Determination of Moisture Content
April 8, 2017 | Author: Bliss Eye | Category: N/A
Short Description
Download Determination of Moisture Content...
Description
c c
|
| The water content is the most frequently determined soil characteristic. It is defined as the ratio of the weight of water to the weight of the dry soil grains in a soil mass. The water content is a good indication of the strength of clay soils. The standard method of determining the moisture content is by over-drying at 105110 degrees but several other methods are available as rapid alternatives more suitable to site conditions. In this experiment you are required to compare these tests for a clay and granular soil.
| 1. A thermostatically controlled oven set at a temperature of 105 ± 110°C.
|
|
|
|
| 2. Sample tins.
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
]. Balance readable and accurate to 0.01 g.
|
|
|
|
| 1. The sample container shall be cleaned, dried and weighed to 0.01g.|
|
|
|
| 2. Place the soil loosely in the container.
|
|
|
4. Weigh the every of container.
|
|
|
|
|
| - |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
5. Weigh the every contents of soil sample.
|
|
|
| 6. Then place in the oven. Time period required are differences depending on the type of soil and sizes of the sample. Usually 16-24 hour enough for drying most soils.
|
|
| 7. The sample will be deemed to be dry when the differences in successive weighing of the cooled sample at four hourly intervals do not exceed 0.1 % of the original weight of the sample |
|
|
|
|
|
|
|
|
|
|
] |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c
c
i t
tt f t
il ( )
ll l
il i t, f t f l
|||||||||||||||||||||||||||||||||||||
|||| || |||||||||
||||||||||||||||||||||||||||||||||||||||||||||
|| |
,| = f ti = f ti t il = f ti il
d it tt = ë %
ë =
-
d it tt = ëëë ë ë %
ë ë ë =
--
d it tt = ë %
=
m |
--
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
lt t f t
c
c
| ! it tt f t il ()
l t t t iifit fi f l t % t t t
l f i l .
Moisture
orm
ontent
ocation
obcef
oreoe/
iTMa am
itno
oi
ampe
escription
eterminationofmoisturecontent
TestMetod ceatedtest
o
ept
ëëart ate
m //
pecimen ref ontainer ë
ë
ëëë
ë
containerm )
ë ë
Massofcontainerm )
ë
ë
m )
ë
| || |||| || |
|
|
|
|
||
||
||
||
|
|
|
||
||
||
||
||
||
||
||
||
no
Massofetsoi containermo ) Massofdrysoi
Massofmoisturemo
Moisture ontent! ||
|| || || ||
è |
|
|| || |
||
|| ||
||
||
|| ||
||
||
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
||
||
| ||
||
| ||
||
| ||
||
c cT
| "dd A l i , f t tt t t , t t f it tt f l f il t it ifft f it . It t t, f it f tt f il i ifft t i f it f it tt.
6 |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
# | This test covers the quantitative determination of the particle size distribution in a soil down to the fine and size. This method shall not be used unless it has been shown that for the type of material under test it gives the same results as the methodsof analysis by wet sieving. 1. Trays / Sieve
>
A nest of BS test sieves of required sizes
>
5 mm, 2 mm, 1.18 mm, 600 ȝ m, 425 ȝ m, ]00 ȝ m, 212 ȝ m, 150 ȝ m, 6] ȝ m
>
Appropriate receiver
|
|
|
|
|
|
| 2. Sample Divider
>
Used for put the sample before the test done.
>
Help in giving measured quantities of sample.|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
| ]. Weighing balance
>
Help in giving the accurate mass of samples.|
|
|
| 4. Trays
>
The last layer in the BS sieve that act to catch the sample that pass through the 0.06] mm.|
|
|
|
|
| 5. A thermostatically controlled oven
>
Oven set at a temperature of 105 ± 110 ÛC
|
|
|
| 7. Sieve Brushes
>
Used to clean up the sieve from any material after the test done.
>
There are two 2 types of brushes; one for large size of sieve and for small size of sieve.|
|
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c cT
| l
ill t
t
l l t
t iff i i
l itl t .% f t iil
i t f
i t f t
l. - d d it tt f t il () ll l lt t f t il i t, f t f l
=
%
=
f ti
=
f ti t il
=
f ti il
- it tt f t il ( )
l t t t iifit fi f l t % t t t
l f i l . JB REF.
d
B l/ it . S il iti
Sl .
t t
t t
BS Pt 3.
Rlt tt Si f.
3
ti . f t il + ti ()
f il + ti (3)
f ti ()
3
f it (3)
f il (3)
3
3
3
$ %
& ' -(')'('*
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
-- --
-
-
c cT
- !dd
F t tt lt, it l t t t il it tt. It i , t t f l il il l il i t
t t t ti it
t t
f t. It i t t t il
tt i l t i t BS 3 , il it i i l tiff l .
|
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
it
%
c c
+ The liquid limit is defined as the moisture content corresponding to a come penetration of 20 mm. 1. A flat surface glass surface .
| |
|
|
| 2. Spatula.
|
|
| ]. Penetrometer apparatus
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
| 4. A cone of stainless steel or duralumin approximately ]5 mm long, with a smooth, polished surface and an angle of ]0
1°.
5. A metal cup approximately 55 mm in diameter and 40 mm deep with the rim parallel to the flat base
|
|
|
|
| 6. A plastic wash battle containing distilled water.
|
|
|
| 7. Mortar and pestle.|
| | | | - |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
| 8. 0.42500 BS test sieve.
| | | | | +
| 1. A soil sample are take from lab which it material passing the 0.425mm BS test sieve. We are weighting 200g from the soil to do this test. Before we are weight the soil sample, we must crush it with mortar and pestle. After that, the sieve process must do to make sure the soil is passing like BS want.|
| | | | | 2. After that, the sample are placed on the flat glass and mixed thoroughly with distilled water using the spatula until the mass becomes a thick homogeneous paste.
| | | | | | | | | ] |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
]. We are taken some part of the sample to be pushed into a metal cupwith using spatula which taking care not to trap air. The excess soil shall be struck off and leveled to five a smooth surface.
| | | | | 4.The sample in the metal cup will place on the base in Penetrometer cone apparatus which placed lower, so that it just touches the surface of the soil. When the cone is the correct position, a slight movement of the cup will just mark the surface of the soil and the reading of redial gauge is noted to the nearest 0.1mm. Then, the cone is released for a period of 5 1 second.
| | | | | | 5. After the cone has been locked in position the dial gauge shall be lowered to the new position of the cone shaft and the reading noted to the nearest 0.1mm are taken.We are recorded the difference between the readings at the beginning and end ofthe test as the cone penetration.
m |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
6. The core is lifted out and cleaned carefully. Then, a little more of wet soil is added to the cup and the same process at 2 to 6 is repeated.
| 1. We are selected a sample weighting from the material passing the 0.425mm BS test sieve remaining after the liquid limit test. We are reduced the water content of the soil to a consistency at which it can be rolled without sticking to the hands by spreading and mixing continuously on the glass plate. The weights of empty tin/container are being recorded.
|
2.
rom the sample, select a portion and form into an ellipsoid. We are rolled this mass
between the palm or fingers and the glass plate with just sufficient pressure to o r ll the mass into a thread of uniform diameter throughout its length. Continue to alternate rolling, gathering, kneading, and re-rolling until the thread crumbles under the pressure required for rolling.
è |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
]. Gather the portions of the crumbled thread to gether and place in a moisture tin/container.
4. We are repeating steps 2 and ] until the moisture tin contains in about ] pieces of moist soil.
ecord the mass of the moist soil and tin/container to the nearest 0.01g. Place the
moist soil and tin in a drying oven.
5. We are recorded the mass of the oven dried soil and moisture tin/containers to the nearest 0.01g to get the result. + 1. Calculate moisture content or example W
m2 ± m] x 100 m] ± m1 ]1.000 ± 29.000
x 100
29.000-25.000
6 |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c cT
. Pl t t lti i t t it tt t i tti li t,
it t t it tt it
t li l. ( ? , ). . it tt i t tti f ll t t li i liit f t il. , li i liit =3. % . E t i it tt t t t
l t it t li i
liit.
Li i liit = 3.%
Plti liit = .3%
Pltiit I = Li i liit Plti liit = .%
F ltiit t, it I = .%
) fll
i t
it (Li i Liit = 3. %, Pltiit
it i t ll L, i.. t il i SIL ( S il) f l
ltiit .
] "
d
ti .
f t il + ti , ( )
.
f il + ti , ( 3)
.
f ti
, ( )
.
f it
, ( 3)
.
f il
, ( 3)
.
it tt
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
% (3) / (3)
.3
c cT Iitil il i
-
]
()
.
Fil il i
3.
.
.
.
.
()
3.
A tti ()
ti .
.
f t il + ti
33
3.
.
3.
3
f il + ti
33
3
f
33
f it
.
.
3.
f il
.
.
.
it tt
33.33
.
.
ti
] dd
t lt t i i i t t f it tt t tti i. i i
lt it i i i t t f t it tt. S , t t li i liit fi t t tt, i t, f il t t itil fi
t t ili i lti tt it¶ l i t tti f .
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
.
c c
m m In this test a relationship between the moisture content and the dry density of a soil is established for a standard compactive effort. Hence it is possible to determine the optimum moisture content to give the maximum dry density, i.e. the densest state to compaction.
m 1
Proctor mould of internal diameter 102mm, height 116mm and volume 994ml. The mould is fitted with a detachable base plate and an extension collar 52mm high.
2
2.5kg
ammer
with
a
]05mm
fall
manual
apparatus or the automatic mechanical apparatus
]
Balance of 7 kg capacity and accurate to 1 g.
4
Metal straight edge and spatula
|
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
m 1
Weigh the mould with its base plate attached but without its collar.
2
Mix 2.5 kg of the soil under test with a 180 ml of water representing an initial moisture content of 6% . \
]
Attach the collar to the mould and compact the soil in three equal layers by giving each layer 25 uniformly distributed blows of the rammer falling freely through a distance of ]05mm onto the soil.
4
The last layer should project into the collar. emove the collar and trim off the soil level with the top of the mould.
- |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c c
5
Then weigh the mould, base plate the soil.
6
Extrude
the
representative
soil
from
sample
the
mould
for
moisture
and
take |
content
determination.
7
e-mix the extruded soil with the remainder of the | original sample and increase the moisture content by ] per cent.
| 8
epeat the above procedure and continue until there | is no change in the weight of the compacted soil required to fill the mould or the weight decreases.
| | | | | | |
- |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c cT
| d d . B l it f t t il i t
l i ti i t i f l
ȡ =
= f
l + lt () = f
l + lt + t il () .
it f t il i ti f t l it it tt i
f l
ȡ =
ȡ +
= it tt (%)
3. it tt i ti i t i f l
=
3 %
3 ,
-- |
=
f ti
=
f ti t il
3
=
f ti il
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
t i
c cT
!
]
]
f
l + ( )
f t i
3
/
.
.3
.
3
%
.
3.
.
/
.
.33
.
l
3
f
l
+
+
t i ( )
() B l it =() it tt ti . it tt () it = + t d
!
"
f t il + ti ( )
3.
.
.
f il + ti ( 3)
3.
3.
.
f ti ()
.
.
.
f it ( 3)
.
.
.
f il ( 3)
.
.
$
%
3.33
.
.
%& '- ']* '] '
-] |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
c cT
"dd
l t t t it tt f t il i lt t t it f t il. f t l t t i i t i t t l f t l t t t t i . i i t f t i. If t i till t , ti ti f t i tt t it t t t i t f t tt. t t i tt ; it ti t tt f t il i if ti
t t t t f il
t t t t l ti i t ti .
-m |
||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||
View more...
Comments