Determinants+[Practice+Question].pdf

November 20, 2017 | Author: Aditya SanjayBoob | Category: Linear Algebra, Mathematical Objects, Algebra, Physics & Mathematics, Mathematics
Share Embed Donate


Short Description

Determinants+[Practice+Question].pdf...

Description

IIT – ian’s

P A C E

216 - 217 ,2nd floor , Shopper’s point , S. V. Road. Andheri (West) Mumbai – 400058 . Tel: 26245223 / 09

Practice Question Question based on

LEVEL –1 Q.7

Expansion of Determinants

Determinants The minors of the elements of the first row in the determinant

Q.1

a 1 1 1 If 1 1  1 = 4, then the value a is 1

(A) 1 Q.2

y

4 2

= 7 and

(A) x = – 3, y = – (C) x = 3, y =

Q.3

The value of (A) 12

Q.4

(C) –2 2 3 y x

5 2

(C) x =

5i

 3i

4i

5i

(B) 17

sec x sin x 0 1

= 4, then -

5 ,y=3 2

is -

(C) 14

Minors & Cofactor and their properties

1

2

3

4

c1 c2

a3

b3

c3

(B) –4, 3, 2, –1 (D) –4, –3, –2, –1

and A2, B2, C2 are

(B) 0 (D) None of these

Q.10

If cofactor x 1 x 1

x

(A) 0 (C) 1 Question based on

Q.11

of 2x

in the

determinant

1 2 2x x  1 is zero, then x equals to0

(B) 2 (D) –1

Some basic properties

a1 The value of the determinant a 2

ma1 ma 2

b1 b2

a3

ma 3

b3

–3 and 4 in

are-

(A) 4, 3, 2, 1 (C) 4, –3, –2, 1

b1 b2

If A = (aij) is a 4 × 4 matrix and cij is the cofactor of the element aij in Det (A), then the expression a11c11+ a12c12+ a13c13 + a14c14 equals(A) 0 (B) – 1 (C) 1 (D) Det. (A)

(D) 24

(B) x2 – xy + y2 (D) x3 – y3

a1 If  = a 2

Q.9

1 0 0 1 The value of 3 x 3 1 is xy 5 y3 1

–2,

(B) 7, 11, 2 (D) 7, 2, 11

(A) –  (C) 

(B) – 1 (D) None of these

The cofactors of 1,

2

respectively cofactors of a2, b2, c2 then a1A2 + b1B2 + c1C2 is equal to-

tan x 0 is equal to -

(A) x + y (C) x2 + xy + y2

Q.6

Q.8

5 5 (B) x = – , y = – 3 2 2

(A) 0 (C) 1

Question based on

(A) 2, 7, 11 (C) 11, 2, 7

1

(D) 0

tan x cot x sec x

Q.5

1

1

(B) –1

x

If

1

2 1 4 4 2  3 are-

is (A) 0 (C) ma1b2a2

(B) ma1a2a3 (D) mb1b2b3

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

1

Q.12

p 2a 0 0 a 0 0 If  = b c a , then pb c a pc

c a b

r

is equal

Q.19

x

If Dr = 2r  1 y 3r  2 z

a b

n (n  1) / 2 n2 , then

(B) p2 (D) 2p

(A)

1 1 n(n + 1)(2n + 1) (B) n2(n + 1)2 6 4

(C) 0 1 / a 1 bc The value of the determinant 1 / b 1 ca is 1 / c 1 ab

Q.15

Q.21

The sum of infinite series 6 4

+

1/ 2 2 2

+

4

(A) –10 (C) 10

1/ 4

2

2/3 4

+ ........ is -

a ma  nx x The value of b mb  ny y ismc  nz

Q.22

3a

equal to (A) a3 (C) c3 Q.18

The ka

value 1

2

2

1 is -

kb k  b kc

of

2

k a

a bc 4a  3b  2c is

c c 2 is -

bc

ca

ab

a2 If (a  1) 2

b2 ( b  1) 2

c2 a2 2 = k (c  1) a

b2 b

c2 c ,

(a  1) 2

(b  1) 2

(c  1) 2

1

1

a

Q.23

the

(A) k (a + b) (b + c) (c + a) (B) k abc (a2 + b2 + c2) (C) k (a – b) (b – c) ( c – a) (D) k (a + b – c) (b + c – a) (c + a – b)

(B) 2 (D) 0 b  c a3

c a  b c3

(A) (a – b) (b – c) (c – a) (B) abc (a – b) (b – c) (c – a) (C) – (a + b + c)2 (a – b) (b – c) (c – a) (D) None of these

determinant

k 2  c2 1

1

The value of b c  a b 3 is-

6a  3b 10a  6b  3c

(B) b3 (D) a3 + b3 + c3

2

b b2

then k is equal to(A) 1 (C) 4

(A) a + b + c (B) x + y + z (C) m(a + b + c) + n(x + y + z) (D) 0 The value of

a The value of the determinant a 2

z

a ab 2a 3a  2b

(B) 0, – a (D) 0, 3a

(A) abc (a – b) (b – c) (c – a) (B) (a – b) (b – c) (c – a) (a + b + c) (C) (a – b) (b – c) (c – a) (ab + bc + ca) (D) None of these

(B) 0 (D) 

c

Q.17

If

ax ax ax a  x a  x a  x = 0, then value of x

are(A) 0, a (C) a, – a

(B) 1/abc (D) None of these

If each row of a determinant of third order of value  is multiplied by 3, then the value of new determinant is (A)  (B) 27  (C) 21  (D) 54  1 2

Q.16

Q.20

(D) None of these

ax ax ax

equal to (A) abc (C) 0 Q.14

r 1

n(3n  1) / 2

is equal to -

to(A) p (C) p3 Q.13

n

 Dr

Q.24

If

x

is

real

number

such

that

x 1 x  2 x   x  2 x  3 x   = 0 then  are in x3 x4

(A) A.P. (C) H.P.

x

(B) G.P. (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

2

Q.25

1 a

The determinant

1 b

1 c

is

Q.32

a 2  bc b 2  ca c 2  ab

equal to (A) 0 (C) – 1

Q.26

(B) 1 (D) None of these

1 m C1

1 m 1 C1

m2

C1 =

m

m 1

m2

C2

C2

(A) m(m + 1) (C) 1 Q.27

Question based on

(B) m(m – 1) (D) 0

Q.34

(A) –1, 2 (C) 2, 0

(B) –1, 0 (D) 1, 2

x  2 x  3 x  2a x  3 x  4 x  2b equals -

Q.29

i

(C) 2a

(D) 2x Q.37

a b

abc 5a  4b  3c

= 3a 4a  3b

value

( x  2) 2 ( x  1) x

2

(A) 0

2

of

(x  1) 2 x

2

(x  1)

If A + B + C = , then sin (A  B  C)  sin B

sin B 0

cos (A  B)

 tan A

the

where a = i,

2

(B) 8x2

determinant

x2 (x  1) 2 ( x  2)

is-

2

(C) 8

cos C tan A equals0

(B) 2sinB tanA cosC (D) None of these

The value of

0 a  b a c ba 0 b  c iscb

0

(A) 0 (B) abc (C) (a – b) (b – c) (c – a) (D) None of these

b =  c = then is equal to(A) i (B) – 2 (C)   (D) – i The

Symmetric and skew symmetric Determinants

ca

(B) 7 – 4i (D) 4 – 7i

6a 9a  6b 11a  9b  6c

Q.31

(B) 3 (D) None of these

The value of an odd order skew symmetric determinant is(A) perfect square (B) negative (C) ±1 (D) 0

1 i 1 i

a

Q.30

6 x

Q.36

(where i =  1 ) equals -

(A) 7 + 4i (C) 4 + 7i

= 0 then x =

The value of an even order skew symmetric determinant is(A) 0 (B) perfect square (C) ±1 (D) None of these

x  4 x  5 x  2c

(B) 0

(D) 4

Q.35

If a, b, c are in A.P., then the value of

1 i 1 i i 1 i i 1 i

3

(C) – 20 3 3

(A) 0 (C) 1

5x 2

(A) 1

3 x  6 6 3 x

(A) 6 (C) 0

20 5 =0

1 2x

If

(B) – 2

3

Find the value of x in the equation 1 4 1 2

Q.28

Q.33

=

7581 7591

(A) 20

1

C2

7579 7589

(D) –8

Question based on

Crammer's Rule

Q.38

The equations x + 2y + 3z = 1, 2x + y + 3z = 2 and 5x + 5y + 9z = 4 have(A) unique solution (B) many solutions (C) inconsistent (D) None of these

Q.39

The existence of unique solution of the system x + y + z = b, 2x + 3y – z = 6, 5x – y + az = 10 depends on(A) b only (B) a only (C) a and b (D) neither a nor b

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

3

Q.40

Given the system of equations px + y + z = 1, x + py + z = p, x + y + pz = p2, then for what value of p does this system have no solution (A) –2 (B) –1 (C) 1 (D) 0

Q.41

The value of k for which the set of equations 3x + ky – 2z = 0, x + ky + 3z = 0 and 2x + 3y – 4z = 0 has a non – trivial solution is(A) 15 (B) 16 (C) 31/2 (D) 33/2

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

4

LEVEL – 2 a 2  b2 c

c

a

b2  c2 a

b

b

Q.1

Q.2

c

(C) 4abc

(D) 0

33

3

3

4

3

3.3  3.3  1 is equal to-

4

3

5

3

3.4 2  3.4  1

a is expressible as m a

ab bc

value of m is(A) – 1 (B) 0

(D) 4

a b c If = x y z and 2 = r

y b q x a p then z

c

b b

c c , then the

(C) 1

(D) 2

In a third order determinant each element of the first column consists of sum of two terms, each element of the second column consists of sum of three terms and each element of third column consists of sum of four terms, then it can be decomposed into n determinants, where n has the value(A) 1 (B) 9 (C) 16 (D) 24

Q.9

For any ABC, the value of determinant

r

sin 2 A cot A 1

1 is equal to-

sin 2 B cot B 1 issin 2 C

(A) 22

(B) 2

(C) –2

(D) None of these

ax The determinant x 2 1 1 a

1 b

1 c

2

2

2

z

1 x

1 y

1 z

2

2

2

b

a b a  b

Q.8 then

c a b

(C) 3

y

ca c  a 

a  b c

(B) 1 (D) None of these

(B) 2

a

If the determinant b  c

b  c c  a  a   b

2

is equal to(A) 1

(C)

(B) 25 (D) None of these

3.2 2  3.2  1

a b bc ca a b c If b  c c  a a  b =  b c a

x

25 10

bc

Q.7

23

(A)

, then

(A) 0 (C) 625

(B) 2abc

p q

Q.5

3

8 9

D1 + D2 + D3 + D4 + D5 is equal to-

c2  a 2 b

(A) abc

ca

Q.4

p

is equal to-

a

(A) 0 (C) 92

Q.3

Q.6

p 15 If Dp = p 2 35

c

(A) 0 (B) 1 (C) sin A sin B sin C (D) sin A + sin B + sin C

by cz y 2 z 2 is equal to1

1

a (B) x

b y

c z

yz zx xy

cot C 1

Q.10

If Sr =

2r 6r 2  1

x n (n  1) y n 2 (2n  3)

3

4r  2nr z

then

3

n (n  1)

n

S

r

does not depends on

r 1

(D) None of these

(A) x (C) n

(B) y (D) all of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

5

Q.11

If a, b, c are non-zero real numbers, then b 2c 2

bc b  c

c2a 2

ca

2 2

a b

ab a  b

(B) a2b2c2 (D) None of these

x p q p x q is equal to p q

Q.17

[x]

[ z]  1

5

value 5

C3 14

C1

5

C4

1

C2

5

C5

1

b c

If  = b c a , then 2 is equal to-

bc  a 2

ca  b 2

ab  c 2

2

2

bc  a 2

ab  c 2

bc  a 2

ca  b 2

bc  a 2

ca  b 2

ab  c 2

(B) ca  b 2

ab  c 2

bc  a 2

ab  c 2

bc  a 2

ca  b 2

a 2  bc b 2  ca

c 2  ab

(A) ca  b

(C) (2x) !. (x + 3) ! (D) None of these The determinant is-

ab  c

(C) b 2  ca c 2  ab a 2  bc

cos 

c 2  ab a 2  bc b 2  ca

(A) 0

(D) None of these

(B) independent of  (C) independent of 

Q.19

If ax + by + cz = 1, bx + cy + az = 0 = cx + ay +

(D) independent of both and   bz, then Q.15

determinant

c a b

(A) (2x) !. (x + 1) !. (x + 2) !. (x + 3) ! (B) 2 (x) !. (x + 1) !. (x + 2) !

sin 

the

(B) – (6!) (D) None of these a

Q.18

is equal to-

is-

(A) 0 (C) 80

( x  2)! ( x  3)! ( x  4)!

 cos 

of

C0

If x is a positive integer then the value of

cos (  )  sin (  ) cos 2 sin  cos  sin 

[ y]

(B) [y] (D) None of these

The 5

x! (x  1)! ( x  2)! determinant ( x  1)! (x  2)! (x  3)! is-



[z ] [z ]

5

x

(D) (x + p) (x + q) (x + p + q)

Q.14

[ x ]  1 [ y] 2, then [ x ] [ y]  1

(A) [x] (C) [z]

(A) (x + p) (x + q) (x – p – q) (B) (x – p) (x – q) (x + p + q) (C) (x – p) (x – q) (x – p – q)

Q.13

If [a] denotes the greatest integer less than or equal to a and – 1  x < 0, 0  y < 1, 1  z <

c  a is equal to

(A) abc (C) ab + bc + ca

Q.12

Q.16

13  3

2 5

5

15  26

5

10 equals-

65  3

15

5

(A) 0 (C) – 1

x y z x

z y

a b c c a b is equal to-

y

x

b c a

z

(B) 1 (D) 2

(A) 0 (B) 5 3 ( 6 – 5) (C) 5 3 (5 – 6 ) (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

6

LEVEL – 3 Q.1

xn

x n2

x n 3

If y n

y n2

y n3

n

n 2

z n 3

z

z

1 1 1 = (x–y) (y–z) (z–x)     , then n = x y z (A) 1 (B) –1 (C) 2 (D) –2

Q.2

Q.6

The values  and  for which the system of equations x + y + z = 6, x + 2y + 3z = 10 and x + 2y + z = have unique solution are(A)   3,  R (B)   3,  10 (C)   3,  10 (D)   3,  10

Q.7

The system of linear equations x + y + z = 2, 2x + y – z = 3, 3x + 2y + kz = 4 has a unique solution if(A) k  (B) –1 < k > 1 (C) –2 < k < 2 (D) k = 0

If  are the roots of x3 + ax2 + b = 0, then the value of (A) – (C) a3

 

    is equals to-



 

a3

x2  x

(B) a3 –3b (D) a2 – 3b

Q.8

If

x 1

2

2 x  3x  1 2

x  2x  3

Q.3

If A, B and C are the angles of a triangle and 1 1  sin A

1 1  sin B

1 1  sin C

2

2

2

3x

x2 3x  3 = Ax – 12,

2x  1 2x  1

then the value of A is(A) 12 (B) 24 (C) –12 (D) –24

0 ,

sin A  sin A sin B  sin B sin C  sin C

then the triangle ABC is(A) isosceles (B) equilateral (C) right angled isosceles (D) none of these Q.4

Q.9

 sin  cos 

(A) 441 × 446 × 451 (B) 0 (C) –1 (D) 1

1 1

x  3 2x 2  18

Q.10

1

Let

r

Q.11

216  1

D r  b 3(4 r ) 2(416  1) ,

2

3

f(1).f(3) + f(3).f(5) + f(5).f(1) is equal to(A) f(1) (B) f(3) (C) f(1) + f(3) (D) f(1) + f(5)

(A) independent of  (B) independent of  (C) independent of  and  (D) none of these 2r

3x 3  81

If f(x) = x  5 2x 2  50 4x 3  500 then

is-

cos(   )  sin(  ) 1

a

441 442 443 445 446 447 is449 450 451

The value of the determinant cos  sin 

Q.5

The value of

then the

If the system of equations, x + 2y – 3z =1, (k + 3)z = 3,(2k + 1)x + z = 0 is inconsistent, then the value of k is(A) –3 (B) 1/2 (C) 0 (D) 2

16

c 7(8 ) 4(8  1) 16

value of Σ D r is equals tor 1

(A) 0 (B) a + b + c (C) ab + bc + ca (D) none of these

Q.12

1 a b In a ABC, if 1 c a  0 then 1 b c

sin2 A

+ (A) 9/4 (C) 1

sin2 B

+ sin2 C is equal to(B) 4/9 (D) 3 3

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

7

Q.13

Q.14

The equation x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4 have(A) unique solution (B) infinitely many solutions (C) inconsistent (D) None of these 1 1 1 cos (nx) cos (n  1) x cos (n  2) x sin (nx)

sin (n  1) x

dependent(A) on x (C) both on x and n

is not

sin (n  2) x

(B) on n (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

8

ANSWER KEY LEVEL- 1 Q.No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Ans.

D

B

C

C

C

A

B

B

D

C

A

B

C

B

A

D

A

C

C

D

C

Q.No.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Ans.

C

C

A

A

C

A

B

C

A

D

C

C

A

B

D

A

A

B

A

D

LEVEL- 2 Q.No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Ans.

C

A

B

B

B

D

B

D

A

D

D

B

B

B

B

C

D

A

B

LEVEL- 3 Q.No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Ans.

B

C

A

A

A

A

A

B

B

B

A

A

A

B

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

9

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF