Design of RCC Drains.pdf
Short Description
Download Design of RCC Drains.pdf...
Description
Project Name: Two/Four Lannig of NH 65 Design Title: Design of RCC Drains Without Live Load for 0.9 m Height: Document Number : Satya/2016-17/0001 -R0
Remarks/Rough
Design of RCC Drains Without Live Load for 0.9 m Height: 1.Design Data: Dimesion Details Clear Span of the Drain Height of the Drain Thickness of Topslab Thickness of Wall Thickness of Bottom Slab Over width of Drain Material Properties Grade of Concrete Grade of Steel Clear Cover (Top Slab) Clear Cover (Bottom Slab)
: : : : : :
Density of Concrete Density of Soil
: : : : : :
Intensity of Pedestrians Load Angle of Internal Friction
: :
0.60 0.90 0.10 0.15 0 20 0.20 0.90
m m m m m m
M 25 Fe 500 40 mm 50 mm 3 25 kN/m 3 20 kN/m 2
4 kN/m 30 o
2.Load and Moment Calculations: (Considering 1 m Longitudinal Width of Drain) i) Top Slab: Effective Span 0.75 m : Self-weight of Top Slab 2.50 kN/m : Live Load due to Pedestrians 4.00 kN/m : Total Load on the Top Slab 6 50 kN/m 6.50 : 6.5
0.75 Unfactored Bending Moment: Due to Dead Load Due to Live Load Design D i Bending B di Moment M t (1.35DL+1.5LL) (1 35DL+1 5LL) ii) Side Wall: Coefficient of Earth Pressure (at Rest) Height of the Wall Intensity of load due to EP (At Base) Intensity of Load due to LL surcharge Inetsity of Load due to Min. Fuild Pressure
: : :
0.18 kN-m 0.28 kN-m 0.66 0 66 kN-m kN
: : : : :
0.50 0.75 m 2 7.50 kN/m 2 12.00 kN/m
0.75 m
Min. Fuild Pressure
Unfactored Bending Moment: Due to Earth Presurre Due to Live Load Surcharge Due to Min. Fluid Pressure Design Bending Moment (1.5 EP+1.2 LL)
7.50 EP
: : : :
12.00 LL Surcharge 0.89 kN-m 3.38 kN-m 5.38 kN-m
Page 1 of 7
Project Name: Two/Four Lannig of NH 65 Design Title: Design of RCC Drains Without Live Load for 0.9 m Height: Document Number : Satya/2016-17/0001 -R0
iii) Bottom Slab: (Service Condition) Unfactored Loads Dead Load due top slab Live load on top slab (Pedestrian Load) Dead Load due to Side Walls Dead Load due to Bottom Slab Total Load on bottom Slab Intensity of Load at base Factored Loads Dead Load due top slab Live load on top slab (Pedestrian Load) Dead Load due to Side Walls Dead Load due to Bottom Slab Total Load on bottom Slab Intensity of Load at base
: : : : : :
: : : : : :
2.25 3.60 6.75 4.50
Remarks/Rough
kN kN kN kN
17.10 kN 19.00 kN/m
3.04 5.40 9.11 6.08
kN kN kN kN
Load Factor 1.35 1.50 1.35 1.35
23.63 kN 26.25 kN/m
11.81
11.81 0.75
5.38
26.25
Calculating Moment about the centre: Calculating Moments at support
: :
22.79 79 kN-m kN m 3.90 kN-m
Bottom Slab: (Construction Stage) Unfactored Loads Dead Load due to Side Walls Dead Load due to Bottom Slab
: :
6.75 kN 4.50 kN
Total Load on bottom Slab Intensityy of Load at base
: :
11.25 kN 12.50 kN/m
Factored Loads Dead Load due to Side Walls Dead Load due to Bottom Slab
: :
9.11 kN 6.08 kN
Total Load on bottom Slab Intensity of Load at base
: :
15.19 kN 16.88 kN/m
4.56
5.38
Load Factor 1.35 1.35
4.56 0.75
5.38
16.88
Calculating Moment about the centre: Calculating Moments at support
: :
4.86 kN-m 6.71 kN-m
Max. Bending Moment (At Centre) M Max. Bending B di Moment M t (At S Support) t)
: :
4.86 kN-m 6 71 kN-m 6.71 kN
5.38
Page 2 of 7
Project Name: Two/Four Lannig of NH 65 Design Title: Design of RCC Drains Without Live Load for 0.9 m Height: Document Number : Satya/2016-17/0001 -R0
Remarks/Rough
2.1 Summary of Moments: Top Slab Side Wall Bottom Slab (at Centre) Bottom Slab (at Support) 3. Design of Sections: Design Constants Compressive strength of Concrete, fck Yield Strength of Steel, fyk Design Yield Strength of Steel, fyd Tensile Strength of Concrete, fctm Partial Safety Factor For Steel, γs Partial Safety Factor For Concrete, γm Ratio, α Effect Depth factor, λ Efective Strength g Factor,, η Design Compressive Strength of Concrete, fcd Modulus of Elasticity of Steel Modulus of Elasticity of Concrete Max. Compressive Strain in concrete, εcu Max. Tensile Strain in Steel, εs Max. Depth of Neutral Axis, x Ru,lim 33.11 3.1.1
ULS-Basic 0.66 5.38 4.86 6.71
: : : : : : : : : : : : : : : :
25 500 400 2.2 1.15 1.5 0.67 0.8 1 11.17 200000 30000 0.0035 0.0022
SLS-Rare 0.46 3.59 4.86 6.71
QPC 0.18 0.89 4.86 6.71
MPa MPa MPa MPa
MPa MPa MPa
0.617 d 0.166 fck
εs = fy/Eγs xu,max /d = εcu/(εcu+εs)
Design for Flexure: Top Slab Design Bending Moment : 0.66 kN-m Effective depth Required : 13 mm Effective Depth Provided : 56 mm Depth of Neutral Axis 0.66 mm : Max. depth of Neutral Axis 34.5 mm : Depth of Neutral Axis is less than Max. Depth of Neutral Axis, Hence Ok 2 : 27 mm Area of Steel Required, Ast,req Ast,min1
:
2 64.064 64 064 mm
Ast,min2
:
2 72.8 mm
Minimum Area of Steel
:
2 72.8 mm
Maximum Area of Steel
:
2 2500 mm
Area of Steel Required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 72.8 mm 8 mm 200 mm
2 Area of Steel Provided : 251 mm Area of Steel Provided is greater than Required Area of Steel, Steel Hence Safe Distribution Steel
Area of Steel required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 50 mm 8 mm 250 mm
Area of Steel Provided
:
2 201 mm
Page 3 of 7
Project Name: Two/Four Lannig of NH 65 Design Title: Design of RCC Drains Without Live Load for 0.9 m Height: Document Number : Satya/2016-17/0001 -R0
3.1.2
Side Wall Design Bending Moment Effective depth Required Effective Depth Provided Depth of Neutral Axis Max. depth of Neutral Axis
: : : : :
5.38 36 105 2.90 64.8
Remarks/Rough
kN-m mm mm mm mm
Depth of Neutral Axis is less than Max. Depth of Neutral Axis, Hence Ok Area of Steel Required, Ast,req
:
2 119 mm
Ast,min1
:
2 120.1 mm
Ast,min2
:
2 136.5 mm
Minimum Area of Steel
:
2 136.5 mm
Maximum Area of Steel
:
2 3750 mm
Area of Steel Required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 137 mm 10 mm 200 mm
2 Area of Steel Provided : 393 mm Area of Steel Provided is greater than Required Area of Steel, Hence Safe Distribution Steel
Area of Steel required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 79 mm 8 mm 250 mm
Area of Steel Provided
:
2 201 mm
3.1.2 Bottom Slab i) At Centre Design Bending Moment Effective depth Required Effective Depth Provided Depth of Neutral Axis Max. depth of Neutral Axis
: : : : :
4.86 34 145 1.88 89.4
kN-m mm mm mm mm
Depth of Neutral Axis is less than Max. Depth of Neutral Axis, Hence Ok Area of Steel Required, Ast,req
:
2 77 mm
Ast,min1
:
2 166 mm
Ast,min2
:
2 189 mm
Minimum Area of Steel
:
2 189 mm
Maximum Area of Steel
:
2 3750 mm
Area of Steel Required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 189 mm 10 mm 200 mm
2 Area of Steel Provided : 393 mm Area of Steel Provided is greater than Required Area of Steel, Hence Safe Distribution Steel
Area of Steel required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 79 mm 8 mm 250 mm
Area of Steel Provided
:
2 201 mm
Page 4 of 7
Project Name: Two/Four Lannig of NH 65 Design Title: Design of RCC Drains Without Live Load for 0.9 m Height: Document Number : Satya/2016-17/0001 -R0 ii) At Support Design Bending Moment Effective depth Required Effective Depth Provided Depth of Neutral Axis Max. depth of Neutral Axis
: : : : :
6.71 40 146 2.59 90.1
Remarks/Rough
kN-m mm mm mm mm
Depth of Neutral Axis is less than Max. Depth of Neutral Axis, Hence Ok Area of Steel Required, Ast,req
:
2 106 mm
Ast,min1
:
2 167 mm
Ast,min2
:
2 190 mm
Minimum Area of Steel
:
2 190 mm
Maximum Area of Steel
:
2 5000 mm
Area of Steel Required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 190 mm 8 mm 150 mm
2 Area of Steel Provided : 335 mm Area of Steel Provided is greater than Required Area of Steel, Hence Safe Distribution Steel
3.2 3.2.1
Area of Steel required Diameter of the bar, φ Spacing of reinforcement, s
: : :
2 67 mm 8 mm 250 mm
Area of Steel Provided
:
2 201 mm
Check for Shear: Top Slab Design Shear Force Effective Depth Provided
: :
3.5 kN 56 mm
Area of Steel Provided Percent of Steel K σcp ρ1 Vmin i Vr,dc Vr,dc min Max. Shear Load without Shear Reinforcement
: : : : : : : : :
251 1.79 2.00 0 0.0045 0.438 0 438 27.7 24.6 27.7
mm2 % Eq. 10.2 in Cl: 10.3.2 of IRC 112 -2011 Cl: 10.3.2 of IRC 112 -2011
View more...
Comments