Design RCC 2 Storey Building

April 13, 2017 | Author: Neetesh Sharma | Category: N/A
Share Embed Donate


Short Description

Download Design RCC 2 Storey Building...

Description

INFRASTUCTURE DEVELOPMENT (A presentation on DOJ training at TA - Civil, NTPC Singrauli)

Under the guidance of Mr. G.G. Bardhan B Tech. Civil (spl. Structures), NIT Jamshedpur

Senior Manager (TA- Civil) Presented By: Neetesh Sharma 102228 Munish Garg

The Following Works were assigned to us during DOJ training in TA-Civil at NTPC Singrauli

1.

Infrastructure work in township Structural design for physiotherapy department and conference hall in Sanjeevani hospital, township NTPC singrauli.  Pilot project: structural design of multi-storey residential apartments. 

2. 3.

CSR work Construction/ execution work in township, including FQA.

Infrastructure work in township  Structural design and development of

construction drawings for physiotherapy department and conference hall in Sanjeevani hospital, township NTPC singrauli.

  



Type of structure: RCC frame Type of foundation: shallow (footings) Column sizes 0.3 x 0.45 0.45 x 0.45 Beam sizes 0.3 x 0.5(main first floor) 0.3 x 0.45(main roof) 0.3 x 0.4(secondary first floor) 0.3 x 0.3(secondary roof)

A

Plan (typical)

A

Elevation

Side view

Section A-A

Load Definition : Seismic Load Parameter

Value

Zone

III (0.16)

Importance factor

1.5

Response Reduction factor

3

Rock and soil site factor

1

Damping ratio

0.05

Time Period in x direction

0.29

Time Period in z direction

0.46

Basic load case details  Dead Load  Live load  Earthquake load in x direction  Earthquake load in z direction

Load Combinations 1.2(DL+LL+EQZ+0. 3EQX) -1.5EQZ+0.9DL

1.2(DL+LL+EQZ0.3EQX)

1.5(DL+EQX)

1.2(DL+LL+EQX+0. 3EQZ)

1.5(DL-EQZ0.3EQX)

1.2(DL+LL+EQX0.3EQZ)

1.5(DL+EQZ)

0.9DL+1.5(EQX+0. 3EQZ)

1.5(DL-EQX0.3EQZ)

0.9DL+1.5(EQX0.3EQZ)

1.2(DL+LL+EQX)

0.9DL+1.5(EQZ+0. 3EQX)

1.2(DL+LL-EQZ0.3EQX)

0.9DL+1.5(EQZ0.3EQX)

1.5(DL-EQX)

1.2(DL+LL-EQX0.3EQZ)

1.5(DLEQZ+0.3EQX)

1.5(DL-EQZ)

0.9DL1.5(EQX+0.3EQZ)

1.5(DL-EQX0.3EQZ)

1.2(DL+LL-EQX)

0.9DL1.5(EQZ+0.3EQX)

1.2(DL+LLEQZ+0.3EQX)

1.2(DL+LL-EQZ)

1.5(DL+EQZ0.3EQX)

1.2(DL+LLEQX+0.3EQZ)

0.9DL-1.5EQX

1.5(DL+EQX0.3EQZ)

0.9DL+1.5(EQX+0.3EQZ)

1.5(DL+LL)

1.2(DL+LL+EQZ) 0.9DL+1.5EQX 1.5EQZ+0.9DL 1.5(DL+EQZ+0.3E QX) 1.5(DL+EQX+0.3E QZ)

Analysis

1. 2. 3.

Staad Pro was used to analyze the structure for the previously listed load combinations. The steps involved in the analysis of the structure using the computer package are as follows: Modelling the structure Defining Loadings Performing analysis and interpreting results.

Design and Detailing RCC design and detailing of reinforcement bars was done manually according to the indian standards using the analysis results from the computer package. Sampled design results for the structure are follows.

DETAIL OF REINFORCEMENT FOR FIRST FLOOR BEAMS

1 2 3 A

Beam Name

1 n#dia

B1AE spans(5,5,5,2 .3) 0.3x0.5 B2AF spans(17.3,2. 7) 0.3x0.4 B3AF spans(5,5,5,5 ) 0.3x0.5

2#16

2#12

2 Bar len

17.54

20.24

n#dia

2#16

2#20

3 Bar len

23.15

24.95

n#dia

2#20

2#20

4 Bar len

2.83

2.93

n#dia

2#20

2#20

B

C

D E

5 Bar len

7.73

2.23

n#dia

2#16

3#20

Bar len

Shear (2 legged stirrups) 5m x 3

2.3m

8 @300

10 @130

17.3m

2.7m

8 @250

8 @250

18

20.7

5m x 5 2#16

20.24

2#16

26.65

2#20

3.5

2#20

F

8.4

2#16

20.7

8 @300

Continued…

1 2 3 B

A

Beam Name

1 n#dia

BA13 spans(4.35,3. 65) 0.3x0.5 BF1*3 spans(4.35,3. 65) 0.3x0.5

2#12

9.8

n#dia

2#12

2#12 2#20

3 Bar len

10.12

2#12

1 n#dia

BE21* spans(4.35,1. 5) 0.3x0.5

Bar len

8.3

2#12

Beam Name

2

10.12

n#dia

2#20

Bar len 6.15 4.65

n#dia

3#12

Bar len

3

2#20

2

4

3

n#dia

3#12

3#12

6.35

n#dia

2#20

Bar len

D E

F

5 Bar len

8.7

9.7

n#dia

2#20 2#12

2#20 2#12

3 Bar len

C

Shear (2 legged stirrups) 4.35m

1.5m

8 @170

8 @300

3.18

Bar len

Shear (2 legged stirrups) 4.35m

3.65m

8 @300

8 @300

4.35m

3.65m

8 @300

8 @300

2.45

2.45

1 2 3 A

Beam Name

1 n#dia

BB13/BD13 spans(8) 0.3x0.5

2#25

BC13 spans(8) 0.3x0.5

2#25 1#20

2 Bar len 8.6

8.6

n#dia

2#25

2#25

3 Bar len 10.12

10.12

n#dia

2#20

2#16

B

4 Bar len 3

3

n#dia

3#12

2#25

Bar len

Shear (2 legged stirrups) 4.35m

3.65m

8 @300

8 @300

4.35m

3.65m

8 @300

8 @300

8.7

8.7

C

D E

F

SLAB REINFORCEMENT 0.5m 1.305m

10 ϕ@ 300 c/c

1.1m

10 ϕ@ 300 c/c

2#10 ϕ

10 ϕ@ 300 c/c

3.65m

4.35m

0.5m

1.5m

10 ϕ@ 300 c/c

1.5m

10 ϕ@ 300 c/c

2#10 ϕ

10 ϕ@ 300 c/c

5m

5m

1

COLUMN REINFORCEMENT

2 3

A

B

C

D E

location

Size

Reinforcement

Location

Size

Reinforcement

A1, A3

0.3 m x 0.45m

8 # 20ϕ

D1

0.3 m x 0.45m

16 # 20ϕ

A2

0.45 x 0.45m

8 # 20ϕ

E1,E2

0.3 m x 0.45m

8 # 20ϕ 8 # 16ϕ

B1,C1

0.3 m x 0.45m

16 # 20ϕ 16 # 16ϕ

F1,F3

0.3 m x 0.45m

8 # 20ϕ 8 # 16ϕ

B3,C3,D3

0.3 m x 0.45m

8 # 25ϕ

F2

0.45m x0.45m

8 # 20ϕ 8 # 16ϕ

F

Column reinforcement distributed equally on four edges. Transverse reinforcement 8ϕ @ 250mm lateral ties

1

2 3

A

B

C

D E

location

Size

Depth

Reinforceme nt

Location

Size

Depth

Reinforcement

A1, A3, F3

2m x 2m

0.45m

12ϕ @180mm both ways

D1,D3

2.4m x 2.4m

0.6

12ϕ @140mm both ways

A2, F2

2.4m x 2.4m

0.6m

12ϕ @150mm both ways

E1,E2

2.2m x 2.2m

0.6

12ϕ @140mm both ways

B1, B3, C1, C3

2.2m x 2.2m

0.6m

12ϕ @140mm both ways

F1

2.1m x 2.1m

0.6

12ϕ @150mm both ways

F

Pilot Project : Structural analysis and design of multi-storey residential apartments. Details of structure are as follows:  Total no. of floors 18. above ground level: 16 below ground level: 2 (parking)  Building dimensions and other details Plan: 47.5m x 42.5m Height above GL: 57m Below GL: 8m Storey height above GL: 3.5m (c/c) Storey height below GL: 4.0m (c/c) Area of one flat: 1054 sq ft No. of flats in one floor: 10 Total no. of flats in the building: 150  Type of structure: RCC frame (M35)  Type of foundation: Pile foundation

Typical stuctural plan of building

ELEVATOR

STAIRS

CORRIDOOR

Load Definition : 1. Seismic Load

2.

Parameter

Value

Zone

IV (0.24)

Importance factor

1

Response Reduction factor

5

Rock and soil site factor

1

Damping ratio

0.05

Time Period in x direction

1.08

Time Period in z direction

1.09

Wind Load Parameter

Value

Basic wind speed

47 m/s

(Risk coefficient) K1

1.0

(Terrain , height and structure size factor) K2

Category-4, class- C, value height dependent.

(Topography) K3

1.0

Basic load case details  Dead Load

 Live load  Wind Load x direction  Wind Load -x direction  Wind Load z direction  Wind Load -z direction  Earthquake load in x direction  Earthquake load in z direction

Load combinations 1.5(DL+LL)

-1.5EQZ+0.9DL

0.9DL+1.5(-EQZ+0.3EQX)

-1.5WLZ+0.9DL

1.5(DL+EQX)

1.5(DL-EQZ-0.3EQX)

1.5(DL+WLX)

1.5(DL-WLZ-0.3WLX)

1.5(DL+EQZ)

1.5(DL-EQX-0.3EQZ)

1.5(DL+WLZ)

1.5(DL-WLX-0.3WLZ)

1.2(DL+LL+EQX)

1.2(DL+LL-EQZ-0.3EQX)

1.2(DL+LL+WLX)

1.2(DL+LL-WLZ-0.3WLX)

1.2(DL+LL+EQZ)

1.2(DL+LL-EQX-0.3EQZ)

1.2(DL+LL+WLZ)

1.2(DL+LL-WLX-0.3WLZ)

0.9DL+1.5EQX

0.9DL-1.5(EQX+0.3EQZ)

0.9DL+1.5WLX

0.9DL-1.5(WLX+0.3WLZ)

1.5EQZ+0.9DL

0.9DL-1.5(EQZ+0.3EQX)

1.5WLZ+0.9DL

0.9DL-1.5(WLZ+0.3WLX)

1.5(DL+EQZ+0.3EQX)

1.5(DL+EQZ-0.3EQX)

1.5(DL+WLZ+0.3WLX)

1.5(DL+WLZ-0.3WLX)

1.5(DL+EQX+0.3EQZ)

1.5(DL+EQX-0.3EQZ)

1.5(DL+WLX+0.3WLZ)

1.5(DL+WLX-0.3WLZ)

1.2(DL+LL+EQZ+0.3EQX)

1.2(DL+LL+EQZ-0.3EQX)

1.2(DL+LL+WLZ+0.3WLX)

1.2(DL+LL+WLZ-0.3WLX)

1.2(DL+LL+EQX+0.3EQZ)

1.2(DL+LL+EQX-0.3EQZ)

1.2(DL+LL+WLX+0.3WLZ)

1.2(DL+LL+WLX-0.3WLZ)

0.9DL+1.5(EQX+0.3EQZ)

0.9DL+1.5(EQX-0.3EQZ)

0.9DL+1.5(WLX+0.3WLZ)

0.9DL+1.5(WLX-0.3WLZ)

0.9DL+1.5(EQZ+0.3EQX)

0.9DL+1.5(EQZ-0.3EQX)

0.9DL+1.5(WLZ+0.3WLX)

0.9DL+1.5(WLZ-0.3WLX)

1.5(DL-EQX)

1.5(DL-EQZ+0.3EQX)

1.5(DL-WLX)

1.5(DL-WLZ+0.3WLX)

1.5(DL-EQZ)

1.5(DL-EQX-0.3EQZ)

1.5(DL-WLZ)

1.5(DL-WLX-0.3WLZ)

1.2(DL+LL-EQX)

1.2(DL+LL-EQZ+0.3EQX)

1.2(DL+LL-WLX)

1.2(DL+LL-WLZ+0.3WLX)

1.2(DL+LL-EQZ)

1.2(DL+LL-EQX+0.3EQZ)

1.2(DL+LL-WLZ)

1.2(DL+LL-WLX+0.3WLZ)

0.9DL-1.5EQX

0.9DL+1.5(-EQX+0.3EQZ)

0.9DL-1.5WLX

0.9DL+1.5(-WLX+0.3WLZ) 0.9DL+1.5(-WLZ+0.3WLX)

Models

SP 22(explainatory handbook to - IS1983)

Design  Foundation Design: Type of foundation for this

structure is pile foundation. Also the design and detailing for the foundation is done manually. this included deciding the depth of pile and calculating the load bearing capacity. Grouping of piles as per support reactions derived from Staad analysis. Thus deciding the different types of pile caps required. Structural design and detailing of pile and pile caps.

LOAD CARRYING CAPACITY OF BORED CAST-IN-SITU PILE — STATIC FORMULA



PILES IN GRANULAR SOILS

The ultimate bearing capacity ( Qu ) of piles in granular soils is given by the following formula:

where Ap = cross-sectional area of pile toe in cm2; D = stem diameter in cm; γ = effective unit weight of soil at pile toe in kgf/cm3; PD = effective overburden pressure at pile toe in kgf/cm2; Nr and Nq = bearing capacity factors depending upon the angle of internal friction Φ at toe; K = coefficient of earth pressure; PDi = effective overburden pressure in kg/cm2 for the ith layer where i varies from 1 to n; δ = angle of wall friction between pile and soil, in degrees (may be taken equal to Φ); and Asi = surface area of pile stem in cm2 in the ith layer where I varies from 1 to n. NOTE 1 — Nr factor can be taken for general shear failure as per IS : 6403-1981*. NOTE 2 — Nq factor will depend, apart from nature of soil on the type of pile and its method of construction, for bored piles, the value of Nq corresponding to angle of shearing resistance are given in Fig. 1. This is based on Berezantseu’s curve for D/B of 20 up to = 35° and Vesic’s curves beyond = 35°. NOTE 3 — The earth pressure coefficient K depends on the nature of soil strata, type of pile and its method of construction. For bored piles in loose medium sands, K values between 1 and 2 should be used.

-IS 2911 Part1- sec2

Pile properties:  Dia of pile: 0.5m  Length of pile: 25m  Vertical load carrying capacity: 2500KN  Pullout load capacity:1750KN  Lateral load carrying capacity: 108.7KN  Depth of fixity: 3.87m below cutoff.  Maximum moment in pile shaft:170.2KNm  Distance btw two piles: 3 times dia=1.5m RCC design of Pile: P=2500KN M=170.2KNm fck=30KN/m2 Ast required=4712mm2 Provide 10# 20 dia Provide 8mm @ 300c/c lateral ties.

Sample calculation for design of a pile cap From load data maximum reaction in the pile I & II are: RI+RII=4681 kN Bending Moment = 4681(0.85-0.6) =1700KNm Ast required=3632mm2 Provide 20dia @190c/c both ways Check for one way shear: Vu=0.0425x4081/0.5=347kN ζv=Vu/bd=347000/915x2200=0.17
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF