# Desing Calc. Pressure Vessel

January 30, 2018 | Author: aurelpopp3225 | Category: Pressure, Nozzle, Pipe (Fluid Conveyance), Stress (Mechanics), Pounds Per Square Inch

#### Description

Cover Page

DESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version

Analysis Performed by : PRESSURE VESSEL ENGINEERING Job File

: L:\SAMPLES\SAMPLE 14 - VERTICAL W BOLTED COVER\P

Date of Analysis

: Jun 19,2009

PV Elite 2009,

January 2009

Table of Contents Table of Contents Input Echo : Internal Pressure Calculations : Nozzle Calcs. : N1 Nozzle Calcs. : N2 Nozzle Calcs. : N3 Nozzle Calcs. : N4 Nozzle Summary : Nozzle Flange MAWP : Nozzle Schedule : Element and Detail Weights : Earthquake Load Calculation : Wind/Earthquake Shear, Bending : Longitudinal Stress Constants : Longitudinal Allowable Stresses : Longitudinal Stresses Due to . . Stress due to Combined Loads : Center of Gravity Calculation : Leg Check, (Operating Case) : Leg Check, (Filled w/Water) : Vessel Design Summary :

1 2 7 10 14 18 21 24 25 26 27 29 30 31 32 33 35 39 40 43 46

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 2 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 PV Elite Vessel Analysis Program: Input Data

Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Wind Design Code Design Wind Speed Exposure Constant Importance Factor Roughness Factor Base Elevation Percent Wind for Hydrotest Using User defined Wind Press. Damping Factor (Beta) for Wind Damping Factor (Beta) for Wind Damping Factor (Beta) for Wind

125.00 200 UG99-b Vertical 0.0000 0.0000 -20 Welded Air/Water/Steam None 0. Y N N N N N N No 0.0000 0.0000 0.0000

psig F

in in F

psig psig psig

NP+EW+WI+FW+BW NP+EW+EE+FS+BS NP+OW+WI+FW+BW NP+OW+EQ+FS+BS NP+HW+HI NP+HW+HE IP+OW+WI+FW+BW IP+OW+EQ+FS+BS EP+OW+WI+FW+BW EP+OW+EQ+FS+BS HP+HW+HI HP+HW+HE IP+WE+EW IP+WF+CW IP+VO+OW IP+VE+EW NP+VO+OW FS+BS+IP+OW FS+BS+EP+OW No Wind Loads 70.000 C

Vs Elev. (Ope) (Empty) (Filled)

0.0000 33. N 0.0100 0.0000 0.0000

mile/hr

in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 3 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 Seismic Design Code NBC Acceleration-Related Seismic Zone Za NBC Velocity-Related Seismic Zone Zv NBC Seismic Importance Factor I NBC Soil Type NBC Force Modification Factor R NBC Percent Seismic for Hydrotest

NBC 95 1.000 0.000 1.000 1.000 1.000 0.000

Design Nozzle for Des. Press. + St. Head Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Consider Code Case 2168 for Nozzle Des.

Y N Y N

Material Database Year

Complete Listing of Vessel Elements and Details:

Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress, Ambient Allowable Stress, Operating Allowable Stress, Hydrotest Material Density P Number Thickness Yield Stress, Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Elliptical Head Factor

10 20 Elliptical Elliptical Head 2.0000 in 36.000 in 0.2260 in 0.06250 in 0.2500 in 0.0000 in 125.00 psig 200 F 0.0000 psig 70 F 1.2 SA-516 70 20000. psi 20000. psi 26000. psi 0.2830 lbm/in³ 1.2500 in 34800. psi B CS-2 K02700 Plate 0.85 0.7 2.

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid

10 Liquid Liquid 10 -9.0000 11.000 0.0000

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter

10 Nozzle N3 0.0000 1.75

in in lbm/ft³

in in.

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 4 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Diameter at Leg Centerline Leg Orientation Number of Legs Section Identifier Length of Legs Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

None 0 0. N 0.0000 None SA-105 10 Leg LEGS 10.000 38.003 3 4 L3X3X0.2500 31.000 20 30 Cylinder Shell 41.810 36.000 0.2500 0.06250 0.2500 0.0000 125.00 200 0.0000 70 1.2 SA-516 70 0.7 0.7

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid

20 Liquid WATER 0.0000 41.810 0.0000

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

20 Nozzle N1 24.000 18. 40 150 180. N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type

20 Nozzle

lbf

in in

in

in in in in in in psig F psig F

in in lbm/ft³

in in.

lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 5 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Flange Inside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress, Ambient Allowable Stress, Operating Allowable Stress, Hydrotest Material Density P Number Thickness Yield Stress, Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Perform Flange Stress Calculation (Y/N) Weight of ANSI B16.5/B16.47 Flange Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Flange Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance

N2 24.000 4. 40 150 0. N 0.0000 GR 1.1 SA-106 B

in in.

lbf

30 40 Flange 36" 150# WN Flange 6.1900 36.000 3.5600 0.06250 0.2500 0.0000 125.00 200 0.0000 70 1.2 SA-105 20000. 20000. 26000. 0.2830 1.2500 33000. B CS-2 K03504 Forgings N 0.0000 150 GR 1.1 30 Liquid Liquid 30 0.0000 6.1900 0.0000

in in in in in in psig F psig F

psi psi psi lbm/in³ in psi

lbf

in in lbm/ft³

40 50 Flange Blind Cover 3.5600 46.000 3.5600 0.06250 0.2500 0.0000

in in in in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 6 of 47 Input Echo : Step: 1 10:38a Jun 19,2009 Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Perform Flange Stress Calculation (Y/N) Weight of ANSI B16.5/B16.47 Flange Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

125.00 200 0.0000 70 1.2 SA-105 N 0.0000 150 GR 1.1

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Density of Liquid

40 Liquid Liquid 40 0.0000 3.5600 0.0000

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 0.0000 3. None 0 0. N 0.0000 None SA-105

psig F psig F

lbf

in in lbm/ft³

in in.

lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 7 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19,2009 Element Thickness, Pressure, Diameter and Allowable Stress :

| | Int. Press From| To | + Liq. Hd | | psig Elliptical| 126.900 Shell| 126.900 36" 150# W| 126.900 Blind Cove| 126.900

| | | | | | |

Nominal Thickness in 0.25000 0.25000 0.25000 0.25000

| Total Corr| | Allowance | | in | | 0.062500 | | 0.062500 | | 0.062500 | | 0.062500 |

Element Diameter in 36.0000 36.0000 36.0000 46.0000

| | | | | | |

Allowable | Stress(SE)| psi | 17000.0 | 14000.0 | 20000.0 | 20000.0 |

Element Required Thickness and MAWP :

| | From| To | | | Elliptical| Shell| 36" 150# W| Blind Cove| Minimum

Design Pressure psig 125.000 125.000 125.000 125.000

| | | | | | |

M.A.W.P. Corroded psig 154.516 144.544 258.100 258.100 144.544

| M.A.P. | New & Cold | psig | 215.884 | 195.531 | 285.000 | 285.000 195.530

| | | | | | |

Actual Thickness in 0.22600 0.25000 3.56000 3.56000

| | | | | | |

Required Thickness in 0.19535 0.22507 No Calc No Calc

MAWP: 129.553 psig, limited by: Nozzle Reinforcment. Internal Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2007 A-08 Elliptical Head From 10 To 20 SA-516 70 , UCS-66 Crv. B at 200 F

Elliptical Head Thickness Due to Internal Pressure [tr]:

= (P*Do*Kcor)/(2*S*E+2*P*(Kcor-0.1)) per Appendix 1-4 (c) = (126.900*36.0000*0.995)/(2*20000.00*0.85+2*126.900*(1.00-0.1)) = 0.1329 + 0.0625 = 0.1954 in Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 1.900 psig

= (2*S*E*t)/(Kcor*Do-2*t*(Kcor-0.1)) per Appendix 1-4 (c) = (2*20000.00*0.85*0.1635)/(0.995*36.0000-2*0.1635*(1.00-0.1)) = 156.416 - 1.900 = 154.516 psig Maximum Allowable Pressure, New and Cold [MAPNC]:

= (2*S*E*t)/(K*Do-2*t*(K-0.1)) per Appendix 1-4 (c) = (2*20000.00*0.85*0.2260)/(1.000*36.0000-2*0.2260*(1.000-0.1)) = 215.884 psig Actual stress at given pressure and thickness, corroded [Sact]:

= (P*(Kcor*Do-2*t*(Kcor-0.1)))/(2*E*t) = (126.900*(0.995*36.0000-2*0.1635*(0.995-0.1)))/(2*0.85*0.1635) = 16225.990 psi

Required Thickness of Straight Flange: = (P * Ro)/(S * E + 0.4 * P ) + c per Appendix 1-1 (a)(1) = (126.900 *18.0000 )/( 20000.00 * 0.85 + 0.4 * 126.900 ) + 0.063 = 0.196 in Factor K, corroded condition [Kcor]:

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 8 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19,2009 = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 35.673 /( 2 * 8.950 ))^(2))/6 = 0.995352 Percent Elongation per UCS-79

(75*tnom/Rf)*(1-Rf/Ro)

3.085 %

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Rqd thickness (UCS 66.1)[rat 0.69]

-20 -51

F F

-20 -55

F F

MDMT Calculations in the Knuckle Portion:

MDMT Calculations in the Straight Flange: Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Rqd thickness (UCS 66.1)[rat 0.61] Cylindrical Shell From 20 To 30 SA-516 70 , UCS-66 Crv. B at 200 F

Shell Thickness Due to Internal Pressure [tr]:

= (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (126.900*18.0000)/(20000.00*0.70+0.4*126.900) = 0.1626 + 0.0625 = 0.2251 in Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 1.900 psig

= (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*0.70*0.1875)/(18.0000-0.4*0.1875) = 146.444 - 1.900 = 144.544 psig Maximum Allowable Pressure, New and Cold [MAPNC]:

= (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*0.70*0.2500)/(18.0000-0.4*0.2500) = 195.531 psig Actual stress at given pressure and thickness, corroded [Sact]:

= (P*(Ro-0.4*t))/(E*t) = (126.900*((18.0000-0.4*0.1875))/(0.70*0.1875) = 17330.914 psi Percent Elongation per UCS-79

(50*tnom/Rf)*(1-Rf/Ro)

0.699 %

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Rqd thickness (UCS 66.1)[rat 0.69]

-20 -51

F F

-20. -51.

F F

-20.

F

Minimum Metal Design Temperature Results :

Minimum Metal Temp. w/o impact per UCS-66 Minimum Metal Temp. at Required thickness

Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F Minimum Design Metal Temperature ( Entered by User ) Hydrostatic Test Pressure Results:

Pressure per UG99b

= 1.3 * M.A.W.P. * Sa/S

168.419

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 9 of 47 Internal Pressure Calculations : Step: 3 10:38a Jun 19,2009 Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S

162.500 252.328 142.508

psig psig psig

Vertical Test performed per: UG-99b Stresses on Elements due to Hydrostatic Test Pressure:

Stress 15811.6 17417.3

Allowable 26000.0 26000.0

Elements Suitable for Internal Pressure. PV Elite 2009 ©1993-2009 by COADE Engineering Software

Ratio 0.608 0.670

Pressure 170.67 170.28

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 10 of 47 Nozzle Calcs. : N1 Nozl: 6 10:38a Jun 19,2009 INPUT VALUES, Nozzle Description: N1

From : 20

Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

S Sa D t cas caext

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle

Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient

Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Nominal Thickness of Nozzle

126.900 200

SA-516 70 20000.00 psi 20000.00 psi 35.5000 0.2500 0.0625 0.0000

in in in in

26.0000

in

-20.00

Sn Sna Inbase Dia Idbn tn

psig F

F

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi OD 180.00 18.0000

deg in.

Nominal 40

Nozzle Flange Material Nozzle Flange Type

SA-105 Weld Neck Flange

Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

Can Es En

0.0625 1.00 1.00

in

Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Nozzle Inside Projection h Weld leg size, Inside Nozzle to Shell Wi

14.5000 0.2500 0.2500 0.0000 0.0000

in in in in in

Sp Spa Dp Tp Wp Wgpn

Class of attached Flange Grade of attached Flange

The Pressure Design option was Design Pressure + static head

SA-516 70 20000.00 20000.00 22.0000 0.2500 0.2500 0.2500 2.0000 Q 150 GR 1.1

psi psi in in in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 11 of 47 Nozzle Calcs. : N1 Nozl: 6 10:38a Jun 19,2009

Nozzle Sketch | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__|

Insert Nozzle With Pad, no Inside projection NOZZLE CALCULATION, Description: N1

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation

18.000 0.562

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (126.90*17.8125)/(20000*1.00-0.6*126.90) = 0.1135 in Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]

= (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (126.90*9.0000)/(17100*1.00+0.4*126.90) = 0.0666 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Dl Normal to Vessel Wall (Thickness Limit), pad side Tlwp Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design Area Required Ar 1.945 Area in Shell A1 1.248 Area in Nozzle Wall A2 0.347 Area in Inward Nozzle A3 0.000 Area in Welds A4 0.115 Area in Pad A5 1.000 TOTAL AREA AVAILABLE Atot 2.710

External NA NA NA NA NA NA NA

34.0020 0.4688

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

90.00

Degs.

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 19.0000 22.0000 19.0000

Thickness 0.2500 in 0.0625 in 0.2500 in

in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 12 of 47 Nozzle Calcs. : N1 Nozl: 6 10:38a Jun 19,2009 Reinforcement Area Required for Nozzle [Ar]:

= ( Dlr * tr + 2 * tn * tr * (1-fr1) ) UG-37(c) = (17.0010*0.1135+2*(0.5620-0.0625)*0.1135*(1-0.8550)) = 1.945 in² Areas per UG-37.1 but with DL = Diameter Limit, DLR = Corroded ID:

Area Available in Shell [A1]: = (DL-Dlr)*(Es*(t-cas)-tr)-2*(tn-can)*(Es*(t-cas)-tr)*(1-fr1) = (34.002-17.001)*(1.00*(0.2500-0.062)-0.113)-2*(0.562-0.062) *(1.00*(0.2500-0.0625)-0.1135)*(1-0.8550) = 1.248 in² Area Available in Nozzle Wall, no Pad [A2np]: = ( 2 * min(Tlnp,ho) ) * ( tn - can - trn ) * fr2 = ( 2 * min(0.469 ,14.500 ) ) * ( 0.5620 - 0.0625 - 0.0666 ) * 0.8550 ) = 0.347 in² Area Available in Nozzle Wall, with Pad [A2wp]: = ( 2 * min(Tlwp, ho) )*( tn - can - trn )* fr2 = ( 2 * min(0.469 ,14.500 ) ) * ( 0.5620 - 0.0625 - 0.0666 ) * 0.8550 ) = 0.347 in² Area Available in Welds, no Pad [A4np]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.2500² * 0.8550 + ( 0.0000 )² * 0.8550 = 0.053 in² Area Available in Welds, with Pad [A4wp]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*Fr2 + Wp²*Fr4 = (0.0615 ) * 0.86 + (0.0000 ) * 0.86 + 0.0625² * 1.00 = 0.115 in² Area Available in Pad [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,Te))*fr4 = ( 22.0000 - 18.0000 ) * 0.2500 * 1.0000 = 1.000 in² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness per UG45(a), tra = 0.1291 in Wall Thickness per UG16(b), tr16b = 0.1562 in Wall Thickness per UG45(b)(1), trb1 = 0.1760 in Wall Thickness per UG45(b)(2), trb2 = 0.0625 in Wall Thickness per UG45(b)(3), trb3 = Max(trb1, trb2, tr16b) = 0.1760 in Std. Wall Pipe per UG45(b)(4), trb4 = 0.3906 in Wall Thickness per UG45(b), trb = Min(trb3, trb4) = 0.1760 in Final Required Thickness, tr45 = Max(tra, trb) = 0.1760 in Available Nozzle Neck Thickness = .875 * 0.5620 = 0.4917 in --> OK Nozzle Junction MDMT Calculations:

Minimum Design Metal Temperature (Nozzle Neck to Flange Weld), Curve: B Nozzle, tg = 0.492 , tr = 0.067 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.155 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness Minimum Temp. w/o impact per UG-20(f)

-7 -147 -20

F F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 13 of 47 Nozzle Calcs. : N1 Nozl: 6 10:38a Jun 19,2009

Minimum Design Metal Temperature (Nozzle Neck to Pad Weld), Curve: B Pad is governing, tg = 0.250 , tr = 0.113 in Temp. Reduction = 35 F Conservately assuming Stress in Pad is same as that in Shell (Div. 1 L-9.3). Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness Minimum Temp. w/o impact per UG-20(f)

-20 -55 -20

F F F

Minimum Design Metal Temperature (Shell to Pad Weld at Pad OD), Curve: B Pad is governing, Thk. = 0.250 , Req. Thk. = 0.113 in Reduction = 35 F Conservately assuming Stress in Pad is same as that in Shell (Div. 1 L-9.3). Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness Minimum Temp. w/o impact per UG-20(f)

-20 -55 -20

F F F

Nozzle MDMT per UCS-66 (a)1(b), (Nozzle to Shell/Head Weld), Curve: B Shell is governing, tg = 0.250 , tr = 0.113 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.605 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -55

F F

Governing MDMT of the all the sub-joints of this Junction : -55 F ANSI Flange MDMT including temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b)

-20 -55

Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 126.90/285.00 = 0.445 Weld Size Calculations, Description: N1

Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

0.2500 0.1875

in in

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness 0.1750 = 0.7 * TMIN 0.0938 = 0.5*TminPad

Actual Thickness 0.1768 = 0.7 * Wo in 0.1768 = 0.7 * Wp in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case Note: The MAWP of this junction was limited by the shell. The Drop for this Nozzle is : 2.4509 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 17.2009 in PV Elite 2009 ©1993-2009 by COADE Engineering Software

146.443

psig

F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 14 of 47 Nozzle Calcs. : N2 Nozl: 7 10:38a Jun 19,2009 INPUT VALUES, Nozzle Description: N2

From : 20

Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

S Sa D t cas caext

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature Nozzle Nozzle Nozzle Nozzle Nozzle

Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient

Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Nominal Thickness of Nozzle

126.900 200

SA-516 70 20000.00 psi 20000.00 psi 35.5000 0.2500 0.0625 0.0000

in in in in

26.0000

in

-20.00

Sn Sna Inbase Dia Idbn tn

psig F

F

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi OD 0.00 4.0000

deg in.

Nominal 40

Nozzle Flange Material Nozzle Flange Type

SA-105 Weld Neck Flange

Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

Can Es En

0.0625 1.00 1.00

in

Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Nozzle Inside Projection h Weld leg size, Inside Nozzle to Shell Wi ASME Code Weld Type per UW-16 User Defined Nozzle/Shell Centerline Angle

11.0000 0.3750 0.2500 0.0000 0.0000 None 60.0000

in in in in in

Class of attached Flange Grade of attached Flange

The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | ____________/|

| | | | |

150 GR 1.1

deg.

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 15 of 47 Nozzle Calcs. : N2 Nozl: 7 10:38a Jun 19,2009 | \ | | | \ | | |____________\|__|

Insert Nozzle No Pad, no Inside projection NOZZLE CALCULATION, Description: N2

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation

4.500 0.237

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]

= (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (126.90*17.8125)/(20000*1.00-0.6*126.90) = 0.1135 in Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]

= (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (126.90*2.2500)/(17100*1.00+0.4*126.90) = 0.0166 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit), no pad Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design Area Required Ar 0.550 Area in Shell A1 0.351 Area in Nozzle Wall A2 0.118 Area in Inward Nozzle A3 0.000 Area in Welds A4 0.120 Area in Pad A5 0.000 TOTAL AREA AVAILABLE Atot 0.589

Dl Tlnp

External NA NA NA NA NA NA NA

9.5863 0.4363

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

60.00

Degs.

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Sufficient. Reinforcement Area Required for Nozzle [Ar]:

= ( Dlr * tr + 2 * tn * tr * (1-fr1) ) UG-37(c) = (4.7932*0.1135+2*(0.2370-0.0625)*0.1135*(1-0.8550)) = 0.550 in² Areas per UG-37.1 but with DL = Diameter Limit, DLR = Corroded ID:

Area Available in Shell [A1]: = (DL-Dlr)*(Es*(t-cas)-tr)-2*(tn-can)*(Es*(t-cas)-tr)*(1-fr1) = (9.586-4.793)*(1.00*(0.2500-0.062)-0.113)-2*(0.237-0.062) *(1.00*(0.2500-0.0625)-0.1135)*(1-0.8550) = 0.351 in² Area Available in Nozzle Wall, no Pad [A2np]:

in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 16 of 47 Nozzle Calcs. : N2 Nozl: 7 10:38a Jun 19,2009 = ( 2 * min(Tlnp,ho) ) * ( tn - can - trn ) * fr2 = ( 2 * min(0.436 ,11.000 ) ) * ( 0.2370 - 0.0625 - 0.0166 ) * 0.8550 ) = 0.118 in²

Area Available in Welds, no Pad [A4np]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.3750² * 0.8550 + ( 0.0000 )² * 0.8550 = 0.120 in² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness per UG45(a), tra = 0.0791 in Wall Thickness per UG16(b), tr16b = 0.1562 in Wall Thickness per UG45(b)(1), trb1 = 0.1760 in Wall Thickness per UG45(b)(2), trb2 = 0.0625 in Wall Thickness per UG45(b)(3), trb3 = Max(trb1, trb2, tr16b) = 0.1760 in Std. Wall Pipe per UG45(b)(4), trb4 = 0.2699 in Wall Thickness per UG45(b), trb = Min(trb3, trb4) = 0.1760 in Final Required Thickness, tr45 = Max(tra, trb) = 0.1760 in Available Nozzle Neck Thickness = .875 * 0.2370 = 0.2074 in --> OK Nozzle Junction MDMT Calculations:

Minimum Design Metal Temperature (Nozzle Neck to Flange Weld), Curve: B Nozzle, tg = 0.207 , tr = 0.017 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.115 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -155

F F

Nozzle MDMT per UCS-66 (a)1(b), (Nozzle to Shell/Head Weld), Curve: B Nozzle is governing, tg = 0.207 , tr = 0.017 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.115 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -155

F F

Governing MDMT of the all the sub-joints of this Junction : -155 F ANSI Flange MDMT including temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b)

-20 -55

Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 126.90/285.00 = 0.445 Weld Size Calculations, Description: N2

Intermediate Calc. for nozzle/shell Welds

Tmin

0.1745

in

Results Per UW-16.1: Nozzle Weld

Required Thickness 0.1222 = 0.7 * TMIN

Actual Thickness 0.2651 = 0.7 * Wo in

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (Ar-A1+2*(Thk-can)*Ffr1*(E1(T-Cas)-Tr))*S = (0.5495 - 0.3512 + 2 * ( 0.2370 - 0.0625 ) * 0.8550 * (1.00 * ( 0.2500 - 0.0625 ) - 0.1135 ) ) * 20000

F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 17 of 47 Nozzle Calcs. : N2 Nozl: 7 10:38a Jun 19,2009 = 4409.12 lbf

Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*Ffr2)*S = ( 0.1178 + 0.0000 + 0.1202 - 0.0000 * 0.86 ) * 20000 = 4759.80 lbf Weld Load [W2]: = ((A2+A6)+A3+A4+(2*(Thk-Can)*(T-Ca)*Fr1))*S = ( 0.1178 + 0.0000 + 0.1202 + 0.0559 ) * 20000 = 5878.78 lbf Weld Load [W3]: = ((A2+A6)+A3+A4+A5+(2*(Thk-Can)*(T-Ca)*Fr1))*S = ( 0.1178 + 0.0000 + 0.1202 + 0.0000 + 0.0559 ) * 20000 = 5878.78 lbf Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]:

= (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416 / 2.0 ) * 5.1962 * 0.3750 * 0.49 * 17100 = 25646. lbf Shear, Nozzle Wall [Snw]:

= (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 2.4973 ) * ( 0.2370 - 0.0625 ) * 0.7 * 17100 = 16388. lbf Tension, Nozzle Groove Weld [Tngw]:

= (PI/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416 / 2.0 ) * 5.1962 * ( 0.2500 - 0.0625 ) * 0.74 * 17100 = 19366. lbf Strength of Failure Paths:

PATH11 = ( PATH22 = ( = ( PATH33 = ( = (

SONW + SNW ) = ( 25646 + 16387 ) = 42033 lbf Sonw + Tpgw + Tngw + Sinw ) 25646 + 0 + 19365 + 0 ) = 45011 lbf Sonw + Tngw + Sinw ) 25646 + 19365 + 0 ) = 45011 lbf

Summary of Failure Path Calculations:

Path 1-1 = 42033 lbf, must exceed W = 4409 lbf or W1 = 4759 lbf Path 2-2 = 45011 lbf, must exceed W = 4409 lbf or W2 = 5878 lbf Path 3-3 = 45011 lbf, must exceed W = 4409 lbf or W3 = 5878 lbf

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case The Drop for this Nozzle is : 0.1432 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 11.3932 in PV Elite 2009 ©1993-2009 by COADE Engineering Software

131.453

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 18 of 47 Nozzle Calcs. : N3 Nozl: 5 10:38a Jun 19,2009 INPUT VALUES, Nozzle Description: N3

From : 10

Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Inside Diameter of Elliptical Head Aspect Ratio of Elliptical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

S Sa

Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Actual Thickness of Nozzle Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-516 70 20000.00 psi 20000.00 psi 35.5480 2.00 0.2260 0.0625 0.0000

in

L1

0.0000

in

-20.00

F

User Entered Minimum Design Metal Temperature Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient

psig F

D Ar t cas caext

Nozzle Nozzle Nozzle Nozzle Nozzle

126.900 200

Sn Sna Inbase Dia Idbn tn Can Es En

in in in

SA-105 K03504 Forgings 20000.00 psi 20000.00 psi OD 0.00 1.7500

deg in.

Actual 0.2175 in 0.0625 1.00 1.00

in

Nozzle Outside Projection ho 1.1880 Weld leg size between Nozzle and Pad/Shell Wo 0.3750 Groove weld depth between Nozzle and Vessel Wgnv 0.0000 ASME Code Weld Type per UW-16 UW-16.2(B-H)

in in in

The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | | | | | | | |\ | __________/|_\| | | | | |______________|

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 19 of 47 Nozzle Calcs. : N3 Nozl: 5 10:38a Jun 19,2009 NOZZLE CALCULATION, Description: N3

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation

1.750 0.218

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press]

= (P*K1*D))/(2*S*E-0.2*P) per UG-37(a)(3) = (126.90*0.897*35.6730)/(2 *20000.00*1.00-0.2*126.90) = 0.1016 in Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]

= (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (126.90*0.8750)/(20000*1.00+0.4*126.90) = 0.0055 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit), no pad

Dl Tlnp

2.8800 0.3875

in in

Note: Taking a UG-36(c)(3)(a) exemption for N3 . This calculation is valid for nozzles that meet all the requirements of paragraph UG-36. Please check the Code carefully, especially for nozzles that are not isolated or do not meet Code spacing requirements. It may be necessary to force the program to print the areas per UG-37.

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness per UG45(a), tra = 0.0680 in Wall Thickness per UG16(b), tr16b = 0.1562 in Wall Thickness per UG45(b)(1), trb1 = 0.1752 in Wall Thickness per UG45(b)(2), trb2 = 0.0625 in Wall Thickness per UG45(b)(3), trb3 = Max(trb1, trb2, tr16b) = 0.1752 in Std. Wall Pipe per UG45(b)(4), trb4 = 0.1894 in Wall Thickness per UG45(b), trb = Min(trb3, trb4) = 0.1752 in Final Required Thickness, tr45 = Max(tra, trb) = 0.1752 in Available Nozzle Neck Thickness = 0.2175 in --> OK Nozzle Junction MDMT Calculations:

Minimum Design Metal Temperature (Nozzle Neck to Flange Weld), Curve: B Nozzle, tg = 0.218 , tr = 0.006 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.036 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -155

F F

Nozzle MDMT per UCS-66 (a)1(b), (Nozzle to Shell/Head Weld), Curve: B Nozzle is governing, tg = 0.218 , tr = 0.006 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.036 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

Governing MDMT of the all the sub-joints of this Junction : -155 F

-20 -155

F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 20 of 47 Nozzle Calcs. : N3 Nozl: 5 10:38a Jun 19,2009 Weld Size Calculations, Description: N3

Results Per UW-16.1: Fitting Weld

Required Thickness 0.0663 = UW-16.1(f)5

Actual Thickness 0.2652 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case Note: The MAWP of this junction was limited by the shell. The Drop for this Nozzle is : 0.0119 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 1.4259 in PV Elite 2009 ©1993-2009 by COADE Engineering Software

156.416

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 21 of 47 Nozzle Calcs. : N4 Nozl: 8 10:38a Jun 19,2009 INPUT VALUES, Nozzle Description: N4

From : 40

Pressure for Nozzle Reinforcement Calculations P Temperature for Internal Pressure Temp Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient Outside Diameter of Bolted Blind Flange Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

S Sa

Nozzle Diameter Basis (for tr calc only) Layout Angle Nozzle Diameter Nozzle Size and Thickness Basis Actual Thickness of Nozzle Nozzle Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-105 20000.00 psi 20000.00 psi 35.5000 3.5600 0.0625 0.0000

in in in in

L1

0.0000

in

-20.00

F

User Entered Minimum Design Metal Temperature Material Material UNS Number material Specification used Allowable Stress at Temperature Allowable Stress At Ambient

psig F

D t cas caext

Nozzle Nozzle Nozzle Nozzle Nozzle

126.900 200

Sn Sna Inbase Dia Idbn tn

SA-105 K03504 Forgings 20000.00 psi 20000.00 psi OD 0.00 3.0000

deg in.

Actual 0.3125 in

Can Es En

0.0625 1.00 1.00

in

Nozzle Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv ASME Code Weld Type per UW-16

3.3750 0.3750 0.3125 B

in in in

The Pressure Design option was Design Pressure + static head Nozzle Sketch | | | | | | | | | | |\ | __________/|_\| | | | | |______________|

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 22 of 47 Nozzle Calcs. : N4 Nozl: 8 10:38a Jun 19,2009 NOZZLE CALCULATION, Description: N4

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Nozzle Outside Diameter Used in Calculation Actual Nozzle Thickness Used in Calculation

3.000 0.312

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]

= (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (126.90*1.5000)/(20000*1.00+0.4*126.90) = 0.0095 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Normal to Vessel Wall (Thickness Limit), no pad

Dl Tlnp

9.9950 0.6250

in in

Note: Taking a UG-36(c)(3)(a) exemption for N4 . This calculation is valid for nozzles that meet all the requirements of paragraph UG-36. Please check the Code carefully, especially for nozzles that are not isolated or do not meet Code spacing requirements. It may be necessary to force the program to print the areas per UG-37.

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness per UG45(a), tra = 0.0720 in Wall Thickness per UG16(b), tr16b = 0.1562 in Wall Thickness per UG45(b)(1), trb1 = 0.0625 in Wall Thickness per UG45(b)(2), trb2 = 0.0625 in Wall Thickness per UG45(b)(3), trb3 = Max(trb1, trb2, tr16b) = 0.1562 in Std. Wall Pipe per UG45(b)(4), trb4 = 0.2515 in Wall Thickness per UG45(b), trb = Min(trb3, trb4) = 0.1562 in Final Required Thickness, tr45 = Max(tra, trb) = 0.1562 in Available Nozzle Neck Thickness = 0.3125 in --> OK

UG-45 Minimum Nozzle Neck Thickness Requirement: [MAPnc] Wall Thickness per UG45(a), tra = 0.0000 in Wall Thickness per UG16(b), tr16b = 0.0938 in Wall Thickness per UG45(b)(1), trb1 = 0.0000 in Check UG16(b) Min. Thickness, trb1 = Max(trb1, tr16b) = 0.0938 in Std. Wall Pipe per UG45(b)(4), trb4 = 0.1890 in Wall Thickness per UG45(b), trb = Min(trb1, trb4) = 0.0938 in Final Required Thickness, tr45 = Max(tra, trb) = 0.0938 in Available Nozzle Neck Thickness = 0.3125 in --> OK Nozzle Junction MDMT Calculations:

Minimum Design Metal Temperature (Nozzle Neck to Flange Weld), Curve: B Nozzle, tg = 0.312 , tr = 0.009 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.038 Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -155

F F

Nozzle MDMT per UCS-66 (a)1(b), (Nozzle to Shell/Head Weld), Curve: B Nozzle is governing, tg = 0.312 , tr = 0.009 , c = 0.063 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.038

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 23 of 47 Nozzle Calcs. : N4 Nozl: 8 10:38a Jun 19,2009

Minimum Temp. w/o impact per UCS-66 Minimum Temp. at required thickness

-20 -155

F F

Governing MDMT of the all the sub-joints of this Junction : -155 F Weld Size Calculations, Description: N4

Intermediate Calc. for nozzle/shell Welds

Tmin

0.2500

in

Results Per UW-16.1: Nozzle Weld

Required Thickness 0.1750 = 0.7 * TMIN

Actual Thickness 0.2651 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case Note: The MAWP of this junction was limited by the shell. The Cut Length for this Nozzle is, Drop + Ho + H + T : 6.9370 in PV Elite 2009 ©1993-2009 by COADE Engineering Software

258.100

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 24 of 47 Nozzle Summary : Step: 23 10:38a Jun 19,2009 Nozzle Calculation Summary

Description

MAWP Ext MAPNC UG45 [tr] Weld Areas psig psig Path --------------------------------------------------------------------------N3 154.52 ... ... OK 0.175 OK NoCalc[*] N1 144.54 ... ... OK 0.176 OK Passed N2 129.55 ... ... OK 0.176 OK Passed N4 258.10 ... ... OK 0.156 OK NoCalc[*] --------------------------------------------------------------------------Min. - Nozzles 129.55 N2 Min. Shell&Flgs 144.54 20 30 195.53 Computed Vessel M.A.W.P.

129.55

psig

[*] - This was a small opening and the areas were not computed or the MAWP of this connection could not be computed because the longitudinal bending stress was greater than the hoop stress. Note: MAWPs (Internal Case) shown above are at the High Point.

Warning: A Nozzle Reinforcement is governing the MAWP of this Vessel. Check the Spatial Relationship between the Nozzles

From Node 10 20 20 40

Nozzle Description N3 N1 N2 N4

Y Coordinate, 0.000 26.000 26.000 0.000

Layout Angle, 0.000 180.000 0.000 0.000

Dia. Limit 2.880 34.002 9.586 9.995

The nozzle spacing is computed by the following: = Sqrt( ll² + lc² ) where ll - Arc length along the inside vessel surface in the long. direction. lc - Arc length along the inside vessel surface in the circ. direction If any interferences/violations are found, they will be noted below.

No interference violations have been detected ! Checking Multiple Nozzles on Flat Head per ASME Sec. VIII Div. 1 UG-39 Comparing Nozzles on Element: Blind Cover

Note: No Nozzle pairs found on this element. UG-39 Nozzle Diameter and Distance to Edge Checks :

Nozzle Description N4

| | | |

Nozzle dia. in 2.5000

| | | |

| Distance | from Edge | in | 16.250

No Multiple Nozzle spacing violations have been detected ! PV Elite 2009 ©1993-2009 by COADE Engineering Software

| | | |

Nozzle dia./4 in 0.6250

| | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 25 of 47 Nozzle Flange MAWP : Step: 6 10:38a Jun 19,2009 Nozzle Flange MAWP Results :

Nozzle Description

----- Flange Rating Operating Ambient Temperature Class Grade|Group psig psig F ---------------------------------------------------------------------------N1 260.00 285.00 200 150 GR 1.1 N2 260.00 285.00 200 150 GR 1.1 ---------------------------------------------------------------------------Minimum Rating 260.000 285.000 psig

Note: ANSI Ratings are per ANSI/ASME B16.5 2003 Edition PV Elite 2009 ©1993-2009 by COADE Engineering Software

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 26 of 47 Nozzle Schedule : Step: 22 10:38a Jun 19,2009 Nozzle Schedule:

Nominal Flange Noz. Wall Re-Pad Cut Size Sch/Type O/Dia Thk ODia Thick Length in. Cls in in in in in -----------------------------------------------------------------------------N3 1.750 None 1.750 0.218 1.43 N4 3.000 None 3.000 0.312 6.94 N2 4.000 40 WNF 4.500 0.237 11.39 N1 18.000 40 WNF 18.000 0.562 22.00 0.250 17.20 Description

Note on the Cut Length Calculation: The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Thickness. This value does not include weld gaps, nor does it account for shrinkage. Please Note: In the case of Oblique Nozzles, the Outside Diameter must be increased. The Re-Pad WIDTH around the nozzle is calculated as follows: Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2 Nozzle Material and Weld Fillet Leg Size Details:

Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Weld Weld Weld Weld Weld in in in in in -----------------------------------------------------------------------------N3 SA-105 0.000 0.375 N4 SA-105 0.312 0.375 N2 SA-106 B 0.250 0.375 N1 SA-106 B 0.250 0.250 0.250 0.250 Nozzle

Material

Note: The Outside projections below do not include the flange thickness. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In From Datum Angle Outside Inside Component in deg. in in ---------------------------------------------------------------------------N3 0.00 1.19 0.00 Elliptical H N4 0.00 3.38 0.00 Blind Cover N2 26.000 0.00 11.00 0.00 Shell N1 26.000 180.00 14.50 0.00 Shell Nozzle

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 27 of 47 Element and Detail Weights : Step: 5 10:38a Jun 19,2009 Element and Detail Weights

| | Element | Element | Corroded | Corroded | Extra due | From| To | Metal Wgt. | ID Volume |Metal Wgt. | ID Volume | Misc % | | | lbf | ft³ | lbf | ft³ | lbf | 10| 20| 124.427 | 4.55150 | 93.3204 | 4.59562 | 0.00000 | 20| 30| 332.225 | 23.9486 | 249.604 | 24.1176 | 0.00000 | 30| 40| 0.00000 | 3.54561 | 0.00000 | 3.57062 | 0.00000 | 40| 50| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | --------------------------------------------------------------------------Total 456 35 342 35 0 Weight of Details

| | From|Type| | | 10|Liqd| 10|Nozl| 10|Legs| 20|Liqd| 20|Nozl| 20|Nozl| 30|Liqd| 40|Liqd| 40|Nozl|

Weight of Detail lbf 0.00000 0.35206 60.7205 0.00000 226.469 21.2083 0.00000 0.00000 2.52005

| X Offset, | Dtl. Cent. | in | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 26.1880 | 19.7630 | 0.00000 | 0.00000 | 0.00000

| Y Offset, |Dtl. Cent. | in | -9.00000 | 0.74058 | -5.50000 | 20.9050 | 24.0000 | 24.0000 | 3.09500 | 1.78000 | 0.00000

| | Description | | Liquid 10 | N3 | LEGS | WATER | N1 | N2 | Liquid 30 | Liquid 40 | N4

Total Weight of Each Detail Type

Total Weight of Nozzles 250.5 Total Weight of Legs 60.7 --------------------------------------------------------------Sum of the Detail Weights 311.3 lbf

Weight Summary Fabricated Wt. Shop Test Wt. Shipping Wt. Erected Wt. Ope. Wt. no Liq Operating Wt. Field Test Wt. Mass of the Upper

Bare Weight W/O Removable Internals Fabricated Weight + Water ( Full ) Fab. Wt + Rem. Intls.+ Shipping App. Fab. Wt + Rem. Intls.+ Insul. (etc) Fab. Wt + Intls. + Details + Wghts. Empty Wt. + Operating Liquid (No CA) Empty Weight + Water (Full) 1/3 of the Vertical Vessel

Outside Surface Areas of Elements

| | Surface | From| To | Area | | | in² | 10| 20| 1635.09 | 20| 30| 4728.60 | 30| 40| 989.798 | 40| 50| 989.798 | --------------------------------------------------Total 8343.285 in² [57.9 Square Feet ] Element and Detail Weights

767.9 2988.8 767.9 767.9 767.9 767.9 2988.8 50.9

lbf lbf lbf lbf lbf lbf lbf lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 28 of 47 Element and Detail Weights : Step: 5 10:38a Jun 19,2009

| To | From| To | | | 10|Legs| Legs| 20| 20| 30| 30| 40| 40| 50|

Total Ele.| Total. Ele.|Total. Ele.| Total Dtl.| Oper. Wgt. Empty Wgt.| Oper. Wgt.|Hydro. Wgt.| Offset Mom.| No Liquid lbm | lbm | lbm | in-lb | lbm 623.896 | 623.896 | 2043.97 | 0.00000 | 623.896 -499.117 | -499.117 | -1635.18 | 0.00000 | -499.117 579.903 | 579.903 | 2074.30 | 6349.91 | 579.903 0.00000 | 0.00000 | 221.247 | 0.00000 | 0.00000 2.52005 | 2.52005 | 2.52005 | 0.00000 | 2.52005

Cumulative Vessel Weight

| | Cumulative Ope From| To | Wgt. No Liquid | | lbm 10|Legs| -623.896 Legs| 20| 83.3058 20| 30| 582.423 30| 40| 2.52005 40| 50| 2.52005

| Cumulative | Cumulative | Oper. Wgt. | Hydro. Wgt. | lbm | lbm | -623.896 | -2043.97 | 83.3058 | 662.893 | 582.423 | 2298.07 | 2.52005 | 223.767 | 2.52005 | 2.52005

Note: The cumulative operating weights no liquid in the column above are the cumulative operating weights minus the operating liquid weight minus any weights absent in the empty condition. Cumulative Vessel Moment

| | Cumulative | Cumulative |Cumulative | From| To | Empty Mom. | Oper. Mom. |Hydro. Mom.| | | in-lb | in-lb | in-lb | 10|Legs| 0.00000 | 0.00000 | 0.00000 | Legs| 20| 6349.91 | 6349.91 | 6349.91 | 20| 30| 6349.91 | 6349.91 | 6349.91 | 30| 40| 0.00000 | 0.00000 | 0.00000 | 40| 50| 0.00000 | 0.00000 | 0.00000 |

| | | | | | | |

| | | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 29 of 47 Earthquake Load Calculation : Step: 9 10:38a Jun 19,2009

Note: Loads multiplied by the Scalar multiplier value of 0.6667 Earthquake Analysis Results

The The The The The The The

NBC NBC NBC NBC NBC NBC NBC

Velocity Zone Factor for the Vessel is .... Importance Factor for the Vessel is ....... Freq. and Soil Factor (FS) is ............. Force Factor (K) for the Vessel is ........ Total Weight (W) for the Vessel is ........ Total Shear (V) for the Vessel is ......... Top Shear (Ft) for the Vessel is ..........

0.0500 1.00 3.00 1.00 707.2 63.6 0.0

lbf lbf lbf

The Natural Frequency for the Vessel (Ope...) is 44.2420 Hz. Earthquake Load Calculation

| | Earthquake | Earthquake | Element | From| To | Height | Weight | Ope Load | | | in | lbf | lbf | 10|Legs| -8.00000 | 623.896 | -21.3519 | Legs| 20| -3.00000 | -499.117 | 6.40556 | 20| 30| 22.9050 | 579.903 | 56.8223 | 30| 40| 46.9050 | 0.00000 | 0.00000 | 40| 50| 51.7800 | 2.52005 | 0.55822 | Top Load 74.56 0

Element Emp Load lbf -21.3519 6.40556 56.8223 0.00000 0.55822

| | | | | | | | 0

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 30 of 47 Wind/Earthquake Shear, Bending : Step: 10 10:38a Jun 19,2009 The following table is for the Operating Case. Wind/Earthquake Shear, Bending

| | Distance to| Cummulative|Earthquake | From| To | Support| Wind Shear| Shear | | | in | lbf | lbf | 10|Legs| 7.00000 | 0.00000 | 0.00000 | Legs| 20| 4.00000 | 0.00000 | 63.7861 | 20| 30| 12.9050 | 0.00000 | 57.3806 | 30| 40| 36.9050 | 0.00000 | 0.55822 | 40| 50| 41.7800 | 0.00000 | 0.55822 |

Wind Bending in-lb 0.00000 0.00000 0.00000 0.00000 0.00000

| Earthquake | | Bending | | in-lb | | 0.00000 | | 675.477 | | 1215.66 | | 4.44900 | | 0.99363 |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 31 of 47 Longitudinal Stress Constants : Step: 11 10:38a Jun 19,2009 Longitudinal Stress Constants

| | Metal Area | Metal Area From| To | New & Cold | Corroded | | in² | in² 10| 20| 25.3995 | 18.4074 20| 30| 28.0780 | 21.0953 30| 40| 28.0780 | 21.0953 40| 50| 436.850 | 429.867

|New & Cold |Sect. Mod. | in ³ | 225.744 | 249.217 | 249.217 | 3941.99

| Corroded | Sect. Mod. | in ³ | 164.169 | 187.890 | 187.890 | 3890.19

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 32 of 47 Longitudinal Allowable Stresses : Step: 12 10:38a Jun 19,2009 Longitudinal Allowable Stresses

| | All. Str. From| To | Long. Ten. | | psi 10|Legs| 16800.0 Legs| 20| 16800.0 20| 30| 16800.0 30| 40| 24000.0 40| 50| 24000.0

| All. Str. | Hydr. Ten. | psi | 21840.0 | 21840.0 | 21840.0 | 31200.0 | 31200.0

| All. Str. |Long. Com. | psi | -15508.4 | -15508.4 | -16185.9 | -16185.9 | -21360.0

| All. Str. | Hyr. Comp. | psi | -21309.0 | -21309.0 | -21853.3 | -21853.3 | -26700.0

| | | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 33 of 47 Longitudinal Stresses Due to . . . Step: 13 10:38a Jun 19,2009 Longitudinal Stress Report Note: Longitudinal Operating and Empty Stresses are computed in the corroded condition. Stresses due to loads in the hydrostatic test cases have been computed in the new and cold condition. Longitudinal Stresses Due to . . .

| | Long. Str. | Long. Str. |Long. Str. From| To | Int. Pres. | Ext. Pres. |Hyd. Pres. | | psi | psi | psi 10| 20| 6896.49 | 0.00000 | 6589.06 20| 30| 6002.37 | 0.00000 | 5945.19 30| 40| 0.00000 | 0.00000 | 0.00000 40| 50| 0.00000 | 0.00000 | 0.00000

| | | | | | |

Longitudinal Stresses Due to . . .

| | Wght. Str. From| To | Empty | | psi 10|Legs| 33.8937 Legs| 20| -4.52567 20| 30| -27.6091 30| 40| -0.11946 40| 50| -0.0058624

| Wght. Str. | Operating | psi | 33.8937 | -4.52567 | -27.6091 | -0.11946 | -0.0058624

|Wght. Str. |Hydrotest | psi | 80.4729 | -26.0987 | -81.8460 | -7.96949 |-0.0057687

| Wght. Str. | Wght. Str. | | Emp. Mom. | Opr. Mom. | | psi | psi | | 0.00000 | 0.00000 | | 38.6792 | 38.6792 | | 33.7958 | 33.7958 | | 0.00000 | 0.00000 | | 0.00000 | 0.00000 |

Longitudinal Stresses Due to . . .

| | Wght. Str. | Bend. Str. |Bend. Str. From| To | Hyd. Mom. | Oper. Wind |Oper. Equ. | | psi | psi | psi 10|Legs| 0.00000 | 0.00000 | 0.00000 Legs| 20| 28.1289 | 0.00000 | 4.11453 20| 30| 25.4795 | 0.00000 | 6.47004 30| 40| 0.00000 | 0.00000 | 0.023679 40| 50| 0.00000 | 0.00000 |0.00025542

| Bend. Str. | Hyd. Wind | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

| Bend. Str. | | Hyd. Equ. | | psi | | 0.00000 | | 0.00000 | | 0.00000 | | 0.00000 | | 0.00000 |

Longitudinal Stresses Due to . . .

| | Long. Str. | Long. Str. |Long. Str. | EarthQuake | From| To | Vortex Ope.| Vortex Emp.|Vortex Tst.| Empty | | | psi | psi | psi | psi | 10|Legs| 0.00000 | 0.00000 | 0.00000 | 0.00000 | Legs| 20| 0.00000 | 0.00000 | 0.00000 | 4.11453 | 20| 30| 0.00000 | 0.00000 | 0.00000 | 6.47004 | 30| 40| 0.00000 | 0.00000 | 0.00000 | 0.023679 | 40| 50| 0.00000 | 0.00000 | 0.00000 | 0.00025542 | Longitudinal Stresses Due to . . .

| | Long. Str. From| To | Y Forces W | | psi 10|Legs| 0.00000 Legs| 20| 0.00000 20| 30| 0.00000 30| 40| 0.00000

| Long. Str. | Y ForceS S | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 34 of 47 Longitudinal Stresses Due to . . . Step: 13 10:38a Jun 19,2009 40|

50|

0.00000 |

0.00000 |

Long. Stresses due to User Forces and Moments

| |Wind For/Mom| Eqk For/Mom|Wnd For/Mom| Eqk For/Mom| From| To | Corroded | Corroded | No Corr. | No Corr. | | | psi | psi | psi | psi | 10|Legs| 0.00000 | 0.00000 | 0.00000 | 0.00000 | Legs| 20| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 20| 30| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 30| 40| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 40| 50| 0.00000 | 0.00000 | 0.00000 | 0.00000 |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 35 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19,2009 Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key

IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes: Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress. Analysis of Load Case 1 : NP+EW+WI+FW+BW

From Node 10 10 20

Tensile Stress 33.89 34.15 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0020 0.0020 0.0004

-47.32 -67.87

All. Comp. Stress 12923.67 12923.67 13488.27

Tens. Ratio 0.0024 0.0027 0.0009

0.0037 0.0050

Comp.

All. Comp.

Tens.

Comp.

-43.20 -61.40

Comp. Ratio 0.0028 0.0038

Analysis of Load Case 2 : NP+EW+EE+FS+BS

From Node 10 10 20

Tensile Stress 33.89 38.27 12.66

All. Tens. Stress 14000.00 14000.00 14000.00

Comp. Stress

Comp. Ratio

Analysis of Load Case 3 : NP+OW+WI+FW+BW

From

Tensile

All. Tens.

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 36 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19,2009 Node 10 10 20

Stress 33.89 34.15 6.19

Stress 16800.00 16800.00 16800.00

Stress -43.20 -61.40

Stress 15508.41 15508.41 16185.92

Ratio 0.0020 0.0020 0.0004

All. Comp. Stress 12923.67 12923.67 13488.27

Tens. Ratio 0.0024 0.0027 0.0009

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0048 0.0001

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0048 0.0001

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4125 0.3593 0.0004

All. Comp. Stress 12923.67 12923.67 13488.27

Tens. Ratio 0.4950 0.4315 0.0009

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0020 0.0020 0.0004

All. Comp. Stress 12923.67 12923.67 13488.27

Tens. Ratio 0.0024 0.0027 0.0009

All. Comp. Stress 21309.01 21309.01

Tens. Ratio 0.3054 0.2723

Ratio 0.0028 0.0038

Analysis of Load Case 4 : NP+OW+EQ+FS+BS

From Node 10 10 20

Tensile Stress 33.89 38.27 12.66

All. Tens. Stress 14000.00 14000.00 14000.00

Comp. Stress -47.32 -67.87

Comp. Ratio 0.0037 0.0050

Analysis of Load Case 5 : NP+HW+HI

From Node 10 10 20

Tensile Stress 80.47 2.03

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress -54.23 -107.33

Comp. Ratio 0.0035 0.0066

Analysis of Load Case 6 : NP+HW+HE

From Node 10 10 20

Tensile Stress 80.47 2.03

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress -54.23 -107.33

Comp. Ratio 0.0035 0.0066

Analysis of Load Case 7 : IP+OW+WI+FW+BW

From Node 10 10 20

Tensile Stress 6930.38 6036.52 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-61.40

Comp. Ratio

0.0038

Analysis of Load Case 8 : IP+OW+EQ+FS+BS

From Node 10 10 20

Tensile Stress 6930.38 6040.64 12.66

All. Tens. Stress 14000.00 14000.00 14000.00

Comp. Stress

-67.87

Comp. Ratio

0.0050

Analysis of Load Case 9 : EP+OW+WI+FW+BW

From Node 10 10 20

Tensile Stress 33.89 34.15 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress -43.20 -61.40

Comp. Ratio 0.0028 0.0038

Analysis of Load Case 10 : EP+OW+EQ+FS+BS

From Node 10 10 20

Tensile Stress 33.89 38.27 12.66

All. Tens. Stress 14000.00 14000.00 14000.00

Comp. Stress -47.32 -67.87

Comp. Ratio 0.0037 0.0050

Analysis of Load Case 11 : HP+HW+HI

From Node 10 10

Tensile Stress 6669.53 5947.22

All. Tens. Stress 21840.00 21840.00

Comp. Stress

Comp. Ratio

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 37 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19,2009 20

21840.00

-107.33

21853.30

0.0049

Comp. Stress

All. Comp. Stress 21309.01 21309.01 21853.30

Tens. Ratio 0.3054 0.2723

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4125 0.3593 0.0004

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4120 0.3571

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4125 0.3593 0.0004

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4125 0.3593 0.0004

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0020 0.0020 0.0004

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.4125 0.3593 0.0004

All. Comp. Stress 15508.41 15508.41 16185.92

Tens. Ratio 0.0020 0.0020 0.0004

Analysis of Load Case 12 : HP+HW+HE

From Node 10 10 20

Tensile Stress 6669.53 5947.22

All. Tens. Stress 21840.00 21840.00 21840.00

-107.33

Comp. Ratio

0.0049

Analysis of Load Case 13 : IP+WE+EW

From Node 10 10 20

Tensile Stress 6930.38 6036.52 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-61.40

Comp. Ratio

0.0038

Analysis of Load Case 14 : IP+WF+CW

From Node 10 10 20

Tensile Stress 6921.05 5999.09

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-20.74

Comp. Ratio

0.0013

Analysis of Load Case 15 : IP+VO+OW

From Node 10 10 20

Tensile Stress 6930.38 6036.52 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-61.40

Comp. Ratio

0.0038

Analysis of Load Case 16 : IP+VE+EW

From Node 10 10 20

Tensile Stress 6930.38 6036.52 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-61.40

Comp. Ratio

0.0038

Analysis of Load Case 17 : NP+VO+OW

From Node 10 10 20

Tensile Stress 33.89 34.15 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress -43.20 -61.40

Comp. Ratio 0.0028 0.0038

Analysis of Load Case 18 : FS+BS+IP+OW

From Node 10 10 20

Tensile Stress 6930.38 6036.52 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress

-61.40

Comp. Ratio

0.0038

Analysis of Load Case 19 : FS+BS+EP+OW

From Node 10 10 20

Tensile Stress 33.89 34.15 6.19

All. Tens. Stress 16800.00 16800.00 16800.00

Comp. Stress -43.20 -61.40

Absolute Maximum of the all of the Stress Ratio's

Comp. Ratio 0.0028 0.0038 0.4950

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 38 of 47 Stress due to Combined Loads : Step: 14 10:38a Jun 19,2009

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 39 of 47 Center of Gravity Calculation : Step: 15 10:38a Jun 19,2009 Shop/Field Installation Options :

Note : The CG is computed from the first Element From Node Center of Gravity of Nozzles Center of Gravity of Legs

26.2 in -5.5 in

Center of Gravity of Bare Shell New and Cold Center of Gravity of Bare Shell Corroded

15.9 in 15.9 in

Vessel CG in the Operating Condition Vessel CG in the Fabricated (Shop/Empty) Condition

17.9 in 17.6 in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 40 of 47 Leg Check, (Operating Case) : Step: 16 10:38a Jun 19,2009 RESULTS FOR LEGS : Operating Case Description: LEGS Legs attached to: Elliptical Head Section Properties : Single Angle L3X3X0.2500 USA AISC 1989 Steel Table

Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration (

Leglen of Vessel for L3X3X0.2500 strong axis ) weak axis ) strong axis ) weak axis ) strong axis ) weak axis )

Nleg Aleg

31.000 21.000 10.000 4 1.440 1.240 1.240 0.577 0.577 0.930 0.930

in in in in² in**4 in**4 in ³ in ³ in in

Leg Orientation - Diagonal

Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor

675.5 707.2 42.4 0.0 1.333 1.000

in-lb lbf lbf lbf

Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]:

= ( Max(Wind, Seismic) + Fadd ) * ( Imax / Itot ) = ( 42.4 + 0.0 ) * ( 2.0 / 4.98 ) = 16.92 lbf Axial Compression, Leg futhest from N.A. [Sma]

= ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((707 / 4 ) + (8105 /( 2 * 19.00 )))/ 1.440 ) = 135.12 psi Axial Compression, Leg closest to N.A. [Sva]

= ( W / Nleg ) / Aleg = ( 707 / 4 ) / 1.440 = 122.78 psi Computing Principal Axis and Inertias for Angle. Leg lengths and thickness: 3.0000 3.0000 Distance to geometric centroid: 0.84200 0.84200 Arm about YY: 0.71700 0.78300 Arm about ZZ: 0.65800 0.71700 Leg areas: 0.75000 0.68750 Geometric inertia components YY: 0.38947 0.85477 Geometric inertia components ZZ: 0.88722 0.35702 Geometric inertias Iy & Iz: 1.2442 1.2442 Product of inertia: 0.73981 Mohrs Radius: 0.73981

0.25000

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 41 of 47 Leg Check, (Operating Case) : Step: 16 10:38a Jun 19,2009 Average Inertia:

1.2442

QFACT = 1.0000 FBZ = Principal Axis Inertias (Z&W) = Angle to Principal Axis = Distances to extreme fibers CW & CZ = FOB from Eq 5-5 = Bending allowables Fby & Fbz =

21.600 0.50443 45.000 2.1213 336.31 23.760

1.9840 0.93055 21.600

Shear Center Coordinates Wo & Zo: 0.99873 0.0000 Values for Elastic Flexural-Torsional Buckling Stress: E, G, J, R0²: 29500. 11346. 0.30000E-01 AREA, LENGTH, Kw, Kz: 1.4400 21.000 1.0000 H, Few, Fez, Fej: 0.63403 909.65 231.27 Fe computed from C4-1: 83.627 Initial (Kl/r)max, & (Kl/r)equiv Final (Kl/r)max, & Cc Fa based on Eq 4-1

Weak Axis Bending Strong Axis Bending Axial Compression

: : :

UNITY CHECKS ARE: H1-1 H1-2 H1-3 AISC Unity Check :

Actual 463.39 268.57 135.12

= = =

35.481 59.005 17.573 Allowable 28792.80 31672.08 23424.36

2.7256 1.0000 86.726

59.005 127.18

psi psi psi

0.000 0.000 0.030

0.030 Should be D/6 [Plate Uplift Condition] a

= MAX[ABS(MAX[B,D] - MAX[b,d]) / 2 , ABS(MIN[B,D] - MIN[b,d]) / 2] = MAX[1.50 ,1.50 ] = 1.50 in

There is uplift, the total number of bolts should be > 1 AND the total number of bolts in tension should be > 0.

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 43 of 47 Leg Check, (Filled w/Water) : Step: 17 10:38a Jun 19,2009 RESULTS FOR LEGS : HydroTest Case Description: LEGS Legs attached to: Elliptical Head Section Properties : Single Angle L3X3X0.2500 USA AISC 1989 Steel Table

Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration (

Leglen of Vessel Nleg Aleg

for L3X3X0.2500 strong axis ) weak axis ) strong axis ) weak axis ) strong axis ) weak axis )

31.000 21.000 10.000 4 1.440 1.240 1.240 0.577 0.577 0.930 0.930

in in in

0.0 2928.1 0.0 0.0 1.000 1.000

in-lb lbf lbf lbf

in² in**4 in**4 in ³ in ³ in in

Leg Orientation - Diagonal

Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor

Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]:

= ( Max(Wind, Seismic) + Fadd ) * ( Imax / Itot ) = ( 0.0 + 0.0 ) * ( 2.0 / 4.98 ) = 0.00 lbf Axial Compression, Leg futhest from N.A. [Sma]

= ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((2928 / 4 ) + (0 /( 2 * 19.00 )))/ 1.440 ) = 508.35 psi Axial Compression, Leg closest to N.A. [Sva]

= ( W / Nleg ) / Aleg = ( 2928 / 4 ) / 1.440 = 508.35 psi Computing Principal Axis and Inertias for Angle. Leg lengths and thickness: 3.0000 3.0000 Distance to geometric centroid: 0.84200 0.84200 Arm about YY: 0.71700 0.78300 Arm about ZZ: 0.65800 0.71700 Leg areas: 0.75000 0.68750 Geometric inertia components YY: 0.38947 0.85477 Geometric inertia components ZZ: 0.88722 0.35702 Geometric inertias Iy & Iz: 1.2442 1.2442 Product of inertia: 0.73981 Mohrs Radius: 0.73981

0.25000

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 44 of 47 Leg Check, (Filled w/Water) : Step: 17 10:38a Jun 19,2009 Average Inertia:

1.2442

QFACT = 1.0000 FBZ = Principal Axis Inertias (Z&W) = Angle to Principal Axis = Distances to extreme fibers CW & CZ = FOB from Eq 5-5 = Bending allowables Fby & Fbz =

21.600 0.50443 45.000 2.1213 336.31 23.760

1.9840 0.93055 21.600

Shear Center Coordinates Wo & Zo: 0.99873 0.0000 Values for Elastic Flexural-Torsional Buckling Stress: E, G, J, R0²: 29500. 11346. 0.30000E-01 AREA, LENGTH, Kw, Kz: 1.4400 21.000 1.0000 H, Few, Fez, Fej: 0.63403 909.65 231.27 Fe computed from C4-1: 83.627 Initial (Kl/r)max, & (Kl/r)equiv Final (Kl/r)max, & Cc Fa based on Eq 4-1

Weak Axis Bending Strong Axis Bending Axial Compression

: : :

UNITY CHECKS ARE: H1-1 H1-2 H1-3 AISC Unity Check :

Actual 0.00 0.00 508.35

= = =

35.481 59.005 17.573 Allowable 21600.00 23760.00 17572.66

2.7256 1.0000 86.726

59.005 127.18

psi psi psi

0.000 0.000 0.029

0.029 Should be (No tension in bolts)

** No Tensile Bolt Loads. Choose a practical bolt size! ** Summary of Results:

Baseplate Thickness Bolt Root Area (D. Moss)

( in ): ( in² ):

Actual 0.250 1.10

Required 0.036 0.00

Pass/Fail Pass Pass

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 46 of 47 Vessel Design Summary : Step: 24 10:38a Jun 19,2009 Design Code: ASME Code Section VIII Division 1, 2007 A-08

Diameter Spec : 36.000 in OD Vessel Design Length, Tangent to Tangent

53.56

in

0.00 0.00

in in

SA-516 70 SA-105 SA-106 B SA-516 70

Internal Design Temperature Internal Design Pressure

200 125.00

External Design Temperature

70

Maximum Allowable Working Pressure External Max. Allowable Working Pressure Hydrostatic Test Pressure

F psig F

129.55 38.84 168.42

Required Minimum Design Metal Temperature Warmest Computed Minimum Design Metal Temperature

psig psig psig

-20 -51

Wind Design Code Earthquake Design Code

F F

Element Pressures and MAWP: psig

Element Desc Elliptical Head Shell 36" 150# WN Flange Blind Cover Liquid Level: 62.56 in Element Type Ellipse Cylinder Body Flg Body Flg

"To" Elev in 2.00 43.81 50.00 53.56

Internal 126.900 126.900 126.900 126.900

External 0.000 0.000 0.000 0.000

Dens.: 0.000 lbm/ft³ Length in 2.000 41.810 6.190 3.560

M.A.W.P 154.516 144.544 258.100 258.100

Corr. All. 0.0625 0.0625 0.0625 0.0625

Sp. Gr.: 0.000

Element Thk R e q d T h k in Int. Ext. 0.250 0.195 No Calc 0.250 0.225 No Calc 3.560 No Calc 3.497 3.560 No Calc 3.497

Joint Eff Long Circ 0.85 0.70 0.70 0.70 1.00 1.00 1.00 1.00

Element thicknesses are shown as Nominal if specified, otherwise are Minimum Earthquake Moment on Support Earthquake Shear on Support

Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads and stresses) during these cases. Also included are moment effects due to eccentric weights if any are present in the input. Weights:

1351. 64.

in-lb lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : PVE Sample 14 --------------------------------- Page 47 of 47 Vessel Design Summary : Step: 24 10:38a Jun 19,2009 Fabricated Shop Test Shipping Erected Empty Operating Field Test

-

Bare W/O Removable Internals Fabricated + Water ( Full ) Fab. + Rem. Intls.+ Shipping App. Fab. + Rem. Intls.+ Insul. (etc) Fab. + Intls. + Details + Wghts. Empty + Operating Liquid (No CA) Empty Weight + Water (Full)