Design of Pile and Pile Cap Final

May 5, 2017 | Author: Mahendra Suryavanshi | Category: N/A
Share Embed Donate


Short Description

Design of pier & pile cap...

Description

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

SUMMARY OF LOAD CASES A) Forces and Moments at the Base of Pier S.No 1 2 3 4

Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse

Vertical Load (t) 911.91

Mll (tm) 382.91

Mtt (tm) 222.42

887.70

382.91

227.53

828.81 816.70

1155.12 727.65

113.76 1418.78

B) Forces and Moments at the Base of Pier - One Span Dislodged Condition S.No 1 2 3 4

Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse

Vertical Load (t) 460.71

Mll (tm) 116.57

Mtt (tm) 0.00

460.71

116.57

0.00

460.71 460.71

668.80 116.57

0.00 668.80

Vertical Load (t) 1119.56

Mll (tm) 467.16

Mtt (tm) 222.42

1095.35

367.36

227.53

1036.46 1024.36

1373.79 861.08

111.21 1660.45

C) Forces and Moments at the Base of Pile Cap S.No 1 2 3 4

Description of Cases Normal - Longitudinal Moment Case Normal - Transverse Moment Case Seismic Case -Longitudinal Seismic Case -Transverse

Scott Wilson

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Design Pier of dia 2.5m SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PIER (Long.mom, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

250 10 911.91 442.82 9.90

cm

Ast.provided

=

546.888

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

203.57138 257.78579 42785.73690 194.58025 14.34881 122185566 47707.73294 48.55940 12.86845 35.69095 155697724 91.43983 -78.57138

R=

t tm cm

cm deg or cm2 cm cm cm4 cm2

125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 43 -76 115 -2000

kg/cm2 kg/cm2 kg/cm2 kg/cm2

0.00 4.4992109 rad Percentage of Steel No of Bars Dia of Bar

1.10% 539.96124 68 32 546.888

-78.57138

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PIER (Trans.mom, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

250 10 887.70 445.40 9.90

cm

Ast.provided

=

546.888

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

199.49908 253.06500 41980.10375 200.87983 16.09105 115417127.3 46902.09979 50.17533 14.40242 35.77291 149161126.3 88.90150 -74.49908

Scott Wilson

t tm cm

cm deg or cm2 cm cm cm4 cm2

-74.49908

R=

125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 48.0 -86 173 -3000

0.00 4.4168175 rad Percentage of Steel No of Bars Dia of Bar

1.10% 539.96124 68 32 546.888

kg/cm2 kg/cm2 kg/cm2 kg/cm2

Patna ROB's (Package -VIII)

Scott Wilson

Design of Abutment Pier and its Foundation

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING Pier (CASE, SEISMIC) - Long mom Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

250 10 828.81 1160.71 9.90

cm

Ast.provided

=

546.888

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

103.12051 159.77419 19084.88158 246.11592 65.09511 14131097.6 24006.87762 140.04491 51.74902 88.29588 63314702.08 29.86953 21.87949

R=

t tm cm

cm deg or cm2 cm cm cm4 cm2

125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 119 -1583 173 -3000

kg/cm2 kg/cm2 kg/cm2 kg/cm2

0.00 2.7885857 rad Percentage of Steel No of Bars Dia of Bar

1.10% 539.96124 68 32 546.888

21.879491

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING Pier (CASE, SEISMIC) - trans mom Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

250 10 816.70 1594.49 9.90

cm

Ast.provided

=

546.888

cm2

N.A.assumed 

= 90.71854 = 148.10554 = 16066.97608 = 240.37879 = 72.03989 = 9192042.058 = 20988.97212 = 195.23500 = 55.14625 = 140.08875 = 61349128.135 = 20.86479 34.28146

Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

Scott Wilson

t tm cm

cm deg or cm2 cm cm cm4 cm2

34.281464

R=

125 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 169 -2786 173 -3000

0.00 2.5849292 rad Percentage of Steel No of Bars Dia of Bar

1.10% 539.96124 68 32 546.888

kg/cm2 kg/cm2 kg/cm2 kg/cm2

Live Load Calculations Maxium Longitudinal moment case Case 1 : 70R Wheeled 100 t 2.595

2.905

11 5.124

100 t

1.05

2.1 27.90

Ra

Rb

Ra = Rb = Longitudinal Moment Transverse Moment Braking force Case 1 :

1.05 27.9

Rc

100 x 23.826 / 27.9

= = = = =

70.796 x 85.398 x 2.905

Rd 85.398 15 t 0 248.081 20

t t-m t-m t

Class A 55.4 t 1.3

4.2

11

5.714

55.40 t

1.05

2.1 Ra

27.9

Ra = Rb = Longitudinal Moment Transverse Moment Braking force

55.4 x 23.236 / 27.9

27.9

= = = = =

36.878 x 46.139 x 4.2

IRC class A, two lanes

Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column Transverse moment on column IRC class A, three lanes

1-lane 46.1 9.3 55.4 0.0 193.78

2-lane 92.3 18.5 110.8 0.0 226.08

t t t tm tm

46.139 9t 0 193.784 11.08

t t-m t-m t

1-lane 46.14 9.26 55.40 0.00 193.78

3-lane 138.42 27.78 166.20 0.00 96.89

70W 85.398 14.602 100.000 0.000 248.081

A 46.139 9.261 55.400 0.000 193.784

Reaction Rb for three lanes Reaction Rc for three lanes Total reaction on pier Longitudinal moment on column Transverse moment on column

t t t tm tm

IRC class 70W+A

Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column

Total 131.537 23.863 155.400 0.000 209.324

t t t tm tm

Maximun Transverse moment Case/ Maxmium Reaction Case Case 2 :

70R Wheeled

One lane of class 70-R(W) Cg of 100 t 3.324

Cg of 49

t

Cg of 51

3.194 m

1.05 m Ra

27.90 m

Rb

Rc 2.1

Rb = Rc = Vertical Reaction Longitudinal Moment Transverse Moment

One lane of class-A Cg of

51 x 25.756 / 27.9

27.90 m

Rb = Rc = Vertical Reaction Longitudinal Moment

= = = = =

45.006 x 92.087 x 2.905

Cg of t 55.40 t

28.2

5.024

1.05 m Ra

27.90 m m 45.006 47.081 92.087 0 267.513

Cg of 27.20

t t t t-m t-m

t

5.209

Rb

Rc 2.1

27.2 x 23.741 / 27.9

-1.038 x

27.90 m m = = = =

Rd 23.145 24.183 47.328 0

t t t t-m

Transverse Moment

47.328 x 4.2

=

70R Wheeled 100 t 2.595

2.905

11 Class 2A 55.4 t 1.3

4.2

55.40 t 0.7

1.2

11 Class 3A 55.4 t 1.3

4.2

55.40 t 0.7 1.2

1.2

11

-2.8

70 R + Class A 100 t 2.595

2.905

55.40 t -0.84

1.2

11 IRC class A, two lanes

Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column

1-lane 23.15 24.18 47.33 0.00 198.78

2-lane 46.29 48.37 94.66 0.00 231.91

t t t tm tm

1-lane 23.15 24.18 47.33 0.00 198.78

3-lane 69.44 72.55 141.98 0.00 99.39

t t t tm tm

IRC class A, three lanes

Reaction Rb for three lanes Reaction Rc for three lanes Total reaction on pier Longitudinal moment on column Transverse moment on column IRC class 70W+A

198.778 t-m

Reaction Rb Reaction Rc Total reaction on pier Longitudinal moment on column transverse moment on column

70W 45.006 47.081 92.087 0.000 267.513

A 23.145 24.183 47.328 0.000 198.778

Total 68.151 71.264 139.415 0.000 227.757

A 55.40 t 20% 5% 11.1 5.54 1.20 2.15 1.33

2-A 110.8 20% 5% 11.1 5.54 1.20 2.15 1.33

3-A 166.2 20% 5% 13.9 6.93 1.20 2.15 1.66

t t t tm tm

Horizontal Braking Force 70W 100 t 20% 5% 20.0 10.00 1.20 2.15 2.40

Vertical load Braking 2-lane % Braking 3rd-lane % H. Braking force H. Force on each pier Force ht. from deck Ht. of Superstructure Reaction on pier

Summary of loads transferred on Pier from Super Structure Max.Transverse Moment Loading

420.5 92.09 47.33 94.66 142.0 139.4

0.00 0.00 0.00 0.00 0.00 0.00

0.0 267.5 198.8 231.9 99.4 227.8

t

t t m m t

Max. Longitudinal Moment

Vertical Long. Trans. Braking Hreaction (t) moment t.m) moment (t.m) force (t)

Dead load 70 W A 2A 3A 70 W+A

70W+A 155.4 20% 5% 22.8 11.39 1.20 2.15 2.73

0.00 10.00 5.54 5.54 6.93 11.39

Braking Vforce (t)

0.00 2.40 1.33 1.33 1.66 2.73

Vertical reaction (t)

420.55 85.40 55.40 110.80 166.20 155.40

Long. moment (t.m)

0.00 0.00 0.00 0.00 0.00 0.00

Governing values Loading

Dead load Live load Braking Total

For Max.Transverse Moment Vertical reaction (kN) 420.5 142.0 2.7 144.7

Long. moment (kN.m) 0.00 0.0 0.00

For Max. Longitudinal Moment

Trans. Long. Ecc. moment (m) (kN.m) 0.0 231.9 231.9

0.00

Trans. Ecc. (m)

1.60

Vertical reaction (kN) 420.55 166.2 2.7 168.93

Long. moment (kN.m) 0.00 0.0 0.00

1.05 Rb

1.05 Rd

1.05

Max. Longitudinal Moment Trans. moment (t.m)

0.00 248.08 193.78 226.08 96.89 209.32

Braking Hforce (t)

0.00 10.00 5.54 5.54 6.93 11.39

Braking Vforce (t)

0.00 2.40 1.33 1.33 1.66 2.73

For Max. Longitudinal Moment Trans. Long. Ecc. moment (m) (kN.m) 0.00 226.1 226.08

0.00

Trans. Ecc. (m)

1.34

IRC 70R Loading 8276 8t

12 t

610

3960

CG =

8276

5124 12 t

1520

17 t

2130

17 t

1370

17 t

3050

17 t

1370

910

Minimum Clearence Width of Lanne

For Max Longitudinal Moment Case Span Load CG 4420 51 t 1930 5790 68 t 2895 7920 80 t 3649 9440 92 t 4404 13400 100 t 5124 For Max Transition Moment Case Total Span Total Load Span 1 load 4420 51 t 17 t 5790 68 t 34 t 7920 80 t 46 t 9440 92 t 58 t 13400 100 t 49 t

cg 1120 2210 2190 2180 3324

Span 2 load 34 t 34 t 34 t 34 t 51 t

cg 1245 2210 2964 3719 3194

IRC Class A Loading

2.7 t

2.7 t

1100

11.4 t

3200

11.4 t

1200

6.8 t

4300

6.8 t

3000

6.8 t

3000

6.8 t

3000

For Max Longitudinal Moment Case Span 5500 8500 11500 14500

Total Load Span 1 load 35.00 t 5.40 t 41.80 t 5.40 t 48.60 t 5.40 t 55.40 t 5.40 t

For Maxmium Transverse Moment Case

cg 3750 3750 3750 3750

Span 2 load 29.60 t 36.40 t 43.20 t 50.00 t

cg 1726 2991 4331 5714

1.2 2.79

Span 9000 13300 14500 17700 18800

Total Load CG from R Span 1 load cg 27.2 4500 13.6 38.6 t 7099 18.2 50.0 8786 29.6 52.7 t 9243 25.5 55.4 t 9709 28.2

Minimum Clearence Width of Lane Min Distance Between Lanes Seismic Factors Zone Zone Factor II 0.1 III 0.16 IV 0.24 V 0.36

0.15 2.3 1.2

3000 4594 7372 5059 5024

Span 2 load cg 13.6 3000 20.4 4099 20.4 5786 27.2 4743 27.2 5209

DEAD LOADS OF SUPERSTRUCTURE RAILING WEIGHT RCC UNIT WEIGHT WEARING COAT WT. DECK SLAB THK. AT C/L OF BRIDGE DEPTH OF BEAM DEPTH OF DIAPHRMS. SLOPE OF W. COAT CANTILEVER END CANTILEVER INTERM. CANTILEVER MIDDLE TOTAL DEPTH

700

= = = =

3 2.4 2.2 0.25

KN / M PER RAILINGS T / M3 T / M3 M

= = = = = = =

2.15 1.43 2.5 200 350 300 2400

M M % MM MM MM MM

30000 26800

900

2650

625

900

700

325

300

300

2650

2650

2025

12 11

0.5

0.5

1.1 1.1 0.425

2.50%

200 6 0.325 0.15 0.25

6 0

0.25

C/L OF BRIDGE C/L OF CG. WAY

0.625

FILE: 257928472.xls SHEET: DEAD LOADS

RITES

15 OF 39

A.

RAILING WEIGHT

B.

KERB WEIGHT = 0.425 = 15.30

= = = = X T

3 KN / M PER RAILINGS 2 X 3 X 30000 / 1000 X 0.1 18.00 T 0.5

X

30

X

2.4

X

1

X

30

X

2.4

X

1

-0.025

X

2.4

X

30

0

X

2.4

X

30

X

0.5

X

30

LEVER ARM WRT C/L OF BRIDGE = 5.75 M ANTICLOCKWISE MOMENT = -43.99 T-M KERB ON RIGHT SIDE = 0.425 X = 15.30 T

0.5

LEVER ARM WRT C/L OF BRIDGE = 5.75 M CLOCKWISE MOMENT = 43.99

C

FOOTPATH LOADS = 0 X = 0 SERVICE PIPE LOADS = 0 X = 0

T-M

NET FOOTPATH LOADS = 0 T LEVER ARM WRT C/L OF BRIDGE = 5.50 M CLOCKWISE MOMENT = 0.0 T - M D

PCC FILLING LOADS TRINGULAR PORTION = 0 X = 0 T

5.5

X

2.4

LEVER ARM WRT C/L OF BRIDGE = 3.67 M

FILE: 257928472.xls SHEET: DEAD LOADS

RITES

16 OF 39

ANTICLOCKWISE MOMENT = 0.00 T-M RECTANGULAR PORTION = 0 X = 0 T

0.5

X

30

X

2.4

LEVER ARM WRT C/L OF BRIDGE = 5.75 M ANTICLOCKWISE MOMENT = 0.00 T-M E

WEARING COAT = 11 X = 47.19 T

0.065 X

2.2 X

30

TOTAL IMPOSED LOAD ON DECK SLAB = 18 + 15.3 + 15.3 + 0 + 0 + 0 + 47.19 = 95.8 T TOTAL MOMENT WRT C/L OF CG WAY = 0.0 F

DIAPHRAGMS WEIGHT END DIAPHRAGMS = 2.4 X = 12.51 T

3 X

1.43 X

0.3 X

2.025 X

MID DIAPHRAGMS = 2.4 X = 7.181 T

3 X

1.43 X

0.3 X

2.325

TOTAL DIAPHRAGMS WEIGHT

G

= =

12.51 + 19.69 T

2

7.181

GIRDERS SELF WEIGHT END PORTION = 0.625 X = 4.515 T TAPERING PORTION 0.6 + 0.325 = X 2 =

2.15 X

0.7 X

2.15 X

2.4 X

2 X

2

0.9 X

2.4

4.412 T

FILE: 257928472.xls SHEET: DEAD LOADS

RITES

17 OF 39

MID PORTION = 0.325 X 2.15 X = 44.94 T EXTRA CONCRETE AT BOTTOM = TOTAL LOAD OF ONE GIRDER = 64.97 T TOTAL LOAD OF FOUR GIRDERS = 259.9 T

H

2.4 X

26.8

11.1 (BULB)

DECK SLAB LOADS MIDDLE DECK SLAB 2.5 % 224.7 209.1 142.8

150.6 158.4

183.8

625

250

216.9 237.3

2025 2650

1325 3975

AREA OF MIDDLE DECK SLAB

WEIGHT = =

1.684 X 121.3 T

= = =

2.4 X

( 0.143 + 0.25 ) X 0.5 X ( 3.975 + 0.625 / 2 ) 0.842 X 2 1.684 M2

30

CANTILEVER SLAB 2025 A1

200

2025 A2

200

350

1713

1863 625

A1 Amid A2 =

= = =

300

0.471 M2 0.468 M2 0.466 M2

325

0 0.7 1.6

TO TO TO

0.7 1.6 15

= = =

0.7 M 0.9 M 13.4 M

67 T

TOTAL SLAB LOAD

TOTAL DEAD LOADS = 18.00 + 19.69 + = 563.71

= =

67.11 + 188.4

15.30 + 259.9 + T

121.3

0 + 188.4 +

0 + 15.30

47.19 +

DEAD LOAD REACTION RG = 281.9 T

FILE: 257928472.xls SHEET: DEAD LOADS

RITES

18 OF 39

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

DESIGN OF PIER AND ITS PILE FOUNDATION - P1 & P2 Deck Level

53.250

11.00 1.00 0.50

50.650

6.430

4.250 (typ)

2.500 3.100

Circular

42.920 Avg GL 3.100

Top of

1.80

42.720 Pile Cap Lvl 40.920

1000 dia 3.6

3.6

15.920 Rectangular Column

3.40

2

1

3 2 3

3.40

A

Plan - Pier Cap A DESIGN DATA: 1. Density Of concrete 2. Density Of Soil 3. Length of Pile 4. Over all Depth of Super Structure 5. Cross Slope 6*0.025 6. Wearing Coat

Scott Wilson

2.400 1.800 25 1.5 0.15 0.09

t/m3 t/m3 m m m m

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

DESIGN OF PIER AND ITS PILE FOUNDATION

53.250 0.800

1.00 0.50

50.65

6.430

C/L of exp gap and C/L of Column

2.500 Circular

42.920 Avg GL Top of 42.720 Pile Cap Lvl

1.25 1.80

1.25

40.920

0 1000 dia 3.6 Cg of Pile Cap 15.920

Scott Wilson

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

LOAD CALCULATIONS AT PIER BASE Dead Load+ SIDl LHS Dead Load+ SIDl RHS

285 285

t t

Normal Case S.No

Vertical Load

Value (t) Distance w.r.t c.g of Shaft (m) in Long

1 2

Dead Load + SIDL Live Load (Max Long Moment) 3 Live Load (Max Trans Moment) 5 Pier cap 6 Pier Shaft Max Long Moment case Max Trans Moment case

570.00 166.20

0.000 0.000

141.98 99.96 75.75 911.91 887.70

0.000

Moment About Pier Moment about Distance w.r.t c.g of Shaft in c.g of Shaft (m) Long (t-m) in Trans

Moment about c.g of Shaft in Trans (t-m)

0.00 0.00

0.000 1.338

0.000 222.42

0.000

1.602

227.53

0.000 0.00 0.00

0.000

0.000 222.42 227.53

Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL - on Full span Dead Load + SIDL - RHS Span Dead Load + SIDL - LHS Span Live Load Reaction at free end - Max Long Moment Case

0.05 20 570.00 285.00 285.00 166.200

t t t t t

cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)

-16.810 46.810 46.810 8.18 382.906

t t t m t-m

Free Bearing - Max Longitudinal Moment Case 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2)) Horizontal force Moment about Pier Shaft base (Long)

8.2 m 36.810 t 301.106 t-m

Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II

(20-0.05*(570+166.2)) (20/2+0.05*(570+166.2))

36.810*8.18

Seismic Case Calculations Seismic coefficient : Ah = horizontal seismic coefficient Z = Zone Factor I = Importance Factor Sa / g = Average response acceleration coefficient R = Response reduction factor Horizontal seismic coefficient Vertical seismic coefficient

Scott Wilson

= = = = = = =

( Z / 2 ) . ( Sa / g ) / ( R / I ) 0.24 (Bridge is Zone IV) 1.5 2.5 2.5 0.18 0.090 For Case IV

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Force at Bearings : Seismic Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II cg from Pier shaft base (Long) Moment about Pier Shaft base (Long) 2. Free Bearing 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2/2)) Horizontal force Moment about Pier Shaft base (Long)

88.955*8.18

79.945 88.955 88.955 8.18 727.652

t t t m t-m

32.655*8.18

8.18 m 32.655 t 267.118 t-m

Forces and Moments at the Base of Pier Forces and Moments at the Base of Pier Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment

911.91 t 222.422 t-m 382.906 t-m

911.912 222.422 301.106

II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment

887.70 t 227.526 t-m 382.906 t-m

887.696 227.526 301.106

Seismic Case: (Longitudinal) Seismic Coefficient S.No

Horizontal Load

0.18 Value (t)

Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)

1

On Dead Load + SIDL

102.60

9.48

972.65

2 3

On Pier Cap On Pier Shaft Total

17.99 13.64 134.23

7.71 3.22

138.635 43.84 1155.12

Seismic Case: (Transverse) S.No

Horizontal Load

Value (t)

Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)

1

On Dead Load + SIDL

102.60

9.48

972.65

2 3 4 5

On Pier Cap On Pier Shaft Centrifugal force Live Load Total

17.99 13.64 0.00 12.78 147.01

7.71 3.22 11.73 11.73

138.63 43.84 0.00 149.89 1305.01

Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment

(911.912-0.5*166.2) 0.5*227.526 0.000+1,155.120

828.81 t 113.763 t-m 1155.120 t-m

Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment

(887.696-0.5*141.984) 0.5 x 227.525978421843 +1305.013 0 +727.652

816.70 t 1418.776 t-m 727.652 t-m

Scott Wilson

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

ONE SPAN DISLODGED CONDITION Normal Case S.No

Vertical Load

Value (t) Distance w.r.t c.g of Shaft (m) in Long

1 2 3 5

Dead Load + SIDL Live Load (Max Long Moment) Live Load (Max Trans Moment) Pier cap

6 Pier Shaft Max Long Moment case Max Trans Moment case

285.00 0.00

0.000 0.400

0.00

Moment About Pier Moment about Distance w.r.t c.g of Shaft in c.g of Shaft (m) Long (t-m) in Trans

Moment about c.g of Shaft in Trans (t-m)

0.000 0.00

0.000 1.338

0.000 0.00

0.000

1.602

0.00

99.96

0.000

0.000

0.00

0.000

75.75 460.71 460.71

0.000

0.000 0.00 0.00

0.000

0.000 0.00 0.00

Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL -Reaction Live Load Reaction at free end - Max Long Moment Case Dead Load + SIDL -Full Span

0.05 0 285.00 0.000 570.00

t t t t

Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II

14.250*8.18

-14.250 14.250 14.250 8.18 116.565

14.250*8.18

14.250 t 116.565 t-m

(0-0.05*(285+0)) (0/2+0.05*(285+0))

cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)

50.65-42.72+0.25

t t t m t-m

2. Free Bearing - Max Longitudinal Moment Case (0.05*(285+0)) Horizontal force Moment about Pier Shaft base (Long)

Seismic Case Calculations Seismic coefficient : Ah = horizontal seismic coefficient Z = Zone Factor I = Importance Factor Sa / g = Average response acceleration coefficient R = Response reduction factor Horizontal seismic coefficient Vertical seismic coefficient

Scott Wilson

= = = = = = =

( Z / 2 ) . ( Sa / g ) / ( R / I ) 0.24 (Bridge is Zone IV) 1.5 2.5 2.5 0.18 0.090 For Case IV

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Force at Bearings : Seismic Case - Longitudinal Free Bearing - Max Longitudinal Moment Case 50.65-42.72+0.25 cg from Pier shaft base (Long) (0.05*(285+0/2)) Horizontal force Moment about Pier Shaft base (Long)

14.250*8.18

8.18 m 14.250 t 116.565 t-m

Forces and Moments at the Base of Pier - One Span Dislodged Condition Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment

460.712 0.000 0.000+116.565

460.71 t 0.000 t-m 116.565 t-m

II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment

460.71 0.000 0+116.565

460.71 t 0.000 t-m 116.565 t-m

Seismic Case Calculations Seismic Case: (Longitudinal) Horizontal Seismic Coefficient S.No

1 2 3

Horizontal Load

On Dead Load + SIDL On Pier Cap On Pier Shaft Total

0.18 Value (t)

Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)

51.300

9.48

486.32

17.99 13.64 82.93

7.71 3.22

138.635 43.84 668.80

Seismic Case: (Transverse) S.No

1 2 3 4

Horizontal Load

On Dead Load + SIDL On Pier Cap On Pier Shaft Live Load Total

Value (t)

Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)

51.300

9.48

486.32

17.99 13.64 0.00 82.93

7.71 3.22 11.73

138.63 43.84 0.00 668.80

Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment

460.712-0.5*0 0.000 0.000+668.796

460.71 t 0.000 t-m 668.796 t-m

Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment Scott Wilson

460.712-0.5*0 0.000+668.796 0.000+116.565

460.71 t 668.796 t-m 116.565 t-m

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

LOAD CALCULATIONS - AT PILE CAP BASE Load Calculations of Pile Cap and soil wt above pile cap Depth of pile cap Self Weight of Pile Cap Soil weight above pile cap

1.5 m 191.68 t 15.973 t

Normal Case S.No

Vertical Load

Value (t) Distance w.r.t c.g of Pile cap (m) in Long

1 2 3 5

Dead Load + SIDL Live Load (Max Long Moment) Live Load (Max Trans Moment) Pier cap

6 Pier Shaft Max Long Moment case Max Trans Moment case

Moment About Cg of Pile Cap Moment about Distance w.r.t c.g of Pile Cap c.g of Pile Cap in Long (t-m) (m) in Trans

Moment about c.g of Pile Cap in Trans (t-m)

570.00 166.20

0.000 0.000

0.000 0.000

0.000 1.338

0.000 222.422

141.98

0.000

0.000

1.602

227.526

99.96

0.000

0.000

0.000

0.000

75.75 911.91 887.70

0.000

0.000 0.00 0.00

0.000

0.000 222.42 227.53

Horizontal Force (As per Clause 214.5.1 of IRC:6-2000) Coefficent of friction Applied Horizontal force Dead Load + SIDL Reaction at Pier - Full span Live Load Reaction at free end Dead Load + SIDL -Full Span

0.05 20 570.00 166.200 570.00

t t t t

cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)

-16.810 46.810 46.810 9.98 467.164

t t t m t-m

2. Free Bearing - Max Longitudinal Moment Case 50.65-40.92+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2)) Horizontal force Moment about Pier Shaft base (Long)

9.98 m 36.810 t 367.364 t-m

Force at Bearings : Normal Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II

(20-0.05*(570+166.2)) (20/2+0.05*(570+166.2))

Force at Bearings : Seismic Case 1. Fixed Bearing - Max Longitudinal Moment Case Greater of - I or -II cg from Pier shaft base (Long) Moment about Pier Shaft base (Long)

Scott Wilson

36.810*9.98

79.945 88.955 88.955 9.680 861.084

t t t m t-m

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

2. Free Bearing - Max Longitudinal Moment Case Horizontal Seismic Coefficient 50.65-40.92+0.25 cg from Pier shaft base (Long) (0.05*(570+166.2/2)) Horizontal force Moment about Pier Shaft base (Long)

32.655*9.98

0.18 9.98 m 32.655 t 325.897 t-m

Forces and Moments at the Base of Pier Forces and Moments at the Base of Pile Cap Normal Case I: Max Longitudinal Moment Case Vertical Load Transverse Moment Longitudinal Moment

1119.56 t 222.422 t-m 467.164 t-m

911.912+191.68+15.97 222.422 467.164

II: Max Transverse Moment Case Vertical Load Transverse Moment Longitudinal Moment

1095.35 t 227.526 t-m 367.364 t-m

887.696+191.68+15.97 227.526 0.000+467.164

Longitudinal Seismic Case Horizontal Seismic Coefficient S.No

1 2 3

Horizontal Load

On Dead Load + SIDL On Pier Cap On Pier Shaft Total

Scott Wilson

0.18 Value (t)

Acting at a Moment about distance from pile Pile Cap Base (tcap Base (m) m)

102.600

11.28

1157.33

17.99 13.64 134.23

8.230 5.02

148.081 68.38 1373.79

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Transverse Seismic Case S.No

1 2 3 4 5

Horizontal Load

On Dead Load + SIDL On Pier Cap On Pier Shaft Centrifugal force Live Load Total

Value (t)

Acting at a Moment about distance from pile Pile Cap Top (tcap top (m) m)

102.600

11.28

1157.33

17.99 13.64 0.00 12.78 147.01

8.230 5.02 13.53 13.53

148.08 68.38 172.89 1546.68

Longitudinal Seismic Case Vertical Load Transverse Moment Longitudinal Moment

911.912-0.5*166.2+191.68+15.97 0.5*222.422 0.000+1,373.790

1036.46 t 111.211 t-m 1373.790 t-m

Transverse Seismic Case Vertical Load Transverse Moment Longitudinal Moment

Scott Wilson

887.696-0.5*141.984+191.68+15.97 0.5*227.526+1,546.684+0.000+0.000 0.000+325.897

1024.36 t 1660.447 t-m 861.084 t-m

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

DESIGN OF PILE & PILE CAP A p Y 0.75 3.60 w

T

t 0.75

4

1

0.75 3.6

v

X

5

2

v L

L

3.6 4.35 u

6

3

B

B 0.75 p

CL of brg/Column T Y CL of Pile Cap

A

t

2.550 0.000 Total Width of Pile Cap in Longitudinal Dircetion 0.75+3.6+0.75 Total Width of Pile Cap in Transverse direction 0.75+3.6+3.6+0.75

5.10 m 8.70 m

Cg in Longitudinal Direction

No.of Piles 3 3 6

Pile No.s

Pile-Dia (m)

PileSection

Area of pile

4,5,6 1,2,3

1.2 1.2

p-p t-t

1.1310 1.1310

Cg of Pile Group Distance between C/L of brg to cg of pile group

Total area in section (A) 3.393 3.393 6.786

distance from section A-A (x) 0.750 4.350

distance Distance Area of dia of pile from w.r.t c.g of Pile No pile (m2) m section A- Pile group A A (m) (m) - d

Scott Wilson

1.2 1.2 1.2 1.2 1.2 1.2

1.1310 1.1310 1.1310 1.1310 1.1310 1.1310 6.786

4.350 4.350 4.350 0.750 0.750 0.750

2.545 14.759 17.304

2.5500 m from left end Section A-A 0.000 m

Along Longitudinal Direction

1 2 3 4 5 6

A*x

1.800 1.800 1.800 1.800 1.800 1.800

d2

3.240 3.240 3.240 3.240 3.240 3.240

Total M.I = x2 3.240 3.240 3.240 3.240 3.240 3.240 19.440

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Cg in Transverse Direction

No.of Piles 2 2 2 6

Pile No.s

Pile-Dia (m)

PileSection

Area of pile

3,6 2,5 1,4

1.2 1.2 1.2

u-u v-v w-w

1.1310 1.1310 1.1310

Cg of Pile Group Distance between C/L of brg to cg of pile gr

Total area in section (A) 2.262 2.262 2.262 6.786

distance from section B-B (y) 0.750 4.350 7.950

distance Distance Area of dia of pile from w.r.t c.g of Pile No pile (m2) m section B- Pile group A B (m) (m) - d

Scott Wilson

1.2 1.2 1.2 1.2 1.2 1.2

1.131 1.131 1.131 1.131 1.131 1.131 6.786

7.950 4.350 0.750 7.950 4.350 0.750

1.696 9.839 17.982 29.518

4.3500 m from left end Section A-A 0.000 m

Along Transverse Direction

1 2 3 4 5 6

A*y

3.600 0.000 3.600 3.600 0.000 3.600

d2

12.960 0.000 12.960 12.960 0.000 12.960

Total M.I = y2 12.960 0.000 12.960 12.960 0.000 12.960 51.840

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Pile Reactions Pile Capacity for 1000mm dia pile

350 t

No. of Piles

6

x2

19.44

y2

51.84

Dia of Pile (mm)

Pile No

1

1200

2 3

1200 1200

4 5 6

1200 1200 1200

S.No

Distances w.r.t along directions

Normal - Longitudinal Moment Case

x (m)

y (m)

P/N

Mll * x/x^2

Mtt * y/y^2

Total (t)

Check

1

1.800

3.600

186.59

43.26

15.45

245.30

O.K

2 3

1.800 1.800

0.000 3.600

186.59 186.59

43.26 -43.26

0.00 15.45

229.85 158.78

O.K O.K

4 5 6

1.800 1.800 1.800

3.600 0.000 3.600

186.59 186.59 186.59

43.26 43.26 -43.26

-15.45 0.00 -15.45

214.40 229.85 127.89

O.K O.K O.K

Max Min

S.No

Dia of Pile (mm)

Pile No

1 2 3 4 5 6

1200 1200 1200 1200 1200 1200

1 2 3 4 5 6

Distances w.r.t along directions

245.30 127.89

Normal - Transverse Moment case

x (m)

y (m)

P/N

Mll * x/x^2

Mtt * y/y^2

Total (t)

Check

1.800 1.800 1.800 1.800 1.800 1.800

3.600 0.000 3.600 3.600 0.000 3.600

182.56 182.56 182.56 182.56 182.56 182.56

34.02 34.02 -34.02 34.02 34.02 -34.02

15.80 0.00 15.80 -15.80 0.00 -15.80

232.37 216.57 164.34 200.77 216.57 132.74

O.K O.K O.K O.K O.K O.K

Max Min Distances w.r.t along directions

232.37 132.74

S.No

Dia of Pile (mm)

Pile No

x (m)

y (m)

P/N

Mll * x/x^2

Mtt * y/y^2

Total (t)

Check

1

1200

1

1.800

3.600

172.74

127.20

7.72

307.67

O.K

2 3 4

1200 1200 1200

2 3 4

1.800 1.800 1.800

0.000 3.600 3.600

172.74 172.74 172.74

127.20 -127.20 127.20

0.00 7.72 -7.72

299.95 53.26 292.22

O.K O.K O.K

5 6

1200 1200

5 6

1.800 1.800

0.000 3.600

172.74 172.74

127.20 -127.20

0.00 -7.72

299.95 37.82

O.K O.K

Seismic Case - Longitudinal

Max Min Distances w.r.t along directions x (m) y (m)

307.67 37.82

S.No

Dia of Pile (mm)

Pile No

P/N

Mll * x/x^2

Mtt * y/y^2

Total (t)

Check

1 2

1200 1200

1 2

1.800 1.800

3.600 0.000

170.73 170.73

79.73 79.73

115.31 0.00

365.76 250.46

O.K O.K

3 4 5

1200 1200 1200

3 4 5

1.800 1.800 1.800

3.600 3.600 0.000

170.73 170.73 170.73

-79.73 79.73 79.73

115.31 -115.31 0.00

206.30 135.15 250.46

O.K O.K O.K

6

1200

6

1.800

3.600

170.73

-79.73

115.31

206.30

O.K

Seismic Case - Transverse

Max Min Scott Wilson

365.76 135.15

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

CALCULATION OF NO. OF PILES Total Vertical load at cg of pile cap Total Horizontal force Seismic Horizontal force Vertical Capacity of 1200mm dia 25.0m long pile Horizontal Capacity

1119.56 46.81 147.01 350 #NAME?

No. of Plies required (Vertical) No. of Plies required (Horizontal)

3.20 no.s #NAME? no.s

Provided No of piles

t t t t t

6 no.s

STRUCTURAL DESIGN OF PILE Maximum Lateral Force in Longitudinal Direction on Pile Foundation under normal condition Corresponding Max. Vertical Load on one Pile for Load - Normal Case and Corresponding Minimum Vertical Load on one Pile for Load - Normal Case Maximum Lateral Force in Longitudinal Direction on Pile Foundation under Seismic Condition

=

46.81 t

= = =

245.30 t 127.89 t 147.01 t

Corresponding Maximum Vertical Load on one Pile - Seismic case Corresponding Minimum Vertical Load on one Pile - Seismic case

=

307.67 t

=

37.82 t

Total No. of Piles Length of Pile Dia of Pile

6 25 m 1.2 m

LOAD CALCULATIONS FOR STRUCTURAL DESIGN a)

Normal Case

Max. Lateral Force on one Pile under Normal Condition Max. Lateral load Capacity of Pile under Normal Condition Now, Maximum Moment in Pile is given by Therefore, Maximum Moment in Pile under Normal condition Corresponding Max / Min Vertical Load (Excluding Self Weight of pile) b) Seismic Case

= =

46.8 /6

=

#NAME? t #NAME?

= =

3.76*Q 3.76*8

tm

= =

(Max.) (Min.)

= 147.01 / 6 Max. Lateral Force on one Pile under Seismic Condition = #NAME? t Max. Lateral load Capacity of Pile under Seismic Condition = 3.76*Q Maximum Moment in Pile under Seismic condition = Corresponding Max / Min Vertical Load = (Excluding Self Weight of pile) Self weight of pile The design loads and moments are summarised below : Sr. No. 1. 2. 3. 4.

Scott Wilson

Description Normal Case (Max. Vertical load) Normal Case (Min. Vertical Load) Seismic Case (Max. Vertical Load) Seismic Case (Min. Vertical Load)

8.00 t

=

30.08 tm

@ @

246.0 t 127.0 t

@

24.60 t

= (Max.) (Min.)

Vertical Load Moment (tm) (t) 246.0 30.08 127.0 30.08 308.0 92.50 37.0 92.50

@ @

#NAME? 92.496 tm 308.0 t 37.0 t 67.9 t

Eccentricity M/V (m) 0.122 0.237 0.300 2.500

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Calculation of Reinforcement The reinforcement in pile assumed 1% of cross-sectional area. Area of Reinforcement = 1/100 * 1.131 * 10000 Bar dia to be provided = 20 mm No. of 20 dia. Bars reqd. = 113.1 / 3.14 No. of 20 dia. Bars prov. Provide 20 dia , 36 nos. around periphery As provided = 36 * 3.14 Provide 8 dia. @ 150mm as helical reinforcement

=

1.00% of c/s area 113.097 cm2

= =

36 No. 36 No.

=

113.100 cm2

Pile Reinforcement below Depth of Fixity The Pile reinforcement 36b-16 dia have been provided below the depth of fixity. The details of depth of fixity have been derived . To economize on the area of reinforcement, bars have been curtailed after providing the anchorage length as per clause 304.6.2 of IRC: 21-2000 and minimum reinforcement as per clause 709.4.4 of IRC: 78-2000 below the depth of fixity.

Scott Wilson

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (MIN LOAD, NORMAL) Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

120 10 127.00 30.08 9.30

cm

Ast.provided

=

113.097

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

94.96576 251.18907 9595.19518 97.57876 8.06921 5982977.94177 10613.07120 23.68504 7.29531 16.38973 7351117.64321 42.26106 -34.96576

R=

t tm cm

cm deg or cm2 cm cm cm4 cm2

60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 27 -45 115 -2000

kg/cm2 kg/cm2 kg/cm2 kg/cm2

0.00 4.3840762 rad Percentage of Steel No of Bars Dia of Bar

1.00% 113.09734 36 20 113.097

-34.96576

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (CASE, SEISMIC) - MAX LOAD Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

120 10 308.00 92.50 9.30

cm

Ast.provided

=

113.097

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

80.48756 219.84314 8059.81412 112.81919 14.84714 3642321.31396 9077.69014 30.03117 13.18234 16.84883 5149759.99027 33.66990 -20.48756

Scott Wilson

t tm cm

cm deg or cm2 cm cm cm4 cm2

-20.48756

R=

60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 88.5 -304 173 -3000

0.00 3.8369866 rad Percentage of Steel No of Bars Dia of Bar

1.00% 113.09734 36 20 113.097

kg/cm2 kg/cm2 kg/cm2 kg/cm2

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

SOLID CIRCULAR SECTION SUBJECTED TO AXIAL THRUST AND BENDING PILE (CASE, SEISMIC) - MIN LOAD Dia. of section Modular ratio Vertical Load Bending Moment Effective Cover

= = = = =

120 10 37 92.50 9.30

cm

Ast.provided

=

113.097

cm2

N.A.assumed  Ar C c.g. Ixx Aeff. e e' e - e' Ieff Dist. Of N.a

= = = = = = = = = = = =

34.47898 129.60215 2684.69105 108.58021 39.73529 221237.15832 3702.56707 249.98919 28.81163 221.17756 2694760.92549 3.29061 25.52102

Scott Wilson

t tm cm

cm deg or cm2 cm cm cm4 cm2

25.52102

R=

60 Stress in Con. = Stress in R/f. = Stress in Con. = Stress in R/f. =

cm 105 -2315 173 -3000

0.00 2.2619843 rad Percentage of Steel No of Bars Dia of Bar

1.00% 113.09734 36 20 113.097

kg/cm2 kg/cm2 kg/cm2 kg/cm2

Patna ROB's (Package -VIII)

Design of Abutment Pier and its Foundation

Design of pile cap

A

p

Y 3.60 r

0.75 w

4

t 0.75 1

w

0.75 3.60

2

2 X

5

2

6

3

X

3.60 u

u

B

B p

A

1

r Y C.g of Pile Cap Column Size2.22 m x 2.22 m

Depth of Pile Cap Grade of Concrete Permissible Flexural Compressive stress Permissible stess in steel Modular ratio Neutral Axis Factor((10*11.67)/(10*11.67+200)) Lever Arm Factor(1-(0.368/3)) Coefficient of Resisting Moment(1/2*11.67*0.877*0.368) Cover Equivalent area of square Side of square Column width along section 1-1 Column width along section 2-2

0.75

t

=

= = = = =

1.8 M 11.67 200 10 0.368 0.877 1.883 75 4.909 2.220 2.220 2.220

m 35 N/mm2 N/mm2

mm m2 m m m

Design at section 1-1 Normal Case Pile -1 Pile -2 Pile -3 Pile -4 Pile -5 Pile -6 Dist from face of abut coulmn and cen of piles 1,2&3 = = (3.6-0.5*2.22) Effective Depth 1800-12-75-32/2-20/2

245.30 229.85 158.78 214.40 229.85 127.89

t t t t t t

2.490 m 1687.00 mm

Along Longitudinal direction For Pile - 1 Effective Width 1.2a+b1 = 1.2*2.490+1 (Refer cl. 305.16.2 IRC 21-2000) a= distance of the cg of load from face of support b1= 3.988/2
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF