Design of Pile and Pile Cap Final
May 5, 2017 | Author: Mahendra Suryavanshi | Category: N/A
Short Description
Design of pier & pile cap...
Description
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
SUMMARY OF LOAD CASES A) Forces and Moments at the Base of Pier S.No 1 2 3 4
Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse
Vertical Load (t) 911.91
Mll (tm) 382.91
Mtt (tm) 222.42
887.70
382.91
227.53
828.81 816.70
1155.12 727.65
113.76 1418.78
B) Forces and Moments at the Base of Pier - One Span Dislodged Condition S.No 1 2 3 4
Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse
Vertical Load (t) 460.71
Mll (tm) 116.57
Mtt (tm) 0.00
460.71
116.57
0.00
460.71 460.71
668.80 116.57
0.00 668.80
Vertical Load (t) 1119.56
Mll (tm) 467.16
Mtt (tm) 222.42
1095.35
367.36
227.53
1036.46 1024.36
1373.79 861.08
111.21 1660.45
C) Forces and Moments at the Base of Pile Cap S.No 1 2 3 4
Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse
Scott Wilson
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Design Pier of dia 2.5m SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PIER (Long.mom, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
250 10 911.91 442.82 9.90
cm
Ast.provided
=
546.888
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
203.57138 257.78579 42785.73690 194.58025 14.34881 122185566 47707.73294 48.55940 12.86845 35.69095 155697724 91.43983 -78.57138
R=
t tm cm
cm deg or cm2 cm cm cm4 cm2
125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 43 -76 115 -2000
kg/cm2 kg/cm2 kg/cm2 kg/cm2
0.00 4.4992109 rad Percentage of Steel No of Bars Dia of Bar
1.10% 539.96124 68 32 546.888
-78.57138
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PIER (Trans.mom, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
250 10 887.70 445.40 9.90
cm
Ast.provided
=
546.888
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
199.49908 253.06500 41980.10375 200.87983 16.09105 115417127.3 46902.09979 50.17533 14.40242 35.77291 149161126.3 88.90150 -74.49908
Scott Wilson
t tm cm
cm deg or cm2 cm cm cm4 cm2
-74.49908
R=
125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 48.0 -86 173 -3000
0.00 4.4168175 rad Percentage of Steel No of Bars Dia of Bar
1.10% 539.96124 68 32 546.888
kg/cm2 kg/cm2 kg/cm2 kg/cm2
Patna ROB's (Package -VIII)
Scott Wilson
Design of Abutment Pier and its Foundation
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING Pier (CASE, SEISMIC) - Long mom Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
250 10 828.81 1160.71 9.90
cm
Ast.provided
=
546.888
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
103.12051 159.77419 19084.88158 246.11592 65.09511 14131097.6 24006.87762 140.04491 51.74902 88.29588 63314702.08 29.86953 21.87949
R=
t tm cm
cm deg or cm2 cm cm cm4 cm2
125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 119 -1583 173 -3000
kg/cm2 kg/cm2 kg/cm2 kg/cm2
0.00 2.7885857 rad Percentage of Steel No of Bars Dia of Bar
1.10% 539.96124 68 32 546.888
21.879491
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING Pier (CASE, SEISMIC) - trans mom Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
250 10 816.70 1594.49 9.90
cm
Ast.provided
=
546.888
cm2
N.A.assumed
= 90.71854 = 148.10554 = 16066.97608 = 240.37879 = 72.03989 = 9192042.058 = 20988.97212 = 195.23500 = 55.14625 = 140.08875 = 61349128.135 = 20.86479 34.28146
Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
Scott Wilson
t tm cm
cm deg or cm2 cm cm cm4 cm2
34.281464
R=
125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 169 -2786 173 -3000
0.00 2.5849292 rad Percentage of Steel No of Bars Dia of Bar
1.10% 539.96124 68 32 546.888
kg/cm2 kg/cm2 kg/cm2 kg/cm2
Live Load Calculations Maxium Longitudinal moment case Case 1 : 70R Wheeled 100 t 2.595
2.905
11 5.124
100 t
1.05
2.1 27.90
Ra
Rb
Ra = Rb = Longitudinal Moment Transverse Moment Braking force Case 1 :
1.05 27.9
Rc
100 x 23.826 / 27.9
= = = = =
70.796 x 85.398 x 2.905
Rd 85.398 15 t 0 248.081 20
t t-m t-m t
Class A 55.4 t 1.3
4.2
11
5.714
55.40 t
1.05
2.1 Ra
27.9
Ra = Rb = Longitudinal Moment Transverse Moment Braking force
55.4 x 23.236 / 27.9
27.9
= = = = =
36.878 x 46.139 x 4.2
IRC class A, two lanes
Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column Transverse moment on column IRC class A, three lanes
1-lane 46.1 9.3 55.4 0.0 193.78
2-lane 92.3 18.5 110.8 0.0 226.08
t t t tm tm
46.139 9t 0 193.784 11.08
t t-m t-m t
1-lane 46.14 9.26 55.40 0.00 193.78
3-lane 138.42 27.78 166.20 0.00 96.89
70W 85.398 14.602 100.000 0.000 248.081
A 46.139 9.261 55.400 0.000 193.784
Reaction Rb for three lanes Reaction Rc for three lanes Total reaction on pier Longitudinal moment on column Transverse moment on column
t t t tm tm
IRC class 70W+A
Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column
Total 131.537 23.863 155.400 0.000 209.324
t t t tm tm
Maximun Transverse moment Case/ Maxmium Reaction Case Case 2 :
70R Wheeled
One lane of class 70-R(W) Cg of 100 t 3.324
Cg of 49
t
Cg of 51
3.194 m
1.05 m Ra
27.90 m
Rb
Rc 2.1
Rb = Rc = Vertical Reaction Longitudinal Moment Transverse Moment
One lane of class-A Cg of
51 x 25.756 / 27.9
27.90 m
Rb = Rc = Vertical Reaction Longitudinal Moment
= = = = =
45.006 x 92.087 x 2.905
Cg of t 55.40 t
28.2
5.024
1.05 m Ra
27.90 m m 45.006 47.081 92.087 0 267.513
Cg of 27.20
t t t t-m t-m
t
5.209
Rb
Rc 2.1
27.2 x 23.741 / 27.9
-1.038 x
27.90 m m = = = =
Rd 23.145 24.183 47.328 0
t t t t-m
Transverse Moment
47.328 x 4.2
=
70R Wheeled 100 t 2.595
2.905
11 Class 2A 55.4 t 1.3
4.2
55.40 t 0.7
1.2
11 Class 3A 55.4 t 1.3
4.2
55.40 t 0.7 1.2
1.2
11
-2.8
70 R + Class A 100 t 2.595
2.905
55.40 t -0.84
1.2
11 IRC class A, two lanes
Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column
1-lane 23.15 24.18 47.33 0.00 198.78
2-lane 46.29 48.37 94.66 0.00 231.91
t t t tm tm
1-lane 23.15 24.18 47.33 0.00 198.78
3-lane 69.44 72.55 141.98 0.00 99.39
t t t tm tm
IRC class A, three lanes
Reaction Rb for three lanes Reaction Rc for three lanes Total reaction on pier Longitudinal moment on column Transverse moment on column IRC class 70W+A
198.778 t-m
Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column
70W 45.006 47.081 92.087 0.000 267.513
A 23.145 24.183 47.328 0.000 198.778
Total 68.151 71.264 139.415 0.000 227.757
A 55.40 t 20% 5% 11.1 5.54 1.20 2.15 1.33
2-A 110.8 20% 5% 11.1 5.54 1.20 2.15 1.33
3-A 166.2 20% 5% 13.9 6.93 1.20 2.15 1.66
t t t tm tm
Horizontal Braking Force 70W 100 t 20% 5% 20.0 10.00 1.20 2.15 2.40
Vertical load Braking 2-lane % Braking 3rd-lane % H. Braking force H. Force on each pier Force ht. from deck Ht. of Superstructure Reaction on pier
Summary of loads transferred on Pier from Super Structure Max.Transverse Moment Loading
420.5 92.09 47.33 94.66 142.0 139.4
0.00 0.00 0.00 0.00 0.00 0.00
0.0 267.5 198.8 231.9 99.4 227.8
t
t t m m t
Max. Longitudinal Moment
Vertical Long. Trans. Braking Hreaction (t) moment t.m) moment (t.m) force (t)
Dead load 70 W A 2A 3A 70 W+A
70W+A 155.4 20% 5% 22.8 11.39 1.20 2.15 2.73
0.00 10.00 5.54 5.54 6.93 11.39
Braking Vforce (t)
0.00 2.40 1.33 1.33 1.66 2.73
Vertical reaction (t)
420.55 85.40 55.40 110.80 166.20 155.40
Long. moment (t.m)
0.00 0.00 0.00 0.00 0.00 0.00
Governing values Loading
Dead load Live load Braking Total
For Max.Transverse Moment Vertical reaction (kN) 420.5 142.0 2.7 144.7
Long. moment (kN.m) 0.00 0.0 0.00
For Max. Longitudinal Moment
Trans. Long. Ecc. moment (m) (kN.m) 0.0 231.9 231.9
0.00
Trans. Ecc. (m)
1.60
Vertical reaction (kN) 420.55 166.2 2.7 168.93
Long. moment (kN.m) 0.00 0.0 0.00
1.05 Rb
1.05 Rd
1.05
Max. Longitudinal Moment Trans. moment (t.m)
0.00 248.08 193.78 226.08 96.89 209.32
Braking Hforce (t)
0.00 10.00 5.54 5.54 6.93 11.39
Braking Vforce (t)
0.00 2.40 1.33 1.33 1.66 2.73
For Max. Longitudinal Moment Trans. Long. Ecc. moment (m) (kN.m) 0.00 226.1 226.08
0.00
Trans. Ecc. (m)
1.34
IRC 70R Loading 8276 8t
12 t
610
3960
CG =
8276
5124 12 t
1520
17 t
2130
17 t
1370
17 t
3050
17 t
1370
910
Minimum Clearence Width of Lanne
For Max Longitudinal Moment Case Span Load CG 4420 51 t 1930 5790 68 t 2895 7920 80 t 3649 9440 92 t 4404 13400 100 t 5124 For Max Transition Moment Case Total Span Total Load Span 1 load 4420 51 t 17 t 5790 68 t 34 t 7920 80 t 46 t 9440 92 t 58 t 13400 100 t 49 t
cg 1120 2210 2190 2180 3324
Span 2 load 34 t 34 t 34 t 34 t 51 t
cg 1245 2210 2964 3719 3194
IRC Class A Loading
2.7 t
2.7 t
1100
11.4 t
3200
11.4 t
1200
6.8 t
4300
6.8 t
3000
6.8 t
3000
6.8 t
3000
For Max Longitudinal Moment Case Span 5500 8500 11500 14500
Total Load Span 1 load 35.00 t 5.40 t 41.80 t 5.40 t 48.60 t 5.40 t 55.40 t 5.40 t
For Maxmium Transverse Moment Case
cg 3750 3750 3750 3750
Span 2 load 29.60 t 36.40 t 43.20 t 50.00 t
cg 1726 2991 4331 5714
1.2 2.79
Span 9000 13300 14500 17700 18800
Total Load CG from R Span 1 load cg 27.2 4500 13.6 38.6 t 7099 18.2 50.0 8786 29.6 52.7 t 9243 25.5 55.4 t 9709 28.2
Minimum Clearence Width of Lane Min Distance Between Lanes Seismic Factors Zone Zone Factor II 0.1 III 0.16 IV 0.24 V 0.36
0.15 2.3 1.2
3000 4594 7372 5059 5024
Span 2 load cg 13.6 3000 20.4 4099 20.4 5786 27.2 4743 27.2 5209
DEAD LOADS OF SUPERSTRUCTURE RAILING WEIGHT RCC UNIT WEIGHT WEARING COAT WT. DECK SLAB THK. AT C/L OF BRIDGE DEPTH OF BEAM DEPTH OF DIAPHRMS. SLOPE OF W. COAT CANTILEVER END CANTILEVER INTERM. CANTILEVER MIDDLE TOTAL DEPTH
700
= = = =
3 2.4 2.2 0.25
KN / M PER RAILINGS T / M3 T / M3 M
= = = = = = =
2.15 1.43 2.5 200 350 300 2400
M M % MM MM MM MM
30000 26800
900
2650
625
900
700
325
300
300
2650
2650
2025
12 11
0.5
0.5
1.1 1.1 0.425
2.50%
200 6 0.325 0.15 0.25
6 0
0.25
C/L OF BRIDGE C/L OF CG. WAY
0.625
FILE: 257928472.xls SHEET: DEAD LOADS
RITES
15 OF 39
A.
RAILING WEIGHT
B.
KERB WEIGHT = 0.425 = 15.30
= = = = X T
3 KN / M PER RAILINGS 2 X 3 X 30000 / 1000 X 0.1 18.00 T 0.5
X
30
X
2.4
X
1
X
30
X
2.4
X
1
-0.025
X
2.4
X
30
0
X
2.4
X
30
X
0.5
X
30
LEVER ARM WRT C/L OF BRIDGE = 5.75 M ANTICLOCKWISE MOMENT = -43.99 T-M KERB ON RIGHT SIDE = 0.425 X = 15.30 T
0.5
LEVER ARM WRT C/L OF BRIDGE = 5.75 M CLOCKWISE MOMENT = 43.99
C
FOOTPATH LOADS = 0 X = 0 SERVICE PIPE LOADS = 0 X = 0
T-M
NET FOOTPATH LOADS = 0 T LEVER ARM WRT C/L OF BRIDGE = 5.50 M CLOCKWISE MOMENT = 0.0 T - M D
PCC FILLING LOADS TRINGULAR PORTION = 0 X = 0 T
5.5
X
2.4
LEVER ARM WRT C/L OF BRIDGE = 3.67 M
FILE: 257928472.xls SHEET: DEAD LOADS
RITES
16 OF 39
ANTICLOCKWISE MOMENT = 0.00 T-M RECTANGULAR PORTION = 0 X = 0 T
0.5
X
30
X
2.4
LEVER ARM WRT C/L OF BRIDGE = 5.75 M ANTICLOCKWISE MOMENT = 0.00 T-M E
WEARING COAT = 11 X = 47.19 T
0.065 X
2.2 X
30
TOTAL IMPOSED LOAD ON DECK SLAB = 18 + 15.3 + 15.3 + 0 + 0 + 0 + 47.19 = 95.8 T TOTAL MOMENT WRT C/L OF CG WAY = 0.0 F
DIAPHRAGMS WEIGHT END DIAPHRAGMS = 2.4 X = 12.51 T
3 X
1.43 X
0.3 X
2.025 X
MID DIAPHRAGMS = 2.4 X = 7.181 T
3 X
1.43 X
0.3 X
2.325
TOTAL DIAPHRAGMS WEIGHT
G
= =
12.51 + 19.69 T
2
7.181
GIRDERS SELF WEIGHT END PORTION = 0.625 X = 4.515 T TAPERING PORTION 0.6 + 0.325 = X 2 =
2.15 X
0.7 X
2.15 X
2.4 X
2 X
2
0.9 X
2.4
4.412 T
FILE: 257928472.xls SHEET: DEAD LOADS
RITES
17 OF 39
MID PORTION = 0.325 X 2.15 X = 44.94 T EXTRA CONCRETE AT BOTTOM = TOTAL LOAD OF ONE GIRDER = 64.97 T TOTAL LOAD OF FOUR GIRDERS = 259.9 T
H
2.4 X
26.8
11.1 (BULB)
DECK SLAB LOADS MIDDLE DECK SLAB 2.5 % 224.7 209.1 142.8
150.6 158.4
183.8
625
250
216.9 237.3
2025 2650
1325 3975
AREA OF MIDDLE DECK SLAB
WEIGHT = =
1.684 X 121.3 T
= = =
2.4 X
( 0.143 + 0.25 ) X 0.5 X ( 3.975 + 0.625 / 2 ) 0.842 X 2 1.684 M2
30
CANTILEVER SLAB 2025 A1
200
2025 A2
200
350
1713
1863 625
A1 Amid A2 =
= = =
300
0.471 M2 0.468 M2 0.466 M2
325
0 0.7 1.6
TO TO TO
0.7 1.6 15
= = =
0.7 M 0.9 M 13.4 M
67 T
TOTAL SLAB LOAD
TOTAL DEAD LOADS = 18.00 + 19.69 + = 563.71
= =
67.11 + 188.4
15.30 + 259.9 + T
121.3
0 + 188.4 +
0 + 15.30
47.19 +
DEAD LOAD REACTION RG = 281.9 T
FILE: 257928472.xls SHEET: DEAD LOADS
RITES
18 OF 39
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
DESIGN OF PIER AND ITS PILE FOUNDATION - P1 & P2 Deck Level
53.250
11.00 1.00 0.50
50.650
6.430
4.250 (typ)
2.500 3.100
Circular
42.920 Avg GL 3.100
Top of
1.80
42.720 Pile Cap Lvl 40.920
1000 dia 3.6
3.6
15.920 Rectangular Column
3.40
2
1
3 2 3
3.40
A
Plan - Pier Cap A DESIGN DATA: 1. Density Of concrete 2. Density Of Soil 3. Length of Pile 4. Over all Depth of Super Structure 5. Cross Slope 6*0.025 6. Wearing Coat
Scott Wilson
2.400 1.800 25 1.5 0.15 0.09
t/m3 t/m3 m m m m
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
DESIGN OF PIER AND ITS PILE FOUNDATION
53.250 0.800
1.00 0.50
50.65
6.430
C/L of exp gap and C/L of Column
2.500 Circular
42.920 Avg GL Top of 42.720 Pile Cap Lvl
1.25 1.80
1.25
40.920
0 1000 dia 3.6 Cg of Pile Cap 15.920
Scott Wilson
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
LOAD CALCULATIONS AT PIER BASE Dead Load+ SIDl LHS Dead Load+ SIDl RHS
285 285
t t
Normal Case S.No
Vertical Load
Value (t) Distance w.r.t c.g of Shaft (m) in Long
1 2
Dead Load + SIDL Live Load (Max Long Moment) 3 Live Load (Max Trans Moment) 5 Pier cap 6 Pier Shaft Max Long Moment case Max Trans Moment case
570.00 166.20
0.000 0.000
141.98 99.96 75.75 911.91 887.70
0.000
Moment About Pier Moment about Distance w.r.t c.g of Shaft in c.g of Shaft (m) Long (t-m) in Trans
Moment about c.g of Shaft in Trans (t-m)
0.00 0.00
0.000 1.338
0.000 222.42
0.000
1.602
227.53
0.000 0.00 0.00
0.000
0.000 222.42 227.53
Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL - on Full span Dead Load + SIDL - RHS Span Dead Load + SIDL - LHS Span Live Load Reaction at free end - Max Long Moment Case
0.05 20 570.00 285.00 285.00 166.200
t t t t t
cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)
-16.810 46.810 46.810 8.18 382.906
t t t m t-m
Free Bearing - Max Longitudinal Moment Case 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2)) Horizontal force Moment about Pier Shaft base (Long)
8.2 m 36.810 t 301.106 t-m
Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II
(20-0.05*(570+166.2)) (20/2+0.05*(570+166.2))
36.810*8.18
Seismic Case Calculations Seismic coefficient : Ah = horizontal seismic coefficient Z = Zone Factor I = Importance Factor Sa / g = Average response acceleration coefficient R = Response reduction factor Horizontal seismic coefficient Vertical seismic coefficient
Scott Wilson
= = = = = = =
( Z / 2 ) . ( Sa / g ) / ( R / I ) 0.24 (Bridge is Zone IV) 1.5 2.5 2.5 0.18 0.090 For Case IV
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Force at Bearings : Seismic Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II cg from Pier shaft base (Long) Moment about Pier Shaft base (Long) 2. Free Bearing 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2/2)) Horizontal force Moment about Pier Shaft base (Long)
88.955*8.18
79.945 88.955 88.955 8.18 727.652
t t t m t-m
32.655*8.18
8.18 m 32.655 t 267.118 t-m
Forces and Moments at the Base of Pier Forces and Moments at the Base of Pier Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment
911.91 t 222.422 t-m 382.906 t-m
911.912 222.422 301.106
II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment
887.70 t 227.526 t-m 382.906 t-m
887.696 227.526 301.106
Seismic Case: (Longitudinal) Seismic Coefficient S.No
Horizontal Load
0.18 Value (t)
Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)
1
On Dead Load + SIDL
102.60
9.48
972.65
2 3
On Pier Cap On Pier Shaft Total
17.99 13.64 134.23
7.71 3.22
138.635 43.84 1155.12
Seismic Case: (Transverse) S.No
Horizontal Load
Value (t)
Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)
1
On Dead Load + SIDL
102.60
9.48
972.65
2 3 4 5
On Pier Cap On Pier Shaft Centrifugal force Live Load Total
17.99 13.64 0.00 12.78 147.01
7.71 3.22 11.73 11.73
138.63 43.84 0.00 149.89 1305.01
Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment
(911.912-0.5*166.2) 0.5*227.526 0.000+1,155.120
828.81 t 113.763 t-m 1155.120 t-m
Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment
(887.696-0.5*141.984) 0.5 x 227.525978421843 +1305.013 0 +727.652
816.70 t 1418.776 t-m 727.652 t-m
Scott Wilson
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
ONE SPAN DISLODGED CONDITION Normal Case S.No
Vertical Load
Value (t) Distance w.r.t c.g of Shaft (m) in Long
1 2 3 5
Dead Load + SIDL Live Load (Max Long Moment) Live Load (Max Trans Moment) Pier cap
6 Pier Shaft Max Long Moment case Max Trans Moment case
285.00 0.00
0.000 0.400
0.00
Moment About Pier Moment about Distance w.r.t c.g of Shaft in c.g of Shaft (m) Long (t-m) in Trans
Moment about c.g of Shaft in Trans (t-m)
0.000 0.00
0.000 1.338
0.000 0.00
0.000
1.602
0.00
99.96
0.000
0.000
0.00
0.000
75.75 460.71 460.71
0.000
0.000 0.00 0.00
0.000
0.000 0.00 0.00
Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL -Reaction Live Load Reaction at free end - Max Long Moment Case Dead Load + SIDL -Full Span
0.05 0 285.00 0.000 570.00
t t t t
Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II
14.250*8.18
-14.250 14.250 14.250 8.18 116.565
14.250*8.18
14.250 t 116.565 t-m
(0-0.05*(285+0)) (0/2+0.05*(285+0))
cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)
50.65-42.72+0.25
t t t m t-m
2. Free Bearing - Max Longitudinal Moment Case (0.05*(285+0)) Horizontal force Moment about Pier Shaft base (Long)
Seismic Case Calculations Seismic coefficient : Ah = horizontal seismic coefficient Z = Zone Factor I = Importance Factor Sa / g = Average response acceleration coefficient R = Response reduction factor Horizontal seismic coefficient Vertical seismic coefficient
Scott Wilson
= = = = = = =
( Z / 2 ) . ( Sa / g ) / ( R / I ) 0.24 (Bridge is Zone IV) 1.5 2.5 2.5 0.18 0.090 For Case IV
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Force at Bearings : Seismic Case - Longitudinal Free Bearing - Max Longitudinal Moment Case 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(285+0/2)) Horizontal force Moment about Pier Shaft base (Long)
14.250*8.18
8.18 m 14.250 t 116.565 t-m
Forces and Moments at the Base of Pier - One Span Dislodged Condition Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment
460.712 0.000 0.000+116.565
460.71 t 0.000 t-m 116.565 t-m
II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment
460.71 0.000 0+116.565
460.71 t 0.000 t-m 116.565 t-m
Seismic Case Calculations Seismic Case: (Longitudinal) Horizontal Seismic Coefficient S.No
1 2 3
Horizontal Load
On Dead Load + SIDL On Pier Cap On Pier Shaft Total
0.18 Value (t)
Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)
51.300
9.48
486.32
17.99 13.64 82.93
7.71 3.22
138.635 43.84 668.80
Seismic Case: (Transverse) S.No
1 2 3 4
Horizontal Load
On Dead Load + SIDL On Pier Cap On Pier Shaft Live Load Total
Value (t)
Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)
51.300
9.48
486.32
17.99 13.64 0.00 82.93
7.71 3.22 11.73
138.63 43.84 0.00 668.80
Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment
460.712-0.5*0 0.000 0.000+668.796
460.71 t 0.000 t-m 668.796 t-m
Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment Scott Wilson
460.712-0.5*0 0.000+668.796 0.000+116.565
460.71 t 668.796 t-m 116.565 t-m
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
LOAD CALCULATIONS - AT PILE CAP BASE Load Calculations of Pile Cap and soil wt above pile cap Depth of pile cap Self Weight of Pile Cap Soil weight above pile cap
1.5 m 191.68 t 15.973 t
Normal Case S.No
Vertical Load
Value (t) Distance w.r.t c.g of Pile cap (m) in Long
1 2 3 5
Dead Load + SIDL Live Load (Max Long Moment) Live Load (Max Trans Moment) Pier cap
6 Pier Shaft Max Long Moment case Max Trans Moment case
Moment About Cg of Pile Cap Moment about Distance w.r.t c.g of Pile Cap c.g of Pile Cap in Long (t-m) (m) in Trans
Moment about c.g of Pile Cap in Trans (t-m)
570.00 166.20
0.000 0.000
0.000 0.000
0.000 1.338
0.000 222.422
141.98
0.000
0.000
1.602
227.526
99.96
0.000
0.000
0.000
0.000
75.75 911.91 887.70
0.000
0.000 0.00 0.00
0.000
0.000 222.42 227.53
Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL Reaction at Pier - Full span Live Load Reaction at free end Dead Load + SIDL -Full Span
0.05 20 570.00 166.200 570.00
t t t t
cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)
-16.810 46.810 46.810 9.98 467.164
t t t m t-m
2. Free Bearing - Max Longitudinal Moment Case 50.65-40.92+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2)) Horizontal force Moment about Pier Shaft base (Long)
9.98 m 36.810 t 367.364 t-m
Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II
(20-0.05*(570+166.2)) (20/2+0.05*(570+166.2))
Force at Bearings : Seismic Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)
Scott Wilson
36.810*9.98
79.945 88.955 88.955 9.680 861.084
t t t m t-m
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
2. Free Bearing - Max Longitudinal Moment Case Horizontal Seismic Coefficient 50.65-40.92+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2/2)) Horizontal force Moment about Pier Shaft base (Long)
32.655*9.98
0.18 9.98 m 32.655 t 325.897 t-m
Forces and Moments at the Base of Pier Forces and Moments at the Base of Pile Cap Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment
1119.56 t 222.422 t-m 467.164 t-m
911.912+191.68+15.97 222.422 467.164
II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment
1095.35 t 227.526 t-m 367.364 t-m
887.696+191.68+15.97 227.526 0.000+467.164
Longitudinal Seismic Case Horizontal Seismic Coefficient S.No
1 2 3
Horizontal Load
On Dead Load + SIDL On Pier Cap On Pier Shaft Total
Scott Wilson
0.18 Value (t)
Acting at a Moment about distance from pile Pile Cap Base (tcap Base (m) m)
102.600
11.28
1157.33
17.99 13.64 134.23
8.230 5.02
148.081 68.38 1373.79
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Transverse Seismic Case S.No
1 2 3 4 5
Horizontal Load
On Dead Load + SIDL On Pier Cap On Pier Shaft Centrifugal force Live Load Total
Value (t)
Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)
102.600
11.28
1157.33
17.99 13.64 0.00 12.78 147.01
8.230 5.02 13.53 13.53
148.08 68.38 172.89 1546.68
Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment
911.912-0.5*166.2+191.68+15.97 0.5*222.422 0.000+1,373.790
1036.46 t 111.211 t-m 1373.790 t-m
Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment
Scott Wilson
887.696-0.5*141.984+191.68+15.97 0.5*227.526+1,546.684+0.000+0.000 0.000+325.897
1024.36 t 1660.447 t-m 861.084 t-m
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
DESIGN OF PILE & PILE CAP A p Y 0.75 3.60 w
T
t 0.75
4
1
0.75 3.6
v
X
5
2
v L
L
3.6 4.35 u
6
3
B
B 0.75 p
CL of brg/Column T Y CL of Pile Cap
A
t
2.550 0.000 Total Width of Pile Cap in Longitudinal Dircetion 0.75+3.6+0.75 Total Width of Pile Cap in Transverse direction 0.75+3.6+3.6+0.75
5.10 m 8.70 m
Cg in Longitudinal Direction
No.of Piles 3 3 6
Pile No.s
Pile-Dia (m)
PileSection
Area of pile
4,5,6 1,2,3
1.2 1.2
p-p t-t
1.1310 1.1310
Cg of Pile Group Distance between C/L of brg to cg of pile group
Total area in section (A) 3.393 3.393 6.786
distance from section A-A (x) 0.750 4.350
distance Distance Area of dia of pile from w.r.t c.g of Pile No pile (m2) m section A- Pile group A A (m) (m) - d
Scott Wilson
1.2 1.2 1.2 1.2 1.2 1.2
1.1310 1.1310 1.1310 1.1310 1.1310 1.1310 6.786
4.350 4.350 4.350 0.750 0.750 0.750
2.545 14.759 17.304
2.5500 m from left end Section A-A 0.000 m
Along Longitudinal Direction
1 2 3 4 5 6
A*x
1.800 1.800 1.800 1.800 1.800 1.800
d2
3.240 3.240 3.240 3.240 3.240 3.240
Total M.I = x2 3.240 3.240 3.240 3.240 3.240 3.240 19.440
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Cg in Transverse Direction
No.of Piles 2 2 2 6
Pile No.s
Pile-Dia (m)
PileSection
Area of pile
3,6 2,5 1,4
1.2 1.2 1.2
u-u v-v w-w
1.1310 1.1310 1.1310
Cg of Pile Group Distance between C/L of brg to cg of pile gr
Total area in section (A) 2.262 2.262 2.262 6.786
distance from section B-B (y) 0.750 4.350 7.950
distance Distance Area of dia of pile from w.r.t c.g of Pile No pile (m2) m section B- Pile group A B (m) (m) - d
Scott Wilson
1.2 1.2 1.2 1.2 1.2 1.2
1.131 1.131 1.131 1.131 1.131 1.131 6.786
7.950 4.350 0.750 7.950 4.350 0.750
1.696 9.839 17.982 29.518
4.3500 m from left end Section A-A 0.000 m
Along Transverse Direction
1 2 3 4 5 6
A*y
3.600 0.000 3.600 3.600 0.000 3.600
d2
12.960 0.000 12.960 12.960 0.000 12.960
Total M.I = y2 12.960 0.000 12.960 12.960 0.000 12.960 51.840
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Pile Reactions Pile Capacity for 1000mm dia pile
350 t
No. of Piles
6
x2
19.44
y2
51.84
Dia of Pile (mm)
Pile No
1
1200
2 3
1200 1200
4 5 6
1200 1200 1200
S.No
Distances w.r.t along directions
Normal - Longitudinal Moment Case
x (m)
y (m)
P/N
Mll * x/x^2
Mtt * y/y^2
Total (t)
Check
1
1.800
3.600
186.59
43.26
15.45
245.30
O.K
2 3
1.800 1.800
0.000 3.600
186.59 186.59
43.26 -43.26
0.00 15.45
229.85 158.78
O.K O.K
4 5 6
1.800 1.800 1.800
3.600 0.000 3.600
186.59 186.59 186.59
43.26 43.26 -43.26
-15.45 0.00 -15.45
214.40 229.85 127.89
O.K O.K O.K
Max Min
S.No
Dia of Pile (mm)
Pile No
1 2 3 4 5 6
1200 1200 1200 1200 1200 1200
1 2 3 4 5 6
Distances w.r.t along directions
245.30 127.89
Normal - Transverse Moment case
x (m)
y (m)
P/N
Mll * x/x^2
Mtt * y/y^2
Total (t)
Check
1.800 1.800 1.800 1.800 1.800 1.800
3.600 0.000 3.600 3.600 0.000 3.600
182.56 182.56 182.56 182.56 182.56 182.56
34.02 34.02 -34.02 34.02 34.02 -34.02
15.80 0.00 15.80 -15.80 0.00 -15.80
232.37 216.57 164.34 200.77 216.57 132.74
O.K O.K O.K O.K O.K O.K
Max Min Distances w.r.t along directions
232.37 132.74
S.No
Dia of Pile (mm)
Pile No
x (m)
y (m)
P/N
Mll * x/x^2
Mtt * y/y^2
Total (t)
Check
1
1200
1
1.800
3.600
172.74
127.20
7.72
307.67
O.K
2 3 4
1200 1200 1200
2 3 4
1.800 1.800 1.800
0.000 3.600 3.600
172.74 172.74 172.74
127.20 -127.20 127.20
0.00 7.72 -7.72
299.95 53.26 292.22
O.K O.K O.K
5 6
1200 1200
5 6
1.800 1.800
0.000 3.600
172.74 172.74
127.20 -127.20
0.00 -7.72
299.95 37.82
O.K O.K
Seismic Case - Longitudinal
Max Min Distances w.r.t along directions x (m) y (m)
307.67 37.82
S.No
Dia of Pile (mm)
Pile No
P/N
Mll * x/x^2
Mtt * y/y^2
Total (t)
Check
1 2
1200 1200
1 2
1.800 1.800
3.600 0.000
170.73 170.73
79.73 79.73
115.31 0.00
365.76 250.46
O.K O.K
3 4 5
1200 1200 1200
3 4 5
1.800 1.800 1.800
3.600 3.600 0.000
170.73 170.73 170.73
-79.73 79.73 79.73
115.31 -115.31 0.00
206.30 135.15 250.46
O.K O.K O.K
6
1200
6
1.800
3.600
170.73
-79.73
115.31
206.30
O.K
Seismic Case - Transverse
Max Min Scott Wilson
365.76 135.15
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
CALCULATION OF NO. OF PILES Total Vertical load at cg of pile cap Total Horizontal force Seismic Horizontal force Vertical Capacity of 1200mm dia 25.0m long pile Horizontal Capacity
1119.56 46.81 147.01 350 #NAME?
No. of Plies required (Vertical) No. of Plies required (Horizontal)
3.20 no.s #NAME? no.s
Provided No of piles
t t t t t
6 no.s
STRUCTURAL DESIGN OF PILE Maximum Lateral Force in Longitudinal Direction on Pile Foundation under normal condition Corresponding Max. Vertical Load on one Pile for Load - Normal Case and Corresponding Minimum Vertical Load on one Pile for Load - Normal Case Maximum Lateral Force in Longitudinal Direction on Pile Foundation under Seismic Condition
=
46.81 t
= = =
245.30 t 127.89 t 147.01 t
Corresponding Maximum Vertical Load on one Pile - Seismic case Corresponding Minimum Vertical Load on one Pile - Seismic case
=
307.67 t
=
37.82 t
Total No. of Piles Length of Pile Dia of Pile
6 25 m 1.2 m
LOAD CALCULATIONS FOR STRUCTURAL DESIGN a)
Normal Case
Max. Lateral Force on one Pile under Normal Condition Max. Lateral load Capacity of Pile under Normal Condition Now, Maximum Moment in Pile is given by Therefore, Maximum Moment in Pile under Normal condition Corresponding Max / Min Vertical Load (Excluding Self Weight of pile) b) Seismic Case
= =
46.8 /6
=
#NAME? t #NAME?
= =
3.76*Q 3.76*8
tm
= =
(Max.) (Min.)
= 147.01 / 6 Max. Lateral Force on one Pile under Seismic Condition = #NAME? t Max. Lateral load Capacity of Pile under Seismic Condition = 3.76*Q Maximum Moment in Pile under Seismic condition = Corresponding Max / Min Vertical Load = (Excluding Self Weight of pile) Self weight of pile The design loads and moments are summarised below : Sr. No. 1. 2. 3. 4.
Scott Wilson
Description Normal Case (Max. Vertical load) Normal Case (Min. Vertical Load) Seismic Case (Max. Vertical Load) Seismic Case (Min. Vertical Load)
8.00 t
=
30.08 tm
@ @
246.0 t 127.0 t
@
24.60 t
= (Max.) (Min.)
Vertical Load Moment (tm) (t) 246.0 30.08 127.0 30.08 308.0 92.50 37.0 92.50
@ @
#NAME? 92.496 tm 308.0 t 37.0 t 67.9 t
Eccentricity M/V (m) 0.122 0.237 0.300 2.500
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Calculation of Reinforcement The reinforcement in pile assumed 1% of cross-sectional area. Area of Reinforcement = 1/100 * 1.131 * 10000 Bar dia to be provided = 20 mm No. of 20 dia. Bars reqd. = 113.1 / 3.14 No. of 20 dia. Bars prov. Provide 20 dia , 36 nos. around periphery As provided = 36 * 3.14 Provide 8 dia. @ 150mm as helical reinforcement
=
1.00% of c/s area 113.097 cm2
= =
36 No. 36 No.
=
113.100 cm2
Pile Reinforcement below Depth of Fixity The Pile reinforcement 36b-16 dia have been provided below the depth of fixity. The details of depth of fixity have been derived . To economize on the area of reinforcement, bars have been curtailed after providing the anchorage length as per clause 304.6.2 of IRC: 21-2000 and minimum reinforcement as per clause 709.4.4 of IRC: 78-2000 below the depth of fixity.
Scott Wilson
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (MIN LOAD, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
120 10 127.00 30.08 9.30
cm
Ast.provided
=
113.097
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
94.96576 251.18907 9595.19518 97.57876 8.06921 5982977.94177 10613.07120 23.68504 7.29531 16.38973 7351117.64321 42.26106 -34.96576
R=
t tm cm
cm deg or cm2 cm cm cm4 cm2
60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 27 -45 115 -2000
kg/cm2 kg/cm2 kg/cm2 kg/cm2
0.00 4.3840762 rad Percentage of Steel No of Bars Dia of Bar
1.00% 113.09734 36 20 113.097
-34.96576
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (CASE, SEISMIC) - MAX LOAD Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
120 10 308.00 92.50 9.30
cm
Ast.provided
=
113.097
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
80.48756 219.84314 8059.81412 112.81919 14.84714 3642321.31396 9077.69014 30.03117 13.18234 16.84883 5149759.99027 33.66990 -20.48756
Scott Wilson
t tm cm
cm deg or cm2 cm cm cm4 cm2
-20.48756
R=
60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 88.5 -304 173 -3000
0.00 3.8369866 rad Percentage of Steel No of Bars Dia of Bar
1.00% 113.09734 36 20 113.097
kg/cm2 kg/cm2 kg/cm2 kg/cm2
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (CASE, SEISMIC) - MIN LOAD Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover
= = = = =
120 10 37 92.50 9.30
cm
Ast.provided
=
113.097
cm2
N.A.assumed Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a
= = = = = = = = = = = =
34.47898 129.60215 2684.69105 108.58021 39.73529 221237.15832 3702.56707 249.98919 28.81163 221.17756 2694760.92549 3.29061 25.52102
Scott Wilson
t tm cm
cm deg or cm2 cm cm cm4 cm2
25.52102
R=
60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =
cm 105 -2315 173 -3000
0.00 2.2619843 rad Percentage of Steel No of Bars Dia of Bar
1.00% 113.09734 36 20 113.097
kg/cm2 kg/cm2 kg/cm2 kg/cm2
Patna ROB's (Package -VIII)
Design of Abutment Pier and its Foundation
Design of pile cap
A
p
Y 3.60 r
0.75 w
4
t 0.75 1
w
0.75 3.60
2
2 X
5
2
6
3
X
3.60 u
u
B
B p
A
1
r Y C.g of Pile Cap Column Size2.22 m x 2.22 m
Depth of Pile Cap Grade of Concrete Permissible Flexural Compressive stress Permissible stess in steel Modular ratio Neutral Axis Factor((10*11.67)/(10*11.67+200)) Lever Arm Factor(1-(0.368/3)) Coefficient of Resisting Moment(1/2*11.67*0.877*0.368) Cover Equivalent area of square Side of square Column width along section 1-1 Column width along section 2-2
0.75
t
=
= = = = =
1.8 M 11.67 200 10 0.368 0.877 1.883 75 4.909 2.220 2.220 2.220
m 35 N/mm2 N/mm2
mm m2 m m m
Design at section 1-1 Normal Case Pile -1 Pile -2 Pile -3 Pile -4 Pile -5 Pile -6 Dist from face of abut coulmn and cen of piles 1,2&3 = = (3.6-0.5*2.22) Effective Depth 1800-12-75-32/2-20/2
245.30 229.85 158.78 214.40 229.85 127.89
t t t t t t
2.490 m 1687.00 mm
Along Longitudinal direction For Pile - 1 Effective Width 1.2a+b1 = 1.2*2.490+1 (Refer cl. 305.16.2 IRC 21-2000) a= distance of the cg of load from face of support b1= 3.988/2
View more...
Comments