12
ANSWER KEY LEVEL- 1 Q.No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Ans.
C
B
A
C
A
C
B
A
A
A
D
A
B
D
C
C
A
B
C
A
Q.No. 21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
A
B
A
C
A
C
D
C
C
D
D
B
B
D
A
C
A
B
A
A
Q.No. 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
C
A
A
C
B
A
C
A
A
A
A
D
A
A
A
C
A
C
B
C
Q.No. 61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
A
B
C
A
A
B
B
C
A
A
C
B
D
A
A
C
A
A
C
A
Ans. Ans. Ans.
LEVEL- 2 Q.No.
1
2
3
4
5
6
7
8
9
10
Ans.
C
A
D
A
B
D
C
B
A
C
Q.No.
11
12
13
14
15
16
17
18
19
20
D
C
B
A
A
B
C
B
Ans.
B
A
Q.No.
21
22
Ans.
B
A
LEVEL- 3 Ques.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Ans.
A
B
D
A
A
A
A
A
B
B
C
A
C
A
D
C
B
B
B
C
Ques.
21
22
23
24
25
26
27
Ans.
B
B
C
A
D
B
C
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
13
View more...
Comments