Design of Machinery Solutions Manual Norton 5th Edition (1).pdf

November 23, 2017 | Author: Ricardo Alves Felippe | Category: N/A
Share Embed Donate


Short Description

Download Design of Machinery Solutions Manual Norton 5th Edition (1).pdf...

Description

DESIGN OF MACHINERY - 5th Ed

SOLUTION MANUAL 2-1-1

PROBLEM 2-1 Statement:

Find three (or other number as assigned) of the following common devices. Sketch careful kinematic diagrams and find their total degrees of freedom. a. An automobile hood hinge mechanism b. An automobile hatchback lift mechanism c. An electric can opener d. A folding ironing board e. A folding card table f. A folding beach chair g. A baby swing h. A folding baby walker i. A fancy corkscrew as shown in Figure P2-9 j. A windshield wiper mechanism k. A dump-truck dump mechanism l. A trash truck dumpster mechanism m. A pickup tailgate mechanism n. An automobile jack o. A collapsible auto radio antenna

Solution:

See Mathcad file P0201.

Equation 2.1c is used to calculate the mobility (DOF) of each of the models below. a.

An automobile hood hinge mechanism. The hood (3) is linked to the body (1) through two rocker links (2 and 4). Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 M1 b.

HOOD 3 2

4

1 BODY

An automobile hatchback lift mechanism. The hatch (2) is pivoted on the body (1) and is linked to the body by the lift arm, which can be modeled as two links (3 and 4) connected through a translating slider joint. HATCH Number of links L  4 Number of full joints

J1  4

Number of half joints

J2  0

2 3 1

M  3  ( L  1 )  2  J1  J2

4

M1

1 BODY

c.

An electric can opener has 2 DOF.

d.

A folding ironing board. The board (1) itself has one pivot (full) joint and one pin-in-slot sliding (half) joint. The two legs (2 and 3) hav a common pivot. One leg connects to the pivot joint on the board and the other to the slider joint.

DESIGN OF MACHINERY - 5th Ed

SOLUTION MANUAL 2-1-2

Number of links

L  3

Number of full joints

J1  2

Number of half joints

J2  1

1 3

2

M  3  ( L  1 )  2  J1  J2 M1 e.

A folding card table has 7 DOF: One for each leg, 2 for location in xy space, and one for angular orientation.

f.

A folding beach chair. The seat (3) and the arms (6) are ternary links. The seat is linked to the front leg(2), the back (5) and a coupling link (4). The arms are linked to the front leg (2), the rear leg (1), and the back (5). Links 1, 2, 4, and 5 are binar links. The analysis below is appropriate when the chair is not fully opened. When fully opened, one or more links are prevented from moving by a stop. Subtract 1 DOF when forced against the stop. Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

5 6 4

1

M  3  ( L  1 )  2  J1  J2

2 3

M1 g.

A baby swing has 4 DOF: One for the angular orientation of the swing with respect to the frame, and 3 for the location and orientation of the frame with respect to a 2-D frame.

h.

A folding baby walker has 4 DOF: One for the degree to which it is unfolded, and 3 for the location and orientation of the walker with respect to a 2-D frame.

i.

A fancy corkscrew has 2 DOF: The screw can be rotated and the arms rotate to translate the screw.

j.

A windshield wiper mechanism has 1 DOF: The position of the wiper blades is defined by a single input.

k.

A dump-truck dump mechanism has 1 DOF: The angle of the dump body is determined by the length of the hydraulic cylinder that links it to the body of the truck.

l.

A trash truck dumpster mechanism has 2 DOF: These are generally a rotation and a translation.

m. A pickup tailgate mechanism has 1 DOF: n.

An automobile jack has 4 DOF: One is the height of the jack and the other 3 are the position and orientation o the jack with respect to a 2-D frame.

o.

A collapsible auto radio antenna has as many DOF as there are sections, less one.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-2-1

PROBLEM 2-2 Statement:

How many DOF do you have in your wrist and hand combined?

Solution:

See Mathcad file P0202.

1.

Holding the palm of the hand level and facing toward the floor, the hand can be rotated about an axis through the wrist that is parallel to the floor (and perpendicular to the forearm axis) and one perpendicular to the floor (2 DOF). The wrist can rotate about the forearm axis (1 DOF).

2.

Each finger (and thumb) can rotate up and down and side-to-side about the first joint. Additionally, each finger can rotate about each of the two remaining joints for a total of 4 DOF for each finger (and thumb).

3.

Adding all DOF, the total is Wrist Hand Thumb Fingers 4x4

1 2 4 16

TOTAL

23

DESIGN OF MACHINERY - 5th Ed.

PROBLEM 2-3 Statement:

How many DOF do the following joints have? a. Your knee b. Your ankle c. Your shoulder d. Your hip e. Your knuckle

Solution:

See Mathcad file P0203.

a.

Your knee. 1 DOF: A rotation about an axis parallel to the ground.

b.

Your ankle. 3 DOF: Three rotations about mutually perpendicular axes.

c.

Your shoulder. 3 DOF: Three rotations about mutually perpendicular axes.

d.

Your hip. 3 DOF: Three rotations about mutually perpendicular axes.

e

Your knuckle. 2 DOF: Two rotations about mutually perpendicular axes.

SOLUTION MANUAL 2-3-1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-4-1

PROBLEM 2-4 Statement:

How many DOF do the following have in their normal environment? a. A submerged submarine b. An earth-orbit satellite c. A surface ship d. A motorcycle (road bike) e. A two-button mouse f. A computer joy stick.

Solution:

See Mathcad file P0204.

a.

A submerged submarine. Using a coordinate frame attached to earth, or an inertial coordinate frame, a submarine has 6 DOF: 3 linear coordinates and 3 angles.

b.

An earth-orbit satellite. If the satellite was just a particle it would have 3 DOF. But, since it probably needs to be oriented with respect to the earth, sun, etc., it has 6 DOF.

c.

A surface ship. There is no difference between a submerged submarine and a surface ship, both have 6 DOF. One might argue that, for an earth-centered frame, the depth of the ship with respect to mean sea level is constant, however that is not strictly true. A ship's position is generally given by two coordinates (longitude and latitude). For a given position, a ship can also have pitch, yaw, and roll angles. Thus, for all practical purposes, a surface ship has 5 DOF.

d.

A motorcycle. At an intersection, the motorcycle's position is given by two coordinates. In addition, it will have some heading angle (turning a corner) and roll angle (if turning). Thus, there are 4 DOF.

e.

A two-button mouse. A two-button mouse has 4 DOF. It can move in the x and y directions and each button has 1 DOF.

f.

A computer joy stick. The joy stick has 2 DOF (x and y) and orientation, for a total of 3 DOF.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-5-1

PROBLEM 2-5 Statement:

Are the joints in Problem 2-3 force closed or form closed?

Solution:

See Mathcad file P0205.

They are force closed by ligaments that hold them together. None are geometrically closed.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-6-1

PROBLEM 2-6 Statement:

Describe the motion of the following items as pure rotation, pure translation, or complex planar motion. a. A windmill b. A bicycle (in the vertical plane, not turning) c. A conventional "double-hung" window d. The keys on a computer keyboard e. The hand of a clock f. A hockey puck on the ice g. A "casement" window

Solution:

See Mathcad file P0206.

a.

A windmill. Pure rotation.

b.

A bicycle (in the vertical plane, not turning). Pure translation for the frame, complex planar motion for the wheels.

c.

A conventional "double-hung" window. Pure translation.

d.

The keys on a computer keyboard. Pure translation.

e.

The hand of a clock. Pure rotation.

f.

A hockey puck on the ice. Complex planar motion.

g.

A "casement" window. Pure rotation.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-7-1

PROBLEM 2-7 Statement:

Calculate the mobility of the linkages assigned from Figure P2-1 part 1 and part 2.

Solution:

See Figure P2-1 and Mathcad file P0207.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility.

a.

Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  1

6 3 5 2

M  3  ( L  1 )  2  J1  J2

4 1

M0

(a)

1 3

b.

Number of links

L  3

Number of full joints

J1  2

Number of half joints

J2  1

1

M  3  ( L  1 )  2  J1  J2 M1

2 1

(b) 4

c.

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

1

3

M  3  ( L  1 )  2  J1  J2 2

M1 (c)

1

7

d.

Number of links

L  7

Number of full joints

J1  7

Number of half joints

J2  1

1

6 5

M  3  ( L  1 )  2  J1  J2 M3

1

2 3

4

(d)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-7-2

8

5

8 1

5 1

9 10

6

1

1 7

4

4

1

2

2 3

3

1

5 6

2 1

(e)

1

e.

g.

Number of links

L  10

Number of full joints Number of half joints

(f)

Number of links

L  6

J1  13

Number of full joints

J1  6

J2  0

Number of half joints

J2  2

f.

M  3  ( L  1 )  2  J1  J2

M  3  ( L  1 )  2  J1  J2

M1

M1

Number of links

L  8

Number of full joints

J1  9

Number of half joints

J2  2

M  3  ( L  1 )  2  J1  J2

4 1

4

7

6

3

7 1

5

8 1

2

2 1

1

1

M1 (g)

2 h.

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 M1

1 3 1 4 (h)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-8-1

PROBLEM 2-8 Statement:

Identify the items in Figure P2-1 as mechanisms, structures, or preloaded structures.

Solution:

See Figure P2-1 and Mathcad file P0208.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility and the definitions in Section 2.5 of the text to classify the linkages.

a.

Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  1

6 3 5 2

M  3  ( L  1 )  2  J1  J2 M0

4 1

Structure

(a)

1 3

b.

Number of links

L  3

Number of full joints

J1  2

Number of half joints

J2  1

1

M  3  ( L  1 )  2  J1  J2 M1

Mechanism

2 1

(b) 4

c.

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

1

3

M  3  ( L  1 )  2  J1  J2 M1

2

Mechanism (c)

1

7

d.

Number of links

L  7

Number of full joints

J1  7

Number of half joints

J2  1

1

6 5

M  3  ( L  1 )  2  J1  J2 M3

Mechanism

1

2 3

4

(d)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-9-1

PROBLEM 2-9 Statement:

Use linkage transformation on the linkage of Figure P2-1a to make it a 1-DOF mechanism.

Solution:

See Figure P2-1a and Mathcad file P0209.

1.

The mechanism in Figure P2-1a has mobility: Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  1

6 3 5 2

M  3  ( L  1 )  2  J1  J2 M0

4 1 1

2.

Use rule 2, which states: "Any full joint can be replaced by a half joint, but this will increase the DOF by one." One way to do this is to replace one of the pin joints with a pin-in-slot joint such as that shown in Figure 2-3c. Choosing the joint between links 2 and 4, we now have mobility: Number of links

L  6

Number of full joints

J1  6

Number of half joints

J2  2

6 3 5

M  3  ( L  1 )  2  J1  J2

2 4

M1

1 1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-10-1

PROBLEM 2-10 Statement:

Use linkage transformation on the linkage of Figure P2-1d to make it a 2-DOF mechanism.

Solution:

See Figure P2-1d and Mathcad file P0210.

1.

7

The mechanism in Figure P2-1d has mobility: Number of links

L  7

Number of full joints

J1  7

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2

1

6 5 1

2 3

4

M3 2.

Use rule 3, which states: "Removal of a link will reduce the DOF by one." One way to do this is to remove link 7 such that link 6 pivots on the fixed pin attached to the ground link (1). We now have mobility: Number of links

L  6

Number of full joints

J1  6

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2

1 6 5 1

2 3

M2

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-11-1

PROBLEM 2-11 Statement:

Use number synthesis to find all the possible link combinations for 2-DOF, up to 9 links, to hexagonal order, using only revolute joints.

Solution:

See Mathcad file P0211.

1.

Use equations 2.4a and 2.6 with DOF = 2 and iterate the solution for valid combinations. Note that the number of links must be odd to have an even DOF (see Eq. 2.4). The smallest possible 2-DOF mechanism is then 5 links since three will give a structure (the delta triplet, see Figure 2-7). L  B  T  Q  P  H

L  3  M  T  2  Q  3  P  4  H L  5  T  2  Q  3  P  4  H

2.

3.

For L  5 0  T  2  Q  3  P  4  H

0=T =Q=P=H

2  T  2  Q  3  P  4  H

H  0

For L  7

Case 1:

Case 2:

4.

B  5

Q  0

Q  1

P  0

T  2  2  Q  3  P  4  H

T2

B  L  T  Q  P  H

B5

T  2  2  Q  3  P  4  H

T0

B  L  T  Q  P  H

B6

T  0

P  0

For L  9 4  T  2  Q  3  P  4  H Case 1:

H  1

Q  0

B  L  T  Q  P  H Case 2a:

H  0

B8

4  T  2  Q  3  P 9  B  T  Q  P

Case 2b:

P  1

1  T  2  Q

Q  0

B  L  T  Q  P  H Case 2c:

P  0

T  1 B7

4  T  2  Q 9  B  T  Q

Case 2c1:

Case 2c2:

Case 2c3:

Q  2 Q  1 Q  0

T  4  2  Q

T0

B  9  T  Q

B7

T  4  2  Q

T2

B  9  T  Q

B6

T  4  2  Q

T4

B  9  T  Q

B5

M  2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-12-1

PROBLEM 2-12 Statement:

Find all of the valid isomers of the eightbar 1-DOF link combinations in Table 2-2 (p. 38) having a. Four binary and four ternary links. b. Five binaries, two ternaries, and one quaternary link. c. Six binaries and two quaternary links. d. Six binaries, one ternary, and one pentagonal link.

Solution:

See Mathcad file P0212.

1.

2.

a.

Table 2-3 lists 16 possible isomers for an eightbar chain. However, Table 2-2 shows that there are five possible link sets, four of which are listed above. Therefore, we expect that the 16 valid isomers are distributed among the five link sets and that there will be fewer than 16 isomers among the four link sets listed above. One method that is helpful in finding isomers is to represent the linkage in terms of molecules as defined in Franke's Condensed Notations for Structural Synthesis. A summary of the rules for obtaining Franke's molecules follows: (1) The links of order greater than 2 are represented by circles. (2) A number is placed within each circle (the "valence" number) to describe the type (ternary, quaternary, etc.) of link. (3) The circles are connected using straight lines. The number of straight lines emanating from a circle must be equal to its valence number. (4) Numbers (0, 1, 2, etc.) are placed on the straight lines to correspond to the number of binary links used in connecting the higher order links. (5) There is one-to-one correspondence between the molecule and the kinematic chain that it represents. Four binary and four ternary links. Draw 4 circles with valence numbers of 3 in each. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly three lines emanating from each circle and the total of the numbers written on the lines is exactly equal to 4. In this case, there are three valid isomers as depicted by Franke's molecules and kinematic chains below.

8

1 3

3

5

1 0

0

1 3

6

3

3

1

4

2 1

7

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-12-2

8 0 3

3 2

0

5

0

1 3

7

6

3 1

3

4

1 2

8 5

0 3

3

4

2 0

6

0

2 3

3

3 0

7

1 2

The mechanism shown in Figure P2-5b is the same eightbar isomer as that depicted schematically above. b.

Five binaries, two ternaries, and one quaternary link. Draw 2 circles with valence numbers of 3 in each and one with a valence number of 4. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly three lines emanating from each circle with valence of three and four lines from the circle with valence of four; and the total of the numbers written on the lines is exactly equal to 5. In this case, there are five valid isomers as depicted by Franke's molecules and kinematic chains below.

0

3 2

4

7

0

1

5

3

3

2

6 4

8

1

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-12-3

5 1

3 0

3 0

2

6 4

7

3

2 4

8

1

2

5 0

3 1

3

3

7

1

2

4

6

1

2

8

4

1

5 1

3 1

6

3

4

0

1

3 2

7

8 4

1

2

5 1

3 1

6

3

3

1

1

1

8

4

7

2

4

1

c.

Six binaries and two quaternary links. Draw 2 circles with valence numbers of 4 in each. Then find all unique combinations of straight lines that can be drawn that connect the circles such that there are exactly four lines emanating from each circle and the total of the numbers written on the lines is exactly equal to 6. In this case, there are two valid isomers as depicted by Franke's molecules and kinematic chains below.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-12-4

0 2

7 4

4

4

5

3

6

2

8

2

1

2

1

4

1

7 4

4

d.

3

6

2 2

5

8

2 1

Six binaries, one ternary, and one pentagonal link. There are no valid implementations of 6 binary links with 1 pentagonal link.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-13-1

PROBLEM 2-13 Statement:

Use linkage transformation to create a 1-DOF mechanism with two sliding full joints from a Stephenson's sixbar linkage as shown in Figure 2-14a (p. 47).

Solution:

See Figure 2-14a and Mathcad file P0213.

1.

The mechanism in Figure 2-14a has mobility: Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

A 4

3

5

B

2

6

M  3  ( L  1 )  2  J1  J2 M1

2.

1

Use rule 1, which states: "Revolute joints in any loop can be replaced by prismatic joints with no change in DOF of the mechanism, provided that at least two revolute joints remain in the loop." One way to do this is to replace pin joints at A and B with translating full slider joints such as that shown in Figure 2-3b. Note that the sliders are attached to links 3 and 5 in such a way that they can not rotate relative to the links. The number of links and 1-DOF joints remains the same. There are no 2-DOF joints in either mechanism.

A 4

3

5 2

1

6 B

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-14-1

PROBLEM 2-14 Statement:

Use linkage transformation to create a 1-DOF mechanism with one sliding full joint a a half joint from a Stephenson's sixbar linkage as shown in Figure 2-14b (p. 48).

Solution:

See Figure 2-14a and Mathcad file P0213.

1.

The mechanism in Figure 2-14b has mobility: Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

3 5 4 2

6

M  3  ( L  1 )  2  J1  J2 1

M1

2.

To get the sliding full joint, use rule 1, which states: "Revolute joints in any loop can be replaced by prismati joints with no change in DOF of the mechanism, provided that at least two revolute joints remain in the loop." One way to do this is to replace pin joint links 3 and 5 with a translating full slider joint such as that shown in Figure 2-3b. Note that the slider is attached to link 3 in such a way that it can not rotate relative to the link. The number of links and 1-DOF joints remains the same.

3

5 4

2

6

1

3.

To get the half joint, use rule 4 on page 42, which states: "The combination of rules 2 and 3 above will keep the original DOF unchanged." One way to do this is to remove link 6 (and its two nodes) and insert a half joint between links 5 and 1. Number of links

L  5

Number of full joints

J1  5

Number of half joints

3 5 4

J2  1 2

M  3  ( L  1 )  2  J1  J2

1

M1 1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-15-1

PROBLEM 2-15 Statement:

Calculate the Grashof condition of the fourbar mechanisms defined below. Build cardboard models of the linkages and describe the motions of each inversion. Link lengths are in inches (or double given numbers for centimeters). Part 1. a. b. c.

2 2 2

4.5 3.5 4.0

7 7 6

9 9 8

Part 2. d. e. f.

2 2 2

4.5 4.0 3.5

7 7 7

9 9 9

Solution: 1.

See Mathcad file P0215

Use inequality 2.8 to determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

a.

Condition( 2 4.5 7 9 )  "Grashof"

b.

Condition( 2 3.5 7 9 )  "non-Grashof"

c.

Condition( 2 4.0 6 8 )  "Special Grashof" This is a special case Grashof since the sum of the shortest and longest is equal to the sum of the other two link lengths.

d.

Condition( 2 4.5 7 9 )  "Grashof"

e.

Condition( 2 4.9 7 9 )  "Grashof"

f.

Condition( 2 3.5 7 9 )  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-16-1

PROBLEM 2-16 Statement:

Which type(s) of electric motor would you specify a. b. c.

Solution:

To drive a load with large inertia. To minimize variation of speed with load variation. To maintain accurate constant speed regardless of load variations.

See Mathcad file P0216.

a.

Motors with high starting torque are suited to drive large inertia loads. Those with this characteristic include series-wound, compound-wound, and shunt-wound DC motors, and capacitor-start AC motors.

b.

Motors with flat torque-speed curves (in the operating range) will minimize variation of speed with load variation. Those with this characteristic include shunt-wound DC motors, and synchronous and capacitor-start AC motors.

b.

Speed-controlled DC motors will maintain accurate constant speed regardless of load variations.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-17-1

PROBLEM 2-17 Statement:

Describe the difference between a cam-follower (half) joint and a pin joint.

Solution:

See Mathcad file P0217.

1.

A pin joint has one rotational DOF. A cam-follower joint has 2 DOF, rotation and translation. The pin joint also captures its lubricant in the annulus between pin and bushing while the cam-follower joint squeezes its lubricant out of the joint.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-18-1

PROBLEM 2-18 Statement:

Examine an automobile hood hinge mechanism of the type described in Section 2.14. Sketch it carefully. Calculate its DOF and Grashof condition. Make a cardboard model. Analyze it with a free-body diagram. Describe how it keeps the hood up.

Solution:

Solution of this problem will depend upon the specific mechanism modeled by the student.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-19-1

PROBLEM 2-19 Statement:

Find an adjustable arm desk lamp of the type shown in Figure P2-2. Sketch it carefully. Measure it and sketch it to scale. Calculate its DOF and Grashof condition. Make a cardboard model. Analyze it with a free-body diagram. Describe how it keeps itself stable. Are there any positions in which it loses stability? Why?

Solution:

Solution of this problem will depend upon the specific mechanism modeled by the student.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-20-1

PROBLEM 2-20 Statement:

The torque-speed curve for a 1/8 hp permanent magnet (PM) DC motor is shown in Figure P2-3. The rated speed for this fractional horsepower motor is 2500 rpm at a rated voltage of 130V. Determine: a) The rated torque in oz-in (ounce-inches, the industry standard for fractional hp motors) b) The no-load speed c) Plot the power-torque curve and determine the maximum power that the motor can deliver.

Given:

Rated speed, N

NR  2500 rpm

R

HR 

Rated power, H

R

1 8

 hp

4000 3500

Speed, rpm

3000 2500 2000 1500 1000 500 0

0

50

100

150

200

250

300

Torque, oz-in

Figure P2-3 Torque-speed Characteristic of a 1/8 HP, 2500 rpm PM DC Motor

Solution: a.

See Figure P2-3 and Mathcad file P0220.

The rated torque is found by dividing the rated power by the rated speed: TR 

Rated torque, TR

HR NR

TR  50 ozf  in

b.

The no-load speed occurs at T = 0. From the graph this is 3000 rpm.

c.

The power is the product of the speed and the torque. From the graph the equation for the torque-speed curve is: 3000 rpm N ( T )    T  3000 rpm 300  ozf  in and the power, therefore, is: H ( T )  10

rpm ozf  in

2

 T  3000 rpm T

Plotting the power as a function of torque over the range T  0  ozf  in 10 ozf  in  300  ozf  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-20-2

0.25 0.225 0.2

Power, hp

0.175 0.15 0.125 0.1 0.075 0.05 0.025 0

0

50

100

150

200

250

300

Torque, oz-in

Maximum power occurs when dH/dT = 0. The value of T at maximum power is: ozf  in

Value of T at Hmax

THmax  3000 rpm

Maximum power

Hmax  H  THmax

Hmax  0.223  hp

Speed at max power

NHmax  N  THmax

NHmax  1500 rpm

2  10 rpm

THmax  150  ozf  in

Note that the curve goes through the rated power point of 0.125 hp at the rated torque of 50 oz-in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-21-1

PROBLEM 2-21 Statement:

Find the mobility of the mechanisms in Figure P2-4.

Solution:

See Figure P2-4 and Mathcad file P0221.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility.

a.

This is a basic fourbar linkage. The input is link 2 and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

A 2 3 O2

M1

b.

4

C

O4

This is a fourbar linkage. The input is link 2, which in this case is the wheel 2 with a pin at A, and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

A

2

O2

3

M  3  ( L  1 )  2  J1  J2

4 B

M1

c.

O4

This is a 3-cylinder, rotary, internal combustion engine. The pistons (sliders) 6, 7, and 8 drive the output crank (2) through piston rods (couplers 3, 4, and 5). There are 3 full joints at the crank where rods 3, 4and 5 are pinned to crank 2. The cross-hatched crank-shaft at O2 is supported by the ground link (1) through bearings. Number of links

L  8

Number of full joints

J1  10

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

6

3

2

4

M1 7

5

8

DESIGN OF MACHINERY - 5th Ed.

d.

SOLUTION MANUAL 2-21-2

This is a fourbar linkage. The input is link 2, which in this case is a wheel with a pin at A, and the output is the vertical member on the coupler, link 3. Since the lengths of links 2 and 4 (O2A and O4B) are the same, the coupler link (3) has curvilinear motion and AB remains parallel to O2O4 throughout the cycle. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1).

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

B O4

O2

M1

e.

3

A 2

4

This is a fourbar linkage with an output dyad. The input (rocker) is link 2 and the output (rocker) is link 8. Links 5 and 6 are redundant, i.e. the mechanism will have the same motion if they are removed. The input fourbar consists of links 1, 2, 3, and 4. The output dyad consists of links 7 and 8. The cross-hatched pivot pins at O2, O4 and O8 are attached to the ground link (1). In the calculation below, the redundant links and their joints are not counted (subtract 2 links and 4 joints from the totals). A

Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

O2

4 O4 G

E

3

2 D

5

C

6

7

M  3  ( L  1 )  2  J1  J2 O8

M1 F

H 8

f.

This is a fourbar offset slider-crank linkage. The input is link 2 (crank) and the output is link 4 (slider block). The cross-hatched pivot pin at O2 is attached to the ground link (1).

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

4

B

3

M  3  ( L  1 )  2  J1  J2 A

M1 2 O2

DESIGN OF MACHINERY - 5th Ed.

g.

SOLUTION MANUAL 2-21-3

This is a fourbar linkage with an alternate output dyad. The input (rocker) is link 2 and the outputs (rockers) are links 4 and 6. The input fourbar consists of links 1, 2, 3, and 4. The alternate output dyad consists of links 5 and 6. The cross-hatched pivot pins at O2, O4 and O6 are attached to the ground link (1). Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

O6 3

B

A

2

M  3  ( L  1 )  2  J1  J2

4

C

6

O2

M1

5 D O4

h.

This is a ninebar mechanism with three redundant links, which reduces it to a sixbar. Since this mechanism is symmetrical about a vertical centerline, we can split it into two mirrored mechanisms to analyze it. Either links 2, 3 and 5 or links 7, 8 and 9 are redundant. To analyze it, consider 7, 8 and 9 as the redundant links. Analyzing the ninebar, there are two full joints at the pins A, B and C for a total of 12 joints. Number of links

L  9

Number of full joints

J1  12

Number of half joints

J2  0

6

O2 2

8

7

5

C

B

M  3  ( L  1 )  2  J1  J2

O8

A

9

3

M0 4

D

E

The result is that this mechanism seems to be a structure. By splitting it into mirror halves about the vertical centerline the mobility is found to be 1. Subtract the 3 redundant links and their 5 (6 minus the joint at A) associated joints to determine the mobility of the mechanism. Number of links

L  9  3

Number of full joints

J1  12  5

Number of half joints

J2  0

6 O2 2

5 B

M  3  ( L  1 )  2  J1  J2

3

M1 D

4

A

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-22-1

PROBLEM 2-22 Statement: Solution: 1.

Find the Grashof condition and Barker classifications of the mechanisms in Figure P2-4a, b, and d. See Figure P2-4 and Mathcad file P0222.

Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

a.

This is a basic fourbar linkage. The input is link 2 and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1  174

L2  116

L3  108

L4  110

A 2 3

Condition L1 L2 L3 L4  "non-Grashof"

O2

4

C

This is a Barker Type 5 RRR1 (non-Grashof, longest link grounded). b.

O4

This is a fourbar linkage. The input is link 2, which in this case is the wheel with a pin at A, and the output is link 4. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1  162

L2  40

L3  96

L4  122

B

A

2

3

O2 4

Condition L1 L2 L3 L4  "Grashof" This is a Barker Type 2 GCRR (Grashof, shortest link is input). d.

This is a fourbar linkage. The input is link 2, which in this case is a wheel with a pin at A, and the output is the vertical member on the coupler, link 3. Since the lengths of links 2 and 4 (O2A and O4B) are the same, the coupler link (3) has curvilinear motion and AB remains parallel to O2O4 throughout the cycle. The cross-hatched pivot pins at O2 and O4 are attached to the ground link (1). L1  150 L2  30 L3  150

L4  30

Condition L1 L2 L3 L4  "Special Grashof" This is a Barker Type 13 S2X (special case Grashof, two equal pairs, parallelogram).

O4

A

3

2 O2

B O4

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-23-1

PROBLEM 2-23 Statement:

Find the rotability of each loop of the mechanisms in Figure P2-4e, f, and g.

Solution:

See Figure P2-4 and Mathcad file P0223.

1.

Use inequality 2.15 to determine the rotability of each loop in the given mechanisms.

e.

This is a fourbar linkage with an output dyad. The input (rocker) is link 2 and the output (rocker) is link 8. Links 5 and 6 are redundant, i.e. the mechanism will have the same motion if they are removed. The input fourbar consists of links 1, 2, 3, and 4. The output dyad consists of links 7 and 8. The cross-hatched pivot pins at O2, O4 and O8 are attached to the ground link (1). In the calculation below, the redundant links and their joints are not counted (subtract 2 links and 4 joints from the totals).

B

A O2

4 O4 G

E

3

2 D

5

C

6

7

O8

There are two loops in this mechanism. The first loop consists of links 1, 2, 3 (or 5), and 4. The second consists of links 1, 4, 7 (or 6), and 8. By inspection, we see that the sum of the shortest and longest in each loop is equal to the sum of the other two. Thus, both loops are Class III. f.

8

This is a fourbar offset slider-crank linkage. The input is link 2 (crank) and the output is link 4 (slider block). The cross-hatched pivot pin at O2 is attached to the ground link (1).

4

A 2 O2

O6

This is a fourbar linkage with an alternate output dyad. The input (rocker) is link 2 and the outputs (rockers) are links 4 and 6. The input fourbar consists of links 1, 2, 3, and 4. The alternate output dyad consists of links 5 and 6. The cross-hatched pivot pins at O2, O4 and O6 are attached to the ground link (1). r1  87

r2  49

r3  100

r4  153

B

3

We can analyze this linkage if we replace the slider ( 4) with an infinitely long binary link that is pinned at B to link 3 and pinned to ground (1). Then links 1 and 4 for are both infinitely long. Since these two links are equal in length and, if we say they are finite in length but very long, the rotability of the mechanism will be determined by the relative lengths of 2 and 3. Thus, this is a Class I linkage since link 2 is shorter than link 3.

g.

H

F

3

B

2 4

C

A 6

O2 5 D

Using the notation of inequality 2.15, N  4 LN  r4 L1  r2 L2  r1 LN  L1  202

O4

L3  r3 L2  L3  187

Since LN  L1  L2  L3, this is a a class II mechanism.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-24-1

PROBLEM 2-24 Statement:

Find the mobility of the mechanisms in Figure P2-5.

Solution:

See Figure P2-5 and Mathcad file P0224.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility. In the kinematic representations of the linkages below, binary links are depicted as single lines with nodes at their end points whereas higher order links are depicted as 2-D bars.

a.

This is a sixbar linkage with 4 binary (1, 2, 5, and 6) and 2 ternary (3 and 4) links. The inverted U-shaped link at the top of Figure P2-5a is represented here as the binary link 6. Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

3

5

4

2

M  3  ( L  1 )  2  J1  J2 O2

M1

b.

6

O4

This is an eightbar linkage with 4 binary (1, 4, 7, and 8) and 4 ternary (2, 3, 5, and 6) links. The inverted U-shaped link at the top of Figure P2-5b is represented here as the binary link 8. Number of links

L  8

Number of full joints

J1  10

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 M1

5

6

2

3

7

8 2 O2

4 O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-25-1

PROBLEM 2-25 Statement:

Find the mobility of the ice tongs in Figure P2-6. a. When operating them to grab the ice block. b. When clamped to the ice block but before it is picked up (ice grounded). c. When the person is carrying the ice block with the tongs.

Solution:

See Figure P2-6 and Mathcad file P0225.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility.

a.

In this case there are two links and one full joint and 1 DOF. Number of links

L  2

Number of full joints

J1  1

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 b.

When the block is clamped in the tongs another link and two more full joints are added reducing the DOF to zero (the tongs and ice block form a structure). Number of links

L  2  1

Number of full joints

J1  1  2

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

c.

M1

M0

When the block is being carried the system has at least 4 DOF: x, y, and z position and orientation about a vertical axis.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-26-1

PROBLEM 2-26 Statement:

Find the mobility of the automotive throttle mechanism shown in Figure P2-7.

Solution:

See Figure P2-7 and Mathcad file P0226.

1.

This is an eightbar linkage with 8 binary links. It is assumed that the joint between the gas pedal (2) and the roller (3) that pivots on link 4 is a full joint, i.e. the roller rolls without slipping. The pivot pins at O2, O4, O6, and O8 are attached to the ground link (1). Use equation 2.1c (Kutzbach's modification) to calculate the mobility. Number of links

L  8

Number of full joints

J1  10

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

7 6 O6

8

FULL JOINT 5 4 O4 3 2

O2

O8

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-27-1

PROBLEM 2-27 Statement:

Sketch a kinematic diagram of the scissors jack shown in Figure P2-8 and determine its mobility. Describe how it works.

Solution:

See Figure P2-8 and Mathcad file P0227.

1.

The scissors jack depicted is a seven link mechanism with eight full and two half joints (see kinematic diagram below). Link 7 is a variable length link. Its length is changed by rotating the screw with the jack handle (not shown). The two blocks at either end of link 7 are an integral part of the link. The block on the left is threaded and acts like a nut. The block on the right is not threaded and acts as a bearing. Both blocks have pins that engage the holes in links 2, 3, 5, and 6. Joints A and B have 2 full joints apiece. For any given length of link 7 the jack is a structure (DOF = 0). When the screw is turned to give the jack a different height the jack has 1 DOF.

4

3

5

7

A

B 2

6 1

Number of links

L  7

Number of full joints

J1  8

Number of half joints

J2  2

M  3  ( L  1 )  2  J1  J2

M0

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-28-1

PROBLEM 2-28 Statement:

Find the mobility of the corkscrew in Figure P2-9.

Solution:

See Figure P2-9 and Mathcad file P0228.

1.

The corkscrew is made from 4 pieces: the body (1), the screw (2), and two arms with teeth (3), one of which is redundant. The second arm is present to balance the forces on the assembly but is not necessary from a kinematic standpoint. So, kinematically, there are 3 links (body, screw, and arm), 2 full joints (sliding joint between the screw and the body, and pin joint where the arm rotates on the body), and 1 half joint where the arm teeth engage the screw "teeth". Using equation 2.1c, the DOF (mobility) is Number of links

L  3

Number of full joints

J1  2

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-29-1

PROBLEM 2-29 Statement:

Figure P2-10 shows Watt's sun and planet drive that he used in his steam engine. The beam 2 is driven in oscillation by the piston of the engine. The planet gear is fixed rigidly to link 3 and its center is guided in the fixed track 1. The output rotation is taken from the sun gear 4. Sketch a kinematic diagram of this mechanism and determine its DOF. Can it be classified by the Barker scheme? If so, what Barker class and subclass is it?

Solution:

See Figure P2-10 and Mathcad file P0229.

1.

Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fourbar linkage with 1 DOF (see below).

A

2

2

1

3

3 1

4

B

4

1

2.

C

Use equation 2.1c to determine the DOF (mobility). There are 4 links, 3 full pin joints, 1 half pin-in-slot joint (at B), and 1 half joint (at the interface C between the two gears, shown above by their pitch circles). Links 1 and 3 are ternary. Kutzbach's mobility equation (2.1c) Number of links

L  4

Number of full joints

J1  3

Number of half joints

J2  2

M  3  ( L  1 )  2  J1  J2 3.

M1

The Barker classification scheme requires that we have 4 link lengths. The motion of link 3 can be modeled by a basic fourbar if the half joint at B is replaced with a full pin joint and a link is added to connect B and the fixed pivot that is coincident with the center of curvature of the slot that guides pin B. L1  2.15

L2  1.25

L3  1.80

L4  0.54

This is a Grashof linkage and the Barker classification is I-4 (type 4) because the shortest link is the output.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-30-1

PROBLEM 2-30 Statement:

Figure P2-11 shows a bicycle hand brake lever assembly. Sketch a kinematic diagram of this device and draw its equivalent linkage. Determine its mobility. Hint: Consider the flexible cable to be a link.

Solution:

See Figure P2-11 and Mathcad file P0230.

1.

The motion of the flexible cable is along a straight line as it leaves the guide provided by the handle bar so it can be modeled as a translating full slider that is supported by the handlebar (link 1). The brake lever is a binary link that pivots on the ground link. Its other node is attached through a full pin joint to a third link, which drives the slider (link 4). Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 M1

CABLE BRAKE LEVER 3 2

4 1 1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-31-1

PROBLEM 2-31 Statement:

Figure P2-12 shows a bicycle brake caliper assembly. Sketch a kinematic diagram of this device and draw its equivalent linkage. Determine its mobility under two conditions. a. b.

Brake pads not contacting the wheel rim. Brake pads contacting the wheel rim.

Hint: Consider the flexible cable to be replaced by forces in this case. Solution: 1.

See Figure P2-12 and Mathcad file P0231.

The rigging of the cable requires that there be two brake arms. However, kinematically they operate independently and can be analyzed that way. Therefore, we only need to look at one brake arm. When the brake pads are not contacting the wheel rim there is a single lever (link 2) that is pivoted on a full pin joint that is attached to the ground link (1). Thus, there are two links (frame and brake arm) and one full pin joint. Number of links

L  2

Number of full joints

J1  1

Number of half joints

J2  0

BRAKE ARM

FRAME

2

M  3  ( L  1 )  2  J1  J2 M1

2.

1

When the brake pad contacts the wheel rim we could consider the joint between the pad, which is rigidly attached to the brake arm and is, therefore, a part of link 2, to be a half joint. The brake arm (with pad), wheel (which is constrained from moving laterally by the frame), and the frame constitute a structure. Number of links

L  2

Number of full joints

J1  1

Number of half joints

J2  1

BRAKE ARM

FRAME

2

M  3  ( L  1 )  2  J1  J2 M0

1 1 HALF JOINT

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-32-1

PROBLEM 2-32 Statement:

Find the mobility, the Grashof condition, and the Barker classifications of the mechanism in Figure P2-13.

Solution:

See Figure P2-13 and Mathcad file P0232.

1.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility. When there is no cable in the jaw or before the cable is crimped this is a basic fourbar mechanism with with 4 full pin joints: Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

When there is a cable in the jaw this is a threebar mechanism with with 3 full pin joints. While the cable is clamped the jaws are stationary with respect to each other so that link 4 is grounded along with link 1, leaving only three operational links.

2.

Number of links

L  3

Number of full joints

J1  3

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M0

Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

L1  0.92

L2  0.27

L3  0.50

L4  0.60

Condition L1 L2 L3 L4  "non-Grashof" The Barker classification is II-1 (Type 5) RRR1 (non-Grashof, longest link grounded).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-33-1

PROBLEM 2-33 Statement:

The approximate torque-speed curve and its equation for a 1/4 hp shunt-wound DC motor are shown in Figure P2-14. The rated speed for this fractional horsepower motor is 10000 rpm at a rated voltage of 130V. Determine: a) The rated torque in oz-in (ounce-inches, the industry standard for fractional hp motors) b) The no-load speed c) The operating speed range d) Plot the power-torque curve in the operating range and determine the maximum power that the motor can deliver in the that range.

Given:

Rated speed, N N ( T ) 

NR  10000  rpm

R

0.1 1.7

NR TR NR TR

HR 

Rated power, H

R

1 4

 hp

 T  1.1 NR if T  62.5 ozf  in  T  5.1 NR otherwise

T  0  ozf  in 2.5 ozf  in  75 ozf  in

12000

10000

Speed, rpm

8000

6000

4000

2000

0

0

25

50

75

100

Torque, oz-in

Figure P2-14 Torque-speed Characteristic of a 1/4 HP, 10000 rpm DC Motor Solution: a.

See Figure P2-3 and Mathcad file P0220.

The rated torque is found by dividing the rated power by the rated speed: Rated torque, TR

TR 

HR NR

TR  25 ozf  in

b.

The no-load speed occurs at T = 0. From the graph this is 11000 rpm.

c.

The operating speed range for a shunt-wound DC motor is the speed at which the motor begins to stall up to the no-load speed. For the approximate torque-speed curve given in this problem the minimum speed is defined as the speed at the knee of the curve. Nopmin  N ( 62.5 ozf  in)

Nopmin  8500 rpm

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-33-2

Nopmax  N ( 0  ozf  in)

The power is the product of the speed and the torque. From the graph the equation for the torque-speed curve over the operating range is: N ( T )  

40 rpm ozf  in

 T  11000  rpm

and the power, therefore, is: H ( T )  N ( T )  T Plotting the power as a function of torque over the range T  0  ozf  in 2.5 ozf  in  62.5 ozf  in 0.750 0.700 0.650 0.600 0.550 0.500 Power, hp

d.

Nopmax  11000 rpm

0.450 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 0.0

12.5

25.0

37.5

50.0

62.5

75.0

Torque, oz-in

Maximum power occurs at the maximum torque in the operating range. The value of T at maximum power is: Value of T at Hmax

THmax  62.5 ozf  in

THmax  62.5 ozf  in

Maximum power

Hmax  H  THmax

Hmax  0.527  hp

Speed at max power

NHmax  N  THmax

NHmax  8500 rpm

Note that the curve goes through the rated power point of 0.25 hp at the rated torque of 25 oz-in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-34-1

PROBLEM 2-34 Statement:

Figure P2-15 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its weight forces the sawblade against the workpiece while the linkage moves the blade (link 4) back and forth within link 5 to cut the part. Sketch its kinematic diagram, determine its mobility and its type (i.e., is it a fourbar, a Watt's sixbar, a Stephenson's sixbar, an eightbar, or what?) Use reverse linkage transformation to determine its pure revolute-jointed equivalent linkage.

Solution:

See Figure P2-15 and Mathcad file P0234.

1.

Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fivebar linkage with 1 DOF (see below). 5

3

5 3

4

4

2

2

2.

1

1

1

Use equation 2.1c to determine the DOF (mobility). There are 5 links, 4 full pin joints, 1 full sliding joint, and 1 half joint (at the interface between the hacksaw blade and the pipe being cut). Kutzbach's mobility equation (2.1c) Number of links

L  5

Number of full joints

J1  5

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2 3.

M1

Use rule 1 to transform the full sliding joint to a full pin joint for no change in DOF. Then use rules 2 and 3 by changing the half joint to a full pin joint and adding a link for no change in DOF. The resulting kinematically equivalent linkage has 6 links, 7 full pin joints, no half joints, and is shown below. Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

5 4

3 2

M  3  ( L  1 )  2  J1  J2

1 6

M1

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-35-1

PROBLEM 2-35 Statement:

Figure P2-16 shows a manual press used to compact powdered materials. Sketch its kinematic diagram, determine its mobility and its type (i.e., is it a fourbar, a Watt's sixbar, a Stephenson's sixbar, an eightbar, or what?) Use reverse linkage transformation to determine its pure revolute-jointed equivalent linkage.

Solution:

See Figure P2-16 and Mathcad file P0235.

1.

Sketch a kinematic diagram of the mechanism. The mechanism is shown on the left and a kinematic model of it is sketched on the right. It is a fourbar linkage with 1 DOF (see below).

4 3

4

3 2

2

O2

O2

2.

Use equation 2.1c to determine the DOF (mobility). There are 4 links, 3 full pin joints, 1 full sliding joint, and 0 half joints. This is a fourbar slider-crank. Kutzbach's mobility equation (2.1c) Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 3.

M1

Use rule 1 to transform the full sliding joint to a full pin joint for no change in DOF. The resulting kinematically equivalent linkage has 4 links, 4 full pin joints, no half joints, and is shown below. 4 O4 3

2 O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-36-1

PROBLEM 2-36 Statement:

Sketch the equivalent linkage for the cam and follower mechanism in Figure P2-17 in the position shown. Show that it has the same DOF as the original mechanism.

Solution:

See Figure P2-17 and Mathcad file P0236.

1.

The cam follower mechanism is shown on the left and a kinematically equivalent model of it is sketched on the right.

4 1

1 4

3

3

2

2

INSTANTANEOUS CENTER OF CURVATURE OF CAM SURFACE

1

1

2.

Use equation 2.1c to determine the DOF (mobility) of the original mechanism. There are 4 links, 2 full pin joints, 1 full sliding joint, 1 pure rolling joint and 0 half joints. Kutzbach's mobility equation (2.1c) Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 3.

M1

Use equation 2.1c to determine the DOF (mobility) of the equivalent mechanism. There are 4 links, 3 full pin joints, 1 full sliding joint, and 0 half joints. This is a fourbar slider-crank. Kutzbach's mobility equation (2.1c) Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTIONS MANUAL 2-37-1

PROBLEM 2-37 Statement:

Describe the motion of the following rides, commonly found at an amusement park, as pure rotation, pure translation, or complex planar motion. a. A Ferris wheel b. A "bumper" car c. A drag racer ride d. A roller coaster whose foundation is laid out in a straight line e. A boat ride through a maze f. A pendulum ride g. A train ride

Solution:

See Mathcad file P0211.

a.

A Ferris wheel Pure rotation.

b.

A "bumper car" Complex planar motion.

c.

A drag racer ride Pure translation.

d.

A roller coaster whose foundation is laid out in a straight line Complex planar motion.

e.

A boat ride through a maze Complex planar motion.

f.

A pendulum ride Pure rotation.

g.

A train ride Complex planar motion.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-38-1

PROBLEM 2-38 Statement:

Figure P2-1a is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1a and Mathcad file P0238.

1.

Label the link numbers and joint letters for Figure P2-1a.

G B

3 C

5

2 A

4

1

1

6

F

E

D 1

a.

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6

Link Order Ternary Ternary Binary Ternary Binary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G

Joint Order 1 1 1 1 1 2 1

Half/Full Full Full Full Half Full Full Full

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-39-1

PROBLEM 2-39 Statement:

Figure P2-1b is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1b and Mathcad file P0239.

1.

Label the link numbers and joint letters for Figure P2-1b.

3 C 1 B

2 A 1

a.

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3

Link Order Binary Binary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C

Joint Order 1 1 1

Half/Full Full Half Full

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-40-1

PROBLEM 2-40 Statement:

Figure P2-1c is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1c and Mathcad file P0240.

1.

Label the link numbers and joint letters for Figure P2-1c. 4 1 C

D

3

2 B

A 1

a.

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4

Link Order Binary Binary Binary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D

Joint Order 1 1 1 1

Half/Full Full Full Full Full

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-41-1

PROBLEM 2-41 Statement:

Figure P2-1d is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1d and Mathcad file P0241.

1.

Label the link numbers and joint letters for Figure P2-1d. H 1

7 G

6

E 5

F

A 1

D

2 3 B

a.

4 C

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6 7

Link Order Binary Binary Ternary Binary Binary Ternary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H

Joint Order 1 1 1 1 1 1 1 1

Half/Full Full Full Half Full Full Full Full Full

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-42-1

PROBLEM 2-42 Statement:

Find the mobility, Grashof condition and Barker classification of the oil field pump shown in Figure P2-18.

Solution:

See Figure P2-18 and Mathcad file P0242.

1.

Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

4 O4 3

O2

2

This is a basic fourbar linkage. The input is the 14-in-long crank (link 2) and the output is the top beam (link 4). The mobility (DOF) is found using equation 2.1c (Kutzbach's modification): Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

The link lengths and Grashof condition are L1 

2

( 76  12)  47.5

2

L1  79.701

Condition L1 L2 L3 L4  "Grashof" This is a Barker Type 2 GCRR (Grashof, shortest link is input).

L2  14

L3  80

L4  51.26

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-43-1

PROBLEM 2-43 Statement:

Find the mobility, Grashof condition and Barker classification of the aircraft overhead bin shown in Figure P2-19.

Solution:

See Figure P2-19 and Mathcad file P0243.

1.

Use inequality 2.8 to determine the Grashof condition and Table 2-4 to determine the Barker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

2.79 O2

6.95

B

2

9.17

9.17 4 3 O4

9.57

A

9.17

This is a basic fourbar linkage. The input is the link 2 and the output is link 4. The mobility (DOF) is found using equation 2.1c (Kutzbach's modification): Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

The link lengths and Grashof condition are 2

2

L1  7.489

L2  9.17

2

2

L3  12.968

L4  9.57

L1 

2.79  6.95

L3 

9.17  9.17

Condition L1 L2 L3 L4  "non-Grashof" This is a Barker Type 7 RRR3 (non-Grashof, longest link is coupler).

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-44-1

PROBLEM 2-44 Statement:

Figure P2-20 shows a "Rube Goldberg" mechanism that turns a light switch on when a room door is opened and off when the door is closed. The pivot at O2 goes through the wall. There are two spring-loaded piston-in cylinder devices in the assembly. An arrangement of ropes and pulleys inside the room transfers the door swing into a rotation of link 2. Door opening rotates link 2 CW, pushing the switch up as shown in the figure, and door closing rotates link 2 CCW, pulling the switch down. Find the mobility of the linkage.

Solution:

See Figure P2-20 and Mathcad file P0244.

1.

2.

Examination of the figure shows 20 links (including the the switch) and 28 full joints. The second piston-in cylinder that actuates the switch is counted as a single binary link of variable length with joints at its ends. The other cylinder consists of two binary links, each link having one pin joint and one slider joint. There are no half joints. Use equation 2.1c to determine the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links

L  20

Number of full joints

J1  28

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 3.

M1

An alternative is to ignore the the first piston-in cylinder that acts on the third bellcrank from O2 since it does not affect the the motion of the linkage (it acts only as a damper.) In that case, subtract two links and three full joints, giving L = 18, J1 = 25 and M = 1.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-45-1

PROBLEM 2-45 Statement:

All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 1 have?

Solution:

See Figure 2-11, part 2 and Mathcad file P0245.

1.

This isomer has one quaternary, two ternary, and five binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 2 or 7 gives the same inversion, as do grounding 3 or 6 and 4 or 5. This makes 3 of the possible 8 inversions the same leaving 5 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, 4, or 8 (or 1, 5, 6, 7, or 8) for a total of 5 distinct inversions.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-46-1

PROBLEM 2-46 Statement:

All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 2 have?

Solution:

See Figure 2-11, part 2 and Mathcad file P0246.

1.

This isomer has four ternary, and four binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 1 or 5 gives the same inversion, as do grounding 2 or 8, 4 or 6, and 3 or 7. This makes 4 of the possible 8 inversions the same leaving 4 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, or 4 (or 5, 6, 7, or 8) for a total of 4 distinct inversions.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-47-1

PROBLEM 2-47 Statement:

All of the eightbar linkages in Figure 2-11 part 2 have eight possible inversions. Some of these will give motions similar to others. Those that have distinct motions are called distinct inversions. How many distinct inversions does the linkage in row 4, column 3 have?

Solution:

See Figure 2-11, part 2 and Mathcad file P0247.

1.

This isomer has four ternary, and four binary links arranged in a symetrical fashion. Due to this symmetry, grounding link 2 or 4 gives the same inversion, as does grounding 5 or 7. This makes 2 of the possible 8 inversions the same leaving 6 distinct inversions. Distinct inversions are obtained by grounding link 1, 2, 3, 5, 6 or 8 (or 1, 3, 4, 6, 7, or 8) for a total of 6 distinct inversions.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-48-1

PROBLEM 2-48 Statement:

Find the mobility of the mechanism shown in Figure 3-33.

Solution:

See Figure 3-33 and Mathcad file P0248.

1.

Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints (two at B), and no half-joints.

Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-49-1

PROBLEM 2-49 Statement:

Find the mobility of the mechanism shown in Figure 3-34.

Solution:

See Figure 3-34 and Mathcad file P0249.

1.

Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints, and no half-joints. Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-50-1

PROBLEM 2-50 Statement:

Find the mobility of the mechanism shown in Figure 3-35.

Solution:

See Figure 3-35 and Mathcad file P0250.

1.

Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints, and no half-joints. Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-51-1

PROBLEM 2-51 Statement:

Find the mobility of the mechanism shown in Figure 3-36.

Solution:

See Figure 3-36 and Mathcad file P0251.

1.

Use equation 2.1c to determine the DOF (mobility). There are 8 links, 10 full pin joints (two at O4), and no half-joints. Kutzbach's mobility equation (2.1c) Number of links

L  8

Number of full joints

J1  10

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-52-1

PROBLEM 2-52 Statement:

Find the mobility of the mechanism shown in Figure 3-37.

Solution:

See Figure 3-37 and Mathcad file P0252.

1.

Use equation 2.1c to determine the DOF (mobility). There are 6 links, 7 full pin joints (two at O4), and no half-joints. Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-53-1

PROBLEM 2-53 Statement:

Figure P2-1e is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1e and Mathcad file P0253.

1.

Label the link numbers and joint letters for Figure P2-1e. J

K

8

I

8 1

9

1

L 10

M

7

a.

4 D C

A 1

2

2 3

E

H

B 5

F

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6

Link Order 5 nodes Quaternary Binary Binary Binary Binary

Link No. 7 8 9 10

6

G 1

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K L M

Joint Order 1 1 1 1 1 1 1 1 1 1 1 1 1

Half/Full Full Full Full Full Full Full Full Full Full Full Full Full Full

Joint Classification Grounded rotating joint Moving rotating joint Pure rolling joint Grounded rotating joint Moving rotating joint Moving translating joint Grounded rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Moving translating joint Moving rotating joint Grounded translating joint

Link Order Binary Ternary Binary Binary

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-54-1

PROBLEM 2-54 Statement:

Figure P2-1f is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1f and Mathcad file P0254.

1.

Label the link numbers and joint letters for Figure P2-1f.

F 5

E

5 1 6

1

G

H

4

a.

C 3

1

B A 1

2

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6

Link Order Quaternary Binary Ternary Binary Ternary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H

Joint Order 1 1 1 1 1 1 1 1

Half/Full Full Full Full Full Full Full Full Full

Joint Classification Grounded rotating joint Moving half joint Grounded translating joint Moving rotating joint Moving rotating joint Grounded rotating joint Moving half joint Grounded translating joint

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-55-1

PROBLEM 2-55 Statement:

Figure P2-1g is an example of a mechanism. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-1g and Mathcad file P0255.

1.

Label the link numbers and joint letters for Figure P2-1g.

I

D 4 E

5

1

4 C 2

1

a.

B

G

A

A

1

F

7

6

3

H

7 1 J

2 1

8 1

K

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4

Link Order 5 nodes Binary Binary Ternary

Link No. 5 6 7 8

Link Order Binary Binary Ternary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K

Joint Order 1 1 1 1 1 1 1 1 1 1 1

Half/Full Full Full Full Full Half Full Full Full Full Half Full

Joint Classification Grounded rotating joint Moving rolling joint Moving rotating joint Grounded rotating joint Moving sliding joint Grounded translating joint Moving rolling joint Moving rotating joint Grounded rotating joint Moving sliding joint Grounded translating joint

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-56-1

PROBLEM 2-56 Statement:

For the example linkage shown in Figure 2-4 find the number of links and their respective link orders, the number of joints and their respective orders, and the mobility of the linkage.

Solution:

See Figure 2-4 and Mathcad file P0256.

1.

Label the link numbers and joint letters for Figure 2-4 example.

K

1

9 8

I G

J

6

7 H

D 1

4

E

3 B A 1

C 2

1

5 F 1

2.

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5

3.

Link No. 6 7 8 9

Link Order Ternary Binary Binary Binary

Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H I J K

4.

Link Order 5 nodes Binary Ternary Binary Binary

Joint Order 1 1 1 2 1 1 1 1 1 1 1

Half/Full Full Half Full Full Full Full Full Full Full Full Full

Joint Classification Grounded rotating joint Moving sliding joint Grounded rotating joint Moving rotating joint Moving translating joint Grounded rotating joint Moving rotating joint Grounded rotating joint Moving rotating joint Moving rotating joint Grounded translating joint

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links

L  9

M  3  ( L  1 )  2  J1  J2

Number of full joints M1

J1  11

Number of half joints

J2  1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-57-1

PROBLEM 2-57 Statement:

For the linkage shown in Figure 2-5b find the number of joints and their respective orders, and mobility for: a) The condition of a finite load W in the direction shown and a zero F b) The condition of a finite load W and a finite load F both in the directions shown after link 6 is off the stop.

Solution:

See Figure 2-5b and Mathcad file P0257.

1.

Label the link numbers and joint letters for Figure 2-5b. 1

6

O6

W

D 3

A

B

1

F 5

4 O4

2 O2

1

C

1

a)

The condition of a finite load W in the direction shown and a zero F: Using the joint letters, determine each joint's order and whether each is a half or full joint. Link 6 is grounded so joint D is a grounded rotating joint and O6 is not a joint. For this condition there is a total of 6 full joints and no half joints. Joint Letter O2 B C D O4 A

Joint Order 1 1 1 1 1 1

Half/Full Full Full Full Full Full Full

Joint Classification Grounded rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Grounded rotating joint Moving rotating joint

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links L  5

Number of full joints

M  3  ( L  1 )  2  J1  J2

J1  6

Number of half joints

J2  0

M0

b) The condition of a finite load W and a finite load F both in the directions shown after link 6 is off the stop. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D O2 O4 O6

Joint Order 1 1 1 1 1 1 1

Half/Full Full Full Full Full Full Full Full

Joint Classification Moving rotating joint Moving rotating joint Moving rotating joint Moving rotating joint Grounded rotating joint Grounded rotating joint Grounded rotating joint

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links L  6 M  3  ( L  1 )  2  J1  J2

Number of full joints M1

J1  7

Number of half joints

J2  0

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-58-1

PROBLEM 2-58 Statement:

Figure P2-21a shows a "Nuremberg scissors" mechanism. Find its mobility.

Solution:

See Figure P2-21a and Mathcad file P0258.

1.

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links

L  10

Number of full joints

J1  13

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-59-1

PROBLEM 2-59 Statement:

Figure P2-21b shows a mechanism. Find its mobility and classify its isomer type.

Solution:

See Figure P2-21b and Mathcad file P0259.

1.

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

2.

M1

Using Figure 2-9, we see that the mechanism is a Stephenson's sixbar isomer ( the two ternary links are connected with two binary links and one dyad).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-60-1

PROBLEM 2-60 Statement:

Figure P2-21c shows a circular saw mounted on the coupler of a fourbar linkage. The centerline of the saw blade is at a coupler point that moves in an approximate straight line. Draw its kinematic diagram and determine its mobility.

Solution:

See Figure P2-21c and Mathcad file P0260.

1.

Draw a kinematic diagram of the mechanism. The saw's rotation axis is at point P and the saw is attached to link 3.

A

B 3 4

2 O2

O4

P

1

1 2.

Use equation 2.1c to calculate the DOF (mobility). Kutzbach's mobility equation (2.1c) Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-61-1

PROBLEM 2-61 Statement:

Figure P2-21d shows a log transporter. Draw a kinematic diagram of the mechanism, specify the number of links and joints, and then determine its mobility: a) For the transporter wheels locked and no log in the "claw" of the mechanism b) For the transporter wheels locked with it lifting a log c) For the transporter moving a log to a destination in a straight line.

Solution:

See Figure P2-21d and Mathcad file P0261.

1.

Draw a kinematic diagram of the mechanism. Link 1 is the frame of the transporter. Joint B is of order 3. Actuators E and F provide two inputs (to get x-y motion) and actuator H provides an additional input for clamping logs. G

D

9 12 H

9

C

I 9

11

8

J 10

4 A

3

2 O2

B

5

7

E O4

1

F

1

6 O6 1

a)

Wheels locked, no log in "claw." Kutzbach's mobility equation (2.1c) Number of links

L  12

Number of full joints

J1  15

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M3

b) Wheels locked, log held tighly in the "claw." With a log held tightly between links 9 and 10 a structure will be formed by links 9 through 12 and the log so that there will only be 9 links and 11 joints active. Number of links

L  9

Number of full joints

J1  11

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2 c)

M2

Transporter moving in a straight line with the log holding mechanism inactive. There are two tires, the transporter frame, and the ground, making 4 links and two points of contact with the ground and two axels, making 4 joints.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-61-2

Number of links

L  4

Number of full joints

J1  4

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-62-1

PROBLEM 2-62 Statement:

Figure P2-21d shows a plow mechanism attached to a tractor. Draw its kinematic diagram and find its mobility including the earth as a "link." a) When the tractor is stopped and the turnbuckle is fixed. (Hint: Consider the tractor and the wheel to be one with the earth.) b) When the tractor is stopped and the turnbuckle is being adjusted. (Same hint.) c) When the tractor is moving and the turnbuckle is fixed. (Hint: Add the moving tractor's DOF to those found in part a.)

Solution:

See Figure P2-21e and Mathcad file P0262.

1.

Draw a kinematic diagram of the mechanism with the ground, tractor wheels, and tractor frame as link 1. Joint O4 is of order 2 and joint F is a half joint. The plow and its truss structure attach at joints D and E. Since the turnbuckle is fixed it can be modeled as a single binary link (6).

C

6

5 O4 1

D

B

4

7 7

3 A 2

7

2 O2

E 1

F

7 1

a)

Tractor stopped and turnbuckle fixed. Kutzbach's mobility equation (2.1c) Number of links

L  7

Number of full joints

J1  8

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2

M1

b) When the tractor is stopped and the turnbuckle is being adjusted. Between joints C and D we now have 2 net links (2 links threaded LH and RH on one end and the turnbuckle body) and 1 additional helical full joint. Number of links L  8 Number of full joints

J1  9

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2 c)

M2

When the tractor is moving and the turnbuckle is fixed. If the tractor moved only in a straight line we would add 1 DOF to the 1 DOF that we got in part a for a total of M = 2. More realistically, the tractor can turn and move up and down hills so that we would add 3 DOF to the 1 DOF of part a to get a total of 4 DOF.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-63-1

PROBLEM 2-63 Statement:

Figure P2-22 shows a Hart's inversor sixbar linkage. a) Is it a Watt or Stephenson linkage? b) Determine its inversion, i.e. is it a type I, II, or III?

Solution:

See Figure P2-22, Figure 2-14, and Mathcad file P0263.

1.

From Figure 2-14 we see that the Watt's sixbar has the two ternary links connected with a common joint while the Stephenson's sixbar has the two ternary links connected by binary links. Thus, Hart's inversor is a Watt's sixbar (links 1 and 2, the ternary links, are connected at a common joint). Further, the Hart's linkage is a Watt's sixbar inversion I since neither of the ternary links is grounded.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-64-1

PROBLEM 2-64 Statement:

Figure P2-23 shows the top view of the partially open doors on one side of an entertainment center cabinet. The wooden doors are hinged to each other and one door is hinged to the cabinet. There is also a ternary, metal link attached to the cabinet and door through pin joints. A spring-loaded piston-in cylinder device attaches to the ternary link and the cabinet through pin joints. Draw a kinematic diagram of the door system and find the mobility of this mechanism.

Solution:

See Figure P2-23 and Mathcad file P0264.

1.

Draw the kinematic diagram of this sixbar mechanism. The spring-loaded piston is just an in-line sliding joint (links 5 and 6, and joint F). The doors are binary links (3 and 4), and the metal ternary link (2) has nodes at A, B, and C. Link 1 is the cabinet.

A Cabinet

1

2

4

E Cabinet

B

D

Door

1

5 Cylinder F 6

Door

2

3

Link

G Cabinet 1 C

2.

Use equation 2.1c (Kutzbach's modification) to calculate the mobility. Number of links

L  6

Number of full joints

J1  7

Number of half joints

J2  0 M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-65-1

PROBLEM 2-65 Statement:

Figure P2-24a shows the seat and seat-back of a reclining chair with the linkage that connects them to the chair frame. Draw its kinematic diagram and determine its mobility with respect to the frame of the chair.

Solution:

See Figure P2-24a and Mathcad file P0265.

1.

Draw a kinematic diagram of the mechanism. The chair-back attaches to link 2 and the seat with the attached slider slot is link 3. The node at at C is a half-joint as it allows two degrees of freedom.

A 1 2

3

B

C 2.

Determine the mobility of the mechanism. Kutzbach's mobility equation (2.1c) Number of links

L  3

Number of full joints

J1  2

Number of half joints

J2  1

M  3  ( L  1 )  2  J1  J2

M1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-66-1

PROBLEM 2-66 Statement:

Figure P2-24b shows the mechanism used to extend the foot support on a reclining chair. Draw its kinematic diagram and determine its mobility with respect to the frame of the chair.

Solution:

See Figure P2-24b and Mathcad file P0266.

1.

Draw a kinematic diagram of the mechanism. Link 1 is the frame.

D E 1

J

4 6

3

C 4

5

G

5 6

A 3 1

7

F

H

2

B 2.

Determine the mobility of the mechanism. Kutzbach's mobility equation (2.1c) Number of links

L  8

Number of full joints

J1  10

Number of half joints

J2  0

M  3  ( L  1 )  2  J1  J2

8

M1

K

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-67-1

PROBLEM 2-67 Statement:

Figure P2-24b shows the mechanism used to extend the foot support on a reclining chair. Number the links, starting with 1. (Hint: Don't forget the "ground" link.) Letter the joints alphabetically, starting with A. a. Using the link numbers, describe each link as binary, ternary, etc. b. Using the joint letters, determine each joint's order. c. Using the joint letters, determine whether each is a half or full joint.

Solution:

See Figure P2-24b and Mathcad file P0267.

1.

Label the link numbers and joint letters for Figure P2-24b.

D E 1

J

4 6

3

C 4

5

G

5 6

A 3 1

F

2

8

7

H

B a.

Using the link numbers, describe each link as binary, ternary, etc. Link No. 1 2 3 4 5 6 7 8

Link Order Binary Binary Ternary Ternary Ternary Ternary Binary Binary

b,c. Using the joint letters, determine each joint's order and whether each is a half or full joint. Joint Letter A B C D E F G H J K

Joint Order 1 1 1 1 1 1 1 1 1 1

Half/Full Full Full Full Half Full Full Full Full Full Full

K

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 2-68-1

PROBLEM 2-68 Statement:

Figure P2-24 shows a sixbar linkage. a) Is it a Watt or Stephenson linkage? b) Determine its inversion, i.e. is it a type I, II, or III?

Solution:

See Figure P2-24, Figure 2-14, and Mathcad file P0268.

1.

From Figure 2-14 we see that the Watt's sixbar has the two ternary links connected with a common joint while the Stephenson's sixbar has the two ternary links connected by binary links. Thus, the sixbar linkage shown is a Watt's sixbar (links 3 and 4, the ternary links, are connected at a common joint). Further, the linkage shown is a Watt's sixbar inversion I since neither of the ternary links is grounded.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-1-1

PROBLEM 3-1 Statement:

Define the following examples as path, motion, or function generation cases. a. b. c. d. e.

Solution:

A telescope aiming (star tracking) mechanism A backhoe bucket control mechanism A thermostat adjusting mechanism A computer printing head moving mechanism An XY plotter pen control mechanism

See Mathcad file P0301.

a.

Path generation. A star follows a 2D path in the sky.

b.

Motion generation. To dig a trench, say, the position and orientation of the bucket must be controlled.

c.

Function generation. The output is some desired function of the input over some range of the input.

d.

Path generation. The head must be at some point on a path.

e.

Path generation. The pen follows a straight line from point to point.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-2-1

PROBLEM 3-2 Statement:

Design a fourbar Grashof crank-rocker for 90 deg of output rocker motion with no quick return. (See Example 3-1.) Build a cardboard model and determine the toggle positions and the minimum transmission angle.

Given:

Output angle

Solution:

See Example 3-1 and Mathcad file P0302.

Design choices: 1.

θ  90 deg

Link lengths:

L3  6.000

Link 3

L4  2.500

Link 4

2.

Draw the output link O4B in both extreme positions, B1 and B2, in any convenient location such that the desired angle of motion 4 is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical. Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended to the left.

3.

Layout the distance A1B1 along extended line B1B2 equal to the length of link 3. Mark the point A1.

4.

Bisect the line segment B1B2 and layout the length of that radius from point A1 along extended line B1B2. Mark the resulting point O2 and draw a circle of radius O2A1 with center at O2.

5.

Label the other intersection of the circle and extended line B1B2, A2.

6.

Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2  1.76775

7.

Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1  6.2550 1.7677

6.0000

3.5355

2

A2

A1

3

B2

B1

O2 90.00° 1 4 6.2550

8.

O4

Find the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L3 L4  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-3-1

PROBLEM 3-3 Statement:

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of output rocker motion with no quick-return. (See Example 3-2.) Build a cardboard model and determine the toggle positions and the minimum transmission angle.

Given:

Coordinates of A1, B1, A2, and B2 (with respect to A1):

Solution:

xA1  0.00

xB1  1.721

xA2  2.656

xB2  5.065

yA1  0.00

yB1  1.750

yA2  0.751

yB2  0.281

See Figure P3-1 and Mathcad file P0303.

Design choices:

Link length:

Link 3

L3  5.000

Link 4

L4  2.000

1.

Following the notation used in Example 3-2 and Figure 3-5, change the labels on points A and B in Figure P3-1 to C and D, respectively. Draw the link CD in its two desired positions, C1D1 and C2D2, using the given coordinates.

2.

Draw construction lines from C1 to C2 and D1 to D2.

3.

Bisect line C1C2 and line D1D2 and extend their perpendicular bisectors to intersect at O4.

4.

Using the length of link 4 (design choice) as a radius, draw an arc about O4 to intersect both lines O4C1 and O4C2. Label the intersections B1 and B2.

5.

Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended to the left.

6.

Layout the distance A1B1 along extended line B1B2 equal to the length of link 3. Mark the point A1.

7.

Bisect the line segment B1B2 and layout the length of that radius from point A1 along extended line B1B2. Mark the resulting point O2 and draw a circle of radius O2A1 with center at O2.

8.

Label the other intersection of the circle and extended line B1B2, A2.

9.

Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2  0.9469

10. Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1  5.3013

5.3013 5.0000 0.9469 A1 2

O2

O4

1

A2

3

B1

C1

4

R2.000

B2 C2 D1

D2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-3-2

11. Find the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L3 L4  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-4-1

PROBLEM 3-4 Statement:

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of coupler motion. (See Example 3-3.) Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad. (See Example 3-4.)

Given:

Position 1 offsets:

Solution:

See figure below for one possible solution. Input file P0304.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-04.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-04.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xA1B1  1.721  in

yA1B1  1.750  in

1.

Connect the end points of the two given positions of the line AB with construction lines, i.e., lines from A1 to A2 and B1 to B2.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of A1A2 was extended downward and the bisector of B1B2 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4A and O6B were each selected to be 4.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 6.457 in.

4.

The fourbar stage is now defined as O4ABO6 with link lengths Link 5 (coupler) L5 

2

xA1B1  yA1B1

Link 4 (input)

L4  4.000  in

Ground link 1b

L1b  6.457  in

2

L5  2.454 in Link 6 (output)

L6  4.000  in

5.

Select a point on link 4 (O4A) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it D. (Note that link 4 is now a ternary link with nodes at O4, D, and A.) In the solution below the distance O4D was selected to be 2.000 in.

6.

Draw a construction line through D1D2 and extend it to the left.

7.

Select a point on this line and call it O2. In the solution below the distance CD was selected to be 4.000 in.

8.

Draw a circle about O2 with a radius of one-half the length D1D2 and label the intersections of the circle with the extended line as C1 and C2. In the solution below the radius was measured as 0.6895 in.

9.

The driver fourbar is now defined as O2CDO4 with link lengths Link 2 (crank)

L2  0.6895 in

Link 4a (rocker) L4a  2.000  in

Link 3 (coupler) L3  4.000  in Link 1a (ground) L1a  4.418  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Shortest link

S  L2

S  0.6895 in

Longest link

L  L1a

L  4.4180 in

Other links

P  L3

P  4.0000 in

Q  L4a

Q  2.0000 in

DESIGN OF MACHINERY - 5th Ed.

Condition( a b c d ) 

SOLUTION MANUAL 3-4-2

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( S L P Q)  "Grashof" O6

6

Ground Link 1b

A1

6 50.231°

5 C1

A2

5

B2

47.893°

2 O2 3

4

C2

B1 D1

4

3 D2

Ground Link 1a

O4

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4ABO6 is non-Grashoff with toggle positions at 2 = -71.9 deg and +71.9 deg. The minimum transmission angle is 35.5 deg. The fourbar operates between 2 = +21.106 deg and -19.297 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-5-1

PROBLEM 3-5 Statement:

Design a fourbar mechanism to give the three positions of coupler motion with no quick return shown in Figure P3-2. (See also Example 3-5.) Ignore the points O2 and O4 shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.

Solution:

See Figure P3-2 and Mathcad file P0305.

Design choices: L5  4.250

Length of link 5:

L4b  1.375

Length of link 4b:

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw construction lines from point C1 to C2 and from point C2 to C3.

3.

Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.

4.

Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.

5.

Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.

6.

Line C1D1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2CDO4 and has link lengths of Ground link 1a

L1a  0.718

Link 2

L2  2.197

Link 3

L3  2.496

Link 4

L4  3.704 1.230

O6 0.718 1b

2.197 O4 O2

2

C1

6 A

5

1a

4.328 B

2.496

D3

C3

3 4 C2 D1

D2 3.704

7.

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-5-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" 8.

9.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4B was selected to be L4b  1.375 . Draw a construction line through B1B3 and extend it up to the right.

10. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6  1.230. 12. The driver fourbar is now defined as O4BAO6 with link lengths Link 6 (crank)

L6  1.230

Link 5 (coupler) L5  4.250 Link 1b (ground) L1b  4.328 Link 4b (rocker) L4b  1.375 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-6-1

PROBLEM 3-6 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-2 using the fixed pivots O2 and O4 shown. Build a cardboard model and determine the toggle positions and the minimum transmission angle. Add a driver dyad.

Solution:

See Figure P3-2 and Mathcad file P0306.

Design choices: Length of link 5:

L5  5.000

L2b  2.000

Length of link 2b:

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.

3.

Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.

4.

Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.

5.

Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.

6.

Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.

7.

The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.

O2''

C1

D3

O2'

C3 C2

O4'' D1

O4'

8.

O2

Draw construction lines from point E1 to E2 and from point E2 to E3.

D2

O4

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 3-6-2

Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.

10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a

L1a  4.303

Link 2

L2  8.597

Link 3

L3  1.711

Link 4

L4  7.921

E3

G

3

H

E2 F3

4

2

F2 E1

1a O2

F1 O4

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-6-3

14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b  2.000 . 15. Draw a construction line through B1B3 and extend it up to the right. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6  0.412. 18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)

L6  0.412

Link 5 (coupler) L5  5.000 Link 1b (ground) L1b  5.369 Link 2b (rocker) L2b  2.000 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5  "Grashof"

G2

G3

H1

G1 3

H2 H3

2

C1

A3 O6

6

D3

C3

A1 5

C2

D1 B3

O2

D2 B1

4

1a

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-7-1

PROBLEM 3-7 Statement:

Given: Solution: 1.

Repeat Problem 3-2 with a quick-return time ratio of 1:1.4. (See Example 3.9). Design a fourbar Grashof crank-rocker for 90 degrees of output rocker motion with a quick-return time ratio of 1:1.4. 1 Time ratio Tr  1.4 See figure below for one possible solution. Also see Mathcad file P0307.

Determine the crank rotation angles  and , and the construction angle  from equations 3.1 and 3.2. Tr = Solving for , and 

β 

α

α  β = 360  deg

β 360  deg

β  210 deg

1  Tr

α  360  deg  β

α  150 deg

δ  β  180  deg

δ  30 deg

2.

Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 90 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 2.000 in.

3.

Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below, the line is 30 deg to the horizontal.

4.

Layoff a line through B2 that makes an angle  with the line in step 3 (60 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.

5.

From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.

3.8637 = b

90.0000°

B2 B1

B2

2.0000 = c

1.0353 = a

LAYOUT

B1

4 3 O4

O4 A1 2 O2

O2

3.0119 = d

A2 LINKAGE DEFINITION 

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 3-7-2

For this solution, the link lengths are: Ground link (1)

d  3.0119 in

Crank (2)

a  1.0353 in

Coupler (3)

b  3.8637 in

Rocker (4)

c  2.000  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-8-1

PROBLEM 3-8 Statement:

Design a sixbar drag link quick-return linkage for a time ratio of 1:2, and output rocker motion of 60 degrees. (See Example 3-10.)

Given:

Time ratio

Solution: 1.

Tr 

1 2

See figure below for one possible solution. Also see Mathcad file P0308.

Determine the crank rotation angles  and  from equation 3.1. Tr = Solving for and 

β 

α

α  β = 360  deg

β 360  deg 1  Tr

α  360  deg  β

β  240 deg α  120 deg

2.

Draw a line of centers XX at any convenient location.

3.

Choose a crank pivot location O2 on line XX and draw an axis YY perpendicular to XX through O2.

4.

Draw a circle of convenient radius O2A about center O2. In the solution below, the length of O2A is a  1.000  in.

5.

Lay out angle  with vertex at O2, symmetrical about quadrant one.

6.

Label points A1 and A2 at the intersections of the lines subtending angle  and the circle of radius O2A.

7.

8.

Set the compass to a convenient radius AC long enough to cut XX in two places on either side of O2 when swung from both A1 and A2. Label the intersections C1 and C2. In the solution below, the length of AC is b  1.800  in. The line O2A is the driver crank, link 2, and the line AC is the coupler, link 3.

9.

The distance C1C2 is twice the driven (dragged) crank length. Bisect it to locate the fixed pivot O4.

10. The line O2O4 now defines the ground link. Line O4C is the driven crank, link 4. In the solution below, O4C measures c  2.262  in and O2O4 measures d  0.484  in. 11. Calculate the Grashoff condition. If non-Grashoff, repeat steps 7 through 11 with a shorter radius in step 7. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 12. Invert the method of Example 3-1 to create the output dyad using XX as the chord and O4C1 as the driving crank. The points B1 and B2 will lie on line XX and be spaced apart a distance that is twice the length of O4C (link 4). The pivot point O6 will lie on the perpendicular bisector of B1B2 at a distance from XX which subtends the specified output rocker angle, which is 60 degrees in this problem. In the solution below, the length BC was chosen to be e  5.250  in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-8-2

LAYOUT OF SIXBAR DRAG LINK QUICK RETURN WITH TIME RATIO OF 1:2 a = 1.000 b = 1.800 c = 2.262 d = 0.484 e = 5.250 f = 4.524

13. For the design choices made (lengths of links 2, 3 and 5), the length of the output rocker (link 6) was measured as f  4.524  in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-9-1

PROBLEM 3-9 Statement:

Design a crank-shaper quick-return mechanism for a time ratio of 1:3 (Figure 3-14, p. 112).

Given:

Time ratio

Solution:

See Figure 3-14 and Mathcad file P0309.

TR 

1 3

Design choices:

1.

Length of link 2 (crank)

L2  1.000

Length of link 5 (coupler)

L5  5.000

S  4.000

Length of stroke

Calculate  from equations 3.1. TR 

α β

α  β  360  deg

α 

360  deg 1

α  90.000 deg

1 TR

2.

Draw a vertical line and mark the center of rotation of the crank, O2, on it.

3.

Layout two construction lines from O2, each making an angle /2 to the vertical line through O2.

4.

Using the chosen crank length (see Design Choices), draw a circle with center at O2 and radius equal to the crank length. Label the intersections of the circle and the two lines drawn in step 3 as A1 and A2.

5.

Draw lines through points A1 and A2 that are also tangent to the crank circle (step 2). These two lines will simultaneously intersect the vertical line drawn in step 2. Label the point of intersection as the fixed pivot center O4.

6.

Draw a vertical construction line, parallel and to the right of O2O4, a distance S/2 (one-half of the output stroke length) from the line O2O4.

7.

Extend line O4A1 until it intersects the construction line drawn in step 6. Label the intersection B1.

8.

Draw a horizontal construction line from point B1, either to the left or right. Using point B1 as center, draw an arc of radius equal to the length of link 5 (see Design Choices) to intersect the horizontal construction line. Label the intersection as C1.

9.

Draw the slider blocks at points A1 and C1 and finish by drawing the mechanism in its other extreme position.

STROKE 4.000 C2

2.000

6

C1

B2

B1

5 O2 4

2 A2

3 O4

A1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-10-1

PROBLEM 3-10 Statement:

Find the two cognates of the linkage in Figure 3-17 (p. 116). Draw the Cayley and Roberts diagrams. Check your results with program FOURBAR.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2

Crank

L2  1

A1P  1.800

δ  34.000 deg

Coupler

L3  3

Rocker

L4  3.5

B1P  1.813

γ  33.727 deg

See Figure 3-17 and Mathcad file P0310.

Draw the original fourbar linkage, which will be cognate #1, and align links 2 and 4 with the coupler. A1

B1

3

2

A1

3

OA

P

B1

4

2 OA P 4 1

OB

OB

2.

Construct lines parallel to all sides of the aligned fourbar linkage to create the Cayley diagram (see Figure 3-24) OA

2

A1

B1

3

OB

4

10

5 A2

B3

P

9 B2

6 8 7

A3

OC A1

3.

4.

Return links 2 and 4 to their fixed pivots OA and OB and establish OC as a fixed pivot by making triangle OAOBOC similar to A1B1P. Separate the three cognates. Point P has the same path motion in each cognate.

2 4

OA

10

P

Calculate the cognate link lengths based on the geometry of the Cayley diagram (Figure 3-24c, p. 114). L5  B1P L6 

L4 L3

 B1P

9

8

6

A2 OC OB

L5  1.813 L6  2.115

B2

A3 7

5.

B1

3

5 B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-10-2

P

P

OA

B2

10 A3

9 OC

7

8 A2 OC

6 OB 5

Cognate #2

B3

Cognate #3

L10  A1P

L10  1.800

L7  L9

B1P

L8  L6

A1P

L9 

L2 L3

 A1P

L9  0.600

L7  0.604

A1P

L8  2.100

B1P

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  L1AC 

L1 L3 L1 L3

 B1P

L1BC  1.209

 A1P

L1AC  1.200

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  2.100





δ  180  deg  δ  γ

δ  247.727 deg

A2P  L2

A2P  1.000

δ  δ

δ  34.000 deg

SUMMARY OF COGNATE SPECIFICATIONS:

6.

Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.000

L1AC  1.200

L1BC  1.209

Crank length

L2  1.000

L10  1.800

L7  0.604

Coupler length

L3  3.000

L9  0.600

L6  2.115

Rocker length

L4  3.500

L8  2.100

L5  1.813

Coupler point

A1P  1.800

A2P  1.000

A3P  2.100

Coupler angle

δ  34.000 deg

δ  34.000 deg

δ  247.727 deg

Verify that the three cognates yield the same coupler curve by entering the original link lengths in program FOURBAR and letting it calculate the cognates.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-10-3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-10-4

Note that cognate #2 is a Grashof double rocker and, therefore, cannot trace out the entire coupler curve.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-11-1

PROBLEM 3-11 Statement:

Find the three equivalent geared fivebar linkages for the three fourbar cognates in Figure 3-25a (p. 125). Check your results by comparing the coupler curves with programs FOURBAR and FIVEBAR.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  39.5

Crank

L2  15.5

Coupler

L3  14.0

Rocker

L4  20.0

A1P  26.0

See Figure 3-25a and Mathcad file P0311.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  23.270

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  63.000 deg

γ  84.5843 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  23.270

L6 

L10  A1P

L10  26.000

L9 

L7  25.763

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  33.243

 A1P

L9  28.786

A1P

L8  37.143

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  20.000

A2P  L2

A2P  15.500

δ  γ

δ  84.584 deg

δ  δ

δ  63.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  65.6548

L1AC 

L1 L3

 A1P

L1AC  73.3571

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  39.500

L1AC  73.357

L1BC  65.655

Crank length

L2  15.500

L10  26.000

L7  25.763

Coupler length

L3  14.000

L9  28.786

L6  33.243

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-11-2

Rocker length

L4  20.000

L8  37.143

L5  23.270

Coupler point

A1P  26.000

A2P  15.500

A3P  20.000

Coupler angle

δ  63.000 deg

δ  63.000 deg

δ  84.584 deg

OC 8 B2

7

B3 9

P

6 A2 A3 10 3

A1

5

B1 4

2 1

OA

OB

4.

The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. They are shown individually below with their associated gears. P

A2 A3 10 5

OA OB

OC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-11-3

OC

7

B3

OD P

A1 2 OA

OC 8 B2

P

OE

B1 4

OB

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-11-4

SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  39.500

L1AC  73.357

L1BC  65.655

Crank length

L10  26.000

L2  15.500

L4  20.000

Coupler length

A2P  15.500

A1P  26.000

L5  23.270

Rocker length

A3P  20.000

L8  37.143

L7  25.763

Crank length

L5  23.270

L7  25.763

L8  37.143

Coupler point

A2P  15.500

A1P  26.000

B1P  23.270

Coupler angle

δ  0.00 deg

δ  0.00 deg

δ  0.00 deg

5.

Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path.

6.

Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-11-5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-12-1

PROBLEM 3-12 Statement:

Design a sixbar, single-dwell linkage for a dwell of 90 deg of crank motion, with an output rocker motion of 45 deg.

Given:

Crank dwell period: 90 deg. Output rocker motion: 45 deg.

Solution:

See Figures 3-20, 3-21, and Mathcad file P0312.

Design choices: Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR  2.5 Coupler angle, γ  72 deg Crank length, L2  2.000 1.

For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  5.000

Rocker link (4) length

L4  CLR L2

L4  5.000

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  54.000 deg AP  5.878

Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 135 to 225 deg..

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-12-2

FOURBAR for Windows Angle Step Deg 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 3.

File P03-12.DAT

Coupler Pt X

Coupler Pt Y

Coupler Pt Mag

-1.961 -2.178 -2.393 -2.603 -2.809 -3.008 -3.201 -3.386 -3.563 -3.731 -3.890 -4.038 -4.176 -4.302 -4.417 -4.520 -4.610 -4.688 -4.753

7.267 7.128 6.977 6.813 6.638 6.453 6.257 6.052 5.839 5.617 5.389 5.155 4.915 4.671 4.424 4.175 3.924 3.673 3.424

7.527 7.453 7.375 7.293 7.208 7.119 7.028 6.935 6.840 6.744 6.646 6.548 6.450 6.351 6.252 6.153 6.054 5.956 5.858

Coupler Pt Ang

105.099 106.992 108.930 110.911 112.933 114.994 117.093 119.228 121.396 123.595 125.822 128.075 130.351 132.646 134.955 137.274 139.598 141.921 144.235

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 135, 180, and 225 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.

y 135 P

PSEUDO-ARC

180 B

225 3 D A

4

2 x O2

O4

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 3-12-3

The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 135 to 225 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E. FOURBAR for Windows Angle Step Deg 300 310 320 330 340 350 0 10 20 30 40 50 60

File P03-12.DAT

Coupler Pt X

Coupler Pt Y

Coupler Pt Mag

-4.271 -4.054 -3.811 -3.526 -3.159 -2.651 -1.968 -1.181 -0.441 0.126 0.478 0.631 0.617

0.869 0.926 1.165 1.628 2.343 3.286 4.336 5.310 6.085 6.654 7.068 7.373 7.598

4.359 4.158 3.985 3.883 3.933 4.222 4.762 5.440 6.101 6.656 7.085 7.400 7.623

Coupler Pt Ang

168.495 167.133 162.998 155.215 143.437 128.892 114.414 102.534 94.142 88.914 86.129 85.111 85.354

y 135 P

PSEUDO-ARC

180 B

5

4

225 3

AXIS OF SYMMETRY

D A

E

2

x O2 5.

O4

The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 45 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. See next page for the completed layout and further linkage specifications.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-12-4

y 135 P

PSEUDO-ARC

180

45.000° B

5

4

225

O6 BISECTOR

3 D A

E

2

x O4

O2

SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar: Ground link

L1  4.000

Crank

L2  2.000

Coupler

L3  5.000

Rocker

L4  5.000

Coupler point

AP  5.878

δ  54.000 deg

Added dyad: Coupler

L5  6.363

Output

L6  2.855

Pivot O6

x  3.833

y  3.375

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-13-1

PROBLEM 3-13 Statement:

Design a sixbar double-dwell linkage for a dwell of 90 deg of crank motion, with an output of rocker motion of 60 deg, followed by a second dwell of about 60 deg of crank motion.

Given:

Initial crank dwell period: 90 deg Final crank dwell period: 60 deg (approx.) Output rocker motion between dwells: 60 deg

Solution:

See Mathcad file P0313.

Design choices:

1.

Ground link length

L1  5.000

Crank length

L2  2.000

Coupler link length

L3  5.000

Rocker length

L2  5.500

Coupler point data:

AP  8.750

δ  50 deg

In the absence of a linkage atlas it is difficult to find a coupler curve that meets the specifications. One approach is to start with a symmetrical linkage, using the data in Figure 3-21. Then, using program FOURBAR and by trial-and-error, adjust the link lengths and coupler point data until a satisfactory coupler curve is found. The link lengths and coupler point data given above were found this way. The resulting coupler curve is shown below and a printout of the coupler curve coordinates taken from FOURBAR is also printed below.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-13-2

FOURBAR for Windows Angle Step Deg 0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000

File P03-13.DAT

Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang

9.353 9.846 10.167 10.286 10.226 10.031 9.746 9.406 9.039 8.665 8.301 7.958 7.647 7.376 7.151 6.977 6.853 6.778 6.748 6.755 6.792 6.847 6.912 6.976 7.031 7.073 7.099 7.112 7.120 7.137 7.184 7.288 7.481 7.792 8.233 8.779 9.353

4.742 4.159 3.491 2.840 2.274 1.815 1.457 1.180 0.963 0.787 0.637 0.507 0.391 0.291 0.209 0.151 0.126 0.140 0.201 0.316 0.488 0.719 1.008 1.351 1.741 2.170 2.626 3.098 3.570 4.030 4.458 4.834 5.131 5.312 5.332 5.147 4.742

10.487 10.688 10.750 10.671 10.476 10.194 9.854 9.480 9.090 8.701 8.325 7.974 7.657 7.382 7.154 6.978 6.854 6.779 6.751 6.763 6.809 6.885 6.985 7.105 7.243 7.398 7.569 7.757 7.965 8.196 8.455 8.746 9.072 9.430 9.809 10.177 10.487

26.886 22.900 18.951 15.437 12.537 10.257 8.503 7.152 6.081 5.187 4.391 3.644 2.928 2.256 1.671 1.242 1.051 1.182 1.708 2.678 4.110 5.996 8.300 10.963 13.911 17.057 20.302 23.536 26.632 29.448 31.819 33.555 34.446 34.286 32.931 30.384 26.886

2.

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6. The coordinates of O6 are (6.729, 0.046).

3.

Design link 6 to lie along these straight tangents, pivoted at O6. Provide a slot in link 6 to accommodate slider block 5, which pivots on the coupler point P. (See next page).

4.

The beginning and ending crank angles for the dwell portions of the motion are indicated on the layout and in the table above by boldface entries.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-13-3

y 6 B 60.000°

260 5 4

P

3

90 O2 2

A

170 x O4

150 O6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-14-1

PROBLEM 3-14 Statement:

Figure P3-3 shows a treadle-operated grinding wheel driven by a fourbar linkage. Make a cardboard model of the linkage to any convenient scale. Determine its minimum transmission angles. Comment on its operation. Will it work? If so, explain how it does.

Given:

Link lengths:

Link 2

L2  0.60 m

Link 3

L3  0.75 m

Link 4

L4  0.13 m

Link 1

L1  0.90 m

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Solution: 1.

See Mathcad file P0314.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:

Condition L1 L2 L3 L4  "Grashof" Class I-4, Grashof rocker-rocker-crank, GRRC, since the shortest link is the output link.

2.

As a Grashof rocker-crank, the minimum transmission angle will be 0 deg, twice per revolution of the output (link 4) crank.

3.

Despite having transmission angles of 0 deg twice per revolution, the mechanism will work. That is, one will be able to drive the grinding wheel from the treadle (link 2). The reason is that the grinding wheel will act as a flywheel and will carry the linkage through the periods when the transmission angle is low. Typically, the operator will start the motion by rotating the wheel by hand.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-15-1

PROBLEM 3-15 Statement:

Figure P3-4 shows a non-Grashof fourbar linkage that is driven from link O2A. All dimensions are in centimeters (cm). (a) (b) (c) (d)

Given:

Solution: 1.

Find the transmission angle at the position shown. Find the toggle positions in terms of angle AO2O4. Find the maximum and minimum transmission angles over its range of motion. Draw the coupler curve of point P over its range of motion.

Link lengths: Link 1 (ground)

L1  95 mm

Link 2 (driver)

L2  50 mm

Link 3 (coupler)

L3  44 mm

Link 4 (driven)

L4  50 mm

See Figure P3-4 and Mathcad file P0315.

To find the transmission angle at the position shown, draw the linkage to scale in the position shown and measure the transmission angle ABO4. P

y 77.097°

B

3 A 2

4

O4

50.000° 1

x

O2

The measured transmission angle at the position shown is 77.097 deg. 2.

The toggle positions will be symmetric with respect to the O2O4 axis and will occur when links 3 and 4 are colinear. Use the law of cosines to calculate the angle of link 2 when links 3 and 4 are in toggle.

 L3  L42  L12  L22  2 L1 L2 cosθ where 2 is the angle AO2O4. Solving for 2,

 L12  L22   L3  L4 2 θ  acos   2  L1 L2   The other toggle position occurs at θ  73.558 deg

θ  73.558 deg

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 3-15-2

Use the program FOURBAR to find the maximum and minimum transmission angles.

FOURBAR for Windows

File P03-15

Design #

1

Angle Step Deg

Theta2 Mag degrees

Theta3 Mag degrees

Theta4 Mag degrees

Trans Ang Mag degrees

-73.557 -58.846 -44.134 -29.423 -14.711 0.000 14.711 29.423 44.134 58.846 73.557

-73.557 -58.846 -44.134 -29.423 -14.711 0.000 14.711 29.423 44.134 58.846 73.557

30.861 64.075 77.168 83.147 80.604 68.350 50.145 32.106 16.173 0.566 -30.486

-149.490 -176.312 170.696 157.514 142.103 125.123 111.644 106.473 109.701 120.179 149.159

0.352 60.387 86.472 74.367 61.499 56.773 61.499 74.367 86.472 60.387 0.355

A partial output from FOURBAR is shown above. From it, we see that the maximum transmission angle is approximately 86.5 deg and the minimum is zero deg. 4.

Use program FOURBAR to draw the coupler curve with respect to a coordinate frame through O2O4.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-16-1

PROBLEM 3-16 Statement:

Draw the Roberts diagram for the linkage in Figure P3-4 and find its two cognates. Are they Grashof or non-Grashof?

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  9.5

Crank

L2  5

Coupler

L3  4.4

Rocker

L4  5

A1P  8.90

See Figure P3-4 and Mathcad file P0316.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  7.401

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  56.000 deg

γ  94.4701 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  7.401

L6 

L10  A1P

L10  8.900

L9 

L7  8.410

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  8.410

 A1P

L9  10.114

A1P

L8  10.114

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  5.000

A2P  L2

A2P  5.000

δ  γ

δ  94.470 deg

δ  δ

δ  56.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  15.9793

L1AC 

L1 L3

 A1P

L1AC  19.2159

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  9.500

L1AC  19.216

L1BC  15.979

Crank length

L2  5.000

L10  8.900

L7  8.410

Coupler length

L3  4.400

L9  10.114

L6  8.410

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-16-2

Rocker length

L4  5.000

L8  10.114

L5  7.401

Coupler point

A1P  8.900

A2P  5.000

A3P  5.000

Coupler angle

δ  56.000 deg

δ  56.000 deg

δ  94.470 deg

B2

OC

8

7

B3

P 9 6 A3

A2

5

3

B1

10

4

A1 2

OB 1

OA

6.

Determine the Grashof condition of each of the two additional cognates. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Cognate #2:

Condition L10 L1AC L8 L9  "non-Grashof"

Cognate #3:

Condition L5 L1BC L6 L7  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-17-1

PROBLEM 3-17 Statement:

Design a Watt-I sixbar to give parallel motion that follows the coupler path of point P of the linkage in Figure P3-4.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  9.5

Crank

L2  5

Coupler

L3  4.4

Rocker

L4  5

A1P  8.90

See Figure P3-4 and Mathcad file P0317.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  7.401

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  56.000 deg

γ  94.4701 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  7.401

L6 

L10  A1P

L10  8.900

L9 

L7  8.410

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  8.410

 A1P

L9  10.114

A1P

L8  10.114

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  5.000

A2P  L2

A2P  5.000

δ  γ

δ  94.470 deg

δ  δ

δ  56.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  15.9793

L1AC 

L1 L3

 A1P

L1AC  19.2159

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  9.500

L1AC  19.216

L1BC  15.979

Crank length

L2  5.000

L10  8.900

L7  8.410

Coupler length

L3  4.400

L9  10.114

L6  8.410

DESIGN OF MACHINERY - 5th Ed.

B2

SOLUTION MANUAL 3-17-2

Rocker length

L4  5.000

L8  10.114

L5  7.401

Coupler point

A1P  8.900

A2P  5.000

A3P  5.000

Coupler angle

δ  56.000 deg

δ  56.000 deg

δ  94.470 deg

OC

8

7

B3

P 9 6 A3

A2

P

5

3 10

B1 4

A1 2

OB 1 3

OA

4

A1

4.

5.

All three of these cognates are non-Grashof and will, therefore, have limited motion. However, following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve. Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P.

B1 q

2

OB 1

OA 7

B3 P'

6 A3 5

q

O'B

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-17-3

P

B1 3

4

A1 8 2

OB

1

OA

B3 P'

6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-18-1

PROBLEM 3-18 Statement:

Design a Watt-I sixbar to give parallel motion that follows the coupler path of point P of the linkage in Figure P3-4 and add a driver dyad to drive it over its possible range of motion with no quick return. (The result will be an 8-bar linkage).

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  9.5

Crank

L2  5

Coupler

L3  4.4

Rocker

L4  5

A1P  8.90

See Figure P3-4 and Mathcad file P0318.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  7.401

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  56.000 deg

γ  94.4701 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  7.401

L6 

L10  A1P

L10  8.900

L9 

L7  8.410

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  8.410

 A1P

L9  10.114

A1P

L8  10.114

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  5.000

A2P  L2

A2P  5.000

δ  γ

δ  94.470 deg

δ  δ

δ  56.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  3.

L1 L3

 B1P

L1BC  15.9793

L1AC 

L1 L3

 A1P

L1AC  19.2159

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  9.500

L1AC  19.216

L1BC  15.979

Crank length

L2  5.000

L10  8.900

L7  8.410

Coupler length

L3  4.400

L9  10.114

L6  8.410

DESIGN OF MACHINERY - 5th Ed.

B2

SOLUTION MANUAL 3-18-2

Rocker length

L4  5.000

L8  10.114

L5  7.401

Coupler point

A1P  8.900

A2P  5.000

A3P  5.000

Coupler angle

δ  56.000 deg

δ  56.000 deg

δ  94.470 deg

OC

8

7

B3

P 9 6 A3

A2

5

3 10

P

B1 4

A1 2

OB 1

OA

3

4

A1

4.

5.

6.

All three of these cognates are non-Grashof and will, therefore, have limited motion. However, following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P P' and P'. This is the new output link 8 and all points on it describe the original coupler curve. Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P.

B1 q

2

OB 1

OA 7

B3

6 A3 5

Add a driver dyad following Example 3-4.

q

O'B

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-18-3

P

B1 3

4

A1 8 2

OB

1

OA

B3 P'

6

P

B1 3

4

A1 8 2

OB

1

OA

P'

6

B3

OC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-19-1

PROBLEM 3-19 Statement:

Design a pin-jointed linkage that will guide the forks of the fork lift truck in Figure P3-5 up and down in an approximate straight line over the range of motion shown. Arrange the fixed pivots so they are close to some part of the existing frame or body of the truck.

Given:

Length of straight line motion of the forks: Δx  1800 mm

Solution:

See Figure P3-5 and Mathcad file P0319.

Design choices: Use a Hoeken-type straight line mechanism optimized for straightness. Maximum allowable error in straightness of line: ΔCy  0.096  % 1.

Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for ΔCy  0.096 %: L1overL2  2.200 L3overL2  2.800

ΔxoverL2  4.181

Link lengths:

2.

L2 

Coupler

L3  L3overL2  L2

L3  1205.5 mm

Ground link

L1  L1overL2  L2

L1  947.1 mm

Rocker

L4  L3

L4  1205.5 mm

Coupler point

BP  L3

BP  1205.5 mm

L2  430.5 mm

ΔxoverL2

Calculate the distance from point P to pivot O4 (Cy). Cy 

3.

Δx

Crank

2 L32   L1  L22

Cy  1978.5 mm

Draw the fork lift truck to scale with the mechanism defined in step 1 superimposed on it..

1978.5mm

O4

P

620.0mm

4 947.1mm B

900.0mm

487.1mm 3

O2 2 A

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-20-1

PROBLEM 3-20 Statement:

Figure P3-6 shows a "V-link" off-loading mechanism for a paper roll conveyor. Design a pinjointed linkage to replace the air cylinder driver that will rotate the rocker arm and V-link through the 90 deg motion shown. Keep the fixed pivots as close to the existing frame as possible. Your fourbar linkage should be Grashof and be in toggle at each extreme position of the rocker arm.

Given:

Dimensions scaled from Figure P3-6: Rocker arm (link 4) distance between pin centers:

Solution:

L4  320  mm

See Figure P3-6 and Mathcad file P0320.

Design choices: 1. Use the same rocker arm that was used with the air cylinder driver. 2. Place the pivot O2 80 mm to the right of the right leg and on a horizontal line with the center of the pin on the rocker arm. 3. Design for two-position, 90 deg of output rocker motion with no quick return, similar to Example 3-2. 1.

Draw the rocker arm (link 4) O4B in both extreme positions, B1 and B2, in any convenient location such that the desired angle of motion 4 is subtended. In this solution, link 4 is drawn such that the two extreme positions each make an angle of 45 deg to the vertical.

2.

Draw the chord B1B2 and extend it in any convenient direction. In this solution it was extended horizontally to the left.

3.

Mark the center O2 on the extended line such that it is 80 mm to the right of the right leg. This will allow sufficient space for a supporting pillow block bearing.

4.

Bisect the line segment B1B2 and draw a circle of that radius about O2.

5.

Label the two intersections of the circle and extended line B1B2, A1 and A2.

6.

Measure the length of the coupler (link 3) as A1B1 or A2B2. From the graphical solution, L3  1045 mm

7.

Measure the length of the crank (link 2) as O2A1 or O2A2. From the graphical solution, L2  226.274  mm

8.

Measure the length of the ground link (link 1) as O2O4. From the graphical solution, L1  1069.217 mm 1045.000 80.000 1069.217 320.000

1 4 3

1045.000

9.

Find the Grashof condition.

2

226.274

DESIGN OF MACHINERY - 5th Ed.

Condition( a b c d ) 

SOLUTION MANUAL 3-20-2

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L3 L4  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-21-1

PROBLEM 3-21 Statement:

Figure P3-7 shows a walking-beam transport mechanism that uses a fourbar coupler curve, replicated with a parallelogram linkage for parallel motion. Note the duplicate crank and coupler shown ghosted in the right half of the mechanism - they are redundant and have been removed from the duplicate fourbar linkage. Using the same fourbar driving stage (links 1, 2, 3, 4 with coupler point P), design a Watt-I sixbar linkage that will drive link 8 in the same parallel motion using two fewer links.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  1

Coupler

L3  2.06

Rocker

L4  2.33

A1P  3.06

See Figure P3-7 and Mathcad file P0321.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  1.674

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  31.000 deg

γ  109.6560 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  1.674

L6 

L10  A1P

L10  3.060

L9 

L7  0.812

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  1.893

 A1P

L9  1.485

A1P

L8  3.461

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  3.461





δ  180  deg  δ  γ 

A2P  L2

A2P  1.000

δ  δ

δ  31.000 deg

δ  39.344 deg From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  1.8035

L1AC 

L1 L3

 A1P

L1AC  3.2977

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1 Ground link length

L1  2.220

Cognate #2

Cognate #3

L1AC  3.298

L1BC  1.804

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-21-2

Crank length

L2  1.000

L10  3.060

L7  0.812

Coupler length

L3  2.060

L9  1.485

L6  1.893

Rocker length

L4  2.330

L8  3.461

L5  1.674

Coupler point

A1P  3.060

A2P  1.000

A3P  3.461

Coupler angle

δ  31.000 deg

δ  31.000 deg

δ  39.344 deg

OC 7 6

B3

A3

8

5

OB

9

4

1

B2

A2

10

P

OA 2 A1 3 B1

4.

Determine the Grashof condition of each of the two additional cognates. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

5.

Cognate #2:

Condition L8 L9 L10 L1AC  "Grashof"

Cognate #3:

Condition L5 L6 L7 L1BC  "Grashof"

Both of these cognates are Grashof but cognate #3 is a crank rocker. Following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Draw line qq parallel to line OAOC and through point OB. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along lines OAOC and qq until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-21-3

q OB 1 4 P

OA

2

7

B3

6 A3 A1

3 B1 8

5 O'B q P'

6.

Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8 (see next page). Link 8 is in curvilinear translation and follows the coupler path of the original point P. The walking-beam (link 8 in Figure P3-7) is rigidly attached to link 8 below.

OB 1 4 P

OA

2

A3 A1 3 B1

6

8

P'

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-22-1

PROBLEM 3-22 Statement:

Find the maximum and minimum transmission angles of the fourbar driving stage (links L1, L2, L3, L4) in Figure P3-7 (to graphical accuracy).

Given:

Link lengths:

Link 2

L2  1.00

Link 3

L3  2.06

Link 4

L4  2.33

Link 1

L1  2.22

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Solution: 1.

See Figure P3-7 and Mathcad file P0322.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:

2.

Condition L1 L2 L3 L4  "Grashof" Class I-2, Grashof crank-rocker-rocker, GCRR, since the shortest link is the input link.

It can be shown (see Section 4.10) that the minimum transmission angle for a fourbar GCRR linkage occurs when links 2 and 1 (ground link) are colinear. Draw the linkage in these two positions and measure the transmission angles. O4

O4

A O2

31.510°

O2 A 85.843°

B

3.

B

As measured from the layout, the minimum transmission angle is 31.5 deg. The maximum is 90 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-23-1

PROBLEM 3-23 Statement:

Figure P3-8 shows a fourbar linkage used in a power loom to drive a comb-like reed against the thread, "beating it up" into the cloth. Determine its Grashof condition and its minimum and maximum transmission angles to graphical accuracy.

Given:

Link lengths:

Link 2

L2  2.00 in

Link 3

L3  8.375  in

Link 4

L4  7.187  in

Link 1

L1  9.625  in

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Solution: 1.

See Figure P3-8 and Mathcad file P0323.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Grashof condition: Barker classification:

2.

Condition L1 L2 L3 L4  "Grashof" Class I-2, Grashof crank-rocker-rocker, GCRR, since the shortest link is the input link.

It can be shown (see Section 4.10) that the minimum transmission angle for a fourbar GCRR linkage occurs when links 2 and 1 (ground link) are colinear. Draw the linkage in these two positions and measure the transmission angles.

83.634°

58.078°

3.

As measured from the layout, the minimum transmission angle is 58.1 deg. The maximum is 90.0 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-24-1

PROBLEM 3-24 Statement:

Draw the Roberts diagram and find the cognates for the linkage in Figure P3-9.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  1.0

Coupler

L3  2.06

Rocker

L4  2.33

A1P  3.06

See Figure P3-9 and Mathcad file P0324.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  1.674

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  31.00  deg

γ  109.6560 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  1.674

L6 

L10  A1P

L10  3.060

L9 

L7  0.812

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  1.893

 A1P

L9  1.485

A1P

L8  3.461

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  3.461

δ  180  deg  δ  γ

δ  39.344 deg

A2P  L2

A2P  1.000

δ  δ

δ  31.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  3.

L1 L3

 B1P

L1BC  1.8035

L1AC 

L1 L3

 A1P

L1AC  3.2977

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  3.298

L1BC  1.804

Crank length

L2  1.000

L10  3.060

L7  0.812

Coupler length

L3  2.060

L9  1.485

L6  1.893

Rocker length

L4  2.330

L8  3.461

L5  1.674

Coupler point

A1P  3.060

A2P  1.000

A3P  3.461

Coupler angle

δ  31.000 deg

δ  31.000 deg

δ  39.344 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-24-2

B1 P B2 3

2

9

4

A1

A2

10

8 OB

5

1

OA

1BC 1AC

B3 6

A3

7

OC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-25-1

PROBLEM 3-25 Statement:

Find the equivalent geared fivebar mechanism cognate of the linkage in Figure P3-9.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  1.0

Coupler

L3  2.06

Rocker

L4  2.33

A1P  3.06

See Figure P3-9 and Mathcad file P0325.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  1.674

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

δ  31.00  deg

γ  109.6560 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  1.674

L6 

L10  A1P

L10  3.060

L9 

L7  0.812

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  1.893

 A1P

L9  1.485

A1P

L8  3.461

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  3.461

δ  180  deg  δ  γ

δ  39.344 deg

A2P  L2

A2P  1.000

δ  δ

δ  31.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  1.8035

L1AC 

L1 L3

 A1P

L1AC  3.2977

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  3.298

L1BC  1.804

Crank length

L2  1.000

L10  3.060

L7  0.812

Coupler length

L3  2.060

L9  1.485

L6  1.893

Rocker length

L4  2.330

L8  3.461

L5  1.674

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-25-2

Coupler point

A1P  3.060

A2P  1.000

A3P  3.461

Coupler angle

δ  31.000 deg

δ  31.000 deg

δ  39.344 deg

B1 P B2 3

2

9

4

A1

A2

10

8 OB

5

1

OA

1BC 1AC

B3 6

A3

4.

7

OC

The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PB3OB, OAA1PA3OC, and OBB1PB2OC. The three geared fivebar cognates are summarized in the table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  3.298

L1BC  1.804

Crank length

L10  3.060

L2  1.000

L4  2.330

Coupler length

A2P  1.000

A1P  3.060

L5  1.674

Rocker length

L4  2.330

L8  3.461

L7  0.812

Crank length

L5  1.674

L7  0.812

L8  3.461

Coupler point

A2P  1.000

A1P  3.060

B1P  1.674

Coupler angle

δ  0.00 deg

δ  0.00 deg

δ  0.00 deg

5.

Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page)

6.

Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-25-3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-26-1

PROBLEM 3-26 Statement:

Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has a rocker output through 45 deg.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  1.0

Coupler

L3  2.06

Rocker

L4  2.33

A1P  3.06

δ  31.00  deg

See Figure P3-9 and Mathcad file P0326.

Enter the given data into program FOURBAR and print out the resulting coupler point coordinates (see table below). FOURBAR for Windows

File P03-26.DAT

Angle Step Deg

Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000

2.731 3.077 3.350 3.515 3.576 3.554 3.473 3.350 3.203 3.040 2.872 2.706 2.548 2.403 2.274 2.164 2.075 2.005 1.953 1.917 1.892 1.875 1.862 1.848 1.832 1.810 1.784 1.754 1.723 1.698 1.687 1.702 1.761 1.883 2.088 2.380 2.731

2.523 2.407 2.228 2.032 1.855 1.708 1.592 1.499 1.420 1.348 1.278 1.207 1.135 1.062 0.990 0.925 0.869 0.826 0.802 0.798 0.817 0.860 0.925 1.011 1.115 1.235 1.367 1.508 1.654 1.804 1.955 2.105 2.251 2.386 2.494 2.550 2.523

3.718 3.906 4.023 4.060 4.028 3.943 3.820 3.671 3.503 3.326 3.144 2.963 2.789 2.627 2.480 2.354 2.249 2.168 2.111 2.076 2.061 2.063 2.079 2.107 2.145 2.192 2.248 2.313 2.388 2.477 2.582 2.707 2.858 3.040 3.253 3.488 3.718

42.731 38.029 33.626 30.035 27.412 25.672 24.635 24.107 23.915 23.915 23.988 24.039 24.001 23.834 23.533 23.134 22.719 22.404 22.326 22.614 23.365 24.632 26.417 28.678 31.340 34.306 37.463 40.683 43.826 46.730 49.207 51.038 51.965 51.715 50.064 46.967 42.731

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-26-2

2.

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6.

3.

Design link 6 to lie along these straight tangents, pivoted at O6. Provide a guide on link 6 to accommodate slider block 5, which pivots on the coupler point P. O8

8 45.000° F

E D

7

B 70.140°

C 6

3 P 5 A O6 2

4

O4

O2

4.

Extend link 6 a convenient distance to point C. Draw an arc through point C with center at O6. Label the intersection of the arc with the other tangent line as point D. Attach link 7 to the pivot at C. The length of link 7 is CE, a design choice. Extend line CDE from point E a distance equal to CD. Label the end point F. Layout two intersecting lines through E and F such that they subtend an angle of 45 deg. Label their intersection O8. The link joining O8 and point E is link 8. The link lengths and locations of O6 and O8 are: Link 6

L6  2.330

Fixed pivot O6:

Link 7

x  1.892 y  0.762

L7  3.000 Fixed pivot O8:

Link 8 x  1.379 y  6.690

L8  3.498

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-27-1

PROBLEM 3-27 Statement:

Use the linkage in Figure P3-9 to design an eightbar double-dwell mechanism that has a slider output stroke of 5 crank units.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  1.0

Coupler

L3  2.06

Rocker

L4  2.33

A1P  3.06

δ  31.00  deg

See Figure P3-9 and Mathcad file P0327.

Enter the given data into program FOURBAR and print out the resulting coupler point coordinates (see table below). FOURBAR for Windows

File P03-26.DAT

Angle Step Deg

Cpler Pt Cpler Pt Cpler Pt Cpler Pt X Y Mag Ang

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000 110.000 120.000 130.000 140.000 150.000 160.000 170.000 180.000 190.000 200.000 210.000 220.000 230.000 240.000 250.000 260.000 270.000 280.000 290.000 300.000 310.000 320.000 330.000 340.000 350.000 360.000

2.731 3.077 3.350 3.515 3.576 3.554 3.473 3.350 3.203 3.040 2.872 2.706 2.548 2.403 2.274 2.164 2.075 2.005 1.953 1.917 1.892 1.875 1.862 1.848 1.832 1.810 1.784 1.754 1.723 1.698 1.687 1.702 1.761 1.883 2.088 2.380 2.731

2.523 2.407 2.228 2.032 1.855 1.708 1.592 1.499 1.420 1.348 1.278 1.207 1.135 1.062 0.990 0.925 0.869 0.826 0.802 0.798 0.817 0.860 0.925 1.011 1.115 1.235 1.367 1.508 1.654 1.804 1.955 2.105 2.251 2.386 2.494 2.550 2.523

3.718 3.906 4.023 4.060 4.028 3.943 3.820 3.671 3.503 3.326 3.144 2.963 2.789 2.627 2.480 2.354 2.249 2.168 2.111 2.076 2.061 2.063 2.079 2.107 2.145 2.192 2.248 2.313 2.388 2.477 2.582 2.707 2.858 3.040 3.253 3.488 3.718

42.731 38.029 33.626 30.035 27.412 25.672 24.635 24.107 23.915 23.915 23.988 24.039 24.001 23.834 23.533 23.134 22.719 22.404 22.326 22.614 23.365 24.632 26.417 28.678 31.340 34.306 37.463 40.683 43.826 46.730 49.207 51.038 51.965 51.715 50.064 46.967 42.731

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-27-2

2.

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Fit tangent lines to the nearly straight portions of the curve. Label their intersection O6.

3.

Design link 6 to lie along these straight tangents, pivoted at O6. Provide a guide on link 6 to accommodate slider block 5, which pivots on the coupler point P. F

E

8

D 7

C

B 6 70.140° 3 P 5 A O6 2

4

O4

O2

4.

Extend link 6 and the other tangent line until points C and E are 5 units apart. Attach link 7 to the pivot at C. The length of link 7 is CD, a design choice. Extend line CDE from point D a distance equal to CE. Label the end point F. As link 6 travels from C to E, slider block 8 will travel from D to F, a distance of 5 units. The link lengths and location of O6: Link 6

L6  4.351

Fixed pivot O6:

Link 7

x  1.892 y  0.762

L7  2.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-28-1

PROBLEM 3-28 Statement:

Use two of the cognates in Figure 3-26 (p. 126) to design a Watt-I sixbar parallel motion mechanism that carries a link through the same coupler curve at all points. Comment on its similarities to the original Roberts diagram.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  45

Crank

L2  56

Coupler

L3  22.5

Rocker

L4  56

A1P  11.25 δ  0.000  deg

See Figure 3-26 and Mathcad file P0328.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  11.250

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

γ  0.0000 deg

Use the Cayley diagram (see Figure 3-26) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  11.250

L6 

L10  A1P

L10  11.250

L9 

L7  28.000

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  28.000

 A1P

L9  28.000

A1P

L8  28.000

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  56.000

A2P  L2

A2P  56.000

δ  δ

δ  0.000 deg

δ  δ

δ  0.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  22.5000

L1AC 

L1 L3

 A1P

L1AC  22.5000

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  45.000

L1AC  22.500

L1BC  22.500

Crank length

L2  56.000

L10  11.250

L7  28.000

Coupler length

L3  22.500

L9  28.000

L6  28.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-28-2

Rocker length

L4  56.000

L8  28.000

L5  11.250

Coupler point

A1P  11.250

A2P  56.000

A3P  56.000

Coupler angle

δ  0.000 deg

δ  0.000 deg

δ  0.000 deg

P

3

B1

A1

B2

B3

6 9

8

2

A2

7

5

10 OA

4.

4

A3

OB

OC

Both of these cognates are identical. Following Example 3-11, discard cognate #2 and retain cognates #1 and #3. Without allowing links 5, 6, and 7 to rotate, slide them as an assembly along line OAOC until the free end of link 7 is at OA. The free end of link 5 will then be at point O'B and point P on link 6 will be at P'. Add a new link of length OAOC between P and P'. This is the new output link 8 and all points on it describe the original coupler curve. P'

B1

8

3

P

A1

B3

6

7 2

4

5 OA

O'B

A3 OB

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 3-28-3

Join links 2 and 7, making one ternary link. Remove link 5 and reduce link 6 to a binary link. The result is a Watt-I sixbar with links numbered 1, 2, 3, 4, 6, and 8. Link 8 is in curvilinear translation and follows the coupler path of the original point P. Link 8 is a binary link with nodes at P and P'. It does not attach to link 4 at B1.

P'

8

B1

3

P

A1

6

B3

2

OA

4

OB

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-29-1

PROBLEM 3-29 Statement:

Find the cognates of the Watt straight-line mechanism in Figure 3-29a (p. 131).

Given:

Link lengths:

Solution:

Coupler point data:

Ground link

L1  4

Crank

L2  2

A1P  0.500

δ  0.00 deg

Coupler

L3  1

Rocker

L4  2

B1P  0.500

γ  0.00 deg

See Figure 3-29a and Mathcad file P0329.

1.

Input the link dimensions and coupler point data into program FOURBAR.

2.

Use the Cognate pull-down menu to get the link lengths for cognates #2 and #3 (see next page). Note that, for this mechanism, cognates #2 and #3 are identical. All three mechanisms are non-Grashof with limited crank angles.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-29-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-30-1

PROBLEM 3-30 Statement:

Find the cognates of the Roberts straight-line mechanism in Figure 3-29b.

Given:

Link lengths:

Solution:

Coupler point data:

Ground link

L1  2

Crank

L2  1

A1P  1.000

δ  60.0 deg

Coupler

L3  1

Rocker

L4  1

B1P  1.000

γ  60.0 deg

See Figure 3-29b and Mathcad file P0330.

1.

Input the link dimensions and coupler point data into program FOURBAR.

2.

Note that, for this mechanism, cognates #2 and #3 are identical with cognate #1 because of the symmetry of the linkage (draw the Cayley diagram to see this). All three mechanisms are non-Grashof with limited crank angles.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-31-1

PROBLEM 3-31 Statement:

Design a Hoeken straight-line linkage to give minimum error in velocity over 22% of the cycle for a 15-cm-long straight line motion. Specify all linkage parameters.

Given:

Length of straight line motion: Δx  150  mm Percentage of cycle over which straight line motion takes place: 22%

Solution:

See Figure 3-30 and Mathcad file P0331.

1.

Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for 22% cycle: L1overL2  1.975

L3overL2  2.463

ΔxoverL2  1.845

Link lengths:

2.

L2 

Coupler

L3  L3overL2  L2

L3  200.24 mm

Ground link

L1  L1overL2  L2

L1  160.57 mm

Rocker

L4  L3

L4  200.24 mm

Coupler point

AP  2  L3

AP  400.49 mm

L2  81.30 mm

ΔxoverL2

Calculate the distance from point P to pivot O4 (Cy) when crank angle is 180 deg. Cy 

3.

Δx

Crank

2 L32   L1  L22

Cy  319.20 mm

Enter the link lengths into program FOURBAR to verify the design (see next page for coupler point curve). Using the PRINT facility, determine the x,y coordinates of the coupler curve and the x,y components of the coupler point velocity in the straight line region. A table of these values is printed below. Notice the small deviations over the range of crank angles from the y-coordinate and the x-velocity at a crank angle of 180 deg.

FOURBAR for Windows

File P03-31.DOC

Angle Step Deg

Cpler Pt X mm

Cpler Pt Y mm

Veloc CP X mm/sec

Veloc CP Y mm/sec

140 150 160 170 180 190 200 210 220

235.60 216.84 198.06 179.31 160.58 141.85 123.09 104.31 85.55

319.95 319.72 319.46 319.27 319.20 319.27 319.47 319.72 319.95

-1,072.61 -1,076.20 -1,075.51 -1,073.75 -1,072.93 -1,073.75 -1,075.52 -1,076.22 -1,072.63

-14.74 -13.54 -7.99 0.02 8.03 13.58 14.78 10.76

-10.73

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-31-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-32-1

PROBLEM 3-32 Statement:

Design a Hoeken straight-line linkage to give minimum error in straightness over 39% of the cycle for a 20-cm-long straight line motion. Specify all linkage parameters.

Given:

Length of straight line motion: Δx  200  mm Percentage of cycle over which straight line motion takes place: 39%

Solution:

See Figure 3-30 and Mathcad file P0332.

1.

Using Table 3-1 and the required length of straight-line motion, determine the link lengths. Link ratios from Table 3-1 for 39% cycle: L1overL2  2.500

L3overL2  3.250

ΔxoverL2  3.623

Δx ΔxoverL2

L2  55.20 mm

Link lengths:

2.

Crank

L2 

Coupler

L3  L3overL2  L2

L3  179.41 mm

Ground link

L1  L1overL2  L2

L1  138.01 mm

Rocker

L4  L3

L4  179.41 mm

Coupler point

AP  2  L3

AP  358.82 mm

Calculate the distance from point P to pivot O4 (Cy) when crank angle is 180 deg. Cy 

3.

2 L32   L1  L22

Cy  302.36 mm

Enter the link lengths into program FOURBAR to verify the design (see next page for coupler point curve). Using the PRINT facility, determine the x,y coordinates of the coupler curve and the x,y components of the coupler point velocity in the straight line region. A table of these values is printed below. Notice the small deviations over the range of crank angles from the y-coordinate and the x-velocity from a crank angle of 180 deg. FOURBAR for Windows

File P03-32.DAT

Angle Step Deg

Coupler Pt X mm

Coupler Pt Y mm

Veloc CP X mm/sec

110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

237.992 225.289 211.710 197.521 182.927 168.076 153.076 138.010 122.944 107.944 93.093 78.499 64.311 50.731 38.028

302.408 302.361 302.378 302.398 302.399 302.385 302.368 302.360 302.368 302.385 302.399 302.398 302.378 302.361 302.408

-696.591 -755.847 -797.695 -826.217 -844.774 -856.043 -861.994 -863.841 -861.994 -856.043 -844.774 -826.217 -797.695 -755.847 -696.591

Veloc CP Y mm/sec -6.416 -0.019 1.426 0.664 -0.483 -1.052 -0.800 0.000 0.800 1.052 0.483 -0.664 -1.426 0.019 6.416

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-32-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-33-1

PROBLEM 3-33 Statement:

Design a linkage that will give a symmetrical "kidney bean" shaped coupler curve as shown in Figure 3-16 (p. 114 and 115). Use the data in Figure 3-21 (p. 120) to determine the required link ratios and generate the coupler curve with program FOURBAR.

Solution:

See Figures 3-16, 3-21, and Mathcad file P0333.

Design choices: Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR  2.5 Coupler angle, γ  72 deg Crank length, L2  2.000 1.

For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  5.000

Rocker link (4) length

L4  CLR L2

L4  5.000

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  54.000 deg AP  5.878

Enter the above data into program FOURBAR and plot the coupler curve.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-34-1

PROBLEM 3-34 Statement:

Design a linkage that will give a symmetrical "double straight" shaped coupler curve as shown in Figure 3-16. Use the data in Figure 3-21 to determine the required link ratios and generate the coupler curve with program FOURBAR.

Solution:

See Figures 3-16, 3-21, and Mathcad file P0334.

Design choices: Ground link ratio, L1/L2 = 2.5: GLR  2.5 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR  2.5 Coupler angle, γ  252  deg Crank length, L2  2.000 1.

For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  5.000

Rocker link (4) length

L4  CLR L2

L4  5.000

Ground link (1) length

L1  GLR  L2

L1  5.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  36.000 deg AP  8.090

Enter the above data into program FOURBAR and plot the coupler curve.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-35-1

PROBLEM 3-35 Statement:

Design a linkage that will give a symmetrical "scimitar" shaped coupler curve as shown in Figure 3-16. Use the data in Figure 3-21 to determine the required link ratios and generate the coupler curve with program FOURBAR. Show that there are (or are not) true cusps on the curve.

Solution:

See Figures 3-16, 3-21, and Mathcad file P0334.

Design choices: Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.5: CLR  2.5 Coupler angle, γ  144  deg Crank length, L2  2.000 1.

For the given design choices, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  5.000

Rocker link (4) length

L4  CLR L2

L4  5.000

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  18.000 deg AP  9.511

Enter the above data into program FOURBAR and plot the coupler curve.

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 3-35-2

The points at the ends of the "scimitar" will be true cusps if the velocity of the coupler point is zero at these points. Using FOURBAR's plotting utility, plot the magnitude and angle of the coupler point velocity vector. As seen below for the range of crank angle from 50 to 70 degrees, the magnitude of the velocity does not quite reach zero. Therefore, these are not true cusps.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-36-1

PROBLEM 3-36 Statement:

Find the Grashof condition, inversion, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-10.

Given:

Link lengths:

Link 2

L2  0.785

Link 3

L3  0.356

Link 4

L4  0.950

Link 1

L1  0.544

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ

Solution: 1.

return "non-Grashof" otherwise See Figure P3-10 and Mathcad file P0336.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4  "Grashof"

Grashof condition: Barker classification:

2.

Class I-3, Grashof rocker-crank-rocker, GRCR, since the shortest link is the coupler link.

A GRCR linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles. A

B

158.286° O4

O2

O4

O2 B A

158.286°

3.

As measured from the layout, the input link angles at the toggle positions are: +158.3 and -158.3 deg.

4.

Since the coupler link in a GRCR linkage can make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 90 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-37-1

PROBLEM 3-37 Statement:

Draw the Roberts diagram and find the cognates for the linkage in Figure P3-10.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  0.544 Crank

L2  0.785

Coupler

L3  0.356 Rocker

L4  0.950

δ  0.00 deg

See Figure P3-10 and Mathcad file P0337.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.734

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  1.09

γ  180.0000 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.734

L6 

L10  A1P

L10  1.090

L9 

L7  1.619

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  1.959

 A1P

L9  2.404

A1P

L8  2.909

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  0.950

A2P  L2

A2P  0.785

δ  180  deg  δ

δ  180.000 deg

δ  δ

δ  0.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  1.1216

L1AC 

L1 L3

 A1P

L1AC  1.6656

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  0.544

L1AC  1.666

L1BC  1.122

Crank length

L2  0.785

L10  1.090

L7  1.619

Coupler length

L3  0.356

L9  2.404

L6  1.959

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-37-2

Rocker length

L4  0.950

L8  2.909

L5  0.734

Coupler point

A1P  1.090

A2P  0.785

A3P  0.950

Coupler angle

δ  0.000 deg

δ  0.000 deg

δ  180.000 deg

B2

9

8

P B1 A1

3 4

A2

2

5

10 OA

1

A3 OC

OB 6

7

B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-38-1

PROBLEM 3-38 Statement:

Find the three geared fivebar cognates of the linkage in Figure P3-10.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  0.544 Crank

L2  0.785

Coupler

L3  0.356 Rocker

L4  0.950

δ  0.00 deg

See Figure P3-10 and Mathcad file P0338.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.734

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  1.09

γ  180.0000 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.734

L6 

L10  A1P

L10  1.090

L9 

L7  1.619

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  1.959

 A1P

L9  2.404

A1P

L8  2.909

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  0.950

A2P  L2

A2P  0.785

δ  180  deg  δ

δ  180.000 deg

δ  δ

δ  0.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  3.

L1 L3

 B1P

L1BC  1.1216

L1AC 

L1 L3

 A1P

L1AC  1.6656

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  0.544

L1AC  1.666

L1BC  1.122

Crank length

L2  0.785

L10  1.090

L7  1.619

Coupler length

L3  0.356

L9  2.404

L6  1.959

Rocker length

L4  0.950

L8  2.909

L5  0.734

Coupler point

A1P  1.090

A2P  0.785

A3P  0.950

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-38-2

δ  0.000 deg

Coupler angle

δ  0.000 deg

δ  180.000 deg

B2

9

8

P B1 A1

3 4

A2

2

5

10 OA

1

A3 OC

OB 6

7

B3 4.

The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. They are specified in the summary table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  0.544

L1AC  1.666

L1BC  1.122

Crank length

L10  1.090

L2  0.785

L4  0.950

Coupler length

A2P  0.785

A1P  1.090

L5  0.734

Rocker length

A3P  0.950

L8  2.909

L7  1.619

Crank length

L5  0.734

L7  1.619

L8  2.909

Coupler point

A2P  0.785

A1P  1.090

B1P  0.734

Coupler angle

δ  0.00 deg

δ  0.00 deg

δ  0.00 deg

5.

Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page).

6.

Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-38-3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-39-1

PROBLEM 3-39 Statement:

Find the Grashof condition, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-11.

Given:

Link lengths:

Link 2

L2  0.86

Link 3

L3  1.85

Link 4

L4  0.86

Link 1

L1  2.22

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Solution: 1.

See Figure P3-11 and Mathcad file P0339.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4  "non-Grashof"

Grashof condition: Barker classification:

2.

Class II-1, non-Grashof triple rocker, RRR1, since the longest link is the ground link.

An RRR1 linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles. 116.037° A B

O4

O2

O4

O2 B A 116.037°

88.2° B

A 67.3° O2

O4

3.

As measured from the layout, the input link angles at the toggle positions are: +116 and -116 deg.

4.

Since the coupler link in an RRR1 linkage cannot make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 88 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-40-1

PROBLEM 3-40 Statement:

Draw the Roberts diagram and find the cognates for the linkage in Figure P3-11.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  0.86

Coupler

L3  1.85

Rocker

L4  0.86

δ  0.00 deg

See Figure P3-11 and Mathcad file P0340.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.520

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  1.33

γ  0.0000 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.520

L6 

L10  A1P

L10  1.330

L9 

L7  0.242

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  0.242

 A1P

L9  0.618

A1P

L8  0.618

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  0.618

A2P  L7

A2P  0.242

δ  180  deg

δ  180.000 deg

δ  180  deg

δ  180.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  3.

L1 L3

 B1P

L1BC  0.6240

L1AC 

L1 L3

 A1P

L1AC  1.5960

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  1.596

L1BC  0.624

Crank length

L2  0.860

L10  1.330

L7  0.242

Coupler length

L3  1.850

L9  0.618

L6  0.242

Rocker length

L4  0.860

L8  0.618

L5  0.520

Coupler point

A1P  1.330

A2P  0.242

A3P  0.618

Coupler angle

δ  0.000 deg

δ  180.000 deg

δ  180.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-40-2

B2

B1

9 A2

3

10

P

4

8

OC

OA

A3

7 6

2 A1

OB 5

B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-41-1

PROBLEM 3-41 Statement:

Find the three geared fivebar cognates of the linkage in Figure P3-11.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  2.22

Crank

L2  0.86

Coupler

L3  1.85

Rocker

L4  0.86

δ  0.00 deg

See Figure P3-11 and Mathcad file P0341.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.520

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  1.33

γ  0.0000 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.520

L6 

L10  A1P

L10  1.330

L9 

L7  0.242

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  0.242

 A1P

L9  0.618

A1P

L8  0.618

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L8

A3P  0.618

A2P  L7

A2P  0.242

δ  180  deg

δ  180.000 deg

δ  180  deg

δ  180.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  0.6240

L1AC 

L1 L3

 A1P

L1AC  1.5960

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  1.596

L1BC  0.624

Crank length

L2  0.860

L10  1.330

L7  0.242

Coupler length

L3  1.850

L9  0.618

L6  0.242

Rocker length

L4  0.860

L8  0.618

L5  0.520

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-41-2

Coupler point

A1P  1.330

A2P  0.242

A3P  0.618

Coupler angle

δ  0.000 deg

δ  180.000 deg

δ  180.000 deg

B2

B1

9 A2

3

10

P

4

8

OC

OA

A3

7 6

2

5 B3

A1 4.

OB

The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAB2PB3OB, OAA1PA3OC, and OBB1PA2OC. The three geared fivebar cognates are summarized in the table below. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  2.220

L1AC  1.596

L1BC  0.624

Crank length

L10  1.330

L2  0.860

L4  0.860

Coupler length

L2  0.860

A1P  1.330

L5  0.520

Rocker length

L4  0.860

L8  0.618

L7  0.242

Crank length

L5  0.520

L7  0.242

L8  0.618

Coupler point

L2  0.860

A1P  1.330

B1P  0.520

Coupler angle

δ  0.00 deg

δ  0.00 deg

δ  0.00 deg

5.

Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page)

6.

Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-41-3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-42-1

PROBLEM 3-42 Statement:

Find the Grashof condition, any limit positions, and the extreme values of the transmission angle (to graphical accuracy) of the linkage in Figure P3-12.

Given:

Link lengths:

Link 2

L2  0.72

Link 3

L3  0.68

Link 4

L4  0.85

Link 1

L1  1.82

Grashof condition function: Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Solution: 1.

See Figure P3-12 and Mathcad file P0342.

Determine the Grashof condition of the mechanism from inequality 2.8 and its Barker classification from Table 2-4. Condition L1 L2 L3 L4  "non-Grashof"

Grashof condition: Barker classification:

2.

Class II-1, non-Grashof triple rocker, RRR1, since the longest link is the ground link.

An RRR1 linkage will have two toggle positions. Draw the linkage in these two positions and measure the input link angles.

A

55.4° B

O4

O2

O4

O2

B A

55.4°

B 88.8° O4 O2

A

3.

As measured from the layout, the input link angles at the toggle positions are: +55.4 and -55.4 deg.

4.

Since the coupler link in an RRR1 linkage it cannot make a full rotation with respect to the input and output rockers, the minimum transmission angle is 0 deg and the maximum is 88.8 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-43-1

PROBLEM 3-43 Statement:

Draw the Roberts diagram and find the cognates for the linkage in Figure P3-12.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  1.82

Crank

L2  0.72

Coupler

L3  0.68

Rocker

L4  0.85

δ  54.0 deg

See Figure P3-12 and Mathcad file P0343.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.792

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  0.97

γ  82.0315 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.792

L6 

L10  A1P

L10  0.970

L9 

L7  0.839

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  0.990

 A1P

L9  1.027

A1P

L8  1.212

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  0.850

A2P  L2

A2P  0.720

δ  γ

δ  82.032 deg

δ  δ

δ  54.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC  3.

L1 L3

 B1P

L1BC  2.1208

L1AC 

L1 L3

 A1P

L1AC  2.5962

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  1.820

L1AC  2.596

L1BC  2.121

Crank length

L2  0.720

L10  0.970

L7  0.839

Coupler length

L3  0.680

L9  1.027

L6  0.990

Rocker length

L4  0.850

L8  1.212

L5  0.792

Coupler point

A1P  0.970

A2P  0.720

A3P  0.850

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-43-2

δ  54.000 deg

Coupler angle

δ  54.000 deg

OC

8 B2

7

9

B3

P 6 A2 1AC 10 3

OA

B1

5 4

A1 2

1BC

A3

1 OB

δ  82.032 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-44-1

PROBLEM 3-44 Statement:

Find the three geared fivebar cognates of the linkage in Figure P3-12.

Given:

Link lengths:

Solution: 1.

Coupler point data:

Ground link

L1  1.82

Crank

L2  0.72

Coupler

L3  0.68

Rocker

L4  0.85

δ  54.0 deg

See Figure P3-12 and Mathcad file P0344.

Calculate the length BP and the angle using the law of cosines on the triangle APB. B1P   L3  A1P  2  L3 A1P  cos δ 2

 

2

0.5

B1P  0.792

 L32  B1P 2  A1P 2  γ  acos   2  L3 B1P   2.

A1P  0.97

γ  82.0315 deg

Use the Cayley diagram (see Figure 3-24) to calculate the link lengths of the two cognates. Note that the diagram is made up of three parallelograms and three similar triangles L4

L5  B1P

L5  0.792

L6 

L10  A1P

L10  0.970

L9 

L7  0.839

L8  L6

L7  L9

B1P A1P

L3 L2 L3

 B1P

L6  0.990

 A1P

L9  1.027

A1P

L8  1.212

B1P

Calculate the coupler point data for cognates #2 and #3 A3P  L4

A3P  0.850

A2P  L2

A2P  0.720

δ  γ

δ  82.032 deg

δ  δ

δ  54.000 deg

From the Roberts diagram, calculate the ground link lengths for cognates #2 and #3 L1BC 

3.

L1 L3

 B1P

L1BC  2.1208

L1AC 

L1 L3

 A1P

L1AC  2.5962

Using the calculated link lengths, draw the Roberts diagram (see next page). SUMMARY OF COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  1.820

L1AC  2.596

L1BC  2.121

Crank length

L2  0.720

L10  0.970

L7  0.839

Coupler length

L3  0.680

L9  1.027

L6  0.990

Rocker length

L4  0.850

L8  1.212

L5  0.792

Coupler point

A1P  0.970

A2P  0.720

A3P  0.850

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-44-2

δ  54.000 deg

Coupler angle

δ  54.000 deg

δ  82.032 deg

OC

8 B2

7

9

B3

P 6 A2 1AC 10 3

B1

5 4

A1 2

1BC

A3

1 OB

OA

4.

The three geared fivebar cognates can be seen in the Roberts diagram. They are: OAA2PA3OB, OAA1PB3OC, and OBB1PB2OC. SUMMARY OF GEARED FIVEBAR COGNATE SPECIFICATIONS: Cognate #1

Cognate #2

Cognate #3

Ground link length

L1  1.820

L1AC  2.596

L1BC  2.121

Crank length

L10  0.970

L2  0.720

L4  0.850

Coupler length

A2P  0.720

A1P  0.970

L5  0.792

Rocker length

A3P  0.850

L8  1.212

L7  0.839

Crank length

L5  0.792

L7  0.839

L8  1.212

Coupler point

A2P  0.720

A1P  0.970

B1P  0.792

Coupler angle

δ  0.00 deg

δ  0.00 deg

δ  0.00 deg

5.

Enter the cognate #1 specifications into program FOURBAR to get a trace of the coupler path (see next page).

6.

Enter the geared fivebar cognate #1 specifications into program FIVEBAR to get a trace of the coupler path for the geared fivebar (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-44-3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-45-1

PROBLEM 3-45 Statement:

Prove that the relationships between the angular velocities of various links in the Roberts diagram as shown in Figure 3-25 (p. 125) are true.

Given:

OAA1PA2, OCB2PB3, and OBB1PA3 are parallelograms for any position of link 2..

Proof: 1.

OAA1 and A2P are opposite sides of a parallelogram and are, therefore, always parallel.

2.

Any change in the angle of OAA1 (link 2) will result in an identical change in the angle of A2P.

3.

Angular velocity is the change in angle per unit time.

4.

Since OAA1 and A2P have identical changes in angle, their angular velocities are identical.

5.

A2P is a line on link 9 and all lines on a rigid body have the same angular velocity. Therefore, link 9 has the same angular velocity as link 2.

6.

OCB3 (link 7) and B2P are opposite sides of a parallelogram and are, therefore, always parallel.

7.

B2P is a line on link 9 and all lines on a rigid body have the same angular velocity. Therefore, link 7 has the same angular velocity as links 9 and 2.

8.

The same argument holds for links 3, 5, and 10; and links 4, 6, and 8.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-46-1

PROBLEM 3-46 Statement:

Design a fourbar linkage to move the object in Figure P3-13 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-13 and Mathcad file P0346.

Design choices: Length of link 2

L2  130

Length of link 2b

L2b  40

L4  110

Length of link 4

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  130.000 and O4B to be L4  110.000 . This resulted in a ground-link-length O2O4 for the fourbar of 27.080.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a

L1a  27.080

Link 3 (coupler)

L3  52.000

Link 2 (input)

L2  130.000

Link 4 (output)

L4  110.000

5.

Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 2 is now a ternary link with nodes at O2, C, and A.) In the solution below the distance O2C was selected to be L2b  40.000 .

6.

Draw a construction line through C1C2 and extend it to the left.

7.

Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.

8.

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 23.003 units.

A1

B1

3

A2

6

D1

O6

2 D2

C1 5

9.

The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)

L6  23.003

Link 5 (coupler) L5  106.866 Link 1b (ground) L1b  111.764 Link 2b (rocker) L2b  40.000

23.003 106.866 111.764

B2

4 C2

40.000 O2

O4 27.080

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-46-2

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L2b L5 L6  "Grashof" min  L1b L2b L5 L6  23.003

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-47-1

PROBLEM 3-47 Statement:

Design a fourbar linkage to move the object in Figure P3-13 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-13 and Mathcad file P0347.

Design choices: Length of link 2

L2  130

Length of link 4b

L4b  40

L4  225

Length of link 4

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  130.000 and O4B to be L4  225.000 . This resulted in a ground-link-length O2O4 for the fourbar of 111.758.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a

L1a  111.758

Link 2 (input)

L2  130.000

Link 3 (coupler)

L3  52.000

Link 4 (output)

L4  225.000

5.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b  40.000 .

6.

Draw a construction line through C2C3 and extend it downward.

7.

Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the bottom of the base.

8.

9.

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as 10.480 units.

A

2

B 111.758

C3

O4 83.977

Link 5 (coupler) L5  83.977

1b

6 O6

92.425

A

5 D2

10.480

Link 4b (rocker) L4b  40.000

O2

1a

L6  10.480

Link 1b (ground) L1b  92.425

4

C2

The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)

3

D3

B

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-47-2

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L4b L5 L6  "Grashof" min  L1b L4b L5 L6  10.480

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-48-1

PROBLEM 3-48 Statement:

Design a fourbar linkage to move the object in Figure P3-13 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-13 and Mathcad file P0348.

Design choices: Length of link 4b

L4b  50

1.

Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.

2.

Draw construction lines from point A1 to A2 and from point A2 to A3.

3.

Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.

4.

Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.

5.

Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.

6.

Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a

L1a  20.736

Link 2

L2  127.287

Link 3

L3  52.000

Link 4

L4  120.254

B1

A1 3

A2 4

D3

B2

2

O6

D1

6

5 A3 C3 O2 C1

C2 O4

7.

B3

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-48-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" 8.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4C was selected to be L4b  50.000 .

9.

Draw a construction line through C1C3 and extend it to the left.

10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6  45.719. 12. The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)

L6  45.719

Link 5 (coupler) L5  126.875 Link 1b (ground) L1b  128.545 Link 4b (rocker) L4b  50.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5  "Grashof" min  L6 L1b L4b L5  45.719

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-49-1

PROBLEM 3-49 Statement:

Design a fourbar linkage to move the object in Figure P3-14 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  86.000

Solution:

See Figure P3-14 and Mathcad file P0349.

Design choices: Length of link 2

L2  125

Length of link 2b

L4b  50

Length of link 4

L4  140

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  125.000 and O4B to be L4  140.000 . This resulted in a ground-link-length O2O4 for the fourbar of 97.195.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a

L1a  97.195

Link 3 (coupler)

L3  86.000

Link 2 (input)

L2  125.000

Link 4 (output)

L4  140.000

5.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b  50.000 .

6.

Draw a construction line through C1C2 and extend it to the left.

7.

Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.

8.

9.

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 25.808 units.

A1

3 2 B1 B2

6 D1

O6

L6  25.808

Link 5 (coupler) L5  130.479 Link 1b (ground) L1b  137.327 Link 4b (rocker) L4b  50.000

4

D2

O2 1a

97.195

5

The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)

A2

1b

C1

C2

25.808 130.479

137.327

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-49-2

10. Use the link lengths in step 9 to find the Grashof condition of the driving fourbar (it must be Grashof and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L4b L5 L6  "Grashof" min  L1b L4b L5 L6  25.808

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-50-1

PROBLEM 3-50 Statement:

Design a fourbar linkage to move the object in Figure P3-14 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  86.000

Solution:

See Figure P3-14 and Mathcad file P0350.

Design choices: Length of link 2

L2  130

Length of link 2b

L2b  50

L4  130

Length of link 4

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  130.000 and O4B to be L4  130.000 . This resulted in a ground-link-length O2O4 for the fourbar of 67.395.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a Link 3 (coupler)

5.

6. 7.

8.

9.

L1a  67.395 L3  86.000

Link 2 (input)

L2  130.000

Link 4 (output)

L4  130.000

Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O2, C, and A.) In the solution below the distance O2C was selected to be L2b  50.000 and the link was extended away from A to give a better position for the driving dyad. Draw a construction line through C2C3 and extend it downward. Select a point on this line and call it O6. In the solution below O6 was placed 35 units from the bottom of the base. A2

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as 24.647 units. The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)

3 C3

155°

107.974

O2

C2

1a

4

67.395

1b 5

Link 5 (coupler) L5  98.822

Link 2b (rocker) L2b  50.000

B2 A3

L6  24.647

Link 1b (ground) L1b  107.974

2

D3

O4 6

98.822

B3

O6

24.647 D2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-50-2

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L2b L5 L6  "Grashof" min  L1b L2b L5 L6  24.647

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-51-1

PROBLEM 3-51 Statement:

Design a fourbar linkage to move the object in Figure P3-14 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  86.000

Solution:

See Figure P3-14 and Mathcad file P0351.

Design choices: Length of link 4b

L4b  50

1.

Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.

2.

Draw construction lines from point A1 to A2 and from point A2 to A3.

3.

Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.

4.

Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.

5.

Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.

6.

Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a

L1a  61.667

Link 2

L2  142.357

Link 3

L3  86.000

Link 4

L4  124.668

A1 A2

3

2 B1

D3

B2 O6

O2 6

D1

4

1b

A3

1a

5 C3

O4

7.

B3 C2

C1

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-51-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" 8.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution above the distance O4C was selected to be L4b  50.000 .

9.

Draw a construction line through C1C3 and extend it to the left.

10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6  45.178. 12. The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)

L6  45.178

Link 5 (coupler) L5  140.583 Link 1b (ground) L1b  142.205 Link 4b (rocker) L4b  50.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L4b L5  "Grashof" 14. Unfortunately, although the solution presented appears to meet the design specification, a simple cardboard model will quickly demonstrate that it has a branch defect. That is, in the first position shown, the linkage is in the "open" configuration, but in the 2nd and 3rd positions it is in the "crossed" configuration. The linkage cannot get from one circuit to the other without removing a pin and reassembling after moving the linkage. The remedy is to attach the points A and B to the coupler, but not at the joints between links 2 and 3 and links 3 and 4.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-52-1

PROBLEM 3-52 Statement:

Design a fourbar linkage to move the object in Figure P3-15 from position 1 to 2 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-15 and Mathcad file P0352.

Design choices: Length of link 2

L2  100

Length of link 4b

L4b  40

L4  160

Length of link 4

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A1 to A2 and B1 to B2.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  100.000 and O4B to be L4  160.000 . This resulted in a ground-link-length O2O4 for the fourbar of 81.463.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a

L1a  81.463

Link 3 (coupler)

L3  52.000

Link 2 (input)

L2  100.000

Link 4 (output)

L4  160.000

5.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b  40.000 .

6.

Draw a construction line through C1C2 and extend it to the left.

7.

Select a point on this line and call it O6. In the solution below O6 was placed 20 units from the left edge of the base.

8.

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D1 and D2. In the solution below the radius was measured as 14.351 units.

A2

B1

A1 3

B2

2 14.351

9.

The driver fourbar is now defined as O4CDO6 with link lengths Link 6 (crank)

L6  14.351

Link 5 (coupler) L5  132.962

1a

O2 C2

5

O6

1b

C1

6 132.962 O4

Link 1b (ground) L1b  138.105 Link 4b (rocker) L4b  40.000

138.105

81.463

4

D2

D1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-52-2

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L4b L5 L6  "Grashof" min  L1b L4b L5 L6  14.351

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-53-1

PROBLEM 3-53 Statement:

Design a fourbar linkage to move the object in Figure P3-15 from position 2 to 3 using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-15 and Mathcad file P0353.

Design choices: Length of link 2

L2  150

Length of link 4b

L4b  50

L4  200

Length of link 4

1.

Connect the end points of the two given positions of the line AB with construction limes, i.e., lines from A2 to A3 and B2 to B3.

2.

Bisect these lines and extend their perpendicular bisectors into the base.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2A was selected to be L2  150.000 and O4B to be L4  200.000 . This resulted in a ground-link-length O2O4 for the fourbar of L1a  80.864.

4.

The fourbar stage is now defined as O2ABO4 with link lengths Ground link 1a Link 3 (coupler)

L1a  80.864 L3  52.000

Link 2 (input)

L2  150.000

Link 4 (output)

L4  200.000

5.

Select a point on link 4 (O4B) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 4 is now a ternary link with nodes at O4, C, and B.) In the solution below the distance O4C was selected to be L4b  50.000 .

6.

Draw a construction line through C2C3 and extend it downward.

7.

Select a point on this line and call it O6. In the solution below O6 was placed 25 units from the bottom of the base.

8.

9.

Draw a circle about O6 with a radius of one-half the length C1C2 and label the intersections of the circle with the extended line as D2 and D3. In the solution below the radius was measured as L6  12.763. The driver fourbar is now defined as O4CDO6 with link lengths

A2 3

C2

B2

A3

4 2

O4 C3 1a

Link 6 (crank)

L6  12.763

B3

Link 5 (coupler) L5  112.498 Link 1b (ground) L1b  122.445 Link 4b (rocker) L4b  50.000

5

1b

O2 112.498

80.864

D2

122.445 O6

D3

12.763

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-53-2

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1b L4b L5 L6  "Grashof" min  L1b L4b L5 L6  12.763

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-54-1

PROBLEM 3-54 Statement:

Design a fourbar linkage to move the object in Figure P3-15 through the three positions shown using points A and B for attachment. Add a driver dyad to limit its motion to the range of positions shown, making it a sixbar. All fixed pivots should be on the base.

Given:

Length of coupler link: L3  52.000

Solution:

See Figure P3-15 and Mathcad file P0354.

Design choices: L2b  40

Length of link 2b 1.

Draw link AB in its three design positions A1B1, A2B2, A3B3 in the plane as shown.

2.

Draw construction lines from point A1 to A2 and from point A2 to A3.

3.

Bisect line A1A2 and line A2A3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.

4.

Repeat steps 2 and 3 for lines B1B2 and B2B3. Label the intersection O4.

5.

Connect O2 with A1 and call it link 2. Connect O4 with B1 and call it link 4.

6.

Line A1B1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2ABO4 and has link lengths of Ground link 1a

L1a  53.439

Link 2

L2  134.341

Link 3

L3  52.000

Link 4

L4  90.203

A1

A2

B1 3

B2

6 D1

4

O6 2

D3 5

C1

C2

A3

O4

1b C3 O2

7.

1a B3

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-54-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "non-Grashof" Although this fourbar is non-Grashof, there are no toggle points within the required range of motion. 8.

9.

Select a point on link 2 (O2A) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it C. (Note that link 2 is now a ternary link with nodes at O2, C, and A.) In the solution above the distance O2C was selected to be L2b  40.000 . Draw a construction line through C1C3 and extend it to the left.

10. Select a point on this line and call it O6. In the solution above O6 was placed 20 units from the left edge of the base. 11. Draw a circle about O6 with a radius of one-half the length C1C3 and label the intersections of the circle with the extended line as D1 and D3. In the solution below the radius was measured as L6  29.760. 12. The driver fourbar is now defined as O2CDO6 with link lengths Link 6 (crank)

L6  29.760

Link 5 (coupler) L5  119.665 Link 1b (ground) L1b  122.613 Link 2b (rocker) L2b  40.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-55-1

PROBLEM 3-55 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-16 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 1 offsets:

Solution:

See figure below for one possible solution. Input file P0355.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-55.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-55.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC1D1  3.744  in

yC1D1  2.497  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 7.500 in. This resulted in a ground-link-length O4O6 for the fourbar of 15.366 in.

4.

The fourbar stage is now defined as O4CDO6 with link lengths Link 5 (coupler) L5 

2

xC1D1  yC1D1

Link 4 (input)

L4  7.500  in

Ground link 1b

L1b  15.366 in

2

L5  4.500 in Link 6 (output)

L6  7.500  in

5.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.370 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  1.370  in

Link 4a (rocker) L4a  4.000  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.080  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-55-2

Condition L1a L2 L3 L4a  "Grashof" min  L1a L2 L3 L4a  1.370 in

O4 4.000 7.500

B2

B1

A1 2 O2

4

4 D1 5 5

A2

3

C2

D2 15.366

C1 6 6 7.500 O6

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -49.9 deg and +49.9 deg. The fourbar operates between 4 = +28.104 deg and -11.968 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-56-1

PROBLEM 3-56 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-16 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 2 offsets:

Solution:

See figure below for one possible solution. Input file P0356.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-56.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-56.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC2D2  4.355  in

yC2D2  1.134  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 6.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 14.200 in.

4.

The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5 

2

xC2D2  yC2D2

Link 4 (input)

L4  6.000  in

Ground link 1b

L1b  14.200 in

2

L5  4.500 in Link 6 (output)

L6  6.000  in

5.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.271 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  1.271  in

Link 4a (rocker) L4a  4.000  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.099  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-56-2

Condition L1a L2 L3 L4a  "Grashof" min  L1a L2 L3 L4a  1.271 in

6.000 O4

4.000

7.099

4 4

B1 D2 C2

B2 3

5

A1

5 C3 6.000

6

D3

2

O2

A2

6

O6

14.200

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -41.6 deg and +41.6 deg. The fourbar operates between 4 = +26.171 deg and -11.052 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-57-1

PROBLEM 3-57 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-16. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-16 and Mathcad file P0357.

Design choices: L3  10.000

Length of link 3:

Length of link 4b:

L4b  4.500

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw construction lines from point C1 to C2 and from point C2 to C3.

3.

Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.

4.

Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.

5.

Connect O6 with C1 and call it link 6. Connect O4 with D1 and call it link 4.

6.

Line C1D1 is link 5. Line O6O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a

L1a  2.616

Link 6

L6  6.080

Link 5

L5  4.500

Link 4

L4  6.901

D2

D1 5 5 C1

C3

C2

D3

B2

B1 6

2.765

5

4

3

4 4

6

B3

6 O4

6.080

A1 O2

2

6.901

O6 10.611

2.616

7.

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

A3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-57-2

Condition L1a L4 L5 L6  "Grashof" 8.

9.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b  4.500 . Draw a construction line through B1B3 and extend it up to the right.

10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2  2.765. 12. The driver fourbar is now defined as O4BAO2 with link lengths Link 2 (crank)

L2  2.765

Link 3 (coupler) L3  10.000 Link 1b (ground) L1b  10.611 Link 4b (rocker) L4b  4.500 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L2 L3 L1b L4b  "Grashof" min  L2 L3 L1b L4b  2.765

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-58-1

PROBLEM 3-58 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-16 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-16 and Mathcad file P0358.

Design choices:

L5  5.000

Length of link 5:

L2b  2.500

Length of link 2b:

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.

3.

Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.

4.

Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.

5.

Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.

6.

Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.

7.

The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H. D2 D1

C2 C3

C1

O2

O4''

O2''

O2'

O4

O4'

D3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-58-2

8.

Draw construction lines from point E1 to E2 and from point E2 to E3.

9.

Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.

10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a

L1a  3.000

Link 2

L2  8.597

Link 3

L3  1.711

Link 4

L4  7.921

G 3

H

2

4

F1

E 1 O2 1a

F3

E3

O4

F2

E2

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" The fourbar that will provide the desired motion is now defined as a Grashof double crank in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-58-3

14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b  2.500 . 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6  1.541. 18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)

L6  1.541

Link 5 (coupler) L5  5.000 Link 1b (ground) L1b  5.374 Link 2b (rocker) L2b  2.500 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L5 L1b L2b  "Grashof"

D2

D1

C2

3

D3

C3 G3

G2 C1

3

H1

3

H2

2

G1 2

B3

2

4

H3

4 4

5 O6

B1

A3 O2

A1

6

1a

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-59-1

PROBLEM 3-59 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-17 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 1 offsets:

Solution:

See figure below for one possible solution. Input file P0359.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-59.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-59.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC1D1  1.896  in

yC1D1  1.212  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O6C and O4D were each selected to be 6.500 in. This resulted in a ground-link-length O4O6 for the fourbar of 14.722 in.

4.

The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5 

2

xC1D1  yC1D1

Link 4 (input)

L4  6.500  in

Ground link 1b

L1b  14.722 in

2

L5  2.250 in Link 6 (output)

L6  6.500  in

5.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.500 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 1.037 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  0.645  in

Link 4a (rocker) L4a  4.500  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.472  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d )  S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-59-2

Condition L1a L2 L3 L4a  "Grashof" min  L1a L2 L3 L4a  0.645 in

6.500 4.500 B2

4 4

D2

B1

5

6.500

C2 5 C1

O6

7.472

3

6 6

O4

D1 14.722

A2 O2

2 A1

0.645

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4CDO6 is non-Grashoff with toggle positions at 4 = -17.1 deg and +17.1 deg. The fourbar operates between 4 = +5.216 deg and -11.273 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-60-1

PROBLEM 3-60 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-17 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 2 offsets:

Solution:

See figure below for one possible solution. Input file P0360.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-60.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-60.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC2D2  0.834  in

yC2D2  2.090  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 6.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 12.933 in.

4.

The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5 

2

xC2D2  yC2D2

Link 4 (input)

L4  5.000  in

Ground link 1b

L1b  12.933 in

2

L5  2.250 in Link 6 (output)

L6  5.000  in

5.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 4.000 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.741 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  0.741  in

Link 4a (rocker) L4a  4.000  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.173  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-60-2

Condition L1a L2 L3 L4  "Grashof"

O4 5.500

4.000 4 B3

7.173 4 B2

D3 D2

5 C3

5

3

A3

O2 2

A2

C2 6 6

12.933

O6

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -14.9 deg and +14.9 deg. The fourbar operates between 4 = +12.403 deg and -8.950 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-61-1

PROBLEM 3-61 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-17. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-17 and Mathcad file P0361.

Design choices: L3  6.000

Length of link 3:

L4b  2.500

Length of link 4b:

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw construction lines from point C1 to C2 and from point C2 to C3.

3.

Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.

4.

Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.

5.

Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.

6.

Line C1D1 is link 5. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a

L1a  1.835

Link 6

L6  2.967

Link 5

L5  2.250

Link 4

L4  3.323

D3 B3 3.323

D2

B2

4 5

4

5

C3 1.835

4 C2

O4 6 O6

6

D1

B1 3 5 C1

6

1.403 A3 O2 2

2.967

A1

6.347

7.

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-61-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L4 L5 L6  "Grashof" 8.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b  2.500 .

9.

Draw a construction line through B1B3 and extend it up to the right.

10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2  1.403. 12. The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  1.403

Link 3 (coupler) L3  6.000 Link 1b (ground) L1b  6.347 Link 4b (rocker) L4b  2.500 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L1b L2 L3 L4b  "Grashof" min  L1b L2 L3 L4b  1.403

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-62-1

PROBLEM 3-62 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-17 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-17 and Mathcad file P0362.

Design choices:

L5  4.000

Length of link 5:

Length of link 2b:

L2b  0.791

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.

3.

Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.

4.

Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.

5.

Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.

6.

Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.

7.

The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.

D3 D2

C3

D1 C2

C1 O2

O4 O2'' O2'

O4' O4''

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-62-2

8.

Draw construction lines from point E1 to E2 and from point E2 to E3.

9.

Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.

10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a

L1a  3.000

Link 2

L2  0.791

Link 3

L3  1.222

Link 4

L4  1.950

E1 O2

F1 O4

1a 2

G

4

3 E3 E2

H

F2 F3

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "non-Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof double rocker in the crossed configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad, which in this case will drive link 4 rather than link 2. 14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b  0.791 . Thus, in this case B and G coincide. 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-62-3

with the extended line as A1 and A3. In the solution below the radius was measured as L6  0.727.

18. The driver fourbar is now defined as O2BAO6 with link lengths Link 6 (crank)

L6  0.727

Link 5 (coupler) L5  4.000 Link 1b (ground) L1b  4.012 Link 2b (rocker) L2b  0.791 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L5 L1b L2b  "Grashof"

D3 D2 A3 O6

D1

6 C3

A1

C2 3

5

3

1b

3

C1

4 O2

O4

4

2 G

H

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-63-1

PROBLEM 3-63 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-18 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 1 offsets:

Solution:

See figure below for one possible solution. Input file P0363.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-63.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-63.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC1D1  1.591  in

yC1D1  1.591  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended downward and the bisector of D1D2 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4C and O6D were each selected to be 5.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 10.457 in.

4.

The fourbar stage is now defined as O4CDO6 with link lengths Link 5 (coupler) L5 

2

xC1D1  yC1D1

Link 4 (input)

L4  5.000  in

Ground link 1b

L1b  10.457 in

2

L5  2.250 in Link 6 (output)

L6  5.000  in

5.

Select a point on link 4 (O4C) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and C.) In the solution below the distance O4B was selected to be 3.750 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.882 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  0.882  in

Link 4a (rocker) L4a  3.750  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.020  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4a  "Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-63-2

O6

6 6

10.457

C2

5

5

A2 O2 2

C1

B2

B1

A1

3

4

4 5.000

D1

D2

3.750

7.020 O4

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4CDO6 is non-Grashoff with toggle positions at 4 = -38.5 deg and +38.5 deg. The fourbar operates between 4 = +15.206 deg and -12.009 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-64-1

PROBLEM 3-64 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-18 from position 2 to position 3. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Given:

Position 2 offsets:

Solution:

See figure below for one possible solution. Input file P0360.mcd from the solutions manual disk to the Mathcad program for this solution, file P03-60.4br to the program FOURBAR to see the fourbar solution linkage, and file P03-60.6br into program SIXBAR to see the complete sixbar with the driver dyad included.

xC2D2  2.053  in

yC2D2  0.920  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended downward and the bisector of D2D3 was extended upward.

3.

Select one point on each bisector and label them O4 and O6, respectively. In the solution below the distances O4D and O6C were each selected to be 5.000 in. This resulted in a ground-link-length O4O6 for the fourbar of 8.773 in.

4.

The fourbar stage is now defined as O4DCO6 with link lengths Link 5 (coupler) L5 

2

xC2D2  yC2D2

Link 4 (input)

L4  5.000  in

Ground link 1b

L1b  8.773  in

2

L5  2.250 in Link 6 (output)

L6  5.000  in

5.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, B, and D.) In the solution below the distance O4B was selected to be 3.750 in.

6.

Draw a construction line through B1B2 and extend it to the right.

7.

Select a point on this line and call it O2. In the solution below the distance AB was selected to be 6.000 in.

8.

Draw a circle about O2 with a radius of one-half the length B1B2 and label the intersections of the circle with the extended line as A1 and A2. In the solution below the radius was measured as 0.892 in.

9.

The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  0.892  in

Link 4a (rocker) L4a  3.750  in

Link 3 (coupler) L3  6.000  in Link 1a (ground) L1a  7.019  in

10. Use the link lengths in step 9 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-64-2

Condition L1a L2 L3 L4a  "Grashof"

7.019

O4

5.000

4

3.750 4 B3

B2 D2

D3 5 8.773

C3

A3 O2 2

A2

3

5 C2

6 6

O6

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -55.7 deg and +55.7 deg. The fourbar operates between 4 = -7.688 deg and -35.202 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-65-1

PROBLEM 3-65 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-18. Ignore the points O2 and O4 shown. Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-18 and Mathcad file P0365.

Design choices: L3  6.000

Length of link 3:

Length of link 4b:

L4b  5.000

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw construction lines from point C1 to C2 and from point C2 to C3.

3.

Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O6.

4.

Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.

5.

Connect O6 with C1 and call it link 6. Connect O4 with D1 and call it link 4.

6.

Line C1D1 is link 5. Line O6O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O6CDO4 and has link lengths of Ground link 1a

L1a  8.869

Link 6

L6  1.831

Link 5

L5  2.250

Link 4

L4  6.953

7.646

O4 4

O2 A1

6.953 8.869

B3

4 B1

2 1.593

D3 D2

D 1 C2 5 C1

3

A3

5 C3

6 O6

6 1.831

7.

Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-65-2

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L6 L1a L4 L5  "non-Grashof" 8.

9.

Select a point on link 4 (O4D) at a suitable distance from O4 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 4 is now a ternary link with nodes at O4, D, and B.) In the solution above the distance O4B was selected to be L4b  5.000 . Draw a construction line through B1B3 and extend it up to the right.

10. Layout the length of link 3 (design choice) along the extended line. Label the other end A. 11. Draw a circle about O2 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L2  1.593. 12. The driver fourbar is now defined as O2ABO4 with link lengths Link 2 (crank)

L2  1.593

Link 3 (coupler) L3  6.000 Link 1b (ground) L1b  7.646 Link 4b (rocker) L4b  5.000 13. Use the link lengths in step 12 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 2). Condition L1b L2 L3 L4b  "Grashof" min  L1b L2 L3 L4b  1.593

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-66-1

PROBLEM 3-66 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-18 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model and add a driver dyad to limit its motion to the range of positions designed, making it a sixbar.

Solution:

See Figure P3-18 and Mathcad file P0366.

Design choices:

Length of link 5:

L5  4.000

Length of link 2b:

L2b  2.000

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.

3.

Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.

4.

Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.

5.

Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.

6.

Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.

7.

The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H.

D1 D2

D3

C1 C2

O2''

O4'

C3 O2

O4 O2'

O4''

8.

Draw construction lines from point E1 to E2 and from point E2 to E3.

9.

Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.

10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-66-2

11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a

L1a  4.000

Link 2

L2  2.000

Link 3

L3  6.002

Link 4

L4  7.002

H

3

E3

4

F2

G 2 O2

O4 E 2 F1

E1

F3

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1a L2 L3 L4  "Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof crank rocker in the open configuration. It now remains to add the original points C1 and D1 to the coupler GH and to define the driving dyad, which in this case will drive link 4 rather than link 2.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-66-3

14. Select a point on link 2 (O2G) at a suitable distance from O2 as the pivot point to which the driver dyad will be connected and label it B. (Note that link 2 is now a ternary link with nodes at O2, B, and G.) In the solution below, the distance O2B was selected to be L2b  2.000 . Thus, in this case B and G coincide. 15. Draw a construction line through B1B3 and extend it up to the left. 16. Layout the length of link 5 (design choice) along the extended line. Label the other end A. 17. Draw a circle about O6 with a radius of one-half the length B1B3 and label the intersections of the circle with the extended line as A1 and A3. In the solution below the radius was measured as L6  1.399. 18. The driver fourbar is now defined as O2BAO6 with link lengths L6  1.399

Link 6 (crank)

Link 5 (coupler) L5  4.000 Link 1b (ground) L1b  4.257 Link 2b (rocker) L2b  2.000 19. Use the link lengths in step 18 to find the Grashoff condition of the driving fourbar (it must be Grashoff and the shortest link must be link 6). Condition L6 L1b L2b L5  "Grashof" H1

H2

3 D1

3 D2

H3

D3 C1 C2 4 4 G2

2

3

C3 2

G1

O2

1a 2

1b

G3 5

A1 6 O6

A3

4 O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-67-1

PROBLEM 3-67 Statement:

Design a fourbar Grashof crank-rocker for 120 degrees of output rocker motion with a quick-return time ratio of 1:1.2. (See Example 3-9.)

Given:

Time ratio

Solution: 1.

Tr 

1 1.2

See figure below for one possible solution. Also see Mathcad file P0367.

Determine the crank rotation angles  and , and the construction angle  from equations 3.1 and 3.2. Tr = Solving for , and 

β 

α

α  β = 360  deg

β 360  deg

β  196  deg

1  Tr

α  360  deg  β

α  164  deg

δ  β  180  deg

δ  16 deg

2.

Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 90 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 45 deg with the horizontal and has a length of 1.000 in.

3.

Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 60 deg to the horizontal.

0. 95 3

=

c

90.00°

B2 B2

B1

B1 4 O4

d

O4 3

4.4 91 =

b

3.8 33 =

0° .0 16

LAYOUT

A2

A1 2

O2

a

LINKAGE DEFINITION 0.2 55 =

O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-67-2

4.

Layoff a line through B2 that makes an angle  with the line in step 3 (76 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.

5.

From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.

6.

For this solution, the link lengths are: Ground link (1)

d  3.833  in

Coupler (3)

b  4.491  in

Crank (2)

a  0.255  in

Rocker (4)

c  0.953  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-68-1

PROBLEM 3-68 Statement:

Design a fourbar Grashof crank-rocker for 100 degrees of output rocker motion with a quick-return time ratio of 1:1.5. (See Example 3-9.)

Given:

Time ratio

Solution: 1.

Tr 

1 1.5

See figure below for one possible solution. Also see Mathcad file P0368.

Determine the crank rotation angles  and , and the construction angle  from equations 3.1 and 3.2. Tr = Solving for , and 

β 

α

α  β = 360  deg

β 360  deg

β  216 deg

1  Tr

α  360  deg  β

α  144 deg

δ  β  180  deg

δ  36 deg

2.

Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 100 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 40 deg with the horizontal and has a length of 2.000 in.

3.

Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 20 deg to the horizontal.

4.

Layoff a line through B2 that makes an angle  with the line in step 3 (56 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.

5.

From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.

B1

B2

B2

B1

3.0524 = b O4

3

O2

4 1.2694 = a

2

A1

LAYOUT O4

O2

2.0000 = c

A2 LINKAGE DEFINITION 2.5364 = d

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 3-68-2

For this solution, the link lengths are: Ground link (1)

d  2.5364 in

Coupler (3)

b  3.0524 in

Crank (2)

a  1.2694 in

Rocker (4)

c  2.000  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-69-1

PROBLEM 3-69 Statement:

Design a fourbar Grashof crank-rocker for 80 degrees of output rocker motion with a quick-return time ratio of 1:1.33. (See Example 3-9.)

Given:

Time ratio

Solution: 1.

Tr 

1 1.33

See figure below for one possible solution. Also see Mathcad file P0369.

Determine the crank rotation angles  and , and the construction angle  from equations 3.1 and 3.2. Tr = Solving for , and 

β 

α

α  β = 360  deg

β 360  deg

β  205  deg

1  Tr

α  360  deg  β

α  155  deg

δ  β  180  deg

δ  25 deg

2.

Start the layout by arbitrarily establishing the point O4 and from it layoff two lines of equal length, 100 deg apart. Label one B1 and the other B2. In the solution below, each line makes an angle of 40 deg with the horizontal and has a length of 2.000 in.

3.

Layoff a line through B1 at an arbitrary angle (but not zero deg). In the solution below the line is 150 deg to the horizontal. 2. 00 0= c

90.00°

B2

B2

B1

B1 4

O4 25.0 0°

O4 3

6.2 32 =

b

4.7 63 =

d

LAYOUT

A2

A1 2

LINKAGE DEFINITION

a

O2

0.4 35 =

O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-69-2

4.

Layoff a line through B2 that makes an angle  with the line in step 3 (73 deg to the horizontal in this case). The intersection of these two lines establishes the point O2.

5.

From O2 draw an arc that goes through B1. Extend O2B2 to meet this arc. Erect a perpendicular bisector to the extended portion of the line and transfer one half of the line to O2 as the length of the input crank.

6.

For this solution, the link lengths are: Ground link (1)

d  4.763  in

Coupler (3)

b  6.232  in

Crank (2)

a  0.435  in

Rocker (4)

c  2.000  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-70-1

PROBLEM 3-70 Statement:

Design a sixbar drag link quick-return linkage for a time ratio of 1:4 and output rocker motion of 50 degrees. (See Example 3-10.)

Given:

Time ratio

Solution: 1.

Tr 

1 4

See figure below for one possible solution. Also see Mathcad file P0370.

Determine the crank rotation angles  and  from equation 3.1. Tr = Solving for and 

β 

α

α  β = 360  deg

β 360  deg 1  Tr

α  360  deg  β

β  288 deg α  72 deg

2.

Draw a line of centers XX at any convenient location.

3.

Choose a crank pivot location O2 on line XX and draw an axis YY perpendicular to XX through O2.

4.

Draw a circle of convenient radius O2A about center O2. In the solution below, the length of O2A is a  1.000  in.

5.

Lay out angle  with vertex at O2, symmetrical about quadrant one.

6.

Label points A1 and A2 at the intersections of the lines subtending angle  and the circle of radius O2A.

7.

8.

Set the compass to a convenient radius AC long enough to cut XX in two places on either side of O2 when swung from both A1 and A2. Label the intersections C1 and C2. In the solution below, the length of AC is b  2.000  in. The line O2A is the driver crank, link 2, and the line AC is the coupler, link 3.

9.

The distance C1C2 is twice the driven (dragged) crank length. Bisect it to locate the fixed pivot O4.

10. The line O2O4 now defines the ground link. Line O4C is the driven crank, link 4. In the solution below, O4C measures c  2.282  in and O2O4 measures d  0.699  in. 11. Calculate the Grashoff condition. If non-Grashoff, repeat steps 7 through 11 with a shorter radius in step 7. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 12. Invert the method of Example 3-1 to create the output dyad using XX as the chord and O4C1 as the driving crank. The points B1 and B2 will lie on line XX and be spaced apart a distance that is twice the length of O4C (link 4). The pivot point O6 will lie on the perpendicular bisector of B1B2 at a distance from XX which subtends the specified output rocker angle, which is 50 degrees in this problem. In the solution below, the length BC was chosen to be e  5.250  in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-70-2

9.000°

72.000°

LAYOUT OF SIXBAR DRAG LINK QUICK RETURN WITH TIME RATIO OF 1:4 a = 1.000 b = 2.000 c = 2.282 d = 0.699 e = 5.250 f = 5.400

13. For the design choices made (lengths of links 2, 3 and 5), the length of the output rocker (link 6) was measured as f  5.400  in.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-71-1

PROBLEM 3-71 Statement:

Design a crank-shaper quick-return mechanism for a time ratio of 1:2.5 (Figure 3-14, p. 112).

Given:

Time ratio

Solution:

See Figure 3-14 and Mathcad file P0371.

TR 

1 2.5

Design choices:

1.

Length of link 2 (crank)

L2  1.000

Length of link 5 (coupler)

L5  5.000

S  4.000

Length of stroke

Calculate  from equations 3.1. TR 

α β

α  β  360  deg

α 

360  deg 1

α  102.86 deg

1 TR

2.

Draw a vertical line and mark the center of rotation of the crank, O2, on it.

3.

Layout two construction lines from O2, each making an angle /2 to the vertical line through O2.

4.

Using the chosen crank length (see Design Choices), draw a circle with center at O2 and radius equal to the crank length. Label the intersections of the circle and the two lines drawn in step 3 as A1 and A2.

5.

Draw lines through points A1 and A2 that are also tangent to the crank circle (step 2). These two lines will simultaneously intersect the vertical line drawn in step 2. Label the point of intersection as the fixed pivot center O4.

6.

Draw a vertical construction line, parallel and to the right of O2O4, a distance S/2 (one-half of the output stroke length) from the line O2O4.

7.

Extend line O4A1 until it intersects the construction line drawn in step 6. Label the intersection B1.

8.

Draw a horizontal construction line from point B1, either to the left or right. Using point B1 as center, draw an arc of radius equal to the length of link 5 (see Design Choices) to intersect the horizontal construction line. Label the intersection as C1.

9.

Draw the slider blocks at points A1 and C1 and finish by drawing the mechanism in its other extreme position.

STROKE 4.000 2.000 C2

6

C1

B2

B1

5

O2 4

2 A2

3 O4

A1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-72-1

PROBLEM 3-72 Statement:

Design a sixbar, single-dwell linkage for a dwell of 70 deg of crank motion, with an output rocker motion of 30 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 2.0, and coupler angle  = 40 deg. (See Example 3-13.)

Given:

Crank dwell period: 70 deg. Output rocker motion: 30 deg. Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR  2.0 Coupler angle, γ  40 deg

Design choice: Crank length, L2  2.000 Solution: 1.

See Figures 3-20 and 3-21 and Mathcad file P0372.

For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  4.000

Rocker link (4) length

L4  CLR L2

L4  4.000

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  70.000 deg AP  2.736

Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 145 to 215 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-72-2

FOURBAR for Windows

3.

File

P03-72

Angle Coupler Pt Step X Deg in

Coupler Pt Y in

Coupler Pt Mag in

Coupler Pt Ang in

145 150 155 160 165 170 175 180 185 190 195 200 205 210 215

3.818 3.661 3.494 3.319 3.135 2.945 2.749 2.547 2.342 2.133 1.923 1.711 1.499 1.289 1.080

4.422 4.360 4.295 4.226 4.156 4.083 4.009 3.935 3.859 3.783 3.707 3.631 3.555 3.479 3.403

120.297 122.895 125.549 128.259 131.025 133.846 136.723 139.655 142.639 145.674 148.757 151.886 155.055 158.261 161.498

-2.231 -2.368 -2.497 -2.617 -2.728 -2.829 -2.919 -2.999 -3.067 -3.124 -3.169 -3.202 -3.223 -3.232 -3.227

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 145, 180, and 215 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.

y

145 P

B

180

3 4 D

215 A 2

x

PSEUDO-ARC O2

4.

O4

The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 145 to 215 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-72-3

FOURBAR for Windows

File

P03-72

Angle Step Deg

Coupler Pt X in

Coupler Pt Y in

Coupler Pt Mag n

Coupler Pt Ang in

340.000 345.000 350.000 355.000 0.000 5.000 10.000 15.000

-0.718 -0.615 -0.506 -0.386 -0.255 -0.117 0.022 0.155

0.175 0.481 0.818 1.178 1.549 1.917 2.269 2.598

0.739 0.781 0.962 1.240 1.570 1.920 2.269 2.603

166.325 142.001 121.717 108.135 99.365 93.499 89.434 86.581

y 145 P

B 5

180

3 5

AXIS OF SYMMETRY

4 D

215

355 A

E

2

x

PSEUDO-ARC

O4

O2

5.

The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar: O6

y 6

145 P

B 5

180

30.000° 3 5

L2  2.000

Coupler

L3  4.000

Rocker

L4  4.000

Coupler point

AP  2.736 δ  70.000 deg

E 2

x O2

Crank

Added dyad:

355 A

L1  4.000

4 D

215

Ground link

O4

Coupler

L5  3.840

Output

L6  5.595

Pivot O6

x  3.841 y  5.809

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-73-1

PROBLEM 3-73 Statement:

Design a sixbar, single-dwell linkage for a dwell of 100 deg of crank motion, with an output rocker motion of 50 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 2.5, and coupler angle  = 60 deg. (See Example 3-13.)

Given:

Crank dwell period: 100 deg. Output rocker motion: 50 deg. Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR  2.5 Coupler angle, γ  60 deg

Design choice: Crank length, L2  2.000 Solution: 1.

See Figures 3-20 and 3-21 and Mathcad file P0373.

For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  5.000

Rocker link (4) length

L4  CLR L2

L4  5.000

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  60.000 deg AP  5.000

Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 130 to 230 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-73-2

FOURBAR for Windows

3.

File

P03-73

Angle Coupler Pt Step X Deg in

Coupler Pt Y in

Coupler Pt Mag in

Coupler Pt Ang in

130 140 150 160 170 180 190 200 210 220 230

6.449 6.171 5.840 5.464 5.047 4.598 4.123 3.631 3.130 2.629 2.138

6.812 6.695 6.559 6.408 6.244 6.071 5.892 5.709 5.523 5.336 5.146

108.774 112.833 117.078 121.493 126.060 130.765 135.588 140.504 145.482 150.482 155.454

-2.192 -2.598 -2.986 -3.347 -3.675 -3.964 -4.209 -4.405 -4.551 -4.643 -4.681

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 130, 180, and 230 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.

y 130 P

B

180

D

230

4

3

PSEUDO-ARC

A 2

x O2

4.

O4

The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 130 to 230 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-73-3

FOURBAR for Windows

File

P03-73

Angle Coupler Pt Step X Deg in

Coupler Pt Y in

Coupler Pt Mag in

Coupler Pt Ang in

340 350 0 10 20

1.429 2.316 3.316 4.265 5.047

3.013 3.237 3.746 4.414 5.078

151.688 134.332 117.727 104.920 96.371

-2.652 -2.262 -1.743 -1.137 -0.564

y 130 P 20 180

B

10 5

AXIS OF SYMMETRY

0

D

350

230

4

3 340 A

PSEUDO-ARC

E

2

x O4

O2

5.

The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank. SUMMARY OF LINKAGE y SPECIFICATIONS 130

Original fourbar: P

Ground link

L1  4.000

Crank

L2  2.000

Coupler

L3  5.000

Rocker

L4  5.000

Coupler point

AP  5.000

20 180

50.000°

B

10 5 0

O6 6

230

δ  60.000 deg

D

350

Added dyad:

4

3 340 PSEUDO-ARC

A

E

2

x O2

O4

Coupler

L5  5.395

Output

L6  2.998

Pivot O6

x  3.166 y  3.656

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-74-1

PROBLEM 3-74 Statement:

Design a sixbar, single-dwell linkage for a dwell of 80 deg of crank motion, with an output rocker motion of 45 deg using a symmetrical fourbar linkage with the following parameter values: ground link ratio = 2.0, common link ratio = 1.75, and coupler angle  = 70 deg. (See Example 3-13.)

Given:

Crank dwell period: 80 deg. Output rocker motion: 45 deg. Ground link ratio, L1/L2 = 2.0: GLR  2.0 Common link ratio, L3/L2 = L4/L2 = BP/L2 = 2.0: CLR  1.75 Coupler angle, γ  70 deg

Design choice: Crank length, L2  2.000 Solution: 1.

See Figures 3-20 and 3-21 and Mathcad file P0374.

For the given design choice, determine the remaining link lengths and coupler point specification. Coupler link (3) length

L3  CLR L2

L3  3.500

Rocker link (4) length

L4  CLR L2

L4  3.500

Ground link (1) length

L1  GLR  L2

L1  4.000

Angle PAB

δ 

Length AP on coupler 2.

180  deg  γ 2

AP  2  L3 cos δ

δ  55.000 deg AP  4.015

Enter the above data into program FOURBAR, plot the coupler curve, and determine the coordinates of the coupler curve in the selected range of crank motion, which in this case will be from 140 to 220 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-74-2

FOURBAR for Windows

3.

File

P03-74

Angle Coupler Pt Step X Deg in

Coupler Pt Y in

Coupler Pt Mag in

Coupler Pt Ang in

140 150 160 170 180 190 200 210 220

5.208 4.940 4.645 4.332 4.005 3.668 3.322 2.969 2.613

5.252 5.032 4.804 4.578 4.359 4.152 3.958 3.779 3.612

97.395 100.971 104.781 108.860 113.242 117.942 122.946 128.210 133.663

-0.676 -0.958 -1.226 -1.480 -1.720 -1.945 -2.153 -2.337 -2.493

Layout this linkage to scale, including the coupler curve whose coordinates are in the table above. Use the points at crank angles of 140, 180, and 220 deg to define the pseudo-arc. Find the center of the pseudo-arc erecting perpendicular bisectors to the chords defined by the selected coupler curve points. The center will lie at the intersection of the perpendicular bisectors, label this point D. The radius of this circle is the length of link 5.

y

140 P 180

220

B

PSEUDO-ARC

4

3 A

O4

2 O2

4.

x D

The position of the end of link 5 at point D will remain nearly stationary while the crank moves from 140 to 220 deg. As the crank motion causes the coupler point to move around the coupler curve there will be another extreme position of the end of link 5 that was originally at D. Since a symmetrical linkage was chosen, the other extreme position will be located along a line through the axis of symmetry (see Figure 3-20) a distance equal to the length of link 5 measured from the point where the axis of symmetry intersects the coupler curve near the 0 deg coupler point. Establish this point and label it E.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-74-3

FOURBAR for Windows

File

P03-74

Angle Coupler Pt Step X Deg in

Coupler Pt Y in

Coupler Pt Mag in

Coupler Pt Ang in

340 350 0 10 20

1.658 2.360 3.147 3.886 4.490

2.158 2.562 3.185 3.887 4.530

129.810 112.856 98.919 88.916 82.372

-1.382 -0.995 -0.494 0.074 0.601

y

140 P 20 180

10

0

220

AXIS OF SYMMETRY

B

350 PSEUDO-ARC

A

4

340 3

O4

2 O2

x

D E

5.

The line segment DE represents the maximum displacement that a link of the length equal to link 5, attached at P, will reach along the axis of symmetry. Construct a perpendicular bisector of the line segment DE and extend it to the right (or left, which ever is convenient). Locate fixed pivot O6 on the bisector of DE such that the lines O6D and O6E subtend the desired output angle, in this case 30 deg. Draw link 6 from D through O6 and extend it to any convenient length. This is the output link that will dwell during the specified motion of the crank.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-74-4

y

SUMMARY OF LINKAGE SPECIFICATIONS Original fourbar:

140 P 20 180

10

0

220

Ground link

L1  4.000

Crank

L2  2.000

Coupler

L3  3.500

Rocker

L4  3.500

Coupler point

AP  4.015

B

δ  55.000 deg

350 PSEUDO-ARC

A

45.000°

340 3

4

O4

2 O2

O6

x

Added dyad:

D E

Coupler

L5  7.676

Output

L6  1.979

Pivot O6

x  6.217 y  0.653

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-75-1

PROBLEM 3-75 Statement:

Using the method of Example 3-11, show that the sixbar Chebychev straight-line linkage of Figure P2-5 is a combination of the fourbar Chebychev straight-line linkage of Figure 3-29d and its Hoeken's cognate of Figure 3-29e. See also Figure 3-26 for additional information useful to this solution. Graphically construct the Chebychev sixbar parallel motion linkage of Figure P2-5a from its two fourbar linkage constituents and build a physical or computer model of the result.

Solution:

See Figures P2-5, 3-29d, 3-29e, and 3-26 and Mathcad file P0375.

1.

Following Example 3-11and Figure 3-26 for the Chebyschev linkage of Figure 3-29d, the fixed pivot OC is found by laying out the triangle OAOBOC, which is similar to A1B1P. In this case, A1B1P is a striaght line with P halfway between A1 and B1 and therefore OAOBOC is also a straightline with OC halfway between OA and OB. As shown below and in Figure 3-26, cognate #1 is made up of links numbered 1, 2, 3, and 4. Cognate #2 is links numbered 1, 5, 6, and 7. Cognate #3 is links numbered 1, 8, 9, and 10.

3

P

3 3

B1

2

4

9

OC

B2

4

6

5 1

1

6

Links Removed

10 OA

2.

2

6

7

8

A3

4

B2

P2

A1

P1

6

9 B3

B1

A1

OB

A2

5 1

A2 OA

OC

OB

Discard cognate #3 and shift link 5 from the fixed pivot OB to OC and shift link 7 from OC to OB. Note that due to the symmetry of the figure above, L5 = 0.5 L3, L6 = L2, L7 = 0.5 L2 and OCOB = 0.5 OAOB. Thus, cognate #2 is, in fact, the Hoeken straight-line linkage. The original Chebyschev linkage with the Hoeken linkage superimposed is shown above right with the link 5 rotated to 180 deg. Links 2 and 6 will now have the same velocity as will 7 and 4. Thus, link 5 can be removed and link 6 can be reduced to a binary link supported and constrained by link 4. The resulting sixbar is the linkage shown in Figure P2-5.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-76-1

PROBLEM 3-76 Statement:

Design a driver dyad to drive link 2 of the Evans straigh-line linkage in Figure 3-29f from 150 deg to 210 deg. Make a model of the resulting sixbar linkage and trace the couple curve.

Given:

Output angle

Solution:

See Figjre 3-29f, Example 3-1, and Mathcad file P0376.

Design choices:

θ  60 deg

Link lengths:

L2  2.000

Link 2

Link 5

L5  3.000

1.

Draw the input link O2A in both extreme positions, A1 and A2, at the specified angles such that the desired angle of motion 2 is subtended.

2.

Draw the chord A1A2 and extend it in any convenient direction. In this solution it was extended downward.

3.

Layout the distance A1C1 along extended line A1A2 equal to the length of link 5. Mark the point C1.

4.

Bisect the line segment A1A2 and layout the length of that radius from point C1 along extended line A1A2. Mark the resulting point O6 and draw a circle of radius O6C1 with center at O6.

5.

Label the other intersection of the circle and extended line A1A2, C2.

6.

7.

A1

Measure the length of the crank (link 6) as O6C1 or O6C2. From the graphical solution, L6  1.000 Measure the length of the ground link (link 1) as O2O6. From the graphical solution, L1  3.073

P2 3 B1 , B 2

2 O2

4 A2

P1

1

5 C1

O4

6 O6

3.073" C2

8.

Find the Grashof condition. Condition( a b c d ) 

2.932"

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L5 L6  "Grashof"

0.922" L1 = 2.4 L2 = 2 L3 = 3.2 L4 = 2.078 L5 = 3.00 L6 = 1.00 AP = 5.38

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-77-1

PROBLEM 3-77 Statement:

Design a driver dyad to drive link 2 of the Evans straigh-line linkage in Figure 3-29g from -40 deg to 40 deg. Make a model of the resulting sixbar linkage and trace the couple curve.

Given:

Output angle

Solution:

See Figjre 3-29G, Example 3-1, and Mathcad file P0377.

Design choices:

θ  80 deg

Link lengths:

L2  2.000

Link 2

Link 5

L5  3.000

1.

Draw the input link O2A in both extreme positions, A1 and A2, at the specified angles such that the desired angle of motion 2 is subtended.

2.

Draw the line A1C1 and extend it in any convenient direction. In this solution it was extended at a 30-deg angle from A1O2 (see note below) .

3.

Layout the distance A1C1 along extended line A1C1 equal to the length of link 5. Mark the point C1.

4.

Bisect the line segment A1A2 and layout the length of that radius from point C1 along extended line A1C1. Mark the resulting point O6 and draw a circle of radius O6C1 with center at O6.

5.

6.

7.

C2

O6 P2

Extend a line from A2 through O6. Label the other intersection of the circle and extended line A2O6, C2. Measure the length of the crank (link 6) as O6C1 or O6C2. From the graphical solution, L6  1.735

6

3.165"

C1

Measure the length of the ground link (link 1) as O2O6. From the graphical solution, L1  3.165

Find the Grashof condition. Condition( a b c d ) 

O2 B2

B1

3 2

4 A1

1

O4

P1

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L5 L6  "Grashof"

A2 5

Note: If the angle between link 2 and link 5 is zero the resulting driving fourbar will be a special Grashof. For angles greater than zero but less than 33.68 degrees it is a Grashof crank-rocker. For angles greater than 33.68 it is a non-Grashof double rocker. 8.

L1 = 4.61 L2 = 2 L3 = 2.4 L4 = 2.334 L5 = 3.00 L6 = 1.735 AP = 3.00

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-78-1

PROBLEM 3-78 Statement:

Figure 6 on page ix of the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD) shows a 50-point coupler that was used to generate the curves in the atlas. Using the definition of the vector R given in Figure 3-17b of the text, determine the 10 possible pairs of values of  and R for the first row of points above the horizontal axis if the gridpoint spacing is one half the length of the unit crank.

Given:

Grid module g  0.5

Solution:

See Figure 6 H&N Atlas, Figure 3-17b, and Mathcad file P0378.

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the first row of points above the horizontal axis shown in Figure 6, n  2 1  7 and m  1.

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

2



The distance, R, from the pivot to the coupler point along the same line is 2

R( m n )  g  m  n

2

ϕ( m n ) n 

5.



deg



R( m n ) 

-2.000

153.435

1.118

-1.000

135.000

0.707

0.000

90.000

0.500

1.000

45.000

0.707

2.000

26.565

1.118

3.000

18.435

1.581

4.000

14.036

2.062

5.000

11.310

2.550

6.000

9.462

3.041

7.000

8.130

3.536

The coupler point distance, R, like the link lengths A, B, and C is a ratio of the given length to the the length of the driving crank.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-79-1

PROBLEM 3-79 Statement:

The set of coupler curves in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 16 of the PDF file) has A = B = C = 1.5. Model this linkage with program FOURBAR using the coupler point fartherest to the left in the row shown on page 1 and plot the resulting coupler curve.

Given:

A  1.5

Solution:

See Figure on page 1 H&N Atlas, Figure 3-17b, and Mathcad file P0379.

B  1.5

C  1.5

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the second column of points to the left of the coupler pivot and the second row of points above the horizontal axis n  2 and m  2. The grid spacing is g  0.5

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

6.

2

2



R( m n )  1.414

Determine the values needed for input to FOURBAR. Link 2 (Crank)

a  1

Link 3 (Coupler)

b  A  a

b  1.500

Link 4 (Rocker)

c  B a

c  1.500

Link 1 (Ground)

d  C a

d  1.500

Distance to coupler point

R( m n )  1.414

Angle from link 3 to coupler point

ϕ( m n )  135.000 deg

Calculate the coordinates of O4. Let the angle between links 2 and 3 be  , then

 A 2  ( 1  C) 2  B2   2  A  ( 1  C) 

7.

2

The distance from the pivot to the coupler point, R, along the same line is R( m n )  g  m  n

5.



α  acos

α  33.557 deg

xO4  C cos α

xO4  1.250

yO4  C sin α

yO4  0.829

Enter this data into FOURBAR and then plot the coupler curve. (See next page)

ϕ( m n )  135.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-79-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-80-1

PROBLEM 3-80 Statement:

The set of coupler curves on page 17 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 32 of the PDF file) has A = 1.5, B = C = 3.0. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.

Given:

A  1.5

Solution:

See Figure on page 17 H&N Atlas, Figure 3-17b, and Mathcad file P0380.

B  3.0

C  3.0

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the fifth column of points to the right of the coupler pivot and the first row of points above the horizontal axis n  5 and m  1. The grid spacing is g  0.5

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

6.

2

2



R( m n )  2.550

Determine the values needed for input to FOURBAR. Link 2 (Crank)

a  1

Link 3 (Coupler)

b  A  a

b  1.500

Link 4 (Rocker)

c  B a

c  3.000

Link 1 (Ground)

d  C a

d  3.000

Distance to coupler point

R( m n )  2.550

Angle from link 3 to coupler point

ϕ( m n )  11.310 deg

Calculate the coordinates of O4. Let the angle between links 2 and 3 be  , then

 A 2  ( 1  C) 2  B2   2  A  ( 1  C) 

7.

2

The distance from the pivot to the coupler point, R, along the same line is R( m n )  g  m  n

5.



α  acos

α  39.571 deg

xO4  C cos α

xO4  2.313

yO4  C sin α

yO4  1.911

Enter this data into FOURBAR and then plot the coupler curve. (See next page)

ϕ( m n )  11.310 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-80-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-81-1

PROBLEM 3-81 Statement:

The set of coupler curves on page 21 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 36 of the PDF file) has A = 1.5, B = C = 3.5. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.

Given:

A  1.5

Solution:

See Figure on page 21 H&N Atlas, Figure 3-17b, and Mathcad file P0381.

B  3.5

C  3.5

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the fourth column of points to the right of the coupler pivot and the second row of points above the horizontal axis n  4 and m  2. The grid spacing is g  0.5

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

6.

2

2



R( m n )  2.236

Determine the values needed for input to FOURBAR. Link 2 (Crank)

a  1

Link 3 (Coupler)

b  A  a

b  1.500

Link 4 (Rocker)

c  B a

c  3.500

Link 1 (Ground)

d  C a

d  3.500

Distance to coupler point

R( m n )  2.236

Angle from link 3 to coupler point

ϕ( m n )  26.565 deg

Calculate the coordinates of O4. Let the angle between links 2 and 3 be  , then

 A 2  ( 1  C) 2  B2   2  A  ( 1  C) 

7.

2

The distance from the pivot to the coupler point, R, along the same line is R( m n )  g  m  n

5.



α  acos

α  40.601 deg

xO4  C cos α

xO4  2.657

yO4  C sin α

yO4  2.278

Enter this data into FOURBAR and then plot the coupler curve. (See next page)

ϕ( m n )  26.565 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-81-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-82-1

PROBLEM 3-82 Statement:

The set of coupler curves on page 34 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 49 of the PDF file) has A = 2.0, B = 1.5, C = 2.0. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.

Given:

A  2.0

Solution:

See Figure on page 34 H&N Atlas, Figure 3-17b, and Mathcad file P0382.

B  1.5

C  2.0

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the sixth column of points to the right of the coupler pivot and the first row of points below the horizontal axis n  6 and m  1. The grid spacing is g  0.5

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

6.

2

2



R( m n )  3.041

Determine the values needed for input to FOURBAR. Link 2 (Crank)

a  1

Link 3 (Coupler)

b  A  a

b  2.000

Link 4 (Rocker)

c  B a

c  1.500

Link 1 (Ground)

d  C a

d  2.000

Distance to coupler point

R( m n )  3.041

Angle from link 3 to coupler point

ϕ( m n )  9.462 deg

Calculate the coordinates of O4. Let the angle between links 2 and 3 be  , then

 A 2  ( 1  C) 2  B2   2  A  ( 1  C) 

7.

2

The distance from the pivot to the coupler point, R, along the same line is R( m n )  g  m  n

5.



α  acos

α  26.384 deg

xO4  C cos α

xO4  1.792

yO4  C sin α

yO4  0.889

Enter this data into FOURBAR and then plot the coupler curve. (See next page)

ϕ( m n )  9.462 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-82-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-83-1

PROBLEM 3-83 Statement:

The set of coupler curves on page 115 in the Hrones and Nelson atlas of fourbar coupler curves (on the book DVD, page 130 of the PDF file) has A = 2.5, B = 1.5, C = 2.5. Model this linkage with program FOURBAR using the coupler point fartherest to the right in the row shown and plot the resulting coupler curve.

Given:

A  2.5

Solution:

See Figure on page 115 H&N Atlas, Figure 3-17b, and Mathcad file P0383.

B  1.5

C  2.5

1.

The moving pivot point is located on the 3rd grid line from the bottom and the third grid line from the left when the crank angle is  radians. Let the number of horizontal grid spaces from the left end of the coupler to the coupler point be n  2 1  7 and the number of vertical grid spaces from the coupler to the coupler point be m  2 1  2

2.

For the second column of points to the right of the coupler pivot and the second row of points below the horizontal axis n  2 and m  2. The grid spacing is g  0.5

3.

The angle, , between the coupler and the line from the coupler/crank pivot to the coupler point is

π π ϕ( m n )  if  n  0 atan2( n m) if  m = 0 0 if  m  0     



4.



2

6.

2

2



R( m n )  1.414

Determine the values needed for input to FOURBAR. Link 2 (Crank)

a  1

Link 3 (Coupler)

b  A  a

b  2.500

Link 4 (Rocker)

c  B a

c  1.500

Link 1 (Ground)

d  C a

d  2.500

Distance to coupler point

R( m n )  1.414

Angle from link 3 to coupler point

ϕ( m n )  45.000 deg

Calculate the coordinates of O4. Let the angle between links 2 and 3 be  , then

 A 2  ( 1  C) 2  B2   2  A  ( 1  C) 

7.

2

The distance from the pivot to the coupler point, R, along the same line is R( m n )  g  m  n

5.



α  acos

α  21.787 deg

xO4  C cos α

xO4  2.321

yO4  C sin α

yO4  0.928

Enter this data into FOURBAR and then plot the coupler curve. (See next page)

ϕ( m n )  45.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-83-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-84-1

PROBLEM 3-84 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-19 from position 1 to position 2. Ignore the third position and the fixed pivots O2 and O4 shown. Build a cardboard model that demonstrates the required movement.

Given:

Position 1 offsets:

Solution:

See figure below and Mathcad file P0384 for one possible solution.

xC1D1  17.186 in

yC1D1  0.604  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C1 to C2 and D1 to D2.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C1C2 was extended upward and the bisector of D1D2 was also extended upward.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2C and O4D were selected to be 15.000 in. and 8.625 in, respectively. This resulted in a ground-link-length O2O4 for the fourbar of 9.351 in.

4.

The fourbar is now defined as O2CDO4 with link lengths Link 3 (coupler) L3 

2

xC1D1  yC1D1

Link 2 (input)

L2  14.000 in

Ground link 1

L1  9.351  in

2

L3  17.197 in Link 4 (output)

L4  7.000  in

9.35 1

15 .00 0

O2

O4

17.197

8.6 25

D2

C1

D1

C2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-85-1

PROBLEM 3-85 Statement:

Design a fourbar mechanism to move the link shown in Figure P3-19 from position 2 to position 3. Ignore the first position and the fixed pivots O2 and O4 shown. Build a cardboard model that demonstrates the required movement.

Given:

Position 2 offsets:

Solution:

See figure below and Mathcad file P0385 for one possible solution.

xC2D2  15.524 in

yC2D2  7.397  in

1.

Connect the end points of the two given positions of the line CD with construction lines, i.e., lines from C2 to C3 and D2 to D3.

2.

Bisect these lines and extend their perpendicular bisectors in any convenient direction. In the solution below the bisector of C2C3 was extended upward and the bisector of D2D3 was also extended upward.

3.

Select one point on each bisector and label them O2 and O4, respectively. In the solution below the distances O2C and O4D were selected to be 15.000 in and 8.625 in, respectively. This resulted in a ground-link-length O2O4 for the fourbar of 9.470 in.

4.

The fourbar stage is now defined as O2CDO4 with link lengths Link 3 (coupler) L3 

2

xC2D2  yC2D2

Link 2 (input)

L2  15.000 in

Ground link 1b

L1b  9.470  in

2

L3  17.196 in Link 4 (output)

L6  8.625  in

8.625

D3

9.47 0

O2 O4

15.000

D2 96 17.1

C3

C2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-85-2

11. Using the program FOURBAR and the link lengths given above, it was found that the fourbar O4DCO6 is non-Grashoff with toggle positions at 4 = -14.9 deg and +14.9 deg. The fourbar operates between 4 = +12.403 deg and -8.950 deg.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-86-1

PROBLEM 3-86 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-19. Ignore the points O2 and O4 shown. Build a cardboard model that has stops to limit its motion to the range of positions designed.

Solution:

See Figure P3-19 and Mathcad file P0386.

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw construction lines from point C1 to C2 and from point C2 to C3.

3.

Bisect line C1C2 and line C2C3 and extend their perpendicular bisectors until they intersect. Label their intersection O2.

4.

Repeat steps 2 and 3 for lines D1D2 and D2D3. Label the intersection O4.

5.

Connect O2 with C1 and call it link 2. Connect O4 with D1 and call it link 4.

6.

Line C1D1 is link 3. Line O2O4 is link 1 (ground link for the fourbar). The fourbar is now defined as O2CDO4 an has link lengths of Ground link 1

L1  9.187

Link 2

L2  14.973

Link 3

L3  17.197

Link 4

L4  8.815 D3

8.815

9.18 7 O2

14 .97 3

O4

2 4

D2

17.197 C1

D1

3

C3 C2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-87-1

PROBLEM 3-87 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-17 using the fixed pivots O2 and O4 shown. (See Example 3-7.) Build a cardboard model that has stops to limit its motion to the range of positions designed.

Solution:

See Figure P3-19 and Mathcad file P0387.

1.

Draw link CD in its three design positions C1D1, C2D2, C3D3 in the plane as shown.

2.

Draw the ground link O2O4 in its desired position in the plane with respect to the first coupler position C1D1.

3.

Draw construction arcs from point C2 to O2 and from point D2 to O2 whose radii define the sides of triangle C2O2D2. This defines the relationship of the fixed pivot O2 to the coupler line CD in the second coupler position.

4.

Draw construction arcs from point C2 to O4 and from point D2 to O4 whose radii define the sides of triangle C2O4D2. This defines the relationship of the fixed pivot O4 to the coupler line CD in the second coupler position.

5.

Transfer this relationship back to the first coupler position C1D1 so that the ground plane position O2'O4' bears the same relationship to C1D1 as O2O4 bore to the second coupler position C2D2.

6.

Repeat the process for the third coupler position and transfer the third relative ground link position to the first, or reference, position.

7.

The three inverted positions of the ground link that correspond to the three desired coupler positions are labeled O2O4, O2'O4', and O2"O4" in the first layout below and are renamed E1F1, E2F2, and E3F3, respectively, in the second layout, which is used to find the points G and H. D3

O'2 O2

O"2

O4

O'4

D2

C1

O" 4

D1 C3

C2

First layout for steps 1 through 7

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-87-2

E2 O'2 E1 O2 E3 O" 2

F1 O4

O'4 F2 2 4 F3 O"4 3

G

H

Second layout for steps 8 through 12 8.

Draw construction lines from point E1 to E2 and from point E2 to E3.

9.

Bisect line E1E2 and line E2E3 and extend their perpendicular bisectors until they intersect. Label their intersection G.

10. Repeat steps 2 and 3 for lines F1F2 and F2F3. Label the intersection H. 11. Connect E1 with G and label it link 2. Connect F1 with H and label it link 4. Reinverting, E1 and F1 are the original fixed pivots O2 and O4, respectively. 12. Line GH is link 3. Line O2O4 is link 1a (ground link for the fourbar). The fourbar is now defined as O2GHO4 and has link lengths of Ground link 1a

L1a  9.216

Link 2

L2  16.385

Link 3

L3  18.017

Link 4

L4  8.786

13. Check the Grashof condition. Note that any Grashof condition is potentially acceptable in this case. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 3-87-3

Condition L1a L2 L3 L4  "non-Grashof" The fourbar that will provide the desired motion is now defined as a non-Grashof double rocker in the open configuration. It now remains to add the original points C1 and D1 to the coupler GH.

9.21 6

O2

16 .38 5

O4

4

C1

3

D1 H

G

18.017

8.786

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-7a-1

PROBLEM 4-7a Statement:

Given:

The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, find all possible solutions (both open and crossed) for angles 3 and 4 using the vector loop method. Determine the Grashof condition. Link 2 Link 1 d  6  in a  2  in b  7  in

Link 3 Solution: 1.

c  9  in

Link 4

See Mathcad file P0407a.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.0000

2

d

K3 

c

K2  0.6667

 

 

 

2 a c

B  1.0000

 

C  K1   K2  1   cos θ  K3

C  3.5566

Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:





2

θ  2  atan2 2  A B 

B  4 A  C



θ  242.714  deg

θ  θ  360  deg



θ  602.714  deg



2

Crossed: θ  2  atan2 2  A B 

B  4 A  C



θ  216.340  deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

2

K4  0.8571 K5  0.2857

 

D  cos θ  K1  K4 cos θ  K5

D  1.6774

 

E  2  sin θ

E  1.0000

 

F  K1   K4  1   cos θ  K5 4.

2

A  0.7113

B  2  sin θ

3.

2

a b c d

K3  2.0000

A  cos θ  K1  K2 cos θ  K3

2.

θ  30 deg

F  2.5906

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:





θ  2  atan2 2  D E 

2

E  4  D F



θ  θ  360  deg





Crossed: θ  2  atan2 2  D E 

θ  271.163  deg θ  631.163  deg

2

E  4  D F



θ  244.789  deg

2

DESIGN OF MACHINERY - 5th Ed.

5.

Check the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof"

SOLUTION MANUAL 4-7a-2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-1-1

PROBLEM 4-1 Statement:

A position vector is defined as having length equal to your height in inches (or centimeters). The tangent of its angle is defined as your weight in lbs (or kg) divided by your age in years. Calculate the data for this vector and: a. Draw the position vector to scale on Cartesian axes. b. Write an expression for the position vector using unit vector notation. c. Write an expression for the position vector using complex number notation, in both polar and Cartesian forms.

Assumptions: Height  70, weight  160, age  20 Solution:

The magnitude of the vector is R  Height. The angle that the vector makes with the x-axis is θ  atan

weight 

  age 

a.

θ  82.875 deg

θ  1.446 rad

Draw the position vector to scale on Cartesian axes. y 100 80

R

60 70.000

1.

See Mathcad file P0401.

40

82.875°

20 0

b.

x 20

40

60

80

100

Write an expression for the position vector using unit vector notation.

 cos θ    sin θ 

R  R 

R

 8.682     69.459 

R = 8.682 i + 69.459 j

c. Write an expression for the position vector using complex number notation, in both polar and Cartesian forms. j  1.446

Polar form:

R  68 e

Cartesian form:

R  8.682  j  69.459

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-2-1

PROBLEM 4-2 Statement:

A particle is traveling along an arc of 6.5 inch radius. The arc center is at the origin of a coordinate system. When the particle is at position A, its position vector makes a 45-deg angle with the X axis. At position B, its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.

d.

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.

Given:

Circle radius and vector magnitude, R  6.5 in; vector angles: θA  45 deg

Solution:

See Mathcad file P0402.

θB  75 deg

1.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

Y 8 B 6 A 4

RB RA

2

0 a.

b.

X 2

4

6

8

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j  θA

Polar form:

RA  R e

Cartesian form:

RA  R  cos θA  j  sin θA 

j

RA  6.5 e

π 4

RA  ( 4.596  4.596j) in

Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY - 5th Ed.

c.

SOLUTION MANUAL 4-2-2

j

j  θB

Polar form:

RB  R e

RB  6.5 e

Cartesian form:

RB  R  cos θB  j  sin θB 

180

RB  ( 1.682  6.279j) in

Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA  RB  RA

d.

75 π

RBA  ( 2.914  1.682j) in

Check the result of part c with a graphical method.

Y 8

3.365 B

6

RBA

1.682

A 4

RB

2.914

2 RA 0

X 2

4

6

8

On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-3-1

PROBLEM 4-3 Statement:

Two particles are traveling along an arc of 6.5 inch radius. The arc center is at the origin of a coordinate system. When one particle is at position A, its position vector makes a 45-deg angle with the X axis. Simultaneously, the other particle is at position B, where its vector makes a 75deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.

d.

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an exp ession for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.

Given:

Circle radius and vector magnitude, R  6.5 in; vector angles: θA  45 deg

Solution:

See Mathcad file P0403.

θB  75 deg

1.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

Y 8 B 6 A 4

RB RA

2

0 a.

b.

X 2

4

6

8

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j  θA

Polar form:

RA  R e

Cartesian form:

RA  R  cos θA  j  sin θA 

j

RA  6.5 e

π 4

RA  ( 4.596  4.596j) in

Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY - 5th Ed.

c.

SOLUTION MANUAL 4-3-2

j

j  θB

Polar form:

RB  R e

RB  6.5 e

Cartesian form:

RB  R  cos θB  j  sin θB 

180

RB  ( 1.682  6.279j) in

Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA  RB  RA

d.

75 π

RBA  ( 2.914  1.682j) in

Check the result of part c with a graphical method.

Y 8

3.365 B

6

RBA

1.682

A 4

RB

2.914

2 RA 0

X 2

4

6

8

On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-4-1

PROBLEM 4-4 Statement:

A particle is traveling along the line y = -2x + 10. When the particle is at position A, its position vector makes a 45-deg angle with the X axis. At position B, its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.

d.

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.

Given:

Vector angles: θA  45 deg

Solution:

See Mathcad file P0402.

θB  75 deg

1.

Establish an X-Y coordinate frame and draw the line y = -2x + 10.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the line in step 1 as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

Y 10 y = -2x + 10 8 B 6

4

RB

2

0

3.

A

RA X 2

4

6

8

Calculate the coordinates of points A and B. xA tan  θA = 2  xA  10

xA 

10

2  tan  θA

yA  xA tan  θA xB tan  θB = 2  xB  10

xB 

10

2  tan  θB

xA  3.333 yA  3.333 xB  1.745

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-4-2

yB  xB tan  θB 4.

a.

b.

yB  6.511

Calculate the distances of points A and B from the origin. 2

2

RA  4.714

2

2

RB  6.741

RA 

xA  yA

RB 

xB  yB

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j  θA

j

Polar form:

RA  RA e

Cartesian form:

RA  RA  cos θA  j  sin θA 

RA  4.714  e

π 4

RA  3.333  3.333j

Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. j

j  θB

Polar form:

RB  RB e

RB  6.741  e

Cartesian form:

RB  RB  cos θB  j  sin θB 

75 π 180

RB  1.745  6.511j

Y c.

10

Write a vector equation for the position difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically.

y = -2x + 10 8 B

RBA  RB  RA RBA  1.589  3.178j d.

Check the result of part c with a graphical method. On the layout above the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

6 3.178 4

3.553

RBA RB A

2

0

RA X 2

4

6 1.589

8

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-5-1

PROBLEM 4-5 Statement:

Two particles are traveling along the line y = -2x2 - 2x +10. When one particle is at position A, its position vector makes a 45-deg angle with the X axis. Simultaneously, the other particle is at position B, where its vector makes a 75-deg angle with the X axis. Draw this system to some convenient scale and: a. b. c.

d.

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. Check the result of part c with a graphical method.

Given:

Vector angles: θA  45 deg

Solution:

See Mathcad file P0405.

θB  75 deg

1.

Establish an X-Y coordinate frame and draw the line y = -2x2 - 2x +10.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the line drawn in step 1 as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

Y 10 y = -2x^2 - 2x + 10 8

6 B 4 RB 2

A RA

0

3.

X 2

4

6

8

Calculate the coordinates of points A and B. xA tan  θA = 2  xA  2  xA  10 2

2  tan  θA  tan  θA    xA    1    1    2  2  2   

1

 20 

xA  1.608

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-5-2

yA  xA tan  θA

yA  1.608

xB tan  θB = 2  xB  2  xB  10 2

2  tan  θB  tan  θB    xB    1    1    2  2  2   

1

yB  xB tan  θB 4.

a.

b.

c.

xB  1.223

yB  4.564

Calculate the distances of points A and B from the origin. 2

2

RA  2.275

2

2

RB  4.725

RA 

xA  yA

RB 

xB  yB

Write an expression for the particle's position vector in position A using complex number notation, in both polar and Cartesian forms. j  θA

Polar form:

RA  R e

Cartesian form:

RA  RA  cos θA  j  sin θA 

j

RA  2.275  e

π 4

RA  1.608  1.608j

Write an expression for the particle's position vector in position B using complex number notation, in both polar and Cartesian forms. j  θB

Polar form:

RB  R e

Cartesian form:

RB  RB  cos θB  j  sin θB 

j

RB  4.725  e

75 π 180

RB  1.223  4.564j

Write a vector equation for the relative position of the particle at B with respect to the particle at A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. RBA  RB  RA

d.

 20 

RBA  0.386  2.955j

Check the result of part c with a graphical method.

On the layout on the next page the X and Y components of RBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-5-3

Y 10 y = -2x^2 - 2x + 10 8

6 B 4 RB

2.955

RBA

2.980

2 A RA 0

X 4

2 0.386

6

8

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-6a-1

PROBLEM 4-6a Statement:

The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 3 and 4. Determine the Grashoff condition.

Given:

Link 1

d  6  in

Link 2

a  2  in

Link 3

b  7  in

Link 4

c  9  in

Solution:

θ2  30 deg

See figure below for one possible solution. Also see Mathcad file P0406a.

1.

Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.

2.

Draw link 2 to some convenient scale at its given angle.

3.

Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.

4.

Locate pivot O4 on the x-axis at a distance from the origin equal to the given length of link 1.

5.

Draw a circle with center at O4 and a radius equal to the given length of link 4.

6.

The two intersections of the circles (if any) are the two solutions to the position analysis problem, crossed and open. If the circles don't intersect, there is no solution.

7.

Draw links 3 and 4 in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure their angles 3 and 4 with respect to the x-axis. From the solution below, OPEN

θ θ

CROSSED

θ θ

8.

31 41 32 42

 88.84  deg  117.29 deg  360  deg  115.21 deg

θ

 360  deg  143.66 deg

θ

42

 244.790 deg  216.340 deg

y

Check the Grashof condition. Condition( a b c d ) 

32

B

S  min ( a b c d )

OPEN

L  max( a b c d ) SL  S  L

3

PQ  a  b  c  d  SL

4

return "Grashof" if SL  PQ 88.837°

return "Special Grashof" if SL = PQ

117.286°

A

return "non-Grashof" otherwise

2 O2

Condition( a b c d )  "Grashof"

115.211°

O4 143.660°

CROSSED B'

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-7a-1

PROBLEM 4-7a Statement:

Given:

The link lengths and value of 2 for some fourbar linkages are defined in Table P4-1. The linkage configuration and terminology are shown in Figure P4-1. For row a, find all possible solutions (both open and crossed) for angles 3 and 4 using the vector loop method. Determine the Grashof condition. Link 2 Link 1 d  6  in a  2  in b  7  in

Link 3

c  9  in

Link 4

θ  30 deg

Two argument inverse tangent atan2( x y ) 

return 0.5 π if x = 0  y  0 return 1.5 π if x = 0  y  0 return atan 

y 

  if x  0  x 

atan 

y 

   π otherwise  x 

Solution: 1.

See Mathcad file P0407a.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.0000

2

d

K3 

c

K2  0.6667

 

 

2 a c

A  0.7113

 

B  2  sin θ

B  1.0000

 

C  K1   K2  1   cos θ  K3

C  3.5566

Use equation 4.10b to find values of 4 for the open and crossed circuits.

Open:





2

θ  2  atan2 2  A B 

B  4 A  C



θ  477.286 deg

θ  θ  360  deg



θ  117.286 deg



2

Crossed: θ  2  atan2 2  A B  3.

2

K3  2.0000

A  cos θ  K1  K2 cos θ  K3

2.

2

a b c d

B  4 A  C



θ  216.340 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

 

D  cos θ  K1  K4 cos θ  K5

 

E  2  sin θ

2

K4  0.8571 K5  0.2857 D  1.6774 E  1.0000

 

F  K1   K4  1   cos θ  K5

F  2.5906

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 4-7a-2

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:





θ  2  atan2 2  D E 

2

E  4  D F



θ  θ  360  deg





Crossed: θ  2  atan2 2  D E  5.

θ  88.837 deg 2

E  4  D F



Check the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof"

θ  448.837 deg

θ  244.789 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-8-1

PROBLEM 4-8 Statement:

Expand equation 4.7b and prove that it reduces to equation 4.7c (p. 157).

Solution:

See Mathcad file P0408.

1.

Write equation 4.7b and expand the two terms that are squared. 2



 

 2  a cosθ  c cosθ  d2

b  a  sin θ  c sin θ

2.

(4.7b)

a sinθ  c sinθ2  a2 sinθ2  2 a c sinθ sinθ  c2 sinθ2

(a)

a cosθ  c cosθ  d2  a2 cosθ2  2 a c cosθ cosθ  2 a d cosθ  2 2 2  2  c d  cos θ  c  cos θ  d

(b)

Add the two expanded terms, equations a and b, noting the identity sin 2x + cos2x = 1. 2

2

2

2

 

 

    

 

 

b  a  c  d  2  a  d  cos θ  2  c d  cos θ  2  a  c sin θ  sin θ  cos θ  cos θ This is equation 4.7c.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-9a-1

PROBLEM 4-9a Statement:

The link lengths, value of 2, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 3 and slider position d.

Given:

Link 2

a  1.4 in

Link 3

Offset

c  1  in

θ  45 deg

Solution:

b  4  in

See figure below for one possible solution. Also see Mathcad file P0409a.

1.

Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.

2.

Draw link 2 to some convenient scale at its given angle.

3.

Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.

4.

Draw a horizontal line through y = c (the offset).

5.

The two intersections of the circle with the horizontal line (if any) are the two solutions to the position analysis problem, crossed and open. If the circle and line don't intersect, there is no solution.

6.

Draw link 3 and the slider block in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure the angle 3 and length d for each circuit. From the solution below, θ31  360  deg  179.856  deg

θ31  180.144 deg

θ32  0.144  deg

d  3.010  in

d  4.990  in 1

2

Y d2 = 3.010

d1 = 4.990

3(CROSSED)

B'

A 2

0.144° O2

45.000°

3 (OPEN)

B 179.856° 1.000 X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-10a-1

PROBLEM 4-10a Statement:

Given:

Solution:

The link lengths, value of 2, and offset for some fourbar slider-crank linkages are defined in Table P4-2. The linkage configuration and terminology are shown in Figure P4-2. For row a, using the vector loop method, find all possible solutions (both open and crossed) for angles 3 and slider position d. Link 2 Offset

a  1.4 in c  1  in

Link 3 b  4  in θ  45 deg

See Figure P4-2 and Mathcad file P0410a. Y d2 = 3.010

d1 = 4.990

3(CROSSED)

B'

A 2

0.144°

45.000°

3 (OPEN)

B 179.856° 1.000 X

O2

1.

Determine 3 and d using equations 4.16 and 4.17. Crossed:

 a sin θ  c   b  

θ  0.144 deg

 

d 2  3.010 in

θ  asin

 

d 2  a  cos θ  b  cos θ Open:

 a  sin θ  c  π b  

θ  180.144 deg

 

d 1  4.990 in

θ  asin 

 

d 1  a  cos θ  b  cos θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-11a-1

PROBLEM 4-11a Statement:

The link lengths and the value of 2 and  for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, draw the linkage to scale and graphically find both open and closed solutions for 3 and 4 and vector RB.

Given:

Link 1

d  6  in

Link 2

Link 4

c  4  in

γ  90 deg

Solution:

a  2  in θ  30 deg

See figure below for one possible solution. Also see Mathcad file P04011a.

1.

Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.

2.

Draw link 2 to some convenient scale at its given angle.

3a. If  = 90 deg, locate O4 on the x-axis at a distance equal the length of link 1 (d) from the origin. Draw a circle with center at O4 and radius equal to the length of link 4 (c). From point A, draw two lines that are tangent to the circle. The points of tangency define the location of the points B for the open and crossed circuits. 3b. When  is not 90 deg there are two approaches to a graphical solution for link 3 and the location of point B: 1) establish the position of link 4 and the angle  by trial and error, or 2) calculate the distance from point A to point B (the instantaneous length of link 3). Using the second approach, from triangle O2AO4

y

B



b

 c

A a 2 d

x 04

02

2

2

 

2

AO4 = a  d  2  a  d  cos θ

and, from triangle AO4B (for the open circuit)

AO4 = b  c  2  b  c cos π  γ 2

2

2

where a, b, c, and d are the lengths of links 2, 3, 4, and 1, respectively. Eliminating AO4 and solving for the unknown distance b for the open branch, b 1 

1 2



 2  c cos π  γ 

2 c cos π  γ 2  4  c2  a2  d2  2 a d cos θ

b 1  1.7932 in 2

2

2

For the closed branch: AO4 = b  c  2  b  c cos( γ) b 2 

1 2



 2  c cos γ 

and

 2 c cosγ 2  4  c2  a2  d2  2 a d cos θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-11a-2

b 2  1.7932 in Draw a circle with center at point A and radius b 1. Draw a circle with center at O4 and radius equal to the length of link 4 (c). The intersections of these two circles is the solution for the open and crossed locations of the point B. 4.

Draw the complete linkage for the open and crossed circuits, including the slider. The results from the graphical solution below are: θ  127.333  deg

OPEN

CROSSED

θ  100.959  deg

θ  142.666  deg

θ  169.040  deg

RB1  3.719 at 40.708 deg

RB2  2.208 at -20.146 deg

B y 90.0°

b

127.333° c

A

142.666°

a 30.000°

d

x 04

02 B'

169.040° 79.041°

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-12a-1

PROBLEM 4-12a Statement:

Given:

The link lengths and the value of 2 and  for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row a, using the vector loop method, find both open and closed solutions for 3 and 4 and vector RB. Link 1 Link 2 d  6  in a  2  in Link 4

Solution: 1.

c  4  in

γ  90 deg

θ  30 deg

See Mathcad file P0412a.

Determine the values of the constants needed for finding 4 from equations 4.25 and 4.26.

 



 



P  a  sin θ  sin γ  a  cos θ  d  cos γ

 

2.

3.

4.

5.



 

P  1.000 in



Q  a  sin θ  cos γ  a  cos θ  d  sin γ

Q  4.268 in

R  c sin γ

R  4.000 in

T  2  P

T  2.000 in

S  R  Q

S  0.268 in

U  Q  R

U  8.268 in

Use equation 4.26c to find values of 4 for the open and crossed circuits.



T  4 S U



T  4 S U

OPEN

θ  2  atan2 2  S T 

CROSSED

θ  2  atan2 2  S T 

2



θ  142.667 deg

2



θ  169.041 deg

Use equation 4.22 to find values of 3 for the open and crossed circuits. OPEN

θ  θ  γ

θ  232.667 deg

CROSSED

θ  θ  γ

θ  79.041 deg

Determine the magnitude of the instantaneous "length" of link 3 from equation 4.24a. OPEN

b 1 

CROSSED

b 2 

    sin θ  γ

a  sin θ  c sin θ

b 1  1.793 in

    sin θ  γ

a  sin θ  c sin θ

b 2  1.793 in

Find the position vector RB from the definition given in the text. OPEN

  

   b1 cosθ  j  sinθ

RB1  a  cos θ  j  sin θ RB1  RB1

RB1  3.719 in

θ  arg RB1

θ  40.707 deg

DESIGN OF MACHINERY - 5th Ed.

CROSSED

SOLUTION MANUAL 4-12a-2

  

   b2 cosθ  j  sinθ

RB2  a  cos θ  j  sin θ RB2  RB2

RB2  3.091 in

θ  arg RB2

θ  63.254 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 4-12c-1

PROBLEM 4-12c Statement:

Given:

The link lengths and the value of 2 and for some inverted fourbar slider-crank linkages are defined in Table P4-3. The linkage configuration and terminology are shown in Figure P4-3. For row c, using the vector loop method, find both open and closed solutions for 3 and 4 and vector RB . Link 1

d  3 in

Link 2

Link 4

c  6 in

 45 deg

a 10 in  45 deg

Two argument inverse tangent atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Mathcad file P0412c.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.



  

P a  sin  sin   a cos  d  cos 



2.

P 7.879 in

  

Q a  sin  cos   a cos  d  sin 

Q 2.121 in

R c sin 

R 4.243 in

T  2 P

T 15.757 in

S R Q

S 2.121 in

U Q R

U 6.364 in

Use equation 4.22c to find values of 4 for the open and crossed circuits. OPEN



2



46.400 deg



2



163.739 deg

  2 atan2 2  S T  T 4 S U 360 deg

CROSSED   2 atan2 2  S T  T 4 S U 360 deg 3.

4.

Use equation 4.18 to find values of 3 for the open and crossed circuits. OPEN

 

91.400 deg

CROSSED

 

118.739 deg

Determine the magnitude of the instantaneous "length" of link 3 from equation 4.20a. OPEN

b1  

CROSSED

b2  

   sin   

a sin  c sin 

   sin 

a sin  c  sin 

b1 2.727 in

b2 11.212 in

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 4-12c-2

Find the position vector RB from the definition given on page 162 of the text. OPEN

CROSSED

 

 

  

 

RB1  acos  j  sin  b 1cos  j  sin  RB1   RB1

RB1 8.356in

 arg  RB1

31.331 deg

 

 

  

 

RB2  acos  j  sin  b 2cos  j  sin  RB2   RB2

RB2 12.764 in

 arg  RB2

12.488 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-13a-1

PROBLEM 4-13a Statement:

Find the transmission angles of the linkage in row a of Table P4-1.

Given:

Link 1

d  6  in

Link 2

a  2  in

Link 3

b  7  in

Link 4

c  9  in

Solution: 1.

See Mathcad file P0413a.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

2

d

K2 

K1  3.0000

K3 

c

K2  0.6667

 

 

   

2 a c

C  3.5566

Use equation 4.10b to find 4 for the open circuit.





2

θ  2  atan2 2  A B 

B  4 A  C



θ  242.714 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

2

K4  0.8571 K5  0.2857

 

D  cos θ  K1  K4 cos θ  K5

D  1.6774

 

E  2  sin θ

E  1.0000

 

F  K1   K4  1   cos θ  K5

F  2.5906

Use equation 4.13 to find 3 for the open circuit.





θ  2  atan2 2  D E 

2

E  4  D F

θ  θ  360  deg 5.

2

B  1.0000

C  K1   K2  1   cos θ  K3

4.

2

A  0.7113

B  2  sin θ

3.

2

a b c d

K3  2.0000

A  cos θ  K1  K2 cos θ  K3

2.

θ  30 deg



θ  271.163 deg θ  631.163 deg

Use equations 4.32 to find the transmission angle.

θtrans θ θ 

t  θ  θ

θtrans θ θ  208.449 deg

return t if t  0.5 π π  t otherwise 6.

It can be shown that the triangle ABO4 in Figure 4-17 is symmetric with respect to the line AO4 for the crossed branch and, therefore, the transmission angle for the crossed branch is identical to that for the open branch.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-14-1

PROBLEM 4-14 Statement:

Find the minimum and maximum values of the transmission angle for all the Grashof crankrocker linkages in Table P4-1.

Given:

Table P4-1 data:

i  1 2  14 Row  i

"a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" Solution: 1.

d 

a 

b 

c 

6 7 3 8 8 5 6 20 4 20 4 9 9 9

2 9 10 5 5 8 8 10 5 10 6 7 7 7

7 3 6 7 8 8 8 10 2 5 10 10 11 11

9 8 8 6 6 9 9 10 5 10 7 7 8 6

i

i

i

i

See Table P4-1 and Mathcad file P0414.

Determine which of the linkages in Table P4-1 are Grashof. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Row a

Condition( 6 2 7 9 )  "Grashof"

Row b

Condition( 7 9 3 8 )  "Grashof"

Row c

Condition( 3 10 6 8 )  "Grashof"

Row d

Condition( 8 5 7 6 )  "Special Grashof"

Row e

Condition( 8 5 8 6 )  "Grashof"

Row f

Condition( 5 8 8 9 )  "Grashof"

Row g

Condition( 6 8 8 9 )  "Grashof"

Row h

Condition( 20 10 10 10)  "non-Grashof"

Row i

Condition( 4 5 2 5 )  "Grashof"

Row j

Condition( 20 10 5 10)  "non-Grashof"

Row k

Condition( 4 6 10 7 )  "non-Grashof"

Row l

Condition( 9 7 10 7 )  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-14-2

Row m

Condition( 9 7 11 8 )  "non-Grashof"

Row n

Condition( 9 7 11 6 )  "non-Grashof"

2.

Determine which of the Grashof linkages are crank-rockers. To be a Grashof crank-rocker, the linkage must be Grashof and the shortest link is either 2 or 4. This is true of rows a, d, and e.

3.

Use equations 4.32 and 4.33 to calculate the maximum and minimum transmission angles.

Row a

i  1

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i    

μ  if  μ 

π 2

 

π  μ μ

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i  

Row d

i  4

 

π 2

 

π  μ μ

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i  

i  5

μ  25.209 deg

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i   μ  if  μ 

Row e

μ  58.412 deg

μ  0.000 deg

μ  25.209 deg

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i    

μ  if  μ 

π 2

 

π  μ μ

 b 2  c 2  d  a 2   i  i  i i  μ  acos   2 b  c i i  

μ  44.049 deg

μ  18.573 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-15-1

PROBLEM 4-15 Statement:

Find the input angles corresponding to the toggle positions of the non-Grashof linkages in Table P4-1.

Given:

Table P4-1 data:

i  1 2  14 Row  i

"a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" Solution: 1.

d 

a 

b 

c 

6 7 3 8 8 5 6 20 4 20 4 9 9 9

2 9 10 5 5 8 8 10 5 10 6 7 7 7

7 3 6 7 8 8 8 10 2 5 10 10 11 11

9 8 8 6 6 9 9 10 5 10 7 7 8 6

i

i

i

i

See Table P4-1 and Mathcad file P0415.

Determine which of the linkages in Table P4-1 are Grashof. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Row a

Condition( 6 2 7 9 )  "Grashof"

Row b

Condition( 7 9 3 8 )  "Grashof"

Row c

Condition( 3 10 6 8 )  "Grashof"

Row d

Condition( 8 5 7 6 )  "Special Grashof"

Row e

Condition( 8 5 8 6 )  "Grashof"

Row f

Condition( 5 8 8 9 )  "Grashof"

Row g

Condition( 6 8 8 9 )  "Grashof"

Row h

Condition( 20 10 10 10)  "non-Grashof"

Row i

Condition( 4 5 2 5 )  "Grashof"

Row j

Condition( 20 10 5 10)  "non-Grashof"

Row k

Condition( 4 6 10 7 )  "non-Grashof"

Row l

Condition( 9 7 10 7 )  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

2.

SOLUTION MANUAL 4-15-2

Row m

Condition( 9 7 11 8 )  "non-Grashof"

Row n

Condition( 9 7 11 6 )  "non-Grashof"

There are six non-Grashof rows in the Table: Rows h, and j through n. For each row there are two possible arguments to the arccos function given in equation (4.37). They are: i  8

Row  "h"

j  1

i

ai  di  bi  ci  2

arg

j 1

2

2

2

b c 

2 a  d

i i

arg

j 2

i i

ai  di  bi  ci  2

2

2

2

2 a  d

Row  "j"

i i

ai  di  bi  ci  2

j 1

2

2

2

b c 

2 a  d

i i

j 2

2

2

2

2 a  d

Row  "k"

2

2

2

b c 

2 a  d

i i

j 2

2

2

2

b c 

2 a  d

i i

i  12

Row  "l"

i i

ai  di  bi  ci  2

j 1

2

2

2

b c 

2 a  d

i i

j 2

2

2

2

2 a  d

Row  "m"

2

2

2

b c 

2 a  d

i i

j 2

2

2

2 a  d

i i

i i

a d

i i

ai  di  bi  ci  2

arg

a d

i i

ai  di  bi  ci  2

j 1

i i

j  5

i

arg

a d b c



i i

i  13

i i i i

ai  di  bi  ci  2

arg

i i

a d

j  4

i

arg

i i

a d

i i

ai  di  bi  ci  2

arg

a d

i i

ai  di  bi  ci  2

j 1

i i

j  3

i

arg

a d b c



i i

i  11

i i i i

ai  di  bi  ci  2

arg

i i

a d

j  2

i

arg

b c 

i i

i  10

i i

a d

2

b c 

i i

a d

i i

DESIGN OF MACHINERY - 5th Ed.

i  14

SOLUTION MANUAL 4-15-3

Row  "n"

j  6

i

ai  di  bi  ci  2

arg

j 1

2

2

2

b c 

2 a  d

i i

arg

j 2

2

2

2 a  d

2

b c 

i i

 1.250  1.188  0.896 arg    0.960  0.960   0.833 3.

a d

i i

ai  di  bi  ci  2

i i

i i

a d

i i

 0.688   4.938  1.262   1.833  1.262  0.250

Choose the argument values that lie between plus and minus 1,



1 2



θ2h  75.5 deg



2 2



θ2j  46.6 deg



3 1



θ2k  26.4 deg



4 1



θ2l  16.2 deg

θ2h  acos arg θ2j  acos arg

θ2k  acos arg θ2l  acos arg



5 1



θ2m  16.2 deg



6 1



θ2n  33.6 deg

θ2m  acos arg θ2n  acos arg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-16a-1

PROBLEM 4-16a Statement:

The link lengths, gear ratio, phase angle, and the value of 2 for some geared fivebar linkages are defined in Table P4-4. The linkage configuration and terminology are shown in Figure P4-4. For row a, draw the linkage to scale and graphically find all possible solutions for angles 3 and 4.

Given:

Link 1

d  4  in

Link 2

a  1  in

Link 3

b  7  in

Link 4

c  9  in

Link 5

f  6  in

Gear ratio

λ  2.0

Phase angle

ϕ  30 deg

Input angle

θ  60 deg

Solution: 1.

See Mathcad file P0201.

Determine whether or not an idler is required. idler 

"required" if λ  0 "not-required" otherwise

idler  "required" 2.

Choose radii for gears 2 and 5 by making a design choice for their center distance (which must be increased if an idler is required). Let the standard center distance when no idler is required be C  0.5 c then C = r2  r5

and

λ =

r2 r5

Solving for r2 and r5, r5 

C λ 1

r2  r5 λ

r5  1.500 in r2  3.000 in

If an idler is required, increase the center distance. C  if  idler = "required" C  r5 C

C  6.000 in

Note that the amount by which C is increased if an idler is required is a design choice that is made based on the size of the gears and the space available. 3.

Using equation 4.27c, determine the angular position of link 5 corresponding to the position of link 2. θ  λ θ  ϕ

θ  150 deg

4.

Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.

5.

Draw link 2 to some convenient scale at its given angle.

6.

Draw a circle with center at the free end of link 2 and a radius equal to the given length of link 3.

7.

Locate pivot O4 on the x-axis at a distance from the origin equal to the given length of link 1.

8.

Draw link 5 to some convenient scale at its calculated angle.

9.

Draw a circle with center at the free end of link 5 and a radius equal to the given length of link 4.

10. The two intersections of the circles (if any) are the two solutions to the position analysis problem, crossed and open. If the circles don't intersect, there is no solution. 11. Draw links 3 and 4 in their two possible positions (shown as solid for open and dashed for crossed in the figure) and measure their angles 3 and 4 with respect to the x-axis. From the solution below,

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-16a-2

θ  173.64 deg

OPEN

θ  360  deg  177.715  deg θ  182.285 deg

CROSSED

θ  360  deg  115.407  deg

θ  360  deg  124.050  deg

θ  244.593 deg

θ  235.950 deg

12. Draw gears 2 and 5 schematically at their calculated radii. If an idler is required, draw it tangent to gears 2 and 5. Its diameter is a design choice that will be made on strength and space requirements. It does not affect the gear ratio.

y C

4

B

177.7152°

173.6421° 3

5 2

B`

124.0501° x

O2

3

150.0000°

115.4074°

4

O5

DESIGN OF MACHINERY - 5th ed.

SOLUTION MANUAL 4-17a-1

PROBLEM 4-17a Statement:

Given:

Solution: 1.

The link lengths, gear ratio, phase angle, and the value of 2 for some geared fivebar linkages are defined in Table P4-4. The linkage configuration and terminology are shown in Figure P4-4. For row a, using the vector loop method, find all possible solutions for angles 3 and 4. Link 1

d  4  in

Link 2

a  1  in

Link 3

b  7  in

Link 4

c  9  in

Link 5

f  6  in

Gear ratio

λ  2.0

Phase angle

ϕ  30 deg

Input angle

θ  60 deg

See Mathcad file P0417a.

Determine the values of the constants needed for finding 3 and 4 from equations 4.27h and 4.27i.







 







 

A  2  c d  cos λ θ  ϕ  a  cos θ  f



2

A  36.6462 in 2

B  2  c d  sin λ θ  ϕ  a  sin θ

2

2

2

2



2

B  20.412 in

  

C  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ



     





2

C  37.4308 in

2

D  C  A

D  0.78461 in

E  2  B

E  40.823 in

F  A  C

F  74.077 in

2 2





  a cosθ  f 

G  28.503 in





  a sinθ

H  15.876 in

2

G  2  b   d  cos λ θ  ϕ

2

H  2  b   d  sin λ θ  ϕ

2

2.

2

2

2



2

  

K  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ

K  26.569 in

L  K  G

L  1.933 in

M  2  H

M  31.751 in

N  G  K

N  55.072 in



     





2

2 2

2

Use equations 4.28h and 4.28i to find values of 3 and 4 for the open and crossed circuits. OPEN





M  4  L N





E  4  D F





M  4  L N





E  4  D F

θ  2  atan2 2  L M  θ  2  atan2 2  D E 

CROSSED

θ  2  atan2 2  L M  θ  2  atan2 2  D E 

2

2

2

2



 



θ  173.642 deg θ  177.715 deg θ  115.407 deg θ  124.050 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18a-1

PROBLEM 4-18a Statement:

The angle between the X and x axes is 25 deg. Find the angular displacement of link 4 when link 2 rotates clockwise from the position shown (+37 deg) to horizontal (0 deg). How does the transmission angle vary and what is its minimum between those two positions? Find the toggle positions of this linkage in terms of the angle of link 2.

Given:

Link lengths: Crank

L2  116

Coupler

L3  108

Rocker

L4  110

Ground link

L1  174

Crank angle for position shown (relative to O2O4):

θ  62 deg

Y y

A

2

Crank rotation angle from position shown to horizontal:

37°

Δθ  37 deg 3 X O2

25°

B

O4

4

x

Solution: 1.

See Figure P4-5a and Mathcad file P0418a.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

L1

K2 

L2

K1  1.5000

 

2

L1

K3 

L3

K2  1.6111

 

2

2

L2  L3  L4  L1

2

2  L2 L4

K3  1.7307

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  2.

Determine 4 for the position shown and after the crank has moved to the horizontal position.

 

θ  θ θ



θ  θ θ  Δθ 3.

θ  183.5 deg



θ  212.8 deg

Subtract the two values of 4 to find the angular displacement of link 3 when link 2 rotates clockwise from the position shown to the horizontal.   θ  θ

4.

 2  4 A θ Cθ 

B θ

  29.2 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

L1 L3

2

K5 

2

2

L4  L1  L2  L3 2  L2 L3

2

K4  1.6111

K5  1.7280

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-18a-2

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

5.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the crossed circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  6.

Determine 3 for the position shown and after the crank has moved to the horizontal position.

 

θ  θ θ

θ  275.1 deg



θ  θ θ  Δθ 7.

 2  4 Dθ F θ 

E θ



θ  256.1 deg

Use equations 4.28 to find the transmission angles. μ  π  θ  θ

μ  88.4 deg

μ  θ  θ

μ  43.4 deg

The transmission angle is smaller when the crank is in the horizontal position. 8.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition L1 L2 L3 L4  "non-Grashof" 9.

Using equations 4.37, determine the crank angles (relative to the XY axes) at which links 3 and 4 are in toggle. 2

arg1 

2

2

2  L2 L1 2

arg2 

2

L2  L1  L3  L4

2

2

2

L2  L1  L3  L4 2  L2 L1





L3 L4 L2 L1 L3 L4 L2 L1

θ2toggle  acos arg2 The other toggle angle is the negative of this.

arg1  1.083

arg2  0.094

θ2toggle  95.4 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18b-1

PROBLEM 4-18b Statement:

Find and plot the angular position of links 3 and 4 and the transmission angle as a function of the angle of link 2 as it rotates through one revolution.

Given:

Link lengths: Wheel (crank)

L2  40

a  L2

Coupler

L3  96

b  L3

Rocker

L4  122

c  L4

Ground link

L1  162

d  L1

Two argument inverse tangent atan2( x y ) 

Y

return 0.5 π if x = 0  y  0 return atan 

y 

B

A

2

return 1.5 π if x = 0  y  0

y 3 X

  if x  0  x 

O2 4

y atan     π otherwise  x  Solution: 1.

See Figure P4-5b and Mathcad file P0418b. O4

Check the Grashof condition of the linkage. Condition( a b c d ) 

x

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 2.

Define one cycle of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d

K2 

a

K1  4.0500

 

2

d

K3 

c

K2  1.3279

 

2

2

a b c d

2

2 a c

K3  3.4336

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  4.

 2  4 A θ Cθ 

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 4-18b-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.6875

2 a b

 

K5  2.8875

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ

8.

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

200

 

150

θ θ  deg

  100

θ θ  deg

50

0

0

45

90

135

180

225

270

θ deg Crank angle, deg

9.

Use equations 4.32 to find the transmission angle.

 

 

 

Tran θ  θ θ  θ θ

 

 

 

Trans θ  if  Tran θ 

π 2

 

 

 π  Tran θ Tran θ



315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18b-3

10. Plot the transmission angle.

Transmission Angle 90

Transmission Angle, deg

80

 

Trans θ

70

deg 60

50

40

0

45

90

135

180 θ deg

Wheel angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18c-1

PROBLEM 4-18c Statement:

Find and plot the position of any one piston as a function of the angle of crank 2 as it rotates through one revolution. Once one piston's motion is defined, find the motions of the other two pistons and their phase relationship to the first piston. Y

Given: L2  19

a  L2

Piston-rod length L3  70

b  L3

Crank length

6

3

2

5

8 X

c  0

Offset

4

Solution:

See Figure P4-5c and Mathcad file P0418c. 7

1.

Let pistons 1, 2, and 3 be links 7, 6, and 8, respectively.

2.

Solve first for piston 6. Establish 2 as a range variable: θ  0  deg 2  deg  360  deg

3.

Determine 3 and d using equations 4.16 and 4.17.

 

 a sin θ  b 

θ θ  asin 

4.

c

 

  

d 1 θ  a  cos θ  b  cos θ θ

For each piston (slider) the crank angle is measured counter-clock-wise from the centerline of the piston, which goes through the O2 in all cases. Thus, when the crank angle for piston 1 is 0 deg, it is 120 deg for piston 2 and 240 deg for piston 3. Thus, the crank angles for pistons 2 and 3 are

 

 

θ θ  θ  120  deg 5.

 

π 

θ θ  θ  240  deg

Determine 3 and d for pistons 2 and 3.

 

 a sin θ θ   b 

θ θ  asin 

 

c

π 

    b cosθθ

d 2 θ  a  cos θ θ

 

 a sin θ θ   c  π b  

θ θ  asin 

 

    b cosθθ

d 3 θ  a  cos θ θ

6.

Plot the piston displacements as a function of crank angle (referenced to line AC (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18c-2

Piston Displacement (1, 2, and 3) 90

Piston displacement, mm

80

  d2 θ 70 d3 θ d1 θ

60

50

0

60

120

180

240

300

θ deg Piston 1 crank angle, deg.

The solid line is piston 1, the dotted line is piston 2, and the dashed line is piston 3.

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18d-1

PROBLEM 4-18d Statement:

Find the total angular displacement of link 3 and the total stroke of the box as link 2 makes a complete revolution.

Given:

Ground link

L1  150

Input crank

L2  30

Coupler link

L3  150

Output crank

L4  30

Solution:

See Figure P4-5d and Mathcad file P0418d.

Y 3 2

B

A

O2

O4

X A 4

1.

This is a special-case Grashof mechanism in the parallelogram form (see Figure 2-17 in the text). As such, the coupler link 3 executes curvilinear motion and is always parallel to the ground link 1. Thus, the total angular motion of link 3 as crank 2 makes one complete revolution is zero degrees.

2.

The stroke of the box will be equal to twice the length of the crank link in one complete revolution of the crank stroke  2  L2

stroke  60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18e-1

PROBLEM 4-18e Statement:

Determine the ratio of angular displacement between links 8 and 2 as a function of angular displacement of input crank 2. Plot the transmission angle at point B for one revolution of crank 2. Comment on the behavior of this linkage. Can it make a full revolution as shown?

Given:

Link lengths:

Crank (O2A)

a 1  20

Coupler (L3)

b 1  160

Crank (O4B)

c1  20

B

A

Ground link (O2O4) d 1  160

O2

3

4 O4 G

E

2 D

5

C

6

7

Ground link (O4O8) d 2  120

Solution:

Crank (O4G)

a 2  30

Coupler (L6)

b 2  120

Crank (O8F)

c2  30

O8 H

F 8

See Figure P4-5e and Mathcad file P0418e.

1.

This is an eightbar, 1-DOF linkage with two redundant links (3 and 6 or 5 and 7) making it, effectively, a sixbar. It is composed of a fourbar (1, 2, 3, and 4) with an output dyad (7 and 8). The input fourbar is a special-case Grashof in the parallelogram configuration. Thus, the output angle is equal to the input angle and the couplers execute curvilinear motion with links 3 and 5 always parallel to the horizontal. The output dyad also behaves like a special-case Grashof with parallelogram configuration so that the angular motion of link 8 is equal to that of link 4. Therefore, the ratio of angular displacement between links 8 and 2 is unity. The mechanism is not capable of making a full revolution. The couplers 3 and 5 (also 6 and 7) cannot pass by each other near 2 = 0 and 180 deg because of interference with the pins that connect them to their cranks.

2.

Define the approximate range of motion of the input crank: θ  0  deg 2  deg  180  deg

3.

Define 3 and 4.

 

θ  0.deg

Use equations 4.32 to find and plot the transmission angle.

 

 

 

tran θ  θ  θ θ

 

 



 

 

 

Tran θ  if tran θ  π tran θ  π tran θ

 

Trans θ  if  Tran θ 

π 2

 

 

 π  Tran θ Tran θ



Transmission Angle at B Transmission Angle, deg

4.

θ θ  θ

90 80 70 60 Trans θ 50 40 deg 30 20 10 0

 

0

45

90 θ deg Crank angle, deg

135

180

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18f-1

PROBLEM 4-18f Statement:

Find and plot the displacement of piston 4 and the angular displacement of link 3 as a function of the angular displacement of crank 2.

Given:

Link lengths: Crank length, L2

Solution:

a  63

Piston-rod length, L3

b  130

Offset

c  52

4

B Y, x

3

See Figure P4-5f and Mathcad file P0418f.

1.

Establish 2 as a range variable: θ  0  deg 1  deg  360  deg

2.

Determine 3 and d in global XY coord using equations 4.16 and 4.17.

A

 a sin θ  90 deg  c  θ θ  asin  π b  

 





2 y

X

O2

  

d θ  a  cos θ  90 deg  b  cos θ θ

Plot the piston displacement (directly below) and rod angle (next page) as functions of crank angle in the global XY coordinate frame. Piston Displacement 200

150 Piston displacement, mm

3.

 

d θ 100

50

0

0

60

120

180 θ deg Crank angle, deg.

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18f-2

Piston-Rod Angular Displacement 260

Angular displacement, deg

240

 

220

θ θ  deg

200

180

160

0

60

120

180 θ deg Crank angle, deg.

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18g-1

PROBLEM 4-18g Statement:

Find and plot the angular displacement of link 6 versus the angle of input link 2 as it is rotated from the position shown (+30 deg) to a vertical position (+90 deg). Find the toggle positions of this linkage in terms of the angle of link 2.

Given:

Link lengths:

Y

Input (L2)

a  49

Rocker (L4)

c  153

B

Coupler (L3)

b  100

Ground link (L1)

d  87

3 30° A

2 4

Angle from x axis to X axis:

α  121  deg

Starting angle:

θ  30 deg

Crank rotation angle from position shown to vertical:

Solution:

O6

X

6

C O2 5

D

y

O4

Δθ  60 deg

x

121°

See Figure P4-5g and Mathcad file P0418g.

1.

Define one cycle of the input crank in global coord: θ  θ θ  1  deg  θ  Δθ

2.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  1.7755

 

2

d

K3 

c

K2  0.5686







2

2

a b c d

2

2 a c

K3  1.5592



A θ  cos θ  α  K1  K2 cos θ  α  K3

 





 

 





 

 

θ θ  2   atan2 2  A θ B θ  3.





C θ  K1   K2  1   cos θ  α  K3

B θ  2  sin θ  α

 2  4 A θ Cθ   α

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ

4.

Plot 4 as a function of the crank angle 2 (measured from the X-axis) as it rotates from the position shown to the vertical position.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18g-2

Angular Displacement of Rocker Link 4 120

Rocker angle, deg

110

 

θ θ 

100

deg

90

80 30

40

50

60

70

80

90

θ deg Crank angle, deg

4.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 5.

Using equations 4.37, determine the crank angles (relative to the x-axis) at which links 3 and 4 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

θ2toggle  acos arg1

2



b c a d b c a d

arg1  0.840

arg2  6.338

θ2toggle  32.9 deg

The other toggle angle is the negative of this. Thus, in the global XY frame the toggle positions are:

θ2XYtoggle  θ2toggle  α

θ2XYtoggle  88.130 deg

θ2XYtoggle  θ2toggle  α

θ2XYtoggle  153.870 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-18h-1

PROBLEM 4-18h Statement:

Find link 4's maximum displacement vertically downward from the position shown. What will the angle of input link 2 be at that position?

Given:

Link lengths:

c2

a  19.8 mm

Crank length, L2 or L8

Solution:

Coupler length, L3 or L5

b1  19.4 mm

Offset of 1, 2, 3, 4

c1  4.5 mm

Distance from O2 to O8

L1  45.8 mm

Coupler length, L5 or L7

b2  13.3 mm

Offset of 1, 2, 5, 6

c2  22.9 mm

Angle of link 2 as shown

θ  47 deg

6

O2

O8

A

2

8

7

5

C

B

9

3

4

D

E

c1

See Figure P4-5h and Mathcad file P0418h.

1.

Links 1, 2, 3, 4, 5, and 6 make up two offset slider-cranks with a common crank, link 2. Links 7, 8, and 9 are kinematically redundant and contribute only to equalizing the forces in the mirror image links. Slider-crank 1, 2, 3, 4 is in the open circuit, and slider-crank 1, 2, 5, 6 is in the crossed circuit.

2.

Calculate the displacement of link 4 with respect to link 2 angle for the position shown in Figure P4-5h using equations 4.17 and 4.16b.

 a sin θ  c1  π b1  

θ  149.038 deg

 

d 10  30.14 mm

θ  asin 





d 10  a  cos θ  b1 cos θ 3.

Link 4 will reach its maximum downward displacement when links 8 and 9 and links 2 and 3 are in the toggle position. However, it is possible that they may not be able to reach this position because links 5 and 7 may be too short to allow links 2 and 8 to rotate far enough to reach toggle with 3 and 9, respectively.

4.

Using equation 4.16a, determine the angle that the crank will make with the x axis (see layout below) when links 5 and 7 are horizontal (5 = -90 deg). This will be the least value of the angle 2.

 a sin θ  c2  θ  asin  b2  

22.9 = c2 O2

y

θ  90 deg

A

a b2

 

29.0°

sin θ  1.000

 

a  sin θ  c2 b2

B

47°

A'

D' b1

 1.000

c2  b2  θ  asin   a 

D 5.90 D'

θ  29.00 deg 4.5= c1

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 4-18h-2

Use equations 4.17 and 4.16b to determine the displacement of D' with respect to O2.

 a  sin θ  c1  π b1  

θ  164.759 deg

 

d 1  36.03 mm

θ  asin 

 

d 1  a  cos θ  b1 cos θ 6.

The maximum displacement of link 4 from the position shown in Figure P4-5h is the difference between the displacement found in step 5 and that found in step 2.

Δdmax  d 1  d 10

Δdmax  5.90 mm

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-19-1

PROBLEM 4-19 Statement:

For one revolution of the driving link 2 of the walking-beam indexing and pick-and-place mechanism in Figure P4-6, find the horizontal stroke of link 3 for the portion of their motion where their tips are above the platen. Express the stroke as a percentage of the crank length O2B. What portion of a revolution of link 2 does this stroke correspond to? Also find the total angular displacement of link 6 over one revolution of link 2.

Given:

Measured lengths: Input crank length (O2A)

a  40

Coupler length (L3)

b  108

Output crank length (L4)

c  40

95

Q

3

A

64

2

4

O4

p  119.81

Coupler data (finger at Q) Distance from O2 to the platen surface

1.

D

C

Ground link length (O2O4) d  108

Solution:

73

E

6

δ  37.54  deg e  64

B

O2

7

O6 O5 185

See Figure P4-6 and Mathcad file P0419.

Links 1, 2, 3 and 4 are a special-case Grashof linkage in the parallelogram form. The tip of the finger at point Q (left end of the coupler) is used as the coupler point. The distance from the tip to the platen is . Top platen surface Q p

 

b D

A a

c d

x

O2

O4

y

2.

Define the crank angle as a range variable and define 3 ,which is constant because the coupler has curvilinear motion.. θ  0  deg 1  deg  360  deg θ  0  deg

3.

82

5

Use equations 4.27 to define the y-component of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 





RPy θ  a  sin θ  p  sin θ  δ

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 4-19-2

Define the distance of point Q above the platen (note the direction of the positive y axis in the figure above).

 

 

ε θ  e  RPy θ 5.

Plot  as a function of crank angle 2. Height of Q Above Platen 60

14

168

Height Above Platen

40

 

20

ε θ

0

 20

 40

0

60

120

180

240

300

360

θ deg

6.

From the graph we see that the coupler point Q is above the platen when the crank angle is greater than 168 deg and less than 14 deg. To find the horizontal stroke during that range of 2, calculate the x-components of any point on the coupler, say point A, for those two crank angles and subtract them. Ax1  a  cos( 14 deg)

Ax1  38.812

Ax2  a  cos( 168  deg)

Ax2  39.126

Horizontal stroke when above the platen normalized by dividing by the crank length Stroke  7.

Ax1  Ax2

Stroke  1.95

a

times the crank length

Links 1, 4, 5, and 6 constitute a Grashoff crank-rocker-rocker. The extreme positions of the output rocker (link 6) occur when links 4 and 5 are in extended and overlapping toggle positions (see Figure 3-1b in the text for example, but in this case the mechanism is in the crossed circuit). C2

29.609°

C1

6

O6

B1

O5 5

B2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-19-3

Given link lengths: LO5B  13

L7  193

LO6C  92

LO5O6  128

In the first position (links 5 and 7 extended), the angle between link 6 and the ground link is:

 L 2  L 2   L  L  2  O6C O5O6 O5B 7  α  acos     L 2 L O6C O5O6  

α  138.312 deg

In the second position (links 5 and 7 overlapping), the angle between link 6 and the ground link is:

 LO6C2  LO5O62   L7  LO5B 2 α  acos   2  LO6C LO5O6  

α  108.702 deg

The total angular displacement of link 6 is the difference between these two angles.

Δ12  α  α

Δ12  29.609 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-20-1

PROBLEM 4-20 Statement:

Figure P4-7 shows a power hacksaw, used to cut metal. Link 5 pivots at O5 and its weight forces the saw blade against the workpiece while the linkage moves the blade (link 4) back and forth on link 5 to cut the part. It is an offset slider-crank mechanism. The dimensions are shown in the figure. For one revolution of the driving link 2 of the hacksaw mechanism on the cutting stroke, find and plot the horizontal stroke of the saw blade as a function of the angle of link 2.

Given:

Link Lengths:

3

Crank length, L2

a  75 mm

Coupler length, L3

b  170  mm

Offset

c  45 mm

B

A 4

5

2 O2 O5

1

Assumptions: The arm that guides the slider (hacksaw blade carrier) remains horizontal throughout the stroke. Solution:

See Figure P4-7 and Mathcad file P0420.

1.

This is a slider-crank mechanism in the crossed circuit. The offset is the vertical distance from the horizontal centerline through O2 to point B.

2.

Establish 2 as a range variable: θ  0  deg 2  deg  360  deg

3.

Determine 3 and d using equations 4.16a and 4.17.

 

 a  sin θ  c   b  

θ θ  asin

 

 

  

d θ  a  cos θ  b  cos θ θ

Plot the blade (point B) displacement as a function of crank angle. Hacksaw Blade Stroke  50

 100 Blade displacement, mm

4.

 

d θ

 150

mm

 200

 250

0

60

120

180 θ deg Crank angle, deg.

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-21-1

PROBLEM 4-21 Statement:

Given:

For the linkage in Figure P4-8, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the xy coordinates of coupler point P between those limits, referenced to the line of centers O2O4. P Link lengths: Input (O2A)

a  5.00 in

Coupler (AB)

b  4.40 in

Rocker (O4B)

c  5.00 in

Ground link

d  9.50 in

y

Y

Coupler point data:

B

p  8.90 in δ  56 deg

3 A

4

Coordinate transformation angle: x

2

α  14 deg

O4 1

14.000° X

O2

See Figure P4-8 and Mathcad file P0421. Solution: 1. Define the coordinate systems. The local frame has origin at O2 with the positive x axis going through O4. Let the global frame also have its origin at O2 with the positive X axis to the right. 2.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 3.

Using equations 4.37, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c 2

2

a d b c 2 a d

2



b c a d b c a d

θ2toggle  acos arg2

arg1  1.209 arg2  0.283

θ2toggle  73.6 deg

The other toggle angle is the negative of this. 4.

Define one cycle of the input crank between limit positions: θ  θ2toggle θ2toggle  1  deg  θ2toggle

5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

K1 

SOLUTION MANUAL 4-21-2

d a

K1  1.9000

 

2

d

K4 

K5 

b

K4  2.1591

 

2

2

c d a b

2

2 a b

K5  2.4911

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 2  4 Dθ F θ 

 

θ θ  2   atan2 2  D θ E θ  7.

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ 8.

 



Transform the coupler point coordinates in the local frame to the global frame using coordinate transformation equations.

 

 

 

 

 

 

XP θ  RPx θ  cos α  RPy θ  sin α YP θ  RPx θ  sin α  RPy θ  cos α Plot the coordinates of the coupler point in the global system.

COUPLER CURVE 1.2

1

0.8

Y

9.

  

RPy θ  a  sin θ  p  sin θ θ  δ

0.6

0.4

0.2

0  0.4

 0.2

0

0.2 X

0.4

0.6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-22-1

PROBLEM 4-22 Statement:

For the walking beam mechanism of Figure P4-9, calculate and plot the x and y components of the position of the coupler point P for one complete revolution of the crank O2A. Hint: Calculate them first with respect to the ground link O2O4 and then transform them into the global XY coordinate system (i.e., horizontal and vertical in the figure).

Given:

Link lengths:

Coupler point data:

Ground link

d  2.22

Crank

a  1

Coupler

b  2.06

Rocker

c  2.33

1.

δ  31.000 deg

α  26.5 deg

Coordinate transformation angle: Solution:

p  3.06

See Figure P4-9 and Mathcad file P0422.

Define the coordinate systems. The local frame has origin at O2 with the positive x axis going through O4. Let the global frame also have its origin at O2 with the positive X axis to the right. Y

x

y O4 4

1

26.500° X

O2

P

2 A 3 B

2.

Define one revolution of the input crank: θ  0  deg 2  deg  360  deg

3.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  2.2200

 

2

d

K5 

b

K4  1.0777

 

2

2 a b

K5  1.1512

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

4.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  5.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-22-2

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ 6.

 

  

Transform the coupler point coordinates in the local frame to the global frame using coordinate transformation equations.

 

 

 

 

 

 

XP θ  RPx θ  cos α  RPy θ  sin α YP θ  RPx θ  sin α  RPy θ  cos α Plot the coordinates of the coupler point in the global system.

COUPLER CURVE 0.5

0

Y

7.



RPy θ  a  sin θ  p  sin θ θ  δ

 0.5

1

 1.5

2

2.5

3

3.5 X

4

4.5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-23-1

PROBLEM 4-23 Statement:

For the linkage in Figure P4-10, calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A for one revolution.

Given:

Link lengths:

B

y 3

Ground link

d  2.22

Crank

a  1.0

Coupler

b  2.06

Rocker

c  2.33

b

Coupler point data: p  3.06

P p

A

δ  31.00  deg

2

a

4

2

4

c d

Solution:

x

1

O2

O4

See Figure P4-10 and Mathcad file P0423.

1.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

2.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d a

K1  2.2200

 

d

K2 

2

K3 

c

K2  0.9528

 

2

2

a b c d

2

2 a c

K3  1.5265

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  3.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it.

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ 4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.0777

2 a b

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it.

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

K5  1.1512

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 4-23-2

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler  240

Coupler angle, deg

 260

   280

θ θ  deg

 300  320  340

0

60

120

180

240

300

360

300

360

θ deg Crank angle, deg

Angular Displacement of Rocker  200

Rocker angle, deg

 220

 

θ θ 

 240

deg  260

 280

0

60

120

180

240

θ deg Crank angle, deg

8.

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



RPx θ  a  cos θ  p  cos θ θ  δ 9.

 

 

  



RPy θ  a  sin θ  p  sin θ θ  δ

Plot the coordinates of the coupler point in the local xy coordinate system.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-23-3

COUPLER POINT CURVE 3

2.5

Y

2

1.5

1

0.5 1.5

2

2.5

3 X

3.5

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-24-1

PROBLEM 4-24 Statement:

For the linkage in Figure P4-11, calculate and plot the angular displacement of links 3 and 4 with respect to the angle of the input crank O2A for one revolution.

Given:

Link lengths: Link 2

a  2.00 in

Link 3

b  8.375  in

Link 4

c  7.187  in

Link 1

d  9.625  in

A 3 2

B

2

O2 4

1

O4

Solution:

See Figure P4-11 and Mathcad file P0424.

1.

Define one revolution of the input crank: θ  0  deg 2  deg  360  deg

2.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d a

K1  4.8125

 

2

d

K2 

K3 

c

K2  1.3392

 

2

2

a b c d

2

2 a c

K3  2.7186

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  3.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it.

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ 4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.1493

2 a b

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it.

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

K5  3.4367

DESIGN OF MACHINERY - 5th Ed.

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link).

Angular Displacement of Coupler

Coupler angle, deg

 290

 300

 310

 320

 330

0

60

120

180

240

300

360

300

360

Crank angle, deg

Angular Displacement of Rocker  220

 230 Rocker angle, deg

7.

SOLUTION MANUAL 4-24-2

 240

 250

 260

0

60

120

180 Crank angle, deg

240

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-25-1

PROBLEM 4-25 Statement:

For the linkage in Figure P4-12, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.

Given:

Link lengths: Input (O2A)

a  0.785

Coupler (AB)

b  0.356

Rocker (O4B)

c  0.950

Ground link

d  0.544

A

1.

B

158.286° c

a O2

Coupler point data: p  1.09 Solution:

b

O4

d

δ  0  deg

See Figure P4-12 and Mathcad file P0425.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 2.

double rocker

Using the geometry defined in Figure 3-1a in the text, determine the input crank angles (relative to the line O2O4) at which links 2 and 3, and 3 and 4 are in toggle.

 d2  ( a  b ) 2  c2  θ  acos  2 d ( a  b) 

θ  55.937 deg

 a2  d 2  ( b  c) 2  2 a d  

θ  acos 3.

θ  158.286 deg

Define one cycle of the input crank between limit positions: θ  θ θ  1  deg  θ

4.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d

K2 

a

K1  0.6930

 

2

d

K3 

c

K2  0.5726

 

K3  1.1317

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ 

 2  4 A θ Cθ 

B θ

2

2

a b c d 2 a c

2

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 4-25-2

If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 6.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  1.5281

2 a b

 

K5  0.2440

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

7.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  8.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 9.

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

360 300 240 180 120 60 0 50

60

70

80

90

100

110

120

130

Crank angle, deg Coupler Rocker

10. Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

140

150

160

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-25-3







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



RPx θ  a  cos θ  p  cos θ θ  δ

 

 

11. Plot the coordinates of the coupler point in the local xy coordinate system.

COUPLER POINT PATH

Coupler Point Coordinate - y

2

1.5

1

0.5

0

0

0.5

  



RPy θ  a  sin θ  p  sin θ θ  δ

1

Coupler Point Coordinate - x

1.5

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-26-1

PROBLEM 4-26 Statement:

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.

Given:

Link lengths: a  0.86

Input (O2A) Coupler (AB)

b  1.85

Rocker (O4B)

c  0.86

Ground link

d  2.22

1.

B c

a O2

Coupler point data: p  1.33 Solution:

116.037° b

A

O4

d

δ  0  deg

See Figure P4-13 and Mathcad file P0426.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 2.

Using equations 4.33, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

2



b c

arg1  1.228

a d b c

arg2  0.439

a d

θ2toggle  acos arg2

θ2toggle  116.037 deg

The other toggle angle is the negative of this. 3.

Define one cycle of the input crank between limit positions: θ  θ2toggle θ2toggle  1  deg  θ2toggle

4.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d

K2 

a

K1  2.5814

 

d c

K2  2.5814

 

2

K3 

K3  2.0181

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

2

2

a b c d

C θ  K1   K2  1   cos θ  K3

2 a c

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-26-2





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 6.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  1.2000

2 a b

 

K5  2.6244

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

7.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  8.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 9.

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link). Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

360 300 240 180 120 60 0  120

 80

 40

0

40

Crank angle, deg Coupler Rocker

10. Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

80

120

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-26-3







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

 

  

11. Plot the coordinates of the coupler point in the local xy coordinate system.

COUPLER POINT PATH 1

Y

0.5

0

 0.5 0.5

1



RPy θ  a  sin θ  p  sin θ θ  δ

1.5 X

2

2.5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-27-1

PROBLEM 4-27 Statement:

For the linkage in Figure P4-13, find its limit (toggle) positions in terms of the angle of link O4B referenced to the line of centers O4O2 when driven from link O4B. Then calculate and plot the angular displacement of links 2 and 3 and the path coordinates of point P with respect to the angle of the input crank O4B over its possible range of motion referenced to the line of centers O4O2.

Given:

Link lengths:

116.037° b 3 4

a  0.86

Input (O4B)

b  1.85

Coupler (AB) Rocker (O2A)

c  0.86

Ground link

d  2.22

x

Coupler point data: p  0.52

c A

O2

B a O4

d

δ  0  deg y

Solution: 1.

See Figure P4-13 and Mathcad file P0427.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 2.

Using equations 4.33, determine the crank angles (relative to the line O4O2) at which links 2 and 3 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

2



b c a d b c a d

θ4toggle  acos arg2

arg1  1.228

arg2  0.439

θ4toggle  116.037 deg

The other toggle angle is the negative of this. 3.

Define one cycle of the input crank between limit positions: θ  θ4toggle θ4toggle  1  deg  θ4toggle

4.

Use equations 4.8a and 4.10 to calculate 2 as a function of 4 (for the open circuit). K1 

d a

K2 

d c

2

K3 

K1  2.5814

K2  2.5814

    B θ  2  sin θ

  C θ  K1   K2  1   cos θ  K3

A θ  cos θ  K1  K2 cos θ  K3

2

2

a b c d

K3  2.0181

2 a c

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-27-2





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

If the calculated value of 2 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 6.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

 

b

K5 

2

2

c d a b

2

K4  1.2000

2 a b

 

K5  2.6244

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

7.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  8.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 9.

Plot 3 and 2 as functions of the crank angle 4 (measured from the ground link). Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

360 300 240 180 120 60 0  120

 80

 40

0

40

Crank angle, deg Coupler Rocker

10. Use equations 4.31 to define the x- and y-components of the vector RP. RP  RB  RPB

  

 

RB  a  cos θ  j  sin θ

80

120

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-27-3







RPB  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

 

  

11. Plot the coordinates of the coupler point in the local xy coordinate system. COUPLER POINT PATH 1

Y

0.5

0

 0.5

1

0

0.25

0.5



RPy θ  a  sin θ  p  sin θ θ  δ

0.75 X

1

1.25

1.5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-28-1

PROBLEM 4-28 Statement:

For the rocker-crank linkage in Figure P4-14, find the maximum angular displacement possible for the treadle link (to which force F is applied). Determine the toggle positions. How does this work? Explain why the grinding wheel is able to fully rotate despite the presence of toggle positions when driven from the treadle. How would you get it started if it was in a toggle position?

Given:

Link lengths:

x

Input (O2A)

a  600  mm

Coupler (AB)

b  750  mm

Rocker (O4B)

c  130  mm

Ground link

d  900  mm

B

B''

c

O4

B'

b

d

43.331° A'' 25.182° a

A

O2

A'

y

Solution: 1.

See Figure P4-14 and Mathcad file P0428.

Use Figure 3-1(b) in the text to calculate the angles that link O2A makes with the ground link in the toggle positions.

 a2  d 2  ( b  c) 2  θ  acos 2 a d  

θ  43.331 deg

 a2  d 2  ( b  c) 2  2 a d  

θ  68.513 deg

θ  acos 2.

Subtract these two angles to get the maximum angular displacement of the treadle.   θ  θ

3.

  25.182 deg

Despite having transmission angles of 0 deg twice per revolution, the mechanism will work. That is, one will be able to drive the grinding wheel from the treadle (link 2). The reason is that the grinding wheel will act as a flywheel and will carry the linkage through the periods when the transmission angle is low. Typically, the operator will start the motion by rotating the wheel by hand if it is in or near a toggle position.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-29-1

PROBLEM 4-29 Statement:

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle of link O2A referenced to the line of centers O2O4 when driven from link O2A. Then calculate and plot the angular displacement of links 3 and 4 and the path coordinates of point P with respect to the angle of the input crank O2A over its possible range of motion referenced to the line of centers O2O4.

Given:

Link lengths: Input (O2A)

a  0.72

Coupler (AB)

b  0.68

Rocker (O4B)

c  0.85

Ground link

d  1.82

P A B

Coupler point data: p  0.97

1.

O4

O2

δ  54 deg Solution:

55.355°

See Figure P4-15 and Mathcad file P0429.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 2.

Using equations 4.37, determine the crank angles (relative to the line AD) at which links 3 and 4 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c 2

2

a d b c 2 a d

2



b c

arg1  1.451

a d b c

arg2  0.568

a d

θ2toggle  acos arg2

θ2toggle  55.355 deg

The other toggle angle is the negative of this. 3.

Define one cycle of the input crank between limit positions: θ  θ2toggle θ2toggle  0.5 deg  θ2toggle

4.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d a

K1  2.5278

 

K2 

 

d c

K2  2.1412

 

2

K3 

K3  3.3422

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

2

2

a b c d

C θ  K1   K2  1   cos θ  K3

2 a c

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-29-2





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 6.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  2.6765

2 a b

 

K5  3.6465

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

7.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of θ3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  8.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 9.

Plot 3 and 4 as functions of the crank angle 2 (measured from the ground link).

Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

360 300 240 180 120 60 0  60

 45

 30

 15

0

15

30

Crank angle, deg Coupler Rocker

10. Use equations 4.27 to define the x- and y-components of the vector RP. RP  RA  RPA

45

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-29-3

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

 

  

11. Plot the coordinates of the coupler point in the local xy coordinate system.

COUPLER POINT PATH 1.4

1.2

Y

1

0.8

0.6

0.4

0.2 0.2

0.4

0.6



RPy θ  a  sin θ  p  sin θ θ  δ

0.8 X

1

1.2

1.4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-30-1

PROBLEM 4-30 Statement:

For the linkage in Figure P4-15, find its limit (toggle) positions in terms of the angle of link O4B referenced to the line of centers O4O2 when driven from link O4B. Then calculate and plot the angular displacement of links 2 and 3 and the path coordinates of point P with respect to the angle of the input crank O4B over its possible range of motion referenced to the line of centers O4O2.

Given:

Link lengths: Input (O4B)

a  0.85

Coupler (AB)

b  0.68

Rocker (O2A)

c  0.72

Ground link

d  1.82

P 47.885° c

Coupler point data: p  0.792 δ  82.032 deg Solution: 1.

B A

a

b

O4

O2

See Figure P4-15 and Mathcad file P0430.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 2.

Using equations 4.37, determine the crank angles (relative to the line O4O2) at which links 2 and 3 are in toggle. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c 2

2

a d b c 2 a d

θ4toggle  acos arg2

2



b c

arg1  1.304

a d b c

arg2  0.671

a d

θ4toggle  47.885 deg

The other toggle angle is the negative of this. 3.

Define one cycle of the input crank between limit positions: θ  θ4toggle θ4toggle  0.5 deg  θ4toggle

4.

Use equations 4.8a and 4.10 to calculate 2 as a function of 4 (for the open circuit). K1 

d

K2 

a

K1  2.1412

 

d c

K2  2.5278

 

2

K3 

K3  3.3422

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

2

2

a b c d

C θ  K1   K2  1   cos θ  K3

2 a c

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-30-2





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

If the calculated value of 2 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 6.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  2.6765

2 a b

 

K5  3.4420

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

7.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  8.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it. If it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 9.

Plot 3 and 2 as functions of the crank angle 4 (measured from the ground link). Angular Displacement of Coupler & Rocker

Coupler or Rocker angle, deg

360 300 240 180 120 60 0  60

 45

 30

 15

0

15

30

Crank angle, deg Coupler Rocker

10. Use equations 4.27 to define the x- and y-components of the vector RP. RP  RB  RPB

45

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-30-3

  

 

RB  a  cos θ  j  sin θ

 







RPB  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

 

  

11. Plot the coordinates of the coupler point in the local xy coordinate system.

COUPLER POINT PATH 1.5

Y

1

0.5

0

0

0.2

0.4

0.6 X



RPy θ  a  sin θ  p  sin θ θ  δ

0.8

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-31-1

PROBLEM 4-31 Statement:

Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to find the roots of y = 9x2 + 50x - 40. Hint: Plot the function to determine good guess values.

Solution:

See Mathcad file P0431.

1.

Plot the function. 2

x  10 9.5  10

f ( x)  9  x  50 x  40

200

100

f ( x)

0

 100

 200  10

8

6

4

2

0

2

x

2.

From the graph, make guesses of x1  6 , x2  1

3.

Define the program using the pseudo code in the text. nroot( f df x) 

y  f ( x) y  TOL

return x if

while y  TOL xx

y df ( x)

y  f ( x) x

where,

3

TOL  1.000  10

4.

Define the derivative of the given function. df ( x)  18 x  50

5.

Use the program to find the roots. r1  nroot f df x1

r1  6.265

r2  nroot f df x2

r2  0.709

4

6

8

10

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-32-1

PROBLEM 4-32 Statement:

Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to find the roots of y = -x3 - 4x2 + 80x - 40. Hint: Plot the function to determine good guess values.

Solution:

See Mathcad file P0432.

1.

Plot the function. 3

x  15 14.5  10

2

f ( x)  x  4  x  80 x  40

200

100

f ( x)

0

 100

 200  20

 15

 10

5

0

x

2.

From the graph, make guesses of x1  11 , x2  0 , x3  7

3.

Define the program using the pseudo code in the text. nroot( f df x) 

y  f ( x) y  TOL

return x if

while y  TOL xx

y df ( x)

y  f ( x) x

where,

3

TOL  1.000  10

2

4.

Define the derivative of the given function. df ( x)  3  x  8  x  80

5.

Use the program to find the roots. r1  nroot f df x1

r1  11.355

r2  nroot f df x2

r2  0.515

r3  nroot f df x3

r3  6.840

5

10

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-33-1

PROBLEM 4-33 Statement:

Figure 4-18 (p. 193) plots the cubic function from equation 4.34. Write a computer program (or use an equation solver such as Mathcad, Matlab, or TKSolver) to investigate the behavior of the Newton-Raphson algorithm as the initial guess value is varied from x = 1.8 to 2.5 in steps of 0.1. Determine the guess value at which the convergence switches roots. Explain this root-switching phenomenon based on your observations from this exercise.

Solution:

See Figure 4-18 and Mathcad file P0433.

1.

Define the range of the guess value, the function, and the derivative of the function. xguess  1.8 1.9  2.5 3

2

2

f ( x)  x  2  x  50 x  60 2.

df ( x)  3  x  4  x  50

Define the root-finding program using the pseudo code in the text. nroot( f df x) 

y  f ( x) y  TOL

return x if

while y  TOL xx

y df ( x)

y  f ( x) x 3.

Find the roots that correspond to the guess values. r( xguess)  nroot( f df xguess) 1

1

f ( xguess) df ( xguess)

1

1

1

1.800

1

33.080

1

-2.362

1

-1.177

2

1.900

2

31.570

2

-2.564

2

-1.177

3

2.000

3

30.000

3

-2.800

3

-1.177

2.100 df ( xguess)  4

28.370

nextx( xguess)  4

-3.079

r( xguess)  4

-1.177

xguess  4

4.

nextx( xguess)  xguess 

5

2.200

5

26.680

5

-3.410

5

-1.177

6

2.300

6

24.930

6

-3.807

6

-1.177

7

2.400

7

23.120

7

-4.289

7

6.740

8

2.500

8

21.250

8

-4.882

8

-7.562

Find the roots of the derivative (values of x where the slope is zero). ddf ( x)  6  x  4

5.

xz1  nroot( df ddf 5 )

xz1  4.803

xz2  nroot( df ddf 4 )

xz2  3.470

For guess values up to 2.3, the root found is that whose slope is nearly the same as the slope of the function at the guess value. At 2.4, the value of x that is calculated next results in a slope that throws the next x-value to the right of the extreme function value at x = 3.470. Subsequent estimates of x then follow down the slope to x = 6.740. At a guess value of 2.5, the value of x that is calculated next is to the left of the extreme function value at x = -4.803. Subsequent estimates of x follow up the slope to x = -7.562.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-34-1

PROBLEM 4-34 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 4 and the position of slider 6 in Figure 3-33 as a function of the angle of input link 2.

Given:

Link lengths: Input crank (L2)

a  2.170

Fourbar coupler (L3)

b  2.067

Output crank (L4)

c  2.310

Sllider coupler (L5)

e  5.40

Fourbar ground link (L1) Solution:

d  1.000

See Figure 3-33 and Mathcad file P0434.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slidercrank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY system. K1 

d

K2 

a

K1  0.4608

 

2

d

K3 

c

K2  0.4329

 

2

2

a b c d

2

2 a c

K3  0.6755

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 





 

 

θ θ  2   atan2 2  A θ B θ  4.

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 2  4 A θ Cθ   102 deg

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 5.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

 

 c sin θ θ   π e  

 

    e cosθθ

θ θ  asin

f θ  c cos θ θ 6.

Plot the angular position of link 4 and the position of link 6 as functions of the angle of input link 2. See next page.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-34-2

Angular Position of Link 4 360 315 270

 

θ  θ

225 180

deg 135 90 45 0

0

45

90

135

180

225

270

315

360

315

360

θ deg

Position of Slider 6 With Respect to O4 8 7.167 6.333

 

f θ

5.5 4.667 3.833 3

0

45

90

135

180 θ deg

225

270

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-35-1

PROBLEM 4-35 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B and C of the linkage in Figure 3-33 as a function of the angle of input link 2.

Given:

Link lengths: Input crank (L2)

a  2.170

Fourbar coupler (L3)

b  2.067

Output crank (L4)

c  2.310

Sllider coupler (L5)

e  5.40

d  1.000

Fourbar ground link (L1) Solution:

See Figure 3-33 and Mathcad file P0435.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slidercrank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d a

K1  0.4608

 

2

d

K2 

K3 

c

K2  0.4329

 

2

2

a b c d

2

2 a c

K3  0.6755

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d b

K5 

2

2

c d a b

2

K4  0.4838

2 a b

 

K5  0.5178

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

If the calculated value of 3 is greater than 2, subtract 2 from it and if it is negative, make it positive.

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-35-2

  

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 8.

Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

 

 

π  θtransB1 θ θtransB1 θ



Transmission Angle at B 40 35 30

θtransB θ

25 20

deg 15 10 5 0

0

45

90

135

180

225

270

315

360

θ deg

9.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

 c sin θ θ   π e  

 

θ θ  asin

10. Calculate (using equations 4.32) and plot the transmission angle at C.

θtransC1 θ  θ θ

 

θtransC θ  if  θtransC1 θ 

π 2

 

 

π  θtransC1 θ θtransC1 θ



Transmission Angle at C 30 25

θtransC θ

20 15

deg 10 5 0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-36-1

PROBLEM 4-36 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29f (p. 142). Use program Fourbar to check your result.

Given:

Link lengths: Input (O2A)

a  1.000

Coupler (AB)

b  1.600

Rocker (O4B)

c  1.039

Ground link

d  1.200

p  2.690

Coupler point data:

α  60 deg

Coordinate rotation angle: Solution: 1.

δ  0  deg

See Figure 3-29f and Mathcad file P0436.

Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" Since b (link 3) is the longest link and the linkage is non-Grashof, this is a Class 3 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 2 and 3 colinear:

 ( b  a) 2  d2  c2 π  2 d ( b  a) 

θ  acos

θ  240 deg

For links 3 and 4 colinear:

 a2  d 2  ( b  c) 2  θ  acos 2 d a   2.

θ  27.683 deg

θ  θ

Define one cycle of the input crank (driving through the links 2-3 toggle position): θ  θ θ  1  deg  360  deg  θ

3.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  1.2000

 

2

d

K5 

b

K4  0.7500

 

2

2 a b

K5  1.2251

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ 4.

 

 

F θ  K1   K4  1   cos θ  K5

Use equation 4.13 to find values of 3 for the open circuit.

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.



 

SOLUTION MANUAL 4-36-2



 

 

θ θ  2   atan2 2  D θ E θ  5.

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

     RPA  p   cos θ  δ  j  sin θ  δ  RA  a  cos θ  j  sin θ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

  



Plot the coordinates of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.

 

 

 

 

 

 

PX θ  RPx θ  cos( α)  RPy θ  sin( α) PY θ  RPx θ  sin( α)  RPy θ  cos( α) COUPLER POINT PATH 2

1

Coupler Point Coordinate - Y

6.

 

RPy θ  a  sin θ  p  sin θ θ  δ

0

1

2

3

4

0

1

2 Coupler Point Coordinate - X

3

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-37-1

PROBLEM 4-37 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 6 in Figure 3-34 as a function of the angle of input link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

g  1.556

First coupler (L3)

f  4.248

First rocker (L4)

c  2.125

Third coupler (CD)

b  2.158

Output rocker (L6)

a  1.542

Second ground link (O4O6) d  1.000

Angle CDB

δ  36 deg

Distance (BD)

O2O4 ground link offsets:

h X  3.259

h Y  2.905

See Figure 3-34 and Mathcad file P0437.

Calculate the length of the O2O4 ground link and the angle that it makes with the global XY system. h 

2.

p  3.274

2

hX  hY

2

 hY    hX 

γ  atan

h  4.366

γ  41.713 deg

Calculate the distance BC on link 5. This is the length of vector R51. Also, calculate the angle between vectors R51 and R52 e 

b  p  2  b  p  cos δ 2

2

e  1.986

Second coupler (BC)

 b 2  e2  p 2    2 b e 

α  acos

α  104.305 deg

β  π  α

β  75.695 deg

3.

This is a Stephenson's sixbar linkage similar to the one shown in Figure 4-13. Since the output link 6 is known to rotate 180 deg and return for a full revolution of link 2 we can use links 6, 5, and 4 as a first-stage fourbar with known input (link 6) and then solve for vector loop equations to get the corresponding motion of link 2.

4.

Define the rotation of the output crank: θ  90 deg 91 deg  270  deg

5.

Use equations 4.8a and 4.10 to calculate 4 in the local xy coordinate system as a function of 6 (for the crossed circuit). K1 

d

K2 

a

K1  0.6485

 

2

d

K3 

c

K2  0.4706

 

2

2

a b c d

2

2 a c

K3  0.4938

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  6.

 2  4 A θ Cθ 

B θ

Use equations 4.12 and 4.13 to calculate 5 in the local xy coordinate system as a function of 6 (for the crossed circuit). K4 

d b

K4  0.463

2

K5 

2

2

c d a b

K5  0.529

2 a b

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-37-2

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Transform the angles for 4 and 52 into the global XY system and define 51 in the global system.

 

 

θ θ  θ θ  90 deg

 

 

 

 

θ θ  θ θ  90 deg θ θ  θ θ  β 8.

Define a vector loop for the remaining links and solve the resulting vector equation by separating it into real and imaginary parts using the method of section 4.5 and the identities of equations 4.9.

Y X

O2 2 R2

R1

6

A

O6

y

D R 5 R52 3 C R4

3

O4 4 x

R51 B R1 + R4 + R51 + R3 - R2 = 0. In this equation the unknowns are 3 and 2. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equations into real and imaginary parts:

 

 

 

 

f  cos θ = g  cos θ  G1 f  sin θ = g  sin θ  G2 where

 

    e cosθθ

G1 θ  h  cos γ  c cos θ θ

 



    e sinθθ

G2 θ  h  sin γ  c sin θ θ 9.

Solve these equations in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:

 2  G2θ2  f 2

2

 

g  G1 θ

 

 

G3 θ 

2 g

 

A' θ  G1 θ  G3 θ

 

 

B' θ  2  G2 θ

 

 

 

C' θ  G1 θ  G3 θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-37-3

 θ  B'  B'2  4 A'  C' = 2  A' 2

tan 



 



 

 

θ θ  2   atan2 2  A' θ B' θ 

 2  4 A' θ C'θ 

B' θ

10. Plot 6 vs 2 in global XY coordinates: Rotation of Link 6 vs Link 2 320 300 280 260

 

θ  θ

240 220

deg 200 180 160 140 120

0

20

40

60

80 θ deg

100  90

120

140

160

180

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-38-1

PROBLEM 4-38 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-34 as a function of the angle of input link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

g  1.556

First coupler (L3)

f  4.248

First rocker (L4)

c  2.125

Third coupler (CD)

b  2.158

Output rocker (L6)

a  1.542

Second ground link (O4O6) d  1.000

Angle CDB

δ  36 deg

Distance (BD)

O2O4 ground link offsets:

h X  3.259

h Y  2.905

See Figure 3-34 and Mathcad file P0438.

Calculate the length of the O2O4 ground link and the angle that it makes with the global XY system. h 

2.

p  3.274

2

hX  hY

2

 hY    hX 

γ  atan

h  4.366

γ  41.713 deg

Calculate the distance BC on link 5. This is the length of vector R51. Also, calculate the angle between vectors R51 and R52 e 

b  p  2  b  p  cos δ 2

2

e  1.986

Second coupler (BC)

 b 2  e2  p 2    2 b e 

α  acos

α  104.305 deg

β  π  α

β  75.695 deg

3.

This is a Stephenson's sixbar linkage similar to the one shown in Figure 4-13. Since the output link 6 is known to rotate 180 deg and return for a full revolution of link 2 we can use links 6, 5, and 4 as a first-stage fourbar with known input (link 6) and then solve for vector loop equations to get the corresponding motion of link 2.

4.

Define the rotation of the output crank: θ  90 deg 91 deg  270  deg

5.

Use equations 4.8a and 4.10 to calculate 4 in the local xy coordinate system as a function of 6 (for the crossed circuit). K1 

d

K2 

a

K1  0.6485

 

2

d

K3 

c

K2  0.4706

 

2

2

a b c d

2

2 a c

K3  0.4938

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  6.

 2  4 A θ Cθ 

B θ

Use equations 4.12 and 4.13 to calculate 5 in the local xy coordinate system as a function of 6 (for the crossed circuit). K4 

d b

K4  0.463

2

K5 

2

2

c d a b

K5  0.529

2 a b

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-38-2

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5



 



 

 2  4 Dθ F θ 

 

θ θ  2   atan2 2  D θ E θ  7.

E θ

Transform the angles for 4 and 52 into the global XY system and define 51 in the global system.

 

 

θ θ  θ θ  90 deg

 

 

 

 

θ θ  θ θ  90 deg θ θ  θ θ  β 8.

Define a vector loop for the remaining links and solve the resulting vector equation by separating it into real and imaginary parts using the method of section 4.5 and the identities of equations 4.9.

Y X

O2 2 R2

R1

6

A

O6

y

D R 5 R52 3 C R4

3

O4 4 x

R51 B R1 + R4 + R51 + R3 - R2 = 0. In this equation the unknowns are 3 and 2. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equations into real and imaginary parts:

 

 

 

 

g  cos θ = f  cos θ  G1 g  sin θ = f  sin θ  G2 where

G1 θ  h  cos γ  c cos θ θ

 

    e cosθθ

G2 θ  h  sin γ  c sin θ θ

 

9.



    e sinθθ

Solve these equations for 2 in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:

 2  G2θ2  f 2

2

 

g  G1 θ

 

 

G3 θ 

2 g

 

A' θ  G1 θ  G3 θ

 

 

B' θ  2  G2 θ

 

 

 

C' θ  G1 θ  G3 θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-38-3

 θ  B'  B'2  4 A'  C' = 2  A' 2

tan 



 



 

 

θ θ  2   atan2 2  A' θ B' θ 

 2  4 A' θ C'θ 

B' θ

10. Solve these equations for 3 in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:

 2  G2θ2  f 2

2

 

g  G1 θ

 

 

G4 θ 

2 f

 

 

D' θ  G1 θ  G4 θ

 

E' θ  2  G2 θ

 

 

 

F' θ  G1 θ  G4 θ

 θ  E'  E'2  4 D' F' tan   = 2  D' 2

 





 

 

θ θ  2   atan2 2  D' θ E' θ 

 2  4 D'θ F'θ 

E' θ

11. Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

 

 

π  θtransB1 θ θtransB1 θ



Transmission Angle at B 90 80 70 60

θtransB θ 50 deg

40 30 20 10 0 125

150

175

200

225

 

θ θ  deg

12. Calculate (using equations 4.32) and plot the transmission angle at C.

θtransC1 θ  θ θ  θ θ

250

275

300

325

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-38-4

 

θtransC θ  if  θtransC1 θ 

π 2

 

 

π  θtransC1 θ θtransC1 θ



Transmission Angle at C 60 55 50

θtransC θ

45

deg 40 35 30 125

150

175

200

225

 

250

275

300

325

θ θ  deg

13. Calculate (using equations 4.32) and plot the transmission angle at D.

θtransD1 θ  θ  θ θ

 

θtransD θ  if  θtransD1 θ 

π 2

 

 

π  θtransD1 θ θtransD1 θ



Transmission Angle at D 60 50 40

θtransD θ

30

deg 20 10 0 125

150

175

200

225

 

θ  θ deg

250

275

300

325

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-39-1

PROBLEM 4-39 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29g (p. 142). Use program Fourbar to check your result.

Given:

Link lengths: Input (O2A)

a  1.000

Coupler (AB)

b  1.200

Rocker (O4B)

c  1.167

Ground link

d  2.305

p  1.5

Coupler point data:

α  30 deg

Coordinate rotation angle: Solution: 1.

δ  180  deg

See Figure 3-29g and Mathcad file P0439.

Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:

 a2  d 2  ( b  c) 2  2 d a  

θ  acos 1.

θ  81.136 deg

θ  θ

Define one cycle of the input crank: θ  θ θ  0.5 deg  θ

2.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  2.3050

 

2

d

K5 

b

K4  1.9208

 

2

2 a b

K5  2.6630

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

3.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  4.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP.

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-39-2

RP  RA  RPA

     RPA  p   cos θ  δ  j  sin θ  δ  RA  a  cos θ  j  sin θ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

  



Plot the coordinates of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.

 

 

 

 

 

 

PX θ  RPx θ  cos( α)  RPy θ  sin( α) PY θ  RPx θ  sin( α)  RPy θ  cos( α) COUPLER POINT PATH 2

1

Coupler Point Coordinate - Y

5.

 

RPy θ  a  sin θ  p  sin θ θ  δ

0

1

2 2

 1.5

1 Coupler Point Coordinate - X

 0.5

0

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-40-1

PROBLEM 4-40 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 6 in Figure 3-35 as a function of the angle of input link 2.

Given:

Link lengths:

Solution:

Input crank (L2)

a  1.00

First coupler (L3)

b  3.80

Common rocker (O4B)

c  1.29

Second coupler (L5)

b'  1.29

First ground link (O2O4)

d  3.86

Common rocker (O4C)

a'  1.43

Output rocker (L6)

c'  0.77

Second ground link (O4O6) d'  0.78

Angle BO4C

α  157  deg

See Figure P3-35 and Mathcad file P0440.

1.

This sixbar drag-link mechanism can be analyzed as two fourbar linkages in series that use the output of the first fourbar, link 4, as the input to the second fourbar.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  3.8600

 

2

d

K3 

c

K2  2.9922

 

2

2

a b c d

2

2 a c

K3  1.2107

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).

 

K' 1 

d'

K' 2 

a'

K' 1  0.5455

 

 

θ θ  θ θ  α

Input angle to second fourbar:

2

d'

K' 3 

c'

K' 2  1.0130

2

2

2  a' c'

K' 3  0.7184

    K'1  K'2 cosθθ  K'3

A' θ  cos θ θ

 

  

 

 





 

 

θ θ  2   atan2 2  A' θ B' θ 

5.

    K'3

C' θ  K' 1   K' 2  1   cos θ θ

B' θ  2  sin θ θ

 2  4 A' θ C'θ 

B' θ

Plot the angular position of link 6 as a function of the angle of input link 2.

2

a'  b'  c'  d'

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-40-2

Angular Position of Link 6 100 75 50 25

 

θ  θ

0  25

deg  50  75  100  125  150

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-41-1

PROBLEM 4-41 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-35 as a function of the angle of input link 2.

Given:

Link lengths:

Solution:

Input crank (L2)

a  1.00

First coupler (L3)

b  3.80

Common rocker (O4B)

c  1.29

Second coupler (L5)

b'  1.29

First ground link (O2O4)

d  3.86

Common rocker (O4C)

a'  1.43

Output rocker (L6)

c'  0.77

Second ground link (O4O6) d'  0.78

Angle BO4C

α  157  deg

See Figure P3-35 and Mathcad file P0441.

1.

This sixbar drag-link mechanism can be analyzed as two fourbar linkages in series that use the output of the first fourbar, link 4, as the input to the second fourbar.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  3.8600

 

2

d

K3 

c

K2  2.9922

 

2

2 a c

K3  1.2107

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  4.

 2  4 A θ Cθ 

B θ

Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4 

2

d

K5 

b

K4  1.016

 

2

2

c d a b

2

2 a b

K5  3.773

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5

 





 

 

θ θ  2   atan2 2  D θ E θ  5.

 2  4 Dθ F θ 

E θ

Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

 

2

a b c d

 

π  θtransB1 θ θtransB1 θ



2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-41-2

Transmission Angle at B 90 82.5 75 67.5

θtransB θ

60

deg 52.5 45 37.5 30

0

45

90

135

180

225

270

315

360

θ deg

6.

Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).

 

K' 1 

d'

K' 2 

a'

K' 1  0.5455

 

 

θ θ  θ θ  α

Input angle to second fourbar:

2

d'

K' 3 

c'

K' 2  1.0130

2

2

2

a'  b'  c'  d' 2  a' c'

K' 3  0.7184

    K'1  K'2 cosθθ  K'3

A' θ  cos θ θ

 

  

 



 



 

 2  4 A' θ C'θ 

 

θ θ  2   atan2 2  A' θ B' θ  7.

    K'3

C' θ  K' 1   K' 2  1   cos θ θ

B' θ  2  sin θ θ

B' θ

Use equations 4.12 and 4.13 to calculate 5 as a function of 2 (for the crossed circuit). K' 4 

2

d'

K' 5 

b'

K' 4  0.605

 

2

2

2

c'  d'  a'  b' 2  a' b'

K' 5  1.010

    K'1  K'4 cosθθ  K'5

D' θ  cos θ θ

 

 

    K'5

F' θ  K' 1   K' 4  1   cos θ θ

 





 

 

θ θ  2   atan2 2  D' θ E' θ  8.

 2  4 D'θ F'θ 

E' θ

Calculate (using equations 4.32) and plot the transmission angle at C.

θtransC1 θ  θ θ  θ θ

 

θtransC θ  if  θtransC1 θ 

π 2

 

  

E' θ  2  sin θ θ

 

π  θtransC1 θ θtransC1 θ



DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-41-3

Transmission Angle at C 30

24

θtransC θ

18

deg 12

6

0

0

45

90

135

180

225

270

315

360

θ deg

9.

Calculate (using equations 4.32) and plot the transmission angle at D.

θtransD1 θ  θ θ  θ θ

 

θtransD θ  if  θtransD1 θ 

π 2

 

 

π  θtransD1 θ θtransD1 θ



Transmission Angle at D 120 100 80

θtransD θ

60

deg 40 20 0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-42-1

PROBLEM 4-42 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of the coupler point of the approximate straight-line linkage shown in Figure 3-29h (p. 142). Use program Fourbar to check your result.

Given:

Link lengths: Input (O2A)

a  1.000

Coupler (AB)

b  1.000

Rocker (O4B)

c  1.000

Ground link

d  2.000

p  2.0

Coupler point data: Solution: 1.

δ  0  deg

See Figure 3-29h and Mathcad file P0442.

Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:

 a2  d 2  ( b  c) 2  2 d a  

θ  acos 1.

θ  75.522 deg

θ  θ

Define one cycle of the input crank: θ  θ θ  0.25 deg  θ

2.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. d

K1 

K4 

a

K1  2.0000

 

2

d

K5 

b

K4  2.0000

 

2

2 a b

K5  2.5000

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

3.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  4.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-42-2







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ

 

  

COUPLER POINT PATH 2

Coupler Point Coordinate - Y

1.5

1

0.5

0

1

1.5



RPy θ  a  sin θ  p  sin θ θ  δ

2 Coupler Point Coordinate - X

2.5

3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-43-1

PROBLEM 4-43 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 8 in Figure 3-36 as a function of the angle of input link 2.

Given:

Link lengths:

Solution:

Input crank (L2)

a  0.450

First coupler (L3)

b  0.990

Common rocker (O4B)

c  0.590

First ground link (O2O4)

d  1.000

Common rocker (O4C)

a'  0.590

Second coupler (CD)

b'  0.325

Output rocker (L6)

c'  0.325

Second ground link (O4O6) d'  0.419

Link 7 (L7)

e  0.938

Link 8 (L8)

f  0.572

Link 5 extension (DE)

p  0.823

Angle DCE

δ  7.0 deg

Angle BO4C

α  128.6  deg

See Figure P3-36 and Mathcad file P0443.

1.

This eightbar can be analyzed as a fourbar (links 1, 2, 3, and 4) with its output (link 4) as the input to another fourbar (links 1, 4, 5, and 6). Since links 1 and 4 are common to both, we have an eightbar linkage with links 7 & 8 included. Start by analyzing the input fourbar.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). d

K1 

K2 

a

K1  2.2222

 

2

d

K3 

c

K2  1.6949

 

2

2

a b c d

2

2 a c

K3  1.0744

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  4.

 2  4 A θ Cθ 

B θ

Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit).

 

K' 1 

d'

K' 2 

a'

K' 1  0.7102

 

 

θ θ  θ θ  α

Input angle to second fourbar:

2

d'

K' 3 

c'

K' 2  1.2892

2

2

2  a' c'

K' 3  1.3655

    K'1  K'2 cosθθ  K'3

A' θ  cos θ θ

 

  

 

 





 

 

θ θ  2   atan2 2  A' θ B' θ  5.

    K'3

C' θ  K' 1   K' 2  1   cos θ θ

B' θ  2  sin θ θ

 2  4 A' θ C'θ 

B' θ

Use equations 4.11b, 4.12 and 4.13 to calculate 5 as a function of 2.

2

a'  b'  c'  d'

DESIGN OF MACHINERY - 5th Ed.

K' 4 

SOLUTION MANUAL 4-43-2 2

d'

K' 5 

b'

K' 4  1.289

 

2

2

2

c'  d'  a'  b' 2  a' b'

K' 5  1.365

    K'1  K'4 cosθθ  K'5

D' θ  cos θ θ

 

  

E' θ  2  sin θ θ

 

    K'5

F' θ  K' 1   K' 4  1   cos θ θ

 





 

 

θ θ  2   atan2 2  D' θ E' θ  6.

 2  4 D'θ F'θ 

E' θ

Define a vector loop for links 1, 5, 6, 7, and 8 as shown below and write the vector loop equation.

Y C

4 R12

O4

5 O6

X D

R6 6

8

R8 RDE

F

R7 7

E

R12 + R6 +RDE + R7 - R8 = 0. Solving for R7 gives R7 = R8 - R12 - R6 - RDE. In this equation the only unknowns are 7 and 8. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equation into real and imaginary parts:

 

 

 

 

e cos θ = f  cos θ  D1 e sin θ = f  sin θ  D2 where

 

    p  cosθθ  δ

D1 θ  d'  c'  cos θ θ

 

    p  sinθθ  δ

D2 θ  c'  sin θ θ 7.

Solve these equations in the manner of equations 4.11 and 4.12 using the identities of equations 4.9 gives:

DESIGN OF MACHINERY - 5th Ed.

 

D3 θ 

 

f

2

SOLUTION MANUAL 4-43-3

 2  D2θ2  e2

 D1 θ

2 f

 

 

 

A' θ  D1 θ  D3 θ

 

 

B' θ  2  D2 θ

 

 

C' θ  D1 θ  D3 θ

 θ  B'  B'2  4 A'  C' = 2  A' 2

tan 

 





 

 

θ θ  2   atan2 2  A' θ B' θ  8.

 2  4 A' θ C'θ 

B' θ

Plot the angular position of link 8 as a function of the angle of input link 2. If 81 is greater than 360 deg, subtra 2 from it.

 

 

θ θ  if  θ 

π

    θ θ  0  θ θ  2 π θ θ 

4

Angular Position of Link 8 360 315 270 225

  180

θ  θ

135

deg 90 45 0  45  90

0

45

90

135

180

225

270

θ deg

The graph shows that link 8 rotates 360 deg between 2 = 19 deg and 2 = 209 deg. θ( 19 deg)  42 deg θ( 209  deg)  θ( 19 deg)  360.0 deg

θ( 209  deg)  2  π  42 deg

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-44-1

PROBLEM 4-44 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, D, E, and F of the linkage in Figure 3-36 as a function of the angle of input link 2.

Given:

Link lengths:

Solution:

Input crank (L2)

a  0.450

First coupler (L3)

b  0.990

Common rocker (O4B)

c  0.590

First ground link (O2O4)

d  1.000

Common rocker (O4C)

a'  0.590

Second coupler (CD)

b'  0.325

Output rocker (L6)

c'  0.325

Second ground link (O4O6) d'  0.419

Link 7 (L7)

e  0.938

Link 8 (L8)

f  0.572

Link 5 extension (DE)

p  0.823

Angle DCE

δ  7.0 deg

Angle BO4C

α  128.6  deg

See Figure P3-36 and Mathcad file P0444.

1.

This eightbar can be analyzed as a fourbar (links 1, 2, 3, and 4) with its output (link 4) as the input to another fourbar (links 1, 4, 5, and 6). Since links 1 and 4 are common to both, we have an eightbar linkage with links 7 & 8 included. Start by analyzing the input fourbar.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). d

K1 

K2 

a

K1  2.2222

 

2

d

K3 

c

K2  1.6949

 

2

2

a b c d 2 a c

K3  1.0744

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  4.

 2  4 A θ Cθ 

B θ

Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the open circuit). K4 

2

d

K5 

b

K4  1.010

 

2

2

c d a b

2

2 a b

K5  2.059

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

F θ  K1   K4  1   cos θ  K5

 





 

 

θ θ  2   atan2 2  D θ E θ  5.

 2  4 Dθ F θ 

E θ

Use equations 4.8a and 4.10 to calculate 6 as a function of 2 (for the open circuit). Input angle to second fourbar:

 

E θ  2  sin θ

 

 

θ θ  θ θ  α

2

DESIGN OF MACHINERY - 5th Ed.

K' 1 

SOLUTION MANUAL 4-44-2

d'

K' 2 

a'

K' 1  0.7102

 

2

d'

K' 3 

c'

K' 2  1.2892

2

2

2

a'  b'  c'  d' 2  a' c'

K' 3  1.3655

    K'1  K'2 cosθθ  K'3

A' θ  cos θ θ

 

  

 



 



 

 

θ θ  2   atan2 2  A' θ B' θ  6.

    K'3

C' θ  K' 1   K' 2  1   cos θ θ

B' θ  2  sin θ θ

 2  4 A' θ C'θ 

B' θ

Use equations 4.11b, 4.12 and 4.13 to calculate 5 as a function of 2. K' 4 

2

d' b'

K' 4  1.289

 

2

2

2

c'  d'  a'  b'

K' 5 

2  a' b'

K' 5  1.365

    K'1  K'4 cosθθ  K'5

D' θ  cos θ θ

 

  

E' θ  2  sin θ θ

 

    K'5

F' θ  K' 1   K' 4  1   cos θ θ

 





 

  

 



 

 

θ θ  2   atan2 2  D' θ E' θ 

 

 2  4 D'θ F'θ 

E' θ

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

   



 

 

θ θ  if  105  deg  θ  322  deg  θ θ  0 θ θ  2  π θ θ  7.

Define a vector loop for links 1, 5, 6, 7, and 8 as shown on the next page and write the vector loop equation. R12 + R6 +RDE + R7 - R8 = 0. Solving for R7 gives R7 = R8 - R12 - R6 - RDE. In this equation the only unknowns are 7 and 8. Following the method of Section 4.5, substitute the complex number notation for each position vector and separate the resulting equation into real and imaginary parts:

 

 

 

 

e cos θ = f  cos θ  D1 e sin θ = f  sin θ  D2 where

 

    p  cosθθ  δ

D1 θ  d'  c'  cos θ θ

 

    p  sinθθ  δ

D2 θ  c'  sin θ θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-44-3

Y C

4 R12

O4

5 X

O6

D

R6 6

R8

8

RDE

R7

F

E

7 8.

Solve these equations in the manner of equations 4.10 using the identities of equations 4.9 gives:

 

D3 θ 

f

2

 2  D2θ2  e2

 D1 θ

2 f

 

 

 

A' θ  D1 θ  D3 θ

 

 

B' θ  2  D2 θ

 

 

 

C' θ  D1 θ  D3 θ

 θ  B'  B'2  4 A'  C' = 2  A' 2

tan 



 



 

 

θ θ  2   atan2 2  A' θ B' θ 

 

 

θ θ  if  θ  9.

 2  4 A' θ C'θ 

B' θ

π

    θ θ  0  θ θ  2 π θ θ 4 

Similarly, solve these equations in the manner of equations 4.11, 4.12 and 4.13 using the identities of equations 4.9 gives:

 

D4 θ 

 

f

2

 2  D2θ2  e2

 D1 θ

2 e

 

 

D' θ  D1 θ  D4 θ

 θ  E'  E'2  4 D' F' = 2  D' 2

tan 

 

 

E' θ  2  D2 θ

 

 

 

F' θ  D1 θ  D4 θ

DESIGN OF MACHINERY - 5th Ed.



 



SOLUTION MANUAL 4-44-4

 

 2  4 D'θ F'θ 

 

θ θ  2   atan2 2  D' θ E' θ 

E' θ

10. Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

 

 

π  θtransB1 θ θtransB1 θ



Transmission Angle at B 90 80 70

θtransB θ 60 deg

50 40 30 20

0

45

90

135

180

225

270

315

360

θ deg

11. Calculate (using equations 4.32) and plot the transmission angle at C.

θtransC1 θ  θ θ  θ θ θtransC2 θ  if 

π

2

 

 

 

 θtransC1 θ  2  π π  θtransC1 θ θtransC1 θ



Transmission Angle at C 150

100

θtransC θ deg 50

0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-44-5

12. Calculate (using equations 4.32) and plot the transmission angle at D.

θtransD1 θ  θ θ  θ θ  π θtransD2 θ  if 

π

2

 

 

 

 θtransD1 θ  π π  θtransD1 θ θtransD1 θ



Transmission Angle at D 90 80 70 60

θtransD θ 50 deg

40 30 20 10 0

0

45

90

135

180

225

270

315

360

315

360

θ deg

13. Calculate (using equations 4.32) and plot the transmission angle at E.

θtransE1 θ  θ θ  θ θ

 

θtransE θ  if  θtransE1 θ 

π 2

 

 

π  θtransE1 θ θtransE1 θ



Transmission Angle at E 90 80 70

θtransE θ

60

deg 50 40 30

0

45

90

135

180 θ deg

225

270

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-45-1

PROBLEM 4-45 Statement:

Model the linkage shown in Figure 3-37a in Fourbar. Export the coupler curve coordinates to Excel and calculate the error function versus a true circle.

Given:

Link lengths: Input (O2A)

a  0.136

Coupler (AB)

b  1.000

Rocker (O4B)

c  1.000

Ground link

d  1.414

Coupler point data: Solution: 1.

p  2.000

δ  0  deg

See Figure 3-37a and Mathcad file P0445.

Model the linkage in Fourbar.

2.

Write coupler point coordinates to a data file.

3.

Import the data file into Excell and add columns for the true circle coordinates and radius. Analyze the coupler point radius to determine its mean, maximum deviation from mean, and average absolute deviation from its mean (See next two pages, note that the last four columns were added to the imported data).

DESIGN OF MACHINERY - 5th Ed.

FOURBAR P0445 Tom Cook

SOLUTION MANUAL 4-45-2

Design #

Selected Linkage Parameters a = 0.136 b = 1.000 Angle Step Deg

2

8/9/2006

c = 1.000

d = 1.414

Coupler Pt Coupler Pt Coupler Pt Coupler Pt True Circ True Circ True Circ Coupler Pt X Y Mag Ang X Y R R in in in in in in in in 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210

1.414 1.4283 1.4423 1.4561 1.4693 1.4819 1.4937 1.5046 1.5145 1.5233 1.5309 1.5373 1.5425 1.5465 1.5493 1.5508 1.5512 1.5505 1.5488 1.546 1.5424 1.5379 1.5326 1.5266 1.52 1.5128 1.5052 1.4971 1.4887 1.4799 1.471 1.4618 1.4524 1.4429 1.4333 1.4237 1.414 1.4043 1.3947 1.3851 1.3756 1.3662 1.357

1.5384 1.5379 1.5363 1.5336 1.5299 1.5251 1.5195 1.5129 1.5055 1.4974 1.4885 1.479 1.469 1.4585 1.4475 1.4363 1.4248 1.4131 1.4014 1.3897 1.378 1.3665 1.3552 1.3442 1.3336 1.3235 1.314 1.3051 1.2969 1.2895 1.2829 1.2772 1.2725 1.2688 1.2661 1.2645 1.2639 1.2645 1.2661 1.2688 1.2725 1.2772 1.2829

2.0895 2.0988 2.1072 2.1147 2.1212 2.1265 2.1307 2.1337 2.1355 2.136 2.1353 2.1333 2.1301 2.1258 2.1203 2.1138 2.1063 2.0979 2.0887 2.0788 2.0683 2.0572 2.0458 2.0341 2.0221 2.0101 1.998 1.9861 1.9744 1.9629 1.9518 1.9411 1.931 1.9214 1.9124 1.9041 1.8965 1.8897 1.8836 1.8784 1.8739 1.8703 1.8674

47.413 47.1164 46.8058 46.4846 46.1562 45.8237 45.4901 45.1581 44.8303 44.5088 44.1957 43.8925 43.6007 43.3213 43.0555 42.8038 42.567 42.3456 42.1401 41.9507 41.7781 41.6225 41.4846 41.3647 41.2636 41.1819 41.1204 41.0799 41.0612 41.0654 41.0931 41.1453 41.2227 41.3257 41.455 41.6105 41.7924 42.0001 42.2329 42.49 42.7699 43.0708 43.3907

1.4140 1.4021 1.3904 1.3788 1.3675 1.3565 1.3460 1.3360 1.3266 1.3178 1.3098 1.3026 1.2962 1.2907 1.2862 1.2826 1.2801 1.2785 1.2780 1.2785 1.2801 1.2826 1.2862 1.2907 1.2962 1.3026 1.3098 1.3178 1.3266 1.3360 1.3460 1.3565 1.3675 1.3788 1.3904 1.4021 1.4140 1.4259 1.4376 1.4492 1.4605 1.4715 1.4820

1.5500 1.5495 1.5479 1.5454 1.5418 1.5373 1.5318 1.5254 1.5182 1.5102 1.5014 1.4920 1.4820 1.4715 1.4605 1.4492 1.4376 1.4259 1.4140 1.4021 1.3904 1.3788 1.3675 1.3565 1.3460 1.3360 1.3266 1.3178 1.3098 1.3026 1.2962 1.2907 1.2862 1.2826 1.2801 1.2785 1.2780 1.2785 1.2801 1.2826 1.2862 1.2907 1.2962

0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360

0.1244 0.1247 0.1255 0.1268 0.1284 0.1302 0.1322 0.1341 0.1359 0.1375 0.1386 0.1394 0.1398 0.1398 0.1394 0.1386 0.1376 0.1365 0.1354 0.1342 0.1334 0.1327 0.1324 0.1325 0.1330 0.1340 0.1353 0.1370 0.1389 0.1409 0.1430 0.1449 0.1466 0.1480 0.1492 0.1498 0.1501 0.1498 0.1492 0.1480 0.1466 0.1449 0.1430

DESIGN OF MACHINERY - 5th Ed.

215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360

1.3481 1.3393 1.3309 1.3228 1.3152 1.308 1.3014 1.2954 1.2901 1.2856 1.282 1.2792 1.2775 1.2768 1.2772 1.2787 1.2815 1.2855 1.2907 1.2971 1.3047 1.3135 1.3234 1.3343 1.3461 1.3587 1.3719 1.3857 1.3997 1.414

1.2895 1.2969 1.3051 1.314 1.3235 1.3336 1.3442 1.3552 1.3665 1.378 1.3897 1.4014 1.4131 1.4248 1.4363 1.4475 1.4585 1.469 1.479 1.4885 1.4974 1.5055 1.5129 1.5195 1.5251 1.5299 1.5336 1.5363 1.5379 1.5384

SOLUTION MANUAL 4-45-3

1.8655 1.8643 1.864 1.8645 1.8659 1.868 1.871 1.8747 1.8793 1.8846 1.8907 1.8975 1.905 1.9132 1.922 1.9314 1.9415 1.952 1.963 1.9744 1.9861 1.998 2.0101 2.0222 2.0342 2.0461 2.0577 2.0688 2.0795 2.0895

43.7272 44.0777 44.439 44.8081 45.1815 45.5556 45.9269 46.2915 46.6458 46.986 47.3085 47.61 47.8871 48.1368 48.3563 48.5433 48.6956 48.8117 48.8904 48.9308 48.9328 48.8966 48.823 48.713 48.5685 48.3915 48.1846 47.9504 47.6921 47.413

1.4920 1.5014 1.5102 1.5182 1.5254 1.5318 1.5373 1.5418 1.5454 1.5479 1.5495 1.5500 1.5495 1.5479 1.5454 1.5418 1.5373 1.5318 1.5254 1.5182 1.5102 1.5014 1.4920 1.4820 1.4715 1.4605 1.4492 1.4376 1.4259 1.4140

1.3026 1.3098 1.3178 1.3266 1.3360 1.3460 1.3565 1.3675 1.3788 1.3904 1.4021 1.4140 1.4259 1.4376 1.4492 1.4605 1.4715 1.4820 1.4920 1.5014 1.5102 1.5182 1.5254 1.5318 1.5373 1.5418 1.5454 1.5479 1.5495 1.5500

The mean value of the coupler point radius is

0.1366

The maximum deviation from the mean is

0.0135

The average absolute deviation from the mean is

0.005127

0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360

0.1409 0.1389 0.1370 0.1353 0.1340 0.1330 0.1325 0.1324 0.1327 0.1334 0.1342 0.1354 0.1365 0.1376 0.1386 0.1394 0.1398 0.1398 0.1394 0.1386 0.1375 0.1359 0.1341 0.1322 0.1302 0.1284 0.1268 0.1255 0.1247 0.1244

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-46-1

PROBLEM 4-46 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure 3-37a as a function of the angle of input link 2. Also plot the variation (error) in the path of point P versus that of point A.

Given:

Link lengths: Input (O2A)

a  0.136

Coupler (AB)

b  1.000

Rocker (O4B)

c  1.000

Ground link

d  1.414

p  2.000

Coupler point data: Solution: 1.

δ  0  deg

See Figure 3-37a and Mathcad file P0446.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ

return "non-Grashof" otherwise crank rocker Condition( a b c d )  "Grashof" 1.

Define one cycle of the input crank: θ  0  deg 1  deg  360  deg

2.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. d

K1 

K4 

a

K1  10.3971

 

2

d

K5 

b

K4  1.4140

 

2

2

c d a b

2

2 a b

K5  7.4187

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

3.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the crossed circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  4.

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

  

 

RA  a  cos θ  j  sin θ

 







RPA  p  cos θ  δ  j  sin θ  δ

 

 

  



RPx θ  a  cos θ  p  cos θ θ  δ 5.

 

 

  



RPy θ  a  sin θ  p  sin θ θ  δ

Plot the coordinates of the coupler point in the local xy coordinate system.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-46-2

COUPLER POINT PATH

Coupler Point Coordinate - y

 1.2

1.414

 1.3

 1.4

 1.414

 1.5

 1.6 1.2

1.3

1.4

1.5

1.6

Coupler Point Coordinate - x

6.

Replot, transforming the coupler path to 0,0 and plot the path of point A.

 

 

 

XA θ  a  cos θ

 

YA θ  a  sin θ

PATHS OF POINTS A &P 0.2

0.1

0

 0.1

 0.2  0.2

 0.1 Point P Point A

0

0.1

0.2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-47-1

PROBLEM 4-47 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angle at point B of the linkage in Figure 3-37a as a function of the angle of input link 2.

Given:

Link lengths: Input (O2A)

a  0.136

Coupler (AB)

b  1.000

Rocker (O4B)

c  1.000

Ground link

d  1.414

p  2.000

Coupler point data: Solution: 1.

δ  0  deg

See Figure 3-37a and Mathcad file P0447.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 1.

crank rocker

Define one cycle of the input crank: θ  0  deg 1  deg  360  deg

2.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  10.3971

 

2

d

K3 

c

K2  1.4140

 

2

2 a c

K3  7.4187

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ  3.

 2  4 A θ Cθ 

B θ

Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4 

2

d

K5 

b

K4  1.414

 

2

2

c d a b

2

2 a b

K5  7.419

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 





 

 

 

E θ  2  sin θ

F θ  K1   K4  1   cos θ  K5 θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

2

a b c d

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 4-47-2

Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

 

 

π  θtransB1 θ θtransB1 θ



Transmission Angle at B 90

85

θtransB θ deg 80

75

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5thEd.

SOLUTION MANUAL 4-48-1

PROBLEM 4-48 Statement:

Figure 3-29f shows Evan's approximate straight-line linkage #1. Determine the range of motion of link 2 for which the point P varies no more than 0.0025 from the straight line X = 1.690 (assuming that O2 is the origin of a global coordinate frame whose positive X axis is rotated 60 deg from O2O4).

Given:

Link lengths: Input (O2A)

a  1.000

Coupler (AB)

b  1.600

Rocker (O4B)

c  1.039

Ground link

d  1.200

p  2.690

Coupler point data:

α  60 deg

Coordinate rotation angle: Solution: 1.

δ  0  deg

See Figure 3-29f and Mathcad file P0448.

Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" Since b (link 3) is the longest link and the linkage is non-Grashof, this is a Class 3 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 2 and 3 colinear:

 ( b  a) 2  d2  c2 π  2 d ( b  a) 

θ  acos

θ  240 deg

For links 3 and 4 colinear:

 a2  d 2  ( b  c) 2  2 d a  

θ  acos 1.

θ  27.683 deg

θ  θ

Define one cycle of the input crank (driving through the links 2-3 toggle position): θ  θ θ  1  deg  360  deg  θ

2.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  1.2000

 

2

d

K5 

b

K4  0.7500

 

2

2 a b

K5  1.2251

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ 3.

 

 

F θ  K1   K4  1   cos θ  K5

Use equation 4.13 to find values of 3 for the open circuit.

2

c d a b

2

DESIGN OF MACHINERY - 5thEd.

 



SOLUTION MANUAL 4-48-2



 

 

θ θ  2   atan2 2  D θ E θ  4.

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x-components of the vector RP. RP  RA  RPA

     RPA  p   cos θ  δ  j  sin θ  δ  RA  a  cos θ  j  sin θ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ 5.

 

  

Plot the X coordinate of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.

 

 

 

PX θ  RPx θ  cos( α)  RPy θ  sin( α) X COORDINATE 1.7 1.698 Coupler Point Coordinate - X

1.696 1.694 1.692 1.69 1.688 1.686 1.684 1.682 1.68 180

210

240

270

300

Input Angle - Theta2

6.



RPy θ  a  sin θ  p  sin θ θ  δ

Using the graph for guess values, solve by trial and error to find 2 for X = 1.6900 +/-0.0025. PX ( 201.525  deg)  1.69250

θ2min  201.525  deg

PX ( 273.450  deg)  1.69250

θ2max  273.450  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-49-1

PROBLEM 4-49 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure 3-37b as a function of the angle of input link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

a  0.50

First coupler (AB)

b  1.00

Rocker 4 (O4B)

c  1.00

Rocker 5 (L5)

c'  1.00

Ground link (O2O4)

d  0.75

Second coupler 6 (CD)

b'  1.00

Coupler point (DP)

p  1.00

Distance to OP (O2OP)

d'  1.50

See Figure 3-37b and Mathcad file P0449.

Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Define a position vector whose tail is at point D and whose tip is at point P and another whose tail is at O4 and whose tip is at point D. Then, since R5 = RAB and RDP = -R4, the position vector from O2 to P is P = R1 + RAB - R4. Separating this vector equation into real and imaginary parts gives the equations for the X and Y coordinates of the coupler point P.

 

 

 

XP = d  b  cos θ  c cos θ

 

YP = b  sin θ  c sin θ

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d a

K1  1.5000

 

2

d

K2 

K3 

c

K2  0.7500

 

2

2

a b c d

2

2 a c

K3  0.8125

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K4  0.7500

K5  0.8125

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Define a local xy coordinate system with origin at OP and with the positive x axis to the right. The coordinates of P are transformed to xP = XP - d', yP = YP.

 

    c cosθθ  d'

xP θ  d  b  cos θ θ

 

    c sinθθ

yP θ  b  sin θ θ

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 4-49-2

Plot the path of P as a function of the angle of link 2.

Path of Coupler Point P About OP 0.6 0.5 0.4 0.3 0.2 0.1

 

yP θ

0

 0.1  0.2  0.3  0.4  0.5  0.6  0.6  0.5

 0.4  0.3

 0.2  0.1

0

 

xP θ

0.1

0.2

0.3

0.4

0.5

0.6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-50-1

PROBLEM 4-50 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the transmission angles at points B, C, and D of the linkage in Figure 3-37b as a function of the angle of input link 2.

Given:

Link lengths:

Solution:

Input crank (L2)

a  0.50

First coupler (AB)

b  1.00

Rocker 4 (O4B)

c  1.00

Rocker 5 (L5)

c'  1.00

Ground link (O2O4)

d  0.75

Second coupler 6 (CD)

b'  1.00

Coupler point (DP)

p  1.00

Distance to OP (O2OP)

d'  1.50

See Figure 3-37b and Mathcad file P0450.

1.

Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Therefore, the transmission angles at points B and D will be the same and the transmission angle at point C will be the complement of the angle at B.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d a

K1  1.5000

 

2

d

K2 

K3 

c

K2  0.7500

 

2

2

a b c d

2

2 a c

K3  0.8125

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

K4  0.7500

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Calculate (using equations 4.32) and plot the transmission angles at B and D.

θtransB1 θ  θ θ  θ θ

 

θtransB θ  if  θtransB1 θ 

π 2

K5  0.8125

 

 

π  θtransB1 θ θtransB1 θ



DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-50-2

Transmission Angles at B and D 80

60

θtransB θ

40

deg

20

0

0

45

90

135

180

225

270

315

360

θ deg

6.

Calculate and plot the transmission angle at C.

θtransC1 θ  180  deg  θtransB θ

 

θtransC θ  if  θtransC1 θ 

π 2

 

 

π  θtransC1 θ θtransC1 θ



Transmission Angle at C 80

60

θtransC θ

40

deg

20

0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-51-1

PROBLEM 4-51 Statement:

Figure 3-29g shows Evan's approximate straight-line linkage #2. Determine the range of motion of link 2 for which the point P varies no more than 0.005 from the straight line X = -0.500 (assuming that O2 is the origin of a global coordinate frame whose positive X axis is rotated 30 deg from O2O4).

Given:

Link lengths: Input (O2A)

a  1.000

Coupler (AB)

b  1.200

Rocker (O4B)

c  1.167

Ground link

d  2.305

p  1.50

Coupler point data:

α  30 deg

Coordinate rotation angle: Solution: 1.

δ  180  deg

See Figure 3-29g and Mathcad file P0451.

Check the Grashof condition of the linkage and determine its Baker classification. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" Since d (link 1) is the longest link and the linkage is non-Grashof, this is a Class 1 triple rocker. Using Figure 3-1a as a guide, determine the limiting values of 2 at the toggle positions. For links 3 and 4 colinear:

 a2  d 2  ( b  c) 2  2 d a  

θ  acos 1.

θ  81.136 deg

θ  θ

Define one cycle of the input crank (driving through the links 2-3 toggle position): θ  θ θ  0.5 deg  θ

2.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  2.3050

 

2

d

K5 

b

K4  1.9208

 

2

2 a b

K5  2.6630

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

3.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 4-51-2

Use equations 4.31 to define the x and y-components of the vector RP. RP  RA  RPA

     RPA  p   cos θ  δ  j  sin θ  δ  RA  a  cos θ  j  sin θ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ 5.

 

  

Plot the X coordinate of the coupler point in the global X,Y coordinate system using equations 4.0b to rotate the local coordinates to a global frame.

 

 

 

PX θ  RPx θ  cos( α)  RPy θ  sin( α) X COORDINATE  0.48

Coupler Point Coordinate - X

 0.485  0.49  0.495

 

PX θ

 0.5  0.505  0.51  0.515  0.52

0

15

30

45

60

θ deg Input Angle - Theta2

6.



RPy θ  a  sin θ  p  sin θ θ  δ

Using the graph for guess values, solve by trial and error to find 2 for X = -0.500 +/-0.005 PX ( 11.59  deg)  0.49500

θ2min  11.59  deg

PX ( 57.80  deg)  0.50500

θ2max  57.80  deg

75

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-52-1

PROBLEM 4-52 Statement:

For the linkage in Figure P4-16, what are the angles that link 2 makes with the positive X-axis when links 2 and 3 are in toggle positions?

Given:

Link lengths:

Solution: 1.

Input (O2A)

a  14

Rocker (O4B)

c  51.26

b  80

Coupler (AB)

O4 offset in XY coordinates:

O4X  47.5

Ground link:

d 

2

O4X  O4Y

O4Y  76  12 2

O4Y  64.000

d  79.701

See Figure P4-16 and Mathcad file P0452.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 2.

Define the coordinate frame transformation angle:

 O4Y    O4X 

δ  π  atan 3.

crank rocker

δ  126.582 deg

Calculate the angle of link 2 in the XY system when links 2 and 3 are in the overlapped toggle position.

 ( b  a) 2  d2  c2 δ  2 ( b  a)  d 

θ21XY  acos 4.

θ21XY  86.765 deg

Calculate the angle of link 2 in the XY system when links 2 and 3 are in the extended toggle position.

 ( b  a) 2  d2  c2 δ  2 ( b  a)  d 

θ22XY  acos

θ22XY  93.542 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-53-1

PROBLEM 4-53 Statement:

The coordinates of the point P1 on link 4 in Figure P4-16 are (114.68, 33.19) with respect to the xy coordinate system when link 2 is in the position shown. When link 2 is in another position the coordinates of P2 with respect to the xy system are (100.41, 43.78). Calculate the coordinates of P1 and P2 in the XY system for the two positions of link 2. What is the salient feature of the coordinates of P1 and P2 in the XY system?

Given:

Vertical and horizontal offsets from O2 to O4. O2O4X  47.5 in

O2O4Y  64 in

Coordinates of P1 and P2 in the local system

Solution: 1.

P1x  114.68 in

P1y  33.19  in

P2x  100.41 in

P2y  43.78  in

See Figure P4-16 and Mathcad file P0453.

Calculate the angle from the global X axis to the local x axis.

 O2O4Y    O2O4X 

δ  180  deg  atan 2.

3.

δ  126.582 deg

Use equations 4.0b to transform the given coordinates from the local to the global system. P1X  P1x cos( δ)  P1y sin( δ)

P1X  95.00 in

P1Y  P1x sin( δ)  P1y cos( δ)

P1Y  72.31 in

P2X  P2x cos( δ)  P2y sin( δ)

P2X  95.00 in

P2Y  P2x sin( δ)  P2y cos( δ)

P2Y  54.54 in

In the global XY system the X-coordinates are the same for each point, which indicates that the head on the end of the rocker beam 4 is designed such that its tangent is always parallel to the Y-axis.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-54-1

PROBLEM 4-54 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular position of link 4 with respect to the XY coordinate frame and the transmission angle at point B of the linkage in Figure P4-16 as a function of the angle of input link 2 with respect to the XY frame.

Given:

Link lengths:

Solution: 1.

Input (O2A)

a  14

Coupler (AB)

b  80

Rocker (O4B)

c  51.26

Ground link

d  79.70

See Figure P4-16 and Mathcad file P0454.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "Grashof" 2.

Define the coordinate frame transformation angle: δ  90 deg  atan

47.5 

  64 

3.

crank rocker

δ  126.582 deg

Define one cycle of the input crank with respect to the XY frame:

θ2 θ2XY   θ2XY  δ

θ2XY  0  deg 1  deg  360  deg 4.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  5.6929

2

d

K3 

c

K2  1.5548

2

2

a b c d

2

2 a c

K3  1.9339

A  θ2XY   cos θ2 θ2XY    K1  K2 cos θ2 θ2XY    K3 B θ2XY   2  sin θ2 θ2XY  



C θ2XY   K1   K2  1   cos θ2 θ2XY    K3



θ θ2XY   2   atan2 2  A  θ2XY  B θ2XY  

2

θ θ2XY   θ θ2XY   δ  2  π 5.

Use equations 4.12 and 4.13 to calculate 3 as a function of 2 (for the crossed circuit). K4 

d b

K4  0.996

2

K5 

2

2

c d a b

K5  4.607

2 a b



B θ2XY   4  A  θ2XY   C θ2XY  

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-54-2

D θ2XY   cos θ2 θ2XY    K1  K4 cos θ2 θ2XY    K5 E θ2XY   2  sin θ2 θ2XY   F  θ2XY   K1   K4  1   cos θ2 θ2XY    K5





θ θ2XY   2   atan2 2  D θ2XY  E θ2XY   6.



E θ2XY   4  D θ2XY   F  θ2XY    2

Plot the angular position of link 4 as a function of the input angle of link 2 with respect to the XY frame.

Angular Position of Link 4 40 35 30 θ θ2XY 25 20 deg 15 10 5





0

0

45

90

135

180

225

270

315

360

θ2XY deg

7.

Calculate (using equations 4.32) and plot the transmission angle at B.

θtransB1 θ2XY   θ θ2XY   θ θ2XY 

 

θtransB θ2XY   if  θtransB1 θ2XY  

π 2

 

π  θtransB1 θ2XY  θtransB1 θ2XY  

Transmission Angle at B 90 85 80

θtransB θ2XY 

75 70

deg 65 60 55 50

0

45

90

135

180

θ2XY deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-55-1

PROBLEM 4-55 Statement:

For the linkage in Figure P4-17, calculate the maximum CW rotation of link 2 from the position shown, which is -20.60 deg with respect to the local xy system. What angles do link 3 and link 4 rotate through for that excursion of link 2?

Given:

Link lengths: Input (O2A)

a  9.17

Coupler (AB)

b  12.97

Rocker (O4B)

c  9.57

Ground link

d  7.49

Initial position of link 2: θ  26.00  deg  2  π (with respect to xy system) Solution: 1.

See Figure P4-17 and Mathcad file P0455.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( d b a c)  "non-Grashof" 2.

Using equations 4.37, determine the crank angles (relative to the line O2O4) at which links 3 and 4 are in toggle 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c

2



2 a d

b c

arg1  0.936

a d b c

arg2  2.678

a d

θ  acos arg1

θ  20.55 deg

The other toggle angle is the negative of this. θ  θ  2  π 3.

θ  339.45 deg

Calculate the CW rotation of link 2 from the initial position to the toggle position. Δ  θ  θ

4.

Δ  313.45 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  0.8168

 

2

d

K5 

b

K4  0.5775

 

2

2 a b

K5  0.9115

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

 

6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

2

c d a b

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-55-2

 

Initial angular position of link 3:

θ θ  2  π  647.755 deg

Final angular position of link 3:

θ θ  0.001  deg  250.764 deg







   

  θ θ  0.001  deg  θ θ  2  π 7.



  898.518 deg

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d

K2 

a

K1  0.8168

 

2

d

K3 

c

K2  0.7827

 

2

2 a c

K3  0.3621

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 

 

θ θ  2   atan2 2  A θ B θ 

 2  4 A θ Cθ 

B θ

 

Initial angular position of link 4:

θ θ  2  π  659.462 deg

Final angular position of link 4:

θ θ  0.001  deg  250.615 deg





   

  θ θ  0.001  deg  θ θ  2  π





2

a b c d

  910.077 deg

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-56-1

PROBLEM 4-56 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point P in Figure P4-17 with respect to the XY coordinate system as a function of the angle of input link 2 with respect to the XY coordinate system.

Given:

Link lengths: Input (O2A)

a  9.174

Coupler (AB)

b  12.971

Rocker (O4B)

c  9.573

Ground link

d  7.487

p  15.00

Coupler point data: Solution: 1.

δ  0  deg

See Figure P4-17 and Mathcad file P0456.

Check the Grashof condition of the linkage. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( a b c d )  "non-Grashof" 2.

Using equations 4.37, determine the crank angles (relative to the line O2O4) at which links 3 and 4 are in toggle 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c

2



2 a d

b c

arg1  0.937

a d b c

arg2  2.679

a d

θ2toggle  acos arg1

θ2toggle  20.501 deg

The other toggle angle is the negative of this. 3.

Define the coordinate transformation angle. Transformation angle:

4.

α  atan

6.95 

  2.79 

α  68.128 deg

Define one cycle of the input crank between limit positions: θ  θ2toggle θ2toggle  1  deg  2  π  θ2toggle

5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K1 

d

K4 

a

K1  0.8161

 

2

d

K5 

b

K4  0.5772

 

 

D θ  cos θ  K1  K4 cos θ  K5

2

2

c d a b 2 a b

K5  0.9110

2

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 4-56-2

 

 

6.

 

F θ  K1   K4  1   cos θ  K5

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Use equations 4.31 to define the x- and y-components of the vector RP. RP  RA  RPA

     RPA  p   cos θ  δ  j  sin θ  δ  RA  a  cos θ  j  sin θ

 

 

  



 

RPx θ  a  cos θ  p  cos θ θ  δ 8.

 

  

Transform these local xy coordinates to the global XY coordinate system using equations 4.0b.

 

 

 

 

 

 

RPX θ  RPx θ  cos α  RPy θ  sin α RPY θ  RPx θ  sin α  RPy θ  cos α Plot the coordinates of the coupler point in the global XY coordinate system. COUPLER POINT PATH 5

0

Coupler Point Coordinate - Y

9.

5

 10

 15

 20  10

5

0



RPy θ  a  sin θ  p  sin θ θ  δ

5

10

Coupler Point Coordinate - X

15

20

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-57-1

PROBLEM 4-57 Statement:

For the linkage in Figure P4-17, calculate the coordinates of the point P in the XY coordinate syste if its coordinates in the xy system are (2.71, 10.54).

Given:

Vertical and horizontal offsets from O2 to O4. O2O4X  2.790  in

O2O4Y  6.948  in

Coordinates of P in the local system Px  12.816 in Solution: 1.

See Figure P4-17 and Mathcad file P0457.

Calculate the angle from the global X axis to the local x axis.

 O2O4Y    O2O4X 

δ  atan 2.

Py  10.234 in

δ  68.122 deg

Use equations 4.0b to transform the given coordinates from the local to the global system. PX  Px cos( δ)  Py sin( δ)

PX  14.273 in

PY  Px sin( δ)  Py cos( δ)

PY  8.079 in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-58-1

PROBLEM 4-58 Statement:

The elliptical trammel in Figure P4-18 must be driven by rotating link 3 in a full circle. Derive analytical expressions for the positions of points A, B, and a point C on link 3 midway between A and B as a function of 3 and the length AB of link 3. Use a vector loop equation. (Hint: Place the global origin off the mechanism, preferably below and to the left and use a total of 5 vectors.) Code your solution in an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the path of point C for one revolution of link 3.

Solution:

See Figure P4-18 and Mathcad file P0458.

1.

Establish the global XY system such that the coordinates of the intersection of the slot centerlines is at (d X,d Y ). Then, define position vectors R1X, R1Y , R2, R3, and R4 as shown below. Y

4 B

3 R3



3

C

R2 2

R4

A 1

R1Y

X R1X

2.

Write the vector loop equation: R1Y + R2 + R3 - R1X - R4 = 0 then substitute the complex number notation for each position vector. The equation then becomes:

 π  π j   j  θ 3 2 j ( 0) j ( 0) 2 dY  e    a e  c e  dX  e  b e   = 0 j

3.

Substituting the Euler identity into this equation gives: d Y  j  a  c  cos θ3  j  sin θ3   d X  b  j = 0

4.

Separate this equation into its real (x component) and imaginary (y component) parts, setting each equal to zero. a  c cos θ3  d X = 0

5.

Solve for the two unknowns a and b in terms of the constants d X and d Y and the independent variable 3. Where (a,d Y ) and (d X,b) are the coordinates of points A and B, respectively, and c is the length of link 3. With no loss of generality, let d X = d Y = d. Then, a = d  c cos θ3

6.

b = d  c sin θ3

The coordinates of the point C are: CX = d  0.5 cos θ3

7.

d Y  c sin θ3  b = 0

CY = d  0.5 c sin θ3

Using a local coordinate system whose origin is located at the intersection of the centerlines of the two slots and transforming the above functions to the local xy system:

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 4-58-2

a x = c cos θ3

ay = 0

bx = 0

b y = c sin θ3

To plot the path of point C as a function of 3, let c  1 and define a range function for 3

θ3  0  deg 1  deg  360  deg Cx θ3  0.5 c cos θ3

Cy θ3  0.5 sin θ3 Path of Point C

1

0.5

 

Cy θ3

0

 0.5

1 1

 0.5

0

 

Cx θ3

0.5

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-59-1

PROBLEM 4-59 Statement:

Calculate and plot the angular position of link 6 in Figure P4-19 as a function of the angle of input link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

a  1.75

First coupler (AB)

b  1.00

First rocker (O4B)

c  1.75

Ground link (O2O4)

d  1.00

Second input (BC)

e  1.00

Second coupler (L5)

f  1.75

Output rocker (L6)

g  1.00

Third coupler (BE)

h  1.75

Ternary link (O4C)

i  2.60

See Figure P4-19 and Mathcad file P0459.

Because the linkage is symmetrical and composed of two parallelograms the analysis can be done with simple trigonometry.

39.582°

C B

5

D

3

3

A

2

4

6 E

O4

2.

1

O2

Calculate the fixed angle that line BC makes with the extension of line O4B using the law of cosines.

 c2  e2  i 2    2  c e 

δ  π  acos

δ  39.582 deg

3.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

4.

Because links 1, 2, 3, and 4 are a parallelogram, link 4 will have the same angle as link 2 and AB will always be parallel to O2O4. And because links BC, 5, 6, and BE are also a parallelogram, link 6 will have the same angle as link BC. Thus,

 

θ θ  θ  δ 5.

Plot the angular position of link 6 as a function of the angle of input link 2 (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-59-2

Angular Position of Link 6 400 360 320 280 240

 

θ  θ

200

deg 160 120 80 40 0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-60a-1

PROBLEM 4-60a The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row a, draw the linkage to scale and graphically find all possible solutions (both open and crossed) for angles 2 and θ3.

Statement:

Given:

Link 2

a  1.4 in

Link 3

b  4  in

Offset

c  1  in

Slider position

d  2.5 in

See Figure P4-2, Table P4-5, and Mathcad file P0460a.

Solution: 1.

Lay out an xy-axis system. Its origin will be the link 2 pivot, O2.

2.

Draw a circle centered at the origin with radius equal to a at some convenient scale.

3.

Draw construction lines to define the point (d,c).

4.

From the point (d,c) draw an arc with radius equal to b.

5.

The two intersections of the circle and arc are the two solutions to the position analysis problem, crossed and open. If the circle and line don't intersect, there is no solution.

6.

Draw links 2 and 3 in their two possible positions (shown as solid for branch 1 and dashed for branch 2 in the figure) and measure the angles θ2 and 3 for each branch. From the solution below, Branch 1:

θ21  176.041  deg

θ31  ( 180  13.052)  deg

θ31  193.052 deg

Branch 2:

θ22  132.439  deg

θ32  ( 180  30.551)  deg

θ32  210.551 deg

13.052° 30.551°

176.041° 000 b = 4.

c = 1.000"

a = 1.400

132.439°

d = 2.500"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61a-1

PROBLEM 4-61a Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row a, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  1.4 in

Link 3

Offset

c  1  in

Slider position

d  2.5 in

See Figure P4-2, Table P4-5, and Mathcad file P0461a.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  6.790  in

2

K2  2  a  c

K2  2.800  in

K3  2  a  d

K3  7.000  in

A  K1  K3

A  0.210  in

B  2  K2

B  5.600  in

C  K1  K3

C  13.790 in

2

2 2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  4  in

 2 B  4  A  C 2

B  4 A  C

θ21  176.041  deg θ22  132.439  deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  193.052 deg

θ32  β  a b c d θ22

θ32  210.551 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61b-1

PROBLEM 4-61b Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row b, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  2  in

Link 3

Offset

c  3  in

Slider position

d  5  in

See Figure P4-2, Table P4-5, and Mathcad file P0461b.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  2.000  in

2

K2  2  a  c

K2  12.000 in

K3  2  a  d

K3  20.000 in

A  K1  K3

A  22.000 in

B  2  K2

B  24.000 in

C  K1  K3

C  18.000 in

2

2

2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  6  in

 2 B  4  A  C 2

B  4 A  C

θ21  54.117 deg θ22  116.045  deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  129.640 deg

θ32  β  a b c d θ22

θ32  168.433 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61c-1

PROBLEM 4-61c Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row c, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  3  in

Link 3

Offset

c  2  in

Slider position

d  8  in

See Figure P4-2, Table P4-5, and Mathcad file P0461c.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  13.000 in

2

K2  2  a  c

K2  12.000 in

K3  2  a  d

K3  48.000 in

A  K1  K3

A  61.000 in

B  2  K2

B  24.000 in

C  K1  K3

C  35.000 in

2

2 2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  8  in

 2 B  4  A  C 2

B  4 A  C

θ21  88.803 deg θ22  60.731 deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  172.824  deg

θ32  β  a b c d θ22

θ32  215.249  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61d-1

PROBLEM 4-61d Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row d, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  3.5 in

Link 3

Offset

c  1  in

Slider position

d  8  in

See Figure P4-2, Table P4-5, and Mathcad file P0461d.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  22.750 in 2

K2  2  a  c

K2  7.000  in

K3  2  a  d

K3  56.000 in

A  K1  K3

A  78.750 in

B  2  K2

B  14.000 in

C  K1  K3

C  33.250 in

2 2

2

2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  10 in

 2 B  4  A  C 2

B  4 A  C

θ21  286.648  deg θ22  300.898  deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  25.806 deg

θ32  β  a b c d θ22

θ32  11.556 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61e-1

PROBLEM 4-61e Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row e, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  5  in

Link 3

Offset

c  5  in

Slider position

d  15 in

See Figure P4-2, Table P4-5, and Mathcad file P0461e.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  125.000  in 2

K2  2  a  c

K2  50.000 in

K3  2  a  d

K3  150.000  in

A  K1  K3

A  25.000 in

B  2  K2

B  100.000  in

C  K1  K3

C  275.000  in

2

2 2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  20 in

 2 B  4  A  C 2

B  4 A  C

θ21  123.804  deg θ22  160.674  deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  152.759  deg

θ32  β  a b c d θ22

θ32  170.371  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61f-1

PROBLEM 4-61f Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row f, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  3  in

Link 3

Offset

c  0  in

Slider position

d  12 in

See Figure P4-2, Table P4-5, and Mathcad file P0461f.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  16.000 in 2

K2  2  a  c

K2  0.000  in

K3  2  a  d

K3  72.000 in

A  K1  K3

A  88.000 in

B  2  K2

B  0.000  in

C  K1  K3

C  56.000 in

2 2

2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  13 in

 2 B  4  A  C 2

B  4 A  C

θ21  282.840  deg θ22  282.840  deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  13.003 deg

θ32  β  a b c d θ22

θ32  13.003 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 4-61g-1

PROBLEM 4-61g Statement:

Given:

Solution: 1.

The link lengths, offset, and value of d for some fourbar slider-crank linkages are defined in Table P4-5. The linkage configuration and terminology are shown in Figure P4-2. For row g, using the vector loop method, find all possible solutions (both open and crossed) for angles 2 and θ3. Link 2

a  7  in

Link 3

Offset

c  10 in

Slider position

d  25 in

See Figure P4-2, Table P4-5, and Mathcad file P0461g.

Determine both values of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K1  149.000  in

2

K2  2  a  c

K2  140.000  in

K3  2  a  d

K3  350.000  in

A  K1  K3

A  499.000  in

B  2  K2

B  280.000  in

C  K1  K3

C  201.000  in

2

2 2 2

  2  atan2 2  A B 

θ21  2  atan2 2  A B  θ22 2.

b  25 in

 2 B  4  A  C 2

B  4 A  C

θ21  88.519 deg θ22  44.916 deg

Determine both values of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

θ31  β  a b c d θ21

θ31  186.898  deg

θ32  β  a b c d θ22

θ32  216.705  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-1-1

PROBLEM 5-1 Statement:

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of output rocker motion with no quick-return. (See Problem 3-3).

Given:

Coordinates of the points C1, D1, C2, and D2 with respect to C1: C1x  0.0

D1x  1.721

C2x  2.656

D2x  5.065

C1y  0.0

D1y  1.750

C2y  0.751

D2y  0.281

Assumptions: Use the pivot point between links 3 and 4 (C1 and C2 )as the precision points P1 and P2. Define position vectors in the global frame whose origin is at C1. Solution:

See solution to Problem 3-3 and Mathcad file P0501.

1.

Note that this is a two-position function generation (FG) problem because the output is specified as an angular displacement of the rocker, link 4. See Section 5.13 which details the 3-position FG solution. See also Section 5.3 in which the equations for the two-position motion generation problem are derived. These are really the same problem and have the same solution. The method of Section 5.3 will be used here.

2.

Two solution methods are derived in Section 5.3 and are presented in equations 5.7 and 5.8 for the left dyad and equations 5.11 and 5.12 for the right dyad. The first method (equations 5.7 and 5.11) looks like the better one to use in this case since it allows us to choose the link's angular positions and excursions and solve for the lengths of links 2 and 3 (w and z). Unfortunately, this method fails in this problem because of the requirement for a non-quick-return Grashof linkage, which requires the angular displacement of link 3 in going from position 1 to position 2 to be zero (2 = 0) causing a divide-by-zero error in equations 5.7d.

3.

Method 2 (equations 5.8 and 5.12) requires the choosing of two angles and a length for each dyad.

4.

To obtain the same solution as was done graphically in Problem 3-4, we need to know the location of the fixed pivot O4 with respect to the given CD. While we could take the results from Problem 3-3 and use them here to establish the location of O4, that won't be done. Instead, we will use the point C as the joint between links 3 and 4 as well as the precision point P.

5.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 C1x     C1y 

R2 

 C2x     C2y 

 P21x     R2  R1  P21y 

P21x  2.656 P21y  0.751

p 21  6.

2

2

P21x  P21y

p 21  2.760

From the trigonometric relationships given in Figure 5-1, determine 2. From the requirement for a non-quick-return, α  0. δ  atan2 P21x P21y

7.

δ  15.789 deg

From a graphical solution (see figure below), determine the values necessary for input to equations 5.8. z  5.000

β  180  deg

ϕ  δ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-1-2

3.483 5.0000

1.380

2.027 5.621

O4

1

A1 O2

2

4 2.095

0.989

3

56.519°

A2 C1

D2 C2 2.922

D1

8.

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  4.811

 

A  2.000

D  sin α

 

B  0.000

E  p 21  cos δ

 

C  0.000

F  p 21  sin δ

A  cos β  1 B  sin β

C  cos α  1

W1x 

W1y  w 

Z1y  z sin ϕ

 

D  0.000

 

E  2.656

 

F  0.751

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  1.328

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  0.375

2  A 2

Z1y  1.360

2

W1x  W1y

w  1.380

θ  atan2 W1x W1y

θ  164.211  deg

This is the expected value of w (one half of p 21) based on the design choices made in the graphical solution and the assumptions made in this problem. 9.

From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s  0

γ  56.519 deg

ψ  0  deg

10. Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  0.000

S 1y  s sin ψ

 

A  0.448

D  sin α

 

B  0.834

E  p 21  cos δ

A  cos γ  1 B  sin γ

 

S 1y  0.000 D  0.000

 

E  2.656

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-1-3

 

C  cos α  1

C  0.000

 

F  p 21  sin δ

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F 

U1x 

2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

U1y 

2

U1x  2.027

U1y  2.095

2  A

u 

F  0.751

2

U1x  U1y

u  2.915

σ  atan2 U1x U1y

σ  134.048  deg

This is the expected value of u based on the design choices made in the graphical solution and the assumptions made in this problem. 11. Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  4.811

V1y  z sin ϕ  s sin ψ

V1y  1.360

θ  atan2 V1x V1y

θ  15.789 deg

v  Link 1:

2

2

V1x  V1y

v  5.000

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  5.510

G1y  w sin θ  v sin θ  u  sin σ

G1y  1.110

θ  atan2 G1x G1y

θ  11.391 deg

g 

2

2

G1x  G1y

g  5.621

12. Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  152.820  deg

θ2f  θ2i  β

θ2f  332.820  deg

13. Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  5.000

δp  0.000  deg

which is correct for the assumption that the precision point is at C. 14. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

2

ρ  0.000  deg 2

C1x  C1y

R1  0.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-1-4

 

O2x  3.483

 

O2y  0.985

 

O4x  2.027

 

O4y  2.095

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

15. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  11.391 deg

16. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 17. DESIGN SUMMARY Link 2:

w  1.380

θ  164.211  deg

Link 3:

v  5.000

θ  15.789 deg

Link 4:

u  2.915

σ  134.048  deg

Link 1:

g  5.621

θ  11.391 deg

Coupler:

rp  5.000

δp  0.000  deg

Crank angles:

θ2i  152.820  deg θ2f  332.820  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-2-1

PROBLEM 5-2 Statement:

Design a fourbar mechanism to give the two positions shown in Figure P3-1 of coupler motion.

Given:

Coordinates of the points A1, B1, A2, and B2 with respect to A1: A1x  0.0

B1x  1.721

A2x  2.656

B2x  5.065

A1y  0.0

B1y  1.750

A2y  0.751

B2y  0.281

Assumptions: Use the points A1 and A2 as the precision points P1 and P2. Define position vectors in the global frame whose origin is at A1. Solution:

See solution to Problem 3-4 and Mathcad file P0502.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. See Section 5.3 in which the equations for the two-position motion generation problem are derived.

2.

Two solution methods are derived in Section 5.3 and are presented in equations 5.7 and 5.8 for the left dyad and equations 5.11 and 5.12 for the right dyad.

3.

Method 1 (equations 5.7 and 5.11) requires the choosing of three angles for each dyad. Method 2 (equations 5.8 and 5.12) requires the choosing of two angles and a length for each dyad. Method 1 is used in this solution.

4.

In order to obtain the same solution as was done graphically in Problem 3-4, the necessary assumed values were taken from that solution as shown below.

5.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 A1x     A1y 

R2 

 A2x     A2y 

 P21x     R2  R1  P21y 

P21x  2.656 P21y  0.751

p 21  6.

7.

2

2

P21x  P21y

p 21  2.760

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  atan2 A2x  B2x  A2y  B2y   atan2 A1x  B1x  A1y  B1y

α  303.481  deg

δ  atan2 P21x P21y

δ  15.789 deg

From the graphical solution (see figure below), determine the values necessary for input to equations 5.7. θ  94.394 deg

β  40.366 deg

ϕ  45.479 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-2-2

O4 93.449° jY 54.330° 2.760 u

A1 X 45.479°

0.281

P 21

15.789°

B2

0.751

v 1.750

A2 134.521° 2.656

2.409

B1 w

40.366°

94.394° 75.124° O2

8.

Solve for the WZ dyad using equations 5.7.

  



 

  



 

  



 

  



 

A  cos θ  cos β  1  sin θ  sin β

B  cos ϕ  cos α  1  sin ϕ  sin α

 

C  p 21  cos δ

D  sin θ  cos β  1  cos θ  sin β

E  sin ϕ  cos α  1  cos ϕ  sin α w 

C  E  B F

 

F  p 21  sin δ z 

A  E  B D

w  4.000

A  F  C D A  E  B D

z  0.000

These are the expected values of w and z based on the design choices made in the graphical solution and the assumptions made in this problem. 9.

From the graphical solution (see figure above), determine the values necessary for input to equations 5.11. σ  93.449 deg

γ  54.330 deg

ψ  134.521  deg

10. Solve for the US dyad using equations 5.11.

  



 

  



 

A'  cos σ  cos γ  1  sin σ  sin γ

B'  cos ψ  cos α  1  sin ψ  sin α

 

C  p 21  cos δ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-2-3

  



 

  



 

D'  sin σ  cos γ  1  cos σ  sin γ

E'  sin ψ  cos α  1  cos ψ  sin α u 

C E'  B' F

 

F  p 21  sin δ s 

A'  E'  B' D'

u  4.000

A'  F  C D' A'  E'  B' D'

s  2.455

These are the expected values of u and s based on the design choices made in the graphical solution and the assumptions made in this problem. 11. Solve for the links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  1.721

V1y  z sin ϕ  s sin ψ

V1y  1.750

θ  atan2 V1x V1y

θ  45.479 deg

v 

Link 1:

2

2

V1x  V1y

v  2.455

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  1.655

G1y  w sin θ  v sin θ  u  sin σ

G1y  6.231

θ  atan2 G1x G1y

θ  75.123 deg

g 

2

2

G1x  G1y

g  6.447

12. Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  19.271 deg

θ2f  θ2i  β

θ2f  21.095 deg

13. Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000  deg

which is correct for the assumption that the precision point is at A. 14. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

A1x  A1y

2

R1  0.000

 

O2x  0.306

 

O2y  3.988

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-2-4

 

O4x  1.962

 

O4y  2.243

O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

15. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  75.123 deg

16. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 17. DESIGN SUMMARY Link 2:

w  4.000

θ  94.394 deg

Link 3:

v  2.455

θ  45.479 deg

Link 4:

u  4.000

σ  93.449 deg

Link 1:

g  6.447

θ  75.123 deg

Coupler:

rp  0.000

δp  0.000  deg

Crank angles:

θ2i  19.271 deg θ2f  21.095 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-3-1

PROBLEM 5-3 Statement:

Design a fourbar mechanism to give the three positions of coupler motion with no quick return shown in Figure P3-2. (See Problem 3-5). Ignore the fixed pivot points in the Figure.

Given:

Coordinates of points A and B with respect to point A1: A1x  0.0

A1y  0.0

B1x  0.741

B1y  2.383

A2x  2.019

A2y  1.905

B2x  4.428

B2y  2.557

A3x  3.933

A3y  1.035

B3x  6.304

B3y  0.256

Assumptions: Let points A1, A2, and A3 be the precision points P1, P2, and P3, respectively. Solution: 1.

2.

3.

See Figure P3-2 Mathcad file P0503.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  2.776

δ  atan2 A2x A2y 

δ  43.336 deg

2

2

p 31  4.067

δ  atan2 A3x A3y 

δ  14.744 deg

p 21 

A2x  A2y

p 31 

A3x  A3y

Determine the angle changes of the coupler between precision points.

θP1  atan2 A1x  B1x  A1y  B1y

θP1  107.273  deg

θP2  atan2 A2x  B2x  A2y  B2y

θP2  164.856  deg

θP3  atan2 A3x  B3x  A3y  B3y

θP3  161.812  deg

α  θP2  θP1

α  57.582 deg

α  θP3  θP1

α  269.085  deg

The free choices for this linkage are (from the graphical solution to Problem 3-5): β  78.375 deg

4.

β  135.560  deg

γ  59.771 deg

γ  107.023  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

  D  sin α G  sin β L  p 31  cos δ

A  cos β  1

 A F AA   B G 

B C D 

 G H K  A D C   F K H 

 

B  sin β

  H  cos α  1 M  p 21  sin δ E  p 21  cos δ

 E  L CC    M  N   

  F  cos β  1 K  sin α N  p 31  sin δ C  cos α  1

 W1x     W1y   AA  1 CC  Z1x     Z1y 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-3-2

The components of the W and Z vectors are: W1x  2.178

W1y  0.286

Z1x  0.000

Z1y  0.000

θ  atan2 W1x W1y

θ  172.523  deg

ϕ  atan2 Z1x Z1y

ϕ  174.344  deg

 W1x2  W1y2 , w  2.197  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  0.000  

The length of vector Z is: z  5.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   



G' H K 

  F' K H 

A'

D C

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  1.995

U1y  3.121

S 1x  0.741

S 1y  2.383

σ  atan2 U1x U1y

σ  122.591  deg

ψ  atan2 S 1x S 1y

ψ  107.267  deg

The length of link 4 is: u 

 U 2  U 2 , u  3.704 1y   1x

The length of vector S is: s  6.

 S 1x2  S 1y2 , s  2.495  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  0.741

V1y  Z1y  S 1y

V1y  2.383

θ  atan2 V1x V1y

θ  72.734 deg

v  Link 1:

2

2

V1x  V1y

G1x  W1x  V1x  U1x

v  2.495 G1x  0.558

DESIGN OF MACHINERY - 5th Ed.

G1y  W1y  V1y  U1y

G1y  0.452

θ  atan2 G1x G1y

θ  39.009 deg

g  7.

8.

9.

SOLUTION MANUAL 5-3-3

2

2

G1x  G1y

g  0.718

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  211.532  deg

θ2f  θ2i  β

θ2f  75.972 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  247.078  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  2.178

O2y  z sin ϕ  w sin θ

O2y  0.286

O4x  s cos ψ  u  cos σ

O4x  2.736

O4y  s sin ψ  u  sin σ

O4y  0.738

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  39.009 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  2.197

θ  172.523  deg

Link 3:

v  2.495

θ  72.734 deg

Link 4:

u  3.704

σ  122.591  deg

Link 1:

g  0.718

θ  39.009 deg

Coupler:

rp  0.000

δp  247.078  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-3-4

Crank angles:

θ2i  211.532  deg θ2f  75.972 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y

0.718 2.197 O4 O2

2

A1

1a

B3

2.496

A3

3 4 A2 B1

B2 3.704

This is the same result as that found in Problem 3-5.

X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-4-1

PROBLEM 5-4 Statement:

Design a fourbar mechanism to give the three positions shown in Figure P3-2 (see Problem 3-6). Use analytical synthesis and design it for the fixed pivots shown.

Given:

Link end points (with respect to A1): A1x  0.0

B1x  0.741

A2x  2.019

B2x  4.428

A3x  3.933

B3x  6.304

A1y  0.0

B1y  2.383

A2y  1.905

B2y  2.557

A3y  1.035

B3y  0.256

Fixed pivot points (with respect to A1): O2x  0.995 Solution: 1.

2.

3.

O2y  5.086

O4x  5.298

O4y  5.086

See Figure P3-2 and Mathcad file P0504.

Determine the angle changes between precision points from the body angles given.

θP1  atan2 A1x  B1x A1y  B1y

θP1  107.273  deg

θP2  atan2 A2x  B2x A2y  B2y

θP2  164.856  deg

θP3  atan2 A3x  B3x A3y  B3y

θP3  161.812  deg

α  θP2  θP1

α  57.582 deg

α  θP3  θP1

α  269.085  deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. P21x  A2x

P21x  2.019

P31x  A3x

P31x  3.933

P21y  A2y

P21y  1.905

P31y  A3y

P31y  1.035

R1x  O2x

R1x  0.995

R1y  O2y

R1y  5.086

R2x  R1x  P21x

R2x  1.024

R2y  R1y  P21y

R2y  3.181

R3x  R1x  P31x

R3x  2.938

R3y  R1y  P31y

R3y  4.051

2

2

R1  5.182

2

2

R2  3.342

2

2

R3  5.004

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  101.069  deg

ζ  atan2 R2x R2y

ζ  72.156 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-4-2

ζ  atan2 R3x R3y 4.

ζ  54.048 deg

Solve for 2 and 3 using equations 5.34





















 

C3  8.007

 

C4  5.127

 

C5  5.851

 

C6  1.294

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C2  3.679

A1  C3  C4

A1  90.406

A2  C3 C6  C4 C5

A2  19.633

A3  C4 C6  C3 C5

A3  53.487

A4  C2 C3  C1 C4

A4  22.524

A5  C4 C5  C3 C6

A5  19.633

A6  C1 C3  C2 C4

A6  29.689

K1  A2  A4  A3  A6

K1  1.146  10

K2  A3  A4  A5  A6

K2  1.788  10

2

K3 

3 3

2

2

2

A1  A2  A3  A4  A6

2

2

3

K3  1.769  10

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  90.915 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  23.770 deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  16.790 deg

 A3  sin β  A2  cos β  A4   A1  

β  16.790 deg

β  acos

β  asin

Since both values are the same, 5.

C1  1.352

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2.

β  β

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-4-3

R1x  O4x

6.

7.

R1x  5.298

R1y  O4y

R2x  R1x  P21x

R2x  3.279

R2y  R1y  P21y

R2y  3.181

R3x  R1x  P31x

R3x  1.365

R3y  R1y  P31y

R3y  4.051

2

2

R1  7.344

2

2

R2  4.568

2

2

R3  4.275

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  5.086

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  136.170  deg

ζ  atan2 R2x R2y

ζ  135.869  deg

ζ  atan2 R3x R3y

ζ  108.621  deg

Solve for 2 and 3 using equations 5.34





















 

C3  3.636

 

C4  9.430

 

C5  3.855

 

C6  4.927

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  1.023 C2  4.349

A1  C3  C4

A1  102.135

A2  C3 C6  C4 C5

A2  18.434

A3  C4 C6  C3 C5

A3  60.472

A4  C2 C3  C1 C4

A4  25.460

A5  C4 C5  C3 C6

A5  18.434

A6  C1 C3  C2 C4

A6  37.287

K1  A2  A4  A3  A6

K1  1.785  10

K2  A3  A4  A5  A6

K2  2.227  10

3 3

DESIGN OF MACHINERY - 5th Ed.

2

K3 

SOLUTION MANUAL 5-4-4

2

2

2

A1  A2  A3  A4  A6

2 3

K3  2.198  10

2

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  90.915 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  11.643 deg

The first value is the same as 3, so use the second value

γ  

 A5  sin γ  A3  cos γ  A6   A1  

  11.069 deg

 A3  sin γ  A2  cos γ  A4   A1  

  11.069 deg

  acos

  asin

γ  

Since both angles are the same, 8.

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  2.776

δ  atan2 P21x P21y p 31 

2

δ  43.336 deg

2

P31x  P31y

p 31  4.067

δ  atan2 P31x P31y 9.

δ  14.744 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector: A  cos β  1 B  sin β C  cos α  1

 

 

 

 

E  p 21  cos δ

 

H  cos α  1

D  sin α G  sin β

 

L  p 31  cos δ

 A F AA   B G 

B C D 

 G H K  A D C   F K H 

10. The components of the W and Z vectors are:

 

 

 

M  p 21  sin δ

 E  L CC    M  N   

 

F  cos β  1

 

K  sin α

 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-4-5

W1x  3.594

W1y  7.810 2

w 

11. The length of link 2 is:

Z1x  4.589

2

W1x  W1y

Z1y  2.724

w  8.597

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A'  F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

E   L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x     U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  2.400

14. The length of link 4 is:

U1y  7.549 2

u 

U1x  U1y

S1x  2.898

2

S1y  2.463

u  7.921

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  1.691

V1y  Z1y  S1y

V1y  0.261

The length of link 3 is:

v 

2

2

V1x  V1y

v  1.711

G1x  W1x  V1x  U1x

G1x  4.303

G1y  W1y  V1y  U1y

G1y  5.329  10

The length of link 1 is:

g 

2

G1x  G1y

2

 14

g  4.303

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  0.995

O2y  Z1y  W1y

O2y  5.086

O4x  S1x  U1x

O4x  5.298

O4y  S1y  U1y

O4y  5.086

These check with Figure P3-2.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-4-6

17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  5.336

2

2

s  3.803

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

rP  z

ψ  atan2( S1x S1y)

ψ  139.639  deg

ϕ  atan2( Z1x Z1y )

ϕ  149.309  deg

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  171.233  deg

δp  ϕ  θ

δp  21.924 deg

18. DESIGN SUMMARY Link 1:

g  4.303

Link 2:

w  8.597

Link 3:

v  1.711

Link 4:

u  7.921

Coupler point:

rP  5.336

δp  21.924 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-5-1

PROBLEM 5-5 Statement:

See Project P3-8. Define three positions of the boat and analytically synthesize a linkage to move through them.

Assumptions: Launch ramp angle is 15 deg to the horizontal. Solution: 1.

See Project P3-8 and Mathcad file P0505.

This is an open-ended design problem that has many valid solutions. First define the problem more completely than is stated by deciding on three positions for the boat to move through. The figure below shows one such set of positions (dimensions are in mm). Y 3539 1453 1 deg. P2

15 deg.

725 X

P1 1179

1261

1431

0 deg. P3

O4

O2

WATER LEVEL 331 2694 RAMP

2.

From the figure, the design choices are: P21x  1453

P21y  725

P31x  3539

P31y  1261

O2x  331

O2y  1179

O4x  2694

O4y  1431

Body angles:

θP1  15 deg

θP2  1  deg

θP3  0  deg

3.

The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.

4.

Determine the angle changes between precision points from the body angles given.

5.

α  θP2  θP1

α  14.000 deg

α  θP3  θP1

α  15.000 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

R1x  331.000

R1y  O2y 3

R2x  R1x  P21x

R2x  1.122  10

R2y  R1y  P21y

R2y  1.904  10

R3x  R1x  P31x

R3x  3.208  10

R3y  R1y  P31y

R3y  82.000

3 3

R1y  1.179  10

3

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-5-2

2

2

R1  1.225  10

3

2

2

R2  2.210  10

3

2

2

R3  3.209  10

3

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  74.318 deg

ζ  atan2 R2x R2y

ζ  120.510  deg

ζ  atan2 R3x R3y

ζ  178.536  deg

Solve for 2 and 3 using equations 5.34





















 

C3  3.833  10

 

C4  1.135  10

 

C5  1.728  10

 

C6  840.097

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ



C4  R1 sin α  ζ  R3 sin ζ







C6  R1 sin α  ζ  R2 sin ζ 2

C2  1.433  10

3

3

3

C5  R1 cos α  ζ  R2 cos ζ



3

3

C3  R1 cos α  ζ  R3 cos ζ



C1  2.542  10

2

7

A1  C3  C4

A1  1.598  10

A2  C3 C6  C4 C5

A2  5.182  10

A3  C4 C6  C3 C5

A3  5.671  10

6

A4  C2 C3  C1 C4

A4  2.607  10

6

A5  C4 C5  C3 C6

A5  5.182  10

6

A6  C1 C3  C2 C4

A6  1.137  10

7

K1  A2  A4  A3  A6

K1  5.096  10

K2  A3  A4  A5  A6

K2  7.370  10

2

K3 

6

13 13

2

2

2

A1  A2  A3  A4  A6

2

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

13

K3  3.015  10

β  125.675  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-5-3

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  15.000 deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  39.836 deg

 A3  sin β  A2  cos β  A4   A1  

β  39.836 deg

β  acos

β  asin

β  β

Since both values are the same, 8.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

9.

R1x  2.694  10

3

R1y  O4y

R2x  R1x  P21x

R2x  1.241  10

3

R2y  R1y  P21y

R2y  2.156  10

3

R3x  R1x  P31x

R3x  845.000

R3y  R1y  P31y

R3y  170.000

2

2

R1  3.050  10

3

2

2

R2  2.488  10

3

2

2

R3  861.931

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.431  10

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  27.976 deg

ζ  atan2 R2x R2y

ζ  60.075 deg

ζ  atan2 R3x R3y

ζ  168.625  deg

10. Solve for 2 and 3 using equations 5.34





















 

C3  3.818  10

 

C4  514.981

 

C5  1.719  10

 

C6  1.419  10

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  2.536  10

3

C2  1.392  10

3

3

3 3

3

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-5-4

2

7

A1  C3  C4

A1  1.484  10

A2  C3 C6  C4 C5

A2  6.303  10

A3  C4 C6  C3 C5

A3  5.832  10

6

A4  C2 C3  C1 C4

A4  4.008  10

6

A5  C4 C5  C3 C6

A5  6.303  10

6

A6  C1 C3  C2 C4

A6  1.040  10

7

K1  A2  A4  A3  A6

K1  3.537  10

K2  A3  A4  A5  A6

K2  8.891  10

2

K3 

6

13 13

2

2

2

A1  A2  A3  A4  A6

2

2

13

K3  1.115  10

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  151.615  deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  15.000 deg

The second value is the same as 3, so use the first value

γ  γ

 A5  sin γ  A3  cos γ  A6   A1  

  56.167 deg

 A3  sin γ  A2  cos γ  A4   A1  

  56.167 deg

  acos

  asin

γ  

Since both angles are the same,

11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

δ  atan2 P21x P21y

p 31 

2

2

P31x  P31y

δ  atan2 P31x P31y

3

p 21  1.624  10

δ  153.482  deg

3

p 31  3.757  10

δ  160.388  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-5-5

12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

N  p 31  sin δ

 E  L CC    M  N   

 G H K  A D C   F K H 

 W1x   W1y   AA  1 CC  Z1x   Z1y   

13. The components of the W and Z vectors are: W1x  1.331  10

3

w 

14. The length of link 2 is:

W1y  1.653  10 2

3

Z1x  1.000  10

2

W1x  W1y

3

Z1y  474.187

w  2122.473

15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

16. The components of the W and Z vectors are: 3

U1x  1.690  10

17. The length of link 4 is:

u 

U1y  951.273 2

U1x  U1y

2

S1x  1.004  10

3

S1y  479.727

u  1939.291

18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  2.004  10

V1y  Z1y  S1y

V1y  953.914

The length of link 3 is:

v 

2

2

V1x  V1y

v  2219.601

3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-5-6

G1x  W1x  V1x  U1x

G1x  2.363  10

G1y  W1y  V1y  U1y

G1y  252.000

The length of link 1 is:

2

g 

G1x  G1y

2

3

g  2376.399

19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  331.000

O2y  Z1y  W1y

O2y  1179.000

O4x  S1x  U1x

O4x  2694.000

O4y  S1y  U1y

O4y  1431.000

These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  1106.834

2

2

s  1112.770

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

rP  z

ψ  atan2( S1x S1y)

ψ  25.538 deg

ϕ  atan2( Z1x Z1y )

ϕ  154.633  deg

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  154.547  deg

δp  ϕ  θ

δp  0.086  deg

21. DESIGN SUMMARY Link 1:

g  2376.4

Link 2:

w  2122.5

Link 3:

v  2219.6

Link 4:

u  1939.3

Coupler point:

rP  1106.8

δp  0.086  deg

22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none, but is close to toggle at position 1. This could be used as a locking feature. 24. The transmission angles need to be checked also. This design has poor transmission angles, especially in and near positions 1 and 3. Unfortunately, this is where a large overturning moment is created by the mass of the boat. A large mechanical advantage input device will need to be used here, such as a hydraulic cylinder or geared drive. Note that the drive mechanism must also resist being overdriven (back driven) by the load as the boat descends from its high point onto the trailer.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-5-7

A2 A1

B2

B1 A3 B3 WATER LEVEL

RAMP

O4

O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-6-1

PROBLEM 5-6 Statement:

See Project P3-20. Define three positions of the dumpster and analytically synthesize a linkage to move through them. The fixed pivots must be located on the existing truck.

Solution:

See Project P3-20 and Mathcad file P0506.

1.

This is an open-ended design problem that has many valid solutions. First define the problem more completely than it is stated by deciding on three positions for the dumpster box to move through. The figure below shows one such set of positions (dimensions are in mm). 1999 59.1 deg. 590

30.3 deg.

P3 P2 1817 0 deg.

1202

226 311

P1 O2 O4

2036 2094

2.

From the figure, the design choices are: P21x  590

P21y  1202

P31x  1999

P31y  1817

O2x  2094

O2y  226

O4x  2036

O4y  311

Body angles:

θP1  0  deg

θP2  30.3 deg

θP3  59.1 deg

3.

The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.

4.

Determine the angle changes between precision points from the body angles given.

5.

α  θP2  θP1

α  30.300 deg

α  θP3  θP1

α  59.100 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

R1x  2.094  10

3

R1y  O2y

R2x  R1x  P21x

R2x  1.504  10

3

R2y  R1y  P21y

R2y  1.428  10

3

R3x  R1x  P31x

R3x  95.000

R1y  226.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-6-2

R3y  R1y  P31y

6.

7.

R3y  2.043  10

3

2

2

R1  2.106  10

3

2

2

R2  2.074  10

3

2

2

R3  2.045  10

3

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  6.160  deg

ζ  atan2 R2x R2y

ζ  43.515 deg

ζ  atan2 R3x R3y

ζ  87.338 deg

Solve for 2 and 3 using equations 5.34





















 

C3  786.433

 

C4  130.152

 

C5  189.927

 

C6  176.392

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  495.777 C2  212.019

5

A1  C3  C4

A1  6.354  10

A2  C3 C6  C4 C5

A2  1.140  10

A3  C4 C6  C3 C5

A3  1.723  10

5

A4  C2 C3  C1 C4

A4  2.313  10

5

A5  C4 C5  C3 C6

A5  1.140  10

5

A6  C1 C3  C2 C4

A6  3.623  10

5

K1  A2  A4  A3  A6

K1  3.607  10

K2  A3  A4  A5  A6

K2  8.115  10

2

K3 

5

10 10

2

2

2

A1  A2  A3  A4  A6

2

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

10

K3  8.816  10

β  72.976 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-6-3

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  59.100 deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  34.802 deg

 A3  sin β  A2  cos β  A4   A1  

β  34.802 deg

β  acos

β  asin

β  β

Since both values are the same, 8.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

9.

R1x  2.036  10

3

R1y  O4y

R2x  R1x  P21x

R2x  1.446  10

3

R2y  R1y  P21y

R2y  1.513  10

3

R3x  R1x  P31x

R3x  37.000

R3y  R1y  P31y

R3y  2.128  10

3

2

2

R1  2.060  10

3

2

2

R2  2.093  10

3

2

2

R3  2.128  10

3

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  311.000

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  8.685  deg

ζ  atan2 R2x R2y

ζ  46.297 deg

ζ  atan2 R3x R3y

ζ  89.004 deg

10. Solve for 2 and 3 using equations 5.34





















 

C3  741.712

 

C4  221.269

 

C5  154.965

 

C6  217.266

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  486.018 C2  161.777

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-6-4

2

5

A1  C3  C4

A1  5.991  10

A2  C3 C6  C4 C5

A2  1.269  10

A3  C4 C6  C3 C5

A3  1.630  10

5

A4  C2 C3  C1 C4

A4  2.275  10

5

A5  C4 C5  C3 C6

A5  1.269  10

5

A6  C1 C3  C2 C4

A6  3.247  10

5

K1  A2  A4  A3  A6

K1  2.406  10

K2  A3  A4  A5  A6

K2  7.828  10

2

K3 

5

10 10

2

2

2

A1  A2  A3  A4  A6

2

2

10

K3  7.953  10

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  86.724 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  59.100 deg

The second value is the same as 3, so use the first value

γ  γ

 A5  sin γ  A3  cos γ  A6   A1  

  39.743 deg

 A3  sin γ  A2  cos γ  A4   A1  

  39.743 deg

  acos

  asin

γ  

Since both angles are the same,

11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

δ  atan2 P21x P21y p 31 

2

2

P31x  P31y

δ  atan2 P31x P31y

p 21  1338.994 δ  116.144  deg p 31  2701.387 δ  137.731  deg

12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-6-5

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

13. The components of the W and Z vectors are: W1x  3.194  10

3

W1y  829.763

Z1x  1.100  10

3

Z1y  603.763

14. The length of link 2 is: w 

2

2

W1x  W1y

w  3299.543

15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

16. The components of the W and Z vectors are: 3

U1x  1.621  10

U1y  13.492

S1x  415.016

S1y  297.508

17. The length of link 4 is: u 

2

U1x  U1y

2

u  1621.040

18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  1.515  10

V1y  Z1y  S1y

V1y  901.272

3

DESIGN OF MACHINERY - 5th Ed.

The length of link 3 is:

SOLUTION MANUAL 5-6-6 2

v 

2

V1x  V1y

v  1762.404

G1x  W1x  V1x  U1x

G1x  58.000

G1y  W1y  V1y  U1y

G1y  85.000

The length of link 1 is:

2

g 

G1x  G1y

2

g  102.903

19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  2094.000

O2y  Z1y  W1y

O2y  226.000

O4x  S1x  U1x

O4x  2036.000

O4y  S1y  U1y

O4y  311.000

These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  1254.370

2

2

s  510.637

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

rP  z

ψ  atan2( S1x S1y)

ψ  35.635 deg

ϕ  atan2( Z1x Z1y )

ϕ  151.228  deg

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  149.244  deg

δp  ϕ  θ

δp  1.984  deg

21. DESIGN SUMMARY Link 1:

g  102.9

Link 2:

w  3299.5

Link 3:

v  1762.4

Link 4:

u  1621.0

Coupler point:

rP  1254.4

δp  1.984  deg

22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none, but is close to toggle at position 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-6-7

24. The transmission angles need to be checked also. A large mechanical advantage input device will need to be used here, such as a hydraulic cylinder. Note that the drive mechanism must also resist being overdriven (back driven) by the load as the dumpster descends from its high point onto the truck.

A3

A2

B3

B2

O2

B1 O4

A1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-7-1

PROBLEM 5-7 Statement:

See Project P3-7. Define three positions of the computer monitor and analytically synthesize a linkage to move through them. The fixed pivots must be located on the floor or wall.

Solution:

See Project P3-7 and Mathcad file P0507.

1.

This is an open-ended design problem that has many valid solutions. First define the problem more completely than it is stated by deciding on three positions for the computer monitor to move through. The figure below shows one such set of positions (dimensions are in inches). Y 33.816

O2 97 deg. 11.580 P1

O4

X

90 deg. 7.812

1.272

14.472

P2

WALL 85 deg.

P3

2.148

5.736

2.

From the figure, the design choices are: P21x  2.148

P21y  7.812

P31x  5.736

P31y  14.472

O2x  33.816

O2y  11.580

O4x  33.816

O4y  1.272

Body angles:

θP1  97 deg

θP2  90 deg

θP3  85 deg

3.

The methods of Section 5.8 are used to get a solution for this problem. The solution is sensitive to small changes in the design choices so a trial-and-error approach is warranted.

4.

Determine the angle changes between precision points from the body angles given.

5.

α  θP2  θP1

α  7.000  deg

α  θP3  θP1

α  12.000 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

R1x  33.816

R1y  O2y

R2x  R1x  P21x

R2x  31.668

R2y  R1y  P21y

R2y  19.392

R3x  R1x  P31x

R3x  28.080

R3y  R1y  P31y

R3y  26.052

R1y  11.580

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-7-2

2

2

R1  35.744

2

2

R2  37.134

2

2

R3  38.304

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  161.097  deg

ζ  atan2 R2x R2y

ζ  148.519  deg

ζ  atan2 R3x R3y

ζ  137.146  deg

Solve for 2 and 3 using equations 5.34





















 

C3  7.405

 

C4  21.756

 

C5  3.307

 

C6  12.019

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  3.962 C2  10.052

A1  C3  C4

A1  528.143

A2  C3 C6  C4 C5

A2  17.049

A3  C4 C6  C3 C5

A3  285.981

A4  C2 C3  C1 C4

A4  11.771

A5  C4 C5  C3 C6

A5  17.049

A6  C1 C3  C2 C4

A6  248.020

K1  A2  A4  A3  A6

K1  7.073  10

K2  A3  A4  A5  A6

K2  7.595  10

2

K3 

4 3

2

2

2

A1  A2  A3  A4  A6

2

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

4

K3  6.760  10

β  24.258 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-7-3

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  12.000 deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  12.435 deg

 A3  sin β  A2  cos β  A4   A1  

β  12.435 deg

β  acos

β  asin

β  β

Since both values are the same, 8.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

9.

R1x  33.816

R1y  O4y

R2x  R1x  P21x

R2x  31.668

R2y  R1y  P21y

R2y  6.540

R3x  R1x  P31x

R3x  28.080

R3y  R1y  P31y

R3y  13.200

2

2

R1  33.840

2

2

R2  32.336

2

2

R3  31.028

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.272

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  177.846  deg

ζ  atan2 R2x R2y

ζ  168.331  deg

ζ  atan2 R3x R3y

ζ  154.822  deg

10. Solve for 2 and 3 using equations 5.34





















 

C3  4.733

 

C4  21.475

 

C5  1.741

 

C6  11.924

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  2.856 C2  9.867

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-7-4

2

A1  C3  C4

A1  483.571

A2  C3 C6  C4 C5

A2  19.043

A3  C4 C6  C3 C5

A3  264.299

A4  C2 C3  C1 C4

A4  14.646

A5  C4 C5  C3 C6

A5  19.043

A6  C1 C3  C2 C4

A6  225.402

K1  A2  A4  A3  A6

K1  5.929  10

K2  A3  A4  A5  A6

K2  8.163  10

2

K3 

4 3

2

2

2

A1  A2  A3  A4  A6

2

2

4

K3  5.630  10

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  27.678 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  12.000 deg

The second value is the same as 3, so use the first value

γ  γ

 A5  sin γ  A3  cos γ  A6   A1  

  14.435 deg

 A3  sin γ  A2  cos γ  A4   A1  

  14.435 deg

  acos

  asin

γ  

Since both angles are the same,

11. Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

δ  atan2 P21x P21y

p 31 

2

2

P31x  P31y

δ  atan2 P31x P31y

p 21  8.102 δ  74.626 deg

p 31  15.567 δ  68.379 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-7-5

12. Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

N  p 31  sin δ

 E  L CC    M  N   

 G H K  A D C   F K H 

 W1x   W1y   AA  1 CC  Z1x   Z1y   

13. The components of the W and Z vectors are: W1x  36.030

W1y  8.098

Z1x  2.214

Z1y  3.482

14. The length of link 2 is: w 

2

2

W1x  W1y

w  36.929

15. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

16. The components of the W and Z vectors are: U1x  32.294

U1y  2.592

S1x  1.522

17. The length of link 4 is: u 

2

U1x  U1y

2

u  32.398

18. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  3.736

V1y  Z1y  S1y

V1y  7.346

S1y  3.864

DESIGN OF MACHINERY - 5th Ed.

The length of link 3 is:

SOLUTION MANUAL 5-7-6 2

v 

2

V1x  V1y

v  8.241

G1x  W1x  V1x  U1x

G1x  0.000

G1y  W1y  V1y  U1y

G1y  12.852

The length of link 1 is:

2

g 

G1x  G1y

2

g  12.852

19. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  33.816

O2y  Z1y  W1y

O2y  11.580

O4x  S1x  U1x

O4x  33.816

O4y  S1y  U1y

O4y  1.272

These check with the design choices shown in the figure above. 20. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  4.126

2

2

s  4.153

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  111.494  deg

ϕ  atan2( Z1x Z1y )

ϕ  57.551 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  63.046 deg

δp  ϕ  θ

δp  5.495  deg

21. DESIGN SUMMARY Link 1:

g  12.852

Link 2:

w  36.929

Link 3:

v  8.241

Link 4:

u  32.398

Coupler point:

rP  4.126

δp  5.495  deg

22. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. The solution is drawn below to show the locations of the moving pivots for the three positions chosen (see next page). 23. The design needs to be checked for the presence of toggle positions within its desired range of motion. This design has none.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-7-7

24. The transmission angles need to be checked also. A means to support the weight of the monitor must be provided. The figure below shows a spring placed between links to provide the balancing moment. Further design and analysis needs to be done to optimize the spring placement in order to compensate for its change in force with deflection and the change in moment arm as the linkage moves.

SPRING O2

A1

A2 O4

B1

WALL A3 B2

B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-8-1

PROBLEM 5-8 Statement:

Design a linkage to carry the body in Figure P5-1 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  1.236

P2y  2.138

Angles made by the body in positions 1 and 2:

θP1  210  deg

θP2  147.5  deg

Free choices for the WZ dyad : z  1.075

β  27.0 deg

ϕ  204.4  deg

γ  40.0 deg

ψ  74.0 deg

Free choices for the US dyad : s  1.240 Solution:

See Figure P5-1 and Mathcad file P0508.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. Because of the data given in the hint, the second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P1x     P1y 

R2 

 P2x     P2y 

 P21x     R2  R1  P21y 

P21x  1.236 P21y  2.138

p 21  3.

4.

2

2

P21x  P21y

p 21  2.470

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  62.500 deg

δ  atan2 P21x P21y

δ  120.033  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1y  z sin ϕ

 

A  0.109

D  sin α

 

B  0.454

E  p 21  cos δ

 

C  0.538

F  p 21  sin δ

A  cos β  1 B  sin β

C  cos α  1

W1x 

Z1x  0.979

 

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F  2  A

Z1y  0.444 D  0.887

 

E  1.236

 

F  2.138

W1x  1.462

DESIGN OF MACHINERY - 5th Ed.

W1y  w 

SOLUTION MANUAL 5-8-2

A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  3.367

2  A 2

2

W1x  W1y

w  3.670

θ  atan2 W1x W1y 5.

θ  113.472  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  0.342

 

A  0.234

D  sin α

 

B  0.643

E  p 21  cos δ

 

C  0.538

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1

U1x 

U1y  u 

S 1y  s sin ψ

 

D  0.887

 

E  1.236

 

F  2.138

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  U1y

u  5.461

σ  atan2 U1x U1y 6.

σ  125.619  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  1.321

V1y  z sin ϕ  s sin ψ

V1y  1.636

θ  atan2 V1x V1y

θ  128.914  deg

v  Link 1:

2

2

V1x  V1y

v  2.103

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  0.398

G1y  w sin θ  v sin θ  u  sin σ

G1y  0.564

θ  atan2 G1x G1y

θ  54.796 deg

g  7.

U1x  3.180

U1y  4.439

2  A 2

S 1y  1.192

2

2

G1x  G1y

g  0.690

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  58.677 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-8-3

θ2f  θ2i  β 8.

9.

θ2f  85.677 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  1.075

δp  333.314  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  2.441

 

O2y  3.811

 

O4x  2.838

 

O4y  3.247

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  54.796 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  3.670

θ  113.472  deg

Link 3:

v  2.103

θ  128.914  deg

Link 4:

u  5.461

σ  125.619  deg

Link 1:

g  0.690

θ  54.796 deg

Coupler:

rp  1.075

δp  333.314  deg

Crank angles:

θ2i  58.677 deg θ2f  85.677 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-8-4

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

O2

1.236

G1 Y

O4 U2

P2 S2

B2

V2 2.138

W2

U1

Z2 A2

Z1 62.5°

W1

A1 X

P1 V1

S1 B1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-9-1

PROBLEM 5-9 Statement:

Design a linkage to carry the body in Figure P5-1 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Hint: First try a rough graphical solution to create realistic values for free choices.

Given:

Coordinates of the points P2 and P3 with respect to P1: P2x  1.236

P2y  2.138

P3x  2.500

P3y  2.931

Angles made by the body in positions 1 and 2:

θP2  147.5  deg Solution:

θP3  110.2  deg

See Figure P5-1 and Mathcad file P0509.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1.

 P2x     P2y 

R1 

R2 

 P3x     P3y 

 P21x     R2  R1  P21y 

P21x  1.264 P21y  0.793

p 21  3.

2

2

P21x  P21y

p 21  1.492

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP3  θP2

α  37.300 deg

δ  atan2 P21x P21y

δ  147.897  deg O4

4.

From a graphical solution (see figure at right), determine the values necessary for input to equations 5.8.

Y

1.250

P3 43.806°

z  0.0 B3

β  43.806 deg

P2 32.500°

57.012° B2

O2

ϕ  32.500 deg

P1

5.

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

 

A  0.278

D  sin α

 

B  0.692

E  p 21  cos δ

 

C  0.205

F  p 21  sin δ

A  cos β  1 B  sin β

C  cos α  1

 

Z1y  0.000 D  0.606

 

E  1.264

 

F  0.793

X

DESIGN OF MACHINERY - 5th Ed.

W1x 

W1y  w 

SOLUTION MANUAL 5-9-2

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  1.618

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  1.175

2  A 2

2

W1x  W1y

w  2.000

θ  atan2 W1x W1y 5.

θ  35.994 deg

From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s  1.250

6.

γ  57.012 deg

ψ  147.5  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  1.054

 

A  0.456

D  sin α

 

B  0.839

E  p 21  cos δ

 

C  0.205

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1

U1x 

U1y  u 

S 1y  s sin ψ

 

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E 2  A 2

2

U1x  U1y

 

E  1.264

 

F  0.793

U1x  0.675

U1y  1.883

σ  70.278 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  1.054

V1y  z sin ϕ  s sin ψ

V1y  0.672

θ  atan2 V1x V1y

θ  32.500 deg

v  Link 1:

2

2

V1x  V1y

v  1.250

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  1.997

G1y  w sin θ  v sin θ  u  sin σ

G1y  2.386

θ  atan2 G1x G1y

θ  50.070 deg

g  8.

D  0.606

u  2.000

σ  atan2 U1x U1y 7.

S 1y  0.672

2

2

G1x  G1y

g  3.112

Determine the initial and final values of the input crank with respect to the vector G.

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 5-9-3

θ2i  θ  θ

θ2i  14.077 deg

θ2f  θ2i  β

θ2f  29.729 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000  deg

which is correct for the assumption that the precision point is at C. 10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  atan2 P2x P2y R1 

2

ρ  120.033  deg

2

P2x  P2y

R1  2.470

 

O2x  2.854

 

O2y  0.963

 

O4x  0.857

 

O4y  3.349

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 12. Determine the Grashof condition. Condition( a b c d ) 

θrot  50.070 deg

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 13. DESIGN SUMMARY Link 2:

w  2.000

θ  35.994 deg

Link 3:

v  1.250

θ  32.500 deg

Link 4:

u  2.000

σ  70.278 deg

Link 1:

g  3.112

θ  50.070 deg

Coupler:

rp  0.000

δp  0.000  deg

Crank angles:

θ2i  14.077 deg θ2f  29.729 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-10-1

PROBLEM 5-10 Statement:

Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  1.236

P3x  2.500

P3y  2.931

P2y  2.138

Angles made by the body in positions 1, 2 and 3:

θP1  210  deg

θP2  147.5  deg

θP3  110.2  deg

Free choices for the WZ dyad : β  30.0 deg

β  60.0 deg

Free choices for the US dyad : γ  10.0 deg Solution: 1.

2.

3.

γ  25.0 deg

See Figure P5-1 and Mathcad file P0510.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  2.470

δ  atan2 P2x P2y

δ  120.033  deg

2

2

p 31  3.852

δ  atan2 P3x P3y

δ  130.463  deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  62.500 deg

α  θP3  θP1

α  99.800 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   



G H K 

  F K H  A

 

F  cos β  1

 

G  sin β

 A F AA   B G 

 

C  cos α  1

D C

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

The components of the W and Z vectors are: W1x  2.920

W1y  1.720

Z1x  0.756

Z1y  0.442

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-10-2

θ  atan2 W1x W1y

ϕ  149.697  deg

 W1x2  W1y2 , w  3.389  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  0.876  

The length of vector Z is: z  4.

ϕ  atan2 Z1x Z1y

θ  30.493 deg

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  1.009

U1y  2.693

S 1x  0.792

S 1y  2.418

σ  atan2 U1x U1y

σ  110.545  deg

ψ  atan2 S 1x S 1y

ψ  108.125  deg

The length of link 4 is: u 

 U1x2  U1y2 , u  2.875  

The length of vector S is: s  5.

 S 1x2  S 1y2 , s  2.544  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  0.036

V1y  Z1y  S 1y

V1y  1.976

θ  atan2 V1x V1y

θ  88.968 deg

v  Link 1:

2

2

V1x  V1y

v  1.977

G1x  W1x  V1x  U1x

G1x  3.965

G1y  W1y  V1y  U1y

G1y  1.003

θ  atan2 G1x G1y

θ  14.202 deg

DESIGN OF MACHINERY - 5th Ed.

g  6.

7.

8.

9.

2

SOLUTION MANUAL 5-10-3

2

G1x  G1y

g  4.090

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  16.291 deg

θ2f  θ2i  β

θ2f  76.291 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.876

δp  238.665  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  2.164

O2y  z sin ϕ  w sin θ

O2y  1.278

O4x  s cos ψ  u  cos σ

O4x  1.801

O4y  s sin ψ  u  sin σ

O4y  0.274

Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  14.202 deg

10. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 11. DESIGN SUMMARY Link 2:

w  3.389

θ  30.493 deg

Link 3:

v  1.977

θ  88.968 deg

Link 4:

u  2.875

σ  110.545  deg

Link 1:

g  4.090

θ  14.202 deg

Coupler:

rp  0.876

δp  238.665  deg

Crank angles:

θ2i  16.291 deg θ2f  76.291 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-10-4

12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y

P3 S3

Z3 A3

B1

S2 P2

B3

V3

V2 S1

A2

W3

60.0°

B2

10.0° 25.0° V1

Z1

30.0°

A1

U2 U1 X

W2

P1 W1 G1

O2

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-11-1

PROBLEM 5-11 Statement:

Given:

Solution: 1.

2.

Design a linkage to carry the body in Figure P5-1 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x  1.236 O2x  2.164

P21y  2.138 O2y  1.260

P31x  2.500 O4x  2.190

P31y  2.931 O4y  1.260

Body angles:

θP1  210  deg

θP2  147.5  deg

θP3  110.2  deg

See Figure P5-1 and Mathcad file P0511.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  62.500 deg

α  θP3  θP1

α  99.800 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  2.164

R1y  O2y

R2x  R1x  P21x

R2x  0.928

R2y  R1y  P21y

R2y  3.398

R3x  R1x  P31x

R3x  0.336

R3y  R1y  P31y

R3y  4.191

2

2

R1  2.504

2

2

R2  3.522

2

2

R3  4.204

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.260

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  30.210 deg

ζ  atan2 R2x R2y

ζ  74.725 deg

ζ  atan2 R3x R3y

ζ  94.584 deg

Solve for 2 and 3 using equations 5.34





















 

C3  1.209

 

C4  6.538

 

C5  1.189

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ

C1  0.372 C2  3.726

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-11-2





 

C6  R1 sin α  ζ  R2 sin ζ 2

C6  4.736

2

A1  C3  C4

A1  44.206

A2  C3 C6  C4 C5

A2  2.046

A3  C4 C6  C3 C5

A3  32.399

A4  C2 C3  C1 C4

A4  6.937

A5  C4 C5  C3 C6

A5  2.046

A6  C1 C3  C2 C4

A6  23.911

K1  A2  A4  A3  A6

K1  760.497

K2  A3  A4  A5  A6

K2  273.669

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  140.232

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  60.217 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  99.800 deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  30.143 deg

 A3  sin β  A2  cos β  A4   A1  

β  30.143 deg

β  acos

β  asin

β  β

Since both values are the same, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  2.190

R1y  O4y

R2x  R1x  P21x

R2x  3.426

R2y  R1y  P21y

R2y  3.398

R3x  R1x  P31x

R3x  4.690

R3y  R1y  P31y

R3y  4.191

R1 

2

2

R1x  R1y

R1  2.527

R1y  1.260

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-11-3

2

2

R2  4.825

2

2

R3  6.290

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  150.086  deg

ζ  atan2 R2x R2y

ζ  135.235  deg

ζ  atan2 R3x R3y

ζ  138.216  deg

Solve for 2 and 3 using equations 5.34





















 

C3  6.304

 

C4  2.247

 

C5  3.532

 

C6  0.874

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  2.380 C2  3.298

A1  C3  C4

A1  44.796

A2  C3 C6  C4 C5

A2  2.431

A3  C4 C6  C3 C5

A3  24.233

A4  C2 C3  C1 C4

A4  15.441

A5  C4 C5  C3 C6

A5  2.431

A6  C1 C3  C2 C4

A6  22.414

K1  A2  A4  A3  A6

K1  505.612

K2  A3  A4  A5  A6

K2  428.679

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  336.363

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  19.215 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  99.800 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-11-4

The second value is the same as 3, so use the first value

γ  γ

 A5  sin γ  A3  cos γ  A6   A1  

  6.628  deg

 A3  sin γ  A2  cos γ  A4   A1  

  6.628  deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  2.470

δ  atan2 P21x P21y 2

p 31 

δ  120.033  deg

2

P31x  P31y

p 31  3.852

δ  atan2 P31x P31y 9.

δ  130.463  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

A  F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

E   L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x     W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  2.915 11. The length of link 2 is:

w 

W1y  1.702 2

Z1x  0.751

2

W1x  W1y

Z1y  0.442

w  3.376

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

D  sin α

 

B'  sin γ

 

E  p 21  cos δ

 

C  cos α  1

 

F'  cos γ  1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-11-5

 

 

G'  sin γ

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

H  cos α  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  1.371

14. The length of link 4 is:

U1y  3.634 2

u 

U1x  U1y

S1x  0.819

2

S1y  2.374

u  3.884

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  0.068

V1y  Z1y  S1y

V1y  1.932 v 

The length of link 3 is:

2

2

V1x  V1y

v  1.933

G1x  W1x  V1x  U1x

G1x  4.354

G1y  W1y  V1y  U1y

G1y  2.220  10

g 

The length of link 1 is:

2

G1x  G1y

2

 15

g  4.354

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  2.164

O2y  Z1y  W1y

O2y  1.260

O4x  S1x  U1x

O4x  2.190

O4y  S1y  U1y

O4y  1.260

These check with Figure P5-1. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  0.871

2

2

s  2.511

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

rP  z

ψ  atan2( S1x S1y)

ψ  109.037  deg

ϕ  atan2( Z1x Z1y )

ϕ  149.555  deg

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-11-6

θ  87.994 deg

δp  ϕ  θ

δp  237.549  deg

18. DESIGN SUMMARY Link 1:

g  4.354

Link 2:

w  3.376

Link 3:

v  1.933

Link 4:

u  3.884

Coupler point:

rP  0.871

δp  237.549  deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-12-1

PROBLEM 5-12 Statement:

Design a linkage to carry the body in Figure P5-2 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Use the free choices given below.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  1.903

P2y  1.347

Angles made by the body in positions 1 and 2:

θP1  101.0  deg

θP2  62.0 deg

Free choices for the WZ dyad : z  2.000

β  30.0 deg

ϕ  150.0  deg

γ  40.0 deg

ψ  50.0 deg

Free choices for the US dyad : s  3.000 Solution:

See Figure P5-2 and Mathcad file P0512.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. Because of the data given in the hint, the second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P1x     P1y 

R2 

 P2x     P2y 

 P21x     R2  R1  P21y 

P21x  1.903 P21y  1.347

p 21  3.

4.

2

2

P21x  P21y

p 21  2.331

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  39.000 deg

δ  atan2 P21x P21y

δ  35.292 deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1y  z sin ϕ

A  0.134

D  sin α

 

B  0.500

E  p 21  cos δ

 

E  1.903

 

C  0.223

F  p 21  sin δ

 

F  1.347

B  sin β

C  cos α  1

 

Z1y  1.000

 

A  cos β  1

W1x 

Z1x  1.732

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F  2  A

D  0.629

W1x  0.452

DESIGN OF MACHINERY - 5th Ed.

W1y  w 

SOLUTION MANUAL 5-12-2

A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  1.896

2  A 2

2

W1x  W1y

w  1.949

θ  atan2 W1x W1y 5.

θ  76.607 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  1.928 A  0.234

D  sin α

 

B  0.643

E  p 21  cos δ

 

E  1.903

 

C  0.223

F  p 21  sin δ

 

F  1.347

B  sin γ

C  cos α  1

U1y  u 

 

D  0.629

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

2

U1x  U1y

u  6.284 σ  81.540 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  3.660

V1y  z sin ϕ  s sin ψ

V1y  3.298

θ  atan2 V1x V1y

θ  137.980  deg

v  Link 1:

2

2

V1x  V1y

v  4.927

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  4.133

G1y  w sin θ  v sin θ  u  sin σ

G1y  7.617

θ  atan2 G1x G1y

θ  118.485  deg

g  7.

U1x  0.924

U1y  6.216

2  A

σ  atan2 U1x U1y 6.

S 1y  2.298

 

A  cos γ  1

U1x 

S 1y  s sin ψ

2

2

G1x  G1y

g  8.667

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  195.092  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-12-3

θ2f  θ2i  β 8.

9.

θ2f  165.092  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  2.000

δp  12.020 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  1.281

 

O2y  0.896

 

O4x  2.853

 

O4y  8.514

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  118.485  deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  1.949

θ  76.607 deg

Link 3:

v  4.927

θ  137.980  deg

Link 4:

u  6.284

σ  81.540 deg

Link 1:

g  8.667

θ  118.485  deg

Coupler:

rp  2.000

δp  12.020 deg

Crank angles:

θ2i  195.092  deg θ2f  165.092  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-12-4

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

O4

Y

1.903

U2 G1

U1

B2

S2

39.0° B1

V2 P2

V1 O2 S1

Z2 1.347

W1

W2

P1

X Z1 A1

A2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-13-1

PROBLEM 5-13 Statement:

Design a linkage to carry the body in Figure P5-2 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown. Hint: First try a rough graphical solution to create realistic values for free choices.

Given:

Coordinates of the points P2 and P3 with respect to P1: P2x  1.903

P2y  1.347

P3x  1.389

P3y  1.830

Angles made by the body in positions 1 and 2:

θP2  62.0 deg Solution:

θP3  39.0 deg

See Figure P5-2 and Mathcad file P0513.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1.

 P2x     P2y 

R1 

R2 

 P3x     P3y 

 P21x     R2  R1  P21y 

P21x  0.514 P21y  0.483

p 21  3.

4.

2

2

P21x  P21y

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP3  θP2

α  23.000 deg

δ  atan2 P21x P21y

δ  136.781  deg

From a graphical solution (see figure next page), determine the values necessary for input to equations 5.8. z  3

5.

p 21  0.705

β  45.0 deg

ϕ  100  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  0.521

Z1y  z sin ϕ

 

A  0.293

D  sin α

 

B  0.707

E  p 21  cos δ

A  cos β  1 B  sin β

 

W1x 

W1y  w 

D  0.391

 

C  0.079 F  p 21  sin δ   A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

C  cos α  1

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E 2  A 2

2

W1x  W1y

θ  atan2 W1x W1y

Z1y  2.954

E  0.514 F  0.483 W1x  1.476

W1y  1.807 w  2.333 θ  50.759 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-13-2

Y

B3 2.000

O4

20.000°

P3

B2

P2

20.0°

3.000 X

P1

100.0°

23.0° A3 45.000° A2

O2

5.

From the graphical solution (see figure above), determine the values necessary for input to equations 5.12. s  2.000

6.

γ  20.0 deg

ψ  20.0 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  1.879

 

A  0.060

D  sin α

 

B  0.342

E  p 21  cos δ

 

C  0.079

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1

U1x 

U1y 

u 

S 1y  s sin ψ

 

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E 2  A 2

2

U1x  U1y

σ  atan2 U1x U1y 7.

S 1y  0.684 D  0.391

 

E  0.514

 

F  0.483

U1x  3.346

U1y  0.306

u  3.360 σ  5.216  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  2.400

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-13-3

V1y  z sin ϕ  s sin ψ θ  atan2 V1x V1y v  Link 1:

2

θ  123.413  deg

2

V1x  V1y

v  4.359

 

G1x  w cos θ  v cos θ  u  cos σ

 

9.

G1x  4.271

G1y  w sin θ  v sin θ  u  sin σ

G1y  5.751

θ  atan2 G1x G1y

θ  126.601  deg

g  8.

V1y  3.638

2

2

G1x  G1y

g  7.163

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  75.842 deg

θ2f  θ2i  β

θ2f  30.842 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  3.000

δp  23.413 deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  atan2 P2x P2y R1 

2

ρ  35.292 deg

2

P2x  P2y

R1  2.331

 

O2x  0.948

 

O2y  3.414

 

O4x  3.323

 

O4y  2.337

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  126.601  deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-13-4

13. DESIGN SUMMARY Link 2:

w  2.333

θ  50.759 deg

Link 3:

v  4.359

θ  123.413  deg

Link 4:

u  3.360

σ  5.216  deg

Link 1:

g  7.163

θ  126.601  deg

Coupler:

rp  3.000

δp  23.413 deg

Crank angles:

θ2i  75.842 deg θ2f  30.842 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-14-1

PROBLEM 5-14 Statement:

Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  1.903

P3x  1.389

P3y  1.830

P2y  1.347

Angles made by the body in positions 1, 2 and 3:

θP1  101  deg

θP2  62.0 deg

θP3  39.0 deg

Free choices for the WZ dyad : β  40.0 deg

β  75.0 deg

Free choices for the US dyad : γ  0.0 deg Solution: 1.

2.

3.

γ  30.0 deg

See Figure P5-2 and Mathcad file P0514.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  2.331

δ  atan2 P2x P2y

δ  35.292 deg

2

2

p 31  2.297

δ  atan2 P3x P3y

δ  52.801 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  39.000 deg

α  θP3  θP1

α  62.000 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1 D  sin α G  sin β

 

L  p 31  cos δ

 A F AA   B G 

B C D 

 G H K  A D C   F K H 

The components of the W and Z vectors are:

 

 

C  cos α  1

 

 

 

M  p 21  sin δ

 E  L CC    M  N   

 

F  cos β  1

 

K  sin α

 

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-14-2

W1x  3.110

W1y  1.061

Z1x  0.297

Z1y  3.201

θ  atan2 W1x W1y

θ  18.843 deg

ϕ  atan2 Z1x Z1y

ϕ  84.698 deg

 W1x2  W1y2 , w  3.286  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  3.215  

The length of vector Z is: z  4.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  1.658

U1y  3.361

S 1x  2.853

S 1y  2.013

σ  atan2 U1x U1y

σ  63.740 deg

ψ  atan2 S 1x S 1y

ψ  144.792  deg

The length of link 4 is: u 

 U1x2  U1y2 , u  3.748  

The length of vector S is: s  5.

 S 1x2  S 1y2 , s  3.492  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  3.150

V1y  Z1y  S 1y

V1y  1.188

θ  atan2 V1x V1y

θ  20.657 deg

v  Link 1:

2

2

V1x  V1y

v  3.367

G1x  W1x  V1x  U1x

G1x  4.602

G1y  W1y  V1y  U1y

G1y  3.234

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-14-3

θ  atan2 G1x G1y

g  6.

7.

8.

9.

2

θ  35.099 deg

2

G1x  G1y

g  5.625

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  16.256 deg

θ2f  θ2i  β

θ2f  91.256 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  3.215

δp  64.041 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  3.407

O2y  z sin ϕ  w sin θ

O2y  2.140

O4x  s cos ψ  u  cos σ

O4x  1.195

O4y  s sin ψ  u  sin σ

O4y  5.374

Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  35.099 deg

10. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 11. DESIGN SUMMARY Link 2:

w  3.286

θ  18.843 deg

Link 3:

v  3.367

θ  20.657 deg

Link 4:

u  3.748

σ  63.740 deg

Link 1:

g  5.625

θ  35.099 deg

Coupler:

rp  3.215

δp  64.041 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-14-4

Crank angles:

θ2i  16.256 deg

θ2f  91.256 deg

12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y

P3 P2

Z3 A3 Z2 P1

V3 W3

X

S3

A2

S2

S1

75.0°

W2

B3

Z1

V2

B1 , B2

40.0° O2

W1 V1 30.0°

A1 G1

U1 U2

U3

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-15-1

PROBLEM 5-15 Statement:

Given:

Solution: 1.

2.

Design a linkage to carry the body in Figure P5-2 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x  1.903

P21y  1.347

P31x  1.389

P31y  1.830

O2x  0.884

O2y  1.251

O4x  3.062

O4y  1.251

Body angles:

θP1  101  deg

θP2  62 deg

θP3  39 deg

See Figure P5-2 and Mathcad file P0515.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  39.000 deg

α  θP3  θP1

α  62.000 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  0.884

R1y  O2y

R2x  R1x  P21x

R2x  2.787

R2y  R1y  P21y

R2y  2.598

R3x  R1x  P31x

R3x  2.273

R3y  R1y  P31y

R3y  3.081

2

2

R1  1.532

2

2

R2  3.810

2

2

R3  3.829

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.251

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  54.754 deg

ζ  atan2 R2x R2y

ζ  42.990 deg

ζ  atan2 R3x R3y

ζ  53.582 deg

Solve for 2 and 3 using equations 5.34





















 

C3  0.753

 

C4  3.274

 

C5  1.313

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ

C1  0.103 C2  2.205

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-15-2





 

C6  R1 sin α  ζ  R2 sin ζ 2

C6  2.182

2

A1  C3  C4

A1  11.288

A2  C3 C6  C4 C5

A2  2.654

A3  C4 C6  C3 C5

A3  8.134

A4  C2 C3  C1 C4

A4  1.324

A5  C4 C5  C3 C6

A5  2.654

A6  C1 C3  C2 C4

A6  7.297

K1  A2  A4  A3  A6

K1  55.842

K2  A3  A4  A5  A6

K2  30.136

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  0.392

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  118.708  deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  62.000 deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  59.564 deg

 A3  sin β  A2  cos β  A4   A1  

β  59.564 deg

β  acos

β  asin

β  β

Since both values are the same, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  3.062

R1y  O4y

R2x  R1x  P21x

R2x  1.159

R2y  R1y  P21y

R2y  2.598

R3x  R1x  P31x

R3x  1.673

R3y  R1y  P31y

R3y  3.081

2

2

R1  3.308

2

2

R2  2.845

R1 

R1x  R1y

R2 

R2x  R2y

R1y  1.251

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-15-3

2

2

R3x  R3y

R3  3.506

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  157.777  deg

ζ  atan2 R2x R2y

ζ  114.042  deg

ζ  atan2 R3x R3y

ζ  118.502  deg

Solve for 2 and 3 using equations 5.34





















 

C3  1.340

 

C4  0.210

 

C5  0.433

 

C6  0.301

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  1.111 C2  1.204

A1  C3  C4

A1  1.840

A2  C3 C6  C4 C5

A2  0.495

A3  C4 C6  C3 C5

A3  0.517

A4  C2 C3  C1 C4

A4  1.847

A5  C4 C5  C3 C6

A5  0.495

A6  C1 C3  C2 C4

A6  1.236

K1  A2  A4  A3  A6

K1  1.553

K2  A3  A4  A5  A6

K2  0.344

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  1.033

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  62.000 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  36.991 deg

The first value is the same as 3, so use the second value

γ  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-15-4

 A5  sin γ  A3  cos γ  A6   A1  

  73.415 deg

 A3  sin γ  A2  cos γ  A4   A1  

  73.415 deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  2.331

δ  atan2 P21x P21y 2

p 31 

δ  35.292 deg

2

P31x  P31y

p 31  2.297

δ  atan2 P31x P31y 9.

δ  52.801 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  1.262 w 

11. The length of link 2 is:

W1y  1.109 2

Z1x  0.378

2

W1x  W1y

Z1y  2.360

w  1.680

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

L  p 31  cos δ

 

 

 

M  p 21  sin δ

 

F'  cos γ  1

 

K  sin α

 

N  p 31  sin δ

DESIGN OF MACHINERY - 5th Ed.

 A' F' AA    B'  G' 

SOLUTION MANUAL 5-15-5

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  0.326

14. The length of link 4 is:

U1y  0.830 2

u 

U1x  U1y

S1x  2.736

2

S1y  0.421

u  0.892

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  2.359

V1y  Z1y  S1y

V1y  1.939 v 

The length of link 3 is:

2

2

V1x  V1y

v  3.054

G1x  W1x  V1x  U1x

G1x  3.946

G1y  W1y  V1y  U1y

G1y  1.110  10

g 

The length of link 1 is:

2

G1x  G1y

2

 15

g  3.946

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  0.884

O2y  Z1y  W1y

O2y  1.251

O4x  S1x  U1x

O4x  3.062

O4y  S1y  U1y

O4y  1.251

These check with Figure P5-2. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  2.390

2

2

s  2.769

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  171.262  deg

ϕ  atan2( Z1x Z1y )

ϕ  99.095 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  39.430 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-15-6

δp  ϕ  θ

δp  59.666 deg

18. DESIGN SUMMARY Link 1:

g  3.946

Link 2:

w  1.680

Link 3:

v  3.054

Link 4:

u  0.892

Coupler point:

rP  2.390

δp  59.666 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-16-1

PROBLEM 5-16 Statement:

Design a linkage to carry the body in Figure P5-3 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  0.907

P2y  0.0

Angles made by the body in positions 1 and 2:

θP1  111.8  deg

θP2  191.1  deg

Free choices for the WZ dyad : z  1.500

β  44.0 deg

ϕ  50.0 deg

γ  55.0 deg

ψ  20.0 deg

Free choices for the US dyad : s  2.500 Solution:

See Figure P5-3 and Mathcad file P0516.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P1x     P1y 

R2 

 P2x     P2y 

 P21x     R2  R1  P21y 

P21x  0.907 P21y  0.000

p 21  3.

4.

2

2

P21x  P21y

p 21  0.907

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  79.300 deg

δ  atan2 P21x P21y

δ  180.000  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

  B  sin β

A  cos β  1

 

C  cos α  1 W1x 

W1y 

Z1x  0.964

Z1y  z sin ϕ

 

A  0.281

D  sin α

B  0.695

E  p 21  cos δ

C  0.814

F  p 21  sin δ

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F  2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E 2  A

Z1y  1.149 D  0.983

 

E  0.907

 

F  0.000 W1x  1.705

W1y  2.490

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-16-2

2

w 

2

W1x  W1y

w  3.018

θ  atan2 W1x W1y 5.

θ  124.405  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  2.349

S 1y  s sin ψ

 

A  0.426

D  sin α

 

B  0.819

E  p 21  cos δ

 

C  0.814

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1

 

D  0.983

 

E  0.907

 

F  0.000

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F 

U1x 

2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

U1y 

2

2

U1x  U1y

u  2.654

σ  atan2 U1x U1y 6.

σ  76.373 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  1.385

V1y  z sin ϕ  s sin ψ

V1y  2.004

θ  atan2 V1x V1y

θ  124.648  deg

v  Link 1:

2

2

V1x  V1y

v  2.436

 

G1x  w cos θ  v cos θ  u  cos σ

 

8.

G1x  3.715

G1y  w sin θ  v sin θ  u  sin σ

G1y  2.094

θ  atan2 G1x G1y

θ  150.596  deg

g  7.

U1x  0.625

U1y  2.579

2  A

u 

S 1y  0.855

2

2

G1x  G1y

g  4.265

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  275.001  deg

θ2f  θ2i  β

θ2f  319.001  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  1.500

δp  74.648 deg

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 5-16-3

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  0.741

 

O2y  1.341

 

O4x  2.975

 

O4y  3.434

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  150.596  deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  3.018

θ  124.405  deg

Link 3:

v  2.436

θ  124.648  deg

Link 4:

u  2.654

σ  76.373 deg

Link 1:

g  4.265

θ  150.596  deg

Coupler:

rp  1.500

δp  74.648 deg

Crank angles:

θ2i  275.001  deg

θ2f  319.001  deg

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-16-4

Y

A1 Z1 P2

V1

P1

Z2 A2

X S1

44.0°

B1

W2 V2

S2

55.0° U1

G1

B2 U2

O4

W1 O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-17-1

PROBLEM 5-17 Statement:

Design a linkage to carry the body in Figure P5-3 through the two positions P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.

Given:

Coordinates of the points P2 and P3 with respect to P1: P2x  0.907

P2y  0.0

P3x  1.447

P3y  0.0

Angles made by the body in positions 1 and 2:

θP2  191.1  deg

θP3  237.4  deg

Free choices for the WZ dyad : z  2.000

β  66.0 deg

ϕ  60.0 deg

γ  44.0 deg

ψ  30.0 deg

Free choices for the US dyad : s  3.000 Solution:

See Figure P5-3 and Mathcad file P0517.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P2x     P2y 

R2 

 P3x     P3y 

 P21x     R2  R1  P21y 

P21x  0.540 P21y  0.000

p 21  3.

4.

2

2

P21x  P21y

p 21  0.540

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP3  θP2

α  46.300 deg

δ  atan2 P21x P21y

δ  180.000  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

A  0.593

D  sin α

 

B  0.914

E  p 21  cos δ

 

C  0.309

F  p 21  sin δ

B  sin β

C  cos α  1

W1y 

Z1y  z sin ϕ

 

A  cos β  1

W1x 

Z1x  1.000

 

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F  2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E 2  A

Z1y  1.732 D  0.723

 

E  0.540

 

F  0.000 W1x  0.227

W1y  1.771

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-17-2

2

w 

2

W1x  W1y

w  1.786

θ  atan2 W1x W1y 5.

θ  97.314 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  2.598

S 1y  s sin ψ

 

A  0.281

D  sin α

 

B  0.695

E  p 21  cos δ

 

C  0.309

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1

 

D  0.723

 

E  0.540

 

F  0.000

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F 

U1x 

2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

U1y 

2

2

U1x  U1y

u  2.608

σ  atan2 U1x U1y 6.

σ  65.609 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  1.598

V1y  z sin ϕ  s sin ψ

V1y  3.232

θ  atan2 V1x V1y

θ  116.310  deg

v  Link 1:

2

2

V1x  V1y

v  3.606

 

G1x  w cos θ  v cos θ  u  cos σ

 

8.

G1x  2.902

G1y  w sin θ  v sin θ  u  sin σ

G1y  3.836

θ  atan2 G1x G1y

θ  127.111  deg

g  7.

U1x  1.077

U1y  2.375

2  A

u 

S 1y  1.500

2

2

G1x  G1y

g  4.810

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  224.425  deg

θ2f  θ2i  β

θ2f  290.425  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-17-3

rp  2.000 9.

δp  56.310 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  atan2 P2x P2y R1 

2

ρ  180.000  deg

2

P2x  P2y

R1  0.907

 

O2x  1.680

 

O2y  0.039

 

O4x  4.582

 

O4y  3.875

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  127.111  deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  1.786

θ  97.314 deg

Link 3:

v  3.606

θ  116.310  deg

Link 4:

u  2.608

σ  65.609 deg

Link 1:

g  4.810

θ  127.111  deg

Coupler:

rp  2.000

δp  56.310 deg

Crank angles:

θ2i  224.425  deg

θ2f  290.425  deg

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-17-4

Y

A2 66.0° V1

Z1

A3

W1 Z2 W2

P3

O2

P2

S1

B2

U1

S2

V2

G1 44.0° B1 U2

O4

P1 X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-18-1

PROBLEM 5-18 Statement:

Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis without regard for the fixed pivots shown.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P3x  1.447

P3y  0.0

P2x  0.907

P2y  0.0

Angles made by the body in positions 1, 2 and 3:

θP1  111.8  deg

θP2  191.1  deg

θP3  237.4  deg

Free choices for the WZ dyad : β  40.0 deg

β  80.0 deg

Free choices for the US dyad : γ  20.0 deg Solution: 1.

2.

3.

γ  50.0 deg

See Figure P5-3 and Mathcad file P0518.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  0.907

δ  atan2 P2x P2y

δ  180.000  deg

2

2

p 31  1.447

δ  atan2 P3x P3y

δ  180.000  deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  79.300 deg

α  θP3  θP1

α  125.600  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   



G H K 

  F K H  A

 

F  cos β  1

 

G  sin β

 A F AA   B G 

 

C  cos α  1

D C

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

The components of the W and Z vectors are: W1x  1.696

W1y  0.038

Z1x  0.396

Z1y  0.872

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-18-2

θ  atan2 W1x W1y

ϕ  114.406  deg

 W1x2  W1y2 , w  1.696  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  0.958  

The length of vector Z is: z  4.

ϕ  atan2 Z1x Z1y

θ  1.280  deg

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   



G' H K 

  F' K H 

A'

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

D C

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  1.483

U1y  0.409

S 1x  0.048

S 1y  0.650

σ  atan2 U1x U1y

σ  15.412 deg

ψ  atan2 S 1x S 1y

ψ  85.790 deg

The length of link 4 is: u 

 U1x2  U1y2 , u  1.538  

The length of vector S is: s  5.

 S 1x2  S 1y2 , s  0.652  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  0.444

V1y  Z1y  S 1y

V1y  0.222

θ  atan2 V1x V1y

θ  153.426  deg

v  Link 1:

2

2

V1x  V1y

v  0.496

G1x  W1x  V1x  U1x

G1x  0.230

G1y  W1y  V1y  U1y

G1y  0.225

θ  atan2 G1x G1y

θ  135.700  deg

DESIGN OF MACHINERY - 5th Ed.

g  6.

7.

8.

9.

2

SOLUTION MANUAL 5-18-3

2

G1x  G1y

g  0.322

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  134.419  deg

θ2f  θ2i  β

θ2f  214.419  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.958

δp  39.020 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  1.300

O2y  z sin ϕ  w sin θ

O2y  0.834

O4x  s cos ψ  u  cos σ

O4x  1.530

O4y  s sin ψ  u  sin σ

O4y  1.059

Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  135.700  deg

10. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 11. DESIGN SUMMARY Link 2:

w  1.696

θ  1.280  deg

Link 3:

v  0.496

θ  153.426  deg

Link 4:

u  1.538

σ  15.412 deg

Link 1:

g  0.322

θ  135.700  deg

Coupler:

rp  0.958

δp  39.020 deg

Crank angles:

θ2i  134.419  deg θ2f  214.419  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-18-4

12. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y A3 B3

A2

P3 P2 W2 O2 O4

U1

B2 U2

B1 W1

X

P1 S1 A1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-19-1

PROBLEM 5-19 Statement: Given:

Solution: 1.

2.

Design a linkage to carry the body in Figure P5-3 through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown. P21x  0.907

P21y  0.0

P31x  1.447

P31y  0.0

O2x  1.788

O2y  1.994

O4x  0.212

O4y  1.994

Body angles:

θP1  111.8  deg

θP2  191.1  deg

θP3  237.4  deg

See Figure P5-3 and Mathcad file P0519.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  79.300 deg

α  θP3  θP1

α  125.600  deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  1.788

R1y  O2y

R2x  R1x  P21x

R2x  0.881

R2y  R1y  P21y

R2y  1.994

R3x  R1x  P31x

R3x  0.341

R3y  R1y  P31y

R3y  1.994

2

2

R1  2.678

2

2

R2  2.180

2

2

R3  2.023

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.994

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  48.118 deg

ζ  atan2 R2x R2y

ζ  66.163 deg

ζ  atan2 R3x R3y

ζ  80.296 deg

Solve for 2 and 3 using equations 5.34





















 

C3  3.003

 

C4  1.701

 

C5  2.508

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ

C1  0.238 C2  1.150

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-19-2





 

C6  R1 sin α  ζ  R2 sin ζ 2

C6  0.133

2

A1  C3  C4

A1  11.912

A2  C3 C6  C4 C5

A2  4.666

A3  C4 C6  C3 C5

A3  7.307

A4  C2 C3  C1 C4

A4  3.048

A5  C4 C5  C3 C6

A5  4.666

A6  C1 C3  C2 C4

A6  2.671

K1  A2  A4  A3  A6

K1  5.293

K2  A3  A4  A5  A6

K2  34.731

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  25.158

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  125.600  deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  37.070 deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  18.241 deg

 A3  sin β  A2  cos β  A4   A1  

β  18.241 deg

β  acos

β  asin

β  β

Since both values are the same, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  0.212

R1y  O4y

R2x  R1x  P21x

R2x  1.119

R2y  R1y  P21y

R2y  1.994

R3x  R1x  P31x

R3x  1.659

R3y  R1y  P31y

R3y  1.994

R1 

2

2

R1x  R1y

R1  2.005

R1y  1.994

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-19-3

2

2

R2  2.287

2

2

R3  2.594

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  96.069 deg

ζ  atan2 R2x R2y

ζ  119.300  deg

ζ  atan2 R3x R3y

ζ  129.760  deg

Solve for 2 and 3 using equations 5.34





















 

C3  0.161

 

C4  3.327

 

C5  0.880

 

C6  1.832

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  1.297 C2  0.811

A1  C3  C4

A1  11.096

A2  C3 C6  C4 C5

A2  3.222

A3  C4 C6  C3 C5

A3  5.954

A4  C2 C3  C1 C4

A4  4.186

A5  C4 C5  C3 C6

A5  3.222

A6  C1 C3  C2 C4

A6  2.906

K1  A2  A4  A3  A6

K1  3.816

K2  A3  A4  A5  A6

K2  34.288

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  25.658

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  125.600  deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  41.699 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-19-4

The first value is the same as 3, so use the second value

γ  

 A5  sin γ  A3  cos γ  A6   A1  

  31.159 deg

 A3  sin γ  A2  cos γ  A4   A1  

  31.159 deg

  acos

  asin

γ  

Since both values are the same , 8.

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  0.907

δ  atan2 P21x P21y 2

p 31 

δ  180.000  deg

2

P31x  P31y

p 31  1.447

δ  atan2 P31x P31y 9.

δ  180.000  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

 E  L CC    M  N   

B C D 

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  1.943

11. The length of link 2 is:

w 

W1y  1.529 2

Z1x  0.155

2

W1x  W1y

Z1y  0.465

w  2.472

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

D  sin α

 

B'  sin γ

 

E  p 21  cos δ

 

C  cos α  1

 

F'  cos γ  1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-19-5

 

 

G'  sin γ

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

H  cos α  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  0.395 14. The length of link 4 is:

U1y  2.460 2

u 

U1x  U1y

S1x  0.183

2

S1y  0.466

u  2.491

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  0.338

V1y  Z1y  S1y

V1y  0.931 v 

The length of link 3 is:

2

2

V1x  V1y

v  0.991

G1x  W1x  V1x  U1x

G1x  2.000

G1y  W1y  V1y  U1y

G1y  0.000

g 

The length of link 1 is:

2

G1x  G1y

2

g  2.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  1.788

O2y  Z1y  W1y

O2y  1.994

O4x  S1x  U1x

O4x  0.212

O4y  S1y  U1y

O4y  1.994

These check with Figure P5-3. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  0.491

2

2

s  0.501

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  68.558 deg

ϕ  atan2( Z1x Z1y )

ϕ  108.446  deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  109.959  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-19-6

δp  ϕ  θ

δp  1.513  deg

18. DESIGN SUMMARY Link 1:

g  2.000

Link 2:

w  2.472

Link 3:

v  0.991

Link 4:

u  2.491

Coupler point:

rP  0.491

δp  1.513  deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-20-1

PROBLEM 5-20 Statement:

Write a program to generate and plot the circle-point and center-point circles for Problem 5-19 using an equation solver or any program language.

Given: P21x  0.907

P21y  0.0

P31x  1.447

P31y  0.0

O2x  1.788

O2y  1.994

O4x  0.212

O4y  1.994

Body angles:

θP1  111.8  deg

θP2  191.1  deg

θP3  237.4  deg

Assumptions: Let the position 1 to position 2 rotation angles be: β  18.241 deg and γ  31.159 deg Let the position 1 to position 2 coupler rotation angle be: α  79.3 deg Solution: 1.

See Figure P5-3 and Mathcad file P0520.

Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  0.907

δ  atan2 P21x P21y p 31 

2

δ  180.000  deg

2

P31x  P31y

p 31  1.447

δ  atan2 P31x P31y 2.

δ  180.000  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  125.6  deg

β  0  deg 1  deg  360  deg

 

B  sin β

 

 

E  p 21  cos δ

A  cos β  1 D  sin α

 

 

 

C  cos α  1

 

F β  cos β  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G β  sin β L  p 31  cos δ

 

 

 

   

B C D   A  F β G β H α K α           AA  α β    B A D C  G β F β K α H α           

 E  L CC    M  N   

 1 CC















W1y α β  DD α β 2









Z1y α β  DD α β 4

DD α β  AA α β

W1x α β  DD α β 1 Z1x α β  DD α β 3

















DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 5-20-2

Check this against the solutions in Problem 5-19:





W1y α 37.070 deg  1.529





Z1y α 37.070 deg  0.465

W1x α 37.070 deg  1.943 Z1x α 37.070 deg  0.155









These are the same as the values calculated in Problem 5-19. 4.

Form the vector N, whose tip describes the center-point circle for the WZ dyad.

























Nx α β  W1x α β  Z1x α β Ny α β  W1y α β  Z1y α β 5.

Plot the center-point circle for the WZ dyad. Center-Point Circle for WZ Dyad 0

1





Ny α β   2

3

4 2

1



0

1



2

Nx α β 

4.

Form the vector Z, whose tip describes the center-point circle for the WZ dyad. β  37.070 deg





α  0  deg 1  deg  360  deg





Zx α β  Z1x α β

5.









Zy α β  Z1y α β

Plot the circle-point circle for the WZ dyad (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-20-3

Circle-Point Circle for WZ Dyad  0.1

 0.2





Zy α β   0.3

 0.4

 0.5  0.2

 0.1

0





0.1

0.2

0.3

Zx α β 

6.

Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  125.6  deg

γ  0  deg 1  deg  360  deg

 

B  sin γ

 

 

E  p 21  cos δ

A  cos γ  1 D  sin α

 

 

 

C  cos α  1

 

F γ  cos γ  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G γ  sin γ L  p 31  cos δ

 

 

 

   

B C D   A  F γ G γ H α K α           AA  α γ    B A D C  G γ F γ K α H α           

 E  L CC    M  N   

 1 CC















U1y α γ  DD α γ 2









S1y α γ  DD α γ 4

DD α γ  AA α γ

U1x α γ  DD α γ 1 S1x α γ  DD α γ 3 7.

















Check this against the solutions in Problem 5-19:





U1x α 41.699 deg  0.395





U1y α 41.699 deg  2.460

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 5-20-4





S1x α 41.699 deg  0.183



S1y α 41.699 deg  0.466

These are the same as the values calculated in Problem 5-19. 8.

Form the vector M, whose tip describes the center-point circle for the US dyad.

























Mx α γ  U1x α γ  S1x α γ My α γ  U1y α γ  S1y α γ 9.

Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 0

 0.5

1



My α γ

  1.5

2

 2.5  1.5

1

 0.5



Mx α γ

0



0.5

10. Form the vector S, whose tip describes the center-point circle for the US dyad. γ  41.699 deg





α  0  deg 1  deg  360  deg





Sx α γ  S1x α γ

11. Plot the circle-point circle for the WZ dyad (see next page).









Sy α γ  S1y α γ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-20-5

Circle-Point Circle for the US Dyad 1.5

1



Sy α γ



0.5

0  0.5

0





Sx α γ

0.5

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-21-1

PROBLEM 5-21 Statement:

Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 2 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 and P2 with respect to P1: P1x  0.0

P1y  0.0

P2x  184.0

P2y  17.0

Angles made by the body in positions 1 and 2:

θP1  90.0 deg

θP2  45.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  17.0

A1y  43.0

B1x  69.0

B1y  43.0

Free choice for the WZ dyad : β  44.0 deg Free choice for the US dyad : γ  55.0 deg Solution:

See Figure P5-4 and Mathcad file P0521.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P1x     P1y 

R2 

 P2x     P2y 

 P21x     R2  R1  P21y 

P21x  184.000 P21y  17.000

p 21  3.

4.

2

2

P21x  P21y

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  45.000 deg

δ  atan2 P21x P21y

δ  5.279  deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  46.239

s 

P1x  B1x 2  P1y  B1y 2

s  81.302

v 

 A1x  B1x 2  A1y  B1y2

v  52.000

 v2  z2  s2    2  v z 

ϕ  acos

 v2  s2  z2    2  v s 

ψ  π  acos 5.

p 21  184.784

Solve for the WZ dyad using equations 5.8.

ϕ  111.571  deg

ψ  148.069  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-21-2

Z1x  z cos ϕ

Z1x  17.000 A  0.281

D  sin α

 

B  0.695

E  p 21  cos δ

 

E  184.000

 

C  0.293

F  p 21  sin δ

 

F  17.000

B  sin β

C  cos α  1

W1y  w 

 

D  0.707

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  53.979

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  192.131

2  A 2

2

W1x  W1y

w  199.570

θ  atan2 W1x W1y 6.

θ  105.693  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  69.000

D  sin α

 

B  0.819

E  p 21  cos δ

 

E  184.000

 

C  0.293

F  p 21  sin δ

 

F  17.000

C  cos α  1

U1y  u 

S 1y  43.000

A  0.426

B  sin γ

U1x 

S 1y  s sin ψ

 

A  cos γ  1

 

D  0.707

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  15.598

U1y  154.713

2  A 2

U1x  U1y

u  155.497

σ  atan2 U1x U1y 7.

Z1y  43.000

 

A  cos β  1

W1x 

Z1y  z sin ϕ

σ  95.757 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  52.000

V1y  z sin ϕ  s sin ψ

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

v  Link 1:

2

2

V1x  V1y

v  52.000

 

G1x  w cos θ  v cos θ  u  cos σ

G1x  13.619

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-21-3

 

G1y  w sin θ  v sin θ  u  sin σ

G1y  37.418

θ  atan2 G1x G1y

θ  70.000 deg

g  8.

9.

2

2

G1x  G1y

g  39.819

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  35.692 deg

θ2f  θ2i  β

θ2f  8.308  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  46.239

δp  111.571  deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  70.979

 

O2y  235.131

 

O4x  84.598

 

O4y  197.713

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  70.000 deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-21-4

13. DESIGN SUMMARY Link 2:

w  199.570

θ  105.693  deg

Link 3:

v  52.000

θ  0.000  deg

Link 4:

u  155.497

σ  95.757 deg

Link 1:

g  39.819

θ  70.000 deg

Coupler:

rp  46.239

δp  111.571  deg

Crank angles:

θ2i  35.692 deg

θ2f  8.308  deg

14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y

P1

X Z1 A1

P2

S1 B1

Z2

V1 A2

V2 55.0°

U1 44.0° W1

W2

O4

O2

U2

S2

B2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-22-1

PROBLEM 5-22 Statement:

Design a fourbar linkage to carry the box in Figure P5-4 from position 1 to 3 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 and P3 with respect to P1: P1x  0.0

P1y  0.0

P3x  211.0

P3y  180.0

Angles made by the body in positions 1 and 3:

θP1  90.0 deg

θP3  0.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  17.0

A1y  43.0

B1x  69.0

B1y  43.0

Free choice for the WZ dyad : β  70.0 deg Free choice for the US dyad : γ  95.0 deg Solution:

See Figure P5-4 and Mathcad file P0522.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

p 21  3.

4.

 P1x     P1y 

R2 

2

 P3x     P3y 

 P21x     R2  R1  P21y 

2

P21x  P21y

P21y  180.000 p 21  277.346

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP3  θP1

α  90.000 deg

δ  atan2 P21x P21y

δ  40.467 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  46.239

s 

P1x  B1x 2  P1y  B1y 2

s  81.302

v 

 A1x  B1x 2  A1y  B1y2

v  52.000

 v2  z2  s2    2  v z 

ϕ  acos

ϕ  111.571  deg

 v2  s2  z2    2  v s 

ψ  π  acos 5.

P21x  211.000

ψ  148.069  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  17.000

Z1y  z sin ϕ

Z1y  43.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-22-2

 

A  0.658

D  sin α

 

B  0.940

E  p 21  cos δ

 

C  1.000

F  p 21  sin δ

A  cos β  1 B  sin β

C  cos α  1 W1x 

W1y  w 

 

D  1.000

 

E  211.000

 

F  180.000

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  34.467

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  184.825

2  A 2

2

W1x  W1y

w  188.012

θ  atan2 W1x W1y 6.

θ  79.436 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  69.000

 

A  1.087

D  sin α

 

B  0.996

E  p 21  cos δ

 

C  1.000

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1 U1x 

U1y  u 

S 1y  s sin ψ

 

D  1.000

 

E  211.000

 

F  180.000

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  U1y

u  154.999

σ  atan2 U1x U1y 7.

U1x  44.882

U1y  148.358

2  A 2

S 1y  43.000

σ  73.168 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  52.000

V1y  z sin ϕ  s sin ψ

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

v  Link 1:

2

2

V1x  V1y

v  52.000

G1x  w cos θ  v cos θ  u  cos σ

G1x  41.585

G1y  w sin θ  v sin θ  u  sin σ

G1y  36.467

θ  atan2 G1x G1y

θ  41.248 deg

 

 

DESIGN OF MACHINERY - 5th Ed.

g 

8.

9.

2

SOLUTION MANUAL 5-22-3 2

G1x  G1y

g  55.310

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  38.188 deg

θ2f  θ2i  β

θ2f  31.812 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  46.239

δp  111.571  deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0  deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  17.467

 

O2y  227.825

 

O4x  24.118

 

O4y  191.358

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  41.248 deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 13. DESIGN SUMMARY Link 2:

w  188.012

θ  79.436 deg

Link 3:

v  52.000

θ  0.000  deg

Link 4:

u  154.999

σ  73.168 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-22-4

Link 1:

g  55.310

θ  41.248 deg

Coupler:

rp  46.239

δp  111.571  deg

Crank angles:

θ2i  38.188 deg θ2f  31.812 deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. Y

P1

X Z1

S1 B1

A1

V1

U1 W1 70.0°

95.0° P3

O4

O2

W2

A3

U2

Z2

V2

S2 B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-23-1

PROBLEM 5-23 Statement:

Design a fourbar linkage to carry the box in Figure P5-4 from position 2 to 3 without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P2 and P3 with respect to P1: P2x  184.0

P2y  17.0

P3x  211.0

P3y  180.0

Angles made by the body in positions 1 and 3:

θP2  45.0 deg

θP3  0.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  17.0

A1y  43.0

B1x  69.0

B1y  43.0

Free choice for the WZ dyad : β  60.0 deg Free choice for the US dyad : γ  45.0 deg Solution:

See Figure P5-4 and Mathcad file P0523.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

p 21  3.

4.

 P2x     P2y 

R2 

2

 P3x     P3y 

 P21x     R2  R1  P21y 

2

P21x  P21y

P21y  163.000 p 21  165.221

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP3  θP2

α  45.000 deg

δ  atan2 P21x P21y

δ  80.595 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

0.0  A1x 2  0.0  A1y 2

z  46.239

s 

0.0  B1x2   0.0  B1y 2

s  81.302

v 

 A1x  B1x 2  A1y  B1y2

v  52.000

 v2  z2  s2    45 deg  2  v z 

ϕ  acos

ϕ  66.571 deg

 v2  s2  z2    45 deg  2  v s 

ψ  π  acos 5.

P21x  27.000

ψ  103.069  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  18.385

Z1y  z sin ϕ

Z1y  42.426

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-23-2

 

A  0.500

D  sin α

 

B  0.866

E  p 21  cos δ

 

C  0.293

F  p 21  sin δ

A  cos β  1 B  sin β

C  cos α  1

W1x 

W1y  w 

 

D  0.707

 

E  27.000

 

F  163.000

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  117.950

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  70.852

2  A 2

2

W1x  W1y

w  137.594

θ  atan2 W1x W1y 6.

θ  30.993 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  18.385

 

A  0.293

D  sin α

 

B  0.707

E  p 21  cos δ

 

C  0.293

F  p 21  sin δ

A  cos γ  1 B  sin γ

C  cos α  1 U1x 

U1y  u 

S 1y  s sin ψ

 

D  0.707

 

E  27.000

 

F  163.000

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  U1y

u  204.640

σ  atan2 U1x U1y 7.

U1x  201.643

U1y  34.896

2  A 2

S 1y  79.196

σ  9.818  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  36.770

V1y  z sin ϕ  s sin ψ

V1y  36.770

θ  atan2 V1x V1y v  Link 1:

2

θ  45.000 deg

2

V1x  V1y

v  52.000

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1y  w sin θ  v sin θ  u  sin σ

G1x  46.924 G1y  0.813

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-23-3

θ  atan2 G1x G1y g  8.

9.

2

θ  179.007  deg

2

G1x  G1y

g  46.931

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  210.000  deg

θ2f  θ2i  β

θ2f  150.000  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  46.239

δp  111.571  deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  atan2 P2x P2y R1 

2

ρ  5.279  deg

2

P2x  P2y

R1  184.784

 

O2x  47.665

 

O2y  130.278

 

O4x  0.742

 

O4y  131.092

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  179.007  deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 13. DESIGN SUMMARY Link 2:

w  137.594

θ  30.993 deg

Link 3:

v  52.000

θ  45.000 deg

Link 4:

u  204.640

σ  9.818  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-23-4

Link 1:

g  46.931

θ  179.007  deg

Coupler:

rp  46.239

δp  111.571  deg

Crank angles:

θ2i  210.000  deg θ2f  150.000  deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. Y

P1

X P2

A2

Z2

S2

V2

B2

W1 O4

U1 O2

W2 P3 U2 A3 V2 B3

Z2 S2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-24-1

PROBLEM 5-24 Statement:

Given:

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base. Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P2x  184.0

P3x  211.0

P3y  180.0

P2y  17.0

Angles made by the body in positions 1, 2 and 3:

θP1  90.0 deg

θP2  45.0 deg

θP3  0.0 deg

Free choices for the WZ dyad : β  80.0 deg

β  160.0  deg

Free choices for the US dyad : γ  80.0 deg Solution: 1.

2.

3.

γ  170.0  deg

See Figure P5-4 and Mathcad file P0524.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  184.784

δ  atan2 P2x P2y

δ  5.279  deg

2

2

p 31  277.346

δ  atan2 P3x P3y

δ  40.467 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  45.000 deg

α  θP3  θP1

α  90.000 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector: A  cos β  1 B  sin β C  cos α  1

  D  sin α G  sin β L  p 31  cos δ  A F AA   B G 

 

  H  cos α  1 M  p 21  sin δ E  p 21  cos δ

B C D 

 E  L CC    M  N   



G H K 

  F K H  A

  F  cos β  1 K  sin α N  p 31  sin δ

D C

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

The components of the W and Z vectors are: W1x  51.854

W1y  109.176

Z1x  43.555

Z1y  29.523

θ  atan2 W1x W1y

θ  115.406  deg

ϕ  atan2 Z1x Z1y

ϕ  145.869  deg

The length of link 2 is: w 

 W1x2  W1y2 , w  120.864  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-24-2

 Z1x2  Z1y2 , z  52.618  

The length of vector Z is: z  4.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

  D  sin α

  E  p 21  cos δ

A'  cos γ  1

 

C  cos α  1

 

G'  sin γ

 

H  cos α  1

 

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   



G' H K 

  F' K H 

A'

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

  F'  cos γ  1

B'  sin γ

D C

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  35.056

U1y  94.023

S 1x  62.812

S 1y  62.282

σ  atan2 U1x U1y

σ  110.448  deg

ψ  atan2 S 1x S 1y

ψ  135.242  deg

The length of link 4 is: u 

 U1x2  U1y2 , u  100.345  

The length of vector S is: s  6.

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  19.256

V1y  Z1y  S 1y

V1y  32.759

θ  atan2 V1x V1y

θ  59.552 deg

v  Link 1:

2

2

V1x  V1y

v  38.000

G1x  W1x  V1x  U1x

G1x  2.458

G1y  W1y  V1y  U1y

G1y  17.606

θ  atan2 G1x G1y

θ  82.052 deg

g  7.

 S 1x2  S 1y2 , s  88.456  

2

2

G1x  G1y

g  17.777

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  197.458  deg

θ2f  θ2i  β

θ2f  37.458 deg

DESIGN OF MACHINERY - 5th Ed.

8.

9.

SOLUTION MANUAL 5-24-3

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  52.618

δp  205.422  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  95.410

O2y  z sin ϕ  w sin θ

O2y  138.699

O4x  s cos ψ  u  cos σ

O4x  97.868

O4y  s sin ψ  u  sin σ

O4y  156.305

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  82.052 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  120.864

θ  115.406  deg

Link 3:

v  38.000

θ  59.552 deg

Link 4:

u  100.345

σ  110.448  deg

Link 1:

g  17.777

θ  82.052 deg

Coupler:

rp  52.618

δp  205.422  deg

Crank angles:

θ2i  197.458  deg

θ2f  37.458 deg

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-24-4

Y

P1

X Z1 S1

P2

A1 V1 B1

Z2 S2

W1

A2 V2 B2

W2

U1

U2

O2 W3

O4

P3

U3

S3

V3 B3

Z3 A3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-25-1

PROBLEM 5-25 Statement:

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P2x  184.0

P3x  211.0

P3y  180.0

P2y  17.0

Angles made by the body in positions 1, 2 and 3:

θP1  90.0 deg

θP2  45.0 deg

θP3  0.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  17.0 Solution: 1.

2.

3.

A1y  43.0

B1y  43.0

See Figure P5-4 and Mathcad file P0525.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  184.784

δ  atan2 P2x P2y

δ  5.279  deg

2

2

p 31  277.346

δ  atan2 P3x P3y

δ  40.467 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  45.000 deg

α  θP3  θP1

α  90.000 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  46.239

s 

P1x  B1x 2  P1y  B1y 2

s  81.302

v 

 A1x  B1x 2  A1y  B1y2

v  52.000

 v2  z2  s2    2  v z 

ϕ  acos

 v2  s2  z2    2  v s 

4.

B1x  69.0

ϕ  111.571  deg

ψ  π  acos

ψ  148.069  deg

Z1x  z cos ϕ

Z1x  17.000

Z1y  z sin ϕ

Z1y  43.000

S 1x  s cos ψ

S 1x  69.000

S 1y  s sin ψ

S 1y  43.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points A and B are to be used as pivots, z and  are known from the calculations above.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-25-2

Guess:

W1x  50

W1y  200

β  80 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

β  160  deg

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  86.887 deg

β  165.399  deg

The components of the W vector are: W1x  65.636 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  86.672

θ  127.136  deg

 W1x2  W1y2 , w  108.720  

Use equations 5.28 to solve for u, , 2, and 3. Since the points A and B are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  30

U1y  100

γ  80 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

γ  160  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-25-3

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  76.700 deg

γ  161.878  deg

The components of the U vector are: U1x  33.074

U1y  110.894

The length of link 4 is: u  6.

Link 1:

V1x  52.000

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

2

2

V1x  V1y

v  52.000

G1x  W1x  V1x  U1x

G1x  19.438

G1y  W1y  V1y  U1y

G1y  24.222

θ  atan2 G1x G1y

θ  51.253 deg

g 

9.

 U1x2  U1y2 , u  115.721  

V1x  Z1x  S 1x

v 

8.

σ  106.607  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

2

G1x  G1y

g  31.057

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  178.389  deg

θ2f  θ2i  β

θ2f  12.990 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  46.239

δp  111.571  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  82.636

O2y  z sin ϕ  w sin θ

O2y  129.672

O4x  s cos ψ  u  cos σ

O4x  102.074

O4y  s sin ψ  u  sin σ

O4y  153.894

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-25-4

to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  51.253 deg

11. Determine the Grashof condition.

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  108.720

θ  127.136  deg

Link 3:

v  52.000

θ  0.000  deg

Link 4:

u  115.721

σ  106.607  deg

Link 1:

g  31.057

θ  51.253 deg

Coupler:

rp  46.239

δp  111.571  deg

Crank angles:

θ2i  178.389  deg

Y

θ2f  12.990 deg P1

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

X Z1 A1

P2

S1 B1 V1

A2

U1

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

Z2

S2

V2

B2

W2

W1

U2

O2 O4

W3

P3 A3

U3

Z3

V3

S3 B3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-26-1

PROBLEM 5-26 Statement:

Given:

Solution: 1.

2.

Design a fourbar linkage to carry the box in Figure P5-4 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x  184.0

P21y  17.0

P31x  211.0

P31y  180.0

O2x  86.0

O2y  132.0

O4x  104.0

O4y  155.0

Body angles:

θP1  90 deg

θP2  45 deg

θP3  0  deg

See Figure P5-4 and Mathcad file P0526.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  45.000 deg

α  θP3  θP1

α  90.000 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  86.000

R1y  O2y

R2x  R1x  P21x

R2x  98.000

R2y  R1y  P21y

R2y  115.000

R3x  R1x  P31x

R3x  125.000

R3y  R1y  P31y

R3y  48.000

2

2

R1  157.544

2

2

R2  151.093

2

2

R3  133.899

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  132.000

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  123.085  deg

ζ  atan2 R2x R2y

ζ  49.563 deg

ζ  atan2 R3x R3y

ζ  21.007 deg

Solve for 2 and 3 using equations 5.34

    C2  R3 sin α  ζ  R2 sin α  ζ C1  R3 cos α  ζ  R2 cos α  ζ







C3  7.000

 

C4  134.000

 

C5  65.473

 

C6  39.149

C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C2  24.329

 

C3  R1 cos α  ζ  R3 cos ζ



C1  60.553

C6  R1 sin α  ζ  R2 sin ζ

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-26-2

A1  C3  C4

2

A1  1.800  10

4

A2  C3 C6  C4 C5

A2  9.047  10

3

A3  C4 C6  C3 C5

A3  4.788  10

3

A4  C2 C3  C1 C4

A4  7.944  10

A5  C4 C5  C3 C6

A5  9.047  10

A6  C1 C3  C2 C4

A6  3.684  10

3

K1  A2  A4  A3  A6

K1  5.423  10

7

K2  A3  A4  A5  A6

K2  7.136  10

7

2

K3 

3 3

2

2

2

A1  A2  A3  A4  A6

2 7

K3  7.136  10

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  90.000 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  164.466  deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  85.240 deg

 A3  sin β  A2  cos β  A4   A1  

β  85.240 deg

β  acos

β  asin

Since 2 is not in the first quadrant, 5.

β  β

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  104.000

R1y  O4y

R2x  R1x  P21x

R2x  80.000

R2y  R1y  P21y

R2y  138.000

R3x  R1x  P31x

R3x  107.000

R3y  R1y  P31y

R3y  25.000

2

2

R1  186.657

2

2

R2  159.512

R1 

R1x  R1y

R2 

R2x  R2y

R1y  155.000

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-26-3

2

2

R3x  R3y

R3  109.882

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  123.860  deg

ζ  atan2 R2x R2y

ζ  59.899 deg

ζ  atan2 R3x R3y

ζ  13.151 deg

Solve for 2 and 3 using equations 5.34





















 

C3  48.000

 

C4  129.000

 

C5  43.938

 

C6  45.141

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

C2  13.338

A1  C3  C4

A1  1.894  10

4

A2  C3 C6  C4 C5

A2  7.835  10

3

A3  C4 C6  C3 C5

A3  3.714  10

3

A4  C2 C3  C1 C4

A4  9.682  10

A5  C4 C5  C3 C6

A5  7.835  10

A6  C1 C3  C2 C4

A6  5.561  10

3

K1  A2  A4  A3  A6

K1  5.520  10

7

K2  A3  A4  A5  A6

K2  7.953  10

7

2

K3 

2

C1  80.017

3 3

2

2

2

A1  A2  A3  A4  A6

2

2

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3    K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3   The first value is the same as 3, so use the second value

7

K3  7.953  10

γ  90.000 deg

  159.525  deg γ  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-26-4

 A5  sin γ  A3  cos γ  A6   A1  

  75.253 deg

 A3  sin γ  A2  cos γ  A4   A1  

  75.253 deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  184.784

δ  atan2 P21x P21y 2

p 31 

δ  5.279  deg

2

P31x  P31y

p 31  277.346

δ  atan2 P31x P31y 9.

δ  40.467 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  62.394

11. The length of link 2 is:

w 

W1y  91.663 2

Z1x  23.606

2

W1x  W1y

Z1y  40.337

w  110.884

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

B'  sin γ

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

 

 

C  cos α  1

 

F'  cos γ  1

 

K  sin α

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-26-5

 

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the U and S vectors are: U1x  29.920

14. The length of link 4 is:

U1y  116.933 2

u 

U1x  U1y

2

S1x  74.080

S1y  38.067

u  120.700

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  50.474

V1y  Z1y  S1y

V1y  2.270 v 

The length of link 3 is:

2

2

V1x  V1y

v  50.525

G1x  W1x  V1x  U1x

G1x  18.000

G1y  W1y  V1y  U1y

G1y  23.000

g 

The length of link 1 is:

2

G1x  G1y

2

g  29.206

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  86.000

O2y  Z1y  W1y

O2y  132.000

O4x  S1x  U1x

O4x  104.000

O4y  S1y  U1y

O4y  155.000

These check with Figure P5-4. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  46.736

2

2

s  83.288

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  152.803  deg

ϕ  atan2( Z1x Z1y )

ϕ  120.337  deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  2.575  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-26-6

δp  ϕ  θ

δp  117.762  deg

18. DESIGN SUMMARY Link 1:

g  29.206

Link 2:

w  110.884

Link 3:

v  50.525

Link 4:

u  120.700

Coupler point:

rP  46.736

δp  117.762  deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-27-1

PROBLEM 5-27 Statement:

Design a fourbar linkage to carry the box in Figure P5-5 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P2x  421.0

P3x  184.0

P3y  1400.0

P2y  963.0

Angles made by the body in positions 1, 2 and 3:

θP1  0.0 deg

θP2  27.0 deg

θP3  88.0 deg

Free choices for the WZ dyad : β  50.0 deg

β  100.0  deg

Free choices for the US dyad : γ  50.0 deg Solution: 1.

2.

3.

γ  80.0 deg

See Figure P5-5 and Mathcad file P0527.

Determine the magnitudes and orientation of the position difference vectors. 3

δ  atan2 P2x P2y

δ  66.386 deg

3

δ  atan2 P3x P3y

δ  82.513 deg

2

2

p 21  1.051  10

2

2

p 31  1.412  10

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  27.000 deg

α  θP3  θP1

α  88.000 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   



G H K 

  F K H  A

 

F  cos β  1

 

G  sin β

 A F AA   B G 

 

C  cos α  1

D C

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

The components of the W and Z vectors are: 3

W1x  784.602

W1y  362.803

Z1x  1.092  10

Z1y  39.947

θ  atan2 W1x W1y

θ  155.184  deg

ϕ  atan2 Z1x Z1y

ϕ  2.094  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-27-2

 W1x2  W1y2 , w  864.423  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  1093.069  

The length of vector Z is: z  4.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

M  p 21  sin δ

B' C D 

E   L CC    M  N   



G' H K 

  F' K H 

A'

 

K  sin α

 

L  p 31  cos δ

 A'  F' AA    B'  G' 

 

F'  cos γ  1

D C

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  924.539

U1y  281.738

σ  atan2 U1x U1y The length of link 4 is: u 

σ  163.052  deg

 S 1x2  S 1y2 , s  806.978  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  289.619

V1y  Z1y  S 1y

V1y  42.852

θ  atan2 V1x V1y

θ  8.416  deg

v  Link 1:

2

2

V1x  V1y

v  292.772

G1x  W1x  V1x  U1x

G1x  429.556

G1y  W1y  V1y  U1y

G1y  38.214

θ  atan2 G1x G1y

θ  5.084  deg

g  7.

ψ  atan2 S 1x S 1y

 U1x2  U1y2 , u  966.514  

The length of vector S is: s  6.

S 1x  802.719

2

2

G1x  G1y

g  431.252

Determine the initial and final values of the input crank with respect to the vector G.

S 1y  82.798 ψ  5.889  deg

DESIGN OF MACHINERY - 5th Ed.

8.

9.

SOLUTION MANUAL 5-27-3

θ2i  θ  θ

θ2i  150.100  deg

θ2f  θ2i  β

θ2f  50.100 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  1093.069

δp  10.511 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  307.736

O2y  z sin ϕ  w sin θ

O2y  402.750

O4x  s cos ψ  u  cos σ

O4x  121.820

O4y  s sin ψ  u  sin σ

O4y  364.536

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  5.084  deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  864.423

θ  155.184  deg

Link 3:

v  292.772

θ  8.416  deg

Link 4:

u  966.514

σ  163.052  deg

Link 1:

g  431.252

θ  5.084  deg

Coupler:

rp  1093.069

δp  10.511 deg

Crank angles:

θ2i  150.100  deg θ2f  50.100 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-27-4

Y

P3

P2

B2

B3

A2 U2 A1

B1

A3

W2

U3 P1

W3 W1 O2

U1

O4

X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-28-1

PROBLEM 5-28 Statement:

Design a fourbar linkage to carry the box in Figure P5-5 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P3x  184.0

P3y  1400.0

P2x  421.0

P2y  963.0

Angles made by the body in positions 1, 2 and 3:

θP1  0.0 deg

θP2  27.0 deg

θP3  88.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  1080 Solution: 1.

2.

3.

A1y  0.0

B1y  60

See Figure P5-5 and Mathcad file P0528.

Determine the magnitudes and orientation of the position difference vectors. 3

δ  atan2 P2x P2y

δ  66.386 deg

3

δ  atan2 P3x P3y

δ  82.513 deg

2

2

p 21  1.051  10

2

2

p 31  1.412  10

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  27.000 deg

α  θP3  θP1

α  88.000 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  1080

s 

P1x  B1x 2  P1y  B1y 2

s  742.428

v 

 A1x  B1x 2  A1y  B1y2

v  345.254

ϕ  0

ϕ  0.000  deg

 z2  s2  v2    2 z s 

4.

B1x  740

ψ  acos

ψ  4.635  deg

Z1x  z cos ϕ

Z1x  1080

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos ψ

S 1x  740.000

S 1y  s sin ψ

S 1y  60.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points A and B are to be used as pivots, z and  are known from the calculations above.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-28-2

Guess:

W1x  50

W1y  200

β  80 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

β  160  deg

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β 

β  54.243 deg

β  107.466  deg

The components of the W vector are: W1x  730.785 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  289.533

θ  158.387  deg

 W1x2  W1y2 , w  786.051  

Use equations 5.28 to solve for u, , 2, and 3. Since the points A and B are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  30

U1y  100

γ  80 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  160  deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ 

γ  411.378  deg

γ  437.949  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-28-3

The components of the U vector are: U1x  923.018

U1y  232.957

The length of link 4 is: u  6.

Link 1:

V1x  340.000

V1y  Z1y  S 1y

V1y  60.000

θ  atan2 V1x V1y

θ  10.008 deg

2

2

V1x  V1y

v  345.254

G1x  W1x  V1x  U1x

G1x  532.233

G1y  W1y  V1y  U1y

G1y  3.424

θ  atan2 G1x G1y

θ  0.369  deg

2

g 

9.

 U1x2  U1y2 , u  951.962  

V1x  Z1x  S 1x

v 

8.

σ  165.835  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

G1x  G1y

g  532.244

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  158.755  deg

θ2f  θ2i  β

θ2f  51.289 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  1080.000

δp  10.008 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  349.215

O2y  z sin ϕ  w sin θ

O2y  289.533

O4x  s cos ψ  u  cos σ

O4x  183.018

O4y  s sin ψ  u  sin σ

O4y  292.957

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition.

θrot  0.369  deg

DESIGN OF MACHINERY - 5th Ed.

Condition( a b c d ) 

SOLUTION MANUAL 5-28-4

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  786.051

θ  158.387  deg

Link 3:

v  345.254

θ  10.008 deg

Link 4:

u  951.962

σ  165.835  deg

Link 1:

g  532.244

θ  0.369  deg

Coupler:

rp  1080.000

δp  10.008 deg

Crank angles:

θ2i  158.755  deg θ2f  51.289 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

Y

P3

P2

B3

A2

B2 U2

A1

B1

A3

W2 W 3

U3 P1

W1 O2

U1

O4

X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-29-1

PROBLEM 5-29 Statement: Given:

Solution: 1.

2.

Design a linkage to carry the object in Figure P5-5 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x  421.0

P21y  963.0

P31x  184.0

P31y  1400.0

O2x  362.0

O2y  291.0

O4x  182.0

O4y  291.0

Body angles:

θP1  0  deg

θP2  27 deg

θP3  88 deg

See Figure P5-5 and Mathcad file P0529.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  27.000 deg

α  θP3  θP1

α  88.000 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  362.000

R1y  O2y

R2x  R1x  P21x

R2x  783.000

R2y  R1y  P21y

R2y  1.254  10

R3x  R1x  P31x

R3x  546.000

R3y  R1y  P31y

R3y  1.691  10

3

3

2

2

R1  464.462

2

2

R2  1.478  10

3

2

2

R3  1.777  10

3

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  291.000

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  38.795 deg

ζ  atan2 R2x R2y

ζ  58.019 deg

ζ  atan2 R3x R3y

ζ  72.105 deg

Solve for 2 and 3 using equations 5.34





















 

C3  824.189

 

C4  1.319  10

 

C5  592.567

 

C6  830.373

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  944.701 C2  928.284

3

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-29-2 2

A1  2.419  10

A2  C3 C6  C4 C5

A2  9.725  10

A3  C4 C6  C3 C5

A3  1.584  10

A4  C2 C3  C1 C4

A4  4.810  10

A5  C4 C5  C3 C6

A5  9.725  10

4

A6  C1 C3  C2 C4

A6  2.003  10

6

K1  A2  A4  A3  A6

K1  3.219  10

K2  A3  A4  A5  A6

K2  5.670  10

11

K3  4.543  10

11

2

K3 

4 6

5

12

2

2

2

A1  A2  A3  A4  A6

2

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  88.000 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  107.980  deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  54.008 deg

 A3  sin β  A2  cos β  A4   A1  

β  54.008 deg

β  acos

β  asin

Since 2 is not in the first quadrant, 5.

6

A1  C3  C4

β  β

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  182.000

R1y  O4y

R2x  R1x  P21x

R2x  239.000

R2y  R1y  P21y

R2y  1.254  10

R3x  R1x  P31x

R3x  2.000

R3y  R1y  P31y

R3y  1.691  10

2

2

R1  343.227

2

2

R2  1.277  10

R1 

R1x  R1y

R2 

R2x  R2y

3

3

3

R1y  291.000

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-29-3

2

2

R3x  R3y

R3  1.691  10

3

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  122.023  deg

ζ  atan2 R2x R2y

ζ  79.209 deg

ζ  atan2 R3x R3y

ζ  89.932 deg

Solve for 2 and 3 using equations 5.34





















 

C3  299.174

 

C4  1.863  10

 

C5  533.274

 

C6  1.077  10

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ







C5  R1 cos α  ζ  R2 cos ζ





3

C6  R1 sin α  ζ  R2 sin ζ 2

3

C2  1.225  10

3

C4  R1 sin α  ζ  R3 sin ζ



C1  478.979

2

6

A1  C3  C4

A1  3.559  10

A2  C3 C6  C4 C5

A2  6.710  10

A3  C4 C6  C3 C5

A3  2.166  10

A4  C2 C3  C1 C4

A4  5.257  10

A5  C4 C5  C3 C6

A5  6.710  10

5

A6  C1 C3  C2 C4

A6  2.425  10

6

K1  A2  A4  A3  A6

K1  5.606  10

K2  A3  A4  A5  A6

K2  4.884  10

2

K3 

5 6

5

12 11

2

2

2

A1  A2  A3  A4  A6

2

2

11

K3  6.838  10

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  88.000 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  78.042 deg

The first value is the same as 3, so use the second value

γ  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-29-4

 A5  sin γ  A3  cos γ  A6   A1  

  51.463 deg

 A3  sin γ  A2  cos γ  A4   A1  

  51.463 deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  1051.004

δ  atan2 P21x P21y 2

p 31 

δ  66.386 deg

2

P31x  P31y

p 31  1412.040

δ  atan2 P31x P31y 9.

δ  82.513 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  728.089 11. The length of link 2 is:

w 

3

W1y  294.291 2

Z1x  1.090  10

2

W1x  W1y

Z1y  3.291

w  785.316

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

B'  sin γ

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

 

 

C  cos α  1

 

F'  cos γ  1

 

K  sin α

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-29-5

 

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  921.699 14. The length of link 4 is:

U1y  231.572 2

u 

U1x  U1y

2

S1x  739.699

S1y  59.428

u  950.344

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  350.390

V1y  Z1y  S1y

V1y  62.718 v 

The length of link 3 is:

2

2

V1x  V1y

v  355.959

G1x  W1x  V1x  U1x

G1x  544.000

G1y  W1y  V1y  U1y

G1y  5.116  10

g 

The length of link 1 is:

2

G1x  G1y

2

 13

g  544.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  362.000

O2y  Z1y  W1y

O2y  291.000

O4x  S1x  U1x

O4x  182.000

O4y  S1y  U1y

O4y  291.000

These check with Figure P5-5. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  1.090  10

2

2

s  742.082

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

3

ψ  atan2( S1x S1y)

ψ  4.593  deg

ϕ  atan2( Z1x Z1y )

ϕ  0.173  deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  10.148 deg

δp  ϕ  θ

δp  9.975  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-29-6

18. DESIGN SUMMARY Link 1:

g  544.000

Link 2:

w  785.316

Link 3:

v  355.959

Link 4:

u  950.344

Coupler point:

rP  1090.094

δp  9.975  deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-30-1

PROBLEM 5-30 Statement:

To the linkage solution from Problem 5-29, add a driver dyad with a crank to control the motion of your fourbar so that it cannot move beyond positions one and three.

Given:

Solution to Problem 5-29:

Solution: 1.

Length of link 2

w  785.316

Angle of link 2 in first position

θ  157.992  deg

Rotation angles for link 2

β  54.008 deg

β  107.980  deg

Coordinates of O2

O2x  362.0

O2y  291.0

See Figure P5-5 and Mathcad file P0530.

Link 2 of the solution to Problem 5-29 will become the driven link for the driver dyad. The driver dyad will be links 5 and 6 and the fixed pivot for the dyad will be at O6. Select a point on link 2 of Problem 5-29 and label it C. Let the distance O2C be R2  200. The solution that follows uses the algorithm presented in Section 5.2 with changes in nomenclature to account for the fact that the driven link is link 2 and the points A and B are already defined on the fourbar of Problem 5-29..

2.

Determine the coordinates of the points C1 and C3 using equations 5.0a. Determine the vector M using 5.0b. C1x  O2x  R2 cos θ

C1x  547.426

C1y  O2y  R2 sin θ

C1y  216.053





C3x  233.475





C3y  137.764

C3x  O2x  R2 cos θ  β C3y  O2y  R2 sin θ  β RC1 

 C1x     C1y 

RC3 

 C3x     C3y 

M  RC3  RC1

M

 313.952     78.289 

3.

Select a suitable value for the multiplier, K, in equation 5.0d say K  3.0.

4.

Determine the coordinates of the crank pivot, O6 using equation 5.0d. Place the pivot to the left of O2 (by subtracting KM from RC3) so that it will be on the base below and to the left of O2. RO6  RC3  K M

O6x  RO6

1

O6x  1175.330 5.

2

O6y  372.630

Determine the length of the driving crank using equation 5.0e.





R6  R2 sin 0.5 β 6.

O6y  RO6

R6  161.783

Determine the length of the driver dyad coupler, link 5, and the ground link from eqauation 5.0f. R5  RC3  RO6  R6 RO2 

R5  808.914

 O2x     O2y 

R1  RO2  RO6

R1  817.416

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 5-30-2

Determine the Grashof condition. R1  817.416

R2  200.000

R5  808.914

R6  161.783

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition R1 R2 R5 R6  "Grashof" 8.

Draw the linkage using the link lengths and fixed pivot coordinates calculated above to verify that the driver dyad will perform as required.

Y

P3

P2

A2

B3

B2 A3

A1

B1

C2

D2 D1

O6

D3

C1

X

P1 C3

O2

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-31-1

PROBLEM 5-31 Statement:

Design a fourbar linkage to carry the box in Figure P5-6 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points A and B for your attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P3x  148.0

P3y  187.0

P2x  130.0

P2y  29.0

Angles made by the body in positions 1, 2 and 3:

θP1  90.0 deg

θP2  65.0 deg

θP3  11.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  69.0 Solution: 1.

2.

3.

A1y  43.0

B1x  17.0

B1y  43.0

See Figure P5-6 and Mathcad file P0531.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  133.195

δ  atan2 P2x P2y

δ  12.575 deg

2

2

p 31  238.481

δ  atan2 P3x P3y

δ  51.640 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  25.000 deg

α  θP3  θP1

α  101.000  deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  81.302

s 

P1x  B1x 2  P1y  B1y 2

s  46.239

v 

 A1x  B1x 2  A1y  B1y2

v  52.000

 v2  z2  s2    2  v z 

ϕ  acos

 v2  s2  z2    2  v s 

ϕ  31.931 deg

ψ  π  acos

ψ  68.429 deg

Z1x  z cos ϕ

Z1x  69.000

Z1y  z sin ϕ

Z1y  43.000

S 1x  s cos ψ

S 1x  17.000

S 1y  s sin ψ

S 1y  43.000

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 5-31-2

Use equations 5.24 to solve for w, , 2, and 3. Since the points A and B are to be used as pivots, z and  are known from the calculations above. Guess:

W1x  50

W1y  200

β  80 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

β  160  deg

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β 

β  52.277 deg

β  96.147 deg

The components of the W vector are: W1x  63.415 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  118.432

θ  118.167  deg

 W1x2  W1y2 , w  134.341  

Use equations 5.28 to solve for u, , 2, and 3. Since the points A and B are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  30

U1y  100

γ  80 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α

              U1y  cos γ  1   U1x sin γ  = p 31  sin δ  S 1y  cos α  1   S 1x sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α

γ  160  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-31-3

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  79.044 deg

γ  147.982  deg

The components of the U vector are: U1x  45.930

U1y  77.634

The length of link 4 is: u  6.

Link 1:

V1x  52.000

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

2

2

V1x  V1y

v  52.000

G1x  W1x  V1x  U1x

G1x  34.515

G1y  W1y  V1y  U1y

G1y  40.798

θ  atan2 G1x G1y

θ  49.768 deg

g 

9.

 U1x2  U1y2 , u  90.203  

V1x  Z1x  S 1x

v 

8.

σ  120.609  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

2

G1x  G1y

g  53.439

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  68.399 deg

θ2f  θ2i  β

θ2f  27.748 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  81.302

δp  31.931 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  5.585

O2y  z sin ϕ  w sin θ

O2y  161.432

O4x  s cos ψ  u  cos σ

O4x  28.930

O4y  s sin ψ  u  sin σ

O4y  120.634

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-31-4

θrot  atan2 O4x  O2x  O4y  O2y

θrot  49.768 deg

11. Determine the Grashof condition.

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  134.341

θ  118.167  deg

Link 3:

v  52.000

θ  0.000  deg

Link 4:

u  90.203

σ  120.609  deg

Link 1:

g  53.439

θ  49.768 deg

Coupler:

rp  81.302

δp  31.931 deg

Crank angles:

θ2i  68.399 deg θ2f  27.748 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. 14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-31-5 Y P1 Z1

A1

X

S1

S2

B1

V2 B2

U1 W1

U2

W2 O4 W3 O2

P2

Z2

A2

V1

A3

U3 V3 B3

Z3 S3 P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-32-1

PROBLEM 5-32 Statement:

Design a fourbar linkage to carry the box in Figure P5-6 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle. The fixed pivots should be on the base.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P2x  130.0

P3x  148.0

P3y  187.0

P2y  29.0

Angles made by the body in positions 1, 2 and 3:

θP1  90.0 deg

θP2  65.0 deg

θP3  11.0 deg

Free choices for the WZ dyad : β  52.0 deg

β  95.0 deg

Free choices for the US dyad : γ  76.0 deg Solution: 1.

2.

3.

γ  145.0  deg

See Figure P5-6 and Mathcad file P0532.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  133.195

δ  atan2 P2x P2y

δ  12.575 deg

2

2

p 31  238.481

δ  atan2 P3x P3y

δ  51.640 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  25.000 deg

α  θP3  θP1

α  101.000  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

The components of the W and Z vectors are: W1x  63.498

W1y  118.196

Z1x  69.575

Z1y  44.896

θ  atan2 W1x W1y

θ  118.246  deg

ϕ  atan2 Z1x Z1y

ϕ  32.834 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-32-2

 W1x2  W1y2 , w  134.173  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  82.803  

The length of vector Z is: z  4.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

 

 

A'  cos γ  1

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

 

H  cos α  1

D  sin α

 

G'  sin γ

 

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

F'  cos γ  1

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

N  p 31  sin δ

 U1x     U1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  46.325

U1y  82.956

S 1x  17.754

S 1y  37.985

σ  atan2 U1x U1y

σ  119.180  deg

ψ  atan2 S 1x S 1y

ψ  64.949 deg

The length of link 4 is: u 

 U1x2  U1y2 , u  95.014  

The length of vector S is: s  6.

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  51.820

V1y  Z1y  S 1y

V1y  6.910

θ  atan2 V1x V1y

θ  7.596  deg

v  Link 1:

2

2

V1x  V1y

v  52.279

G1x  W1x  V1x  U1x

G1x  34.647

G1y  W1y  V1y  U1y

G1y  42.151

θ  atan2 G1x G1y

θ  50.580 deg

g  7.

 S 1x2  S 1y2 , s  41.930  

2

2

G1x  G1y

g  54.563

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  67.666 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-32-3

θ2f  θ2i  β 8.

9.

θ2f  27.334 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  82.803

δp  25.238 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  6.076

O2y  z sin ϕ  w sin θ

O2y  163.092

O4x  s cos ψ  u  cos σ

O4x  28.571

O4y  s sin ψ  u  sin σ

O4y  120.941

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  50.580 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  134.173

θ  118.246  deg

Link 3:

v  52.279

θ  7.596  deg

Link 4:

u  95.014

σ  119.180  deg

Link 1:

g  54.563

θ  50.580 deg

Coupler:

rp  82.803

δp  25.238 deg

Crank angles:

θ2i  67.666 deg θ2f  27.334 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. 14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-32-4

Y P1 Z1 A1 V1

X

S1 B1

S2 V2 U1

W1

B2

U2

W2 O4 W3 O2

P2

Z2

A2

A3

U3 V3

Z3

B 3 S3 P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-33-1

PROBLEM 5-33 Statement: Given:

Solution: 1.

2.

Design a linkage to carry the object in Figure P5-6 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x  130.0

P21y  29.0

P31x  148.0

P31y  187.0

O2x  6.2

O2y  164.0

O4x  28.0

O4y  121.0

Body angles:

θP1  90 deg

θP2  65 deg

θP3  11 deg

See Figure P5-6 and Mathcad file P0533.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  25.000 deg

α  θP3  θP1

α  101.000  deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  6.200

R1y  O2y

R2x  R1x  P21x

R2x  136.200

R2y  R1y  P21y

R2y  135.000

R3x  R1x  P31x

R3x  154.200

R3y  R1y  P31y

R3y  23.000

2

2

R1  164.117

2

2

R2  191.769

2

2

R3  155.906

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  164.000

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  87.835 deg

ζ  atan2 R2x R2y

ζ  44.746 deg

ζ  atan2 R3x R3y

ζ  8.484  deg

Solve for 2 and 3 using equations 5.34





















 

C3  5.604

 

C4  14.379

 

C5  61.271

 

C6  11.014

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  23.501 C2  73.444

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-33-2 2

A1  C3  C4

A1  238.152

A2  C3 C6  C4 C5

A2  819.286

A3  C4 C6  C3 C5

A3  501.727

A4  C2 C3  C1 C4

A4  749.483

A5  C4 C5  C3 C6

A5  819.286

A6  C1 C3  C2 C4

A6  924.339

K1  A2  A4  A3  A6

K1  1.503  10

K2  A3  A4  A5  A6

K2  1.133  10

2

K3 

5 6

2

2

2

A1  A2  A3  A4  A6

2

K3  1.141  10

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  101.000  deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  94.106 deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  53.072 deg

 A3  sin β  A2  cos β  A4   A1  

β  53.072 deg

β  acos

β  asin

Since 2 is not in the first quadrant, 5.

6

β  β

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  28.000

R1y  O4y

R2x  R1x  P21x

R2x  102.000

R2y  R1y  P21y

R2y  92.000

R3x  R1x  P31x

R3x  120.000

R3y  R1y  P31y

R3y  66.000

2

2

R1  124.197

2

2

R2  137.361

R1 

R1x  R1y

R2 

R2x  R2y

R1y  121.000

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-33-3

2

2

R3x  R3y

R3  136.953

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  103.029  deg

ζ  atan2 R2x R2y

ζ  42.049 deg

ζ  atan2 R3x R3y

ζ  28.811 deg

Solve for 2 and 3 using equations 5.34





















 

C3  4.120

 

C4  70.398

 

C5  76.240

 

C6  29.497

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

C2  7.150

A1  C3  C4

A1  4.973  10

3

A2  C3 C6  C4 C5

A2  5.489  10

3

A3  C4 C6  C3 C5

A3  1.762  10

3

A4  C2 C3  C1 C4

A4  675.715

A5  C4 C5  C3 C6

A5  5.489  10

A6  C1 C3  C2 C4

A6  544.601

K1  A2  A4  A3  A6

K1  2.749  10

K2  A3  A4  A5  A6

K2  4.180  10

2

K3 

2

C1  10.017

3

6 6

2

2

2

A1  A2  A3  A4  A6

2

2

K3  4.628  10

6

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  145.661  deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  101.000  deg

The second value is the same as 3, so use the first value

γ  γ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-33-4

 A5  sin γ  A3  cos γ  A6   A1  

  77.265 deg

 A3  sin γ  A2  cos γ  A4   A1  

  77.265 deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  133.195

δ  atan2 P21x P21y 2

p 31 

δ  12.575 deg

2

P31x  P31y

p 31  238.481

δ  atan2 P31x P31y 9.

δ  51.640 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  61.917 w 

11. The length of link 2 is:

W1y  112.415 2

Z1x  68.117

2

W1x  W1y

Z1y  51.585

w  128.339

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

L  p 31  cos δ

 

 

 

M  p 21  sin δ

 

F'  cos γ  1

 

K  sin α

 

N  p 31  sin δ

DESIGN OF MACHINERY - 5th Ed.

 A' F' AA    B'  G' 

SOLUTION MANUAL 5-33-5

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  46.374

14. The length of link 4 is:

U1y  80.382 2

u 

U1x  U1y

S1x  18.374

2

S1y  40.618

u  92.800

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  49.743

V1y  Z1y  S1y

V1y  10.967 v 

The length of link 3 is:

2

2

V1x  V1y

v  50.938

G1x  W1x  V1x  U1x

G1x  34.200

G1y  W1y  V1y  U1y

G1y  43.000

g 

The length of link 1 is:

2

G1x  G1y

2

g  54.942

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  6.200

O2y  Z1y  W1y

O2y  164.000

O4x  S1x  U1x

O4x  28.000

O4y  S1y  U1y

O4y  121.000

These check with Figure P5-6. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  85.446

2

2

s  44.581

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  65.660 deg

ϕ  atan2( Z1x Z1y )

ϕ  37.136 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  12.433 deg

δp  ϕ  θ

δp  24.704 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-33-6

18. DESIGN SUMMARY Link 1:

g  54.942

Link 2:

w  128.339

Link 3:

v  50.938

Link 4:

u  92.800

Coupler point:

rP  85.446

δp  24.704 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. 20. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-34-1

PROBLEM 5-34 Statement:

Design a fourbar linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3 without regard for the fixed pivots shown. The bolt is fed into the gripper in the z direction (into the paper). The gripper grabs the bolt, and your linkage moves it to position 3 to be inserted into the hole. A second degree of freedom within the gripper assembly (not shown) pushes the bolt into the hole. The moving pivots should be on, or close to, the gripper assembly, and the fixed pivots should be on the base. Use the free choices given below.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P2x  99.0

P3x  111.3

P3y  151.8

P2y  13.0

Angles made by the body in positions 1, 2 and 3:

θP1  272.3  deg

θP2  301.7  deg

θP3  270.0  deg

Free choices for the WZ dyad : β  70 deg

β  140  deg

Free choices for the US dyad : γ  5  deg Solution: 1.

2.

3.

γ  49 deg

See Figure P5-7 and Mathcad file P0534.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  99.850

δ  atan2 P2x P2y

δ  7.481  deg

2

2

p 31  188.231

δ  atan2 P3x P3y

δ  53.751 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  29.400 deg

α  θP3  θP1

α  2.300  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations 5.26 and form the matrix and vector:

 

B  sin β

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1 D  sin α G  sin β

 

L  p 31  cos δ

 A F AA   B G 

B C D 

 G H K  A D C   F K H 

The components of the W and Z vectors are:

 

 

C  cos α  1

 

 

 

M  p 21  sin δ

 E  L CC    M  N   

 

F  cos β  1

 

K  sin α

 

N  p 31  sin δ

 W1x  W   1y   AA  1 CC  Z1x     Z1y 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-34-2

W1x  86.624

W1y  50.030

Z1x  198.147

Z1y  233.314

θ  atan2 W1x W1y

θ  149.991  deg

ϕ  atan2 Z1x Z1y

ϕ  49.660 deg

 W1x2  W1y2 , w  100.033  

The length of link 2 is: w 

 Z1x2  Z1y2 , z  306.100  

The length of vector Z is: z  4.

Evaluate terms in the US coefficient matrix and constant vector from equations 5.31 and form the matrix and vector:

  D  sin α

  E  p 21  cos δ

A'  cos γ  1

 

C  cos α  1

 

G'  sin γ

 

H  cos α  1

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

  F'  cos γ  1

B'  sin γ

 

M  p 21  sin δ

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

N  p 31  sin δ

 U1x  U   1y   AA  1 CC  S1x     S1y 

The components of the U and S vectors are: U1x  107.545

U1y  205.365

S 1x  3.375

S 1y  166.927

σ  atan2 U1x U1y

σ  62.360 deg

ψ  atan2 S 1x S 1y

ψ  88.842 deg

The length of link 4 is: u 

 U1x2  U1y2 , u  231.821  

The length of vector S is: s  6.

 S 1x2  S 1y2 , s  166.961  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  194.772

V1y  Z1y  S 1y

V1y  66.387

θ  atan2 V1x V1y

θ  18.821 deg

v  Link 1:

2

2

V1x  V1y

v  205.775

G1x  W1x  V1x  U1x

G1x  0.602

G1y  W1y  V1y  U1y

G1y  221.722

θ  atan2 G1x G1y

θ  89.844 deg

g 

2

2

G1x  G1y

g  221.723

DESIGN OF MACHINERY - 5th Ed.

7.

8.

9.

SOLUTION MANUAL 5-34-3

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  239.836  deg

θ2f  θ2i  β  2  π

θ2f  19.836 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  306.100

δp  30.838 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  111.523

O2y  z sin ϕ  w sin θ

O2y  183.284

O4x  s cos ψ  u  cos σ

O4x  110.920

O4y  s sin ψ  u  sin σ

O4y  38.438

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  89.844 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  100.033

θ  149.991  deg

Link 3:

v  205.775

θ  18.821 deg

Link 4:

u  231.821

σ  62.360 deg

Link 1:

g  221.723

θ  89.844 deg

Coupler:

rp  306.100

δp  30.838 deg

Crank angles:

θ2i  239.836  deg θ2f  19.836 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-34-4

Y A1 O2

B1

B2

A2 A3 P2

B3 X

P1 O4

P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-35-1

PROBLEM 5-35 Statement: Given:

Solution: 1.

2.

Design a linkage to carry the bolt in Figure P5-7 from positions 1 to 2 to 3 using the fixed pivots shown. See Problem 5-34 for more details. P21x  99.0

P21y  13.0

P31x  111.3

P31y  151.8

O2x  111.5

O2y  183.2

O4x  111.5

O4y  38.8

Body angles:

θP1  272.3  deg

θP2  301.7  deg

θP3  270  deg

See Figure P5-7 and Mathcad file P0535.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  29.400 deg

α  θP3  θP1

α  2.300  deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  111.500

R1y  O2y

R2x  R1x  P21x

R2x  210.500

R2y  R1y  P21y

R2y  170.200

R3x  R1x  P31x

R3x  222.800

R3y  R1y  P31y

R3y  335.000

2

2

R1  214.463

2

2

R2  270.700

2

2

R3  402.324

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  183.200

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  58.674 deg

ζ  atan2 R2x R2y

ζ  38.957 deg

ζ  atan2 R3x R3y

ζ  56.373 deg

Solve for 2 and 3 using equations 5.34





















 

C3  118.742

 

C4  147.473

 

C5  23.426

 

C6  65.329

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  155.059 C2  3.973

DESIGN OF MACHINERY - 5th Ed.

2

SOLUTION MANUAL 5-35-2

2

A1  3.585  10

A2  C3 C6  C4 C5

A2  4.303  10

A3  C4 C6  C3 C5

A3  1.242  10

4

A4  C2 C3  C1 C4

A4  2.240  10

4

A5  C4 C5  C3 C6

A5  4.303  10

3

A6  C1 C3  C2 C4

A6  1.900  10

4

K1  A2  A4  A3  A6

K1  1.395  10

K2  A3  A4  A5  A6

K2  3.598  10

2

K3 

3

8 8

2

2

2

A1  A2  A3  A4  A6

2 8

K3  1.250  10

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  139.911  deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  2.300  deg

The second value is the same as 3, so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  69.984 deg

 A3  sin β  A2  cos β  A4   A1  

β  69.984 deg

β  acos

β  asin

β  β

Since both angles are the same, 5.

4

A1  C3  C4

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  111.500

R1y  O4y

R2x  R1x  P21x

R2x  210.500

R2y  R1y  P21y

R2y  51.800

R3x  R1x  P31x

R3x  222.800

R3y  R1y  P31y

R3y  113.000

2

2

R1  118.058

2

2

R2  216.780

R1 

R1x  R1y

R2 

R2x  R2y

R1y  38.800

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-35-3

2

2

R3x  R3y

R3  249.818

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  19.187 deg

ζ  atan2 R2x R2y

ζ  13.825 deg

ζ  atan2 R3x R3y

ζ  26.893 deg

Solve for 2 and 3 using equations 5.34





















 

C3  109.833

 

C4  147.294

 

C5  132.407

 

C6  36.739

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

C2  32.384

A1  C3  C4

A1  3.376  10

4

A2  C3 C6  C4 C5

A2  1.547  10

4

A3  C4 C6  C3 C5

A3  1.995  10

4

A4  C2 C3  C1 C4

A4  1.918  10

3

A5  C4 C5  C3 C6

A5  1.547  10

A6  C1 C3  C2 C4

A6  8.852  10

K1  A2  A4  A3  A6

K1  2.063  10

K2  A3  A4  A5  A6

K2  9.865  10

2

K3 

2

C1  37.169

4 3

8

2

2

2

A1  A2  A3  A4  A6

7

2

2

8

K3  2.101  10

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  2.300  deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  48.814 deg

The first value is the same as 3, so use the second value

γ  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-35-4

 A5  sin γ  A3  cos γ  A6   A1  

  4.951  deg

 A3  sin γ  A2  cos γ  A4   A1  

  4.951  deg

  acos

  asin

Since 2 is not in the first quadrant , 8.

γ  

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  99.850

δ  atan2 P21x P21y 2

p 31 

δ  7.481  deg

2

P31x  P31y

p 31  188.231

δ  atan2 P31x P31y 9.

δ  53.751 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 

M  p 21  sin δ

B C D 

 A F AA   B G 

 

C  cos α  1

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  86.684 w 

11. The length of link 2 is:

W1y  49.977 2

Z1x  198.184

2

W1x  W1y

Z1y  233.177

w  100.059

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

 

B'  sin γ

C  cos α  1

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

L  p 31  cos δ

 

 

 

M  p 21  sin δ

 

F'  cos γ  1

 

K  sin α

 

N  p 31  sin δ

DESIGN OF MACHINERY - 5th Ed.

 A' F' AA    B'  G' 

SOLUTION MANUAL 5-35-5

B' C D 

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  108.268

14. The length of link 4 is:

U1y  205.938

S1x  3.232

2

u  232.664

2

u 

U1x  U1y

S1y  167.138

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  194.953

V1y  Z1y  S1y

V1y  66.039 v 

The length of link 3 is:

2

2

V1x  V1y

v  205.834

G1x  W1x  V1x  U1x

G1x  1.990  10

G1y  W1y  V1y  U1y

G1y  222.000

g 

The length of link 1 is:

2

G1x  G1y

2

 13

g  222.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  111.500

O2y  Z1y  W1y

O2y  183.200

O4x  S1x  U1x

O4x  111.500

O4y  S1y  U1y

O4y  38.800

These check with Figure P5-7. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  306.020

2

2

s  167.169

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  88.892 deg

ϕ  atan2( Z1x Z1y )

ϕ  49.638 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  18.714 deg

δp  ϕ  θ

δp  30.924 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-35-6

18. DESIGN SUMMARY Link 1:

g  222.000

Link 2:

w  100.059

Link 3:

v  205.834

Link 4:

u  232.664

Coupler point:

rP  306.020

δp  30.924 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-36-1

PROBLEM 5-36 Statement:

To the linkage solution from Problem 5-35, add a driver dyad with a crank to control the motion of your fourbar so that it cannot move beyond positions one and three.

Given:

Solution to Problem 5-35:

Solution: 1.

Length of link 4

u  232.664

Angle of link 4 in first position

θ  62.268 deg

Rotation angles for link 2

β  4.951  deg

β  48.814 deg

Coordinates of O4

O4x  111.5

O4y  38.8

See Figure P5-7 and Mathcad file P0536.

Link 4 of the solution to Problem 5-35 will become the driven link for the driver dyad. The driver dyad will be links 5 and 6 and the fixed pivot for the dyad will be at O6. Select a point on link 4 of Problem 5-35 and label it C. Let the distance O4C be R4  60. The solution that follows uses the algorithm presented in Section 5.2 with changes in nomenclature to account for the fact that the driven link is link 2 and the points A and B are already defined on the fourbar of Problem 5-35.

2.

Determine the coordinates of the points C1 and C3 using equations 5.0a. Determine the vector M using 5.0b. C1x  O4x  R4 cos θ

C1x  83.580

C1y  O4y  R4 sin θ

C1y  14.308





C3x  53.147





C3y  24.840

C3x  O4x  R4 cos θ  β C3y  O4y  R4 sin θ  β RC1 

3. 4.

 C1x     C1y 

RC3 

 C3x     C3y 

M  RC3  RC1

Determine the coordinates of the crank pivot, O6 using equation 5.0d. Place the pivot to the left of O4 (by subtracting KM from RC3) so that it will be on the base above and to the left of O2. O6x  RO6

1

O6x  144.446

O6y  RO6

2

O6y  92.604

Determine the length of the driving crank using equation 5.0e.





R6  R4 sin 0.5 β 6.

 30.433     39.148 

Select a suitable value for the multiplier, K, in equation 5.0d say K  3.0.

RO6  RC3  K M

5.

M

R6  24.793

Determine the length of the driver dyad coupler, link 5, and the ground link from eqauation 5.0f. R5  RC3  RO6  R6 RO2 

R5  123.965

 O4x     O4y 

R1  RO2  RO6

R1  135.472

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 5-36-2

Determine the Grashof condition. R1  135.472

R4  60.000

R5  123.965

R6  24.793

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition R1 R4 R5 R6  "Grashof" 8.

Draw the linkage using the link lengths and fixed pivot coordinates calculated above to verify that the driver dyad will perform as required.

Y A1 D2

D1 O6

O2

B1

B2

D3

A2 A3 C1

P2

C2

B3 X

C3

P1

O4

P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-37-1

PROBLEM 5-37 Statement:

Figure P5-8 shows an off-loading mechanism for paper rolls. The V-link is rotated through 90 deg by an air-driven fourbar slider-crank linkage. Design a pin-jointed fourbar linkage to replace the existing off-loading station and perform essentially the same function. Choose three positions of the roll including its two end positions and synthesize a substitute mechanism. Use a link similar to the existing V-link as one of your links.

Given:

Coordinates of the points P1 , P2 and P3 with respect to P1: P1x  0.0

P1y  0.0

P3x  1000.0

P3y  1000.0

P2x  450

P2y  140

Angles made by the body in positions 1, 2 and 3:

θP1  90.0 deg

θP2  65.0 deg

θP3  0.0 deg

Coordinates of the points A1 and B1 with respect to P1: A1x  400.0 Solution: 1.

2.

3.

4.

A1y  1035.0

B1x  35.0

B1y  600.0

See Figure P5-8 and Mathcad file P0537.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  471.275

2

2

p 31  1.414  10

p 21 

P2x  P2y

p 31 

P3x  P3y

3

δ  atan2 P2x P2y

δ  17.281 deg

δ  atan2 P3x P3y

δ  45.000 deg

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  25.000 deg

α  θP3  θP1

α  90.000 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  A1x2   P1y  A1y 2

z  1109.606

s 

P1x  B1x 2  P1y  B1y 2

s  601.020

v 

 A1x  B1x 2  A1y  B1y2

v  615.183

ϕ  atan2 A1x A1y   π

ϕ  291.130  deg

ψ  π  atan2 B1x B1y

ψ  93.338 deg

Z1x  z cos ϕ

Z1x  400.000

Z1y  z sin ϕ

Z1y  1035.000

S 1x  s cos ψ

S 1x  35.000

S 1y  s sin ψ

S 1y  600.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points A and B are to be used as pivots, z and  are known from the calculations above.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-37-2

Guess:

W1x  50

W1y  200

β  80 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

β  160  deg

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  11.094 deg

β  47.757 deg

The components of the W vector are: W1x  673.809 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  194.748

θ  163.879  deg

 W1x2  W1y2 , w  701.388  

Use equations 5.28 to solve for u, , 2, and 3. Since the points A and B are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  30

U1y  100

γ  80 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  160  deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ 

γ  25.881 deg

The components of the U vector are:

γ  71.807 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-37-3

U1x  117.927

U1y  469.583

The length of link 4 is: u  6.

Link 1:

V1x  435.000

V1y  Z1y  S 1y

V1y  435.000

θ  atan2 V1x V1y

θ  45.000 deg

2

2

V1x  V1y

v  615.183

G1x  W1x  V1x  U1x

G1x  356.736

G1y  W1y  V1y  U1y

G1y  160.165

θ  atan2 G1x G1y

θ  155.821  deg

2

g 

9.

 U1x2  U1y2 , u  484.164  

V1x  Z1x  S 1x

v 

8.

σ  75.903 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

G1x  G1y

g  391.042

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  8.058  deg

θ2f  θ2i  β

θ2f  39.699 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  1109.606

δp  336.130  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ O2y  z sin ϕ  w sin θ

O4x  s cos ψ  u  cos σ O4y  s sin ψ  u  sin σ

O2x  273.809 O2y  1229.748 O4x  82.927 O4y  1069.583

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

θrot  155.821  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-37-4

Condition( g w u v)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  701.388

θ  163.879  deg

Link 3:

v  615.183

θ  45.000 deg

Link 4:

u  484.164

σ  75.903 deg

Link 1:

g  391.042

θ  155.821  deg

Coupler:

rp  1109.606

δp  336.130  deg

Crank angles:

θ2i  8.058  deg θ2f  39.699 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. 14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

1000.0 450.0 P1

140.0 P2

90 deg 65 deg

1000.0

A3 B1

B3

A2 A1

B2

O4 O2

0 deg

P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-38-1

PROBLEM 5-38 Statement:

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points C and D for your attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0

P1y  0.0

P3x  7.600

P3y  1.000

P2x  4.500

P2y  1.900

Angles made by the body in positions 1, 2 and 3:

θP1  33.70  deg

θP2  14.60  deg

θP3  0.0 deg

Coordinates of the points C1 and D1 with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

D1x  3.744

D1y  2.497

See Figure P5-9 and Mathcad file P0538.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  4.885

δ  atan2 P2x P2y

δ  22.891 deg

2

2

p 31  7.666

δ  atan2 P3x P3y

δ  7.496  deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  19.100 deg

α  θP3  θP1

α  33.700 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  4.500

v 

 C1x  D1x2   C1y  D1y2

v  4.500

ϕ  θP1

ϕ  33.700 deg

ψ  θP1  π

ψ  213.700  deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos θP1

S 1x  3.744

S 1y  s sin θP1

S 1y  2.497

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-57. Guess:

W1x  4

W1y  4

β  50 deg

β  80 deg

DESIGN OF MACHINERY - 5th Ed.

Given

SOLUTION MANUAL 5-38-2

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β 

β  47.370 deg

β  78.160 deg

The components of the W vector are: W1x  4.416 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  4.179

θ  136.576  deg

 W1x2  W1y2 , w  6.080  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  4

U1y  4

γ  44 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  76 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  43.852 deg

γ  76.170 deg

The components of the U vector are: U1x  3.223

U1y  6.080

σ  atan2 U1x U1y

σ  117.929  deg

DESIGN OF MACHINERY - 5th Ed.

The length of link 4 is: u  6.

SOLUTION MANUAL 5-38-3

 U1x2  U1y2 , u  6.881  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  Z1x  S 1x

V1x  3.744

V1y  Z1y  S 1y

V1y  2.497

θ  atan2 V1x V1y v  Link 1:

2

8.

9.

2

V1x  V1y

v  4.500

G1x  W1x  V1x  U1x

G1x  2.551

G1y  W1y  V1y  U1y

G1y  0.596

θ  atan2 G1x G1y

θ  13.155 deg

2

g  7.

θ  33.700 deg

2

G1x  G1y

g  2.620

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  123.420  deg

θ2f  θ2i  β

θ2f  45.261 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  4.416

O2y  z sin ϕ  w sin θ

O2y  4.179

O4x  s cos ψ  u  cos σ

O4x  6.967

O4y  s sin ψ  u  sin σ

O4y  3.583

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof"

θrot  13.155 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-38-4

12. DESIGN SUMMARY Link 2:

w  6.080

θ  136.576  deg

Link 3:

v  4.500

θ  33.700 deg

Link 4:

u  6.881

σ  117.929  deg

Link 1:

g  2.620

θ  13.155 deg

Coupler:

rp  0.000

δp  0.000  deg

Crank angles:

θ2i  123.420  deg

7.600

θ2f  45.261 deg

4.500 Y

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

4.500

D2

D1 C3

C2

D3

78.160° C1 47.370° y

X 43.852° 76.170° x 13.150°

6.080

2.620

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-39-1

PROBLEM 5-39 Statement:

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0

P1y  0.0

P3x  7.600

P3y  1.000

P2x  4.500

P2y  1.900

Angles made by the body in positions 1, 2 and 3:

θP1  33.70  deg

θP2  14.60  deg

θP3  0.0 deg

Coordinates of the points C1 and E1 (used for attachment) with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

E1x  3.744

E1y  0.000

See Figure P5-9 and Mathcad file P0539.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  4.885

δ  atan2 P2x P2y

δ  22.891 deg

2

2

p 31  7.666

δ  atan2 P3x P3y

δ  7.496  deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  19.100 deg

α  θP3  θP1

α  33.700 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  E1x 2  P1y  E1y 2

s  3.744

v 

 C1x  E1x 2  C1y  E1y2

v  3.744

ϕ  atan2 E1x  C1x E1y  C1y

ϕ  0.000  deg

ψ  ϕ  π

ψ  180.000  deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos ψ

S 1x  3.744

S 1y  s sin ψ

S 1y  0.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-57. Guess:

W1x  4

W1y  4

β  50 deg

β  80 deg

DESIGN OF MACHINERY - 5th Ed.

Given

SOLUTION MANUAL 5-39-2

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  47.370 deg

β  78.160 deg

The components of the W vector are: W1x  4.416 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  4.179

θ  136.576  deg

 W1x2  W1y2 , w  6.080  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  4

U1y  4

γ  44 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  76 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  48.844 deg

γ  84.280 deg

The components of the U vector are: U1x  2.890

U1y  4.391

σ  atan2 U1x U1y

σ  123.354  deg

DESIGN OF MACHINERY - 5th Ed.

The length of link 4 is: u  6.

V1x  Z1x  S 1x

V1x  3.744

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

v  Link 1:

2

9.

2

V1x  V1y

v  3.744

G1x  W1x  V1x  U1x

G1x  2.218

G1y  W1y  V1y  U1y

G1y  0.211

θ  atan2 G1x G1y

θ  5.444  deg

2

g 

8.

 U1x2  U1y2 , u  5.256  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

SOLUTION MANUAL 5-39-3

2

G1x  G1y

g  2.228

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  142.019  deg

θ2f  θ2i  β

θ2f  63.860 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000  deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ O2y  z sin ϕ  w sin θ

O4x  s cos ψ  u  cos σ O4y  s sin ψ  u  sin σ

O2x  4.416 O2y  4.179 O4x  6.634 O4y  4.391

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  5.444  deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-39-4

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  6.080

θ  136.576  deg

Link 3:

v  3.744

θ  0.000  deg

Link 4:

u  5.256

σ  123.354  deg

Link 1:

g  2.228

θ  5.444  deg

Coupler:

rp  0.000

δp  0.000  deg

Crank angles:

θ2i  142.019  deg θ2f  63.860 deg

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design. 14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

7.600 4.500 Y D2

D1

4.500

C2

D3

C3 E2

C1

X

E1

E3

6.080 O2 O4

5.257

2.228

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-40-1

PROBLEM 5-40 Statement:

Given:

Solution: 1.

2.

Design a fourbar linkage to carry the object in Figure P5-9 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x  4.500

P21y  1.900

P31x  7.600

P31y  1.000

O2x  2.900

O2y  5.100

O4x  5.900

O4y  5.100

Body angles:

θP1  33.70  deg

θP2  14.60  deg

θP3  0.0 deg

See Figure P5-9 and Mathcad file P0540.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  19.100 deg

α  θP3  θP1

α  33.700 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  2.900

R1y  O2y

R2x  R1x  P21x

R2x  1.600

R2y  R1y  P21y

R2y  7.000

R3x  R1x  P31x

R3x  4.700

R3y  R1y  P31y

R3y  6.100

2

2

R1  5.867

2

2

R2  7.181

2

2

R3  7.701

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  5.100

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  119.624  deg

ζ  atan2 R2x R2y

ζ  77.125 deg

ζ  atan2 R3x R3y

ζ  52.386 deg

Solve for 2 and 3 using equations 5.34





















 

C3  4.283

 

C4  0.248

 

C5  2.672

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ

C1  1.222 C2  0.710

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-40-2





 

C6  R1 sin α  ζ  R2 sin ζ 2

C6  1.232

2

A1  C3  C4

A1  18.405

A2  C3 C6  C4 C5

A2  4.613

A3  C4 C6  C3 C5

A3  11.748

A4  C2 C3  C1 C4

A4  3.343

A5  C4 C5  C3 C6

A5  4.613

A6  C1 C3  C2 C4

A6  5.059

K1  A2  A4  A3  A6

K1  44.009

K2  A3  A4  A5  A6

K2  62.605

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  71.350

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  33.700 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  76.089 deg

The first value is the same as 3, so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  47.808 deg

 A3  sin β  A2  cos β  A4   A1  

β  47.808 deg

β  acos

β  asin

β  β

Use the negative value, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  5.900

R1y  O4y

R2x  R1x  P21x

R2x  1.400

R2y  R1y  P21y

R2y  7.000

R3x  R1x  P31x

R3x  1.700

R3y  R1y  P31y

R3y  6.100

R1 

2

2

R1x  R1y

R1  7.799

R1y  5.100

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-40-3

2

2

R2  7.139

2

2

R3  6.332

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  139.160  deg

ζ  atan2 R2x R2y

ζ  101.310  deg

ζ  atan2 R3x R3y

ζ  74.427 deg

Solve for 2 and 3 using equations 5.34





















 

C3  3.779

 

C4  1.417

 

C5  2.506

 

C6  0.250

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  0.883 C2  1.393

A1  C3  C4

A1  16.286

A2  C3 C6  C4 C5

A2  4.496

A3  C4 C6  C3 C5

A3  9.117

A4  C2 C3  C1 C4

A4  4.011

A5  C4 C5  C3 C6

A5  4.496

A6  C1 C3  C2 C4

A6  5.310

K1  A2  A4  A3  A6

K1  30.381

K2  A3  A4  A5  A6

K2  60.441

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  58.811

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  33.700 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  92.928 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-40-4

The first value is the same as 3, so use the second value

γ  

 A5  sin γ  A3  cos γ  A6   A1  

  55.029 deg

 A3  sin γ  A2  cos γ  A4   A1  

  55.029 deg

  acos

  asin

γ  

Use the negative value , 8.

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  4.885

δ  atan2 P21x P21y 2

p 31 

δ  22.891 deg

2

P31x  P31y

p 31  7.666

δ  atan2 P31x P31y 9.

δ  7.496  deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  5.043 11. The length of link 2 is:

w 

W1y  3.126 2

Z1x  2.143

2

W1x  W1y

Z1y  1.974

w  5.933

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

D  sin α

 

B'  sin γ

 

E  p 21  cos δ

 

C  cos α  1

 

F'  cos γ  1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-40-5

 

 

G'  sin γ

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

H  cos α  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  2.773 14. The length of link 4 is:

U1y  2.998 2

u 

U1x  U1y

S1x  3.127

2

S1y  2.102

u  4.083

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  5.271

V1y  Z1y  S1y

V1y  0.128 v 

The length of link 3 is:

2

2

V1x  V1y

v  5.272

G1x  W1x  V1x  U1x

G1x  3.000

G1y  W1y  V1y  U1y

G1y  2.176  10

g 

The length of link 1 is:

2

G1x  G1y

2

 14

g  3.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  2.900

O2y  Z1y  W1y

O2y  5.100

O4x  S1x  U1x

O4x  5.900

O4y  S1y  U1y

O4y  5.100

These check with Figure P5-7. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  2.914

2

2

s  3.768

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  146.092  deg

ϕ  atan2( Z1x Z1y )

ϕ  42.651 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-40-6

θ  1.392  deg

δp  ϕ  θ

δp  44.042 deg

18. DESIGN SUMMARY Link 1:

g  3.000

Link 2:

w  5.933

Link 3:

v  5.272

Link 4:

u  4.083

Coupler point:

rP  2.914

δp  44.042 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

20. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed,

SOLUTION MANUAL 5-41-1

PROBLEM 5-41 Statement:

Design a fourbar linkage to carry the object in Figure P5-10 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points C and D for your attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0

P1y  0.0

P3x  1.750

P3y  2.228

P2x  0.743

P2y  1.514

Angles made by the body in positions 1, 2 and 3:

θP1  62.59  deg

θP2  68.25  deg

θP3  90.0 deg

Coordinates of the points C1 and D1 with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

D1x  1.036

D1y  1.998

See Figure P5-10 and Mathcad file P0541.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  1.686

δ  atan2 P2x P2y

δ  116.140 deg

2

2

p 31  2.833

δ  atan2 P3x P3y

δ  128.148 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  5.660 deg

α  θP3  θP1

α  27.410 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  2.251

v 

 C1x  D1x2   C1y  D1y2

v  2.251

ϕ  θP1

ϕ  62.590 deg

ψ  θP1  π

ψ  242.590 deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos θP1

S 1x  1.036

S 1y  s sin θP1

S 1y  1.998

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-61.

DESIGN OF MACHINERY - 5th Ed,

SOLUTION MANUAL 5-41-2

Guess:

W1x  3

W1y  0.5

β  33.3 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

β  57.0 deg

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  33.028 deg

β  57.045 deg

The components of the W vector are: W1x  2.925 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  0.496

θ  9.626 deg

 W1x2  W1y2 , w  2.967  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  3.2

U1y  0.8

γ  32.3 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  68.4 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ    γ  32.559 deg

γ  68.259 deg

DESIGN OF MACHINERY - 5th Ed,

SOLUTION MANUAL 5-41-3

The components of the U vector are: U1x  3.223

U1y  0.815

The length of link 4 is: u  6.

Link 1:

V1x  1.036

V1y  Z1y  S 1y

V1y  1.998

θ  atan2 V1x V1y

θ  62.590 deg

2

2

V1x  V1y

v  2.251

G1x  W1x  V1x  U1x

G1x  0.738

G1y  W1y  V1y  U1y

G1y  1.679

θ  atan2 G1x G1y

θ  66.275 deg

2

g 

9.

 U1x2  U1y2 , u  3.324  

V1x  Z1x  S 1x

v 

8.

σ  14.189 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

G1x  G1y

g  1.834

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  56.650 deg

θ2f  θ2i  β

θ2f  0.395 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  2.925

O2y  z sin ϕ  w sin θ

O2y  0.496

O4x  s cos ψ  u  cos σ

O4x  2.187

O4y  s sin ψ  u  sin σ

O4y  1.183

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition.

θrot  66.275 deg

DESIGN OF MACHINERY - 5th Ed,

Condition( a b c d ) 

SOLUTION MANUAL 5-41-4

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  2.967

θ  9.626 deg

Link 3:

v  2.251

θ  62.590 deg

Link 4:

u  3.324

σ  14.189 deg

Link 1:

g  1.834

θ  66.275 deg

Coupler:

rp  0.000

δp  0.000 deg

Crank angles:

θ2i  56.650 deg

D3

θ2f  0.395 deg

B3 3.323

D2

B2

4 5

4

5

C3 1.835

O6

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

C2

O4 6

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

4

6

D1

B1 3 5 C1

6

1.403 A3 O2 2

2.967

6.347

A1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-42-1

PROBLEM 5-42 Statement:

Design a fourbar linkage to carry the object in Figure P5-10 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0

P1y  0.0

P3x  1.750

P3y  2.228

P2x  0.743

P2y  1.514

Angles made by the body in positions 1, 2 and 3:

θP1  62.59  deg

θP2  68.25  deg

θP3  90.0 deg

Coordinates of the points C1 and E1 (used for attachment) with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

E1x  1.036

E1y  0.000

See Figure P5-10 and Mathcad file P0542.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  1.686

δ  atan2 P2x P2y

δ  116.140 deg

2

2

p 31  2.833

δ  atan2 P3x P3y

δ  128.148 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  5.660 deg

α  θP3  θP1

α  27.410 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  E1x 2  P1y  E1y 2

s  1.036

v 

 C1x  E1x 2  C1y  E1y2

v  1.036

ϕ  atan2 E1x  C1x E1y  C1y

ϕ  0.000 deg

ψ  ϕ  π

ψ  180.000 deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos ψ

S 1x  1.036

S 1y  s sin ψ

S 1y  0.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-61. Guess:

W1x  3

W1y  0.5

β  33.3 deg

β  57.0 deg

DESIGN OF MACHINERY - 5th Ed.

Given

SOLUTION MANUAL 5-42-2

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  33.028 deg

β  57.045 deg

The components of the W vector are: W1x  2.925 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  0.496

θ  9.626 deg

 W1x2  W1y2 , w  2.967  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  3.2

U1y  0.8

γ  32.3 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  68.4 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  22.323 deg

γ  41.857 deg

The components of the U vector are: U1x  4.470

U1y  1.088

σ  atan2 U1x U1y

σ  13.676 deg

DESIGN OF MACHINERY - 5th Ed.

The length of link 4 is: u  6.

V1x  Z1x  S 1x

V1x  1.036

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000 deg

v  Link 1:

2

9.

2

V1x  V1y

v  1.036

G1x  W1x  V1x  U1x

G1x  0.509

G1y  W1y  V1y  U1y

G1y  0.591

θ  atan2 G1x G1y

θ  130.699 deg

2

g 

8.

 U1x2  U1y2 , u  4.600  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

SOLUTION MANUAL 5-42-3

2

G1x  G1y

g  0.780

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  140.325 deg

θ2f  θ2i  β

θ2f  197.370 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  2.925

O2y  z sin ϕ  w sin θ

O2y  0.496

O4x  s cos ψ  u  cos σ

O4x  3.434

O4y  s sin ψ  u  sin σ

O4y  1.088

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition.

θrot  130.699 deg

DESIGN OF MACHINERY - 5th Ed.

Condition( a b c d ) 

SOLUTION MANUAL 5-42-4

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  2.967

θ  9.626 deg

Link 3:

v  1.036

θ  0.000 deg

Link 4:

u  4.600

σ  13.676 deg

Link 1:

g  0.780

θ  130.699 deg

Coupler:

rp  0.000

δp  0.000 deg

Crank angles:

D3

θ2i  140.325 deg θ2f  197.370 deg

D2 E3

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

C3

E2

D1

C2 0.780

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

C1 O2

E1

O4 2.967 4.600

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-43-1

PROBLEM 5-43 Statement:

Given:

Solution: 1.

2.

Design a fourbar linkage to carry the object in Figure P5-10 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. Add a driver dyad with a crank to control the motion of your fourbar so that it cannot move beyond positions 1 and 3. P21x  0.743

P21y  1.514

P31x  1.750

P31y  2.228

O2x  3.100

O2y  1.200

O4x  0.100

O4y  1.200

Body angles:

θP1  62.59  deg

θP2  68.25  deg

θP3  90.0 deg

See Figure P5-10 and Mathcad file P0543.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  5.660 deg

α  θP3  θP1

α  27.410 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  3.100

R1y  O2y

R2x  R1x  P21x

R2x  2.357

R2y  R1y  P21y

R2y  2.714

R3x  R1x  P31x

R3x  1.350

R3y  R1y  P31y

R3y  3.428

2

2

R1  3.324

2

2

R2  3.595

2

2

R3  3.684

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  1.200

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  21.161 deg

ζ  atan2 R2x R2y

ζ  49.027 deg

ζ  atan2 R3x R3y

ζ  68.505 deg

Solve for 2 and 3 using equations 5.34





















 

C3  0.850

 

C4  0.936

 

C5  0.610

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ

C1  0.162 C2  0.050

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-43-2





 

C6  R1 sin α  ζ  R2 sin ζ 2

C6  1.214

2

A1  C3  C4

A1  1.597

A2  C3 C6  C4 C5

A2  0.461

A3  C4 C6  C3 C5

A3  1.654

A4  C2 C3  C1 C4

A4  0.194

A5  C4 C5  C3 C6

A5  0.461

A6  C1 C3  C2 C4

A6  0.091

K1  A2  A4  A3  A6

K1  0.061

K2  A3  A4  A5  A6

K2  0.364

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  0.221

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  27.410 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  133.549 deg

The first value is the same as 3 so use the second value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  124.137 deg

 A3  sin β  A2  cos β  A4   A1  

β  55.863 deg

β  acos

β  asin

β  β

Use the first value, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  0.100

R1y  O4y

R2x  R1x  P21x

R2x  0.643

R2y  R1y  P21y

R2y  2.714

R3x  R1x  P31x

R3x  1.650

R3y  R1y  P31y

R3y  3.428

R1 

2

2

R1x  R1y

R1  1.204

R1y  1.200

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 5-43-3

2

2

R2  2.789

2

2

R3  3.804

R2 

R2x  R2y

R3 

R3x  R3y

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  85.236 deg

ζ  atan2 R2x R2y

ζ  103.329 deg

ζ  atan2 R3x R3y

ζ  115.703 deg

Solve for 2 and 3 using equations 5.34





















 

C3  1.186

 

C4  2.317

 

C5  0.624

 

C6  1.510

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  0.160 C2  1.135

A1  C3  C4

A1  6.774

A2  C3 C6  C4 C5

A2  0.345

A3  C4 C6  C3 C5

A3  4.239

A4  C2 C3  C1 C4

A4  0.977

A5  C4 C5  C3 C6

A5  0.345

A6  C1 C3  C2 C4

A6  2.820

K1  A2  A4  A3  A6

K1  12.289

K2  A3  A4  A5  A6

K2  3.165

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  9.452

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  27.410 deg

 K  K 2  K 2  K 2  2 1 2 3    2  atan  K1  K3  

  56.299 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-43-4

The first value is the same as 3, so use the second value

γ  

 A5  sin γ  A3  cos γ  A6   A1  

  43.866 deg

 A3  sin γ  A2  cos γ  A4   A1  

  43.866 deg

  acos

  asin

γ  

Use the negative value , 8.

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  1.686

δ  atan2 P21x P21y 2

p 31 

δ  116.140 deg

2

P31x  P31y

p 31  2.833

δ  atan2 P31x P31y 9.

δ  128.148 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

 E  L CC    M  N   

B C D 

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  0.621

11. The length of link 2 is:

w 

W1y  0.489 2

Z1x  2.479

2

W1x  W1y

Z1y  1.689

w  0.790

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

D  sin α

 

B'  sin γ

 

E  p 21  cos δ

 

C  cos α  1

 

F'  cos γ  1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-43-5

 

 

G'  sin γ

 

K  sin α

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

H  cos α  1

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  1.459

14. The length of link 4 is:

U1y  1.294 2

u 

U1x  U1y

S1x  1.559

2

S1y  2.494

u  1.950

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  0.920

V1y  Z1y  S1y

V1y  0.805 v 

The length of link 3 is:

2

2

V1x  V1y

v  1.222

G1x  W1x  V1x  U1x

G1x  3.000

G1y  W1y  V1y  U1y

G1y  0.000

g 

The length of link 1 is:

2

G1x  G1y

2

g  3.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  3.100

O2y  Z1y  W1y

O2y  1.200

O4x  S1x  U1x

O4x  0.100

O4y  S1y  U1y

O4y  1.200

These check with Figure P5-7. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  3.000

2

2

s  2.941

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  57.983 deg

ϕ  atan2( Z1x Z1y )

ϕ  34.270 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-43-6

θ  41.182 deg

δp  ϕ  θ

δp  75.452 deg

18. DESIGN SUMMARY Link 1:

g  3.000

Link 2:

w  0.790

Link 3:

v  1.222

Link 4:

u  1.950

Coupler point:

rP  3.000

δp  75.452 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct. However, this mechanism as designed has a branch defect. The three positions can only be reached by changing the links from a crossed circuit to an open circuit.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-44-1

PROBLEM 5-44 Statement:

Design a fourbar linkage to carry the object in Figure P5-11 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use points C and D for your attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0

P1y  0.0

P3x  2.751

P3y  2.015

P2x  2.332

P2y  0.311

Angles made by the body in positions 1, 2 and 3:

θP1  45.0 deg

θP2  24.14  deg

θP3  86.84  deg

Coordinates of the points C1 and D1 with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

D1x  1.591

D1y  1.591

See Figure P5-11 and Mathcad file P0544.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  2.353

δ  atan2 P2x P2y

δ  172.404 deg

2

2

p 31  3.410

δ  atan2 P3x P3y

δ  143.779 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  20.860 deg

α  θP3  θP1

α  41.840 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  2.250

v 

 C1x  D1x2   C1y  D1y2

v  2.250

ϕ  θP1

ϕ  45.000 deg

ψ  θP1  π

ψ  225.000 deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos θP1

S 1x  1.591

S 1y  s sin θP1

S 1y  1.591

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-65.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-44-2

Guess:

W1x  1.75 W1y  0.47

β  81 deg

β  138  deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  79.928 deg

β  137.178 deg

The components of the W vector are: W1x  0.980 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  1.547

θ  57.632 deg

 W1x2  W1y2 , w  1.831  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  0.1

U1y  7.0

γ  17.5 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  37 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ 

γ  17.457 deg

γ  37.139 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-44-3

The components of the U vector are: U1x  4.132

U1y  5.598

The length of link 4 is: u  6.

Link 1:

V1x  1.591

V1y  Z1y  S 1y

V1y  1.591

θ  atan2 V1x V1y

θ  45.000 deg

2

2

V1x  V1y

v  2.250

G1x  W1x  V1x  U1x

G1x  1.561

G1y  W1y  V1y  U1y

G1y  8.736

θ  atan2 G1x G1y

θ  100.130 deg

2

g 

9.

 U1x2  U1y2 , u  6.958  

V1x  Z1x  S 1x

v 

8.

σ  53.567 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

G1x  G1y

g  8.874

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  42.498 deg

θ2f  θ2i  β

θ2f  94.681 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  0.980

O2y  z sin ϕ  w sin θ

O2y  1.547

O4x  s cos ψ  u  cos σ

O4x  2.541

O4y  s sin ψ  u  sin σ

O4y  7.189

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition.

θrot  100.130 deg

DESIGN OF MACHINERY - 5th Ed.

Condition( a b c d ) 

SOLUTION MANUAL 5-44-4

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  1.831

θ  57.632 deg

Link 3:

v  2.250

θ  45.000 deg

Link 4:

u  6.958

σ  53.567 deg

Link 1:

g  8.874

θ  100.130 deg

Coupler:

rp  0.000

δp  0.000 deg

Crank angles:

θ2i  42.498 deg

7.646

θ2f  94.681 deg

O4 4

O2 A3

6.958 8.874

B1

4 B3

2 1.593

D1 D2

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

3

A1

D3 5

C2

C3

6

5 C1

6 O6 1.831

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-45-1

PROBLEM 5-45 Statement:

Design a fourbar linkage to carry the object in Figure P5-11 through the three positions shown in their numbered order without regard for the fixed pivots shown. Use any points on the object as attachment points. Determine the range of the transmission angle.

Given:

Coordinates of the points P1 , P2 and P3 with respect to C1: P1x  0.0 P1y  0.0 P2x  2.332 P3x  2.751

P2y  0.311

P3y  2.015

Angles made by the body in positions 1, 2 and 3:

θP1  45.0 deg

θP2  24.14  deg

θP3  86.84  deg

Coordinates of the points C1 and E1 (used for attachment) with respect to P1: C1x  0.0 Solution: 1.

2.

3.

4.

C1y  0.0

E1x  1.591

E1y  0.000

See Figure P5-11 and Mathcad file P0545.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  2.353

δ  atan2 P2x P2y

δ  172.404 deg

2

2

p 31  3.410

δ  atan2 P3x P3y

δ  143.779 deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  20.860 deg

α  θP3  θP1

α  41.840 deg

Using Figure P5-9, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  E1x 2  P1y  E1y 2

s  1.591

v 

 C1x  E1x 2  C1y  E1y2

v  1.591

ϕ  atan2 E1x  C1x E1y  C1y

ϕ  0.000 deg

ψ  ϕ  π

ψ  180.000 deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos ψ

S 1x  1.591

S 1y  s sin ψ

S 1y  0.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above. Use guess values from a graphical solution such as that for Problem 3-65. Guess:

W1x  1.75 W1y  0.47

β  81 deg

β  138  deg

DESIGN OF MACHINERY - 5th Ed.

Given

SOLUTION MANUAL 5-45-2

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  79.928 deg

β  137.178 deg

The components of the W vector are: W1x  0.980 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  1.547

θ  57.632 deg

 W1x2  W1y2 , w  1.831  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  1

U1y  5.0

γ  17.5 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

γ  37 deg

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  21.548 deg

γ  27.543 deg

The components of the U vector are: U1x  3.524

U1y  5.963

σ  atan2 U1x U1y

σ  59.417 deg

DESIGN OF MACHINERY - 5th Ed.

The length of link 4 is: u  6.

V1x  Z1x  S 1x

V1x  1.591

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000 deg

v  Link 1:

2

9.

2

V1x  V1y

v  1.591

G1x  W1x  V1x  U1x

G1x  0.952

G1y  W1y  V1y  U1y

G1y  7.510

θ  atan2 G1x G1y

θ  97.228 deg

2

g 

8.

 U1x2  U1y2 , u  6.926  

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

SOLUTION MANUAL 5-45-3

2

G1x  G1y

g  7.570

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  39.596 deg

θ2f  θ2i  β

θ2f  97.582 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  0.000 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  0.980

O2y  z sin ϕ  w sin θ

O2y  1.547

O4x  s cos ψ  u  cos σ

O4x  1.933

O4y  s sin ψ  u  sin σ

O4y  5.963

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y 11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

θrot  97.228 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-45-4

Condition( g u v w)  "non-Grashof" 12. DESIGN SUMMARY Link 2:

w  1.831

θ  57.632 deg

Link 3:

v  1.591

θ  0.000 deg

Link 4:

u  6.926

σ  59.417 deg

Link 1:

g  7.570

θ  97.228 deg

Coupler:

rp  0.000

δp  0.000 deg

Crank angles:

θ2i  39.596 deg θ2f  97.582 deg

O4 6.926

13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

14. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

7.570 D1 D2

D3 C2 C3

C1

E1

O2 1.831

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-46-1

PROBLEM 5-46 Statement:

Given:

Solution: 1.

2.

Design a fourbar linkage to carry the object in Figure P5-11 through the three positions shown in their numbered order using the fixed pivots shown. Determine the range of the transmission angle. P21x  2.332

P21y  0.311

P31x  2.751

P31y  2.015

O2x  3.679

O2y  3.282

O4x  0.321

O4y  3.282

Body angles:

θP1  45.0 deg

θP2  24.14  deg

θP3  86.84  deg

See Figure P5-11 and Mathcad file P0546.

Determine the angle changes between precision points from the body angles given. α  θP2  θP1

α  20.860 deg

α  θP3  θP1

α  41.840 deg

Using Figure 5-6, determine the magnitudes of R1, R2, and R3 and their x and y components. R1x  O2x

3.

4.

R1x  3.679

R1y  O2y

R2x  R1x  P21x

R2x  1.347

R2y  R1y  P21y

R2y  2.971

R3x  R1x  P31x

R3x  0.928

R3y  R1y  P31y

R3y  1.267

2

2

R1  4.930

2

2

R2  3.262

2

2

R3  1.571

R1 

R1x  R1y

R2 

R2x  R2y

R3 

R3x  R3y

R1y  3.282

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  41.736 deg

ζ  atan2 R2x R2y

ζ  65.611 deg

ζ  atan2 R3x R3y

ζ  53.780 deg

Solve for 2 and 3 using equations 5.34





















 

C3  0.376

 

C4  3.632

 

C5  3.260

 

C6  1.214

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ

C1  2.297 C2  2.258

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 5-46-2 2

A1  C3  C4

A1  13.335

A2  C3 C6  C4 C5

A2  11.382

A3  C4 C6  C3 C5

A3  5.637

A4  C2 C3  C1 C4

A4  7.492

A5  C4 C5  C3 C6

A5  11.382

A6  C1 C3  C2 C4

A6  9.068

K1  A2  A4  A3  A6

K1  136.387

K2  A3  A4  A5  A6

K2  60.979

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

K3  60.933

2

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  90.019 deg

 K  K 2  K 2  K 2  2 1 2 3  β  2  atan  K1  K3  

β  41.840 deg

The second value is the same as 3 so use the first value

β  β

 A5  sin β  A3  cos β  A6   A1  

β  99.989 deg

 A3  sin β  A2  cos β  A4   A1  

β  80.011 deg

β  acos

β  asin

β  β

Use the first value, 5.

Repeat steps 2, 3, and 4 for the right-hand dyad to find 1 and 2. R1x  O4x

R1x  0.321

R1y  O4y

R2x  R1x  P21x

R2x  2.653

R2y  R1y  P21y

R2y  2.971

R3x  R1x  P31x

R3x  3.072

R3y  R1y  P31y

R3y  1.267

2

2

R1  3.298

2

2

R2  3.983

R1 

R1x  R1y

R2 

R2x  R2y

R1y  3.282

DESIGN OF MACHINERY - 5th Ed.

R3  6.

7.

SOLUTION MANUAL 5-46-3

2

2

R3x  R3y

R3  3.323

Using Figure 5-6, determine the angles that R1, R2, and R3 make with the x axis. ζ  atan2 R1x R1y

ζ  95.586 deg

ζ  atan2 R2x R2y

ζ  131.764 deg

ζ  atan2 R3x R3y

ζ  157.587 deg

Solve for 2 and 3 using equations 5.34





















 

C3  0.644

 

C4  0.964

 

C5  3.522

 

C6  0.210

C1  R3 cos α  ζ  R2 cos α  ζ C2  R3 sin α  ζ  R2 sin α  ζ C3  R1 cos α  ζ  R3 cos ζ





C4  R1 sin α  ζ  R3 sin ζ





C5  R1 cos α  ζ  R2 cos ζ





C6  R1 sin α  ζ  R2 sin ζ 2

2

C1  1.539 C2  1.834

A1  C3  C4

A1  1.343

A2  C3 C6  C4 C5

A2  3.260

A3  C4 C6  C3 C5

A3  2.469

A4  C2 C3  C1 C4

A4  0.303

A5  C4 C5  C3 C6

A5  3.260

A6  C1 C3  C2 C4

A6  2.758

K1  A2  A4  A3  A6

K1  7.799

K2  A3  A4  A5  A6

K2  8.243

2

K3 

2

2

2

A1  A2  A3  A4  A6

2

2

K3  11.309

 K  K 2  K 2  K 2  2 1 2 3  γ  2  atan  K1  K3  

γ  41.840 deg

 K  K 2  K 2  K 2  2 1 2 3   K1  K3  

  51.335 deg

  2  atan

The first value is the same as 3, so use the second value

γ  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-46-4

 A5  sin γ  A3  cos γ  A6   A1  

  8.321 deg

 A3  sin γ  A2  cos γ  A4   A1  

  8.321 deg

  acos

  asin

γ  

Both are the same so use the first value , 8.

Use the method of Section 5.7 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. 2

p 21 

2

P21x  P21y

p 21  2.353

δ  atan2 P21x P21y 2

p 31 

δ  172.404 deg

2

P31x  P31y

p 31  3.410

δ  atan2 P31x P31y 9.

δ  143.779 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

B  sin β

 

 

E  p 21  cos δ

 

H  cos α  1

A  cos β  1

 

D  sin α

 

F  cos β  1

 

G  sin β

 

 

K  sin α

 

L  p 31  cos δ

 A F AA   B G 

 

C  cos α  1

 

M  p 21  sin δ

B C D 

 E  L CC    M  N   

 G H K  A D C   F K H 

N  p 31  sin δ

 W1x   W1y   AA  1 CC  Z1x   Z1y   

10. The components of the W and Z vectors are: W1x  1.732

11. The length of link 2 is:

w 

W1y  1.000 2

Z1x  1.947

2

W1x  W1y

Z1y  2.282

w  2.000

12. Evaluate terms in the US coefficient matrix and constant vector from equations (5.25) and form the matrix and vector:

 

A'  cos γ  1

 

B'  sin γ

 

E  p 21  cos δ

 

H  cos α  1

D  sin α

G'  sin γ

 

 

 

C  cos α  1

 

F'  cos γ  1

 

K  sin α

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-46-5

 

 

L  p 31  cos δ

 A' F' AA    B'  G' 

 

M  p 21  sin δ

B' C D 

N  p 31  sin δ

 E  L CC    M  N   

 G' H K  A' D C   F' K H 

 U1x   U1y   AA  1 CC  S1x   S1y   

13. The components of the W and Z vectors are: U1x  1.178 14. The length of link 4 is:

U1y  6.903 2

u 

U1x  U1y

S1x  0.857

2

S1y  3.621

u  7.002

15. Solving for links 3 and 1 from equations 5.2a and 5.2b. V1x  Z1x  S1x

V1x  1.090

V1y  Z1y  S1y

V1y  5.903 v 

The length of link 3 is:

2

2

V1x  V1y

v  6.002

G1x  W1x  V1x  U1x

G1x  4.000

G1y  W1y  V1y  U1y

G1y  1.776  10

g 

The length of link 1 is:

2

G1x  G1y

2

 15

g  4.000

16. Check the location of the fixed pivots with respect to the global frame using the calculated vectors W1, Z1, U1, and S1. O2x  Z1x  W1x

O2x  3.679

O2y  Z1y  W1y

O2y  3.282

O4x  S1x  U1x

O4x  0.321

O4y  S1y  U1y

O4y  3.282

These check with Figure P5-7. 17. Determine the location of the coupler point with respect to point A and line AB. 2

2

z  3.000

2

2

s  3.721

Distance from A to P

z 

Z1x  Z1y

Angle BAP (p)

s 

S1x  S1y

ψ  atan2( S1x S1y)

ψ  76.683 deg

ϕ  atan2( Z1x Z1y )

ϕ  49.525 deg

rP  z

θ  atan2 z cos ϕ  s cos ψ z sin ϕ  s sin ψ  θ  79.535 deg

δp  ϕ  θ

δp  30.010 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-46-6

18. DESIGN SUMMARY Link 1:

g  4.000

Link 2:

w  2.000

Link 3:

v  6.002

Link 4:

u  7.002

Coupler point:

rP  3.000

δp  30.010 deg

19. VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O2 and O4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

20. A driver dyad with a crank should be added to link 2 to control the motion of the fourbar so that it cannot move beyond positions 1 and 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-47-1

PROBLEM 5-47 Statement: Given:

Write a program to generate and plot the circle-point and center-point circles for Problem 5-40 using an equation solver or any program language. P21x  4.500

P21y  1.900

P31x  7.600

P31y  1.000

O2x  2.900

O2y  5.100

O4x  5.900

O4y  5.100

Body angles:

θP1  33.70  deg

θP2  14.60  deg

θP3  0.0 deg

Assumptions: Let the position 1 to position 2 rotation angles be: β  47.808 deg and γ  55.029 deg Let the position 1 to position 2 coupler rotation angle be: α  19.100 deg Solution: 1.

See Figure P5-9 and Mathcad file P0547.

Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  4.885

δ  atan2 P21x P21y p 31 

2

δ  22.891 deg

2

P31x  P31y

p 31  7.666

δ  atan2 P31x P31y 2.

δ  7.496 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  33.700 deg

β  0  deg 0.5 deg  360  deg

 

B  sin β

 

 

E  p 21  cos δ

A  cos β  1 D  sin α

 

 

 

C  cos α  1

 

F β  cos β  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G β  sin β L  p 31  cos δ

 

 

 

   

B C D   A   F  β G β H  α K α   AA  α β   B D A C     G β F  β K α H  α 

 E  L CC    M  N   

 1 CC















W1y α β  DD α β 2









Z1y α β  DD α β 4

DD α β  AA α β

W1x α β  DD α β 1 Z1x α β  DD α β 3 3.

















Check this against the solutions in Problem 5-40:





W1x α 76.089 deg  5.043





W1y α 76.089 deg  3.126

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-47-2







Z1x α 76.089 deg  2.143



Z1y α 76.089 deg  1.974

These are the same as the values calculated in Problem 5-40. 4.

Form the vector N, whose tip describes the center-point circle for the WZ dyad.

























Nx α β  W1x α β  Z1x α β Ny α β  W1y α β  Z1y α β 5.

Plot the center-point circle for the WZ dyad. Center-Point Circle for WZ Dyad 4

6

8





Ny α β 

 10

 12

 14

0

2

4





6

8

10

Nx α β 

4.

Form the vector Z, whose tip describes the circle-point circle for the WZ dyad. β  76.089 deg





α  0  deg 1  deg  360  deg





Zx α β  Z1x α β

5.









Zy α β  Z1y α β

Plot the circle-point circle for the WZ dyad (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-47-3

Circle-Point Circle for WZ Dyad 2

1

0



Zy α β 

 1

2

3 4

3

2



Zx α β 

6.



1

0

1

Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  33.700 deg

γ  0  deg 1  deg  360  deg

 

B  sin γ

 

 

E  p 21  cos δ

A  cos γ  1 D  sin α

 

 

 

C  cos α  1

 

F γ  cos γ  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G γ  sin γ L  p 31  cos δ

 

 

 

   

B C D   A   F  γ G γ H  α K α   AA  α γ   B D A C     G γ F  γ K α H  α 

 E  L CC    M  N   

 1 CC















U1y α γ  DD α γ 2









S1y α γ  DD α γ 4

DD α γ  AA α γ

U1x α γ  DD α γ 1 S1x α γ  DD α γ 3 7.

















Check this against the solutions in Problem 5-40:





U1x α 92.928 deg  2.773





U1y α 92.928 deg  2.998

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 5-47-4





S1x α 92.928 deg  3.128



S1y α 92.928 deg  2.102

These are the same as the values calculated in Problem 5-40. 8.

Form the vector M, whose tip describes the center-point circle for the US dyad.

























Mx α γ  U1x α γ  S1x α γ My α γ  U1y α γ  S1y α γ 9.

Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 4

6

8



My α γ

  10

 12

 14

0

2

4



6



8

10

Mx α γ

10. Form the vector S, whose tip describes the circle-point circle for the US dyad. γ  92.928 deg





α  0  deg 1  deg  360  deg





Sx α γ  S1x α γ

11. Plot the circle-point circle for the WZ dyad (see next page).









Sy α γ  S1y α γ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-47-5

Circle-Point Circle for the US Dyad 1

0

1



Sy α γ

 2

3

4 1

0

1





Sx α γ

2

3

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-48-1

PROBLEM 5-48 Statement:

Write a program to generate and plot the circle-point and center-point circles for Problem 5-43 using an equation solver or any program language. P21x  0.743

P21y  1.514

P31x  1.750

P31y  2.228

O2x  3.100

O2y  1.200

O4x  0.100

O4y  1.200

Body angles:

θP1  62.59  deg

θP2  68.25  deg

θP3  90.0 deg

Given:

Assumptions: Let the position 1 to position 2 rotation angles be: β  124.137  deg and γ  43.866 deg Let the position 1 to position 2 coupler rotation angle be: α  5.660  deg Solution: 1.

See Figure P5-10 and Mathcad file P0548.

Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  1.686

δ  atan2 P21x P21y p 31 

2

δ  116.140 deg

2

P31x  P31y

p 31  2.833

δ  atan2 P31x P31y 2.

δ  128.148 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  27.410 deg

β  0  deg 0.5 deg  360  deg

 

B  sin β

 

 

E  p 21  cos δ

A  cos β  1 D  sin α

 

 

 

C  cos α  1

 

F β  cos β  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G β  sin β L  p 31  cos δ

 

 

 

   

B C D   A   F  β G β H  α K α   AA  α β   B D A C     G β F  β K α H  α 

 E  L CC    M  N   

 1 CC















W1y α β  DD α β 2









Z1y α β  DD α β 4

DD α β  AA α β

W1x α β  DD α β 1 Z1x α β  DD α β 3 3.

















Check this against the solutions in Problem 5-43:





W1x α 133.549  deg  0.621





W1y α 133.549  deg  0.489

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-48-2







Z1x α 133.549  deg  2.479



Z1y α 133.549  deg  1.689

These are the same as the values calculated in Problem 5-43. 4.

Form the vector N, whose tip describes the center-point circle for the WZ dyad.

























Nx α β  W1x α β  Z1x α β Ny α β  W1y α β  Z1y α β 5.

Plot the center-point circle for the WZ dyad. Center-Point Circle for WZ Dyad 1

0





Ny α β   1

2

3 7

6



5

4



3

Nx α β 

4.

Form the vector Z, whose tip describes the circle-point circle for the WZ dyad. β  133.549  deg





α  8  deg 9  deg  364  deg



Zx α β3  Z1x α β

5.



Plot the circle-point arc for the WZ dyad (see next page).









Zy α β  Z1y α β

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-48-3

Circle-Point Circle for WZ Dyad 20

10

0



Zy α β 

  10

 20

 30  20

 10

0



Zx α β 

6.



10

20

30

Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  27.410 deg

γ  0  deg 1  deg  360  deg

 

B  sin γ

 

 

E  p 21  cos δ

A  cos γ  1 D  sin α

 

 

 

C  cos α  1

 

F γ  cos γ  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G γ  sin γ L  p 31  cos δ

 

 

 

   

B C D   A   F  γ G γ H  α K α   AA  α γ   B D A C     G γ F  γ K α H  α 

 E  L CC    M  N   

 1 CC















U1y α γ  DD α γ 2









S1y α γ  DD α γ 4

DD α γ  AA α γ

U1x α γ  DD α γ 1 S1x α γ  DD α γ 3 7.

















Check this against the solutions in Problem 5-43:





U1x α 56.299 deg  1.459





U1y α 56.299 deg  1.294

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 5-48-4





S1x α 56.299 deg  1.559



S1y α 56.299 deg  2.494

These are the same as the values calculated in Problem 5-43. 8.

Form the vector M, whose tip describes the center-point circle for the US dyad.

























Mx α γ  U1x α γ  S1x α γ My α γ  U1y α γ  S1y α γ 9.

Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 0

2

4



My α γ

 6

8

 10 8

6

4





2

0

2

Mx α γ

10. Form the vector S, whose tip describes the circle-point circle for the US dyad. γ  56.299 deg





α  10 deg 11 deg  363  deg





Sx α γ  S1x α γ

11. Plot the circle-point arc for the WZ dyad (see next page).









Sy α γ  S1y α γ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-48-5

Circle-Point Circle for the US Dyad 20

10



Sy α γ



0

 10

 20  15

 10



5



Sx α γ

0

5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-49-1

PROBLEM 5-49 Statement:

Write a program to generate and plot the circle-point and center-point circles for Problem 5-46 using an equation solver or any program language.

Given: P21x  2.332

P21y  0.311

P31x  2.751

P31y  2.015

O2x  3.679

O2y  3.282

O4x  0.321

O4y  3.282

Body angles:

θP1  45.0 deg

θP2  24.14  deg

θP3  86.84  deg

Assumptions: Let the position 1 to position 2 rotation angles be: β  99.989 deg and γ  8.321  deg Let the position 1 to position 2 coupler rotation angle be: α  20.860 deg Solution: 1.

See Figure P5-11 and Mathcad file P0549.

Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  2.353

δ  atan2 P21x P21y p 31 

2

δ  172.404 deg

2

P31x  P31y

p 31  3.410

δ  atan2 P31x P31y 2.

δ  143.779 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  41.840 deg

β  0  deg 1  deg  360  deg

 

B  sin β

 

 

E  p 21  cos δ

A  cos β  1 D  sin α

 

 

 

C  cos α  1

 

F β  cos β  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G β  sin β L  p 31  cos δ

 

 

 

   

B C D   A   F  β G β H  α K α   AA  α β   B D A C     G β F  β K α H  α 

 E  L CC    M  N   

 1 CC















W1y α β  DD α β 2









Z1y α β  DD α β 4

DD α β  AA α β

W1x α β  DD α β 1 Z1x α β  DD α β 3

















DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 5-49-2

Check this against the solutions in Problem 5-46:





W1y α 90.019 deg  1.000





Z1y α 90.019 deg  2.282

W1x α 90.019 deg  1.732 Z1x α 90.019 deg  1.947









These are the same as the values calculated in Problem 5-46. 4.

Form the vector N, whose tip describes the center-point circle for the WZ dyad.

























Nx α β  W1x α β  Z1x α β Ny α β  W1y α β  Z1y α β 5.

Plot the center-point circle for the WZ dyad. Center-Point Circle for WZ Dyad 0

2





Ny α β   4

6

8 4

2



0



2

Nx α β 

4.

Form the vector Z, whose tip describes the circle-point circle for the WZ dyad. β  90.019 deg





α  0  deg 1  deg  360  deg





Zx α β  Z1x α β

5.









Zy α β  Z1y α β

Plot the circle-point circle for the WZ dyad (see next page).

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-49-3

Circle-Point Circle for WZ Dyad 4

2



Zy α β 



0

2

4  10

8

6



Zx α β 

6.



4

2

0

Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  41.840 deg

γ  0  deg 1  deg  360  deg

 

B  sin γ

 

 

E  p 21  cos δ

A  cos γ  1 D  sin α

 

 

 

C  cos α  1

 

F γ  cos γ  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G γ  sin γ L  p 31  cos δ

 

 

 

   

B C D   A   F  γ G γ H  α K α   AA  α γ   B D A C     G γ F  γ K α H  α 

 E  L CC    M  N   

 1 CC















U1y α γ  DD α γ 2









S1y α γ  DD α γ 4

DD α γ  AA α γ

U1x α γ  DD α γ 1 S1x α γ  DD α γ 3 7.

















Check this against the solutions in Problem 5-46:





U1x α 51.335 deg  1.178





U1y α 51.335 deg  6.903

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 5-49-4





S1x α 51.335 deg  0.857



S1y α 51.335 deg  3.621

These are the same as the values calculated in Problem 5-46. 8.

Form the vector M, whose tip describes the center-point circle for the US dyad.

























Mx α γ  U1x α γ  S1x α γ My α γ  U1y α γ  S1y α γ 9.

Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 20

0





My α γ  20

 40

 60  60

 40

 20



0



20

Mx α γ

10. Form the vector S, whose tip describes the circle-point circle for the US dyad. γ  51.335 deg





α  0  deg 1  deg  360  deg





Sx α γ  S1x α γ

11. Plot the circle-point circle for the WZ dyad (see next page).









Sy α γ  S1y α γ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-49-5

Circle-Point Circle for the US Dyad 7

6

5



Sy α γ

 4

3

2 2

1

0



Sx α γ



1

2

3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-50-1

PROBLEM 5-50 Statement:

In Example 5-2 the precision points and rotation angles are specified while the input and output rotation angles  and  are free choices. Using the choices given for 2 and 2, determine the radii and center coordinates of the center-point circles for O2 and O4. Plot those circles (or portions of them) and show that the choices of 3 and 3 give a solution that falls on the center-point circles.

Given: P21x  2.394

P21y  1.449

P31x  3.761

P31y  1.103

O2x  1.234

O2y  7.772

O4x  2.737

O4y  0.338

Body angles:

θP1  38.565 deg

θP2  6.435  deg

θP3  47.865 deg

Assumptions: Let the position 1 to position 2 rotation angles be: β  342.3  deg and γ  30.9 deg Let the position 1 to position 2 coupler rotation angle be: α  45.0 deg Solution: 1.

See Figure 5-5 and Mathcad file P0550.

Use the method of Section 5.6 to synthesize the linkage. Start by determining the magnitudes of the vectors P21 and P31 and their angles with respect to the X axis. p 21 

2

2

P21x  P21y

p 21  2.798

δ  atan2 P21x P21y p 31 

2

δ  31.185 deg

2

P31x  P31y

p 31  3.919

δ  atan2 P31x P31y 2.

δ  16.345 deg

Evaluate terms in the WZ coefficient matrix and constant vector from equations (5.25) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. Since this is a non-Grashof linkage, the range of 3 is limited to approximately -56 deg < 3 < -3 deg. α  9.3 deg

β  56 deg 55 deg  3  deg

 

B  sin β

 

 

E  p 21  cos δ

A  cos β  1 D  sin α

 

 

 

C  cos α  1

 

F β  cos β  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G β  sin β L  p 31  cos δ

 

 

 

   

B C D   A  F β G β H α K α           AA  α β    B A D C  G β F β K α H α           

 E  L CC    M  N   

 1 CC















W1y α β  DD α β 2









Z1y α β  DD α β 4

DD α β  AA α β

W1x α β  DD α β 1 Z1x α β  DD α β 3

















DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 5-50-2

Check this against the solutions in Example 5-2:





W1y α 324.8  deg  6.832





Z1y α 324.8  deg  0.940

W1x α 324.8  deg  0.055 Z1x α 324.8  deg  1.179









These are the same as the values calculated in Example 5-2. 4.

Form the vector N, whose tip describes the center-point circle for the WZ dyad.

























Nx α β  W1x α β  Z1x α β Ny α β  W1y α β  Z1y α β 5.

Plot the center-point circle for the WZ dyad. Portion Center-Point Circle for WZ Dyad 5

 10





Ny α β   15

 20

 25  15

 10





5

0

Nx α β 

4.

Find the center and radius of this arc by taking three points on it and, from them, determine the radius and center point of the circle. Three points: x1  Nx α 56 deg x1  0.470

  y1  Ny α 56 deg x2  Nx α 10 deg y2  Ny α 10 deg x3  Nx α 3  deg y3  Ny α 3  deg

y1  6.430 x2  5.506 y2  14.302 x3  13.631 y3  23.695

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-50-3

2

a 

Form four ratios:

b 

2

d 

4.

2

a  12.278

2   y2  y1 

x2  x1

b  0.640

y2  y1 2

c 

2

y2  y1  x2  x1

2

2

y3  y2  x3  x2

2

c  32.547

2   y2  y1 

x3  x2

d  0.865

y3  y2 ac

Circle center x coordinate:

h 

h  89.999

Circle center y coordinate:

k  a  b  h

Center-point circle radius:

R 

bd

k  45.303

 x1  h  2   y1  k 2

R  103.40

Show that the point determined by 3 = 324.8 deg falls on this circle.

  yb3  Ny α 324.8  deg xb3  Nx α 324.8  deg

Coordinates of this point:

xb3  1.234 yb3  7.772

Substitute into radius equation: R 

 xb3  h 2  yb3  k2

R  103.42

Since the radius is the same, this point does fall on the center=point circle for the WZ dyad. 6.

Evaluate terms in the US coefficient matrix and constant vector from equations (5.31) and form the matrix and vector to get the center-point and circle-point circles for the left dyad. α  9.3 deg

γ  0  deg 1  deg  360  deg

 

B  sin γ

 

 

E  p 21  cos δ

A  cos γ  1 D  sin α

 

 

 

C  cos α  1

 

F γ  cos γ  1

 

K α  sin α

 

N  p 31  sin δ

 

H α  cos α  1

 

M  p 21  sin δ

G γ  sin γ L  p 31  cos δ







 

 

   

B C D   A  F γ G γ H α K α           AA  α γ    B D A C  G γ     F  γ K α H  α 



 

 E  L CC    M  N   

 1 CC



DD α γ  AA α γ





U1x α γ  DD α γ 1









U1y α γ  DD α γ 2

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 5-50-4









S1x α γ  DD α γ 3 7.







S1y α γ  DD α γ 4

Check this against the solutions in Example 5-2:





U1y α 80.6 deg  1.825





S1y α 80.6 deg  1.487

U1x α 80.6 deg  2.628 S1x α 80.6 deg  0.109









These are the same as the values calculated in Example 5-2. 8.

Form the vector M, whose tip describes the center-point circle for the US dyad.

























Mx α γ  U1x α γ  S1x α γ My α γ  U1y α γ  S1y α γ 9.

Plot the center-point circle for the US dyad. Center-Point Circle for US Dyad 60

40

20



My α γ



0

 20

 40

 60

0

20

40





60

80

100

Mx α γ

10. Find the center and radius of this circle by taking three points on it and, from them, determine the radius and center point of the circle. Three points:

  y1  My α 0  deg x1  Mx α 0  deg

x1  42.228 y1  44.088

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-50-5

  y2  My α 90 deg x3  Mx  α 350  deg y3  My α 350  deg x2  Mx α 90 deg

2

Form four ratios:

a  b 

2

d 

y2  0.214 x3  39.862 y3  42.592 2

y2  y1  x2  x1 2   y2  y1 

x2  x1

a  41.977 b  0.891

y2  y1 2

c 

2

x2  2.744

2

2

y3  y2  x3  x2

2

2   y2  y1 

x3  x2

c  38.321 d  0.876

y3  y2 ac

Circle center x coordinate:

h 

Circle center y coordinate:

k  a  b  h

Center-point circle radius:

R 

bd

h  45.441 k  1.479

 x1  h  2   y1  k 2

R  42.73

11. Show that the point determined by 3 = 80.6 deg falls on this circle. Coordinates of this point:

  yg3  My  α 80.6 deg xg3  Mx α 80.6 deg

xg3  2.738 yg3  0.338

Substitute into radius equation: R 

 xg3  h 2  yg3  k2

R  42.72

Since the radius is the same, this point does fall on the centerpoint circle for the US dyad.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-51-1

PROBLEM 5-51 Statement:

Design a driver dyad to move link 2 of Example 5-1 from position 1 to position 2 and return.

Given:

Solution to Example 5-1: Length of link 2

w  2.467

Angle of link 2 in first position

θ  71.6 deg

Rotation angle for link 2

β  38.4 deg

Coordinates of O2

O2x  0.00

Design Choice:

Solution: 1.

O2y  0.00

See Example 5-1, Figure 5-3 and Mathcad file P0551.

Link 2 of the solution to Example 5-1 will become the driven link for the driver dyad. The driver dyad will be links 5 and 6 and the fixed pivot for the dyad will be at O6. Select a point on link 2 of Example 5-1 and label it C. Let the distance O2C be R2  1.200. The solution that follows uses the algorithm presented in Section 5.2 with changes in nomenclature to account for the fact that the driven link is link 2 and the points A and B are already defined on the fourbar of Example 5-1.

2.

Determine the coordinates of the points C1 and C2 using equations 5.0a. Determine the vector M using 5.0b. C1x  O2x  R2 cos θ

C1x  0.379

C1y  O2y  R2 sin θ

C1y  1.139





C2x  0.410





C2y  1.128

C2x  O2x  R2 cos θ  β C2y  O2y  R2 sin θ  β RC1 

 C1x     C1y 

RC2 

 C2x     C2y 

M  RC2  RC1

3.

Select a suitable value for the multiplier, K, in equation 5.0d say K  3.0.

4.

Determine the coordinates of the crank pivot, O6 using equation 5.0d. RO6  RC1  K M

O6x  RO6

1

O6x  1.989 5.





2

O6y  1.106

R6  0.395

Determine the length of the driver dyad coupler, link 5, and the ground link from eqauation 5.0f. R5  RC1  RO6  R6 RO2 

R5  1.973

 O2x     O2y 

R1  RO2  RO6 7.

 0.789     0.011 

Determine the length of the driving crank using equation 5.0e. R6  R2 sin 0.5 β

6.

O6y  RO6

M

Determine the Grashof condition.

R1  2.275

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-51-2

R1  2.275

R2  1.200

R5  1.973

R6  0.395

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition R1 R2 R5 R6  "Grashof" 8.

Draw the linkage using the link lengths and fixed pivot coordinates calculated above to verify that the driver dyad will perform as required. Solve for the coordinates of O4 using equations 5.2: Given:

z  1.298

ϕ  26.5 deg

u  1.486

σ  15.4 deg

Z1x  z cos ϕ S 1x  s cos ψ

W1x  w cos θ U1x  u  cos σ Z1 

 Z1x     Z1y 

ψ  104.1  deg

Z1y  z sin ϕ

Z1x  1.162

Z1y  0.579

S 1y  s sin ψ

S 1x  0.252

S 1y  1.004

W1y  w sin θ

W1x  0.779

W1y  2.341

U1y  u  sin σ

U1x  1.433 S1 

s  1.035

 S1x     S1y 

V1  Z1  S1

G1  W1  V1  U1

g  G1

g  1.701

U1y  0.395

 W1x     W1y   0.760  G1     1.522 

U1 

v  V1

v  1.476

P2

P1

B2 A1 A2

38.40°

B1

O6

C2

O4

° .60 71

C1

D1

D2

y

O2

 U1x     U1y 

W1 

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-52-1

PROBLEM 5-52 Statement:

Design a driver dyad to move link 2 of Example 5-2 from position 1 to position 3 and return.

Given:

Solution to Example 5-2:

Solution: 1.

Length of link 2

w  6.832

Angle of link 2 in first position

θ  atan

Rotation angle for link 2

β  35.20  deg

Coordinates of O2

O2x  1.234

6.832 

  0.055 

θ  89.539 deg

O2y  7.772

See Example 5-2, Figure 5-5, Table 5-1, and Mathcad file P0552.

Link 2 of the solution to Example 5-2 will become the driven link for the driver dyad. The driver dyad will be links 5 and 6 and the fixed pivot for the dyad will be at O6. Select a point on link 2 of Example 5-2 and label it C. Let the distance O2C be R2  4.000. The solution that follows uses the algorithm presented in Section 5.2 with changes in nomenclature to account for the fact that the driven link is link 2 and the points A and B are already defined on the fourbar of Example 5-2.

2.

Determine the coordinates of the points C1 and C3 using equations 5.0a. Determine the vector M using 5.0b. C1x  O2x  R2 cos θ

C1x  1.202

C1y  O2y  R2 sin θ

C1y  3.772





C3x  1.098





C3y  4.522

C3x  O2x  R2 cos θ  β C3y  O2y  R2 sin θ  β RC1 

 C1x     C1y 

RC3 

 C3x     C3y 

M  RC3  RC1

3.

Select a suitable value for the multiplier, K, in equation 5.0d say K  3.0.

4.

Determine the coordinates of the crank pivot, O6 using equation 5.0d. RO6  RC1  K M

O6x  RO6

1

O6x  5.698 5.





2

O6y  6.022

R6  1.209

Determine the length of the driver dyad coupler, link 5, and the ground link from eqauation 5.0f. R5  RC1  RO6  R6 RO2 

R5  6.047

 O2x     O2y 

R1  RO2  RO6 7.

 2.300     0.750 

Determine the length of the driving crank using equation 5.0e. R6  R2 sin 0.5 β

6.

O6y  RO6

M

Determine the Grashof condition.

R1  7.149

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-52-2

R1  7.149

R2  4.000

R5  6.047

R6  1.209

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition R1 R2 R5 R6  "Grashof" 8.

Draw the linkage using the link lengths and fixed pivot coordinates calculated above to verify that the driver dyad will perform as required. Solve for the vectors W, Z, U, and S. Given:

y

W1x  0.055

O4 P1

x

W1y  6.832 Z1x  1.179

A1 P3

Z1y  0.940

B1

U1x  2.628

A3

U1y  1.825

B3

S 1x  0.109 S 1y  1.487

C1

 W1x  W1     W1y 

D1

 S1x     S1y 

w  W1

° 39 .5 89

 Z1x  Z1     Z1y   U1x  U1     U1y  S1 

C3

35.2 00°

O6 D3

O2

w  6.832

u  U1

u  3.200

θ  atan2 W1x W1y

θ  89.539 deg

σ  atan2 U1x U1y

σ  145.222 deg

z  Z1

z  1.508

s  S1

s  1.491

ϕ  atan2 Z1x Z1y

ϕ  38.565 deg

ψ  atan2 S 1x S 1y

ψ  94.192 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-53-1

PROBLEM 5-53 Statement:

Design a driver dyad to move link 2 of Example 5-3 from position 1 to position 3 and return.

Given:

Solution to Example 5-3:

Solution: 1.

Length of link 2

w  1.000

Angle of link 2 in first position

θ  atan

Rotation angle for link 2

β  23.96  deg

Coordinates of O2

O2x  1.712

0.500 

  0.866 

θ  30.001 deg

O2y  0.033

See Example 5-3, Figure 5-7, Table 5-2, and Mathcad file P0553.

Link 2 of the solution to Example 5-3 will become the driven link for the driver dyad. The driver dyad will be links 5 and 6 and the fixed pivot for the dyad will be at O6. Select a point on link 2 of Example 5-3 and label it C. Let the distance O2C be R2  0.500. The solution that follows uses the algorithm presented in Section 5.2 with changes in nomenclature to account for the fact that the driven link is link 2 and the points A and B are already defined on the fourbar of Example 5-3.

2.

Determine the coordinates of the points C1 and C3 using equations 5.0a. Determine the vector M using 5.0b. C1x  O2x  R2 cos θ

C1x  1.279

C1y  O2y  R2 sin θ

C1y  0.283





C3x  1.418





C3y  0.437

C3x  O2x  R2 cos θ  β C3y  O2y  R2 sin θ  β RC1 

 C1x     C1y 

RC3 

 C3x     C3y 

M  RC3  RC1

3.

Select a suitable value for the multiplier, K, in equation 5.0d say K  3.0.

4.

Determine the coordinates of the crank pivot, O6 using equation 5.0d. RO6  RC1  K M

O6x  RO6

1

O6x  1.696 5.





2

O6y  0.746

R6  0.104

Determine the length of the driver dyad coupler, link 5, and the ground link from eqauation 5.0f. R5  RC1  RO6  R6 RO2 

R5  0.519

 O2x     O2y 

R1  RO2  RO6 7.

 0.139     0.154 

Determine the length of the driving crank using equation 5.0e. R6  R2 sin 0.5 β

6.

O6y  RO6

M

Determine the Grashof condition.

R1  0.713

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-53-2

R1  0.713

R2  0.500

R5  0.519

R6  0.104

Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition R1 R2 R5 R6  "Grashof" 8.

Draw the linkage using the link lengths and fixed pivot coordinates calculated above to verify that the driver dyad will perform as required. Solve for the vectors W, Z, U, and S. Given: W1x  0.866

Z1x  0.846

U1x  0.253

S 1x  0.035

W1y  0.500

Z1y  0.533

U1y  0.973

S 1y  1.006

W1 

 W1x     W1y 

Z1 

w  W1

 Z1x     Z1y 

U1 

w  1.000

 U1x     U1y 

S1 

u  U1

 S1x     S1y 

u  1.005

θ  atan2 W1x W1y

θ  30.001 deg

σ  atan2 U1x U1y

σ  104.575 deg

z  Z1

z  1.000

s  S1

s  1.007

ϕ  atan2 Z1x Z1y

ψ  atan2 S 1x S 1y

ϕ  32.212 deg

ψ  91.993 deg

y

B1

B3 A3

D3 O6

D1

A1

C3 C1 O2

P3

P1

O4

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-54-1

PROBLEM 5-54 Statement:

Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 2 using points C and D for your attachment points. The fixed pivots should be within the indicated area.

Given:

Coordinates of the points P1 (C1) and P2 (C2) : P1x  0.0

P1y  0.0

P2x  13.871

P2y  3.299

v  12.387

Length of the coupler (link 3):

Angles made by the body in positions 1 and 2:

θP1  0.0 deg

θP2  24.0 deg

Coordinates of the points C1 and D1 with respect to P1: C1y  0.0 D1x  C1x  v cos θP1

C1x  0.0

Free choice for the WZ dyad : β  45 deg

D1x  12.387 D1y  0.000

Free choice for the US dyad : γ  70 deg Solution:

D1y  C1y  v sin θP1

See Figure P5-12 and Mathcad file P0554.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

 P1x     P1y 

R2 

 P2x     P2y 

 P21x     R2  R1  P21y 

P21x  13.871 P21y  3.299

p 21  3.

4.

2

2

P21x  P21y

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  24.000 deg

δ  atan2 P21x P21y

δ  13.378 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  12.387

v 

 C1x  D1x2   C1y  D1y2

v  12.387

 v2  z2  s2    θP1  2  v z 

5.

p 21  14.258

ϕ  acos

ϕ  90.000 deg

 v2  s2  z2    θP1 ψ  π  acos  2  v s 

ψ  180.000  deg

Solve for the WZ dyad using equations 5.8.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-54-2

Z1x  z cos ϕ

Z1x  0.000 A  0.293

D  sin α

 

B  0.707

E  p 21  cos δ

 

E  13.871

 

C  0.086

F  p 21  sin δ

 

F  3.299

B  sin β

C  cos α  1

W1y  w 

 

D  0.407

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  10.918

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  15.094

2  A 2

2

W1x  W1y

w  18.629

θ  atan2 W1x W1y 6.

θ  125.878  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  12.387

D  sin α

 

B  0.940

E  p 21  cos δ

 

E  13.871

 

C  0.086

F  p 21  sin δ

 

F  3.299

C  cos α  1

U1y  u 

S 1y  0.000

A  0.658

B  sin γ

U1x 

S 1y  s sin ψ

 

A  cos γ  1

 

D  0.407

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  5.158

U1y  10.010

2  A 2

U1x  U1y

u  11.261

σ  atan2 U1x U1y 7.

Z1y  0.000

 

A  cos β  1

W1x 

Z1y  z sin ϕ

σ  117.262  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  12.387

V1y  z sin ϕ  s sin ψ

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

v  Link 1:

2

2

V1x  V1y

v  12.387

 

G1x  w cos θ  v cos θ  u  cos σ

G1x  6.627

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-54-3

 

G1y  w sin θ  v sin θ  u  sin σ

G1y  5.084

θ  atan2 G1x G1y

θ  37.495 deg

g  8.

9.

2

2

G1x  G1y

g  8.353

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  88.383 deg

θ2f  θ2i  β

θ2f  43.383 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  90.000 deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0.0 deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  10.918

 

O2y  15.094

 

O4x  17.545

 

O4y  10.010

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  37.495 deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-54-4

13. DESIGN SUMMARY Link 2:

w  18.629

θ  125.878  deg

Link 3:

v  12.387

θ  0.000  deg

Link 4:

u  11.261

σ  117.262  deg

Link 1:

g  8.353

θ  37.495 deg

Coupler:

rp  0.000

δp  90.000 deg

Crank angles:

θ2i  88.383 deg

θ2f  43.383 deg

14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

8.353 O2

O4

88.383

18.629

43.383 11.261

Y

45.000°

70.000°

D2

D1 X

C1

24.000

12.387

C2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-55-1

PROBLEM 5-55 Statement:

Design a fourbar linkage to carry the object in Figure P5-12 from position 1 to 3 using points C and D for your attachment points. The fixed pivots should be within the indicated area.

Given:

Coordinates of the points P1 (C1) and P2 (C3) : P1x  0.0

P1y  0.0

P2x  19.544

P2y  0.373

v  12.387

Length of the coupler (link 3)

Angles made by the body in positions 1 and 3:

θP1  00.0 deg

θP2  90.0 deg

Coordinates of the points C1 and D1 : C1x  0.0

Solution:

C1y  0.0

D1x  C1x  v cos θP1

D1y  C1y  v sin θP1

Free choice for the WZ dyad : β  80 deg

D1x  12.387

Free choice for the US dyad : γ  180  deg

D1y  0.000

See Figure P5-12 and Mathcad file P0555.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

p 21  3.

4.

 P1x     P1y 

R2 

2

 P2x     P2y 

 P21x     R2  R1  P21y 

2

P21x  P21y

P21y  0.373 p 21  19.548

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  90.000 deg

δ  atan2 P21x P21y

δ  1.093  deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  12.387

v 

 C1x  D1x2   C1y  D1y2

v  12.387

 v2  z2  s2    θP1  2  v z 

ϕ  acos

ϕ  90.000 deg

 v2  s2  z2    θP1  2  v s 

ψ  π  acos 5.

P21x  19.544

ψ  180.000  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-55-2

 

A  0.826

D  sin α

 

B  0.985

E  p 21  cos δ

 

E  19.544

 

C  1.000

F  p 21  sin δ

 

F  0.373

A  cos β  1 B  sin β

C  cos α  1 W1x 

W1y  w 

 

D  1.000

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  9.994

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  11.459

2  A 2

2

W1x  W1y

w  15.205

θ  atan2 W1x W1y 6.

θ  131.093  deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  12.387 A  2.000

D  sin α

 

B  0.000

E  p 21  cos δ

 

E  19.544

 

C  1.000

F  p 21  sin δ

 

F  0.373

B  sin γ

C  cos α  1

U1y  u 

 

D  1.000

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  3.579

U1y  6.007

2  A 2

U1x  U1y

u  6.992

σ  atan2 U1x U1y 7.

S 1y  0.000

 

A  cos γ  1

U1x 

S 1y  s sin ψ

σ  120.783  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  12.387

V1y  z sin ϕ  s sin ψ

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

v  Link 1:

2

2

V1x  V1y

v  12.387

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  5.971

G1y  w sin θ  v sin θ  u  sin σ

G1y  5.452

θ  atan2 G1x G1y

θ  42.399 deg

DESIGN OF MACHINERY - 5th Ed.

g  8.

9.

2

SOLUTION MANUAL 5-55-3 2

G1x  G1y

g  8.086

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  88.694 deg

θ2f  θ2i  β

θ2f  8.694  deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  90.000 deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  0.0 deg R1 

ρ  0.000  deg

2

2

P1x  P1y

R1  0.000

 

O2x  9.994

 

O2y  11.459

 

O4x  15.966

 

O4y  6.007

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  42.399 deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "non-Grashof" 13. DESIGN SUMMARY Link 2:

w  15.205

θ  131.093  deg

Link 3:

v  12.387

θ  0.000  deg

Link 4:

u  6.992

σ  120.783  deg

Link 1:

g  8.086

θ  42.399 deg

Coupler:

rp  0.000

δp  90.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-55-4

Crank angles:

θ2i  88.694 deg θ2f  8.694  deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

O2

Y

8.086

D3

15.205 O4

80.000 88.694

D1 X

C1

C3

12.387

6.992

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-56-1

PROBLEM 5-56 Statement:

Design a fourbar linkage to carry the object in Figure P5-12 from position 2 to 3 using points C and D for your attachment points. The fixed pivots should be within the indicated area.

Given:

Coordinates of the points P1 (C2) and P2 (C3) : P1x  13.871

P1y  3.299

P2x  19.544

P2y  0.373

v  12.387

Length of the coupler (link 3):

Angles made by the body in positions 2 and 3:

θP1  24.0 deg

θP2  90.0 deg

Coordinates of the points C2 and D2 : C2x  P1x

Solution:

C2y  P1y

D2x  C2x  v cos θP1

D2y  C2y  v sin θP1

Free choice for the WZ dyad : β  35 deg

D2x  25.187

Free choice for the US dyad : γ  90 deg

D2y  1.739

See Figure P5-12 and Mathcad file P0556.

1.

Note that this is a two-position motion generation (MG) problem because the output is specified as a complex motion of the coupler, link 3. The second method of Section 5.3 will be used here.

2.

Define the position vectors R1 and R2 and the vector P21 using Figure 5-1 and equation 5.1. R1 

p 21  3.

4.

 P1x     P1y 

R2 

2

 P2x     P2y 

 P21x     R2  R1  P21y 

2

P21x  P21y

P21y  2.926 p 21  6.383

From the trigonometric relationships given in Figure 5-1, determine 2 and 2. α  θP2  θP1

α  66.000 deg

δ  atan2 P21x P21y

δ  27.284 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C2x2   P1y  C2y 2

z  0.000

s 

P1x  D2x2   P1y  D2y 2

s  12.387

v 

 C2x  D2x2   C2y  D2y2

v  12.387

 v2  z2  s2    θP1  2  v z 

ϕ  acos

ϕ  114.000  deg

 v2  s2  z2    θP1  2  v s 

ψ  π  acos 5.

P21x  5.673

ψ  204.000  deg

Solve for the WZ dyad using equations 5.8. Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-56-2

 

A  0.181

D  sin α

 

B  0.574

E  p 21  cos δ

 

E  5.673

 

C  0.593

F  p 21  sin δ

 

F  2.926

A  cos β  1 B  sin β

C  cos α  1

W1x 

W1y  w 

 

D  0.914

A   C Z1x  D Z1y  E  B  C Z1y  D Z1x  F 

W1x  1.804

2  A A   C Z1y  D Z1x  F   B  C Z1x  D Z1y  E

W1y  10.459

2  A 2

2

W1x  W1y

w  10.614

θ  atan2 W1x W1y 6.

θ  80.216 deg

Solve for the US dyad using equations 5.12. S 1x  s cos ψ

S 1x  11.316 A  1.000

D  sin α

 

B  1.000

E  p 21  cos δ

 

E  5.673

 

C  0.593

F  p 21  sin δ

 

F  2.926

B  sin γ

C  cos α  1

U1y  u 

 

D  0.914

A   C S 1x  D S 1y  E  B  C S 1y  D S 1x  F  2  A A   C S 1y  D S 1x  F   B  C S 1x  D S 1y  E

2

U1x  7.959

U1y  2.316

2  A 2

U1x  U1y

u  8.289

σ  atan2 U1x U1y 7.

S 1y  5.038

 

A  cos γ  1

U1x 

S 1y  s sin ψ

σ  16.224 deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

V1x  z cos ϕ  s cos ψ

V1x  11.316

V1y  z sin ϕ  s sin ψ

V1y  5.038

θ  atan2 V1x V1y v  Link 1:

2

θ  24.000 deg

2

V1x  V1y

v  12.387

 

G1x  w cos θ  v cos θ  u  cos σ

 

G1x  5.161

G1y  w sin θ  v sin θ  u  sin σ

G1y  3.105

θ  atan2 G1x G1y

θ  31.035 deg

DESIGN OF MACHINERY - 5th Ed.

g  8.

9.

2

SOLUTION MANUAL 5-56-3

2

G1x  G1y

g  6.023

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  49.181 deg

θ2f  θ2i  β

θ2f  14.181 deg

Define the coupler point with respect to point C and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  90.000 deg

10. Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. ρ  atan2 P1x P1y R1 

2

ρ  13.378 deg

2

P1x  P1y

R1  14.258

 

O2x  12.067

 

O2y  7.160

 

O4x  17.228

 

O4y  4.055

O2x  R1 cos ρ  z cos ϕ  w cos θ O2y  R1 sin ρ  z sin ϕ  w sin θ O4x  R1 cos ρ  s cos ψ  u  cos σ O4y  R1 sin ρ  s sin ψ  u  sin σ

These fixed pivot points fall on the base and are, therefore, acceptable. 11. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

θrot  atan2 O4x  O2x  O4y  O2y

θrot  31.035 deg

12. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 13. DESIGN SUMMARY Link 2:

w  10.614

θ  80.216 deg

Link 3:

v  12.387

θ  24.000 deg

Link 4:

u  8.289

σ  16.224 deg

Link 1:

g  6.023

θ  31.035 deg

Coupler:

rp  0.000

δp  90.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-56-4

Crank angles:

θ2i  49.181 deg θ2f  14.181 deg 14. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

D3

8.289

Y O2

90.000 O4

D2 10.614 C3 35.000

12.387 C2

X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-57-1

PROBLEM 5-57 Statement:

Design a fourbar linkage to carry the object in Figure P5-12 through the three positions shown in their numbered order using points C and D for your attachment points. The fixed pivots should be within the indicated area.

Given:

Coordinates of the points P1 , P2 and P3 : P1x  0.0

P1y  0.0

P2x  13.871

P3x  19.544

P3y  0.373

P2y  3.299

Angles made by the body in positions 1, 2 and 3:

θP1  0.0 deg

θP2  24.0 deg

θP3  90.0 deg

Coordinates of the points C1 and D1 with respect to P1: C1x  0.0 Solution: 1.

2.

3.

C1y  0.0

D1y  0.0

See Figure P5-12 and Mathcad file P0557.

Determine the magnitudes and orientation of the position difference vectors. 2

2

p 21  14.258

δ  atan2 P2x P2y

δ  13.378 deg

2

2

p 31  19.548

δ  atan2 P3x P3y

δ  1.093  deg

p 21 

P2x  P2y

p 31 

P3x  P3y

Determine the angle changes of the coupler between precision points. α  θP2  θP1

α  24.000 deg

α  θP3  θP1

α  90.000 deg

Using Figure P5-4, the given data, and the law of cosines, determine z, s, , and . z 

P1x  C1x2   P1y  C1y 2

z  0.000

s 

P1x  D1x2   P1y  D1y 2

s  12.387

v 

 C1x  D1x2   C1y  D1y2

v  12.387

 v2  z2  s2    θP1  2  v z 

ϕ  acos

 v2  s2  z2    θP1  2  v s 

4.

D1x  12.387

ϕ  90.000 deg

ψ  π  acos

ψ  180.000  deg

Z1x  z cos ϕ

Z1x  0.000

Z1y  z sin ϕ

Z1y  0.000

S 1x  s cos ψ

S 1x  12.387

S 1y  s sin ψ

S 1y  0.000

Use equations 5.24 to solve for w, , 2, and 3. Since the points C and D are to be used as pivots, z and  are known from the calculations above.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-57-2

Guess:

W1x  2

W1y  15

β  45 deg

β  80 deg

Given

W1x cos β  1  W1y sin β  = p 21  cos δ  Z1x cos α  1  Z1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

W1x cos β  1  W1y sin β  = p 31  cos δ  Z1x cos α  1  Z1y sin α W1y cos β  1  W1x sin β  = p 21  sin δ  Z1y cos α  1  Z1x sin α W1y cos β  1  W1x sin β  = p 31  sin δ  Z1y cos α  1  Z1x sin α

 W1x   W1y     Find  W1x W1y β β  β   β  β  56.754 deg

β  81.324 deg

The components of the W vector are: W1x  9.989 The length of link 2 is: w  5.

θ  atan2 W1x W1y

W1y  11.190

θ  131.755  deg

 W1x2  W1y2 , w  15.000  

Use equations 5.28 to solve for u, , 2, and 3. Since the points C and D are to be used as pivots, s and  are known from the calculations above. Guess:

U1x  3

U1y  4

γ  70 deg

Given

U1x cos γ  1  U1y sin γ  = p 21  cos δ  S 1x cos α  1  S 1y sin α

       

   

 

       

   

 

       

   

 

       

   

 

U1x cos γ  1  U1y sin γ  = p 31  cos δ  S 1x cos α  1  S 1y sin α U1y cos γ  1  U1x sin γ  = p 21  sin δ  S 1y cos α  1  S 1x sin α U1y cos γ  1  U1x sin γ  = p 31  sin δ  S 1y cos α  1  S 1x sin α

γ  90 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-57-3

 U1x   U1y     Find  U1x U1y γ γ  γ   γ  γ  119.119  deg

γ  222.077  deg

The components of the U vector are: U1x  5.889

U1y  4.631

The length of link 4 is: u  6.

Link 1:

V1x  12.387

V1y  Z1y  S 1y

V1y  0.000

θ  atan2 V1x V1y

θ  0.000  deg

2

2

V1x  V1y

v  12.387

G1x  W1x  V1x  U1x

G1x  8.287

G1y  W1y  V1y  U1y

G1y  6.559

θ  atan2 G1x G1y

θ  38.362 deg

g 

9.

 U1x2  U1y2 , u  7.492  

V1x  Z1x  S 1x

v 

8.

σ  141.822  deg

Solve for links 3 and 1 using the vector definitions of V and G. Link 3:

7.

σ  atan2 U1x U1y

2

2

G1x  G1y

g  10.569

Determine the initial and final values of the input crank with respect to the vector G.

θ2i  θ  θ

θ2i  93.393 deg

θ2f  θ2i  β

θ2f  12.069 deg

Define the coupler point with respect to point A and the vector V. rp  z

δp  ϕ  θ

rp  0.000

δp  90.000 deg

Locate the fixed pivots in the global frame using the vector definitions in Figure 5-2. O2x  z cos ϕ  w cos θ

O2x  9.989

O2y  z sin ϕ  w sin θ

O2y  11.190

O4x  s cos ψ  u  cos σ

O4x  18.276

O4y  s sin ψ  u  sin σ

O4y  4.631

10. Determine the rotation angle of the fourbar frame with respect to the global frame (angle from the global X axis to the line O2O4.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 5-57-4

θrot  atan2 O4x  O2x  O4y  O2y

θrot  38.362 deg

11. Determine the Grashof condition. Condition( a b c d ) 

S  min ( a b c d ) L  max( a b c d ) SL  S  L PQ  a  b  c  d  SL return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise

Condition( g u v w)  "Grashof" 12. DESIGN SUMMARY Link 2:

w  15.000

θ  131.755  deg

Link 3:

v  12.387

θ  0.000  deg

Link 4:

u  7.492

σ  141.822  deg

Link 1:

g  10.569

θ  38.362 deg

Coupler:

rp  0.000

δp  90.000 deg

Crank angles:

θ2i  93.393 deg θ2f  12.069 deg 13. Draw the linkage, using the link lengths, fixed pivot positions, and angles above, to verify the design.

D3

O2 10.569 Y

15.000 7.492 O4

93.393 56.754

12.069 D2

81.324 D1

C3

C1

C2

12.387

X

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-1a-1

PROBLEM 6-1a Statement:

A ship is steaming due north at 20 knots (nautical miles per hour). A submarine is laying in wait 1/2 mile due west of the ship. The sub fires a torpedo on a course of 85 degrees. The torpedo travels at a constant speed of 30 knots. Will it strike the ship? If not, by how many nautical miles will it miss? Hint: Use the relative velocity equation and solve graphically or analytically.

Units:

naut_mile  1

knots 

Given:

Speed of ship

Vs  20 knots

naut_mile

Vt  30 knots

Speed of torpedo

hr

θs  90 deg

θt  15 deg

Initial distance between ship and torpedo

d i  0.5 naut_mile

Note that, for compass headings, due north is 0 degrees, due east 90 degrees, and the angle increases clockwise. However, in a right-handed Cartesian system, due north is 90 degrees (up) and due east is 0 degrees (to the right). The Cartesian system has been used above to define the ship and torpedo headings. Solution:

See Mathcad file P0601a.

1.

The key to this solution is to recognize that the only information of interest is the relative velocity of one vessel to the other. The ship captain wants to know the relative velocity of the torpedo versus the ship, Vts = Vt - Vs. In effect, we want to resolve the situation with respect to a moving coordinate system attached to the ship.

2.

The figure below shows the initial positions of the torpedo and ship and their velocities. Vs = 20 knots Vt = 30 knots

torpedo

0.5 n. mi.

ship

3.

The figure below shows the vector diagram that solves the relative velocity equation Vts = Vt - Vs. For the torpedo to hit the moving ship, the relative velocity vector has to be perpendicular to the ship's velocity vector (if you were on the ship observing the torpedo, it would appear to be headed directly for you). As the velocity diagram shows, the relative velocity vector is not perpendicular to the ship's velocity vector so it will miss and pass behind the ship.

4.

Determine the distance by which the torpedo will miss the ship.

Vt

Time required for torpedo to travel 0.5 nautical miles due east tt_east 

di

Vt cos θt

tt_east  62.117 s

Distance traveled by the torpedo due north in that time d t_north  Vt sin θt  tt_east

d t_north  0.134 naut_mile

Distance traveled by the ship due north in that time d s_north  Vs tt_east

d s_north  0.345 naut_mile

Distance by which the torpedo will miss the ship d miss  d s_north  d t_north

d miss  0.211 naut_mile

-Vs V ts

22.89°

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-1b-1

PROBLEM 6-1b Statement:

A plane is flying due south at 500 mph at 35,000 feet altitude, straight and level. A second plane is initially 40 miles due east of the first plane, also at 35,000 feet altitude, flying straight and level at 550 mph. Determine the compass angle at which the second plane would be on a collision course with the first. How long will it take for the second plane to catch the first? Hint: Use the relative velocity equation and solve graphically or analytically.

Given: Speed of first plane

V1  500  mph

Speed of second plane

V2  550  mph

Initial distance between planes

d i  40 mi

θ1  270  deg

Note that, for compass headings, due north is 0 degrees, due east 90 degrees, and the angle increases clockwise. However, in a right-handed Cartesian system, due north is 90 degrees (up) and due east is 0 degrees (to the right). The Cartesian system has been used above to define the plane headings. Solution:

See Mathcad file P0601b.

1.

The key to this solution is to recognize that the only information of interest is the relative velocity of one plane to the other. For a collision to occur, the relative velocity of the second plane with respect to the first must be perpendicular to the velocity vector of the first.

2.

The figure below shows the initial positions of the two planes and their velocities.

plane 1

40 mi.

plane 2



V1 = 500 mph

3.

4.

5.

V2 = 550 mph

The figure below shows the vector diagram that solves the relative velocity equation V2 = V1 + V21. To construct this diagram, chose a convenient velocity scale and draw V1 to its correct length with the arrow head pointing straight down (indicating due south). From the tip of the vector, layoff a horizontal construction line to the left (due west) an undetermined length. From the tail of the V1 vector, construct a circle whose radius is equal to the scaled length of vector V2. The intersection of the circle and the horizontal construction line determines the length of V21. Draw the arrowheads for V2 and V21 pointing toward the intersection of the circle and construction line. Label the horizontal vector V21 and the vector that joins the tail of V1 with the head of V21 as V2. The angle  between V1 and V2 is the required direction for V2 in order that plane 2 collides with plane 1.  The angle  can also be determined analytically from the velocity triangle as 24.620° follows. V1  V2  V1  θ  acos  θ  24.620 deg   V2  V 21 The time it will take for the second plane to catch the first is the time that it will take plane 2 to travel the 40 miles to the west. t 

di

V2 sin θ

t  628.468 s

t  10.474 min

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-2-1

PROBLEM 6-2 Statement:

A point is at a 6.5-in radius on a body in pure rotation with  = 100 rad/sec. The rotation center is at the origin of a coordinate system. When the point is at position A, its position vector makes a 45 deg angle with the X axis. At position B, its position vector makes a 75 deg angle with the X axis. Draw this system to some convenient scale and: a. Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms. b. Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. c. Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the velocity difference numerically. d. Check the result of part c with a graphical method.

Given: ω  100 

Rotation speed

Solution: 1.

rad sec

Vector angles

θA  45 deg

Vector magnitude

R  6.5 in

θB  75 deg

See Mathcad file P0602.

Calculate the magnitude of the velocity at points A and B using equation 6.3. V  R ω

V  650.000

in sec

2.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

3.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

4.

Choose a convenient velocity scale and draw the two velocity vectors VA and VB at the tips of RA and RB, respectively. The velocity vectors will be perpendicular to their respective position vectors.

Y 0

8

1

2 in

Distance scale:

VB B

0

VA

500 in/sec

Velocity scale:

6 A 4

RB RA

2

0 a.

X 2

4

6

8

Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY - 5th Ed.

Polar form:

SOLUTION MANUAL 6-2-2

RA  R e

VA  R j  ω e Cartesian form:

j

j  θA

j

j  θA

4

VA  650  j  e

VA  R j  ω  cos θA  j  sin θA 

RB  R e

in sec

Cartesian form:

j

j  θB

VB  R j  ω e

RA  6.5 e

π 4 j

j  θB

VB  650  j  e

75 π 180

VB  R j  ω  cos θB  j  sin θB  VB  ( 627.852  168.232j)

in sec

Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. VBA  VB  VA

d.

π

Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. Polar form:

c.

4

RA  6.5 e

VA  ( 459.619  459.619j) b.

π

VBA  ( 168.232  291.387j)

in sec

Check the result of part c with a graphical method. Solve the equation VB = VA + VBA using a velocity scale of 250 in/sec per drawing unit.

Y

Velocity scale factor kv  250 

in 0

sec

1.166

Horizontal component

VA VBA

VBAx  0.673  kv VBAx  168.3

500 in/sec

Velocity scale:

VB

in

Ov

X

0.673

sec

Vertical component VBAy  1.166  kv

VBAy  291.5

in sec

On the layout above the X and Y components of VBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-3-1

PROBLEM 6-3 Statement:

Given:

A point A is at a 6.5-in radius on a body in pure rotation with  = -50 rad/sec. The rotation center is at the origin of a coordinate system. At the instant considered its position vector makes a 45 deg angle with the X axis. A point B is at a 6.5-in radius on another body in pure rotation with  = +75 rad/sec. Its position vector makes a 75 deg angle with the X axis. Draw this system to some convenient scale and: a. Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms. b. Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. c. Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. d. Check the result of part c with a graphical method. ω  50

Rotation speeds

Solution: 1.

rad

ω  75

sec

Vector angles

θA  45 deg

Vector magnitude

R  6.5 in

rad sec

θB  75 deg

See Mathcad file P0603.

Calculate the magnitude of the velocity at points A and B using equation 6.3. VA  R ω

VA  325.000

VB  R ω

VB  487.500

in sec in

sec

1.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA. Repeat for the line segment OB, labeling it RB.

3.

Choose a convenient velocity scale and draw the two velocity vectors VA and VB at the tips of RA and RB, respectively. The velocity vectors will be perpendicular to their respective position vectors. Y 8 VB

0

1

2 in

Distance scale: B

0

500 in/sec

Velocity scale:

6 A 4

RB RA

2

0

a.

VA

X 2

4

6

8

Write an expression for the particle's velocity vector on body A using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY - 5th Ed.

Polar form:

SOLUTION MANUAL 6-3-2

RA  R e

j

j  θA

Cartesian form:

j

j  θA

VA  R j  ω  cos θA  j  sin θA  in sec

Write an expression for the particle's velocity vector on body B using complex number notation, in both polar and Cartesian forms. Polar form:

RB  R e

j

j  θB

RA  6.5 e

VB  R j  ω e Cartesian form:

j  θB

4

VB  487.5  j  e

75 π 180

VB  R j  ω  cos θB  j  sin θB  in sec

Write a vector equation for the velocity difference between the points on bodies B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. VBA  VB  VA

d.

π

j

VB  ( 470.889  126.174j) c.

π 4

VA  325  j  e

VA  ( 229.810  229.810j) b.

4

RA  6.5 e

VA  R j  ω e

π

VBA  ( 700.699  355.984j)

in sec

Check the result of part c with a graphical method. Solve the equation VB = VA + VBA using a velocity scale of 250 in/sec per drawing unit.

Y

Velocity scale factor kv  250 

in

0

Horizontal component VBAx  2.803  kv VBAx  700.7

500 in/sec

Velocity scale:

sec

VB 1.424

Ov

VBA

VA

X

in sec

2.803

Vertical component VBAy  1.424  kv

VBAy  356.0

in sec

On the layout above the X and Y components of VBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-4a-1

PROBLEM 6-4a Statement:

For the fourbar defined in Table P6-1, line a, find the velocities of the pin joints A and B, and of the instant centers I1,3 and I2,4. Then calculate 3 and 4 and find the velocity of point P. Use a graphical method.

Given:

Link lengths: Link 1

d  6  in

Link 2

a  2  in

Link 3

b  7  in

Link 4

c  9  in

θ  30 deg

Crank angle:

ω  10 rad sec

Crank velocity:

1

Coupler point data: Rpa  6  in Solution: 1.

δ  30 deg

See Figure P6-1 and Mathcad file P0604a.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. B 0

1 IN

SCALE

P 5.9966 6.8067

148.2007°

3.3384 I1,3

A

117.2861°

88.8372° O2

O4

I 2,4 1.7118

4.2882

From the layout above:

2.

O2I24  1.7118 in

O4I24  4.2882 in

AI13  3.3384 in

BI13  5.9966 in

θ  117.2861 deg

θ  88.8372  deg

PI13  6.8067 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-4a-2

in

VA  a  ω

VA  20.0

θVA  θ  90 deg

θVA  120.0 deg

sec

Determine the angular velocity of link 3 using equation 6.9a. ω 

VA AI13

ω  5.991

rad

CW

sec

4.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13 ω in VB  35.925 sec θVB  θ  90 deg θVB  27.286 deg

5.

Use equation 6.9c to determine the angular velocity of link 4. ω 

6.

VB c

ω  3.99

rad

CW

sec

Use equation 6.9d and inspection of the layout to determine the magnitude and direction of the velocity at point P. in

VP  PI13 ω

VP  40.778

θVP  148.2007 deg  90 deg

θVP  58.201 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-5a-1

PROBLEM 6-5a Statement:

A general fourbar linkage configuration and its notation are shown in Figure P6-1. The link lengths, coupler point location, and the values of 2 and 2 for the same fourbar linkages as used for position analysis in Chapter 4 are redefined in Table P6-1, which is the same as Table P4-1. For row a, find the velocities of the pin joints A and B, and coupler point P. Calculate 3 and 4. Draw the linkage to scale and label it before setting up the equations.

Given:

Link lengths: d  6

Link 1

a  2

Link 2

Rpa  6

Coupler point:

c  9

Link 4

δ  30 deg

Link 2 position and velocity: θ  30 deg Solution:

b  7

Link 3

ω  10

See Mathcad file P0605a. y

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.0000 2

K3 

B

OPEN

3

d

4

c

K2  0.6667 2

2

a b c d

88.837°

2

K3  2.0000

2 a c

2 O2

 

117.286°

A

O4

115.211°

 

A  cos θ  K1  K2 cos θ  K3

143.660°

 

B  2  sin θ

 

C  K1   K2  1   cos θ  K3 A  0.7113 3.

B  1.0000

CROSSED

C  3.5566

B'

Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:





2

θ  2  atan2 2  A B 

B  4 A  C



θ  242.714 deg

θ  θ  360  deg Crossed: 4.



θ  602.714 deg



2

θ  2  atan2 2  A B 

B  4 A  C



θ  216.340 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

 

D  cos θ  K1  K4 cos θ  K5

 

E  2  sin θ

2

K4  0.8571 D  1.6774 E  1.0000

 

F  K1   K4  1   cos θ  K5

F  2.5906

K5  0.2857

x

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-5a-2

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:





2

θ  2  atan2 2  D E 

E  4  D F



θ  271.163 deg

θ  θ  360  deg Crossed: 6.

7.



θ  631.163 deg



2

θ  2  atan2 2  D E 

E  4  D F



θ  244.789 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.991

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  3.992

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  10.000  17.321j



arg VA  120 deg

VA  20

 

 

VB  c ω sin θ  j  cos θ VB  31.928  16.470j 8.

arg VB  27.286 deg

VB  35.926

Determine the velocity of the coupler point P for the open circuit using equations 6.36.











VPA  Rpa ω sin θ  δ  j  cos θ  δ VPA  31.488  17.337j VP  VA  VPA VP  21.488  34.658j 9.

arg VP  58.201 deg

VP  40.779

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  0.662

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  2.662

10. Determine the velocity of point B for the crossed circuit using equations 6.19.



 

 

VB  c ω sin θ  j  cos θ VB  14.195  19.295j

arg VB  126.340 deg

VB  23.954

11. Determine the velocity of the coupler point P for the crossed circuit using equations 6.36.











VPA  Rpa ω sin θ  δ  j  cos θ  δ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-5a-3

VPA  3.960  0.332j VP  VA  VPA VP  13.960  16.989j

VP  21.989

arg VP  129.411 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-6a-1

PROBLEM 6-6a Statement:

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of 2 and 2 are defined in Table P6-2. For row a, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint using a graphical method.

Given:

Link lengths:

Solution: 1.

Link 2

a  1.4 in

Link 3

b  4  in

Offset

c  1  in

θ  45 deg

ω  10 rad sec

1

See Figure P6-2 and Mathcad file P0606a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VBA Y

Axis of transmission

Direction of VA

A 2

45.000°

Axis of slip and Direction of VB

B

3

179.856°

1.000 X

O2

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in VA  a  ω VA  14.000 θVA  θ  90 deg sec

θVA  135 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

0

5 units/sec

VA Y

135.000° V BA X

VB

From the velocity triangle we have: 1.975

DESIGN OF MACHINERY - 5th Ed.

Velocity scale factor:

VB  1.975  in kv

5.

SOLUTION MANUAL 6-6a-2

kv 

5  in sec

1

in

VB  9.875

in sec

θVB  180  deg

Since the slip axis and the direction of the velocity of point B are parallel, Vslip = VB.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-7a-1

PROBLEM 6-7a Statement:

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of 2 and 2 are defined in Table P6-2. For row a, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint using the analytic method. Draw the linkage to scale and label it before setting up the equations.

Given:

Link lengths: Link 2 (O2 A) Crank angle

Solution: 1.

a  1.4

Link 3 (AB)

b  4

θ  45 deg

Crank angular velocity

Offset (yB) ω  10

See Figure P6-2 and Mathcad file P0607a.

Draw the linkage to scale and label it. Y d1 = 4.990

d2 = 3.010

3(CROSSED)

B'

A 2

0.144°

45.000°

B

3 (OPEN)

179.856° 1.000 X

O2

2.

Determine 3 and d using equations 4.16 and 4.17. Crossed:

 a sin θ  b 

θ  asin

 

c

 

θ  0.144 deg

 

d 2  a  cos θ  b  cos θ

Open:

d 2  3.010

 a  sin θ  c  π b  

θ  180.144 deg

 

d 1  4.990

θ  asin 

 

d 1  a  cos θ  b  cos θ 3.

4.

Determine the angular velocity of link 3 using equation 6.22a:

   

ω  2.475

   

ω  2.475

Open

ω 

a cos θ   ω b cos θ

Crossed

ω 

a cos θ   ω b cos θ

Determine the velocity of pin A using equation 6.23a:



 

 

VA  a  ω sin θ  j  cos θ VA  9.899  9.899i

VA  14.000

arg VA  135.000 deg

c  1

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-7a-2

Determine the velocity of pin B using equation 6.22b: Open

VB1  a  ω sin θ  b  ω sin θ

 

 

VB1  9.875

Crossed

VB2  a  ω sin θ  b  ω sin θ

 

 

VB2  9.924

The angle of VB is 0 deg if VB is positive and 180 deg if VB negative. 6.

The velocity of slip is the same as the velocity of pin B.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-8a-1

PROBLEM 6-8a Statement:

The general linkage configuration and terminology for an inverted fourbar slider-crank linkage are shown in Fig P6-3. The link lengths and the values of 2 and 2 and  are defined in Table P6-3. For row a, using a graphical method, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint. Draw the linkage to scale.

Given:

Link lengths: Link 1 d  6  in c  4  in

Link 4 Solution: 1.

Link 2

a  2  in

γ  90 deg

θ  30 deg

ω  10 rad sec

1

See Figure P6-3 and Mathcad file P0608a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VA Axis of transmission and direction of VBA Axis of slip and Direction of VB

B y

1.793 90.0°

b a

127.333° c 142.666°

A

30.000°

d

x 04

02

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in VA  a  ω VA  20.000 θVA  θ  90 deg sec

θVA  120 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B on link 3. The equation to be solved graphically is VB3 = VA3 + VBA3 a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

0

VA

V BA 52.667° VB 0.771

From the velocity triangle we have: Velocity scale factor:

kv 

10 in sec in

10 in/sec

1.846 Y

1

X

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-8a-2

in

VB3  0.771  in kv

VB3  7.710

VBA3  1.846  in kv

VBA3  18.460

sec

θVB3  52.667 deg

in sec

Determine the angular velocity of link 3 using equation 6.7. From the linkage layout above:b  1.793  in and ω 

VBA3 b

ω  10.296

rad

θ  142.666  deg CW

sec

The way in which link 3 slides in link 4 requires that ω  ω 6.

7.

Determine the magnitude and sense of the vector VB4 using equation 6.7. in

VB4  c ω

VB4  41.182

θVB4  θ  90 deg

θVB4  52.666 deg

sec

Note that VB3 and VB4 are in the same direction in this case. The velocity of slip is in

Vslip  VB3  VB4

Vslip  33.472

θslip  θVB4  180  deg

θslip  232.666 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-9a-1

PROBLEM 6-9a Statement:

The general linkage configuration and terminology for an inverted fourbar slider-crank linkage are shown in Fig P6-3. The link lengths and the values of 2 and 2 and  are defined in Table P6-3. For row a, using an analytic method, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint. Draw the linkage to scale and label it before setting up the equations.

Given:

Link lengths: Link 1 d  6 c  4

Link 4 Solution: 1.

Link 2

a  2

γ  90 deg

θ  30 deg

ω  10

See Mathcad file P0609a.

Draw the linkage to scale and label it. B y 90.0°

127.333°

b

c

A

142.666°

a 30.000°

d

x 04

02 B'

169.040° 79.041°

2.

Determine the values of the constants needed for finding 4 from equations 4.25 and 4.26. P  a  sin θ  sin γ  a  cos θ  d  cos γ

      Q  a  sin θ  cos γ   a  cos θ  d   sin γ

3.

4.

5.

P  1.000 Q  4.268

R  c sin γ

R  4.000

T  2  P

T  2.000

S  R  Q

S  0.268

U  Q  R

U  8.268

Use equation 4.26 to find values of 4 for the open and crossed circuits.

  2  atan2 2  S T 

OPEN

θ  2  atan2 2  S T 

CROSSED

θ

 2 T  4 S U  2

T  4 S U

θ  142.667 deg θ  169.041 deg

Use equation 4.22 to find values of 3 for the open and crossed circuits. OPEN

θ  θ  γ

θ  232.667 deg

CROSSED

θ  θ  γ

θ  79.041 deg

Determine the magnitude of the instantaneous "length" of link 3 from equation 4.20a.

DESIGN OF MACHINERY - 5th Ed.

6.

7.

OPEN

b 1 

CROSSED

b 2 

SOLUTION MANUAL 6-9a-2

    sin θ  γ

a  sin θ  c sin θ

b 1  1.793

    sin θ  γ

a  sin θ  c sin θ

b 2  1.793

Determine the angular velocity of link 4 using equation 6.30c: OPEN

ω 

CROSSED

ω 

a  ω cos θ  θ









b 1  c cos γ

a  ω cos θ  θ b 2  c cos γ

ω  10.292

ω  3.639

Determine the velocity of pin A using equation 6.23a:



 

 

VA  a  ω sin θ  j  cos θ VA  10.000  17.321i 8.

 

VA  20.000

arg VA  120.000 deg

Determine the velocity of point B on link 4 using equation 6.31: OPEN

 

VB4x1  c ω sin θ

VB4x1  24.966

 

VB4y1  32.734

VB4y1  c ω cos θ VB41 

2

VB4x1  VB4y1

2

VB41  41.168

θVB1  atan2 VB4x1 VB4y1 CROSSED

θVB1  52.667 deg

 

VB4x2  c ω sin θ

VB4x2  2.767

 

VB4y2  14.289

VB4y2  c ω cos θ VB42 

2

VB4x2  VB4y2

2

VB42  14.555

θVB2  atan2 VB4x2 VB4y2 9.

θVB2  100.959 deg

Determine the slip velocity using equation 6.30a: OPEN

CROSSED

Vslip1 

Vslip2 

 



 

 

 

 

a  ω sin θ  ω b 1 sin θ  c sin θ

 

cos θ

 



a  ω sin θ  ω b 2 sin θ  c sin θ

 

cos θ

Vslip1  33.461

Vslip2  4.351

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-10a-1

PROBLEM 6-10a Statement:

The link lengths, gear ratio (), phase angle (), and the values of 2 and 2 for a geared fivebar from row a of Table P6-4 are given below. Draw the linkage to scale and graphically find 3 and 4, using a graphical method.

Given:

Link lengths: Link 1

f  6  in

Link 3

b  7  in

Link 2

a  1  in

Link 4

c  9  in

Link 5

d  4  in

Gear ratio, phase angle, and crank angle: λ  2 Solution: 1.

ϕ  30 deg

θ  150 deg

Choose the pitch radii of the gears. Since the gear ratio is positive, an idler must be used between gear 2 and gear 5. Let the idler be the same diameter as gear 5, and let all three gears be in line.

r5 

λ 

f

r2 r5

r5  1.200 in

λ3

r2  λ r5

r2  2.400 in

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VBC Direction of VBA

Direction of VC

Direction of VA

C

4 B 3

A

2

4.

1

Determine the angle of link 5 using the equation in Figure P6-4.

f  r2  3  r5

3.

ω  10 rad sec

See Figure P6-4 and Mathcad file P0610a.

θ  λ θ  ϕ 2.

θ  60 deg

5 O5

O2

Use equation 6.7 to calculate the magnitude of the velocity at points A and C. in

VA  a  ω

VA  10.00

ω  λ ω

ω  20.000

rad

VC  80.00

in

VC  d  ω

sec

θ  60 deg  90 deg

sec

sec

θ  150  deg  90 deg

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-10a-2

Use equation 6.5 to (graphically) determine the magnitudes of the relative velocity vectors VBA and VBC. The equation to be solved graphically is the last of the following three. VB = VA + VBA

VB = VC + VBC

VA + VBA = VC + VBC

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, layout the known vector VC. d. From the tip of VC, draw a construction line with the direction of VBC, magnitude unknown. e. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VBC construction line and drawing VBC from the tip of VC to the intersection of the VBA construction line. 6.

From the velocity triangle we have: Velocity scale factor:

0

kv 

50 in sec

50 in/sec

1

Y VA

in

X

7.

VBA  4.562  in kv

VBA  228.100

VBC  3.051  in kv

VBC  152.550

in sec VC

in sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

ω 

VBA b

ω  32.586

4.562

rad

3.051

sec V BA

ω 

VBC c

Both links are rotating CCW.

ω  16.950

rad sec

V BC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-11a-1

PROBLEM 6-11a Statement:

Given:

Solution: 1.

The general linkage configuration and terminology for a geared fivebar linkage are shown in Figure P6-4. The link lengths, gear ratio (), phase angle (), and the values of 2 and 2 are defined in Table P6-4. For row a, find 3 and 4, using an analytic method. Draw the linkage to scale and label it before setting up the equations. Link lengths: Link 1

d  4

Link 2

a  1

Link 3

b  7

Link 4

c  9

Link 5

f  6

Input angle

θ  60 deg

Gear ratio

λ  2.0

Phase angle

ϕ  30 deg

ω  10

See Figure P6-4 and Mathcad file P0611a.

Draw the linkage to scale and label it. y C

4

B

177.7152°

173.6421° 3

5 124.0501°

2

x

O2

3

150.0000°

115.4074°

O5

4

B`

2.

Determine the values of the constants needed for finding 3 and 4 from equations 4.28h and 4.28i.

     B  2  c  d  sin λ θ  ϕ  a  sin θ 

A  2  c d  cos λ θ  ϕ  a  cos θ  f

2

2

2

2



2



A  36.646 B  20.412

  

C  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ

C  37.431

D  C  A

D  0.785

E  2  B

E  40.823

F  A  C

F  74.077



     





    a cosθ  f  H  2  b   d  sin λ θ  ϕ   a  sin θ G  2  b   d  cos λ θ  ϕ

2

2

2

2



2

  

K  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ L  K  G



     





G  28.503 H  15.876

K  26.569 L  1.933

DESIGN OF MACHINERY - 5th Ed.

3.

M  2  H

M  31.751

N  G  K

N  55.072

Use equations 4.28h and 4.28i to find values of 3 and 4 for the open and crossed circuits. OPEN

CROSSED

   2   atan2 2  D E   2   atan2 2  L M   2   atan2 2  D E 

θ  2  atan2 2  L M  θ θ θ

4.

SOLUTION MANUAL 6-11a-2

 2 E  4  D F   2 M  4  L N   2 E  4  D F   2

M  4  L N

θ  173.642 deg θ  177.715 deg θ  115.407 deg θ  124.050 deg

Determine the position and angular velocity of gear 5 from equations 4.27c and 6.32c θ  λ θ  ϕ

θ  150.000 deg

ω  λ ω

ω  20.000

Angular velocity of links 3 and 4 from equations 6.33 OPEN

ω  

 

  b   cos θ  2  θ  cos θ 

ω  32.585 ω 

 

  c sin θ

 

a  ω sin θ  b  ω sin θ  d  ω sin θ

ω  

CCW

 



  b   cos θ  2  θ  cos θ 



2  sin θ  a  ω sin θ  θ  d  ω sin θ  θ

ω  75.191 ω 



CCW

ω  16.948

CROSSED



2  sin θ  a  ω sin θ  θ  d  ω sin θ  θ

CW

 

  c sin θ

 

a  ω sin θ  b  ω sin θ  d  ω sin θ

ω  59.554

CW

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-12-1

PROBLEM 6-12 Statement:

Find all of the instant centers of the linkages shown in Figure P6-5.

Solution:

See Figure P6-5 and Mathcad file P0612.

a.

This is a fourbar slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. C

2,3 Y

A

1,2

2

3

3,4

X O2

B 4

1,4 at infinity

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 1,3 1 4

2,4

C

2 3

A 1,2

2

3

3,4

2,3

O2

4 B 1,4 at infinity 1,4 at infinity

b.

This is a fourbar with planetary motion (roller 3), n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1) 2

C6

2,3 at contact point (behind link 4) 1,3

2.

Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them. c. This is a fourbar with n  4. 1.

3 A 4

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

1

n ( n  1) 2

2 O2

C6

Draw the linkage to scale and identify those ICs that can be found by inspection.

1,2 and 2,4 and 1,4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-12-2 C 2,3

3,4 3 A

B 4

2

O2

O4 1,2

3.

1,4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 1,3 at infinity

1,3 at infinity

1

C 2,3

4

3,4

2

3 3 2,4 at infinity A

2

2,4 at infinity

O2

2,4 at infinity

B

4

2,4 at infinity

O4 1,2

1,4

1,3 at infinity

1,3 at infinity

d.

This is a fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

3,4

1,2 3 O2

4

A

2 1,4 at infinity

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 2,3

3,4

1,2 1 3 O2

4

A

2,4

4

2 3

2

1,3

1,4 at infinity 1,4 at infinity

e.

This is a threebar with n  3.

1.

Determine the number of instant centers for this mechanism using equation 6.8a.

DESIGN OF MACHINERY - 5th Ed.

C  2.

SOLUTION MANUAL 6-12-3

n ( n  1)

C3

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 1,2 2

1,3 3

O2

3.

O3

Use Kennedy's Rule and a linear graph to find the remaining IC, I2,3 I2,3: I1,2-I1,3 Common normal 1 2,3 1,2 2

2

3

1,3 3

O2

O3

f.

This is a fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 3,4

1,4 at infinity

3.

C

B

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

4 3

I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 2,3 VA

A

2

2,4 at infinity 3,4

1,4 at infinity

1,2 at infinity C

B

1

4 3 1,3

4

2 3

2,3 VA

A

2

1,2 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-13-1

PROBLEM 6-13 Statement:

Find all of the instant centers of the linkages shown in Figure P6-6.

Solution:

See Figure P6-6 and Mathcad file P0613.

a.

This is a fourbar inverted slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

2

3 3,4 at infinity 1 1,2 4

1 1,4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 3,4 at infinity 2,3

2,4 2

1 4

3

2

3,4 at infinity 1

3

1,2 4

1 1,4

1,3

b.

This is a sixbar with slider, n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1) 2

C  15

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

5,6 6 2,3 2

1,6 at infinity 3

1

5

I1,5: I1,6-I5,6 and I1,4-I4,5

3,4; 3,5; 4,5

I2,5: I1,2-I1,5 and I2,4-I4,5

1 4

1,2

I3,6: I1,6-I1,3 and I3,4-I4,6

I4,6: I1,6-I1,4 and I4,5-I5,6

I2,4: I1,2-I1,4 and I2,3-I3,4

I2,6: I1,2-I1,6 and I2,5-I5,6

1,4

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-13-2

3,6

1,3

1,6 at infinity 2,5

to 2,4

5,6 6 to 2,4

1,5

2,3

1 1,6 at infinity

2 3

6

2

1

5

5

1,6 at infinity

3 4

3,4; 3,5; and 4,5 1 4

1,2

1,4

2,6 4,6

1,6 at infinity 1

c.

This is a sixbar with slider and roller with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C  15

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,5 5,6

3.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs.

1,2

5

6

2,3

2

1

I2,6: I1,2-I1,6 and I2,5-I5,6 I1,5: I1,6-I5,6 and I1,2-I2,5

1

1,6

3

I4,5: I1,4-I1,5 and I2,4-I2,5 I3,6: I3,6-I5,6 and I2,3-I2,6 I1,3: I1,2-I2,3 and I1,4-I3,4

I3,5: I3,4-I4,5 and I2,5-I2,3

I2,4: I1,2-I1,4 and I2,5-I2,4

I4,6: I4,5-I5,6 and I3,4-I3,6

4 3,4

3,5 2,5 4,5

1,4 at infinity

1,5

5,6

1,2

5

1 6

2,6

1

2,3

2

6

2,4

2

1,4 at infinity 5

1

1,6

3

4,6 3,6 4 3,4

1,4 at infinity

1,3

1

d.

This is a sixbar with slider and roller with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1) 2

3 4

C  15

Draw the linkage to scale and identify those ICs that can be found by inspection.

1

1,4 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-13-3

3,4 4 1 1,4 3

5,6 5

1,2

2

6 2,3; 2,5; and 3,5

1

1

1,6 at infinit

3.

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

I3,6: I1,6-I1,3 and I3,5-I5,6

I2,6: I1,2-I1,6 and I2,5-I5,6

I1,5: I1,6-I5,6 and I1,2-I2,5

I4 ,5: I1,4-I1,5 and I3,5-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

I4,6: I1,6-I1,4 and I4,5-I5,6 2,4 4,6 3,4 4,5

4

1,3

1 1

1,4 6 3

1,5

1,6 at infinity

2

5

3 4

2,6

5,6 5

1,2

2 1

6 2,3; 2,5; and 3,5

3,6

1

1,6 at infinity 1,6 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-14-1

PROBLEM 6-14 Statement:

Find all of the instant centers of the linkages shown in Figure P6-7.

Solution:

See Figure P6-7 and Mathcad file P0614.

a.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

3,4

2,3

3

I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

2

4

1,2

1,4

3,4 1 2,3

3 2

4

1 2

4 3

1,2 2,4 1

1,4

1,3

b.

This is a fourbar inverted slider-crank, n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

2,3 3 1,4

4 2

I2,4: I1,2-I1,4 and I2,3-I3,4 1

3,4 at infinity 1,2

2,3 1

3 1,4

4

4

2

2

2,4 3

1

1,2

3,4 at infinity

1,3 3,4 at infinity

1,4 at infinity

c.

This is a fourbar double slider with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a.

4 3,4 3

C  2.

n ( n  1) 2

C6

2,3 2 1

Draw the linkage to scale and identify those ICs that can be found by inspection. 1,2 at infinity

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-14-2

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 1,4 at infinity

I1,3: I1,2-I2,3 and I1,4-I3,4

2,4 at infinity

1,3

I2,4: I1,2-I1,4 and I2,3-I3,4 1

4 4

3,4

2

3 3

2,3 2 1 1,2 at infinity

d.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

2,3

3,4

1,2

I2,4: I1,2-I1,4 and I2,3-I3,4

3

2

4 1,4

1 2,3

1,3

1

3,4 4

3

2

2

4 1,4

3

2,4 1 1,2

e.

This is a fourbar effective slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

2,3

3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

3

2

4

1,3

2,3 1 1,2

1

2,4 4

3,4 3

2

2 3

4 1 1,2 1,4 at infinity

1,4 at infinity

1,4 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-14-3

f.

This is a fourbar cam-follower with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

3,4 2,3 3

1,4

I2,4: I1,2-I1,4 and I2,3-I3,4

4 2

2,4

1

3,4 1,3

1

1,2 at infinity

2,3 4

3

1,4

2

4 3

2 1 1,2 at infinity 1,2 at infinity

g.

This is a fourbar slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

2,3

2 3,4

I1,3: I1,2-I2,3 and I1,4-I3,4

3

4

1,2

I2,4: I1,2-I1,4 and I2,3-I3,4

1,4 at infinity

1 1,3 2,3

1,4 at infinity

1

2

2,4

3,4 3

4

2

4 3

1,2

2

2,3 1

1

h.

This is a fourbar inverted slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1) 2

1,2

1,4 at infinity

3

C6

3,4 at infinity

Draw the linkage to scale and identify those ICs that can be found by inspection.

4 1,4

1

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-14-4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

3,4 at infinity

2,4

I2,4: I1,2-I1,4 and I2,3-I3,4

2

2,3

1

1,2 4

2

1 3

3,4 at infinity

3 3,4 at infinity

1,3 4 1

1,4

i.

This is a fourbar slider-crank (hand pump) with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

3

3,4 4 1,2 at infinity

2

1

1,4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 2,3 3 1,3

1,2 at infinity

3,4

1 4

1,2 at infinity

2

4

1

2,4

1,2 at infinity 1,4

2 3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-15-1

PROBLEM 6-15 Statement:

Find all of the instant centers of the linkages shown in Figure P6-8.

Solution:

See Figure P6-8 and Mathcad file P0615.

a.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

2,3 B

I1,3: I1,2-I2,3 and I1,4-I3,4 2 3

I2,4: I1,2-I1,4 and I2,3-I3,4 O2

1,2

B 4

O4

3,4 1,4

2,3

1

2

1,2

4

2

3 3 4 1,3 3,4 and 2,4 1,4

b.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1) 2

2,3

C6 2

Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them.

O2

B

A

3

3,4 4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

1,4

1,2

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-15-2

I2,4: I1,2-I1,4 and I2,3-I3,4 1,3

1

2,3 B

A

2,4

4

3

2 3

2

O2

3,4 4 1,4

1,2

O4

c.

This is an eightbar (three slider-cranks with a common crank) with n  8.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

3.

n ( n  1)

C  28

2

Draw the linkage to scale and identify those ICs that can be found by inspection.

7

Use Kennedy's Rule and a linear graph to find the remaining 15 ICs.

1,7 at infinity

4

2

I2,7: I1,2-I1,7 and I2,4-I4,7

3,6

8

1 3

1,6 at infinity

5

1,8 at infinity 2,3; 2,4; 2,5; 3,4; 3,5; and 4,5

I1,5: I1,2-I2,5 and I1,8-I5,8 I2,6: I1,2-I1,6 and I2,3-I3,6

5,8

1,2

4,7

6

I3,7: I1,3-I1,7 and I3,4-I4,7

I6,8: I2,7-I2,8 and I3,7-I3,8

I3,8: I1,3-I3,8 and I3,5-I5,8

I4,6: I1,6-I1,4 and I3,4-I3,6

I2,8: I1,2-I1,8 and I2,5-I5,8

I4,8: I3,8-I3,4 and I4,5-I5,8

I5,6: I2,5-I2,6 and I3,5-I3,6

I1,4: I1,7-I4,7 and I1,2-I2,4

I5,7: I2,5-I2,7 and I3,5-I3,7

I6,7: I2,6-I2,7 and I3,6-I3,7

I1,3: I1,2-I2,3 and I1,6-I3,6

I6,8: I4,6-I4,8 and I3,6-I3,8

4,7

7

4

2

3 2,8

1,6 at infinity 3,6

Note that, for clarity, not all ICs are shown.

5

8 1,8 at infinity 2,6 3,8 2,3; 2,4; 2,5; 3,4; 3,5; and 4,5 3,7

1,7 at infinity 2,7

5,8

1,2 4,6

1,4

6 1

1,3

To 1,5 To 1,5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-15-3

d.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C6

2

E

Draw the linkage to scale and identify those ICs that can be found by inspection. 1

2,3

3.

3,4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

3 2

I1,3: I1,2-I2,3 and I1,4-I3,4

4 1,2

I2,4: I1,2-I1,4 and I2,3-I3,4

1,4

E

1,3 at infinity

1

1

2,3

4

3,4

2

3 3

2 2,4 at infinity 4 1,2

1,4

e.

This is an eightbar with n  8.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C  28

2

3,4

2,3 1,2

Draw the linkage to scale and identify those ICs that can be found by inspection.

4

4,6 2

4,7

5 4,5

2,5

3.

1,4

3

The remaining 17 ICs are at infinity.

6

7

7,8

6,8 8 4 1,4 at infinity 3

1

f.

This is an offset crank-slider with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a.

2,3

C  2 1,2

1,8

3,4

2.

n ( n  1) 2

C6

Draw the linkage to scale and identify those ICs that can be found by inspection.

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-15-4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4 3,4

4

1,3

1,4 at infinity

1 3

1

4

2

2,3

2

3

2,4

1,4 at infinity 1,2

g.

This is a sixbar with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

3,4

n ( n  1)

1,6

C  15

2

2,3

3 1,4 2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs.

6

4

5

2,5

5,6

1,4

I1,3: I1,4-I4,3 and I1,2-I3,2 I1,5: I1,6-I5,6 and I1,2-I2,5

4,5

I3,5: I1,3-I1,5 and I3,2-I2,5 I2,4: I1,2-I1,4 and I3,4-I2,3 I2,6: I1,6-I1,2 and I2,5-I5,6 I4,6: I1,4-I1,6 and I2,4-I2,6

3,5 at infinity 3,4

1,6

I4,5: I4,6-I5,6 and I3,4-I3,5

2,4 3

I3,6: I3,4-I4,6 and I3,5-I5,6

3,5 at infinity

1,2 2

2,3 and 1,5

6

4 5 4,5 and 1,3

1,4 4,6 at infinity

3,6

2,6

5,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-16a-1

PROBLEM 6-16a Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA, VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  0.80 in

1.

p  1.33 in

Link 3 (A to B)

b  1.93 in

Angle BAC

δ  38.6 deg

Offset

c  0.38 in

Crank angle:

θ  34.3 deg

Input crank angular velocity Solution:

Coupler point data: Distance from A to C

ω  15 rad sec

1

CCW

See Figure P6-5a and Mathcad file P0616a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VCA Direction of VA

C

Y

A

38.600°

34.300° 154.502°

X O2

Direction of VB B

Direction of VBA

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

VA  12.00

in

θ  34.3 deg  90 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

0

VA

5 in/sec

Y

2.197

124.300° V BA X

VB 2.298

DESIGN OF MACHINERY - 5th Ed.

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

5  in sec

1

in in

VB  2.298  in kv

VB  11.490

VBA  2.197  in kv

VBA  10.985

VBA

in sec

b

ω  5.692

rad sec

Determine the magnitude and sense of the vector VCA using equation 6.7. VCA  p  ω

VCA  7.570

in sec

θCA  ( 154.502  180  38.6  90)  deg 7.

θB  180  deg

sec

Determine the angular velocity of link 3 using equation 6.7. ω 

6.

SOLUTION MANUAL 6-16a-2

θCA  76.898 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA

VA

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, layout the (now) known vector VCA. c. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector.

Y 0

V CA

5 in/sec

153.280° VC X

8.

1.130

From the velocity triangle we have: Velocity scale factor:

VC  1.130  in kv

kv 

5  in sec

1

in

VC  5.650

in sec

θC  153.28 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-16b-1

PROBLEM 6-16b Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA, VB,

Given:

and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the instant center graphical method. Link lengths: Coupler point data: Link 2 (O2 to A)

a  0.80 in

Distance from A to C

p  1.33 in

Link 3 (A to B)

b  1.93 in

Angle BAC

δ  38.6 deg

Offset

c  0.38 in

Input crank angular velocity Solution: 1.

θ  34.3 deg

Crank angle:

ω  15 rad sec

1

CCW

See Figure P6-5a and Mathcad file P0616b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout: AI13  2.109  in

1,3 2.109

BI13  2.019  in

0.993 116.732°

CI13  0.993  in 2,4

θC  ( 360  116.732 )  deg 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

C 2.019

A 1,2

2

3

O2

4

VA  a  ω VA  12.000

B

in

1,4 at infinity

θVA  124.3 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

1,4 at infinity

sec

θVA  θ  90 deg 3.

3,4

2,3

VA AI13

ω  5.690

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13 ω

VB  11.488

in sec

θVC  180  deg 5.

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. in

VC  CI13 ω

VC  5.650

θVC  θC  90 deg

θVC  153.268 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-16c-1

PROBLEM 6-16c Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA, VB,

Given:

and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use an analytical method. Link lengths: Coupler point data: Link 2 (O2 to A)

a  0.80 in

Distance from A to C

Rca  1.33 in

Link 3 (A to B)

b  1.93 in

Angle BAC

δ  38.6 deg

Offset

c  0.38 in

Input crank angular velocity Solution: 1.

ω  15 rad sec

1

CCW

See Figure P6-5a and Mathcad file P0616c.

C

Draw the linkage to scale and label it. Y

2.

θ  34.3 deg

Crank angle:

Determine 3 and d using equation 4.17.

A

38.600°

34.300° 154.502°

X O2

0.380"

B

 a  sin θ  c  π b  

θ  asin 

θ  154.502 deg

 

 

d 1  a  cos θ  b  cos θ 3.

Determine the angular velocity of link 3 using equation 6.22a: ω 

4.

d 1  2.403 in

   

a cos θ   ω b cos θ

ω  5.691

rad sec

Determine the velocity of pin A using equation 6.23a:



 

 

VA  a  ω sin θ  j  cos θ VA  ( 6.762  9.913j) 5.

in sec

VA  12.000

arg VA  124.300 deg

in sec

Determine the velocity of pin B using equation 6.22b:

 

 

VB  a  ω sin θ  b  ω sin θ VB  11.490 6.

in

VB  11.490

sec

arg VB  180.000 deg

in sec

Determine the velocity of the coupler point C for the open circuit using equations 6.36.











VCA  Rca ω sin π  θ  δ  j  cos π  θ  δ VCA  ( 1.716  7.371j)

in sec

VC  VA  VCA VC  ( 5.047  2.542j)

in sec

VC  5.651

in sec

arg VC  153.268 deg

Note that 3 is defined at point B for the slider-crank and at point A for the pin-jointed fourbar. Thus, to use equation 6.36a for the slider-crank, 180 deg must be added to the calculated value of 3.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-17a-1

PROBLEM 6-17a Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3, 4, VA, VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the velocity difference graphical method.

Given:

Link lengths:

Coupler point:

Link 2 (point of contact to A)

a  0.75 in

Distance A to C

p  1.2 in

Link 3 (A to B)

b  1.5 in

Angle BAC

δ  30 deg

Link 4 (point of contact to B)

c  0.75 in

Link 1 (between contact points)

d  1.5 in

ω  15 rad sec

Input crank angular velocity Solution: 1.

θ  77 deg

Crank angle: 1

See Figure P6-5c and Mathcad file P0617a.

Although the mechanism shown in Figure P6-5c is not entirely pin-jointed, it can be analyzed for the position shown by its effective pin-jointed fourbar, which is shown below. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. 0

0.5

1 in

Direction of VCA Y

C Direction of VA Direction of VBA

30.000°

Direction of VB

3

A

B b 4

2 a

77.000°

c d

X

O2

O4 Effective link 2

2.

Effective link 4

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

77.000°

VA  11.250

in sec

θ  77 deg  90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-17a-2

Direction of V B

Y

Direction of V BA

167.000° VA

VB X

0

4.

From the velocity triangle we have: VB  VA VBA  0 

5.

ω 

sec

θ  167  deg

in sec

VBA b VB c

ω  0.000

rad sec rad

ω  15.000

sec

Determine the magnitude of the vector VCA using equation 6.7. VCA  p  ω

7.

in

VB  11.250

Determine the angular velocity of links 3 and 4 using equation 6.7. ω 

6.

5 in/sec

VCA  0.000

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA Normally, we would draw the velocity triangle represented by this equation. However, since VCA is zero, in

VC  VA

VC  11.250

θC  θ

θC  167.000 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-17b-1

PROBLEM 6-17b Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3,

Given:

4, VA, VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the instant center graphical method. Link lengths: Coupler point: Link 2 (point of contact to A)

a  0.75 in

Link 3 (A to B)

b  1.5 in

Link 4 (point of contact to B)

c  0.75 in

Link 1 (between contact points)

d  1.5 in

Solution: 1.

p  1.2 in

Angle BAC

δ  30 deg

Crank angle:

ω  15 rad sec

Input crank angular velocity

Distance A to C

1

θ  77 deg

CCW

See Figure P6-5c and Mathcad file P0617b.

Although the mechanism shown in Figure P6-5c is not entirely pin-jointed, it can be analyzed for the position shown by its effective pin-jointed fourbar, which is shown below. Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 1,3 at infinity

1,3 at infinity C

2,3

3,4 30.000°

3

2,4 at infinity A

2

77.000° 2,4 at infinity

O2

77.000° 2,4 at infinity

O4 1,2

1,3 at infinity

Since I

1,3

2,4 at infi

B

4

1,4

1,3 at infinity

is at infinity, link 3 is not rotating ( ω  0  rad sec

1

). Thus, the velocity of every point on

link 3 is the same. From the layout above: θ  77.000 deg 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA  a  ω VA  11.250 sec

θVA  θ  90 deg 3.

θ  0.000  deg

θVA  167.0 deg

Determine the magnitude of the velocity at point B knowing that it is the same as that of point A. in

VB  VA

VB  11.250

θVB  θ  90 deg

θVB  167.000 deg

sec

DESIGN OF MACHINERY - 5th Ed.

4.

Use equation 6.9c to determine the angular velocity of link 4. ω 

5.

SOLUTION MANUAL 6-17b-2

VB c

ω  15

rad

CCW

sec

Determine the magnitude of the velocity at point C knowing that it is the same as that of point A. in

VC  VA

VC  11.250

θVC  θVA

θVC  167.000 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-17c-1

PROBLEM 6-17c Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3,

Given:

4, VA, VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use an analytical method. Link lengths: Coupler point: Link 2 (point of contact to A)

a  0.75 in

Distance A to C

Rca  1.2 in

Link 3 (A to B)

b  1.5 in

Angle BAC

δ  30 deg

Link 4 (point of contact to B)

c  0.75 in

Link 1 (between contact points)

d  1.5 in

Crank angle:

θ  77 deg

ω  15 rad sec

Input crank angular velocity Solution: 1.

1

See Figure P6-5c and Mathcad file P0617c.

Draw the linkage to scale and label it. Y

C

0

0.5

1 in

3

30.000° A

B b 4

2 a

77.000°

c

77.000°

d

X O4

O2 Effective link 2

2.

Effective link 4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.0000

2

d

K3 

c

K2  2.0000

2

2

a b c d

2

2 a c

K3  1.0000

    B  2  sin θ C  K1   K2  1   cos θ  K3

A  cos θ  K1  K2 cos θ  K3

A  1.2250 3.

B  1.9487

C  2.3251

Use equation 4.10b to find values of 4 for the open circuit.





θ  2  atan2 2  A B 

2

B  4 A  C



θ  283.000 deg

θ  θ  360  deg 4.

θ  643.000 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b 2 a b

2

K4  1.0000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-17c-2

K5  2.0000

    E  2  sin θ F  K1   K4  1   cos θ  K5

D  cos θ  K1  K4 cos θ  K5

5.

D  3.5501 E  1.9487 F  0.0000

Use equation 4.13 to find values of 3 for the open circuit.





2

θ  2  atan2 2  D E 

E  4  D F



θ  360.000 deg

θ  θ  360  deg 6.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. ω  ω 

7.

θ  0.000 deg

    a  ω sin θ  θ  c sin θ  θ a  ω sin θ  θ  b sin θ  θ

ω  0.000

rad sec

ω  15.000

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 10.962  2.531j)



 

in sec

in

VA  11.250

sec

 

arg VA  167.000 deg

VB  c ω sin θ  j  cos θ VB  ( 10.962  2.531j) 8.

in

in

VB  11.250

sec

sec

arg VB  167.000 deg

Determine the velocity of the coupler point C for the open circuit using equations 6.36.











VCA  Rca ω sin θ  δ  j  cos θ  δ VCA  0.000

in sec

VC  VA  VCA VC  ( 10.962  2.531j)

in sec

VC  11.250

in sec

arg VC  167.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-18a-1

PROBLEM 6-18a Statement:

Given:

Solution: 1.

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use the velocity difference graphical method. Link lengths and angles: Coupler point: Link 3 (A to B)

b  1.8 in

Distance A to C

p  1.44 in

Coupler angle

θ  128  deg

Angle BAC

δ  49 deg

Slider 4 angle

θ  59 deg

Input slider velocity

VA  10 in sec

See Figure P6-5f and Mathcad file P0618a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VB 0

0.5

1 in

Y

Direction of VBA

C

B 4

Direction of VCA

3 b

49.000°

128.000°

59.000°

VA

X A

2.

The magnitude and sense of the velocity at point A. VA  10.000

3.

2

in sec

θ  180  deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

0

5 in/sec

Y

V BA 4.784 VB

3.436

38.000°

59.000° X

VA

1

DESIGN OF MACHINERY - 5th Ed.

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

5  in sec

1

in in

VB  3.438  in kv

VB  17.190

VBA  4.784  in kv

VBA  23.920

sec in sec

VBA

ω  13.289

b

θ  38 deg

rad sec

Determine the magnitude and sense of the vector VCA using equation 6.7. VCA  p  ω

VCA  19.136

in sec

θCA  ( 128  49  90)  deg 7.

θ  59 deg

Determine the angular velocity of link 3 using equation 6.7. ω 

6.

SOLUTION MANUAL 6-18a-2

θCA  11.000 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA a. b. c.

Choose a convenient velocity scale and layout the known vector VA. From the tip of VA, layout the (now) known vector VCA. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector. 0

5 in/sec

Y 1.902 VA X 11.000°

22.572° VC V CA

3.827

8.

From the velocity triangle we have:

Velocity scale factor:

VC  1.902  in kv

kv 

5  in sec

1

in

VC  9.510

in sec

θC  22.572 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-18b-1

PROBLEM 6-18b Statement:

Given:

Solution: 1.

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use the instant center graphical method. Link lengths and angles: Coupler point: Link 3 (A to B)

b  1.8 in

Distance A to C

p  1.44 in

Coupler angle

θ  128  deg

Angle BAC

δ  49 deg

Slider 4 angle

θ  59 deg

VA  10 in sec

Input slider velocity

See Figure P6-5f and Mathcad file P0618b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 2,4 at infinity

From the layout:

3,4

1,4 at infinity

C

B

AI13  0.753  in

BI13  1.293  in

CI13  0.716  in

θC  67.428 deg

4

0.716 67.428° 3

2.

4.

VA AI13

ω  13.280

1,3

1.293

Determine the angular velocity of link 3 using equation 6.9a. ω 

3.

1

0.753

rad

VA

CW

sec

A

2 2,3

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection.

1,2 at infinity

in

VB  BI13 ω

VB  17.17

θVB  θ

θVB  59.000 deg

sec

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. in

VC  CI13 ω

VC  9.509

θVC  θC  90 deg

θVC  22.572 deg

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-18c-1

PROBLEM 6-18c Statement:

Given:

Solution: 1.

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use an analytical method. Link lengths and angles: Coupler point: Link 3 (A to B)

b  1.8 in

Distance A to C

Rca  1.44 in

Coupler angle

θ  128  deg

Angle BAC

δ  49 deg

Slider 4 angle

θ  59 deg

VA  10 in sec

Input slider velocity

1

See Figure P6-5f and Mathcad file P0618c.

Draw the mechanism to scale and define a vector loop using the fourbar slider-crank derivation in Section 6.7 as a model. 0

0.5

1 in

Y

C

B 4 R3 R4 3 b

49.000°

128.000°

59.000° VA

X

R2

2.

A

2

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for 3 and VB. R2  R3  R4 a e

j  θ

 b e

j  θ

 c e

j  θ

where a is the distance from the origin to point A, a variable; b is the distance from A to B, a constant; and c is the distance from the origin to point B, a variable. Angle 2 is zero, 3 is the angle that AB makes with the x axis, and 4 is the constant angle that slider 4 makes with the x axis. Differentiating, j  θ d  d  j  θ a  j  b  ω e   c   e dt  dt 

Substituting the Euler equivalents, d d  a  b  ω sin θ  j  cos θ   c   cos θ  j  sin θ dt  dt  Separating into real and imaginary components and solving for 3 and VB. Note that dc/dt = VB and da/dt = VA



ω 

 

 

  b   sin θ  tan  θ  cos θ  VA tan θ

  

 

ω  13.288

rad sec

DESIGN OF MACHINERY - 5th Ed.

VB 

SOLUTION MANUAL 6-18c-2

 

VA  b  ω sin θ

 

VB  17.180

cos θ

  

 

sec

arg VB  59.000 deg

VB  VB cos θ  j  sin θ 3.

in

Determine the velocity of the coupler point C using equations 6.36.









VCA  Rca ω sin θ  δ  j  cos θ  δ VCA  ( 18.783  3.651j)



in sec

VA  VA VC  VA  VCA VC  ( 8.783  3.651j)

in sec

VC  9.512

in sec

arg VC  22.572 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-19-1

PROBLEM 6-19 Statement:

The cam-follower in Figure P6-5d has O2A = 0.853 in. Find V4, Vtrans, and Vslip for the position shown with 2 = 20 rad/sec in the direction (CCW) shown.

Given:

ω  20 rad sec

1

O A a  0.853  in 2

Assumptions: Rolling contact (no sliding) Solution: 1.

See Figure P6-5d and Mathcad file P0619.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VA Axis of transmission

Direction of V4 3 O2

4

B A 2

Axis of slip 0.853

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

VA  17.060

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is VA = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line.

Y 0.768 0

VA

10 in/sec

1.523

V slip

V trans

V4

X

0.870

4.

From the velocity triangle we have: Velocity scale factor:

Vslip  1.523  in kv

kv 

10 in sec

1

in

Vslip  15.230

in sec

Vtrans  0.768  in kv

Vtrans  7.680

V4  0.870  in kv

V4  8.700

in sec

in sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-20-1

PROBLEM 6-20 Statement:

The cam-follower in Figure P6-5e has O2A = 0.980 in and O3A = 1.344 in. Find 3, Vtrans, and Vslip for the position shown with 2 = 10 rad/sec in the direction (CW) shown.

Given:

ω  10 rad sec

1

Distance from O to A: a  0.980  in 2

Distance from O3 to A: b  1.344  in Assumptions: Roll-slide contact Solution:

See Figure P6-5e and Mathcad file P0620.

1.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A.

Direction of VA2 Axis of transmission Direction of VA3

VA  a  ω

VA  9.800

in

Axis of slip

sec 2

3.

O2

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is

3

A

O3

1.344

VA2 = Vtrans + VA2slip

0.980

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line. Y

0

4.

From the velocity triangle we have: Velocity scale factor: VA2slip  1.134  in kv Vtrans  1.599  in kv VA3slip  2.048  in kv VA3  2.598  in kv

5.

5  in sec

1

1.599

in

VA2slip  5.670 Vtrans  7.995

sec

2.598

in sec

VA3slip  10.240 VA3  12.990

V trans

in

V A2

in

V A3

VA3 b

The relative slip velocity is

ω  9.665 Vslip  VA3slip  VA2slip

V A2slip

1.134

sec V A3slip

in sec

Determine the angular velocity of link 3 using equation 6.7. ω 

6.

kv 

rad

CCW

sec Vslip  4.570

in sec

2.048

X

5 in/sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-21a-1

PROBLEM 6-21a Statement:

The linkage in Figure P6-6b has L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1, L5 = 23.1 mm. 2 is 68.3 deg in the xy coordinate system, which is at -23.3 deg in the XY coordinate system. The X component of O2C is 59.2 mm. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the velocity difference graphical method.

Given:

Link lengths:

Solution:

Link 1

d  61.9 mm

Link 2

a  15.0 mm

Link 3

b  45.8 mm

Link 4

c  18.1 mm

Link 5

e  23.1 mm

Offset

f  59.2 mm

from O2

Crank angle:

θ  45 deg

Coordinate rotation angle

α  23.3 deg Global XY system to local xy system

Global XY system

See Figure P6-6b and Mathcad file P0621a.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. VA  10

y 5,6 6 2,3

mm

A

sec

Direction of VCB C

45.0° 3

2

θVC  45 deg  90 deg

1

5

X

O2 23.3°

B Direction of VBA

1

θVC  135.000 deg 3.

Direction of VC

Direction of VA Y

4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is

O4 x

1 Direction of VB

VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 4.

From the velocity triangle we have: VA

Velocity scale factor:

kv 

5  mm sec

1

0

5 mm/sec

2.053

in

VB  2.248  in kv VB  11.2

Y

mm sec

θVB  ( 360  167.558 )  deg

VBA

X 167.553°

VB 2.248

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-21a-2

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the (now) known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line. VA

Y 0

V BA

5 mm/sec

X VB 1.128 VC V CB

6.

From the velocity triangle we have: kv 

Velocity scale factor:

VC  1.128  in kv

7.

The ratio V

/V I5,6

8.

is I2,3

VC

5  mm sec

1

in

VC  5.6

mm sec

θVC  270  deg

 0.564

VA

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Fin =

Fout =

mA =

Tin rin

Pout Vout Fout Fin

Pin

=

rin ωin =

=

=

Pin VA

Pout VC Pout VA  VC Pin

mA 

VA VC

mA  1.773

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-21b-1

PROBLEM 6-21b Statement:

The linkage in Figure P6-6b has L1 = 61.9, L2 = 15, L3 = 45.8, L4 = 18.1, L5 = 23.1 mm. 2 is 68.3 deg in the xy coordinate system, which is at -23.3 deg in the XY coordinate system. The X component of O2C is 59.2 mm. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the instant center graphical method.

Given:

Link lengths:

Solution: 1.

Link 1

d  61.9 mm

Link 2

a  15.0 mm

Link 3

b  45.8 mm

Link 4

c  18.1 mm

Link 5

e  23.1 mm

Offset

f  59.2 mm

from O2

Crank angle:

θ  45 deg

Coordinate rotation angle

α  23.3 deg Global XY system to local xy system

Global XY system

See Figure P6-6b and Mathcad file P0621b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout:

2.

AI13  44.594 mm

BI13  50.121 mm

BI15  22.683 mm

CI15  11.377 mm

1,3

5,6

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. VA  10

6 1,5 2,3 A

mm 2

sec

50.121

C

3

1

5

22.683

X

O2

θVC  θ  90 deg

B 1

θVC  135.000 deg 3.

11.377

44.594 Y

4

Determine the angular velocity of link 3 using equation 6.9a.

O4 1

ω 

VA

ω  0.224

AI13

rad

CW

sec

4.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm VB  BI13 ω VB  11.239 sec

5.

Determine the angular velocity of link 5 using equation 6.9a. ω 

6.

VB

ω  0.495

BI15

The ratio V

/V I5,6

8.

CW

sec

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. VC  CI15 ω

7.

rad

is I2,3

VC VA

VC  5.637

mm

downward

sec

 0.56

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider.

DESIGN OF MACHINERY - 5th Ed.

Fin =

Fout =

mA =

Tin rin

Pout Vout Fout Fin

Pin

=

rin ωin =

=

SOLUTION MANUAL 6-21b-2

=

Pin VA

Pout VC Pout VA  VC Pin

mA 

VA VC

mA  1.77

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-22a-1

PROBLEM 6-22a Statement:

Given:

Solution: 1.

The linkage in Figure P6-6d has L2 = 15, L3 = 40.9, L5 = 44.7 mm. 2 is 24.2 deg in the XY coordinate system. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the velocity difference graphical method. Link lengths: Link 2

a  15.0 mm

Link 3

b  40.9 mm

Link 5

c  44.7 mm

Offset

f  0  mm

Crank angle:

θ  24.2 deg

from O2

See Figure P6-6d and Mathcad file P0622a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

4 1

C

Direction of VBA

3

Direction of VA

5,6 A

5

2

O2

6 B 1

2,3

1

Direction of VB

2.

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. VA  10

3.

mm

θVC  θ  90 deg

sec

θVC  114.200 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. VA Y 0

5 mm/sec

V BA X

VB 1.073

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 6-22a-2

From the velocity triangle we have: kv 

Velocity scale factor:

VB  1.073  in kv

5.

The ratio V

/V I5,6

6.

is I2,3

VB

5  mm sec

1

in

VB  5.4

mm sec

θVB  180  deg

 0.54

VA

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Fin =

Fout =

mA =

Tin rin

Pout Vout

Fout Fin

Pin

=

rin ωin

=

=

=

Pin VA

Pout VB

Pout VA  VB Pin

mA 

VA VB

mA  1.86

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-22b-1

PROBLEM 6-22b Statement:

Given:

Solution: 1.

The linkage in Figure P6-6d has L2 = 15, L3 = 40.9, L5 = 44.7 mm. 2 is 24.2 deg in the XY coordinate system. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the instant center graphical method. Link lengths: Link 2 Link 3 a  15.0 mm b  40.9 mm Link 5

c  44.7 mm

Crank angle:

θ  24.2 deg

f  0  mm

Offset

from O2

See Figure P6-6d and Mathcad file P0622b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 4 C

1

3

1,5

48.561

26.075

5,6 A

5

2

O2

6 B 1

2,3

1

From the layout: AI15  48.561 mm 2.

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. VA  10

3.

mm

θVC  θ  90 deg

sec

VA

ω  0.206

AI15

The ratio V

/V I5,6

6.

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI15 ω

5.

θVC  114.200 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

BI15  26.075 mm

is I2,3

VB VA

VB  5.370

mm

to the left

sec

 0.54

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Fin =

mA =

Tin rin Fout Fin

=

=

Pin rin ωin

=

Pout VA  VC Pin

Pin

Fout =

VA mA 

VA VB

Pout Vout

mA  1.86

=

Pout VC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-23-1

PROBLEM 6-23 Statement:

Generate and draw the fixed and moving centrodes of links 1 and 3 for the linkage in Figure P6-7a

Solution:

See Figure P6-7a and Mathcad file P0623.

1.

Draw the linkage to scale, find the instant center I1,3, and repeat for several positions of the linkage. The locus of points I1,3 is the fixed centrode.

FIXED CENTRODE

2.

Invert the linkage, grounding link 3. Draw the linkage to scale, find the instant center I1,3, and repeat for several positions of the linkage. The locus of points I1,3 is the moving centrode. (See next page.)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-23-2

MOVING CENTRODE

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-24-1

PROBLEM 6-24 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find f, VA, and VB for the position shown for  = 15 rad/sec clockwise (CW). Use the velocity difference graphical method.

Given:

Link lengths:

Crank angle:

Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

Coordinate rotation angle Solution: 1.

θ  37 deg

Global XY system

Input crank angular velocity ω  15 rad sec

α  25 deg

1

Global XY system to local xy system

See Figure P6-8a and Mathcad file P0624.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Y

Direction of VA A

37.000° 70.133°

2 3

X

O2 d

22.319° B

Direction of VBA 4

Direction of VB

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

O4

VA  1740.0

mm sec

θA  37 deg  90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-24-2

1000 mm/sec

0

Y

X 0.952 53.000° VB VA

VBA

1.498 112.319°

4.

From the velocity triangle we have: Velocity scale factor:

5.

1000 mm sec

1

in mm

VB  0.952  in kv

VB  952.0

VBA  1.498  in kv

VBA  1498.0

sec mm sec

Determine the angular velocity of link 3 using equation 6.7. ω 

6.

kv 

VBA b

ω  13.87

rad sec

Determine the angular velocity of link 4 using equation 6.7. ω 

VB c

ω  8.655

rad sec

θB  112.319  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-25-1

PROBLEM 6-25 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find f, VA, and VB for the position shown for  = 15 rad/sec clockwise (CW). Use the instant center graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

Coordinate rotation angle Solution: 1.

Crank angle:

α  25 deg

θ  37 deg

Global XY system

Input crank angular velocity ω  15 rad sec

1

Global XY system to local xy system

See Figure P6-8a and Mathcad file P0625.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. Y

From the layout:

2,3

A

AI13  125.463  mm

125.463

BI13  68.638 mm θ  157.681  deg

2

3

O2 1,2

X 2,4 157.681°

1,3 B

2.

3.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

5.

4

O4

3,4 1,4

mm

VA  a  ω

VA  1740.0

θVA  θ  90 deg

θVA  53.0 deg

sec

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

68.638

VA AI13

ω  13.869

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 ω

VB  951.915

θVB  θ  90 deg

θVB  247.681 deg

sec

Use equation 6.9c to determine the angular velocity of link 4. ω 

VB c

ω  8.654

rad sec

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-26-1

PROBLEM 6-26 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for  = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Solution:

Link lengths:

Crank angle:

Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

θ  62 deg

Global XY system

Input crank angular velocity ω  15 rad sec

1

CW

See Figure P6-8a and Mathcad file P0626.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

y A

K1  K2 

d

K1  1.5000

a

3 O2

d

62.000°

K2  1.5818

c 2

K3 

2

2

2

a b c d

2

2

K3  1.7307

2 a c

B

    B  2  sin θ C  K1   K2  1   cos θ  K3

4

A  cos θ  K1  K2 cos θ  K3

A  0.0424 3.

B  1.7659

4.

x

C  2.0186

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B 

B  4 A  C



θ  182.681 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d b

2

2

c d a b

K5 

2

2 a b

    E  2  sin θ F  K1   K4  1   cos θ  K5

D  cos θ  K1  K4 cos θ  K5

5.



6.

K4  1.6111

K5  1.7280

D  2.0021 E  1.7659 F  0.0589

Use equation 4.13 to find values of 3 for the crossed circuit.



2

θ  2  atan2 2  D E 

E  4  D F



θ  275.133 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. ω 

 

 

a  ω sin θ  θ  b sin θ  θ

O4

ω  13.869

rad sec

DESIGN OF MACHINERY - 5th Ed.

ω 

7.

SOLUTION MANUAL 6-26-2

 

 

a  ω sin θ  θ  c sin θ  θ

ω  8.654

rad sec

Determine the velocity of points A and B for the crossed circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 1536.329  816.881i)



 

mm sec

VA  1740.000

 

mm sec

arg VA  28.000 deg

VB  c ω sin θ  j  cos θ VB  ( 44.524  950.875j)

mm sec

VB  951.917

mm sec

arg VB  87.319 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-27-1

PROBLEM 6-27 Statement:

The linkage in Figure P6-8a has the dimensions given below. Find and plot 4, VA, and VB in

Given:

the local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec clockwise (CW). Link lengths: Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

ω  15 rad sec

Input crank angular velocity Solution:

1

CW

See Figure P6-8a and Mathcad file P0627.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.33.

y A

2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c

2

2 a d

arg1  1.083



b c

2 3

a d

O2

b c

2

a d

62.000°

B

arg2  0.094

θ2toggle  acos arg2

4

O4

θ2toggle  95.4 deg

x

The other toggle angle is the negative of this. Thus, θ  θ2toggle  1  deg θ2toggle  2  deg  θ2toggle  1  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.5000 2

K3 

d c

K2  1.5818 2

2

a b c d

2

K3  1.7307

2 a c

      B θ  2  sin θ C θ  K1   K2  1   cos θ  K3

A θ  cos θ  K1  K2 cos θ  K3

4.

Use equation 4.10b to find values of 4 for the crossed circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

 

2

2

c d a b 2 a b

 

D θ  cos θ  K1  K4 cos θ  K5

2

K4  1.6111

K5  1.7280

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-27-2

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the crossed circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of points A and B for the crossed circuit using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ

 

  

 

 

 

  

 

VAx θ  Re VA θ

  

VAy θ  Im VA θ

    j  cosθθ

VB θ  c ω θ  sin θ θ

 

VBx θ  Re VB θ

Plot the angular velocity of the output link, 4, and the x and y components of the velocities at points A and B. ANGULAR VELOCITY OF LINK 4 60 40 Angular Velocity, rad/sec

9.

  

VBy θ  Im VB θ

20 0

 

ω  θ 

sec rad

 20  40  60  80  100  100

 75

 50

 25

0 θ deg

25

50

75

100

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-27-3

VELOCITY COMPONENTS, POINT A 0.5

Joint Velocity, m/sec

0

 

VAy θ 

 0.5 sec m 1

 1.5

2 2

 1.5

1

 0.5

0

 

0.5

VAx θ 

1

1.5

2

sec m

VELOCITY COMPONENTS, POINT B 4

Joint Velocity, m/sec

3 2

 

VBy θ 

sec 1 m

0 1 2 3 4

3

2

1

0

 

VBx θ 

1 sec m

2

3

4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-28-1

PROBLEM 6-28 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and

Given:

VB for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use the velocity difference graphical method. Link lengths: Crank angle: Link 2 (O2 to A)

a  40 mm

Link 3 (A to B)

b  96 mm

Link 4 (B to O4)

c  122  mm

Link 1 (O2 to O4)

d  162  mm

θ  57 deg

Input crank angular velocity ω  20 rad sec

α  36 deg

Coordinate rotation angle

Global XY system

1

Global XY system to local xy system

See Figure P6-8b and Mathcad file P0628. Solution: 1. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. 2.

Direction of VA

Use equation 6.7 to calculate the magnitude of the velocity at point A.

VA  800.000

mm sec

2

y

B 3

A

2

X O2

θA  θ  90 deg 3.

Direction of VB

Y

VA  a  ω

Direction of VBA

4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA

O4 x

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 0

4.

400 mm/sec

From the velocity triangle we have: 147.000°

Velocity scale factor: kv 

400  mm sec

1

VA Y

in

VB  1.790  in kv

VB  716.0

mm

1.293" V BA

sec X

θB  186.406  deg VBA  1.293  in kv 5.

mm sec

6.406°

1.790" 85.486°

Determine the angular velocity of link 3 using equation 6.7. ω 

6.

VBA  517.2

VB

VBA b

ω  5.388

rad sec

Determine the angular velocity of link 4 using equation 6.7. ω 

VB c

ω  5.869

rad sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-29-1

PROBLEM 6-29 Statement:

Given:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use the instant center graphical method. Link lengths: Crank angle: a  40 mm θ  57 deg Global XY system Link 2 (O2 to A) Input crank angular velocity b  96 mm Link 3 (A to B) 1 c  122  mm ω  20 rad sec Link 4 (B to O4) d  162  mm Link 1 (O2 to O4) Coordinate rotation angle

Solution: 1.

α  36 deg

Global XY system to local xy system

See Figure P6-8b and Mathcad file P0629.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout: AI13  148.700  mm

1,3

BI13  133.192  mm

θ  96.406 deg 2.

133.192

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA  a  ω VA  800.0 sec

θVA  θ  90 deg 3.

148.700

Y 2

A

2

θVA  147.0 deg

y

B 3 X

O2 4

Determine the angular velocity of link 3 using equation 6.9a. ω 

VA AI13

ω  5.380

rad

96.406°

CW

sec

O4 x

4.

5.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 ω

VB  716.6

θVB  θ  90 deg

θVB  186.406 deg

sec

Use equation 6.9c to determine the angular velocity of link 4. ω 

VB c

ω  5.874

rad sec

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-30-1

PROBLEM 6-30 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and

Given:

VB for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use an analytical method. Link lengths: Crank angle: Link 2 (O2 to A)

a  40 mm

Link 3 (A to B)

b  96 mm

Link 4 (B to O4)

c  122  mm

Link 1 (O2 to O4)

d  162  mm α  36 deg

Coordinate rotation angle Solution:

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  4.0500 2

K3 

1

Global XY system to local xy system

Y

y

2

c

B

3

A

X 93.000 4

K2  1.3279 2

2

a b c d

2

K3  3.4336

2 a c

A  0.5992

B  1.9973

θ  θ  α

O4 x

 

B  2  sin θ

C  7.6054

Use equation 4.10b to find values of 4 for the open circuit.





θ  2  atan2 2  A B 

2

B  4 A  C

  2 π

θ  587.614 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

    E  2  sin θ F  K1   K4  1   cos θ  K5

2

2 a b

D  cos θ  K1  K4 cos θ  K5

K4  1.6875

K5  2.8875

D  7.0782 E  1.9973 F  1.1265

Use equation 4.13 to find values of 3 for the open circuit.





θ  2  atan2 2  D E  6.

ω  20 rad sec

O2

    C  K1   K2  1   cos θ  K3

5.

Input crank angular velocity

2

d

A  cos θ  K1  K2 cos θ  K3

4.

Global XY system

See Figure P6-8b and Mathcad file P0630.

1.

3.

θ  57 deg

2

E  4  D F

  2 π

θ  688.496 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.385

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  5.868

rad sec

rad sec

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 6-30-2

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 798.904  41.869i )



 

mm sec

VA  800.000

mm

VB  715.900

mm

 

sec

arg VA  177.000 deg

VB  c ω sin θ  j  cos θ VB  ( 528.774  482.608j)

mm sec

sec

arg VB  137.614 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-31-1

PROBLEM 6-31 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find and plot 4, VA, and VB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 20 rad/sec counterclockwise (CCW).

Given:

Link lengths: Link 2 (O2 to A)

a  40 mm

Link 3 (A to B)

b  96 mm

Link 4 (B to O4)

c  122  mm

Link 1 (O2 to O4)

d  162  mm

ω  20 rad sec

Input crank angular velocity Solution:

1

CCW

See Figure P6-8b and Mathcad file P0631.

1.

Draw the linkage to scale and label it.

2.

Determine Grashof condition. Condition( S L P Q) 

Y 2

SL  S  L

y B

3

A

93.000 X

2

PQ  P  Q

O2 4

return "Grashof" if SL  PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise O4

Condition( a d b c)  "Grashof"

x

Crank-rocker

θ  0  deg 1  deg  360  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  4.0500

 

2

d

K3 

c

K2  1.3279

 

2

2

2 a c

K3  3.4336

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

2

a b c d

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 

θ θ  2   atan2 2  A θ B θ  5.

 2  4 A θ Cθ 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

K4  1.6875

2 a b

K5  2.8875

      E θ  2  sin θ F  θ  K1   K4  1   cos θ  K5

D θ  cos θ  K1  K4 cos θ  K5

6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

DESIGN OF MACHINERY - 5th Ed.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

b

c

SOLUTION MANUAL 6-31-2



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of points B and C for the open circuit using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ

 

  

 

 

 

  

 

VAx θ  Re VA θ

  

VAy θ  Im VA θ

    j  cosθθ

VB θ  c ω θ  sin θ θ

 

VBx θ  Re VB θ

Plot the angular velocity of the output link, 4, and the magnitudes of the velocities at points B and C. ANGULAR VELOCITY OF LINK 4

Angular Velocity, rad/sec

10

5

 

ω  θ 

sec 0

rad

5

 10

0

45

90

135

180

225

270

315

360

θ deg

VELOCITY COMPONENTS, POINT A

3

1 10 Joint Velocity, mm/sec

9.

  

VBy θ  Im VB θ

 

VAx θ 

 

VAy θ 

sec

500

mm sec mm

0  500 3

 1 10

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-31-3

VELOCITY COMPONENTS, POINT B

3

Joint Velocity, mm/sec

1 10

600

 

VBx θ 

 

VBy θ 

sec mm

200

sec

 200

mm  600  1 10

3

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-32-1

PROBLEM 6-32 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown if 2 = 25 rad/sec CW. Use the velocity difference graphical method.

Given:

Link lengths:

Solution:

Link 2

a  63 mm

Crank angle:

θ  51 deg

Link 3

b  130  mm

Input crank angular velocity

Offset

c  52 mm

ω  25 rad sec

1

CW

See Figure P6-8f and Mathcad file P0632.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

VA  1575.0

Direction of VB 4 B

mm

Direction of VBA

1

sec

3

θA  51 deg  90 deg 3.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is

Direction of VA A 2 51.000°

VB = VA + VBA O2

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 4.

0

From the velocity triangle we have: Velocity scale factor:

kv 

VB  2.208  in kv

θVB  270  deg

1000 mm sec

1000 mm/sec

Y

1 X

in VB  2208

mm VA

sec 2.208

VB V BA

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-33-1

PROBLEM 6-33 Statement:

The offset crank-slider linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown for 2 = 25 rad/sec CW. Use the instant center graphical method.

Given:

Link lengths: Link 2

a  63 mm

Crank angle:

θ  51 deg

Link 3

b  130  mm

Offset

c  52 mm

ω  25 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-8f and Mathcad file P0633.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 166.309 4 B

1,3

1 3

A

118.639

2

O2

From the layout above: AI13  118.639  mm 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA  a  ω VA  1575.0 sec

θVA  θ  90 deg 3.

θVA  39.0 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

BI13  166.309  mm

VA AI13

ω  13.276

rad

CCW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13 ω

θVB  270  deg

VB  2207.8

mm sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-34-1

PROBLEM 6-34 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown for 2 = 25 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2

a  63 mm

Link 3

b  130  mm

Offset

c  52 mm

θ  141  deg

Crank angle:

Local xy coordinate system Input crank angular velocity ω  25 rad sec

Solution:

See Figure P6-8f and Mathcad file P0634.

Y

1.

Draw the linkage to a convenient scale.

2.

Determine 3 and d using equations 4.16 for the crossed circuit.

4

 a  sin θ  b 

θ  asin

 

c

 

1 3

 

d  141.160 mm

A

52.000 2

Determine the angular velocity of link 3 using equation 6.22a: ω 

4.

B

θ  44.828 deg

d  a  cos θ  b  cos θ 3.

1

   

a cos θ   ω b cos θ

ω  13.276

rad

 

141.000°

sec

x

Determine the velocity of pin A using equation 6.23a:



X, y

O2

 

VA  a  ω sin θ  j  cos θ VA  ( 991.180  1224.005i )

mm sec

In the global coordinate system, 5.

VA  1575.000

mm sec

θVA  arg VA  90 deg

arg VA  51.000 deg

θVA  39.000 deg

Determine the velocity of pin B using equation 6.22b:

 

 

VB  a  ω sin θ  b  ω sin θ

VB  2207.849

mm sec

VB  VB In the global coordinate system,

θVB  arg VB  90 deg

θVB  90.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-35-1

PROBLEM 6-35 Statement:

The offset crank-slider linkage in Figure P6-8f has the dimensions and crank angle given below. Find and plot VA, and VB in the global coordinate system for the maximum range of motion that this linkage allows if 2 = 25 rad/sec CW.

Given:

Link lengths: Link 2

a  63 mm

Link 3

b  130  mm ω  25 rad sec

Input crank angular velocity Solution:

c  52 mm

Offset 1

See Figure P6-8f and Mathcad file P0635.

1.

Draw the linkage to a convenient scale. The coordinate rotation angle is α  90 deg

2.

Determine the range of motion for this slider-crank linkage. 4

θ  0  deg 2  deg  360  deg 3.

 a  sin θ  b 

 

3

c

 

 

a b



2

   ω cos θ θ  cos θ

O2

Determine the x and y components of the velocity of pin A using equation 6.23a:

 



 

 

VA θ  a  ω sin θ  j  cos θ

 

  

VAx θ  Re VA θ

 

  

 

 

VAy θ  Im VA θ

In the global coordinate system,

 

 

VAX θ  VAy θ 6.

VAY θ  VAx θ

Determine the velocity of pin B using equation 6.22b:

 

 

    

VBx θ  a  ω sin θ  b  ω θ  sin θ θ In the global coordinate system,

 

 

VBY θ  VBx θ 7.

A

52.000

Determine the angular velocity of link 3 using equation 6.22a: ω θ 

5.

B

1

Determine 3 using equations 4.16 for the crossed circuit. θ θ  asin

4.

Y

Plot the x and y components of the velocity of A. (See next page.)

2 x

X, y

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-35-2

VELOCITY OF POINT A 2000

Velocity, mm/sec

1000

 

VAX θ 

 

VAY θ 

sec mm 0

sec mm

 1000

 2000

0

60

120

180

240

300

360

θ deg

Plot the velocity of point B. VELOCITY OF POINT B 2000

1000 Velocity, mm/sec

7.

0

 

VBY θ 

sec mm  1000

 2000

 3000

0

60

120

180 θ deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-36-1

PROBLEM 6-36 Statement:

Given:

The linkage in Figure P6-8d has the dimensions and crank angle given below. Find VA, VB, and Vbox for the position shown for 2 = 30 rad/sec clockwise (CW). Use the velocity difference graphical method. Link lengths: Link 2 Link 3 a  30 mm b  150  mm Link 4

c  30 mm

Crank angle:

θ  58 deg

Global XY system ω  30 rad sec

Input crank angular velocity Solution:

d  150  mm

Link 1 1

CW

See Figure P6-8d and Mathcad file P0636.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. mm VA  a  ω VA  900.000 sec

Vbox 1

Direction of VBA

θA  58 deg  90 deg 3.

Direction of VA

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is

B

3

A

Direction of VB

2 O4

O2

4

VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. Y

4.

From the velocity triangle we have:

Direction of VBA

VB  VA

X 0

VB  900.000

θB  32 deg 5.

VB

sec VBA  0 

in

VA

sec

Determine the angular velocity of links 3 and 4 using equation 6.7. ω 

6.

500 mm/sec

32.000°

mm

VBA b

ω  0.000

rad sec

ω 

VB c

ω  30.000

rad sec

Determine the magnitude of the vector Vbox . This is a special case Grashof mechanism in the parallelogram configuration. Link 3 does not rotate, therefore all points on link 3 have the same velocity. The velocity Vbox is the horizontal component of VA. mm Vbox  VA cos θA Vbox  763.243 sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-37-1

PROBLEM 6-37 Statement:

The linkage in Figure P6-8d has the dimensions and effective crank angle given below. Find VA,

Given:

VB, and Vbox in the global coordinate system for the position shown for 2 = 30 rad/sec CW. Use an analytical method. Link lengths:

Solution: 1.

Link 2

a  30 mm

Link 3

b  150  mm

Link 4

c  30 mm

Link 1

d  150  mm

Crank angle:

θ  58 deg

Input crank angular velocity

ω  30 rad sec

1

See Figure P6-8d and Mathcad file P0637. Vbox

Draw the linkage to scale and label it. 1

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.0000 2

K3 

2

c

2

2

2

K3  1.0000

2 a c

    C  K1   K2  1   cos θ  K3

 

A  cos θ  K1  K2 cos θ  K3 A  6.1197 3.

B  1.6961

B  2  sin θ

C  2.8205

Use equation 4.10b to find values of 4 for the open circuit.





2

θ  2  atan2 2  A B 

B  4 A  C



θ  302.000 deg

θ  θ  360  deg 4.

θ  662.000 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b 2 a b

    E  2  sin θ F  K1   K4  1   cos θ  K5

D  cos θ  K1  K4 cos θ  K5

5.

2

K4  1.0000

K5  5.0000

D  8.9402 E  1.6961 F  0.0000

Use equation 4.13 to find values of 3 for the open circuit.





2

θ  2  atan2 2  D E 

E  4  D F

θ  θ  360  deg 6.

O4

O2

K2  5.0000

a b c d

B

3

A

d



θ  360.000 deg θ  0.000 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. ω 

 

 

a  ω sin θ  θ  b sin θ  θ

ω  0.000

rad sec

4

DESIGN OF MACHINERY - 5th Ed.

ω  7.

SOLUTION MANUAL 6-37-2

 

 

a  ω sin θ  θ  c sin θ  θ

ω  30.000

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 763.243  476.927j)



 

mm sec

VA  900.000

mm

VB  900.000

mm

 

sec

arg VA  32.000 deg

VB  c ω sin θ  j  cos θ VB  ( 763.243  476.927j) 8.

mm sec

sec

arg VB  32.000 deg

Determine the velocity Vbox. Since link 3 does not rotate (this is a special case Grashof linkage in the parallelogram mode), all points on it have the same velocity. Therefore, Vbox  VA

Vbox  900.000

mm sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-38-1

PROBLEM 6-38 Statement:

The linkage in Figure P6-8d has the dimensions and effective crank angle given below. Find and plot VA, VB, and Vbox in the global coordinate system for the maximum range of motion that this linkage allows if 2 = 30 rad/sec CW.

Given:

Link lengths: Link 2

a  30 mm

Link 3

b  150  mm

Link 4

c  30 mm

Link 1

d  150  mm

ω  30 rad sec

Input crank angular velocity Solution:

1

See Figure P6-8d and Mathcad file P0638.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this special-case Grashof double crank.

Vbox 1

θ  0  deg 2  deg  360  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.0000 2

K3 

B

3

2 O4

O2

c

K2  5.0000 2

2

a b c d

2

K3  1.0000

2 a c

 

d

A

 

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

K4  1.0000

K5  5.0000

      E θ  2  sin θ F  θ  K1   K4  1   cos θ  K5

D θ  cos θ  K1  K4 cos θ  K5

6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

4

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 6-38-2

Determine the velocity of points A and B for the open circuit using equations 6.19.

 



 

 

 

 

VA θ  a  ω sin θ  j  cos θ VA θ  VA θ

 

 

    j  cosθθ

VB θ  c ω θ  sin θ θ

 

 

VB θ  VB θ 9.

Plot the angular velocity of the output link, 4, and the magnitudes of the velocities at points A and B. Since this is a special-case Grashof linkage in the parallelogram configuration, 3 = 0 and 4 = 2 for all values of 2. Similarly, VA, VB, and Vbox all have the same constant magnitude through all values of 2. ω( 5  deg)  30.000

rad sec

VA( 5  deg)  900.000

mm

VB( 5  deg)  900.000

mm

sec

sec

ω( 135  deg)  30.000

rad sec

VA( 135  deg)  900.000

mm

VB( 135  deg)  900.000

mm

sec

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-39-1

PROBLEM 6-39 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and

Given:

VB for the position shown for 2 = 15 rad/sec clockwise (CW). Use the velocity difference graphical method. Link lengths: Link 2 (O2 to A)

a  49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b  100  mm

Link 5 (C to D)

b'  100  mm

Link 4 (B to O4)

c  153  mm

Link 6 (D to O6)

c'  153  mm

Link 1 (O2 to O4)

d  87 mm

Link 1 (O2 to O6)

d'  87 mm

θ  29 deg

Crank angle:

Solution: 1.

Global XY system

Input crank angular velocity

ω  15 rad sec

Coordinate rotation angle

α  119  deg

1

CW

Global XY system to local xy system

See Figure P6-8g and Mathcad file P0639.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Y

Direction of VB

Direction of VBA O6

B 3 29.000°

A

2

4 C

6

O2

X

Direction of VA

5

D

O4 2.

Use equation 6.7 to calculate the magnitude of the velocity at point B. VB  a  ω

3.

VB  735.0

mm sec

θB  29 deg  90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A, the magnitude of the relati velocity VAB, and the angular velocity of link 3. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VA, magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line.

DESIGN OF MACHINERY - 5th Ed.

0

SOLUTION MANUAL 6-39-2

500 mm/sec

Y 0.124°

1.517 VB

X V BA

VA

4.

From the velocity triangle we have: Velocity scale factor:

VA  1.517  in kv

5.

kv 

500  mm sec

VA  758.5

1

in mm sec

Determine the angular velocity of link 4 using equation 6.7. ω 

VA c

ω  4.958

rad sec

θA  0.124  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-40-1

PROBLEM 6-40 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and

Given:

VB for the position shown for 2 = 15 rad/sec clockwise (CW). Use the instant center graphical method. Link lengths: Link 2 (O2 to A)

a  49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b  100  mm

Link 5 (C to D)

b'  100  mm

Link 4 (B to O4)

c  153  mm

Link 6 (D to O6)

c'  153  mm

Link 1 (O2 to O4)

d  87 mm

Link 1 (O2 to O6)

d'  87 mm

θ  29 deg

Crank angle:

Solution: 1.

Global XY system

Input crank angular velocity

ω  15 rad sec

Coordinate rotation angle

α  119  deg

1

CW

Global XY system to local xy system

See Figure P6-8g and Mathcad file P0640.

Y

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis.

97.094 O6 B 3

From the layout: AI13  97.094 mm

BI13  100.224  mm

1,3

100.224

θ  89.876 deg 2.

3.

5.

6

89.876° 5

X

D

O4

θVA  61.0 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

A

O2

C

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA  a  ω VA  735.0 sec

θVA  θ  90 deg

2

4

VA AI13

ω  7.570

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 ω

VB  758.694

θVB  θ  90 deg

θVB  0.124 deg

sec

Use equation 6.9c to determine the angular velocity of link 4. ω 

VB c

ω  4.959

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-41-1

PROBLEM 6-41 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for 2 = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b  100  mm

Link 5 (C to D)

b'  100  mm

Link 4 (B to O4)

c  153  mm

Link 6 (D to O6)

c'  153  mm

Link 1 (O2 to O4)

d  87 mm

Link 1 (O2 to O6)

d'  87 mm

θ  148  deg Local xy system

Crank angle:

ω  15 rad sec

Input crank angular velocity Solution:

1

See Figure P6-8g and Mathcad file P0641.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

Y

d

K2 

a

K1  1.7755 2

K3 

O6

d

B 3

c

K2  0.5686 2

2

a b c d

2

K3  1.5592

2 a c

2

4 C

    B  2  sin θ C  K1   K2  1   cos θ  K3 3.

B  1.0598

D O4 x

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B  4.

5

C  4.6650

B  4 A  C



θ  208.876 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

    E  2  sin θ F  K1   K4  1   cos θ  K5

D  cos θ  K1  K4 cos θ  K5

5.

K5  0.3509

D  3.0104 E  1.0598 F  2.2367

Use equation 4.13 to find values of 3 for the crossed circuit.





2

θ  2  atan2 2  D E  6.

K4  0.8700

E  4  D F



θ  266.892 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. ω 

 

 

a  ω sin θ  θ  b sin θ  θ

ω  7.570

rad sec

X

6

O2 148.000°

A  cos θ  K1  K2 cos θ  K3

A  0.5821

A

y

DESIGN OF MACHINERY - 5th Ed.

ω  7.

SOLUTION MANUAL 6-41-2

 

 

a  ω sin θ  θ  c sin θ  θ

ω  4.959

rad sec

Determine the velocity of points B and A for the crossed circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 389.491  623.315i)



 

mm sec

VA  735.000

mm

VB  758.694

mm

 

sec

arg VA  58.000 deg

VB  c ω sin θ  j  cos θ VB  ( 366.389  664.362j)

mm sec

sec

arg VB  118.876 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-42-1

PROBLEM 6-42 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find and plot 4, VA, and VB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec clockwise (CW).

Given:

Link lengths: Link 2 (O2 to A)

a  49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b  100  mm

Link 5 (C to D)

b'  100  mm

Link 4 (B to O4)

c  153  mm

Link 6 (D to O6)

c'  153  mm

Link 1 (O2 to O4)

d  87 mm

Link 1 (O2 to O6)

d'  87 mm

ω  15 rad sec

Input crank angular velocity Solution:

1

Y

See Figure P6-8g and Mathcad file P0642.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2

a d b c

2



2 a d 2

arg2 

O6

2

2

a d b c

2

2 a d



θ2toggle  acos arg1

b c

B 3

arg1  0.840

a d

C

b c

O2

arg2  6.338

a d

A

2

4

2

5 D

θ2toggle  32.9 deg

O4 x

The other toggle angle is the negative of this. Thus,

θ  θ2toggle  1  deg θ2toggle  2  deg  359  deg  θ2toggle

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.7755

 

2

d

K3 

c

2

a b c d

K3  1.5592

 

B θ  2  sin θ

 

2

2 a c

K2  0.5686

 

A θ  cos θ  K1  K2 cos θ  K3

 

2

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the crossed circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b 2 a b

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

F θ  K1   K4  1   cos θ  K5

2

K4  0.8700

 

K5  0.3509

 

E θ  2  sin θ

X

6

y

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 6-42-2

Use equation 4.13 to find values of 3 for the crossed circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of points A and B for the crossed circuit using equations 6.19.

     VBx θ  Re VB θ 

 

VB θ  a  ω sin θ  j  cos θ

 

 

 

  

 

  

VBy θ  Im VB θ

    j  cosθθ

VA θ  c ω θ  sin θ θ

 

VAx θ  Re VA θ

Plot the angular velocity of the output link, 4, and the x and y components of the velocities at points B and A. ANGULAR VELOCITY OF LINK 4 60 40 Angular Velocity, rad/sec

9.

  

VAy θ  Im VA θ

20 0

 

ω  θ 

sec rad

 20  40  60  80  100

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-42-3

VELOCITY COMPONENTS, POINT B 1000

Joint Velocity, mm/sec

500

 

VBx θ 

 

VBy θ 

sec mm 0

sec mm

 500

 1000

0

45

90

135

180

225

270

315

360

315

360

θ deg

VELOCITY COMPONENTS, POINT A 4000

Joint Velocity, mm/sec

3000 2000

 

VAx θ 

 

VAy θ 

sec mm 1000 sec mm

0

 1000  2000  3000

0

45

90

135

180 θ deg

225

270

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-43-1

PROBLEM 6-43 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below Find piston velocities V6, V7, and V8 for the position shown for 2 = 15 rad/sec clockwise (CW). Use the velocity difference graphical method.

Given:

Link lengths:

Solution: 1. 2.

Link 2

a  19 mm

Links 3, 4, and 5

b  70 mm

c  0  mm

Offset

Crank angle:

θ  53 deg Global XY system

Input crank angular velocity

ω  15 rad sec

Cylinder angular spacing

α  120  deg

1

CW

See Figure P6-8c and Mathcad file P0643.

Direction of V62 Direction of V8

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Use equation 6.7 to calculate the magnitude of the velocity at rod pin on link 2.

8 6

V2  a  ω

V2  285.0

3

mm

5 X

Direction of V6

1 4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at pistons 6, 7, and 8.. The equations to be solved graphically are V7 = V2 + V72

2

sec

θ2  53 deg  90 deg 3.

Direction of V82

Y

V6 = V2 + V62

Direction of V72 7

V8 = V2 + V82 Direction of V7

a. Choose a convenient velocity scale and layout the known vector V2. b. From the tip of V2, draw a construction line with the direction of V72, magnitude unknown. c. From the tail of V2, draw a construction line with the direction of V7, magnitude unknown. d. Complete the vector triangle by drawing V72 from the tip of V2 to the intersection of the V7 construction line and drawing V7 from the tail of V2 to the intersection of the V72 construction line. e. Repeat for V6 and V8. 0

4.

200 mm/sec

From the velocity triangle we have: Velocity scale factor:

kv 

V7  1.046  in kv

200  mm sec

1

Y

in

V62

V7  209.2

1.046

V82

V6  83.4

V7

mm sec

θV6  150  deg V8  292.6

X

V8

sec

V2

V8  1.463  in kv

V6

mm

θV7  270  deg V6  0.417  in kv

0.417

1.463

mm sec

θV8  210  deg

V72

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-44-1

PROBLEM 6-44 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below. Find V6, V7, and V8 for the position shown for 2 = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Link lengths: Link 2

a  19 mm b  70 mm

Links 3, 4, and 5

Solution: 1. 2.

Input crank angular velocity

ω  15 rad sec

Cylinder angular spacing

α  120  deg

Draw the linkage to scale and label it.

Crank angle:

θ  37 deg

CW

Local x'y' system

Y

x''

θ  170.599 deg

 

x'''

y'''

Determine 4 and d' using equation 4.17.

 a sin θ  b 

8 6

c

3

π 

 

2 1

d'  3.316 in

4 y''

Determine the angular velocity of link 4 using equation 6.22a:

   

5 X, y'

(x'y' system)

d'  a  cos θ  b  cos θ

7

a cos θ ω    ω b cos θ 4.

c  0  mm

See Figure P6-8c and Mathcad file P0644.

θ  asin 

3.

1

Offset

ω  3.296

rad sec 37.000°

Determine the velocity of the rod pin on link 2 using equation 6.23a:



 

x'

 

V2  a  ω sin θ  j  cos θ V2  ( 171.517  227.611i)

mm sec

In the global coordinate system, 5.

V2  285.000

mm sec

arg V2  53.000 deg

θV2  arg V2  90 deg

θV2  143.000 deg

Determine the velocity of piston 7 using equation 6.22b:

 

 

V7  a  ω sin θ  b  ω sin θ V7  209.204

mm

V7  209.204

sec

In the global coordinate system, 6.

sec

arg V7  0.000 deg

θV7  arg V7  90 deg

θV7  90.000 deg

Determine 3 and d'' using equation 4.17. θ  θ  120  deg

θ  157.000 deg

 a sin θ  c  π b  

θ  asin 

 

 

d''  a  cos θ  b  cos θ 7.

mm

θ  173.912 deg d''  2.052 in

Determine the angular velocity of link 5 using equation 6.22a: ω 

   

a cos θ   ω b cos θ

ω  3.769

rad sec

(x''y'' system)

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 6-44-2

Determine the velocity of the rod pin on link 2 using equation 6.23a:



 

 

V2  a  ω sin θ  j  cos θ V2  ( 111.358  262.344i)

mm sec

In the global coordinate system, 9.

V2  285.000

arg V2  67.000 deg

mm sec

θV2  arg V2  150  deg

θV2  217.000 deg

Determine the velocity of piston 6 using equation 6.22b:

 

 

V6  a  ω sin θ  b  ω sin θ mm

V6  83.378

V6  83.378

sec

In the global coordinate system,

arg V6  0.000 deg

mm sec

θV6  arg V6  150  deg

θV6  150.000 deg

10. Determine 5 and d''' using equation 4.17. θ  θ  120  deg

θ  277.000 deg

 a sin θ  b 

θ  asin 

 

c

π 

(x'''y''' system)

θ  195.629 deg

 

d'''  a  cos θ  b  cos θ

d'''  2.745 in

11. Determine the angular velocity of link 5 using equation 6.22a: ω 

   

a cos θ   ω b cos θ

ω  0.515

rad sec

12. Determine the velocity of the rod pin on link 2 using equation 6.23a:



 

 

V2  a  ω sin θ  j  cos θ V2  ( 282.876  34.733i )

mm sec

In the global coordinate system,

V2  285.000

mm sec

θV2  arg V2  30 deg

arg V2  173.000 deg

θV2  143.000 deg

13. Determine the velocity of piston 8 using equation 6.22b:

 

 

V8  a  ω sin θ  b  ω sin θ V8  292.592

mm sec

In the global coordinate system,

V8  292.592

mm sec

θV8  arg V8  30 deg

arg V8  180.000 deg

θV8  210.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-45-1

PROBLEM 6-45 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below. Find and plot V6, V7, and V8 for one revolution of the crank if 2 = 15 rad/sec clockwise (CW).

Given:

Link lengths:

Solution: 1. 2.

Link 2

a  19 mm

Links 3, 4, and 5

b  70 mm

c  0  mm

Offset

Input crank angular velocity

ω  15 rad sec

Cylinder angular spacing

α  120  deg

1

CW

See Figure P6-8c and Mathcad file P0645.

Draw the linkage to scale and label it. Note that there are three local coordinate systems.

Y

x''

x'''

y''' 8

Determine the range of motion for this slider-crank linkage. This will be the same in each coordinate frame.

6

3

5 X, y'

θ  0  deg 2  deg  360  deg 3.

1

 a sin θ  θ θ  asin  b  4.

c

4

π 

(x'y' system)

y'' 7

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ  5.

2

Determine 4 using equation 4.17.

a b



   ω cos θ θ  cos θ

x'

Determine the velocity of piston 7 using equation 6.22b:

 

 

    

V7 θ  a  ω sin θ  b  ω θ  sin θ θ 6.

Determine 3 using equation 4.17.

 

 a sin θ  α  c  π b  

θ θ  asin  7.

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ  8.

(x''y'' system)

    

a cos θ  α   ω b cos θ θ

Determine the velocity of piston 6 using equation 6.22b:

 





    

V6 θ  a  ω sin θ  α  b  ω θ  sin θ θ 9.

Determine 5 and d''' using equation 4.17.

 

 a sin θ  2  α  c  π b  

θ θ  asin 

10. Determine the angular velocity of link 5 using equation 6.22a:

 

ω θ 





a cos θ  2  α   ω b cos θ θ

  

(x'''y''' system)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-45-2

11. Determine the velocity of piston 8 using equation 6.22b:

 





    

V8 θ  a  ω sin θ  2  α  b  ω θ  sin θ θ 12. Plot the velocities of pistons 6, 7, and 8.

VELOCITY OF PISTONS 6, 7, AND 8 400

 

Velocity, mm/sec

V6 θ 

 

V7 θ 

 

V8 θ 

sec 200 mm sec mm

0

sec mm  200

 400

0

60

120

180 θ deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-46-1

PROBLEM 6-46 Statement:

Figure P6-9 shows a linkage in one position. Find the instantaneous velocities of points A, B, and P if link O2A is rotating CW at 40 rad/sec.

Given:

Link lengths: Link 2

a  5.00 in

Link 3

b  4.40 in

Link 4

c  5.00 in

Link 1

d  9.50 in

Rpa  8.90 in

δ  56 deg

Coupler point:

θ  50 deg

Crank angle and speed: Solution:

ω  40 rad sec

1

See Figure P6-9 and Mathcad file P0646.

1.

Draw the linkage to scale and label it. All calculated angles are in the local xy system.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.9000 2

K3 

d c

K2  1.9000 2

2

a b c d

 

P

y

Y B

2

K3  2.4178

2 a c

3

4

A

 

A  cos θ  K1  K2 cos θ  K3 2

 

B  2  sin θ

14.000°

 

A  0.0607

B  1.5321

C  2.4537





2

B  4 A  C



θ  246.992 deg

θ  θ  360  deg

θ  606.992 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d b

2

2

c d a b

K5 

    E  2  sin θ F  K1   K4  1   cos θ  K5

2 a b

D  cos θ  K1  K4 cos θ  K5

5.

2

K4  2.1591

K5  2.4911

D  2.3605 E  1.5321 F  0.1539

Use equation 4.13 to find values of 3 for the open circuit.





2

θ  2  atan2 2  D E 

E  4  D F

θ  θ  360  deg 6.

X

O2

Use equation 4.10b to find values of 4 for the open circuit. θ  2  atan2 2  A B 

4.

O4

1

C  K1   K2  1   cos θ  K3 3.

x 50.000°



θ  349.895 deg θ  709.895 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. ω 

 

 

a  ω sin θ  θ  b sin θ  θ

ω  41.552

rad sec

DESIGN OF MACHINERY - 5th Ed.

ω  7.

SOLUTION MANUAL 6-46-2

 

 

a  ω sin θ  θ  c sin θ  θ

ω  26.320

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA  a  ω sin θ  j  cos θ VA  ( 153.209  128.558i)



 

in sec

VA  200.000

 

in sec

arg VA  40.000 deg

VB  c ω sin θ  j  cos θ VB  ( 121.130  51.437i ) 8.

in

VB  131.598

sec

in sec

arg VB  23.008 deg

Determine the velocity of the coupler point P for the open circuit using equations 6.36.











VPA  Rpa ω sin θ  δ  j  cos θ  δ VPA  ( 338.121  149.797i)

in sec

VP  VA  VPA VP  ( 184.912  21.239i )

in sec

VP  186.128

in sec

arg VP  173.448 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-47-1

PROBLEM 6-47 Statement:

Figure P6-10 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle for ω 2 = 100 rpm. Check your results with program FOURBAR.

Given:

Link lengths:

Solution:

Link 2 (O2 to A)

a  1.00 in

Link 3 (A to B)

b  2.06 in

Link 4 (B to O4)

c  2.33 in

Link 1 (O2 to O4)

d  2.22 in

Coupler point:

Rpa  3.06 in

  31 deg

Crank speed:

  100  rpm

See Figure P6-10 and Mathcad file P0647.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof crank rocker.

B

y 3

θ  0  deg 0.5 deg  360  deg 3.

b

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.2200 2

K3 

2

a b c d

d c

2

 

4

c

x

1

 

A θ  cos θ  K1  K2 cos θ  K3

 

2

O2

K3  1.5265

 

a

4

d

2

2 a c

 

p A

K2  0.9528 2

P

O4

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d b

K5 

2

2

c d a b

2

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K4  1.0777

K5  1.1512

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

ω θ 

a   b



    sin θ θ  θ θ  sin θ θ  θ

DESIGN OF MACHINERY - 5th Ed.

 

ω θ  8.

a   c



SOLUTION MANUAL 6-47-2



  sin θ θ  θ θ  sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

 

VA θ  a   sin θ  j  cos θ 9.

 

VA θ  VA θ

Determine the velocity of the coupler point P using equations 6.36.

       VP θ  VA θ  VPA θ



  



VPA θ  Rpa ω θ  sin θ θ    j  cos θ θ   10. Plot the magnitude and direction of the velocity at coupler point P.

 

 

 

VP θ  VP θ

Magnitude:

  

Direction: θVP1 θ  arg VP θ

θVP θ  if  θVP1 θ  0 θVP1 θ θVP1 θ  2  π MAGNITUDE

Velocity, in/sec

30

20

 

VP θ 

s in 10

0

0

45

90

135

180

225

270

315

360

θ deg

DIRECTION

Vector Angle, deg

360

270

θVP θ

180

deg 90

0

0

45

90

135

180 θ deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-48-1

PROBLEM 6-48 Statement:

Figure P6-11 shows a linkage that operates at 500 crank rpm. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of point B at 2-deg increments of crank angle. Check your result with program FOURBAR.

Units:

rpm  2  π rad min

Given:

Link lengths:

1

Link 2 (O2 to A)

a  2.000  in

Link 3 (A to B)

Link 4 (B to O4)

c  7.187  in

Link 1 (O2 to O4)

ω  500  rpm

Input crank angular velocity Solution:

ω  52.360 rad sec

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof crank rocker.

A 3 2

θ  0  deg 0.5 deg  360  deg

d

K2 

a

K1  4.8125 2

K3 

1

d

2

2

O4

2

K3  2.7186

2 a c

      C θ  K1   K2  1   cos θ  K3

 

 

B θ  2  sin θ

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

2 a b

 

 

K4  1.1493

 

D θ  cos θ  K1  K4 cos θ  K5

 

K5  3.4367

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

ω θ 

a  ω b



    sin θ θ  θ θ  sin θ θ  θ

4

c

A θ  cos θ  K1  K2 cos θ  K3

5.

2

K2  1.3392

a b c d

B

O2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

4.

d  9.625  in 1

See Figure P6-11 and Mathcad file P0648.

1.

3.

b  8.375  in

DESIGN OF MACHINERY - 5th Ed.

 

ω θ  8.

a  ω c



SOLUTION MANUAL 6-48-2



  sin θ θ  θ θ  sin θ  θ θ

Determine the velocity of point B using equations 6.19.

 

 

    j  cosθθ

VB θ  c ω θ  sin θ θ

 

 

θVB1 θ  arg VB θ 

VB θ  VB θ

Plot the magnitude and angle of the velocity at point B. MAGNITUDE OF VELOCITY AT B

Velocity, in/sec

150

100

 

VB θ 

sec in 50

0

0

60

120

180

240

300

360

θ deg

θVB θ  if  θVB1 θ  0 θVB1 θ  π θVB1 θ  DIRECTION OF VELOCITY AT B 60

50

40 Angle, deg

9.

θVB θ

30

deg 20

10

0

0

60

120

180 θ deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-49-1

PROBLEM 6-49 Statement:

Figure P6-12 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Given:

Link lengths:

Solution:

Link 2 (O2 to A)

a  0.785  in

Link 3 (A to B)

b  0.356  in

Link 4 (B to O4)

c  0.950  in

Link 1 (O2 to O4)

d  0.544  in

Coupler point:

Rpa  1.09 in

δ  0  deg

Crank speed:

ω  20 rpm

See Figure P6-12 and Mathcad file P0649. y

1.

Draw the linkage to scale and label it.

2.

Using the geometry defined in Figure 3-1a in the text, determine the input crank angles (relative to the line O2O4) at which links 2 and 3, and 3 and 4 are in toggle.

 a2  d 2  ( b  c) 2  2 a d  

P 3 B 3

A

θ  acos

4 2

θ  158.286 deg

2

θ  θ  1  deg θ  2  deg  θ  1  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.6930

 

O4

d c

2

2

2

a b c d

K2  0.5726

K3 

 

B θ  2  sin θ

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

x O2

2

2 a c

K3  1.1317

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

      F  θ  K1   K4  1   cos θ  K5

 

D θ  cos θ  K1  K4 cos θ  K5

6.

K5  0.2440

 

E θ  2  sin θ

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

K4  1.5281

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

DESIGN OF MACHINERY - 5th Ed.

 

ω θ 

 

ω θ  8.

SOLUTION MANUAL 6-49-2

    b sin θ θ  θ θ  a  ω sin θ  θ θ   c sin θ θ  θ θ  a  ω

sin θ θ  θ



Determine the velocity of point A using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ 9.

Determine the velocity of the coupler point P using equations 6.36.

       VP θ  VA θ  VPA θ



  



VPA θ  Rpa ω θ  sin θ θ  δ  j  cos θ θ  δ

10. Plot the magnitude and direction of the coupler point P.

 

 

 

VP θ  VP θ

Magnitude:

  

Direction: θVP θ  arg VP θ

Velocity, mm/sec

MAGNITUDE

60

 

VP θ 

sec in

40 20 0  200

 150

 100

 50

0

50

100

50

100

150

200

θ deg

DIRECTION 200

Vector Angle, deg

100

θVP θ

0

deg  100

 200  200

 150

 100

 50

0 θ deg

150

200

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-50-1

PROBLEM 6-50 Statement:

Given:

Solution: 1.

Figure P6-13 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR. Link lengths: Link 2 (O2 to A)

a  0.86 in

Link 3 (A to B)

b  1.85 in

Link 4 (B to O4)

c  0.86 in

Link 1 (O2 to O4)

d  2.22 in

Coupler point:

Rpa  1.33 in

δ  0  deg

Crank speed:

ω  80 rpm

See Figure P6-13 and Mathcad file P0650.

Draw the linkage to scale and label it. y

B

3 4 P

x

O4

O2 3 2

A

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c 2

2

a d b c 2 a d

θ2toggle  acos arg2

2



b c

arg1  1.228

a d b c

arg2  0.439

a d

θ2toggle  116.0 deg

The other toggle angle is the negative of this. Thus, θ  θ2toggle  1  deg θ2toggle  2  deg  θ2toggle  1  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.5814

 

 

d c

2

K3 

2

2

a b c d 2 a c

K2  2.5814

K3  2.0181

 

B θ  2  sin θ

A θ  cos θ  K1  K2 cos θ  K3

 

 

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-50-2

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.2000

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K5  2.6244

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

ω θ 

8.

 2  4 Dθ F θ 

E θ

a  ω b

    sin θ θ  θ θ 



sin θ θ  θ

 

ω θ 

a  ω c





  sin θ θ  θ θ  sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ 9.

Determine the velocity of the coupler point P using equations 6.36.

 

 

  



  



VPA θ  Rpa ω θ  sin θ θ  δ  j  cos θ θ  δ

 

 

 

VP θ  VA θ  VPA θ

10. Plot the magnitude and direction of the coupler point P.

 

 

VP θ  VP θ

Magnitude:

Direction:

θVP θ  arg VP θ 

MAGNITUDE 20

Velocity, mm/sec

15

 

VP θ 

sec in

10

5

0  120

 90

 60

 30

0 θ deg

30

60

90

120

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-50-3

DIRECTION 270 240

Vector Angle, deg

210 180

θ' VP θ 150 deg

120 90 60 30 0  120

 90

 60

 30

0 θ deg

30

60

90

120

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-51-1

PROBLEM 6-51 Statement:

Figure P6-14 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.72 in

Link 3 (A to B)

b  0.68 in

Link 4 (B to O4)

c  0.85 in

Link 1 (O2 to O4)

d  1.82 in

Coupler point:

Rpa  0.97 in

δ  54 deg

Crank speed:

ω  80 rpm

See Figure P6-14 and Mathcad file P0651.

Draw the linkage to scale and label it. P y

B

3 4

A 2

x O2

2.

O4

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c 2

2

a d b c 2 a d

2



b c

arg1  1.451

a d b c

arg2  0.568

a d

θ2toggle  acos arg2

θ2toggle  55.4 deg

The other toggle angle is the negative of this. Thus, θ  θ2toggle  1  deg θ2toggle  2  deg  θ2toggle  1  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.5278 2

K3 

d c

K2  2.1412 2

2

a b c d 2 a c

2

K3  3.3422

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-51-2

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  2.6765

2 a b

 

K5  3.6465

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ 9.

Determine the velocity of the coupler point P using equations 6.36.

 

 

  



  



VPA θ  Rpa ω θ  sin θ θ  δ  j  cos θ θ  δ

 

 

 

VP θ  VA θ  VPA θ

10. Plot the magnitude and direction of the coupler point P.

 

 

Magnitude:

VP θ  VP θ

Direction:

θVP θ  arg VP θ 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-51-3

MAGNITUDE 20

Velocity, in/sec

15

 

VP θ 

sec in

10

5

0  60

 30

0

30

60

θ deg

DIRECTION 200

Vector Angle, deg

150 100

θVP θ

50

deg 0  50  100  60

 30

0 θ deg Crank Angle, deg

30

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-52-1

PROBLEM 6-52 Statement:

Figure P6-15 shows a power hacksaw that is an offset crank-slider mechanism that has the dimensions given below. Draw an equivalent linkage diagram; then calculate and plot the velocity of the saw blade with respect to the piece being cut over one revolution of the crank, which rotates at 50 rpm.

Given:

Link lengths: Link 2

a  75 mm

Link 3

b  170  mm ω  50 rpm

Input crank angular velocity Solution: 1.

c  45 mm

Offset

See Figure P6-15 and Mathcad file P0652.

Draw the equivalent linkage to a convenient scale and label it. y

B

3

b

A

4 a 2

c

2

O2

2.

Determine the range of motion for this crank-slider linkage. θ  0  deg 2  deg  360  deg

3.

Determine 3 using equations 4.16 for the crossed circuit.

 a  sin θ  b 

 

θ θ  asin 4.

 

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ 

5.

c

a b



   ω cos θ θ  cos θ

Determine the velocity of pin B using equation 6.22b:

 

 

    

VB θ  a  ω sin θ  b  ω θ  sin θ θ

7.

Plot the magnitude of the velocity of B. (See next page.)

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-52-2

VELOCITY OF POINT B 600

Velocity, mm/sec

400

200

 

VB θ 

sec mm 0

 200

 400

0

60

120

180 θ deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-53-1

PROBLEM 6-53 Statement:

Given:

Figure P6-16 shows a walking-beam indexing and pick-and-place mechanism that can be analyzed as two fourbar linkages driven by a common crank. Calculate and plot the absolute velocities of points E and P and the relative velocity between points E and P for one revolution of gear 2. Link lengths ( walking-beam linkage): Link 2 (O2 to A)

a'  40 mm

Link 3 (A to D)

b'  108  mm

Link 4 (O4 to D)

c'  40 mm

Link 1 (O2 to O4)

d'  108  mm

Link lengths (pick and place linkage): Link 5 (O5 to B)

a  13 mm

Link 7 (B to C)

b  193  mm

Link 6 (C to O6)

c  92 mm

Link 1 (O5 to O6)

d  128  mm

u  164  mm

Crank speed:

ω  10 rpm

Rocker point E:

ϕ  143  deg

Gears 4 & 5 phase angle Solution: 1.

See Figure P6-16 and Mathcad file P0653.

Draw the walking-beam linkage to scale and label it. 30 mm Y

P

58 mm

80°

A

D c'

b'

a' d'

x'

O2

O4

2.

Determine the range of motion for this mechanism. θ  0  deg 2  deg  360  deg

3.

X

y'

(local x'y' coordinate system)

This part of the mechanism is a special-case Grashof in the parallelogram configuration. As such, the coupler does not rotate, but has curvilinear motion with ever point on it having the same velocity. Therefore, it is only necessary to calculate the X-component of the velocity at point A in order to determine the velocity of the cylinder center, P.

 



 

 

VA θ  a' ω sin θ  j  cos θ

 

  

VAx θ  Re VA θ

In the global X-Y coordinate frame,

 

 

VP θ  VAx θ

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 6-53-2

Draw the pick and place linkage to scale and label it.

E

C

7 6

b

c

O6 5.

B

a O5

Establish the relationship between 5 and 2. Note that gear 5 is driven by gear 4 and that their ratio is -1 (i.e., they rotate in opposite directions with the same speed). Also, because the walking beam fourbar is special Grashof, 4 = 2. Thus,

 

θ θ  θ  ϕ 6.

5

d 1

ω  ω

and

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1 

d

K1  9.8462

a 2

K3 

2

2

a b c d

d c

K2  1.3913

2

K3  5.1137

2 a c

 

K2 

    K1  K2 cosθθ  K3

A θ  cos θ θ

 

  

B θ  2  sin θ θ

 

     K3

C θ  K1   K2  1   cos θ θ 7.

Use equation 4.10b to find values of 6 for the crossed circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  8.

B θ

Determine the values of the constants needed for finding 7 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b 2 a b

2

K4  0.6632

K5  9.0351

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-53-3

    K1  K4 cosθθ  K5

D θ  cos θ θ

 

  

E θ  2  sin θ θ

 

     K5

F θ  K1   K4  1   cos θ θ 9.

Use equation 4.13 to find values of 7 for the crossed circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

10. Determine the angular velocity of links 6 and 7 using equations 6.18.

         

ω θ 

 

a  ω sinθ θ  θ θ  b sin θ θ  θ θ

 

a  ω sin θ θ  θ θ  c sin θ θ  θ θ

ω θ 

     

   

10. Determine the velocity of the rocker point E using equations 6.34.

 

 

    j  cosθθ

VE θ  u  ω θ  sin θ θ 11. Transform this into the global XY system.

 

  

 

 

 

VEx θ  Re VE θ

 

VEX θ  VEx θ

 

  

VEy θ  Im VE θ

 

VEY θ  VEx θ

 

 

VEXY θ  VEX θ  j  VEY θ

12. Calculate and plot the velocity of E relative to P.

 

 

 

VEP θ  VEXY θ  VP θ

RELATIVE VELOCITY 100

Velocity, mm/sec

80

 

V EP θ 

sec

60

mm 40

20

0

0

30

60

90

120

150

180

210

θ deg Crank Angle, deg

240

270

300

330

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-54-1

PROBLEM 6-54 Statement:

Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder. In the position shown, it has the dimensions given below. The V-links are rigidly attached to O4A. The air cylinder is retracted at a constant velocity of 0.2 m/sec. Draw a kinematic diagram of the mechanism, write the necessary equations, and calculate and plot the angular velocity of the paper roll and the linear velocity of its center as it rotates through 90 deg CCW from the position shown.

Given:

Link lengths and angles:

Paper roll location from O4:

Link 4 (O4 to A)

c  300  mm

u  707.1  mm

Link 1 (O2 to O4)

d  930  mm

δ  181  deg

Link 4 initial angle

θ  62.8 deg

adot  200  mm sec

Input cylinder velocity Solution: 1.

with respect to local x axis 1

See Figure P6-17 and Mathcad file P0654.

Draw the mechanism to scale and define a vector loop using the fourbar derivation in Section 6.7 as a model. V-Link

Roll Center

707.107

45.000° x

O4 c

4

46.000° A

1

O4

d

4

3

O2

2 b

R1

R4 2 A

R3

R2

O2

a f y

2.

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for f, 2, and 4. R1  R4  R2  R3 d e

j  θ

 c e

j  θ

(a)

 a  e

j  θ

 b e

j  θ

(b)

where a is the distance from the origin to the cylinder piston, a variable; b is the distance from the cylinder piston to A, a constant; and c is the distance from 4 to point A, a constant. Angle 1 is zero, 3 = 2, and 4 is the variable angle that the rocker arm makes with the x axis. Solving the position equations: Let

f  a  b

then, making this substitution and substituting the Euler equivalents,

  

 

  

 

d  c cos θ  j  sin θ  f  cos θ  j  sin θ

(c)

Separating into real and imaginary components and solving for 2 and f,

 



 

 

θ θ  atan2 d  c cos θ c sin θ

(d)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-54-2

  sin θ θ  c sin θ

 

f θ 

(e)

Differentiate equation b. j  c ω e

j  θ

 d f   ej  θ   j  f  ω  ej  θ     dt 



(f)

Substituting the Euler equivalents,



 

 

c ω sin θ  j  cos θ 

 d f    cos θ   j  sin θ    f  ω   sin θ   j  cos θ           dt 

(g)

Separating into real and imaginary components and solving for 4 . Note that df/dt = adot.

 

ω θ 

3.

adot

  

c sin θ θ  θ

(h)



Plot 4 over a range of 4 of θ  θ θ  1  deg  θ  90 deg

ANGULAR VELOCITY, LINK 4 1.2

Angular Velocity, rad/sec

1 0.8

 

ω  θ 

sec rad

0.6 0.4 0.2 0 60

80

100

120

140

160

θ deg Link 4 Angle, deg

4.

Determine the velocity of the center of the paper roll using equation 6.35. The direction is in the local xy coordinate system.

 

 

 

 









VU θ  u  ω θ  sin θ  δ  j  cos θ  δ VU θ  VU θ 5.

θVU  θ  arg VU θ 

Plot the magnitude and direction of the velocity of the paper roll center. (See next page.)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-54-3

MAGNITUDE OF PAPER CENTER VELOCITY

Velocity, mm/sec

600

 

VU θ 

sec mm

400

200

0 60

80

100

120

140

160

θ deg Rocker Arm Position, deg

DIRECTION OF PAPER CENTER VELOCITY 80

Vector Angle, deg

60

40

θVU  θ

20

deg 0

 20

 40 60

80

100

120 θ deg

Rocker Arm Position, deg

140

160

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-55a-1

PROBLEM 6-55a Statement:

Figure P6-18 shows a powder compaction mechanism. Calculate its mechanical advantage for the position shown.

Given:

Link lengths: Link 2 (A to B)

a  105  mm

Link 3 (B to D)

b  172  mm

c  27 mm

Offset

Distance to force application: rin  301  mm

Link 2 (AC)

θ  44 deg

Position of link 2: Solution: 1.

Let

ω  1  rad sec

1

See Figure P6-18 and Mathcad file P0655a.

Draw the linkage to scale and label it. X

2.

Determine 3 using equation 4.17.

4 D

 a sin θ  c  π b  

θ  asin 

C

θ  164.509 deg 3.

3

Determine the angular velocity of link 3 using equation 6.22a: 44.000°

   

a cos θ ω    ω b cos θ 4.

B 2

Determine the velocity of pin D using equation 6.22b:

 

 

VD  a  ω sin θ  b  ω sin θ 5.

Y

Positive upward

Calculate the velocity of point C using equation 6.23a:



 

 

VC  rin ω sin θ  j  cos θ VC  VC 6.

Calculate the mechanical advantage using equation 6.13. mA 

VC VD

mA  3.206

A

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-55b-1

PROBLEM 6-55b Statement:

Figure P6-18 shows a powder compaction mechanism. Calculate and plot its mechanical advantage as a function of the angle of link AC as it rotates from 15 to 60 deg.

Given:

Link lengths: Link 2 (A to B)

a  105  mm

Link 3 (B to D)

b  172  mm

Offset

c  27 mm

Distance to force application: rin  301  mm

Link 2 (AC)

Initial and final positions of link 2: θ  15 deg Solution: 1.

θ  60 deg

Let ω  1  rad sec

See Figure P6-18 and Mathcad file P0655b.

Draw the linkage to scale and label it. X

4 D C

3

2 B 2

Y

2.

A

Determine the range of motion for this slider-crank linkage. θ  θ θ  1  deg  θ

3.

Determine 3 using equation 4.17.

 a sin θ  b 

 

θ θ  asin  4.

π 

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ 

5.

c

a b



   ω cos θ θ  cos θ

Determine the velocity of pin D using equation 6.22b:

 

 

    

VD θ  a  ω sin θ  b  ω θ  sin θ θ 6.

Calculate the velocity of point C using equation 6.23a:

Positive upward

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-55b-2

 



 

 

 

 

VC θ  rin ω sin θ  j  cos θ VC θ  VC θ

Calculate the mechanical advantage using equation 6.13.

 

mA θ 

  VD θ VC θ

MECHANICAL ADVANTAGE 12 11 10 9 Mechanical Advantage

7.

8 7

 

m A θ 6 5 4 3 2 1 0 15

20

25

30

35

40 θ deg

Crank Angle, deg

45

50

55

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-56-1

PROBLEM 6-56 Statement:

Figure P6-19 shows a walking beam mechanism. Calculate and plot the velocity Vout for one revolution of the input crank 2 rotating at 100 rpm.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  1.00 in

Link 3 (A to B)

b  2.06 in

Link 4 (B to O4)

c  2.33 in

Link 1 (O2 to O4)

d  2.22 in

Coupler point:

Rpa  3.06 in

δ  31 deg

Crank speed:

ω  100  rpm

See Figure P6-19 and Mathcad file P0656.

Draw the linkage to scale and label it. Y

x

y O4 4

1 26.00°

X

O2

P

2 A 3 B

2.

Determine the range of motion for this Grashof crank rocker. θ  0  deg 1  deg  360  deg

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.2200 2

K3 

c

K2  0.9528 2

2

a b c d

 

d

2

K3  1.5265

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 

θ θ  2   atan2 2  A θ B θ 

 2  4 A θ Cθ 

B θ

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-56-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.0777

2 a b

 

K5  1.1512

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

VA θ  a  ω sin θ  j  cos θ 9.

Determine the velocity of the coupler point P using equations 6.36.

       VP θ  VA θ  VPA θ



  



VPA θ  Rpa ω θ  sin θ θ  δ  j  cos θ θ  δ

10. Plot the X-component (global coordinate system) of the velocity of the coupler point P. Coordinate rotation angle: α  26 deg

 

  

  

Vout θ  Re VP θ  cos α  Im VP θ  sin α Vout

Velocity, in/sec

20

10

0

 10

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-57a-1

PROBLEM 6-57a Statement:

Figure P6-20 shows a crimping tool. For the dimensions given below, calculate its mechanical advantage for the position shown.

Given:

Link lengths: Link 2 (AB)

a  0.80 in

Link 3 (BC)

b  1.23 in

Link 4 (CD)

c  1.55 in

Link 1 (AD)

d  2.40 in

Link 4 (CD)

rout  1.00 in

Distance to force application: rin  4.26 in

Link 2 (AB)

θ  49 deg

Initial position of link 2: Solution: 1.

See Figure P6-20 and Mathcad file P0657a.

Draw the mechanism to scale and label it. A

2

B

2

3

C Fout

1

Fin

4

49.000°

D

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.0000 2

K3 

d c

K2  1.5484 2

2

a b c d

2

K3  2.9394

2 a c

 

 

A  cos θ  K1  K2 cos θ  K3

 

B  2  sin θ

 

C  K1   K2  1   cos θ  K3 A  0.4204 3.

B  1.5094

Use equation 4.10b to find value of 4 for the open circuit.





θ  2  atan2 2  A B  4.

C  4.2675

2

B  4 A  C



θ  236.482 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b 2 a b

2

K4  1.9512

K5  2.8000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-57a-2

 

 

D  cos θ  K1  K4 cos θ  K5

D  3.8638

 

E  2  sin θ

E  1.5094

 

F  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the open circuit.





θ  2  atan2 2  D E  6.

F  0.8241

2

E  4  D F



θ  325.961 deg

Referring to Figure 6-10, calculate the values of the angles  and . ν  θ  θ

ν  374.961 deg

If  > 360 deg, subtract 360 deg from it. ν  if  ν  360  deg ν  360  deg ν

ν  14.961 deg

μ  θ  θ

μ  89.479 deg

If  > 90 deg, subtract it from 180 deg. μ  if  μ  90 deg 180  deg  μ μ 7.

μ  89.479 deg

Using equation 6.13e, calculate the mechanical advantage of the linkage in the position shown. mA 

c sin μ rin  a  sin ν rout

mA  31.969

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-57b-1

PROBLEM 6-57b Statement:

Figure P6-20 shows a crimping tool. For the dimensions given below, calculate and plot its mechanical advantage as a function of the angle of link AB as it rotates from 60 to 45 deg.

Given:

Link lengths: Link 2 (AB)

a  0.80 in

Link 3 (BC)

b  1.23 in

Link 4 (CD)

c  1.55 in

Link 1 (AD)

d  2.40 in

Link 4 (CD)

rout  1.00 in

Distance to force application: rin  4.26 in

Link 2 (AB)

θ  60 deg

Range of positions of link 2: Solution: 1.

θ  45 deg

See Figure P6-20 and Mathcad file P0657b.

Draw the mechanism to scale and label it.

A

2

B

2

3

C Fout

1

Fin

4

2

D

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). θ  θ θ  1  deg  θ

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.0000

 

c

K2  1.5484

2

K3 

d

2

2

a b c d

2

K3  2.9394

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find value of 4 for the open circuit.

 





 

 

θ θ  2   atan2 2  A θ B θ  5.

 2  4 A θ Cθ 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

K4 

SOLUTION MANUAL 6-57b-2

2

d

K5 

b

 

2

2

c d a b

2

K4  1.9512

2 a b

 

K5  2.8000

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Referring to Figure 6-10, calculate the values of the angles  and .

 

 

ν θ  θ  θ θ

 

 

 

μ θ  θ θ  θ θ

Using equation 6.13e, calculate and plot the mechanical advantage of the linkage over the given range.

 

mA θ 

   rin  a  sin ν θ  rout

c sin μ θ

MECHANICAL ADVANTAGE vs HANDLE ANGLE 60

50 Mechanical Advantage

8.

40

 

m A θ

30

20

10 45

48

51

54 θ deg

Handle Angle, deg

57

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-58-1

PROBLEM 6-58 Statement:

Figure P6-21 shows a locking pliers. Calculate its mechanical advantage for the position shown. Scale any dimensions needed from the diagram.

Solution:

See Figure P6-21 and Mathcad file P0658.

1.

Draw the linkage to scale in the position given and find the instant centers.

F

1,4

1,2

P 1

O4

O2 2 3

B

A F

2.

2,3

4

P

3,4 and 1,3

Note that the linkage is in a toggle position (links 2 and 3 are in line) and the angle between links 2 and 3 is 0 deg. From the discussion below equation 6.13e in the text, we see that the mechanical advantage for this linkage in this position is theoretically infinite.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-59a-1

PROBLEM 6-59a Statement:

Given:

Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamping it at D. The linkage will toggle when link 2 reaches 90 deg. For the dimensions given below, calculate its mechanical advantage for the position shown. Link lengths: Link 2 (O2A) a  70 mm c  34 mm

Link 4 (O4B)

Link 3 (AB)

b  35 mm

Link 1 (O2O4)

d  48 mm

Link 4 (O4D)

rout  82 mm

Distance to force application: rin  138  mm

Link 2 (O2C)

θ  104  deg

Initial position of link 2: Solution: 1.

Global XY system

See Figure P6-22 and Mathcad file P0659a.

Draw the mechanism to scale and label it. To establish the position of O4 with respect to O2 (in the global coordinate frame), draw the linkage in the toggle position with 2 = 90 deg. The fixed pivot O4 is then 48 mm fr O2 and 34 mm from B' (see layout). Y C' C

Linkage in toggle position

A'

A 3 2

x

B

D

4

D'

B' 135.069°

O4

X O2 y

2.

Calculate the value of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system: θ  θ  α

3.

α  135.069  deg

θ  31.069 deg

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  0.6857

a 2

K3 

2

2

a b c d 2 a c

K2 

d c

2

K3  1.4989

K2  1.4118

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-59a-2

 

 

A  cos θ  K1  K2 cos θ  K3

 

B  2  sin θ

 

C  K1   K2  1   cos θ  K3 A  0.4605 4.

B  1.0321

Use equation 4.10b to find value of 4 for the open circuit.





2

θ  2  atan2 2  A B  5.

C  0.1189

B  4 A  C



θ  129.480 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

2 a b

K5  1.4843

 

D  cos θ  K1  K4 cos θ  K5

D  0.1388

 

E  2  sin θ

E  1.0321

 

F  K1   K4  1   cos θ  K5 6.

F  0.4804

Use equation 4.13 to find values of 3 for the open circuit.





θ  2  atan2 2  D E  7.

K4  1.3714

2

E  4  D F



θ  196.400 deg

Referring to Figure 6-10, calculate the values of the angles  and . ν  θ  θ

ν  165.331 deg

If  > 90 deg, subtract it from 180 deg. ν  if  ν  90 deg 180  deg  ν ν

ν  14.669 deg

μ  θ  θ

μ  66.920 deg

If  > 90 deg, subtract it from 180 deg. μ  if  μ  90 deg 180  deg  μ μ 8.

μ  66.920 deg

Using equation 6.13e, calculate the mechanical advantage of the linkage in the position shown. mA 

c sin μ rin  a  sin ν rout

mA  2.970

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-59b-1

PROBLEM 6-59b Statement:

Given:

Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamping it at D. The linkage will toggle when link 2 reaches 90 deg. For the dimensions given below, calculate and plot its mechanical advantage as a function of the angle of link AB as link 2 rotates from 120 to 90 deg (in the global coordinate system). Link lengths: Link 2 (O2A)

a  70 mm

Link 3 (AB)

b  35 mm

Link 4 (O4B)

c  34 mm

Link 1 (O2O4)

d  48 mm

Link 4 (O4D)

rout  82 mm

Distance to force application: rin  138  mm

Link 2 (O2C)

θ  120  deg

Range of positions of link 2: Solution: 1.

θ  90.1 deg Global XY system

See Figure P6-22 and Mathcad file P0659b.

Draw the mechanism to scale and label it. To establish the position of O4 with respect to O2 (in the global coordinate frame), draw the linkage in the toggle position with 2 = 90 deg. The fixed pivot O4 is then 48 mm fr O2 and 34 mm from B' (see layout). Linkage in initial position Y C'

C Linkage in final position

A' A

3

x

4

B

2

D

B' 135.069°

O4

D'

X O2 y

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:

α  135.069  deg

θ  θ  α θ  α  1  deg  θ  α 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  0.6857

a 2

K3 

2

2

a b c d 2 a c

K2 

d c

2

K3  1.4989

K2  1.4118

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-59b-2

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find value of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.3714

2 a b

 

K5  1.4843

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

 2  4 Dθ F θ 

E θ

Referring to Figure 6-10, calculate the values of the angles  and .

    μ θ  θ θ  θ θ ν θ  θ  θ θ

8.

Using equation 6.13e, calculate and plot the mechanical advantage of the linkage over the given range.

 

mA θ 

   rin  a  sin ν θ  rout

c sin μ θ

MECHANICAL ADVANTAGE 50

40

 

30

m A θ

20

10

0 90

95

100

105 θ  α deg

110

115

120

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-60-1

PROBLEM 6-60 Statement:

Given:

Figure P6-23 shows a surface grinder. The workpiece is oscillated under the spinning grinding wheel by the slider-crank linkage that has the dimensions given below. Calculate and plot the velocity of the grinding wheel contact point relative to the workpiece over one revolution of the crank. Link lengths: Link 2 (O2 to A)

a  22 mm

Link 3 (A to B)

b  157  mm

Grinding wheel diameter

d  90 mm

Input crank angular velocity

ω  120  rpm

Grinding wheel angular velocity ω  3450 rpm Solution: 1.

Offset

c  40 mm

CCW CCW

See Figure P6-23 and Mathcad file P0660.

Draw the linkage to scale and label it.

5

4 2 3

A

B

c

2 O2

2.

Determine the range of motion for this slider-crank linkage. θ  0  deg 1  deg  360  deg

3.

Determine 3 using equation 4.17.

 a sin θ  c  π b  

 

θ θ  asin  4.

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ 

5.

a b



   ω cos θ θ  cos θ

Determine the velocity of pin B using equation 6.22b:

 

 

    

VB θ  a  ω sin θ  b  ω θ  sin θ θ 6.

Positive to the right

Calculate the velocity of the grinding wheel contact point using equation 6.7: VG 

d 2

 ω

VG  16.258

m sec

Directed to the right

DESIGN OF MACHINERY - 5th Ed.

The velocity of the grinding wheel contact point relative to the workpiece, which has velocity VB, is

 

 

VGB θ  VG  VB θ

RELATIVE VELOCITY AT CONTACT POINT 16.6

16.4

Velocity, m/sec

7.

SOLUTION MANUAL 6-60-2

 

VGB θ 

sec m

16.2

16

15.8

0

60

120

180 θ deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-61-1

PROBLEM 6-61 Statement:

Figure P6-24 shows an inverted slider-crank mechanism. Given the dimensions below, find 2, 3, 4, VA4, Vtrans, and Vslip for the position shown with VA2 = 20 in/sec in the direction shown.

Given:

Link lengths: a  2.5 in

Link 2 (O2A)

Link 4 (O4A)

c  4.1 in

Link 1 (O2O4)

d  3.9 in

Measured angles: θ  75.5 deg

θtrans  26.5 deg

Velocity of point A on links 2 and 3: Solution: 1.

θslip  116.5  deg

VA2  20 in sec

1

VA3  VA2

See Figure P6-24 and Mathcad file P0661.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Y

Axis of slip A

O2

X

11.500° 2 3

Direction of VA4

1

Axis of transmission 4 Direction of VA2 O4

2.

Use equation 6.7 to calculate the angular velocity of link 2. ω 

3.

VA2 a

ω  8.000

rad

CW

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on links 2 and 3.. The equation to be solved graphically is VA3 = Vtrans + VA3slip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of VA3slip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing VA3slip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the VA3slip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-61-2

Y

0

10 in/sec

1.686

X

Axis of slip

V A4

V trans

VA4slip 1.509

VA3

Axis of transmission V A3slip

2.064

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

10 in sec

1

in in

VA4  1.686  in kv

VA4  16.9

Vslip  2.064  in kv

Vslip  20.6

Vtrans  1.509  in kv

Vtrans  15.1

sec in sec in sec

Determine the angular velocity of link 4 using equation 6.7. ω 

VA4 c

ω  4.1

Because link 3 slides within link 4, 3 = 4.

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-62-1

PROBLEM 6-62 Statement:

Figure P6-25 shows a drag-link mechanism with dimensions. Write the necessary equations and solve them to calculate and plot the angular velocity of link 4 for an input of 2 = 1 rad/sec. Comment on the uses for this mechanism.

Given:

Link lengths: Link 2 (L2)

a  1.38 in

Link 3 (L3)

b  1.22 in

Link 4 (L4)

c  1.62 in

Link 1 (L1)

d  0.68 in

ω  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-25 and Mathcad file P0662.

Draw the linkage to scale and label it. y

A

3 B

2 2 4 x O2

2.

O4

Determine the range of motion for this Grashof double crank. θ  0  deg 2  deg  360  deg

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.4928 2

K3 

c

K2  0.4198 2

2

a b c d

 

d

2

K3  0.7834

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 

θ θ  2   atan2 2  A θ B θ  5.

 2  4 A θ Cθ 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

K4 

SOLUTION MANUAL 6-62-2

2

d

K5 

b

 

2

2

2

c d a b

K4  0.5574

2 a b

 

K5  0.3655

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Plot the angular velocity of link 4.

ANGULAR VELOCITY, LINK 4  0.5

Angular Velocity, rad/sec

9.

 2  4 Dθ F θ 

E θ

1

 

ω  θ 

sec rad

 1.5

2

 2.5

0

60

120

180 θ deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-63-1

PROBLEM 6-63 Statement:

Figure P6-25 shows a drag-link mechanism with dimensions. Write the necessary equations and solve them to calculate and plot the centrodes of instant center I2,4.

Given:

Measured link lengths: Link 2 (L2)

L2  1.38 in

Link 3 (L3)

L3  1.22 in

Link 4 (L4)

L4  1.62 in

Link 1 (L1)

L1  0.68 in

ω  1  rad sec

Input crank angular velocity Solution: 1.

1

See Figure P6-25 and Mathcad file P0663.

Draw the linkage to scale and label it. Instant center I2,4 is at the intersection of line AB with line O2O4. To get the first centrode, ground link 2 and let link 3 be the input. Then we have a  L3

b  L4

c  L1 A

d  L2 3 B

2 y 2 4 O2

O4 4

x

2.

Determine the range of motion for this Grashof double rocker. From Figure 3-1a on page 80, one toggle angle is

 a2  d 2  ( b  c) 2  2 a d  

θ  acos

θ  124.294 deg

The other toggle angle is the negative of this. The range of motion is θ  θ  1  deg θ  2  deg  θ  1  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.1311 2

K3 

 

d c

K2  2.0294 2

2

a b c d 2 a c

 

2

K3  0.7418

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-63-2

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Calculate the coordinates of the intersection of line BC with line AD. This will be the instant center I2,4.

 

Line BC:

y  x tan θ

Line AD:

y  0  ( x  d )  tan θ

 

Eliminating y and solving for the x- and y-coordinates of the intersection,

 

x24 θ 

6.

   tan θ θ   tan θ d  tan θ θ

 

 

 

y24 θ  x24 θ  tan θ

Plot the fixed centrode.

FIXED CENTRODE 10

y-Coordinate, in

5

 

y24 θ

0

in 5

 10  10

5

0

 

x24 θ in

x-Coordinate, in

7.

Invert the linkage, making C and D the fixed pivots. Then, a  L1

8.

b  L2

c  L3

Determine the range of motion for this Grashof crank rocker. θ  0  deg 0.5 deg  360  deg

d  L4

5

10

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-63-3 4 A

x

3 B

y

2

2

4 O2

9.

O4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

K1  2.3824 2

K3 

d

K2 

K2  1.3279 2

2

a b c d

 

c

2

K3  1.6097

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 10. Use equation 4.10b to find values of 4 for the open circuit.

 





 

 

θ θ  2   atan2 2  A θ B θ 

 2  4 A θ Cθ 

B θ

11. Calculate the coordinates of the intersection of line BC with line AD. This will be the instant center I2,4.

 

Line AD:

y  x tan θ

Line BC:

y  0  ( x  d )  tan θ

 

Eliminating y and solving for the x- and y-coordinates of the intersection,

 

x24 θ 

6.

   tan θ θ   tan θ d  tan θ θ

Plot the moving centrode. (See next page.)

 

 

 

y24 θ  x24 θ  tan θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-63-4

MOVING CENTRODE 10

y-Coordinate, in

5

 

y24 θ

0

in 5

 10  10

5

0

 

x24 θ in

x-Coordinate, in

5

10

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-64-1

PROBLEM 6-64 Statement:

Figure P6-26 shows a mechanism with dimensions. Use a graphical method to calculate the velocities of points A, B, and C and the velocity of slip for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle O2O4 makes with X axis

θ  56.5 deg

Link 2 (O2A)

a  1.35 in

Angle 2 makes with X axis

θ  14 deg

Link 4 (O4B)

e  1.36 in

Link 5 (BC)

f  2.69 in

Link 6 (O6C)

g  1.80 in

Angle O6C makes with X axis

θ  88 deg

Angular velocity of link 2 Solution: 1.

ω  20 rad sec

1

CW

See Figure P6-26 and Mathcad file P0664.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  27.000

in sec

θVA3  θ  90 deg

θVA3  76.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-64-2

Y 0

12 in/sec

1.295" X Vtrans

VA3 2.369"

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

in in

Vtrans  1.295  in kv

Vtrans  15.540

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  15.54 

in sec

Determine the angular velocity of link 4 using equation 6.7.

ω 

VA4 c

c  0.939  in and

ω  16.550

rad

θ  132.661  deg

CW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

θVA4  θ  90 deg 8.

1

Vslip  28.428

From the linkage layout above:

7.

12 in sec

Vslip  2.369  in kv

VA4  Vtrans 6.

Vslip

VB  22.507

in sec

θVA4  42.661 deg

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. (See next page.)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-64-3

Direction of VCB

Direction of VB

B

Y O4

4

C A 3

Direction of VC 2

X O2

O6

9.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line. VB

0

12 in/sec

Y

VCB X VC 2.088"

10. From the velocity triangle we have: Velocity scale factor: VC  2.088  in kv

kv 

12 in sec

VC  25.1

in in sec

1

θVC  θ  90 deg θVC  2.0 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-65-1

PROBLEM 6-65 Statement:

Figure P6-27 shows a cam and follower. Distances are given below. Find the velocities of points A and B, the velocity of transmission, velocity of slip, and 3 if 2 = 50 rad/sec (CW). Use a graphical method.

Given:

ω  50 rad sec

1

Distance from O2 to A:

a  1.890  in

Distance from O3 to B:

b  1.645  in

Assumptions: Roll-slide contact Solution: 1.

See Figure P6-27 and Mathcad file P0665.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Axis of slip Direction of VB

1.890

Axis of transmission A

B

3

2

O2

O3

1.645

Direction of VA

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

VA  94.500

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is VA = Vtrans + VAslip a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-65-2

50 in/sec

0

VB 2.304

V Bslip

Y 1.317 X

3.256

Vtrans

1.890 VA

4.

From the velocity triangle we have: Velocity scale factor:

5.

V A2slip

kv 

50 in sec

1

in in

VA  1.890  in kv

VA  94.5

VB  2.304  in kv

VB  115.2

Vslip  3.256  in kv

Vslip  162.8

Vtrans  1.317  in kv

Vtrans  65.8

sec in sec in sec in sec

Determine the angular velocity of link 3 using equation 6.7. ω 

VB b

ω  70.0

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-66-1

PROBLEM 6-66 Statement:

Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical method to calcula the velocities of points A, B, and C and the velocity of slip for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle O2O4 makes with X axis

Link 2 (L2)

a  1.00 in

Angle link 2 makes with X axis θ  99 deg

Link 4 (L4)

e  4.76 in

Link 5 (L5)

f  4.55 in

Offset (O2C)

g  2.86 in

Angular velocity of link 2 Solution: 1.

ω  10 rad sec

1

θ  15.5 deg

CCW

See Figure P6-28 and Mathcad file P0666.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission

Direction of VA3

4

Y Axis of slip A 3 2.068

2 44.228° O2

X O4

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA2  a  ω

3.

VA2  10.000

in sec

θVA2  θ  90 deg

θVA2  189.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-66-2

a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line. Y 0

5 in/sec

X

VA3 V trans

1.154

4.

kv 

in in

Vtrans  1.154  in kv

Vtrans  5.770

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  5.77

in sec

Determine the angular velocity of link 4 using equation 6.7.

ω 

VA4 c

c  2.068  in and

ω  2.790

rad

θ  44.228 deg

CCW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

θVB  θ  90 deg 8.

1

Vslip  8.170

From the linkage layout above:

7.

5  in sec

Vslip  1.634  in kv

VA4  Vtrans 6.

1.634

From the velocity triangle we have: Velocity scale factor:

5.

Vslip

VB  13.281

in sec

θVB  134.228 deg

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. (See next page.)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-66-3

Direction of VCB Direction of VB B 5 5.805°

C 6

4 Direction of VC

Y

A 3

2 44.228° O2

X O4

9.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

10. From the velocity triangle we have:

Velocity scale factor: VC  1.659  in kv

kv 

5  in sec

VC  8.30

VB

1

0

5 in/sec

in in sec

Y

θVC  180  deg V CB X

VC 1.659

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-67-1

PROBLEM 6-67 Statement:

Given:

Figure P6-29 shows a drum pedal mechanism . For the dimensions given below, find and plot the mechanical advantage and the velocity ratio of the linkage over its range of motion. If the input velocity Vin is a constant and Fin is constant, find the output velocity, output force, and power in over the range of motion. Link lengths: Link 2 (O2A)

a  100  mm

Link 3 (AB)

b  28 mm

Link 4 (O4B)

c  64 mm

Link 1 (O2O4)

d  56 mm

Link 3 (AP)

rout  124  mm

Distance to force application: rin  48 mm

Link 2

Solution: 1.

1

Input force and velocity:

Fin  50 N

Vin  3  m sec

Range of positions of link 2:

θ  162  deg

θ  171  deg

See Figure P6-29 and Mathcad file P0667.

Draw the mechanism to scale and label it. P

3

B 3

Fin

4

Vin

A 2

2

x

1

O4

O2 y

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:



α  180  deg



θ  θ  α  θ  α  1  deg  θ  α 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.5600 2

K3 

 

d c

K2  0.8750 2

2

a b c d 2 a c

 

2

K3  1.2850

 

A θ  cos θ  K1  K2 cos θ  K3

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-67-2

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find value of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  2.0000

2 a b

 

K5  1.7543

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

Using equations 6.13d and 6.18a, where out is 3, calculate and plot the mechanical advantage of the linkage over the given range.

 

mA θ 

     rin  rout a  sin θ θ  θ

b  sin θ θ  θ θ

MECHANICAL ADVANTAGE 0.14

Mechanical Advantage

7.

 2  4 Dθ F θ 

E θ

0.13

 

mA θ 0.12

0.11

0.1 162

164

166

168 θ α deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 6-67-3

Calculate and plot the velocity ratio using equation 6.13d,

 

1

mV θ 

 

mA θ

VELOCITY RATIO 10

Velocity Ratio

8

 

6

mV θ

4 2 0 162

164

166

168

170

172

θ  α deg Pedal Angle, deg

Calculate and plot the output velocity using equation 6.13a.

 

 

Vout θ  Vin mV θ

OUTPUT VELOCITY

Velocity, m/sec

9.

20

 

Vout θ 

sec m 10

0 162

164

166

168 θ α deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-67-4

10. Calculate and plot the output force using equation 6.13a.

 

 

Fout θ  Fin mA θ

OUTPUT FORCE 8

Force, N

6

 

Fout θ

4

N 2

0 162

164

166

168 θ  α deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-68-1

PROBLEM 6-68 Statement:

Figure 3-33 shows a sixbar slider crank linkage. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-33 and Mathcad file P0668.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C  15

2

Draw the linkage to scale and identify those ICs that can be found by inspection (8).

Y 2,3 3

3,4; 3,5; 4,5 1,6 at infinity

2 4 1,2 O2

5 X 6

1,4 O4 2.

1,5

5,6

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,6; and I4,6

1

I1,5: I1,6-I5,6 and I1,4-I4,5

6

2

5

3

I2,5: I1,2-I1,5 and I2,3-I3,5 I1,3: I1,2-I2,3 and I1,5-I3,5 I3,6: I1,6-I1,3 and I3,5-I5,6 I2,4: I2,3-I3,4 and I2,5-I4,5

4

2,5

I2,6: I1,2-I1,6 and I2,5-I5,6

2,6

I4,6: I1,4-I1,6 and I4,5-I5,6

Y 2,3

4,6 3,6

3 3,4; 3,5; 4,5; 2,4

2 4 1,2 O2

1,6 at infinity

5 X 6

1,4 O4 1,3

5,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-69-1

PROBLEM 6-69 Statement:

Calculate and plot the centrodes of instant center I24 of the linkage in Figure 3-33 so that a pair of noncircular gears can be made to replace the driver dyad 23.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

L2  2.170

Fourbar coupler (L3)

L3  2.067

Output crank (L4)

L4  2.310

Fourbar ground link (L1)

L1  1.000

See Figure 3-33 and Mathcad file P0669.

Invert the linkage, grounding link 2 such that the input link is 3, the coupler is 4, and the output link is 1. a  L3

b  L4

c  L1

d  L2

2.

Define the input crank motion for this inversion: θ  47 deg 47.5 deg  102.5  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d

K2 

a

K1  1.0498

 

2

d

K3 

c

K2  2.1700

 

2

2

a b c d

2

2 a c

K3  1.1237

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 

θ θ  2   atan2 2  A θ B θ 

 

  

 

 2  4 A θ Cθ 

B θ

 

θ θ  if θ θ  2  π θ θ  2  π θ θ 5.

Calculate the coordinates of the intersection of links 1 and 3 in the xy coordinate system.

 

x242 θ  

6.

   tan θ  tan  θ θ 

 

 

 

y242 θ  x242 θ  tan θ

Invert the linkage, grounding link 4 such that the input link is 1, the coupler is 2, and the output link is 3. a  L1

8.

d  tan θ θ

b  L2

c  L3

d  L4

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1 

d

K2 

a

K1  2.3100

 

2

d

K3 

c

K2  1.1176

 

2

2

a b c d 2 a c

K3  1.4271

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 





 

 

θ θ  2   atan2 2  A θ B θ 

 

  

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 

 2  4 A θ Cθ 

B θ

 

θ θ  if θ θ  2  π θ θ  2  π θ θ 5.

Calculate the coordinates of the intersection of links 1 and 3 in the xy coordinate system.

2

DESIGN OF MACHINERY - 5th Ed.

 

x244 θ  

SOLUTION MANUAL 6-69-2

   tan θ  tan  θ θ  d  tan θ θ

 

 

 

y244 θ  x244 θ  tan θ

LINK 2 GROUNDED 5 4 3 2

 

1

y242 θ 0 1 2 3 4 5 4

3

2

1

0

 

1

x242 θ

7.

Define the input crank motion for this inversion: θ  41 deg 42 deg  241  deg LINK 4 GROUNDED 10 8 6 4 2

 

y244 θ

0 2 4 6 8

 10  10  8  6  4  2

0

 

x244 θ

2

4

6

8

10

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-70a-1

PROBLEM 6-70a Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400 Crank angle:

θ2  110  deg

  102  deg

Coordinate angle

ω  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33 and Mathcad file P0670a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VA Y Direction of VBA A

147.635° 3 Direction of VB

B

2 4 O2

5 58.950°

158.818°

X

6

O4 C Direction of VC Direction of VCB 2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA  a  ω

VA  2.170

θVA  θ2  90 deg

θVA  20.000 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

0

SOLUTION MANUAL 6-70a-2

VA

1 in/sec

Y

X V BA

VB 1.325

4.

From the velocity triangle we have: Velocity scale factor:

VB  1.325  in kv 5.

kv 

1  in sec

1

in

VB  1.325

in

θVB  31.050 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C, the magnitude of the relative velocity VCB, and the angular velocity of link 3. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

0

1.400

1 in/sec

Y VC X

VB 4.

V CB

From the velocity triangle we have: Velocity scale factor:

VC  1.400  in kv

kv 

1  in sec

1

in

VC  1.400

in sec

θVC  0.0 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-70b-1

PROBLEM 6-70b Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400 Crank angle:

θ2  110  deg

  102  deg

Coordinate angle

ω  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure 3-33 and Mathcad file P0670b.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5, and the distances from the pin joints to the instant centers. See Problem 6-68 for the determination of IC locations.

1,5

Y A 3 B

2 4

5 X

O2

C

6

O4 1,3 From the layout above: AI13  2.609  in 2.

BI13  1.641  in

BI15  9.406  in

CI15  9.896  in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

DESIGN OF MACHINERY - 5th Ed.

3.

VA  2.170

θVA  θ2  90 deg

θVA  20.0 deg

VA AI13

ω  0.832

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. The direction of VB is down and to the right VB  1.365

in sec

Use equation 6.9c to determine the angular velocity of link 5. ω 

6.

sec

Determine the angular velocity of link 3 using equation 6.9a.

VB  BI13 ω 5.

in

VA  a  ω

ω  4.

SOLUTION MANUAL 6-70b-2

VB BI15

ω  0.145

rad

CCW

sec

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI15 ω

VC  1.436

in sec

to the right

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-70c-1

PROBLEM 6-70c Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400  in Crank angle:

θ2XY  110  deg

  102  deg

Coordinate angle

ω2  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33 and Mathcad file P0670c.

Draw the linkage to scale and label it.

Y A 3 B

2 4

5 X

O2

y 6

O4 x 2.

C

102°

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. Transform crank angle to the local xy coordinate system:

θ2  θ2XY   K1 

d

K1  0.4608

a 2

K3 

θ2  212.000 deg

2

2

a b c d

K2 

d c

2

2 a c

K3  0.6755

A  cos θ2  K1  K2 cos θ2  K3 B  2  sin θ2 C  K1   K2  1   cos θ2  K3 A  0.2662 3.

B  1.0598

C  2.3515

Use equation 4.10b to find values of 4 for the open circuit.

K2  0.4329

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 6-70c-2



2

θ4xy  2  atan2 2  A B  4.

2

d b

2

2

K4  0.4838

2 a b

E  2  sin θ2

E  1.0598

F  K1   K4  1   cos θ2  K5

F  0.3808

Use equation 4.13 to find values of 3 for the open circuit.





2

E  4  D F

  2 π

a  ω2 sin θ2  θ3xy  c sin θ4xy  θ3xy

ω4  0.591

rad sec

Transform 4 back to the global XY system.

θ4  662.365 deg

Determine 5 and d, with respect to O4, using equation 4.17. cc  0  in

 c sin θ4  cc  π e  

θ5  asin 

θ5  158.818 deg

dd  c cos θ4  e cos θ5

dd  6.272 in

Determine the angular velocity of link 5 using equation 6.22a:

ω5  7.

θ3xy  649.050 deg

Determine the angular velocity of link 4 for the open circuit using equations 6.18.

Offset:

6.

K5  0.5178

D  2.2370

θ4  θ4xy   5.

θ4xy  560.365 deg

D  cos θ2  K1  K4 cos θ2  K5

ω4  7.

2

c d a b

K5 

θ3xy  2  atan2 2  D E  6.

  2 π

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

5.

B  4 A  C

c cos θ4   ω4 e cos θ5

ω5  0.145

rad sec

Determine the velocity of pin C using equation 6.22b: VC  c ω4 sin θ4  e ω5 sin θ5 VC  1.436

in sec

VC  1.436

in sec

 

arg VC  0.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-71-1

PROBLEM 6-71 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 4 and the linear velocity of slider 6 in the sixbar slider-crank linkage of Figure 3-33 as a function of the angle of input link 2 for a constant 2 = 1 rad/sec CW. Plot Vc both as a function of 2 and separately as a function of slider position as shown in the figure. What is the percent deviation from constant velocity over 240 deg < 2 < 270 deg and over 190 < 2 < 315 deg?

Given:

Link lengths: Input crank (L2)

a  2.170

Fourbar coupler (L3)

b  2.067

Output crank (L4)

c  2.310

Sllider coupler (L5)

e  5.40

d  1.000

Fourbar ground link (L1)

  1 

Crank velocity: Solution:

rad sec

See Figure 3-33 and Mathcad file P0671.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a crankslider mechanism using the output of the fourbar, link 4, as the input to the crank-slider.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY coordinate system. 2

K1 

d

K2 

a

K1  0.4608

 

K3 

d c

K2  0.4329

 

2

2

a b c d

2

2 a c

K3  0.6755

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ   102 deg

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 5.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

 

 c sin θ θ   π e  

 

    e cosθθ

θ θ  asin

f θ  c cos θ θ 5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b 2 a b

2

K4  0.4838

K5  0.5178

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-71-2

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 2  4 Dθ F θ 

 

θ θ  2   atan2 2  D θ E θ  7.

E θ

Determine the angular velocity of link 4 for the open circuit using equations 6.18.

 

 θ 

a   c





 

sin θ  θ θ

  

 

sin θ θ  102  deg  θ θ

 0.5  0.75 1

 

 θ  1.25  1.5  1.75 2

0

45

90

135

180

225

270

θ deg

8.

Determine the angular velocity of link 5 using equation 6.22a:

 

ω θ 

9.

       

c cos θ θ    θ e cos θ θ

Determine the velocity of pin C using equation 6.22b:

 

      e ωθ sinθθ

VC θ  c  θ  sin θ θ

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-71-3

2 1 0

 

VC θ  1 2 3 4

0

45

90

135

180

225

270

315

360

θ deg

2

1

0

 

VC θ  1 2 3 4

3

4

5

 

f θ

6

7

8

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-72-1

PROBLEM 6-72 Statement:

Figure 3-34 shows a Stephenson's sixbar mechanism. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-34 and Mathcad file P0672.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C  15

2

a.

In part (a) of the figure.

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

1,2 O2

2 4,6

1,6

5,6

2,3

6 O6 3

5

1,4 O4

4,5 4 5 2.

3,5

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6-I5,6 and I1,4-I4,5 I2,5: I1,2-I1,5 and I2,3-I3,5 I1,3: I1,2-I2,3 and I1,5-I3,5 I3,4: I1,4-I1,3 and I4,5-I3,5 I2,8: I2,3-I3,4 and I2,5-I4,5 I2,6: I1,2-I1,6 and I2,5-I5,6 I3,6: I1,3-I1,6 and I3,5-I5,6

1,2; 2,5; 2,4; 2,6

I4,6: I1,4-I1,6 and I4,5-I5,6 O2

1 6

2

2 6 3

5

3 4

1,6

5,6

2,3

5

O6

1,5

1,4 O4

4,5 4 5 3,5; 1,3; 3,4; 3,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-72-2

b.

In part (b) of the figure.

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

1,2 5,6 2

O2

2,3

5

6

4,5 3

4

5

1,6 O6 1,4 O4

3,5

2.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6-I5,6 and I1,4-I4,5

3,6

1,2

I2,5: I1,2-I1,5 and I2,3-I3,5

5,6; 4,6 2 2,3

I1,3: I1,2-I2,3 and I1,5-I3,5

O2

5 4,5

3

5

I3,4: I1,4-I1,3 and I4,5-I3,5

6 1,6 O6 1,4; 1,5 O4

4

I2,4: I2,3-I3,4 and I2,5-I4,5 I2,6: I1,2-I1,6 and I2,5-I5,6

2,6

I3,6: I1,3-I1,6 and I3,5-I5,6 I4,6: I1,4-I1,6 and I4,5-I5,6

3,5; 3,4 To 1,3 1 6

2

5

3 4

2,5; 2,4; 2,8

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-72-3

c.

In part (c) of the figure.

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

2,3 1,6

2 1,2

4,5

O2 5 5

3

6 O6 1,4 O4

4 3,5

2.

5,6

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6-I5,6 and I1,4-I4,5

I2,4: I2,3-I3,4 and I2,5-I4,5

I2,5: I1,2-I1,5 and I2,3-I3,5

I2,6: I1,2-I1,6 and I2,5-I5,6

I1,3: I1,2-I2,3 and I1,5-I3,5

I3,6: I1,3-I1,6 and I3,5-I5,6

I3,4: I1,4-I1,3 and I4,5-I3,5

I4,6: I1,4-I1,6 and I4,5-I5,6

2,3 4,6

1

1,6

2 6

2

5

3

1,2; 2,5; 2,4: 2,6 4,5 O2

4

5 5

3

4 3,5; 1,3; 3,4; 3,6

1,5

6 O6 1,4 O4

5,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-73a-1

PROBLEM 6-73a Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Output rocker angle:

θ  90 deg Global XY system ω  10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure 3-34b and Mathcad file P0673a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VCD Y

Direction of VD

Direction of VA X 2 A

D

O2

5

6

C Direction of VAB

O6 3

5

Direction of VC

4 O4 B

Direction of VBD 2.

Since this linkage is a Stephenson's II sixbar, we will have to start at link 6 and work back to link 2. We will assume a value for 6 and eventually find a value for 2. We will then multiply the magnitudes of all velocities by the ratio of the actual 2 to the found 2. Use equation 6.7 to calculate the magnitude of the velocity at point D. 1 Assume: CW ω  1  rad sec VD  a  ω

3.

VD  1.542

in sec

θVD  0  deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C, the magnitude of the relative velocity VCD, and the angular velocity of link 5. The equation to be solved graphically is VC = VD + VCD a. b.

Choose a convenient velocity scale and layout the known vector VD. From the tip of VD, draw a construction line with the direction of VCD, magnitude unknown.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-73a-2

c. From the tail of VD, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCD from the tip of VD to the intersection of the VC construction line and drawing VC from the tail of VD to the intersection of the VCD construction line. 0

1 in/sec

1.289

VC

VCD

1.309 127.003°

54.195° VD

4.

From the velocity triangle we have: kv 

Velocity scale factor:

5.

1

in in

VC  1.289  in kv

VC  1.289

VCD  1.309  in kv

VCD  1.309

θVC  54.195 deg

sec in

θVCD  127.003  deg

sec

Determine the angular velocity of links 5 and 4 using equation 6.7. ω  ω 

6.

1  in sec

VCD b VC c

ω  0.607

rad

ω  0.607

rad

sec

sec

Determine the magnitude and sense of the vector VBD using equation 6.7. VBD  p  ω

VBD  1.986

in sec

θVBD  θVCD  δ5 7.

θVBD  163.003 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VD + VBD a. b. c.

Choose a convenient velocity scale and layout the known vector VD. From the tip of VD, layout the (now) known vector VBD. Complete the vector triangle by drawing VB from the tail of VD to the tip of the VBD vector. 0

VBD VB 0.682 121.607°

VD

1 in/sec

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 6-73a-3

From the velocity triangle we have:

kv 

Velocity scale factor:

VB  0.682  in kv 9.

1  in sec

1

in

VB  0.682

in

θVB  121.607  deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A, the magnitude of the relati velocity VAB, and the angular velocity of link 2. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VA, magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line. VAB

0

VB

1 in/sec

VA 0.645

131.690°

10. From the velocity triangle we have:

Velocity scale factor:

VA  0.645  in kv

kv 

1  in sec

1

in

VA  0.645

in

θVA  131.690  deg

sec

11. Determine the angular velocity of link 2 with respect to the assumed value of 6 using equation 6.7.

ω 

VA g

ω  0.415

rad sec

12. Calculate the actual value of the angular velocity of link 6.  

ω rad  ω sec

  24.124

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-73b-1

PROBLEM 6-73b Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Output rocker angle:

θ  90 deg Global XY system

Input crank angular velocity Solution: 1.

  10 rad sec

1

CW

See Figure 3-34b and Mathcad file P0673b.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5, and the distances from the pin joints to the instant centers. See Problem 6-72b for determination of IC locations. D A

2

O2

5

6

C 3

5

4 B

To 1,3

From the layout above: AI13  22.334 in

BI13  23.650 in

BI15  1.124  in

DI15  2.542  in

O6 1,5 O4

DESIGN OF MACHINERY - 5th Ed.

2.

SOLUTION MANUAL 6-73b-2

Start from point D with an assumed value for 6 and work to find 2. Then, use the ratio of the actual value of 2 to the found value to calculate the actual value of 6. Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point D. rad   1  sec in VD  a   VD  1.542 sec

θVD  θ  90 deg 3.

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

VD DI15

VB BI13

VB  0.682

in sec

ω  0.029

rad

CCW

sec

VA  0.644

in

to the left

sec

Use equation 6.9c to determine the angular velocity of link 2 based on the assumed value of 6.  

8.

CW

sec

Determine the magnitude of the velocity at point A using equation 6.9b. VA  AI13  ω

7.

rad

Use equation 6.9c to determine the angular velocity of link 3. ω 

6.

ω  0.607

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI15 ω

5.

θVD  0.0 deg

VA g

  0.414

rad

CW

sec

Multiply the assumed vaue of 6 by the ratio of 21 over 22 to get the value of 6 for 2 = 10 rad/sec.  

 rad   sec

  24.166

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-73c-1

PROBLEM 6-73c Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use an analytic method.

Given:

Solution: 1.

Link lengths: Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Link 1 (O4 to O6)

d  1.000  in

Output rocker angle:

θ6XY  90 deg

Global XY system

Input crank angular velocity

ω  10 rad sec

Coordinate rotationm angle

δ  90 deg

1

CW

See Figure 3-34b and Mathcad file P0673c.

Transform the crank angle to the local coordinate system. Draw the linkage to scale and label it.

θ6  θ6XY  δ

θ6  180.000 deg

Y

2 A

D

O2

5

X

6

C

y O6

3

5

4 O4 B x

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

K1  0.6485

3.

K2 

d c

K2  0.4706

2

K3 

K3  0.4938

A  cos θ6  K1  K2 cos θ6  K3

A  0.6841

B  2  sin θ6

B  0.0000

C  K1   K2  1   cos θ6  K3

C  2.6129

Use equation 4.10b to find values of 4 for the crossed circuit.

2

2

a b c d 2 a c

2

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 6-73c-2



θ4  2  atan2 2  A B  4.

2

d

K5 

b

θ4  234.195 deg

2

2

c d a b

2

2 a b

K4  0.4634

D  cos θ6  K1  K4 cos θ6  K5

D  2.6407

E  2  sin θ6

E  0.0000

F  K1   K4  1   cos θ6  K5

F  0.6563

K5  0.5288

Use equation 4.13 to find values of 5 for the crossed circuit.





θ51  2  atan2 2  D E  6.



Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

5.

2

B  4 A  C

2

E  4  D F



θ51  307.003 deg

Determine the angular velocity of links 4 and 5 for the open circuit using equations 6.18. Initially assume 6 = 1 rad/sec. then by trial and error, change it to make 2 = 10 rad/ sec CW.

ω6  1  rad sec

1

ω5 

a  ω6 sin θ4  θ6  b sin θ51  θ4

ω5  0.607

rad

ω4 

a  ω6 sin θ6  θ51  c sin θ4  θ51

ω4  0.607

rad

sec

sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-74-1

PROBLEM 6-74 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 3-34 as a function of 2 for a constant 2 = 1 rad/sec CW.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Link 1 (O4 to O6)

d  1.000  in

Output rocker angle:

θ6XY  90 deg

Global XY system

Input crank angular velocity

ω  10 rad sec

Coordinate rotationm angle

δ  90 deg

1

CW

See Figure P6-34 and Mathcad file P0674.

This problem is long and may be more appropriate for a project assignment. The solution involves defining vector loops and solving the resulting equations using a method such as Newton-Raphson.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-75-1

PROBLEM 6-75 Statement:

Figure 3-35 shows a Stephenson's sixbar mechanism. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-35 and Mathcad file P0675.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n  1)

C  15

2

a.

In part (a) of the figure.

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7). 4,5

5 5,6

4

2 1,2 O2

O4

3

2,3

1,4

6

1,6 O6

3,4

2.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,5; I3,6; and I4,6 4,5

5 4

2 2,3

1,2; 2,5; 2,4; 2,6 O2

3

O4

5,6 1,4

6

1,6 O6

4,6 1,3; 3,5; 3,6

1

3,4

I1,5: I1,6-I5,6 and I1,4-I4,5 I1,3: I1,2-I2,3 and I1,4-I3,4 I3,5: I1,5-I1,3 and I3,4-I4,5 I2,5: I1,2-I1,5 and I2,3-I3,5 I2,4: I2,3-I3,4 and I2,5-I4,5 I2,6: I1,2-I1,6 and I2,5-I5,6 I3,6: I1,3-I1,6 and I3,5-I5,6 I4,6: I1,4-I1,6 and I4,5-I5,6

1,5

6

2

5

3 4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-75-2

b.

In part (b) of the figure.

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7). 1,6 2 2,3

1,4

1,2

3

O2

5

O4 5,6

3,4

2.

4,5 6

4

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,5; I3,6; and I4,6 I1,5: I1,6-I5,6 and I1,4-I4,5

I2,4: I2,3-I3,4 and I2,5-I4,5

I1,3: I1,2-I2,3 and I1,4-I3,4

I2,6: I1,2-I1,6 and I2,5-I5,6

I3,5: I1,5-I1,3 and I3,4-I4,5

I3,6: I1,3-I1,6 and I3,5-I5,6

I2,5: I1,2-I1,5 and I2,3-I3,5

I4,6: I1,4-I1,6 and I4,5-I5,6 1,5

1,2

1

2 6

2

2,3 3

5

3

4,5

1,4 O2

6

4 O4

5,6 4

1,2; 2,5; 2,4; 2,6

3,4; 1,3; 3,5; 3,6

4,6 5

1,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-76a-1

PROBLEM 6-76a Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286

Link 6 (O6 to E)

g  0.771  in

Crank angle:

θ2  90 deg

ω  10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure 3-35 and Mathcad file P0676a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VA Direction of VD

Y A

D

122.085°

100.938°

33.359°

2

5

3 4 O2

X

6 O4 O6 E

35.228°

B Direction of VE Direction of VBA

Direction of VED

Direction of VB

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA  a  ω

VA  10.000

θVA  θ2  90 deg

θVA  180.000 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-76a-2

Y

1.671 1.063 0

5 in/sec

VB

VBA

X VA

4.

From the velocity triangle we have: kv 

Velocity scale factor:

VBA  1.063  in kv

VBA  5.315   6.497

c

θVB  147.915  deg

sec in

θVBA  56.641 deg

sec

rad

CW

sec

Calculate the magnitude and direction of VD. VD  e 

6.

in

VB  8.355

VB

1

in

VB  1.671  in kv

  5.

5  in sec

VD  9.284

in

θVD  55.085 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point E, the magnitude of the relati velocity VED, and the angular velocity of link 3. The equation to be solved graphically is VE = VD + VED a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VED, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VE, magnitude unknown. d. Complete the vector triangle by drawing VED from the tip of VD to the intersection of the VE construction line and drawing VE from the tail of VD to the intersection of the VED construction line.

4.

Y

From the velocity triangle we have: Velocity scale factor:

VE  2.450  in kv ω 

kv 

5  in sec

5 in/sec

1

in

VE  12.250

0

X

in sec

2.450

VE VD

g

ω  15.888

rad

CW

VE

sec V DE

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-76b-1

PROBLEM 6-76b Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286

Link 6 (O6 to E)

g  0.771  in

Crank angle:

θ2  90 deg

Input crank angular velocity Solution: 1.

ω  10 rad sec

1

CCW

See Figure 3-35 and Mathcad file P0676a.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5, and the distances from the pin joints to the instant centers. See Problem 6-68 for the determination of IC locations.

1,5 A 2

D 5

3 4 O2

6 O4 O6 E

B

1,3 From the layout above: AI13  7.152  in 2.

BI13  5.975  in

DI15  0.947  in

EI15  1.249  in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA  a  ω VA  10.000 sec

θVA  θ2  90 deg 3.

BI15  1.740  in

θVA  180.0 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

VA AI13

ω  1.398

rad sec

CCW

DESIGN OF MACHINERY - 5th Ed.

4.

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI13 ω

5.

VB c

VD DI15

ω  6.496

rad

CW

sec

VD  9.283

in sec

ω  9.803

rad

CW

sec

Determine the magnitude of the velocity at point E using equation 6.9b. VE  EI15 ω

9.

sec

Use equation 6.9c to determine the angular velocity of link 5. ω 

8.

in

Determine the magnitude of the velocity at point D using equation 6.9b. VD  e ω

7.

VB  8.354

Use equation 6.9c to determine the angular velocity of link 4. ω 

6.

SOLUTION MANUAL 6-76b-2

VE  12.244

in sec

Use equation 6.9c to determine the angular velocity of link 6. ω 

VE g

ω  15.88

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-76c-1

PROBLEM 6-76c Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286  in

Link 6 (O6 to E)

g  0.771  in

Link 1 (O4 to O6)

h  0.786  in

θ2  90 deg

Crank angle:

ω2  10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure 3-35 and Mathcad file P0676c.

Draw the linkage to scale and label it.

Y A

D

122.085° 33.359°

2

100.938° 5

3 4 O2

X

6 O4 O6 E

35.228°

B 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a 2

K3 

2

2

a b c d

d

K1  3.8570

c

K2  2.9992

2

K3  1.2015

2 a c

A  cos θ2  K1  K2 cos θ2  K3 B  2  sin θ2 C  K1   K2  1   cos θ2  K3 A  2.6555 3.

B  2.0000

Use equation 4.10b to find values of 4 for the crossed circuit.





θ41  2  atan2 2  A B  4.

C  5.0585

2

B  4 A  C



θ41  237.915 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b 2 a b

D  cos θ2  K1  K4 cos θ2  K5

2

K4  1.0150 D  7.6284

K5  3.7714

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 6-76c-2

E  2  sin θ2

E  2.0000

F  K1   K4  1   cos θ2  K5

F  0.0856

Use equation 4.13 to find values of 3 for the crossed circuit.





θ3  2  atan2 2  D E  6.

7.

2

E  4  D F



θ3  326.641 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

ω3 

a  ω2 sin θ41  θ2  b sin θ3  θ41

ω3  1.398

ω4 

a  ω2 sin θ2  θ3  c sin θ41  θ3

ω4  6.496

sec rad sec

Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

θ42  θ41  157  deg  360  deg 8.

rad

θ42  34.915 deg

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1 

h

K2 

e 2

K3 

e f

2

2

g h

h

K1  0.5500

g

K2  1.0195

2

K3  0.7263

2  e g

A  cos θ42  K1  K2 cos θ42  K3 B  2  sin θ42

C  K1   K2  1   cos θ42  K3 A  0.1603 9.

B  1.1447

C  0.3796

Use equation 4.10b to find values of 6 for the open circuit.





θ6  2  atan2 2  A B 

2

B  4 A  C



θ6  35.228 deg

10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. K4 

2

h

K5 

f

2

2

g h e f 2  e f

2

K4  0.6112

D  cos θ42  K1  K4 cos θ42  K5

D  0.2408

E  2  sin θ42

E  1.1447

F  K1   K4  1   cos θ42  K5

F  0.7807

K5  1.0119

11. Use equation 4.13 to find values of 5 for the open circuit.





θ5  2  atan2 2  D E 

2

E  4  D F



θ5  280.938 deg

12. Determine the angular velocity of link6 for the open circuit using equations 6.18.

 e ω4  sin θ42  θ5   g  sin θ6  θ5

ω6  

ω6  15.885

rad sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-77-1

PROBLEM 6-77 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 3-35 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286  in

Link 6 (O6 to E)

g  0.771  in

Link 1 (O4 to O6)

h  0.786  in

  1  rad sec

Input crank angular velocity Solution:

1

CCW

See Figure 3-35 and Mathcad file P0677.   0  deg 1  deg  360  deg

1.

Define the range of the input angle:

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a 2

K3 

K2 

d

2

2

2

a b c d

K1  3.8570

c

K3  1.2015

2 a c

 

K2  2.9992

 

 

 

A   cos   K1  K2 cos   K3

 

 

B   2  sin 

 

C   K1   K2  1   cos   K3 3.

Use equation 4.10b to find values of 4 for the crossed circuit.



 



 

 

   2   atan2 2  A  B   4.

 2  4 A  C 

B 

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  1.0150

2 a b

 

 

 

D   cos   K1  K4 cos   K5

 

K5  3.7714

 

E   2  sin 

 

F   K1   K4  1   cos   K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

   2   atan2 2  D  E   6.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

  

 

   7.

 2  4 D F  

E 

    b sin       a   sin       c sin       a  



sin    

Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 6-77-2

 

      157  deg  360  deg 8.

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. h

K1 

K2 

e 2

2

e f

K3 

2

g h

h

K1  0.5500

g 2

K3  0.7263

2  e g

 

K2  1.0195

    K1  K2 cos  K3 B'  2 sin

A'   cos  

 

     K3

C'   K1   K2  1   cos   9.

Use equation 4.10b to find values of 6 for the open circuit.



 



 2  4 A'  C' 

   

   2   atan2 2  A'  B'  

B' 

10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. 2

h

K4 

K5 

f

 

2

2

g h e f

2

K4  0.6112

2  e f

K5  1.0119

    K1  K4 cos  K5 E'  2 sin

D'   cos  

 

     K5

F'   K1   K4  1   cos  

11. Use equation 4.13 to find values of 5 for the open circuit.



 



 

 

   2   atan2 2  D'  E'  

 2  4 D' F' 

E' 

12. Determine the angular velocity of link6 for the open circuit using equations 6.18.

 e    sin          g  sin      

 

  

ANGULAR VELOCITY - LINK 6

Angular velocity, rad/sec

3 2 1 0 1 2

0

45

90

135

180

225

Crank angle, deg

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-78-1

PROBLEM 6-78 Statement:

Figure 3-36 shows an eightbar mechanism. Find all of its instant centers in the position shown in part (a) of the figure:

Given:

Number of links n  8

Solution:

See Figure 3-36a and Mathcad file P0678.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C  28

2

Draw the linkage to scale and identify those ICs that can be found by inspection (11). 1,4; 1,8; 4,8 3,4

4,5

3 4 1,2 2

O4

O2

8

5,6

6

1,6

5

O6

2,3 7

7,8

5,7

2.

Use Kennedy's Rule and a linear graph to find the remaining 17 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

1,4; 1,8; 4,8; 5,8; 1,5

1,7

I4,6: I1,4-I1,6 and I4,5-I5,6 I2,4: I1,2-I1,4 and I2,3-I3,4

3,4; 1,3

4,5; 3,5

3

I2,8: I2,4-I4,8 and I1,2-I1,8

4 2

O2

1,2; 2,4

6

1,6

O4

8

O6 7,8

2,6; 2,8; 6,8; 2,7 at infinity

1 8

I2,6: I1,2-I1,6 and I2,4-I4,6

3,6; 3,7; 3,8 6,7

7

3

I2,5: I2,6-I5,6 and I2,3-I4,5

6

4 5

I3,5: I3,4-I4,5 and I2,3-I2,5 I3,6: I2,3-I2,6 and I3,5-I5,6 I3,7: I3,6-I6,7 and I2,3-I2,7

I5,8: I5,6-I6,8 and I4,5-I4,8

I3,8: I3,7-I7,8 and I2,3-I2,8

I1,5: I1,6-I5,6 and I1,4-I4,5

I4,7: I4,6-I6,7 and I3,4-I3,7

I1,7: I1,8-I7,8 and I1,6-I6,7

7 4,7

2

I6,8: I2,8-I2,6 and I1,8-I1,6

I2,7: I2,8-I7,8 and I2,6-I6,7

5

2,5

2,3

I6,7: I5,6-I5,7 and I6,8-I7,8

5,6; 4,6

5,7

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-79-1

PROBLEM 6-79 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 8 in the linkage of Figure 3-36 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Input crank (L2)

a  0.450

First coupler (L3)

b  0.990

Common rocker (O4B)

c  0.590

First ground link (O2O4)

d  1.000

Common rocker (O4C)

a'  0.590

Second coupler (CD)

b'  0.325

Output rocker (L6)

c'  0.325

Second ground link (O4O6) d'  0.419

Link 7 (L7)

e  0.938

Link 8 (L8)

f  0.572

Link 5 extension (DE)

p  0.823

Angle DCE

δ  7.0 deg

Angle BO4C

α  128.6  deg

Input crank angular velocity Solution: 1.

  1  rad sec

1

CCW

See Figure 3-36 and Mathcad file P0679.

See problem 4-43 for the position solution. The velocity solution will use the same vector loop equations for links 5, 6, 7, and 8, differentiated with respect to time. This problem is suitable for a project assignment and is probably too long for an overnight assignment.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-80-1

PROBLEM 6-80 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and direction of the velocity of point P in Figure 3-37a as a function of 2 for a constant 2 = 1 rad/sec CCW. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.136

Link 3 (A to B)

b  1.000

Link 4 (B to O4)

c  1.000

Link 1 (O2 to O4)

d  1.414

Coupler point:

Rpa  2.000

  0  deg

Crank speed:

  1  rad sec

1

See Figure 3-37a and Mathcad file P0680.

Determine the range of motion for this Grashof crank rocker. θ  0  deg 2  deg  360  deg

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  10.3971 2

K3 

c

K2  1.4140

2

2

a b c d

2

K3  7.4187

2 a c

 

d

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 3.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

K4  1.4140

K5  7.4187

      E θ  2  sin θ F  θ  K1   K4  1   cos θ  K5

D θ  cos θ  K1  K4 cos θ  K5

5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

DESIGN OF MACHINERY - 5th Ed.

 

a  

 

a  

ω θ 

ω θ  7.

b

c

SOLUTION MANUAL 6-80-2



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

 

VA θ  a   sin θ  j  cos θ 8.

 

VA θ  VA θ

Determine the velocity of the coupler point P using equations 6.36.

 

 

  



  



VPA θ  Rpa ω θ  sin θ θ    j  cos θ θ  

 

 

 

VP θ  VA θ  VPA θ

Plot the magnitude and direction of the velocity at coupler point P.

 

 

Magnitude:

VP θ  VP θ

Direction:

θVP1 θ  arg VP θ  θVP θ  if  θVP1 θ  0 θVP1 θ  2  π θVP1 θ  MAGNITUDE

0.18

0.16 Velocity, mm/sec

9.

0.14

0.12

0.1

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-80-3

DIRECTION

Vector Angle, deg

300

200

100

0

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-81-1

PROBLEM 6-81 Statement:

Calculate the percent error of the deviation from constant velocity magnitude of point P in Figure 3-37a.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.136

Link 3 (A to B)

b  1.000

Link 4 (B to O4)

c  1.000

Link 1 (O2 to O4)

d  1.414

Coupler point:

Rpa  2.000

  0  deg

Crank speed:

  1  rad sec

1

See Figure 3-37a and Mathcad file P0681.

Determine the range of motion for this Grashof crank rocker. θ  0  deg 2  deg  360  deg

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  10.3971 2

K3 

c

K2  1.4140

2

2

a b c d

2

K3  7.4187

2 a c

 

d

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 3.

Use equation 4.10b to find values of 4 for the open circuit.

 





 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

K4  1.4140

K5  7.4187

      E θ  2  sin θ F  θ  K1   K4  1   cos θ  K5

D θ  cos θ  K1  K4 cos θ  K5

5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

ω θ 

a   b



    sin θ θ  θ θ  sin θ θ  θ

DESIGN OF MACHINERY - 5th Ed.

 

ω θ  7.

a   c



SOLUTION MANUAL 6-81-2



  sin θ θ  θ θ  sin θ  θ θ

Determine the velocity of point A using equations 6.19.

 



 

 

 

VA θ  a   sin θ  j  cos θ 8.

 

VA θ  VA θ

Determine the velocity of the coupler point P using equations 6.36.

 

 

  



  



VPA θ  Rpa ω θ  sin θ θ    j  cos θ θ  

 

 

 

VP θ  VA θ  VPA θ

Calculate the magnitude of the velocity at coupler point P.

 

 

VP θ  VP θ

Magnitude:

 

err θ 

Deviation from constant speed:

 

 

VP θ  VA θ

 

VA θ

DEVIATION FROM CONSTANT SPEED 30

20 Percent Error

9.

10

0

 10

 20

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-82-1

PROBLEM 6-82 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and the direction of the velocity of point P in Figure 3-37b as a function of 2. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths: Input crank (L2)

a  0.50

First coupler (AB)

b  1.00

Rocker 4 (O4B)

c  1.00

Rocker 5 (L5)

c'  1.00

Ground link (O2O4)

d  0.75

Second coupler 6 (CD)

b'  1.00

Coupler point (DP)

p  1.00

Distance to OP (O2OP)

d'  1.50

  1 

Crank speed: Solution: 1.

rad sec

See Figure 3-37b and Mathcad file P0682.

Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Define a position vector whose tail is at point D and whose tip is at point P and another whose tail is at O4 and whose tip is at point D. Then, since R5 = RAB and RDP = -R4, the position vector from O2 to P is P = R1 + RAB - R4. Separating this vector equation into real and imaginary parts gives the equations for the X and Y coordinates of the coupler point P.

 

 

 

XP = d  b  cos θ  c cos θ

 

YP = b  sin θ  c sin θ

2.

Define one revolution of the input crank: θ  0  deg 0.5 deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d a

K1  1.5000

 

2

d

K2 

K3 

c

K2  0.7500

 

2

2

a b c d

2

2 a c

K3  0.8125

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 

 2  4 A θ Cθ   2 π

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K4  0.7500

K5  0.8125

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ   2 π

E θ

Define a local xy coordinate system with origin at OP and with the positive x axis to the right. The coordinates of P are transformed to xP = XP - d', yP = YP.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-82-2

 

    c cosθθ  d'

xP θ  d  b  cos θ θ

 

    c sinθθ

yP θ  b  sin θ θ 7.

Use equations 6.18 to calculate 3 and 4.

 

a  

 

a  

 θ 

b

 θ 

    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Differentiate the position equations with respect to time to get the velocity components.

 

      c θ sinθθ

VPx θ  b   θ sin θ θ

 

 

    c θ cosθθ

VPy θ  b   θ  cos θ θ

 

 2  VPyθ2

VP θ 

VPx θ

MAGNITUDE 0.6 0.4 Velocity, mm/sec

8.

c



0.2 0  0.2  0.4  0.6

0

45

90

135

180

Crank Angle, deg x Component y Component

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-83-1

PROBLEM 6-83 Statement:

Find all instant centers of the linkage in Figure P6-30 in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-30 and Mathcad file P0683.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). 3,4

4

P1

1,4

O4

3

P2

Y

2,3 2 1,2

X O2

1,3

2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

3,4

4

P1 O4 P2

1,4 3 Y

2,3 2 1,2

X O2 2,4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-84a-1

PROBLEM 6-84a Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

θ  45 deg ω  10 rad sec

Input crank angular velocity

1

CCW

See Figure P6-30 and Mathcad file P0684a. Solution: 1. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VB Direction of VBA B

x

4

P1 O4

29.063°

P2

3

Y

99.055° 45.000° A 2

X O2

Direction of VA

y

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

VA  140.000

in sec

θVA  45 deg  90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

0

SOLUTION MANUAL 6-84a-2

100 in/sec

0.409" Y 1.206" 119.063° VBA VB

VA

135.000°

9.055°

4.

X

From the velocity triangle we have: kv 

Velocity scale factor:

5.

VB  120.600

VBA  0.409  in kv

VBA  40.900

in sec

θVB  119.063  deg

in sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

ω 

VBA

ω  0.511

b VB

ω  2.353

c

rad sec

rad sec

Transform the xy coordinates of point P1 into the XY system using equations 4.0b. Coordinate transformation angle

7.

1

in

VB  1.206  in kv

ω 

6.

100  in sec

δ  atan2 d X d Y 

δ  126.582 deg

PX  p x  cos δ  p y  sin δ

PX  94.998 in

PY  p x  sin δ  p y  cos δ

PY  72.308 in

Calculate the distance from O4 to P1 and use equation 6.7 to calculate the velocity at P1. Distance from O4 to P1: VP1  e ω

e 

 PX  d X  2   PY  d Y  2 VP1  113.446

in sec

e  48.219 in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-84b-1

PROBLEM 6-84b Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

θ  45 deg

Input crank angular velocity Solution: 1.

ω  10 rad sec

1

CCW

See Figure P6-30 and Mathcad file P0684b.

Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

1,3

B

4

P1 O4 P2

3 Y

A 2

X O2

From the layout above: AI13  273.768  in 2.

BI13  235.874  in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

DESIGN OF MACHINERY - 5th Ed.

3.

VA  140.000

θVA  θ  90 deg

θVA  135.0 deg

VA

ω  0.511

AI13

CW

sec

VB  120.622

in sec

Use equation 6.9c to determine the angular velocity of link 4. VB

ω  2.353

c

rad

CCW

sec

Transform the xy coordinates of point P1 into the XY system using equations 4.0b. Coordinate transformation angle

7.

rad

Determine the magnitude of the velocity at point B using equation 6.9b.

ω  6.

sec

Determine the angular velocity of link 3 using equation 6.9a.

VB  BI13 ω 5.

in

VA  a  ω

ω  4.

SOLUTION MANUAL 6-84b-2

δ  atan2 d X d Y 

PX  p x  cos δ  p y  sin δ

PX  94.998 in

PY  p x  sin δ  p y  cos δ

PY  72.308 in

δ  126.582 deg

Calculate the distance from O4 to P1 and use equation 6.7 to calculate the velocity at P1. Distance from O4 to P1: VP1  e ω

e 

 PX  d X  2   PY  d Y  2

VP1  113.467

in sec

e  48.219 in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-84c-1

PROBLEM 6-84c Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

θ2XY  45 deg

δ  126.582  deg

Coordinate transformation angle: Input crank angular velocity Solution: 1.

XY coord system

ω2  10 rad sec

1

CCW

See Figure P6-30 and Mathcad file P0684c.

Draw the linkage to scale and label it. x

B

97.519°

4

P1 O4

27.528°

P2

3 81.582°

Y

126.582° 45.000° A 2

X O2

y

Transform the crank angle from global to local coordinate system:

θ2  θ2XY  δ

2.

2

d 

Distance O2O4:

θ2  81.582 deg dX  dY

2

d  79.701 in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a 2

K3 

K2 

d

2

2

2

a b c d 2 a c

c

K1  5.6929

K2  1.5548

K3  1.9340

A  cos θ2  K1  K2 cos θ2  K3

B  2  sin θ2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-84c-2

C  K1   K2  1   cos θ2  K3 A  3.8401 3.

B  1.9785

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ4  2  atan2 2  A B  4.

C  7.2529

B  4 A  C



θ4  262.482 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

K4  0.9963

2 a b

D  cos θ2  K1  K4 cos θ2  K5

D  10.0081

E  2  sin θ2

E  1.9785

F  K1   K4  1   cos θ2  K5 5.

7.

F  1.0849

Use equation 4.13 to find values of 3 for the crossed circuit.





2

θ3  2  atan2 2  D E  6.

K5  4.6074

E  4  D F



θ3  332.475 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

ω3 

a  ω2 sin θ4  θ2  b sin θ3  θ4

ω3  0.511

ω4 

a  ω2 sin θ2  θ3  c sin θ4  θ3

ω4  2.353

rad sec

rad sec

Determine the velocity of points A and B for the crossed circuit using equations 6.19. VA  a  ω2  sin θ2  j  cos θ2  VA  ( 138.492  20.495i )

θVAXY  arg VA  δ

in sec

VA  140.000

in sec

θVAXY  135.000 deg

VB  c ω4  sin θ4  j  cos θ4  VB  ( 119.588  15.781j )

in sec

θVBXY  arg VB  δ 8.

in sec

θVBXY  119.064 deg

Calculate the distance from O4 to P1 and the angle BO4P1. e 

Distance from O4 to P1:

 py    px  d 

δ4  180  deg  atan 9.

VB  120.624

 px  d 2  py 2

δ4  136.503 deg

Determine the velocity of point P1 using equations 6.35. VP1  e ω4  sin θ4  δ  j  cos θ4  δ  VP1  ( 55.122  99.181j )

θVPXY  arg VP1  δ

in sec

VP1  113.469

in sec

θVPXY  245.646 deg

e  48.219 in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-85-1

PROBLEM 6-85 Statement:

Given:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the absolute velocity of point P1 in Figure P6-30 as a function of 2 for 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Link lengths: Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

θ2XY  0  deg 1  deg  360  deg   126.582  deg

Coordinate transformation angle: Input crank angular velocity Solution: 1.

XY coord system

  10 rad sec

1

CCW

See Figure P6-30 and Mathcad file P0685.

Draw the linkage to scale and label it. x

B

97.519°

4

P1 O4

27.528°

P2

3 81.582°

Y

126.582° 45.000° A 2

X O2

y

Transform the crank angle from global to local coordinate system:  θ2XY   θ2XY   d 

Distance O2O4: 2.

2

dX  dY

2

d  79.701 in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a 2

K3 

K2 

d

2

2

2

a b c d

c

K2  1.5548

K3  1.9340

2 a c



K1  5.6929







A  θ2XY   cos  θ2XY   K1  K2 cos  θ2XY   K3

  C θ2XY   K1   K2  1   cos  θ2XY    K3 B θ2XY   2  sin  θ2XY 

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-85-2

Use equation 4.10b to find values of 4 for the crossed circuit.





 θ2XY   2   atan2 2  A  θ2XY  B θ2XY   4.



B θ2XY   4  A  θ2XY   C θ2XY    2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b



2

2

c d a b

2

K4  0.9963

2 a b





K5  4.6074



D θ2XY   cos  θ2XY   K1  K4 cos  θ2XY   K5

  F  θ2XY   K1   K4  1   cos  θ2XY    K5 E θ2XY   2  sin  θ2XY  5.

Use equation 4.13 to find values of 3 for the crossed circuit.





 θ2XY   2   atan2 2  D θ2XY  E θ2XY   6.

 

a   sin  θ2XY    θ2XY   c sin  θ2XY    θ2XY 

 

Calculate the distance from O4 to P1 and the angle BO4P1. e 

Distance from O4 to P1:

 px  d 2  py 2

e  48.219 in

 py    px  d 

  180  deg  atan

  136.503 deg

Determine and plot the velocity of point P1 using equations 6.35.









VP1 θ2XY   e  θ2XY   sin  θ2XY     j  cos  θ2XY    VP1 θ2XY   VP1 θ2XY 



θVPXY  θ2XY   arg VP1 θ2XY    

P1 VELOCITY MAGNITUDE 200

150 Velocity - in/sec

8.

2

Determine the angular velocity of link 4 for the crossed circuit using equations 6.18.  θ2XY  

7.



E θ2XY   4  D θ2XY   F  θ2XY   

100

50

0

0

45

90

135

180

225

270

Crank Angle - Global XY System

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-85-3

P1 VELOCITY DIRECTION

Velocity angle - Global XY System

300

200

100

0

0

45

90

135

180

225

270

Crank Angle - Global XY System

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-86-1

PROBLEM 6-86 Statement:

Find all instant centers of the linkage in Figure P6-31 in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-31 and Mathcad file P0686.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4).

Y y

O2 1,2

X 2 1 O4 1,4 3,4

4

P

2,3 x 3 2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

Y y

O2 1,2

X 2 1 O4 1,4

1,3

3,4

4

P

2,3 x 3 2,4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-87a-1

PROBLEM 6-87a Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  9.17 in

Link 3 (A to B)

b  12.97  in

Link 4 (O4 to B)

c  9.57 in

Link 1 X-offset

d X  2.79 in

Link 1 Y-offset

d Y  6.95 in

Coupler point data:

p  15.00  in

δ  0  deg

Crank angle:

θ  94.121 deg ω  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-31 and Mathcad file P0687a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Y y

O2

X Direction VBA 2 1

68.121°

Direction VPA

26.000° O4 B

4 Direction VA

P

A 72.224° 3 60.472°

Direction VB

x

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA  a  ω

VA  9.170

θVA  θ  90 deg

θVA  184.121 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relati velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-87a-2

Y 0

25 in/sec VA X

1.798"

1.783" VBA

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

25 in sec

1

in in

VB  1.783  in kv

VB  44.575

VBA  1.798  in kv

VBA  44.950

ω 

VBA b VB

in

θVBA  274.103  deg

sec

c

ω  3.466

rad

ω  4.658

rad

sec

sec

Determine the magnitude and sense of the vector VPA using equation 6.7. VPA  p  ω

VPA  51.985

in sec

θVPA  θVBA 7.

θVB  262.352  deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7. ω 

6.

VB

θVPA  274.103 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point P. The equation to be solved graphically is VP = VA + VPA a. b. c.

8.

Choose a convenient velocity scale and layout the known vector VA. From the tip of VA, layout the (now) known vector VPA. Complete the vector triangle by drawing VP from the tail of VA to the tip of the VPA vector. Y

From the velocity triangle we have:

0

25 in/sec VA

Velocity scale factor:

VP  2.059  in kv

θP  96.051 deg

kv 

25 in sec

1

X

in

VP  51.475

96.051°

in 2.059"

sec VPA

VP

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-87b-1

PROBLEM 6-87b Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a  9.174  in

Link 3 (A to B)

b  12.971 in

Link 4 (O4 to B)

c  9.573  in

Link 1 X-offset

d X  2.790  in

Link 1 Y-offset

d Y  6.948  in

Coupler point data:

p  15.00  in

δ  0  deg

Crank angle:

θ  94.121 deg ω  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-31 and Mathcad file P0687b.

Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

Y y

O2

X 2 1 O4

1,3

B

4

P

A x 3 From the layout above: AI13  2.647  in 2.

θVA  184.121 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

PI13  14.825 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA  a  ω VA  9.174 sec

θVA  θ  90 deg 3.

BI13  12.862 in

VA AI13

ω  3.466

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. in VB  BI13 ω VB  44.577 sec

DESIGN OF MACHINERY - 5th Ed.

5.

Use equation 6.9c to determine the angular velocity of link 4. ω 

6.

SOLUTION MANUAL 6-87b-2

VB c

ω  4.657

rad

CW

sec

Determine the magnitude of the velocity at point P using equation 6.9b. VP  PI13 ω

VP  51.381

in sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-87c-1

PROBLEM 6-87c Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  9.174  in

Link 3 (A to B)

b  12.971 in

Link 4 (O4 to B)

c  9.573  in

Link 1 X-offset

d X  2.790  in

Link 1 Y-offset

d Y  6.948  in

Coupler point data:

p  15.00  in

δ  0  deg

Crank angle:

θ2XY  94.121 deg Global XY coord system δ  68.121 deg

Coordinate transformation angle:

ω2  1  rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-31 and Mathcad file P0687c.

Draw the linkage to scale and label it.

Y y

O2

X 2 1

68.121°

26.000° O4 B

4

P

A 72.224° 3 60.472° Transform crank angle into local xy coordinate system:

θ2  θ2XY  δ

θ2  26.000 deg d 

Calculate distance O2O4: 2.

x

2

dX  dY

2

d  7.487 in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a 2

K3 

2

2

d c

a b c d

K1  0.8161

2

2 a c

K3  0.3622

A  cos θ2  K1  K2 cos θ2  K3 C  K1   K2  1   cos θ2  K3 A  0.2581

K2  0.7821

B  0.8767

C  0.4234

B  2  sin θ2

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-87c-2

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ4  2  atan2 2  A B  4.

B  4 A  C

  2 π

θ4  60.488 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d b

2

2

c d a b

K5 

2

K4  0.5772

2 a b

D  cos θ2  K1  K4 cos θ2  K5

D  0.3096

E  2  sin θ2

E  0.8767

F  K1   K4  1   cos θ2  K5 5.

7.

F  0.4749

Use equation 4.13 to find values of 3 for the crossed circuit.





2

θ3  2  atan2 2  D E  6.

K5  0.9111

E  4  D F

  2 π

θ3  72.236 deg

Determine the angular velocity of links 3 and 4 using equations 6.18.

ω3 

a  ω2 sin θ4  θ2  b sin θ3  θ4

ω3  3.467

rad

ω4 

a  ω2 sin θ2  θ3  c sin θ4  θ3

ω4  4.658

rad

sec

sec

Determine the velocity of points A and B using equations 6.19. VA  a  ω2  sin θ2  j  cos θ2  VA  ( 4.022  8.246i)

in

VA  9.174

sec

θVAXY  arg VA  δ

in sec

θVAXY  184.121 deg

VB  c ω4  sin θ4  j  cos θ4  VB  ( 38.807  21.967i )

in

VB  44.593

sec

θVBXY  arg VB  δ 8.

in sec

θVBXY  97.633 deg

Determine the velocity of the coupler point P for the crossed circuit using equations 6.36.









VPA  p  ω3 sin θ3  δ  j  cos θ3  δ VPA  ( 49.529  15.867i )



in s

VP  VA  VPA

VP  ( 45.507  24.113i )

θVPXY  arg VP  δ

θVPXY  96.039 deg

in sec

VP  51.501

in sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-88-1

PROBLEM 6-88 Statement:

Figure P6-32 shows a fourbar double slider known as an elliptical trammel. F ind all its instant centers in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-32 and Mathcad file P0688.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). Y

3,4 4

2,3

To 1,4 at infinity

3 2

1

X

To 1,2 at infinity

2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2-I2,3 and I1,4-I3,4

I2,4: I1,2-I1,4 and I2,3-I3,4

Y

2,3

3,4 4 1,3

To 1,4 at infinity

3 2

1

To 2,4 at infinity

X

To 1,2 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-89-1

PROBLEM 6-89 Statement:

The elliptical trammel in Figure P6-32 must be driven by rotating link 3 in a full circle. Points on line AB describe ellipses. Find and draw (mannually or with a computer) the fixed and moving centrodes of instant center I13. (Hint: These are called the Cardan circles.)

Solution:

See Figure P6-32 and Mathcad file P0689.

1.

The instant center I13 is shown as the point P in the diagram below. The length of link 3, c, is constant and it is a diagonal of the rectangle OBPA. Therefore, the other diagonal, OP, has a constant length, c, regardless of the current lengths a and b. Thus, the point P (I13) travels on a circle of radius c. This circle is the fixed centrode.

c 4 B

P 3

b O

2 A

1

a

2.

Now, invert the mechanism by holding link 3 fixed and allowing the slots to move, which can only be in a circle about O. The locus of points P will then be a circle of radius 0.5c with center at O'. This is the moving centrode.

c 4 B

P 3 O'

b O

2 A

1

a

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-90-1

PROBLEM 6-90 Statement:

Derive analytical expressions for the velocities of points A and B in Figure P6-32 as a function of 3, 3 and the length AB of link 3. Use a vector loop equation.

Solution:

See Figure P6-32 and Mathcad file P0690.

1.

Establish the global XY system such that the coordinates of the intersection of the slot centerlines is at (d X,d Y ). Then, define position vectors R1X, R1Y , R2, R3, and R4 as shown below. Y 4 3 R3 R2

B

3

C 2

R4

A 1

R 1Y

X R 1X

2.

Write the vector loop equation: R1Y + R2 + R3 - R1X - R4 = 0 then substitute the complex number notation for each position vector. The equation then becomes:

 π  π j   j  θ 3 2 j ( 0) j ( 0) 2 dY  e    a e  c e  dX  e  b e   = 0 j

3.

Differentiate this equation with respect to time. j   d a  j  c  e dt

4.

 j  π   2  d    b e    = 0 dt

Substituting the Euler identity into this equation gives: Va  jc    cos θ3  j  sin θ3   Vb j = 0

5.

Separate this equation into its real (x component) and imaginary (y component) parts, setting each equal to zero. Va  c  sin θ3 = 0

6.

c  cos θ3  Vb = 0

Solve for the two unknowns Va and Vb in terms of the independent variables 3 and 3 Va = c  sin θ3

Vb = c  cos θ3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-91-1

PROBLEM 6-91 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6

Given:

and VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use the velocity difference graphical method. Link lengths: Link 2 (O2 to A)

a  6.20 in

Link 3 (A to B)

b  4.50 in

Link 4 (O4 to B)

c  3.00 in

Link 5 (C to D)

e  5.60 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to D)

f  3.382  in

Link 1 X-offset

d X  7.80 in

Link 1 Y-offset

d Y  0.62 in

Angle ACB

δ3  0.0 deg

Angle BO4D

δ4  110.0  deg

Input rocker angle:

θ  120  deg

Global XY system

ω  10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33a and Mathcad file P0691.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VA Direction of VCA Axis of slip

A Y

87.972° 113.057° 5

D

C

110°

2

3

120°

Axis of transmission Direction of VDC

411.709° B O4

O2 Direction of VB

2.

Direction of VBA

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω

3.

X

VA  62.000

in sec

θVA  120  deg  90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 5. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-91-2

Y 0

50 in/sec

X VA

1.206 VB VBA 78.291°

1.433 4.

From the velocity triangle we have: Velocity scale factor:

5.

8.

1

in in

VB  60.300

VBA  1.433  in kv

VBA  71.650

θVB  78.291 deg

sec in

θVBA  23.057 deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

ω 

7.

50 in sec

VB  1.206  in kv

ω 

6.

kv 

VBA b VB c

ω  15.922

rad

CCW

sec

ω  20.100

rad

CW

sec

Determine the magnitude and sense of the vector VCA using equation 6.7. in

VCA  p  ω

VCA  35.825

θVCA  θVBA  δ3

θVCA  23.057 deg

sec

Determine the magnitude and sense of the vector Vtrans using equation 6.7. in

Vtrans  f  ω

Vtrans  67.978

θtrans  θVB  δ4

θtrans  31.709 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA a. b. c.

Choose a convenient velocity scale and layout the known vector VA. From the tip of VA, layout the (now) known vector VCA. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-91-3

Y 0

50 in/sec

X VA VC

0.991

VCA 114.720° 9.

From the velocity triangle we have:

Velocity scale factor:

VC  0.991  in kv 9.

kv 

50 in sec

1

in

VC  49.550

in

θVC  114.720  deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point D, the magnitude of the relative velocity VDC. The equations to be solved (simultaneously) graphically are VD = VC + VDC

and

VD = Vtrans + Vslip

a. Choose a convenient velocity scale and layout the known vector VC. b. From the tip of VC, draw a construction line with the direction of VDC, magnitude unknown. c. Repeat steps a and b with Vtrans and Vslip. c. From the tail of VC, draw a construction line to the intersection of the two construction lines. d. Complete the vector polygon by drawing VDC from the tip of VC to the intersection of the VD construction line and drawing VD from the tail of VC to the intersection of the VDC construction line. 10. From the velocity polygon we have:

Y VD Vslip

VDC

Velocity scale factor: kv 

50 in sec

3.045

95.189°

1

in

Vtrans VD  3.045  in kv

VD  152.250

in

X

sec

θVD  95.189 deg

0 VC

  ω

  20.100

rad sec

50 in/sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-92-1

PROBLEM 6-92 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6

Given:

and VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use the instant center graphical method. Link lengths: Link 2 (O2 to A)

a  6.20 in

Link 3 (A to B)

b  4.50 in

Link 4 (O4 to B)

c  3.00 in

Link 5 (C to D)

e  5.60 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to D)

f  3.382  in

Link 1 X-offset

d X  7.80 in

Link 1 Y-offset

d Y  0.62 in

Angle ACB

δ3  0.0 deg

Angle BO4D

δ4  110.0  deg

Input rocker angle:

θ  120  deg

Global XY system

ω  10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33a and Mathcad file P0692.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5, and the distances from the pin joints to the instant centers. 2,3 A 6

5,6 5

D

Y

1,6

3

1,5

3,5 C

3,6 2 1,3

To 4,6 at infinity

B 3,4

4 O4

1,2 1,4

O2

X

From the layout above: AI13  3.893  in 2.

BI13  3.788  in

θVA  210.0 deg

Determine the angular velocity of link 3 using equation 6.9a. ω 

4.

CI15  1.411  in DI15  4.333  in DI16  7.573  in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA  a  ω VA  62.000 sec

θVA  θ  90 deg 3.

CI13  3.113  in

VA AI13

ω  15.926

rad sec

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI13 ω

VB  60.328

in sec

CCW

DESIGN OF MACHINERY - 5th Ed.

5.

Use equation 6.9c to determine the angular velocity of links 4 and 6.  

VB c

w6   6.

rad

w6  20.109

rad

CW

sec CW

sec

VC  49.578

in sec

Determine the angular velocity of link 5 using equation 6.9a. ω 

8.

  20.109

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI13 ω

7.

SOLUTION MANUAL 6-92-2

VC CI15

ω  35.137

rad

CW

sec

Determine the magnitude of the velocity at point D using equation 6.9b. VD  DI15 ω

VD  152.247

in sec

@ 95.185 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-93-1

PROBLEM 6-93 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6

Given:

and VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use an analytical method. Link lengths: Link 2 (O2 to A)

a  6.20 in

Link 3 (A to B)

b  4.50 in

Link 4 (O4 to B)

c  3.00 in

Link 5 (C to D)

e  5.60 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to D)

f  3.382  in

Link 1 X-offset

d X  7.80 in

Link 1 Y-offset

d Y  0.62 in

Angle ACB

δ3  0.0 deg

Angle BO4D

δ4  110.0  deg

Input rocker angle:

θ2XY  120  deg

Global XY system

δ  175.455  deg

Coordinate transformation angle:

ω2  10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure P6-33a and Mathcad file P0691.

Draw the linkage to scale and label it. A

6

Y

71.487° D

5

C

110°

120°

55.455° B 16.254°

4

x

2

3

O4

175.455°

O2 y

Calculate the distance O2O4:

2.

d 

2

dX  dY

2

d  7.825 in

Transform 2XY into the local coordinate θ2  θ2XY  δ θ2  55.455 deg system: Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a 2

K3 

K2 

d

2

2

2

a b c d

c

2 a c

K1  1.2620 K3  2.3767

A  cos θ2  K1  K2 cos θ2  K3 C  K1   K2  1   cos θ2  K3 A  0.2028 3.

B  1.6474

K2  2.6082

C  1.5927

Use equation 4.10b to find values of 4 for the open circuit.

B  2  sin θ2

X

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 6-93-2



θ41  2  atan2 2  A B  4.

2

B  4 A  C



Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

D  cos θ2  K1  K4 cos θ2  K5

K5  1.9877

E  1.6474

F  K1   K4  1   cos θ2  K5

F  0.3067

Use equation 4.13 to find values of 3 for the open circuit.





θ3  2  atan2 2  D E  6.

K4  1.7388 D  1.6967

E  2  sin θ2 5.

θ41  163.746 deg

2

E  4  D F

  2 π

θ3  648.512 deg

At this point write vector loop equations for links 3, 4, 5, and 6 to solve for the position and velocty of link 6.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-94-1

PROBLEM 6-94 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.75 in

Link 3 (A to B)

b  3.26 in

Link 4 (O4 to B)

c  2.75 in

Link 1 (O4 to B)

d  4.43 in

Coupler point data:

p  1.63 in

δ  0  deg ω  15 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33b and Mathcad file P0694.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VB Direction of VBA B

O4

O2 36.351° A

Direction of VA θ  36.352 deg 2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA  a  ω

VA  41.250

θVA  θ  90 deg

θVA  126.352 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

Without actually drawing the vector polygon, we see that VA and VB have the same angle with respect to the X axis. Therefore,

DESIGN OF MACHINERY - 5th Ed.

VB  VA 5.

ω 

7.

and

VBA  0 

in sec

θVB  θVA

θVBA  0  deg

Determine the angular velocity of links 3 and 4 using equation 6.7. ω 

6.

SOLUTION MANUAL 6-94-2

VBA b VB c

ω  0.000

rad sec

ω  15.000

rad sec

Determine the magnitude and sense of the vector VPA using equation 6.7. in

VPA  p  ω

VPA  0.000

θVPA  θVBA

θVPA  0.000 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point P. The equation to be solved graphically is VP = VA + VPA a. b. c.

8.

Choose a convenient velocity scale and layout the known vector VA. From the tip of VA, layout the (now) known vector VPA. Complete the vector triangle by drawing VP from the tail of VA to the tip of the VPA vector.

Again, without drawing the vector polygon we see that, VP  VA At this instant, link 3 is in pure translation with every point on it having the same velocity.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-95-1

PROBLEM 6-95 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use the instant center graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.75 in

Link 3 (A to B)

b  3.26 in

Link 4 (O4 to B)

c  2.75 in

Link 1 (O4 to B)

d  4.43 in

Coupler point data:

p  1.63 in

δ  0  deg ω  15 rad sec

Input crank angular velocity

1

CW

See Figure P6-33b and Mathcad file P0695. Solution: 1. Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

Y

B

4 P

O2 2

O4

X

3 36.351° A

Since O2A and O4B are parallel, I1,3 is at infinity and link 3 does not rotate for this instantaneous position of the linkage. Thus, link 3 is in pure translation and all points on it will have the same velocity. 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at points A, B, and P, which will be the same. VA  a  ω

VA  41.250

in sec

  36.351 deg

θVA    90 deg

θVA  126.351 deg

The velocity vectors for points B and P are identical to VA.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-96-1

PROBLEM 6-96 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.75 in

Link 3 (A to B)

b  3.26 in

Link 4 (O4 to B)

c  2.75 in

Link 1 (O4 to B)

d  4.43 in

Coupler point data:

p  1.63 in

δ  0  deg w2  15 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33b and Mathcad file P0696.

Draw the linkage to a convenient scale and label it.

B

P

O2

O4 36.351°

A θ  36.351 deg 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a 2

K3 

K2 

d

2

2

2

a b c d

K1  1.6109

c

K3  1.5949

2 a c

    B  2  sin θ C  K1   K2  1   cos θ  K3

A  cos θ  K1  K2 cos θ  K3

3.

A  0.5081 B  1.1855 C  1.1029

Use equation 4.10b to find values of 4 for the open circuit.





2

  2  atan2 2  A B  4.

B  4 A  C

  2 π

  143.649 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

d b

2

K5 

2

2

c d a b

2

2 a b

    E  2  sin θ F  K1   K4  1   cos θ  K5

D  cos θ  K1  K4 cos θ  K5

5.

K2  1.6109

Use equation 4.13 to find values of 3 for the open circuit.

K4  1.3589 D  1.3983 E  1.1855 F  0.2127

K5  1.6873

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 6-96-2



2

  2  atan2 2  D E  6.

7.

E  4  D F

  2 π

  89.995 deg

Determine the angular velocity of links 3 and 4 using equations 6.18.  

a  w2 sin   θ  b sin   

 

 

  0.000

rad

 

a  w2 sin θ    c sin   

 

 

  15.000

rad

sec

sec

Determine the velocity of points A and B using equations 6.19.



 

 

VA  a  w2 sin θ  j  cos θ VA  ( 24.450  33.223i )

in

VA  41.250

sec

θVAXY  arg VA



in sec

θVAXY  126.351 deg

 

 

VB  c  sin   j  cos  VB  ( 24.450  33.223i )

in

VB  41.250

sec

θVBXY  arg VB 8.

in sec

θVBXY  126.351 deg

Determine the velocity of the coupler point P using equations 6.36.









VPA  p   sin   δ  j  cos   δ



VPA  1.936  10 VP  VA  VPA

θVPXY  arg VP

4



in  sec

8

 1.676i  10

VP  41.250

in sec

θVPXY  126.351 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-97-1

PROBLEM 6-97 Statement:

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 and 5. Find instant centers I1,3 and I1,4.

Given:

Number of links n  5

Solution:

See Figure P6-33c and Mathcad file P06976.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C  10

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). 2,5 at infinity 2 3,4

1,2 at infinity

3 2,3 1

4 5

4,5 1,5 at infinity

2.

Use Kennedy's Rule and a linear graph to find the remaining ICs required to find I1,3 and I1,4. I2,4: I1,2-I1,4 and I2,3-I3,4

2,5 at infinity 3,4

I3,5: I2,3-I2,5 and I4,5-I3,4

2

I1,4: I1,2-I2,4 and I1,5-I4,5 I1,3: I1,2-I2,3 and I1,4-I3,4

1,3; 1,4

1,2 at infinity

3 2,3; 2,4 1

4 5

4,5; 3,5 1,5 at infinity

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-98-1

PROBLEM 6-98 Statement:

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at cross heads 2 and 5. Find VB, VP3, and VP4 if the crossheads are each moving toward the origin of the XY coordinate system with a speed of 20 in/sec. Use a graphical method.

Given:

Link lengths: Link 3 (A to B)

b  34.32  in

Link 4 (B to C)

c  50.4 in

Link 2 Y-offset

a  59.5 in

Link 5 X-offset

d  57 in

AP3  31.5 in

BP3  22.2 in

BP4  41.52  in

CP 4  27.0 in

Coupler point data:

V2Y  20 in sec

Input velocities: Solution: 1.

1

V5X  20 in sec

1

See Figure P6-33c and Mathcad file P0698.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Y

Direction of VP3A Direction of VBA Direction of VBC

2 P3

A Direction of VA

3

Direction of VP4C B

P4

4

5 X C Direction of VC 2.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocities VBA, VBC and the angular velocities of links 3 and 4. The equations to be solved (simultaneously) graphically are VB = VA + VBA

VC = VB + VCB

a. Choose a convenient velocity scale and layout the known vectors VA and VC b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tip of VC, draw a construction line with the direction of VCB, magnitude unknown. d. From the origin, draw a construction line to the intersection of the two construction lines in steps b and c. e. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. And then do the same with the VCB vector (See next page)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-98-2

5.932 Y 0

VBC

10 in/sec

VB VBA

60.123° 32.718°

46.990°

X

VC

6.004

4.385

VA

3.

From the velocity triangles we have: Velocity scale factor:

4.

10 in sec

1

in in

VB  4.385  in kv

VB  43.850

VBA  6.004  in kv

VBA  60.040

VBC  5.932  in kv

VBC  59.320

θVB  46.990 deg

sec in

θVBA  60.123 deg

sec in

θVBC  32.718 deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7. ω  ω 

6.

kv 

VBA b VBC c

ω  1.749

rad

CCW

sec

ω  1.177

rad

CW

sec

Determine the magnitudes of the vectors VP3A and VP4C using equation 6.7. VP3A  AP3  ω

VP3A  55.107

in sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-98-3

VP4C  CP4 ω

7.

in

VP4C  47.234

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocities at points P3 and P4. The equations be solved graphically are VP3 = VA + VP3A a. b. c. d.

VP4 = VC + VP4C

Choose a convenient velocity scale and layout the known vector VA. From the tip of VA, layout the (now) known vector VP3A. Complete the vector triangle by drawing VP3 from the tail of VA to the tip of the VP3A vector. Repeat for VP4.

V P3A

V P3 Y

0

3.537

10 in/sec

V P4 164.011°

V P4C

104.444°

X

VC 6.598

VA

8.

From the velocity triangles we have:

Velocity scale factor:

kv 

10 in sec

1

in

VP3  3.537  in kv

VP3  35.370

VP4  6.598  in kv

VP4  65.980

in sec in sec

θP3  104.444  deg θP4  164.011  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-99-1

PROBLEM 6-99 Statement:

The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find VA in the position shown if the velocity of the slider is 20 in/sec downward. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  12 in

Link 3 (A to B)

b  24 in

Link 4 (O4 to B)

c  18 in

Link 5 (C to D)

f  24 in

Link 4 (O4 to C)

e  18 in

Link 1 X-offset

d X  19 in

Link 1 Y-offset

d Y  28 in

δ4  0.0 deg

Angle BO4C

Solution: 1.

Output crank angle:

θ  0  deg

Input slider velocity

VD  20 in sec

Global XY system 1

θVD  90.0 deg

See Figure P6-33d and Mathcad file P0699.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VC

Direction of VCD C

Direction of VB O4 19.963°

4

116.161°

B 5

Y

D 3

O2

2

114.410°

A

6 X

Direction of VD

Direction of VAB Direction of VA

2.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VD + VCD a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VCD, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCD from the tip of VD to the intersection of the VC construction line and drawing VC from the tail of VD to the intersection of the VCD construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-99-2

Y

X 1.806 0

10 in/sec 70.037°

VC VD V CD

3.

From the velocity triangle we have: Velocity scale factor:

VC  1.806  in kv 4.

kv 

10 in sec

1

in

VC  18.060

in

θVC  70.037 deg

sec

Determine the magnitude and sense of the vector VB . VB  VC

VB  18.060

in sec

θVB  θVC  180  deg 5.

θVB  109.963 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VA, magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line.

6.

From the velocity triangle we have:

Y

Velocity scale factor: kv 

10 in sec

1

VA VB

in

VA  1.977  in kv VA  19.770

V AB

1.977

0

in sec

θVA  90.0 deg

X

10 in/sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-100-1

PROBLEM 6-100 Statement:

The linkage in Figure P6-33a has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find VA in the position shown if the velocity of the slider is 20 in/sec downward. Use the instant center graphical method.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  12 in

Link 3 (A to B)

b  24 in

Link 4 (O4 to B)

c  18 in

Link 5 (C to D)

f  24 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to C)

e  18 in

Link 1 X-offset

d X  19 in

Link 1 Y-offset

d Y  28 in

Angle BO4C

δ4  0.0 deg

Output crank angle:

θ  0  deg

Input slider velocity

VD  20 in sec

Global XY system 1

θVD  90.0 deg

See Figure P6-33d and Mathcad file P06100.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5, and the distances from the pin joints to the instant centers.

C

O4

4

5

B 1,5

D 6

3

From the layout above:

1,3

AI13  70.085 in 2.

VD DI15

VC e

CW

sec

VC  18.057

ω  1.003

in sec

rad

CW

sec

VB  18.057

Determine the angular velocity of link 3 using equation 6.9a. ω 

7.

rad

Determine the magnitude of the velocity at point B using equation 6.9b. VB  c ω

6.

ω  0.286

Use equation 6.9c to determine the angular velocity of link 4. ω 

5.

CI15  63.095 in

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI15 ω

4.

BI13  64.013 in

2

Use equation 6.9c to determine the angular velocity of link 5. ω 

3.

O2

VB BI13

ω  0.282

in sec

rad

CCW

sec

Determine the magnitude of the velocity at point A using equation 6.9b. in Upward VA  AI13  ω VA  19.769 sec

A

DI15  69.886 in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-101-1

PROBLEM 6-101 Statement:

For the linkage of Figure P6-33e, write a computer program or use an equation solver to find and plot VD in the global coordinate system for one revolution of link 2 if 2 = 10 rad/sec CW.

Given:

Link lengths: a  5.00

Input crank (L2)

Output crank (O4B) c  6.00 d  2.500

Fourbar ground link (L1)

  10

Crank velocity: Solution:

Fourbar coupler (L3)

b  5.00

Slider coupler (L5)

e  15.00

Angle BO4C

  83.621 deg

rad sec

See Figure P6-33e and Mathcad file P06101.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a crankslider mechanism using the output of the fourbar, link 4, as the input to the crank-slider.

2.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY coordinate system. K1 

d

K2 

a

K1  0.5000

 

2

d

K3 

c

K2  0.4167

 

2

2

a b c d

2

2 a c

K3  0.7042

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

If the calculated value of 4 is greater than 2, subtract 2 from it and if it is negative, make it positive.

 

  

 

  

 

 

θ θ  if θ θ  2  π θ θ  2  π θ θ

 

 

θ θ  if θ θ  0 θ θ  2  π θ θ 5.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

 

 c sin θ θ    π e  

 

  

θ θ  asin



  

f θ  c cos θ θ    e cos θ θ 5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

K4  0.5000

 

2

2

c d a b

2

2 a b

K5  0.4050

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 6-101-2

Use equation 4.13 to find values of 3 for the open circuit.



 



 

 2  4 Dθ F θ 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of link 4 for the open circuit using equations 6.18.

 

 θ  8.

a   c





  sin θ θ  θ θ  sin θ  θ θ

Determine the angular velocity of link 5 using equation 6.22a:

 

ω θ 

        

c cos θ θ      θ e cos θ θ

Determine the velocity of pin D using equation 6.22b:

 

    



    

VD θ  c  θ  sin θ θ    e ω θ  sin θ θ

VELOCITY OF PIN D 50

25

0 Velocity

9.

E θ

 25  50  75  100

0

45

90

135

180

Crank angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-102-1

PROBLEM 6-102 Statement:

For the linkage of Figure P6-33f, locate and identify all instant centers.

Given:

Number of links n  8

Solution:

See Figure P6-33f and Mathcad file P06102.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n  1)

C  28

2

To 1,8 at infinity 7,8

8

Draw the linkage to scale and identify those ICs that can be found by inspection (10).

7 5,6 6

2.

Use Kennedy's Rule and a linear graph to find the remaining 18 ICs.

1,6 O6

5,7

I1,3: I1,2-I2,3 and I1,4-I3,4

5

I1,5: I1,6-I5,6 and I1,3-I3,5 2,3

I2,4: I1,2-I1,4 and I2,3-I3,4 I4,5: I1,4-I1,5 and I3,5-I3,4

3,4

I2,5: I1,2-I1,5 and I2,4-I4,5

4

I2,6: I1,2-I1,6 and I2,5-I5,6

3

2

3,5

1,4

O4

1,2

O2

I3,6: I2,3-I2,6 and I1,2-I1,6 5,8

I5,8: I5,7-I7,8 and I1,5-I1,8 I4,8: I4,5-I5,8 and I1,8-I1,4

To 1,8 at infinity

I2,8: I2,4-I4,8 and I1,2-I1,8 I3,8: I3,4-I4,8 and I1,3-I1,8

1,5

8

7,8

I6,8: I5,8-I5,6 and I2,8-I2,6

6,7 1,7

I2,7: I2,8-I7,8 and I2,5-I5,7

7 5,6

1,3; 3,8

I6,7: I5,6-I5,7 and I6,8-I7,8

6

I3,7: I3,6-I6,7 and I2,3-I2,7

1,6 O6

5,7

I4,6: I1,4-I1,6 and I4,5-I5,6 5

I4,7: I4,6-I6,7 and I3,4-I3,7

3,7

6,8 2,7

I1,7: I1,8-I7,8 and I1,6-I6,7

2,3 4,5 4,7

3 1,4 O4

2,4

3,5

2,5

2

4 3,4 O2

1,2

2,8 4,8

To 2,6 and 3,6 4,6

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-103-1

PROBLEM 6-103 Statement:

The linkage of Figure P6-33f has link 2 at 130 deg in the global XY coordinate system. Find VD in the global coordinate system for the position shown if 2 = 15 rad/sec CW. Use any graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  5.0 in

Link 3 (A to B)

b  8.4 in

Link 4 (O4 to B)

c  2.5 in

Link 1 (O2 to O4)

d 1  12.5 in

Link 5 (C to E)

e  8.9 in

Link 5 (C to D)

h  5.9 in

Link 6 (O6 to E)

f  3.2 in

Link 7 (D to F)

k  6.4 in

Link 3 (A to C)

g  2.4 in

Link 1 (O2 to O6)

d 2  10.5 in

θ2  130  deg

Crank angle:

Slider axis offset and angle:

s  11.7 in

ω  15 rad sec

Input crank angular velocity Solution: 1.

  150  deg 1

CW

See Figure P6-33f and Mathcad file P06103.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VF 8

Y

F

Direction of VFD

Direction of VE

7 E

Direction of VEC

6 Direction of VDC

5

Direction of VCA Direction VBA

C

Direction of VB

O6

D

Direction of VA

A

3

2

B 4 O4

X

O2

Angles measured from layout:

2.

θVB  24.351 deg

θVBA  79.348 deg

θVCA  θVBA

θVE  64.594 deg

θVEC  162.461  deg

θVDC  θVEC

θVF  150.00 deg

θVFD  198.690  deg

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA  a  ω

VA  75.000

θVA  θ2  90 deg

θVA  40.000 deg

sec

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-103-2

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equations to be solved graphically are VB = VA + VBA

and

VC = VA + VCA

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

2.668

VA 0.943 V CA

0

VC

25 in/sec

3.302

Y 22.053° X

V BA VB 3.192

4.

From the velocity polygon we have: Velocity scale factor:

25 in sec

in

VB  79.800

VBA  3.302  in kv

VBA  82.550

VBA b

1

in

VB  3.192  in kv

  5.

kv 

  9.827

θVB  24.351 deg

sec in

θVBA  79.348 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VCA and determine the magnitude and velocity of VC from the velocity polygon above. VCA  g  

VCA  23.586

Length of VCA on velocity polygon:vCA  VC  2.668  in kv

in sec

VCA

vCA  0.943 in

kv

VC  66.700

θVCA  79.348 deg

in sec

θVC  22.053deg

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 6-103-3

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point E, the magnitude of the relative velocity VED, and the angular velocity of link 5. The equations to be solved graphically are VE = VC + VEC

and

VD = VC + VDC

a. Choose a convenient velocity scale and layout the known vector VC. b. From the tip of VC, draw a construction line with the direction of VEC, magnitude unknown. c. From the tail of VC, draw a construction line with the direction of VE, magnitude unknown. d. Complete the vector triangle by drawing VEC from the tip of VC to the intersection of the VE construction line and drawing VE from the tail of VC to the intersection of the VEC construction line. 1.821

1.207 V EC VE

1.716 0

VD

V DC

25 in/sec VC Y

45.934°

X 1.900

7.

From the velocity polygon we have: Velocity scale factor:

25 in sec

VEC  1.821  in kv

VEC  45.525

e

  5.115

θVE  64.594 deg

sec in

θVEC  162.461 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VDE and determine the magnitude and velocity of VD from the velocity polygon above. VDC  h  

VDC  30.179

Length of VDC on velocity polygon: vDC  VD  1.900  in kv 9.

in

VE  42.900

VEC

1

in

VE  1.716  in kv

  8.

kv 

in sec

VDC

vDC  1.207 in

kv

VD  47.500

θVDC  162.461 deg

in sec

θVD  45.934deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point F, the magnitude of the relative velocity VFD, and the angular velocity of link 5. The equation to be solved graphically is VF = VD + VFD

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-103-4

a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VFD, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VF, magnitude unknown. d. Complete the vector triangle by drawing VFD from the tip of VD to the intersection of the VF construction line and drawing VF from the tail of VD to the intersection of the VFD construction line. Y 0

VD

25 in/sec

V FD 150.000° VF

45.934°

X 1.158

10. From the velocity polygon we have: Velocity scale factor:

VF  1.158  in kv

kv 

25 in sec

1

in

VF  28.950

in sec

θVF  150.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-75-1

PROBLEM 6-104 Statement:

For the linkage of Figure P6-34, locate and identify all instant centers.

Given:

Number of links n  6

Solution:

See Figure P6-34 and Mathcad file P06104.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n  1)

C  15

2

Draw the linkage to scale and identify those ICs that can be found by inspection (7). 4,5 C

3,4

2,3

B

5

A

3

5,6 3

D

2

4

6 E 3,6 O4

1,4

2.

1,2 O2

1

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I1,6; I2,4; I2,5; I2,6; I3,5; and I4,6 I2,4: I1,2-I1,4 and I2,3-I3,4

I3,5: I2,3-I2,5 and I3,4-I4,5

I4,6: I3,4-I3,6 and I4,5-I5,6

I1,3: I1,2-I2,3 and I1,4-I3,4

I2,6: I1,4-I4,6 and I2,3-I3,6

I1,5: I1,2-I2,5 and I1,3-I3,5

I2,5: I2,6-I5,6 and I2,4-I4,5

I1,6: I1,3-I3,6 and I1,4-I4,6

1 6

2

5

3 4

1,3

1,5 3,5

4,6

4,5

2,5

C

2,3

B 3,4

5

2,6

A

3

5,6 D

3

2

4

2,4

6 E 3,6 1,4

1,6

O4

1

1,2 O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-105-1

PROBLEM 6-105 Statement:

For the linkage of Figure P6-34, show that I1,6 is stationary for all positions of link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

a  1.75

First coupler (AB)

b  1.00

First rocker (O4B)

c  1.75

Ground link (O2O4)

d  1.00

Second input (BC)

e  1.00

Second coupler (L5)

f  1.75

Output rocker (L6)

g  1.00

Third coupler (BE)

h  1.75

Ternary link (AE)

k  2.60

See Figure P6-34 and Mathcad file P06105.

Because the linkage is symmetrical and composed of two parallelograms the analysis can be done with simple trigonometry. We will show that the path of point E on link 6 is a circle and that the center of the circle is the instant center I1,6.

C e

f 5

 = 25.396°

3

h

B

RP k

R2

4

D g 6

A

b 3

2 a

c E

RE

x

O4

1 d

O2 y

2.

Calculate the fixed angle that line AB (b) makes with line AE (k) using the law of cosines. This is the angle that the coupler point, E, makes with link 3 in the fourbar made up of links 1, 2, 3, and 4. Because links 1, 2, 3, and 4 are a parallelogram, link 4 will have the same angle as link 2 and AB will always be parallel to O2O4.

 b 2  k2  h 2    2 b k 

δ  acos 3.

δ  25.396 deg

Define the vectors R2, RP , and RE as shown above. Then, RE = R2 + RP or,

 

  

   k cosδ  jsin δ

RE θ = a  cos θ  jsin θ

Separating into real and imaginary parts, the coordinates of point E for all positions of link 2 are:

 

 

 

 

xE θ  a  cos θ  k cos δ yE θ  a  sin θ  k sin δ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-105-2

This pair of equations represent the parametric equation of a circle with radius a and center at xEC  k cos δ

xEC  2.349

yEC  k sin δ

yEC  1.115

4.

Define one revolution of the input crank: θ  0  deg 1  deg  360  deg

5.

Plot the position of point E as a function of the angle of input link 2.

PATH OF POINT E 4

2.349

3

2

 

yE θ

1.115

1

0

1

0

1

2

 

3

4

5

xE θ

6.

From Problem 6-104, the instant center I1,6 is located at the intersection of a line through O4 that is parallel to BE (angle ) with a line through E that is parallel to O2A (angle 2). (See figure on next page). The coordinates of the intersection of these two lines for the position shown ( θ  64.036 deg ) are:

 b 2  h 2  k2    2 b h 

Angle BAE:

α  π  acos

Coordinates of point E:

xE  a  cos θ  k cos δ

α  39.582 deg

 

xE  3.115

 

yE  0.458

yE  a  sin θ  k sin δ Line through E with angle 2:

y ( x)   x  xE  tan θ  yE

Coordinates of point O4:

xO4  d

 

yO4  0

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-105-3

Line through O4 with angle :

y ( x)   x  xO4  tan  α

Solving for the intersection (point F, the instant center I1,6) of these two lines: xF 

  tan  θ  tan α

xE tan θ  yE  d  tan α

xF  2.349

yF   xF  d   tan α

yF  1.115

These are the coordinates of the instant center I1,6 and the center of the circle through which point E passes. Thus, the instant center I1,6 is stationary and is a hinge point that link 6 rotates about with respect to link 1.

1,3

1,5 3,5

4,6

4,5

2,5

C

2,3

B 3,4

5 5,6

2,6

A

3

39.582° D

3

2

4

6

2,4

64.036°

E 3,6

1,4

O4

1

1,2 O2 1.115"

1.750" 1,6

F

2.349"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-106-1

PROBLEM 6-106 Statement:

Figure P6-26 shows a mechanism with dimensions. Use a graphical method to determine the velocities of points A and B and the velocity of slip for the position shown. Ignore links 5 and 6. ω 2 = 24 rad/s clock-wise.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle O2O4 makes with X axis

θ  56.5 deg

Link 2 (O2A)

a  1.35 in

Angle 2 makes with X axis

θ  14 deg

Link 4 (O4B)

e  1.36 in

Angular velocity of link 2 Solution: 1.

ω  24 rad sec

1

CW

See Figure P6-26 and Mathcad file P06106.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  32.400

in sec

θVA3  θ  90 deg

θVA3  76.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-106-2

Y 0

10 in/sec

1.295 X V trans

V A3 2.369

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

1

in in

Vslip  28.43 

Vtrans  1.295  in kv

Vtrans  15.54 

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  15.54 

in sec

Determine the angular velocity of link 4 using equation 6.7. From the linkage layout above: ω 

7.

12 in sec

Vslip  2.369  in kv

VA4  Vtrans 6.

V slip

VA4 c

c  0.939  in and

ω  16.55 

rad

θ  132.661  deg

CW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

θVA4  θ  90 deg

VB  22.51 

in sec

θVA4  42.66  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-107-1

PROBLEM 6-107 Statement:

Figure P6-26 shows a mechanism with dimensions. Use an analytic method to calculate the velocities of points A and B and the velocity of slip for the position shown. Ignore links 5 and 6. ω 2 = 24 rad/s clock-wise.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle O2O4 makes with X axis

θ  56.5 deg

Link 2 (O2A)

a  1.35 in

Angle 2 makes with X axis

θ  14 deg

Link 4 (O4B)

e  1.36 in ω  24 rad sec

Angular velocity of link 2 Solution: 1.

1

CW

See Figure P6-26 and Mathcad file P06107.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Establish an x-y frame with origin at O2 and positive x-axis through O4. Using the given data, calculate b, θ2, θ3, and θ4 with respect to the x-y frame. From the vector loop equation for this geometry, θ  θ  θ

θ  42.500 deg

 a  sin θ    d  a cos θ 

θ  180  deg  atan

b  a  3.

  sin θ sin θ

θ  256.161  deg

b  0.939 in

Using Example 6-5, determine VA2, Vtrans, and Vslip. Velocity on link 2 at A: VA2  a  ω

at an angle of

θVA2  θ  sign ω  90 deg

θ  θ

DESIGN OF MACHINERY - 5th Ed.

VA2  32.400

in s

SOLUTION MANUAL 6-107-2

θVA2  132.500  deg

Angle between VA2 vector and link 4 axis:

4.

α  θVA2  θ  2  π

α  28.661 deg

Vslip  VA2 cos( α)

Vslip  28.430

Vtrans  VA2 sin( α)

Vtrans  15.540

in s in s

Calculate the angular velocity of link 4 and the velocity at point B. Angular velocity of link 4: Velocity at point B:

ω 

Vtrans b

VB  e ω

ω  16.544

rad

VB  22.500

in

s s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-108-1

PROBLEM 6-108 Statement:

Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical method to determine the velocities of points A and B and the velocity of slip for the position shown. Ignore links 5 and 6. ω 2 = 16 rad/s.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle O2O4 makes with X axis

Link 2 (L2)

a  1.00 in

Angle link 2 makes with X axis θ  99 deg

Link 4 (L4)

e  4.76 in

Angular velocity of link 2 Solution: 1.

ω  16 rad sec

1

θ  15.5 deg

CCW

See Figure P6-28 and Mathcad file P06108.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission

Direction of VA3

4

Y Axis of slip A 3 2.068

2 44.228° O2

X O4

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA2  a  ω

3.

VA2  16.000

in sec

θVA2  θ  90 deg

θVA2  189.0  deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. b.

Choose a convenient velocity scale and layout the known vector VA3. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-108-2

c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line. Y 0

5 in/sec

X

VA3 V trans

1.154

4.

kv 

1

in in

Vslip  8.17

Vtrans  1.154  in kv

Vtrans  5.77

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  5.77

in sec

Determine the angular velocity of link 4 using equation 6.7. From the linkage layout above: ω 

7.

5  in sec

Vslip  1.634  in kv

VA4  Vtrans 6.

1.634

From the velocity triangle we have: Velocity scale factor:

5.

Vslip

VA4 c

c  2.068  in and

ω  2.790 

rad

θ  44.228 deg

CCW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

θVB  θ  90 deg

VB  13.28 

in sec

θVB  134.228  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-109-1

PROBLEM 6-109 Statement:

Figure P6-28 shows a quick-return mechanism with dimensions. Use an analytic method to calculate the velocities of points A and B and the velocity of slip for the position shown. Ignore links 5 and 6. ω 2 = 16 rad/s.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle O2O4 makes with X axis

Link 2 (L2)

a  1.00 in

Angle link 2 makes with X axis θ  99 deg

Link 4 (L4)

e  4.76 in

Angular velocity of link 2 Solution: 1.

ω  16 rad sec

1

θ  15.5 deg

CCW

See Figure P6-28 and Mathcad file P06108.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission Direction of VA3

4

Y

Axis of slip 99.00°

A 3 2.06"

2 X

O2 15.5 x

O4 y

2.

Establish an x-y frame with origin at O2 and positive x-axis through O4. Using the given data, calculate b, θ2, θ3, and θ4 with respect to the x-y frame. From the vector loop equation for this geometry,





θ  θ  θ  180  deg

 a  sin θ    d  a cos θ 

θ  180  deg  atan

b  a 

  sin θ sin θ

b  2.059 in

θ  96.500 deg θ  208.855  deg

θ  θ

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 6-109-2

Using Example 6-5, determine VA2, Vtrans, and Vslip. Velocity on link 2 at A: VA2  a  ω VA2  16.000

at an angle of in s

θVA2  θ  sign ω  90 deg θVA2  6.500  deg

Angle between VA2 vector and link 4 axis:

α  θVA2  θ  2  π

α  144.645  deg

Vslip  VA2 cos( α)

Vslip  13.049

Vtrans  VA2 sin( α) 4.

Vtrans  9.258

in s

in s

Calculate the angular velocity of link 4 and the velocity at point B. Angular velocity of link 4: Velocity at point B:

ω 

Vtrans b

VB  e ω

ω  4.497 

rad

VB  21.405

in

s s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-110a-1

PROBLEM 6-110a Statement:

Given:

Solution: 1.

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of d and d-dot are defined in Table P6-5. For row a, find the velocity of the pin joint A and the angular velocity of the crank using a graphical method. Link lengths: Link 2

a  1.4 in

Link 3

b  4  in

Offset

c  1  in

θ  176.041  deg

ddot  10 in sec

1

See Figure P6-2, Table P6-5, and Mathcad file P06110a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

Direction of VBA 13.052° B

. d = VB

176.041° A

000 b = 4. a = 1.400

c = 1.000"

O2

d = 2.500"

0

10 inches/sec

Direction of VA 2.

Use equation 6.6.24b to (graphically) determine the magnitude of the velocity at point A. The equation to be solved graphically is

VA

VA = VB + VBA a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VA, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VBA construction line. 3.

VBA

3.414" 3.330"

Y

86.041°

103.052°

VB

From the velocity triangle we have: 1.000"

X

DESIGN OF MACHINERY - 5th Ed.

Velocity scale factor:

VA  3.330  in kv

4.

SOLUTION MANUAL 6-110a-2

kv 

10 in sec

1

in

VA  33.300

in

θVB  86.041 deg

sec

Use equation 6.7 to find the angular velocity of the crank (link 2).

ω2 

VA a

ω2  23.786

rad sec

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 6-111a-1

PROBLEM 6-111a Statement:

Given:

Solution: 1.

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of d and d-dot are defined in Table P6-5. For row a, find the velocity of pin joint A and the angular velocity of the crank using the analytic method. Draw the linkage to scale and label it before setting up the equations. Link lengths: Link 2 (O2 A)

a  1.4 in

Link 3 (AB)

b  4  in

Slider position

d  2.5 in

Slider velocity

ddot  10

Offset (yB)

c  1  in

in s

See Figure P6-2, Table P6-5, and Mathcad file P06111a.

Draw the linkage to scale and label it.

Y

13.052° . d

B

A

c = 1.000

000 b = 4.

176.041°

O2

X

a = 1.400 2.

Determine the open value of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K2  2  a  c

K2  2.8 in

K3  2  a  d

K3  7 in

A  K1  K3

A  0.21 in

B  2  K2

B  5.6 in

C  K1  K3

C  13.79 in

2 2

2 2



2

θ2  2  atan2 2  A B  3.

2

K1  6.79 in

B  4 A  C



θ2  176.041  deg

Determine the value of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



θ3  β  a b c d θ2

a  sin( α)  c  b

  π otherwise 

θ3  193.052  deg

DESIGN OF MACHINERY - 5th Ed.

4.

Determine the value of ω 2 using equation 6.24b.

ω2  5.

SOLUTION MANUAL 6-111a-2

ddot cos θ3

ω2  23.785

a   cos θ2  sin θ3  sin θ2  cos θ3 

Determine the value of VA using equation 6.7. in

VA  a  ω2

VA  33.299

θVA  θ2  sign ω2  90 deg

θVA  86.041 deg

s

rad s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-1-1

PROBLEM 7-1 Statement:

A point at a 6.5-in radius is on a body that is in pure rotation with  = 100 rad/sec and a constant  = -500 rad/sec2 at point A. The rotation center is at the origin of a coordinate system. When the point is at position A, its position vector makes a 45 deg angle with the X axis. It takes 0.01 sec to reach point B. Draw this system to some convenient scale, calculate the  and  of position B, and: a. Write an expression for the particle's acceleration vector in position A using complex number notation, in both polar and Cartesian forms. b. Write an expression for the particle's acceleration vector in position B using complex number notation, in both polar and Cartesian forms. c. Write a vector equation for the acceleration difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the acceleration difference numerically. d. Check the result of part c with a graphical method.

Given: Initial rotation speed Rotation acceleration

ω  100 

rad

α  500 

rad

sec

sec

Solution: 1.

Time to reach point B

t  0.01 sec

Vector angle

θ  45 deg

Vector magnitude

R  6.5 in

See Mathcad file P0701.

Calculate the position and angular velocity at point B using equations 6.1 and 7.1. ω  α t  ω θ 

2.

2

α t

ω  95.000

rad sec

2

2

 ω t  θ

θ  100.863 deg

Calculate the magnitudes and directions of the normal and tangential components of acceleration at points A and B using equations 7.2. 2

a An  R ω

a An  65000

in sec

a At  R α

2

sec

θAn  225.000 deg

θAt  θ  sign α  90 deg

in

a At  3250

θAn  θ  180  deg

2

θAt  45.000 deg a Bn  R ω

2

a Bn  58663

in sec

a Bt  R α

a Bt  3250

in sec

2

2

θBn  θ  180  deg θBt  θ  sign α  90 deg θBt  10.863 deg

3.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

θBn  280.863 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-1-2

4.

Draw lines from the origin that make angles of 45 and 100.863 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively.

5.

Choose a convenient acceleration scale and draw the two acceleration component vectors at points A and B.

Y 0

8 B

1

2 in

Distance scale:

ABt

0

10000 in/sec^2

Acceleration scale:

6 A 4

AAt

2 ABn

AAn

0

a.

X 2

4

8

6

Write an expression for the particle's acceleration vector in position A using complex number notation, in both polar and Cartesian forms.

Polar form:

RA  R e

j

j  θ

VA  R j  ω e AA  R j  α e

AA  6.50 j  α e



j

j  θ

j

Cartesian form:

π 4

VA  650  j  e 2 j  θ

 R j  ω  e π 4

2

 6.50 ω  e

 

j

π 4

   R ω2 cosθ  j  sinθ

AA  R α sin θ  j  cos θ AA  ( 43664  48260i)

in sec

b.

4

RA  6.5 e

j  θ

π

2

Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms.

Polar form:

RB  R e

j  θ

VB  R j  ω e

π

j

RB  6.5 e j  θ

 100.863

180 j

VA  650  j  e

π 180

 100.863

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-1-3

AB  R j  α e

j  θ j

AB  6.50 j  α e

Cartesian form:



2 j  θ

 R j  ω  e π

 100.863

180

 6.50 ω  e

 

π

   R ω2 cosθ  j  sinθ

in sec

2

Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. ABA  AB  AA

ABA  ( 57912  8739i)

in sec

d.

 100.863

180

AB  R α sin θ  j  cos θ AB  ( 14248  56999i)

c.

2

j

2

Check the result of part c with a graphical method. Solve the equation ABt + ABn = AAt + AAn + ABA using an acceleration scale of 10000 in/sec2 per drawing unit. Acceleration scale factor

ka  10000 

in sec

Horizontal component

2

ABAx  5.791  ka

ABAx  57910

in sec

ABAy  0.874  ka

Vertical component

ABAy  8740

in sec

AAt

ABt

0

2

2

10000 IN/S/S

Acceleration Scale

AAn ABA

0.874

ABn

5.791

On the layout above the X and Y components of ABA are equal (to three significant figures) to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-2-1

PROBLEM 7-2 Statement:

In Problem 7-1 let A and B represent points on separate, rotating bodies both having the given  and  at t = 0, A = 45 deg, and B = 120 deg. Find their relative acceleration.

Given: ω  100 

Initial rotation speed

rad sec

α  500 

Rotation acceleration

rad sec

Solution: 1.

Vector angles

θ  45 deg

Vector magnitude

R  6.5 in

2

θ  120  deg

See Mathcad file P0702.

Calculate the acceleration of points A and B using equation 7.3.



 

   R ω2 cosθ  j  sinθ

AA  R α sin θ  j  cos θ AA  ( 43664  48260i)

in sec



 

2

   R ω2 cosθ  j  sinθ

AB  R α sin θ  j  cos θ AB  ( 35315  54667i)

in sec

2.

2

Calculate the relative acceleration of point B with respect to A using equation 7.4. ABA  AB  AA

ABA  ( 78978  6407i)

in sec

Magnitude:

ABA  ABA

ABA  79238

in sec

Direction:

θ  arg ABA

2

θ  4.638 deg

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-3a-1

PROBLEM 7-3a Statement:

The link lengths, coupler point location, and the values of 2, 2, and 2 for the same fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are redefined in Table P7-1, which is the same as Table P6-1. The general linkage configuration and terminology are shown in Figure P7-1. For row a, draw the linkage to scale and graphically find the accelerations of points A and B. Then, calculate 3 and 4 and the acceleration of point P.

Given:

Link lengths:

Link 1

d  6  in

Link 2

a  2  in

Link 3

b  7  in

Link 4

c  9  in

RPA  6  in

Coupler point:

δ  30 deg θ  30 deg

Link 2 position, velocity, and acceleration: Solution: 1.

ω  10

rad

α  0 

sec

rad sec

SeeFigure P7-1 and Mathcad file P0703a.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution below, θ  88.837 deg y

θ  117.286  deg Using equation (6.18), ω 

OPEN

P

 

 

a  ω sin θ  θ  b sin θ  θ

ω  5.991 rad sec ω 

B

3 4

1 88.837°

 

 

a  ω sin θ  θ  c sin θ  θ

ω  3.992 rad sec

2 O4

O2

x

1

2.

The graphical solution for accelerations uses equation 7.4:

3.

For point B, this becomes: ABn  c ω

117.286°

A

(APt + APn) = (AAt + AAn) + (APAt + APAn)

(ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where

2

ABn  143.403 in sec

θABn  θ  180  deg 2

θABn  297.286 deg

AAn  a  ω

AAn  200.000 in sec

θAAn  θ  180  deg

θAAn  210.000 deg

AAt  a  α

AAt  0.000 in sec 2

2

2

2

ABAn  b  ω

ABAn  251.239 in sec

θABAn  θ  180  deg

θABAn  268.837 deg

2

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-3a-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of 4 + 180 deg and AAn at an angle of 2 + 180 deg. From the tip of AAn, draw ABAn at an angle of 3 + 180 deg. Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABAt, and AB. 0

100 IN/S/S

Acceleration Scale AA

136.080° n

AB

5.009

AB t

AB

n

ABA

t ABA

4.800 1.826

5.

From the graphical solution above, Acceleration scale factor

ka  100 

in sec

6.

2

ABAt  1.826  ka

ABAt  182.6 in sec

ABt  4.800  ka

ABt  480.0 in sec

AB  5.009  ka

AB  500.9 in sec

2

2

2

at an angle of -136.08 deg

Calculate 3 and 4using equation 7.6. α  α 

ABAt

α  26.086 rad sec

b ABt

α  53.333 rad sec

c

2

2

CCW

CCW

From the graphical solution we see that both of the tangential acceleration vectors for links 3 and 4 point to the left, so both of the angular accelerations are positive. 7.

For point P, equation 7.4 becomes: APAn  RPA ω

2

AP = (AAt + AAn) + (APAt + APAn) , where APAn  215.348 in sec

θAPAn  θ  δ  180  deg

θAPAn  298.837 deg

APAt  RPA α

APAt  156.514 in sec

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-3a-3

θAPAt  θ  δ  90 deg 8.

θAPAt  208.837 deg

Repeat proceedure of step 4 for the equation in step 7. 0

100 IN/S/S

Acceleration Scale AA 119.550°

n

APA 4.186 AP t

APA

9.

From the graphical solution above, Acceleration scale factor

ka  100 

in sec

AP  4.186  ka

2

AP  418.6 in sec

2

at an angle of -119.6 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-4a-1

PROBLEM 7-4a Statement:

The link lengths, coupler point location, and the values of 2, 2, and 2 for the same fourbar linkages as used for position and velocity analysis in Chapters 4 and 6 are redefined in Table P7-1, which is the same as Table P6-1. The general linkage configuration and terminology are shown in Figure P7-1. For row a, find the accelerations of points A and B using the analytic method. Then, calculate 3 and 4 and the acceleration of point P.

Given:

Link lengths: Link 1

d  6

Link 2

a  2

Link 3

b  7

Link 4

c  9

RPA  6

Coupler point:

δ  30 deg θ  30 deg

Link 2 position, velocity, and acceleration: Solution: 1.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. d

K2 

a

K1  3.0000

2

d

K3 

c

K2  0.6667

 

 

2

2

2 a c

A  0.7113

 

B  2  sin θ

B  1.0000

 

C  K1   K2  1   cos θ  K3

C  3.5566

Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:





2

θ  2  atan2 2  A B 

B  4 A  C



θ  242.714 deg

θ  θ  360  deg



θ  602.714 deg



2

Crossed: θ  2  atan2 2  A B 

B  4 A  C



θ  216.340 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

2 a b

 

D  cos θ  K1  K4 cos θ  K5

K4  0.8571 D  1.6774

 

E  2  sin θ

E  1.0000

 

F  K1   K4  1   cos θ  K5 4.

2

a b c d

K3  2.0000

A  cos θ  K1  K2 cos θ  K3

3.

α  0

See Figure P7-1 and Mathcad file P0704a.

K1 

2.

ω  10

F  2.5906

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:





θ  2  atan2 2  D E  θ  θ  360  deg

2

E  4  D F



θ  271.163 deg θ  631.163 deg

K5  0.2857

DESIGN OF MACHINERY - 5th Ed.

Crossed: 5.



2

θ  2  atan2 2  D E 

E  4  D F



θ  244.789 deg

Determine the angular velocity of links 3 and 4 for the open and crossed circuits using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.991

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  3.992

CROSSED ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  0.662

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  2.662

OPEN

6.



SOLUTION MANUAL 7-4a-2

Using the Euler identity to expand equation 7.13a for AA. Separate into real and imaginary parts to give the x and y components



 

   a ω2 cosθ  j  sinθ

 

2

AA = a  α sin θ  j  cos θ

 

AAx  a  α sin θ  a  ω  cos θ

AAx  173.205

 

AAy  100.000

2

 

AAy  a  α cos θ  a  ω  sin θ AA 

2

AAx  AAy

θAA  atan2 AAx AAy 

2

The acceleration of pin A is 7.

AA  200.000

θAA  150 deg

at

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the open and crossed circuits.

 

OPEN A  c sin θ A  7.999

 

 

 

B  b  sin θ

D  c cos θ

E  b  cos θ

B  6.999

D  4.126

E  0.142

 

2

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  244.045

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  223.741 α 

C D  A  F A  E  B D

 

CROSSED A  c sin θ A  5.333

α  26.080

 

α 

C  E  B F A  E  B D

 

α  53.331

 

B  b  sin θ

D  c cos θ

E  b  cos θ

B  6.333

D  7.250

E  2.982

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-4a-3

 

2

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  223.253

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  135.002 α  8.

C D  A  F

α  77.920

A  E  B D

α 

C  E  B F

Use equation 7.13c to determine the acceleration of point B for the open and crossed circuits. OPEN ABx1  c  α sin θ  ω  cos θ

 

2

 

ABx1  360.826

ABy1  c  α cos θ  ω  sin θ

 

AB1 

2

ABx1  ABy1

2

 

ABy1  347.485

2

AB1  500.941

θAB1  atan2 ABx1 ABy1 

θAB1  136.1 deg

CROSSED ABx2  c  α sin θ  ω  cos θ

 

2

 

ABx2  321.587

ABy2  c  α cos θ  ω  sin θ

 

AB2 

2

ABx2  ABy2

2

 

ABy2  329.551

2

AB2  460.459

θAB2  atan2 ABx2 ABy2  9.

α  50.669

A  E  B D

θAB2  45.7 deg

Use equations 7.32 to find the acceleration of the point P for the open and crossed circuits.



 

   a ω2 cosθ  j  sinθ

OPEN AA  a  α sin θ  j  cos θ



      RPA ω   cos θ  δ  j  sin θ  δ 

APA1  RPA α sin θ  δ  j  cos θ  δ 2

AP1  AA  APA1 AP1  AP1



AP1  418.556

 

arg AP1  119.548 deg

   a ω2 cosθ  j  sinθ

CROSSED AA  a  α sin θ  j  cos θ



      RPA ω   cos θ  δ  j  sin θ  δ 

APA2  RPA α sin θ  δ  j  cos θ  δ 2

AP2  AA  APA2 AP2  AP2

AP2  298.225

arg AP2  11.282 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-5a-1

PROBLEM 7-5a Statement:

The link lengths and the values of 2, 2, and 2 for the some non inverted offset fourbar slider-crank linkages are defined in Table P7-2. The general linkage configuration and termin- olo are shown in Figure P7-2. For row a, draw the linkage to scale and graphically find the accelerations of the pin joints A and B the acceleration of slip at the sliding joint.

Given: a  1.4 in

Link lengths:

Link 2

Offset:

c  1  in θ  45 deg

Link 2 position, velocity, and acceleration: Solution: 1.

b  4  in

Link 3

ω  10

rad sec

α  0 

rad sec

2

See Figure P7-2 and Mathcad file P0705a.

In order to solve for the accelerations at point B, we will need 3, and 3. From the graphical position solution below, θ  360  deg  179.856  deg ω 

Using equation 6.22a,

θ  180.144 deg

   

a  ω cos θ  b cos θ

ω  2.475 rad sec

1

Direction of ABAt Y

Axis of transmission

Direction of AAt

A 2

45.000°

Axis of slip and Direction of AB

B

3

179.856°

1.000 X

O2

2.

The graphical solution for accelerations uses equation 7.4:

3.

For point B, this becomes:

(APt + APn) = (AAt + AAn) + (APAt + A

AB = (AAt + AAn) + (ABAt + ABAn) , where

2

AAn  a  ω

AAn  140.000 in sec

θAAn  θ  180  deg

θAAn  225.000 deg

AAt  a  α

AAt  0.000 in sec 2

2

2

ABAn  b  ω

ABAn  24.500 in sec

θABAn  θ

θABAn  180.144 deg

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-5a-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw AAn at an angle of AAn. From the tip of AAn, draw ABAn at an angle of ABAn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of ABAn, draw construction lines in the directions of AB (horizontal) and ABAt, respectively. The intersection of these two lines are the tips of ABAt, and AB. 4.950 Y AB X t BA

A

0

25 IN/S/S

Acceleration Scale AA

n

ABA

5.

From the graphical solution above, Acceleration scale factor

ka  25

in sec

AB  4.950  ka 6.

2

AB  123.8 in sec

2

The acceleration of slip is equal to AB since link 1 is stationary.

at an angle of 180 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-6a-1

PROBLEM 7-6a Statement:

The link lengths and the values of 2, 2, and 2 for the some non inverted offset fourbar slider-crank linkages are defined in Table P7-2. The general linkage configuration and terminology are shown in Figure P7-2. For row a, draw the linkage to scale and find the accelerations of the pin joints A and B the acceleration of slip at the sliding joint using an analytical method.

Given:

Link lengths: Link 2

a  1.4 in

b  4  in

Link 3

c  1  in

Offset:

Link 2 position, velocity, and acceleration: Solution: 1.

θ  45 deg

ω  10

rad sec

α  0 

sec

See Figure P7-2 and Mathcad file P0706a.

Draw the linkage to scale and label it. Y d2 = 3.010

d1 = 4.990

3(CROSSED)

B'

A 2

0.144°

45.000°

3 (OPEN)

B 179.856° 1.000 X

O2

2.

Determine 3 and d using equations 4.16 and 4.17. Open:

 a  sin θ  c  π b  

θ  180.144 deg

 

d 2  4.990 in

θ  asin 

 

d 2  a  cos θ  b  cos θ Crossed:

 a sin θ  c   b  

θ  0.144 deg

 

d 1  3.010 in

θ  asin

 

d 1  a  cos θ  b  cos θ 3.

Determine the angular velocity of link 3 using equation 6.22a. Open

Crossed

4.

   

ω  2.475

   

ω  2.475

ω 

a cos θ   ω b cos θ

ω 

a cos θ   ω b cos θ

rad

rad sec

rad sec

Using the Euler identity to expand equation 7.15b for AA, determine its magnitude, and direction.

2

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 7-6a-2

 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ in

AA  ( 98.995  98.995i )

sec

AA  140.0

The acceleration of pin A is

in sec

5.

at 2

θAA  135.0 deg

Determine the angular acceleration of link 3 using equation 7.16d.

α 

Open

 

α 

2

 

  b  cos θ

2

 

rad sec

Crossed

  b  cos θ 2

a  α cos θ  a  ω  sin θ  b  ω  sin θ

α  24.764

2

 

2

a  α cos θ  a  ω  sin θ  b  ω  sin θ

α  24.764

rad sec

6.

θAA  arg AA

AA  AA

2

2

Use equation 7.16e for the acceleration of pin B. Open:

 

2

 

 

2

 

AB2  a  α sin θ  a  ω  cos θ  b  α sin θ  b  ω  cos θ AB2  123.7

in sec

2

A negative sign means that AB is to the left

Crossed:

 

2

 

 

2

 

AB1  a  α sin θ  a  ω  cos θ  b  α sin θ  b  ω  cos θ AB1  74.2

in sec

2

A negative sign means that AB is to the left

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-7a-1

PROBLEM 7-7a Statement:

The link lengths and the values of 2, 2, and  for an inverted fourbar slider-crank linkage are defined in Table P7-3, row a, and are given below. Find the acceleration of the pin joints A and B and the acceleration of slip at the sliding joint. Solve by the analytic vector loop method of Section 7.3 for the open configuration of the linkage.

Given:

Link lengths: a  2  in

Link 2

Link 2 position, velocity, and accel.

1.

Link 1

d  6  in

γ  90 deg

Angle between links 3 and 4

Solution:

c  4  in

Link 4

θ  30 deg

ω  10

rad sec

α  25

sec

See Figure P7-3 and Mathcad file P0707a.

Draw the linkage to scale and label it. B y 90.0°

127.333°

b

c 142.666°

A

a 30.000°

d

x 04

02

2.

Use the equations in Section 4.7 to solve for the positions of links 3 and 4 and for the length b.

 



 



P  a  sin θ  sin γ  a  cos θ  d  cos γ

 



 

P  1.000  in



Q  a  sin θ  cos γ  a  cos θ  d  sin γ

Q  4.268  in

R  c sin γ

S  R  Q

T  2  P

U  Q  R

R  4.000  in

S  0.268  in

T  2.000  in

U  8.268  in





θ  2  atan2( 2  S )  T  θ  θ  γ b 

 

2

T  4 S U



θ  142.667  deg θ  232.667  deg

 

a  sin θ  c sin θ

 

b  1.793  in

sin θ

3.

Calculate the angular velocity of links 3 and 4 and the slip velocity using equations 6.30.

rad 2

DESIGN OF MACHINERY - 5th Ed.

ω 

SOLUTION MANUAL 7-7a-2





a  ω cos θ  θ b  c cos γ

bdot 

 

   cos θ

 

a  ω sin θ  ω b  sin θ  c sin θ

ω  10.292

rad

bdot  33.461

in

sec

sec

ω  ω 4.

Solve for the accelerations using equations (7.26) and (7.27).



P  a  α cos θ  θ



P  46.138 in sec

2





Q  77.075 in sec

2





R  423.705  in sec

Q  a  ω  sin θ  θ R  c ω  sin θ  θ S  2  bdot ω





α  130.56 rad sec

T

















K  639.230  in  sec



2



N  2  bdot c ω sin θ  θ bddot  

2

L  150.000  in  sec



M  2.035  10  in  sec

2

M  ω   b  c  2  b  c cos θ  θ 2

2



L  a  α b  sin θ  θ  c sin θ  θ 2

2

2

K  a  ω  b  cos θ  θ  c cos θ  θ



2

T  1.793  in

P Q R S 2

2

S  688.757  in sec

T  b  c cos θ  θ α 

2

2

3



2

3

2

bddot  128.48

in

N  2.755  10  in  sec

K L M  N T

sec

2

2

2

The acceleration of slip is bddot. It is directed along link 3, positive inward from B towards A, so that its angle is 3. For the acceleration of the pin joints A and B,



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  AA

AA  206.155 

in sec

  

2

θAA  arg AA

θAA  135.964  deg

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  AB

AB  672.505 

in sec

2

θAB  arg AB

θAB  88.280 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-8a-1

PROBLEM 7-8a Statement:

The link lengths and the values of 2, 2, and  for an inverted fourbar slider-crank linkage are defined in Table P7-3, row a, and are given below. Find the acceleration of the pin joints A and B and the acceleration of slip at the sliding joint. Solve by the analytic vector loop method of Section 7.3 for the crossed configuration of the linkage.

Given:

Link lengths: a  2  in

Link 2

θ  30 deg

Link 2 position, velocity, and accel.

1.

Link 1

d  6  in

γ  90 deg

Angle between links 3 and 4

Solution:

c  4  in

Link 4

ω  10

rad

rad

α  25

sec

sec

See Figure P7-3 and Mathcad file P0708a.

Draw the linkage to scale and label it. y

A a b

30.000°

d

x 04

02 c B

169.040° 79.041°

2.

Use the equations in Section 4.7 to solve for the positions of links 3 and 4 and for the length b.

 



 



P  a  sin θ  sin γ  a  cos θ  d  cos γ

 



 

P  1.000 in



Q  a  sin θ  cos γ  a  cos θ  d  sin γ

Q  4.268 in

R  c sin γ

S  R  Q

T  2  P

U  Q  R

R  4.000 in

S  0.268 in

T  2.000 in

U  8.268 in



θ  2  atan2( 2  S ) T  θ  θ  γ b 

 

2



T  4  S  U

θ  169.041 deg θ  79.041 deg

 

a  sin θ  c sin θ

 

b  1.793 in

sin θ 3.

Calculate the angular velocity of links 3 and 4 and the slip velocity using equations 6.30.

2

DESIGN OF MACHINERY - 5th Ed.

ω 

SOLUTION MANUAL 7-8a-2





a  ω cos θ  θ b  c cos γ

bdot 

 

ω  3.639

   cos θ

 

a  ω sin θ  ω b  sin θ  c sin θ

rad sec

bdot  33.461

in sec

ω  ω 4.

Solve for the accelerations using equations (7.26) and (7.27).



P  a  α cos θ  θ



P  16.312 in sec

2





Q  189.057 in sec

2





R  52.961 in sec

Q  a  ω  sin θ  θ R  c ω  sin θ  θ S  2  bdot ω





α  9.93 rad sec

T

















K  639.230 in  sec L  46.352 in  sec



M  254.418 in  sec

2

M  ω   b  c  2  b  c cos θ  θ 2



2



N  2  bdot c ω sin θ  θ bddot  

2



L  a  α b  sin θ  θ  c sin θ  θ 2

2

2

K  a  ω  b  cos θ  θ  c cos θ  θ



2

T  1.793 in

P Q R S 2

2

2

S  243.508 in sec

T  b  c cos θ  θ α 

2

2

2



2

N  974.033 in  sec

K L M  N

bddot  18.98

T

2

2

in sec

2

The acceleration of slip is bddot. It is directed along link 3, positive inward from B towards A, so that its angle is 3. For the acceleration of the pin joints A and B,



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  AA

AA  206.155

in sec

  

2

θAA  arg AA

θAA  135.964 deg

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  AB

AB  66.195

in sec

2

θAB  arg AB

θAB  47.822 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-9a-1

PROBLEM 7-9a Statement:

The link lengths, gear ratio (), phase angle (), and the values of 2, 2, and 2 for a geared fivebar from row a of Table P7-4 are given below. Find 3 and 4 and the linear acceleration of point P.

Given:

Link lengths: Link 1 f  6  in

Link 3

b  7  in

a  1  in

Link 4

c  9  in

Link 2

Link 5

d  4  in

Gear ratio, phase angle, and crank angle:

Solution: 1.

λ  2

ϕ  30 deg

θ  60 deg

Coupler data:

Rpa  6  in

δ  30 deg

α  0  rad sec

θ  150 deg

Choose the pitch radii of the gears. Since the gear ratio is positive, an idler must be used between gear 2 and gear 5. Let the idler be the same diameter as gear 5, and let all three gears be in line.

r5 

λ 

f

r2 r5

r5  1.200 in

λ3

r2  λ r5

r2  2.400 in

Draw the linkage to scale and label it. 4

C

B 3

A

5 O5

O2

2 P

4.

2

Determine the angle of link 5 using the equation in Figure P6-4.

f  r2  3  r5

3.

1

See Figure P7-4 and Mathcad file P0709a.

θ  λ θ  ϕ 2.

ω  10 rad sec

Determine the values of the constants needed for finding 3 and 4 from equations 4.24h and 4.24i.







 







 

A  2  c d  cos λ θ  ϕ  a  cos θ  f



2

B  2  c d  sin λ θ  ϕ  a  sin θ

2

2

2

2



2

B  20.412 in

  

C  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ



     





2

A  36.6462 in

2

C  37.4308 in

2

D  C  A

D  0.78461 in

E  2  B

E  40.823 in

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-9a-2

2

F  A  C

F  74.077 in





  a cosθ  f 

G  28.503 in





  a sinθ

H  15.876 in

2

G  2  b   d  cos λ θ  ϕ

2

H  2  b   d  sin λ θ  ϕ

2

5.

2

2

2



  

2

K  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ

K  26.569 in

L  K  G

L  1.933 in

M  2  H

M  31.751 in

N  G  K

N  55.072 in



     





2

2 2

2

Use equations 4.24h and 4.24i to find values of 3 and 4 for the open and crossed circuits. OPEN





M  4  L N





E  4  D F





M  4  L N





E  4  D F

2

θ  2  atan2 2  L M 

2

θ  2  atan2 2  D E 

CROSSED

2

θ  2  atan2 2  D E  6.

Use equation 6.32c to find 5. ω  λ ω

7.

Calculate 3 and 4 using equations 6.33.

OPEN

ω 

 

ω 





θ  177.715 deg θ  115.407 deg

θ  124.050 deg



 



 



b  cos θ  2  θ  cos θ rad sec

 

  c sin θ

 

a  ω sin θ  b  ω sin θ  d  ω sin θ

ω  16.948

CROSSED





θ  173.642 deg

2  sin θ  a  ω sin θ  θ  d  ω sin θ  θ

ω  32.585

ω 



2

θ  2  atan2 2  L M 



rad sec

 







2  sin θ  a  ω sin θ  θ  d  ω sin θ  θ

ω  75.191

 



 

b  cos θ  2  θ  cos θ rad sec



DESIGN OF MACHINERY - 5th Ed.

ω 

SOLUTION MANUAL 7-9a-3

 

  c sin θ

 

a  ω sin θ  b  ω sin θ  d  ω sin θ

ω  59.554 8.

Use equation 7.28c to find 5. α  λ α

9.

Calculate 3 and 4 using equations 7.29.

rad sec







2



a  α sin θ  θ  a  ω  cos θ  θ 



2



2





 b  ω  cos θ  θ  d  ω  cos θ  θ  OPEN

α 





2

 d  α sin θ  θ  c ω





b  sin θ  θ

α  3191

rad sec

2







2



a  α sin θ  θ  a  ω  cos θ  θ 



2



2





 c ω  cos θ  θ  d  ω  cos θ  θ  α 





2

 d  α sin θ  θ  b  ω





c sin θ  θ

α  2492

rad sec

2







2



a  α sin θ  θ  a  ω  cos θ  θ 



2



2





 b  ω  cos θ  θ  d  ω  cos θ  θ  CROSSED

α 





2

 d  α sin θ  θ  c ω





b  sin θ  θ

α  6648

rad sec

2







2



a  α sin θ  θ  a  ω  cos θ  θ 



2



2





 c ω  cos θ  θ  d  ω  cos θ  θ  α 





2

 d  α sin θ  θ  b  ω

α  5950





c sin θ  θ rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-10-1

PROBLEM 7-10 Statement:

An automobile driver took a curve too fast. The car spun out of control about its CG and slid off the road in a northeasterly direction. The friction of the skidding tires provided a 0.25g linear deceleration. The car rotated at 100 rpm. When the car hit the tree head-on at 30 mph, it took 0.1 sec to come to rest.

Given:

V  30 mph

Solution:

See Mathcad file P0710.

a.

Ac  0.25 g

ω  100  rpm

What was the acceleration experienced by the child seated on the middle of the rear seat, 2 ft behind the car's CG, just prior to impact? r  2  ft

ω  10.472 rad sec

1

Ac  8.044 ft  sec

2

We want to solve the vector equation Ap = Ac + Apcn + Apct where P is the position of the child and C is the CG. Since  is zero, Apct is zero. Ac and Apcn both have the same direction, but are opposite in sense (see diagram). 2

Apcn  r ω

Apcn  6.817 g Ac

Ap  Ac  Apcn

V 

Ap  6.567 g

n

A pc

This acceleration is toward the tree. Ap  211.3 ft  sec Ap  2535 in sec b.

t

A pc

2

2

What force did the 100 lb child exert on her seat belt harness as a result of the acceleration just prior to impact? W  100  lbf The seat back must provide a force of

c.

2'

W

F 

g

 Ap

F  657 lbf

Assuming a constant deceleration during the impact, what was the magnitude of the average deceleration felt by the passengers in that interval? t  0.1 sec Assume that the rotation has ceased. Then, the average velocity during impact is Vavg 

V

Vavg  22.0

2

and the average deceleration is

Aavg 

Adding the deceleration due to skidding, Adec  7.088 g

Vavg t

ft sec

Aavg  6.838 g

Aavg  220.0 ft  sec

Adec  Ac  Aavg Adec  228 ft  sec

2

Adec  2737 in sec

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-11a-1

PROBLEM 7-11a Statement:

For row a in Table P7-1, find the angular jerk of links 3 and 4 and the linear jerk of the pin between links 3 and 4 (point B). Assume an angular jerk of zero on link 2. The linkage configuration and terminology are shown in Figure P7-1.

Given:

Link lengths: Link 1

d  6

Link 2

a  2

Link 3

b  7

Link 4

c  9

RPA  6

Coupler point:

δ  30 deg

Link 2 position, velocity, and acceleration:θ  30 deg Solution: 1.

d

K2 

a

2

d

K3 

c

K2  0.6667

 

2

2

a b c d

2

2 a c

K3  2.0000

 

A  cos θ  K1  K2 cos θ  K3

A  0.7113

 

B  2  sin θ

B  1.0000

 

C  K1   K2  1   cos θ  K3

C  3.5566

Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:





2

θ  2  atan2 2  A B 

B  4 A  C



θ  242.714 deg

θ  θ  360  deg



θ  602.714 deg



2

Crossed: θ  2  atan2 2  A B 

B  4 A  C



θ  216.340 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

2 a b

 

D  cos θ  K1  K4 cos θ  K5

K4  0.8571 D  1.6774

 

E  2  sin θ

E  1.0000

 

F  K1   K4  1   cos θ  K5 4.

ϕ  0

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

K1  3.0000

3.

α  0

See Figure P7-1 and Mathcad file P0711a.

K1 

2.

ω  10

F  2.5906

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:





θ  2  atan2 2  D E 

2

E  4  D F



θ  θ  360  deg Crossed:





θ  2  atan2 2  D E 

θ  271.163 deg θ  631.163 deg

2

E  4  D F



θ  244.789 deg

K5  0.2857

DESIGN OF MACHINERY - 5th Ed.

5.

6.

SOLUTION MANUAL 7-11a-2

Determine the angular velocity of links 3 and 4 for the open and crossed circuits using equations 6.18. OPEN ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.991

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  3.992

CROSSED ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  0.662

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  2.662

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the open and crossed circuits.

 

 

OPEN A  c sin θ A  7.999

 

 

B  b  sin θ

D  c cos θ

E  b  cos θ

B  6.999

D  4.126

E  0.142

 

2

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  244.045

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  223.741 α 

C D  A  F

α  26.080

A  E  B D

 

α 

 

CROSSED A  c sin θ A  5.333

C  E  B F A  E  B D

 

α  53.331

 

B  b  sin θ

D  c cos θ

E  b  cos θ

B  6.333

D  7.250

E  2.982

 

2

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  223.253

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  135.002 α  7.

C D  A  F

α  77.920

A  E  B D

α 

C  E  B F A  E  B D

α  50.669

Use equations 7.36 and 7.37 to determine the angular jerk of links 3 and 4 for the open and crossed circuits. OPEN

3

 

3

A  a  ω  sin θ

 

B  3  a  ω α cos θ

 

C  a  ϕ sin θ

 

 

D  b  ω  sin θ

G  3  c ω α cos θ

 

E  3  b  ω α cos θ 3

 

F  c ω  sin θ

 

H  c sin θ

 

K  b  sin θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-11a-3

 

3

3

L  a  ω  cos θ

 

Q  3  b  ω α sin θ

 

 

N  a  ϕ cos θ

ϕ 

 

T  3  c ω α sin θ U  c cos θ

ϕ  749.012

K U  H  R A  B  C  D  E  F  G  H  ϕ

ϕ  1242.6

K

     

 

 

R  b  cos θ

K ( N  L  M  P  Q  S  T )   R ( A  B  C  D  E  F  G)

3

3

S  c ω  cos θ

 

M  3  a  ω α sin θ

ϕ 

 

P  b  ω  cos θ

   3 a ω α cosθ  j  sinθ   

J A  a  ω  sin θ  j  cos θ  a  ϕ sin θ  j  cos θ 3

     

   3 b ω α cosθ  j  sinθ   

J BA1  b  ω  sin θ  j  cos θ  b  ϕ sin θ  j  cos θ J B1  J A  J BA1 JB1  J B1

JB1x  Re J B1

JB1y  Im J B1

JB1  9301.9

JB1x  9134.7

JB1y  1755.5

3

 

3

CROSSED A  a  ω  sin θ

 

E  3  b  ω α cos θ

 

C  a  ϕ sin θ

   

K  b  sin θ

3

 

S  c ω  cos θ

3

 

 

 

R  b  cos θ

K ( N  L  M  P  Q  S  T )   R ( A  B  C  D  E  F  G) K U  H  R A  B  C  D  E  F  G  H  ϕ K 3

 

Q  3  b  ω α sin θ

N  a  ϕ cos θ

ϕ 

 

P  b  ω  cos θ

M  3  a  ω α sin θ

     

 

H  c sin θ

3

F  c ω  sin θ

L  a  ω  cos θ

ϕ 

 

G  3  c ω α cos θ

 

B  3  a  ω α cos θ

3

 

D  b  ω  sin θ

   

T  3  c ω α sin θ

 

U  c cos θ

ϕ  246.639 ϕ  740.2

   3 b ω α cosθ  j  sinθ   

J BA2  b  ω  sin θ  j  cos θ  b  ϕ sin θ  j  cos θ J B2  J A  J BA2 JB2  J B2

JB2x  Re J B2

JB2y  Im J B2

JB2  4178.7

JB2x  4147.9

JB2y  506.4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-12-1

PROBLEM 7-12 Statement:

You are riding on a carousel that is rotating at a constant 12 rpm. It has an inside radius of 4 ft and an outside radius of 12 ft. You begin to run from the inside to the outside along a radius. Your peak velocity with respect to the carousel is 4 mph and occurs at a radius of 8 ft. What is your maximum Coriolis acceleration magnitude and its direction with respect to the carousel?

Given:

Carousel angular velocity Peak velocity Radius at peak velocity

Solution: 1.

rad

ω  12 rpm

ω  1.257 

Vslip  4  mph

Vslip  5.867 

sec ft sec

r  8  ft

See Mathcad file P0712.

Draw a plan view of the carousel floor showing your position at peak velocity and the velocity and Coriolis acceleration vectors. Axis of Transmission

Axis of Slip

Ac V slip

 r

2.

The direction of your path defines the axis of slip. The transmission axis is perpendicular to the axis of slip and positive in the direction of the tangential velocity of the carousel. Thus, the direction of the Coriolis acceleration vector is along the positive transmission axis.

3.

Use equation 7.19 to calculate the magnitude of the Coriolis component of your acceleration. Ac  2  Vslip  ω

Ac  14.745

ft sec

2

Ac  176.93

in sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-13a-1

PROBLEM 7-13a Statement:

The linkage in Figure P7-5a has the dimensions and crank angle given below. Find 3, AA, AB, and AC for the position shown for 2 = 15 rad/sec and 2 = 10 rad/sec2 in the direction shown. Use the acceleration difference graphical method.

Given:

a  0.8 in

Link lengths:

Link 2

Offset:

c  0.38 in

Coupler point data:

p  1.33 in

b  1.93 in

Link 3

δ  38.6 deg

Link 2 position, velocity, and acceleration:θ  34.3 deg Solution: 1.

ω  15

rad sec

α  10

rad sec

2

See Figure P7-5a and Mathcad file P0713a.

In order to solve for the accelerations at points A, B and C, we will need 3, and 3. From the graphical position solution below, θ  154.502  deg ω 

Using equation 6.22a,

   

a  ω cos θ  b cos θ

ω  5.691 rad sec

1

Direction of ACAt Direction of AAt

C

Y

A

38.600°

34.300° 154.502°

X O2

Direction of AB B

Direction of ABAt

2.

The graphical solution for accelerations uses equation 7.4:

3.

For point B, this becomes: AB = (AAt + AAn) + (ABAt + ABAn) , where 2

(APt + APn) = (AAt + AAn) + (APAt + APAn)

AAn  a  ω

AAn  180.000 in sec

θAAn  θ  180  deg

θAAn  214.300 deg

AAt  a  α

AAt  8.000 in sec

θAAt  θ  90 deg

θAAt  124.300 deg

2

2

2

ABAn  b  ω

ABAn  62.500 in sec

θABAn  θ

θABAn  154.502 deg

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-13a-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw AAn at an angle of AAn. From the tip of AAn, draw AAt at an angle of AAt. From the tip of AAt, draw ABAn at an angle of ABAn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of ABAn, draw construction lines in the directions of AB (horizontal) and ABAt, respectively. The intersection of these two lines are the tips of ABAt, and AB. 7.089 Y AB X t BA

A 3.010

0

25 IN/S/S

Acceleration Scale n BA

A

n

t

AA

5.

AA

From the graphical solution above, Acceleration scale factor

ka  25

in sec

6.

AB  177.2 in sec

ABAt  3.010  ka

ABAt  75.3 in sec

at an angle of 180 deg

2

Calculate 3 using equation 7.6. ABAt

α  38.990 rad sec

b

2

CCW

For point C, equation 7.4 becomes: AC = (AAt + AAn) + (ACAt + ACAn) , where 2

8.

2

AB  7.089  ka

α  7.

2

ACAn  p  ω

ACAn  43.070 in sec

θAPAn  θ  δ

θAPAn  193.102 deg

ACAt  p  α

ACAt  51.856 in sec

θAPAt   θ  δ  90 deg

θAPAt  103.102 deg

Repeat procedure of step 4 for the equation in step 7.

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-13a-3

Y

8.554

X

165.351°

AC

0 t ACA

25 IN/S/S

Acceleration Scale

n

t

n CA

A

9.

AA

AA

From the graphical solution above, Acceleration scale factor

ka  25

in sec

AC  8.554  ka

2

AC  213.9 in sec

2

at an angle of -165.35 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-13b-1

PROBLEM 7-13b Statement:

The linkage in Figure P7-5a has the dimensions and crank angle given below. Find 3, AA, AB, and AC for the position shown for 2 = 15 rad/sec and 2 = 10 rad/sec2 in the direction shown. Use an analytical method.

Given:

Link lengths: Link 2 Offset:

a  0.8 in

Link 3

b  1.93 in

c  0.38 in

Coupler point data:

p  1.33 in

δ  38.6 deg

Link 2 position, velocity, and acceleration:θ  34.3 deg Solution: 1.

ω  15

rad sec

α  10

See Figure P7-5a and Mathcad file P0713b.

Draw the linkage to scale and label it. C

Y

A

38.600°

34.300° 154.502°

X O2

B

2.

Determine 3 and d using equations 4.16 and 4.17.

 a sin θ  b 

θ  asin 

 

c

π 

θ  154.502 deg

 

d  a  cos θ  b  cos θ 3.

Determine the angular velocity of link 3 using equation 6.22a. ω 

4.

d  2.403 in

   

a cos θ   ω b cos θ

ω  5.691

rad sec

Using the Euler identity to expand equation 7.15b for AA, determine its magnitude, and direction.



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  ( 153.206  94.826i )

in sec

The acceleration of pin A is

2

AA  180

in sec

5.

θAA  arg AA

AA  AA

at 2

Determine the angular acceleration of link 3 using equation 7.16d.

θAA  148.2 deg

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

α 

6.

 

SOLUTION MANUAL 7-13b-2

  b  cos θ 2

2

 

a  α cos θ  a  ω  sin θ  b  ω  sin θ

α  38.990

rad sec

2

Use equation 7.16e for the acceleration of pin B.

 

 

2

 

2

 

AB  a  α sin θ  a  ω  cos θ  b  α sin θ  b  ω  cos θ in

AB  177.2

sec 7.

2

A negative sign means that AB is to the left

Determine the acceleration of the coupler point C using equations 7.32. Note that 3 is defined from point B in Figure 7-6 and from point A in Figure 7-9. To use equation 7.32 for a slider-crank we must redefine 3. θ  θ  180  deg

θ  25.498 deg



      p  ω   cos θ  δ  j  sin θ  δ 

ACA  p  α sin θ  δ  j  cos θ  δ 2

AC  AA  ACA AC  ( 206.910  54.083i )

in sec

2

θAC  arg AC

AC  AC

The acceleration of point C is AC  213.861

in sec

at 2

θAC  165.352 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-14a-1

PROBLEM 7-14a Statement:

The linkage in Figure P7-5b has the dimensions and effective crank angle given below. Find 3, AA, AB, and AC for the position shown for 2 = 15 rad/sec and 2 = 10 rad/sec2 in the directions shown. Use the acceleration difference graphical method.

Given:

Solution: 1.

Link lengths: Link 2 (point of contact to A)

a  0.75 in

Link 3 (A to B)

b  1.5 in

Link 4 (point of contact to B)

c  0.75 in

Link 1 (between contact points)

d  1.5 in

Coupler point: Distance A to C

p  1.2 in

Angle BAC

δ  30 deg

Crank angle:

θ  77 deg

Input crank angular velocity

ω  15 rad sec

1

α  10 rad sec

2

See Figure P7-5b and Mathcad file P0714a.

Although the mechanism shown in Figure P6-5b is not entirely pin-jointed, it can be analyzed for the position shown by its effective pin-jointed fourbar, which is shown below. Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. 0

0.5

1 in

Direction of ACAt Y

C Direction of AAt Direction of ABAt

30.000°

Direction of ABt

3

A

B b 4

2 a

77.000°

c d

O2

X O4

Effective link 2

2.

77.000°

Effective link 4

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above, θ  0.0 deg

θ  77.0 deg

This is a special-case Grashof in the parallelogram configuration. Therefore, ω  0.0 rad sec

1

ω  ω

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes:

(APt + APn) = (AAt + AAn) + (APAt + APAn)

(ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where

DESIGN OF MACHINERY - 5th Ed.

ABn  c ω

2

ABn  168.750 in sec

θABn  θ  180  deg 2

AAn  168.750 in sec

θAAn  θ  180  deg

θAAn  257.000 deg

AAt  a  α

AAt  7.500 in sec

θAt  θ  90 deg

θAt  167.000 deg

2

2

θABn  257.000 deg

AAn  a  ω

ABAn  b  ω 5.

SOLUTION MANUAL 7-14a-2

2

2

ABAn  0.000 in sec

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of 4 + 180 deg and AAn at an angle of 2 + 180 deg. From the tip of AAn, draw AAt at an angle of 2 + 90 deg. Now that the vectors with known magnitudes are drawn, from the tips of ABn and AAt, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABAt, and AB. 0

25 IN/S/S

Acceleration Scale 105.545°

From the layout ABt = AAt and ABAt = 0. Also, AB = AA. Acceleration scale factor ka  25

in sec

6.757

2

AB  6.757  ka AB  168.9 in sec

2

at an angle of -105.55 deg

AB n

AA

AB n

AA

AAt ABt

6.

Since ABAt = 0, 3 = 0 and, since AB = AA, 4 = 2.

7.

For point P, equation 7.4 becomes: AP = (AAt + AAn) + (APAt + APAn) , where APAt and APAn are both zero since  and 3 are zero. Therefore, AP = AA.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-14b-1

PROBLEM 7-14b Statement:

The linkage in Figure P7-5b has the dimensions and effective crank angle given below. Find

Given:

3, AA, AB, and AC for the position shown for 2 = 15 rad/sec and 2 = 10 rad/sec2 in the directions shown. Use an analytical method. Link lengths: Link 2 (point of contact to A)

a  0.75 in

Link 3 (A to B)

b  1.5 in

Link 4 (point of contact to B)

c  0.75 in

Link 1 (between contact points)

d  1.5 in

Coupler point:

Solution: 1.

Rca  1.2 in

Crank angle:

θ  77 deg

α  10 rad sec

Angle BAC

δ  30 deg

Input crank angular velocity

ω  15 rad sec

See Figure P7-5b and Mathcad file P0714b.

Draw the linkage to scale and label it. Y

C

30.000°

0

0.5

1 in

3

A

B b 4

2 77.000°

a

c d

77.000°

X O4

O2 Effective link 2

2.

Effective link 4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.0000 2

K3 

d c

K2  2.0000 2

2

a b c d

2

K3  1.0000

2 a c

 

 

A  cos θ  K1  K2 cos θ  K3

 

B  2  sin θ

 

C  K1   K2  1   cos θ  K3 A  1.2250 3.

2

Distance A to C

B  1.9487

C  2.3251

Use equation 4.10b to find values of 4 for the open circuit.





θ  2  atan2 2  A B  θ  θ  360  deg

2

B  4 A  C



θ  283.000 deg θ  77.000 deg

1

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-14b-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

K4  1.0000

2 a b

 

D  cos θ  K1  K4 cos θ  K5

D  3.5501

 

E  2  sin θ

E  1.9487

 

F  K1   K4  1   cos θ  K5 5.

F  0.0000

Use equation 4.13 to find values of 3 .





2

θ  2  atan2 2  D E 

E  4  D F



θ  360.000 deg

θ  θ  360  deg 6.

7.

K5  2.0000

θ  0.000 deg

Determine the angular velocity of links 3 and 4 using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  0.000

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  15.000

rad sec rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  ( 45.268  162.738i)

in sec

The acceleration of pin A is

in

AA  168.917

sec 8.

θAA  arg AA

AA  AA

2

at 2

θAA  105.5 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  0.731 in

B  0.000 in

D  0.169 in

E  1.500 in

 

2

 

2

 

2

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  7.308 in sec

2

 

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  1.687 in sec α 

9.

2

C D  A  F A  E  B D

α  0.000

rad sec

2

Use equation 7.13c to determine the acceleration of point B.

α 

C  E  B F A  E  B D

α  10.000

rad sec

2

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 7-14b-3

 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 45.268  162.738i)

in sec

The acceleration of pin B is

2

θAB  arg AB

AB  AB

AB  168.917

in sec

at 2

θAB  105.5 deg

10. Use equations 7.32 to find the acceleration of the point C.



     2  Rca ω   cos θ  δ  j  sin θ  δ 

ACA  Rca α sin θ  δ  j  cos θ  δ

AC  AA  ACA AC  AC

AC  168.917

in sec

2

arg AC  105.545 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-15a-1

PROBLEM 7-15a Statement:

The linkage in Figure P7-5c has the dimensions and coupler angle given below. Find 3, AB, and AC for the position shown for VA = 10 in/sec and AA = 15 in/sec2 in the directions shown. Use the acceleration difference graphical method.

Given:

Link lengths and angles: Link 3 (A to B)

b  1.8 in

Coupler angle

θ  128  deg

Slider 4 angle

θ  59 deg

p  1.44 in

Angle BAC

δ  49 deg

Coupler point: Distance A to C Input slider motion Solution: 1.

VA  10 in sec

1

AA  15 in sec

2

See Figure P7-5c and Mathcad file P0715a.

In order to solve for the accelerations at points B and C, we will need 3. From the layout below and Problem 6-18, rad θ  128  deg ω  13.288 sec Direction of AB 0

0.5

1 in

Y

Direction of ABAt

C

B 4

Direction of ACAt

3 b

49.000°

128.000°

59.000°

AA VA

X A

2

2.

The graphical solution for accelerations uses equation 7.4:

3.

For point B, this becomes: AB = AA + (ABAt + ABAn) , where AA  15.000 in sec

2

2

4.

(APt + APn) = (AAt + AAn) + (APAt + A

θAA  0  deg

ABAn  b  ω

ABAn  317.828 in sec

θABAn  θ  180  deg

θABAn  308.000 deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw AA at an angle of AA. From the tip of AA, draw ABAn at an angle of ABAn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of ABAn, draw construction lines in the directions of AB and ABAt, respectively. The intersection of these two lines are the tips of ABAt, and AB.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-15a-2 Y AA X

0

100 IN/S/S

Acceleration Scale n

ABA

9.126

8.638 AB t ABA

5.

From the graphical solution above, Acceleration scale factor

ka  100 

in sec

6.

2

AB  9.126  ka

AB  912.6 in sec

ABAt  8.638  ka

ABAt  863.8 in sec

at an angle of 239 deg

2

Calculate 3 using equation 7.6. α 

7.

2

ABAt

α  479.9 rad sec

b

2

CW

For point C, equation 7.4 becomes: AC = AA + (ACAt + ACAn) , where 2

ACAn  p  ω

ACAn  254.262 in sec

θAPAn  θ  δ  180  deg

θAPAn  259.000 deg

ACAt  p  α

ACAt  691.040 in sec

θAPAt   θ  δ  90 deg

θAPAt  169.000 deg

2

2

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 7-15a-3

Repeat procedure of step 4 for the equation in step 7.

Y 7.215 AA

0

100 IN/S/S

X

Acceleration Scale

AC 170.609° t ACA

n

ACA

9.

From the graphical solution above, Acceleration scale factor

ka  100 

in sec

AC  7.215  ka

2

AC  721.5 in sec

2

at an angle of -170.61 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-15b-1

PROBLEM 7-15b Statement:

The linkage in Figure P7-5c has the dimensions and coupler angle given below. Find 3, AB, and AC for the position shown for VA = 10 in/sec and AA = 15 in/sec2 in the directions shown. Use an analytical method.

Given:

Link lengths and angles: Link 3 (A to B)

b  1.8 in

Coupler angle

θ  128  deg

Slider 4 angle

θ  59 deg

Coupler point: Distance A to C

Rca  1.44 in

Angle BAC

δ  49 deg VA  10 in sec

Input slider motion Solution: 1.

1

AA  15 in sec

2

See Figure P7-5c and Mathcad file P0715b.

Draw the mechanism to scale and define a vector loop using the fourbar slider-crank derivation in Section 7.3 as a model. 0

0.5

1 in

Y

C

B 4 R3 R4 3 b

49.000°

128.000°

59.000° VA

X

R2

2.

A

2

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for 3 and VB. R2  R3  R4

a e

j  θ

 b e

j  θ

 c e

j  θ

where a is the distance from the origin to point A, a variable; b is the distance from A to B, a constant; and c is the distance from the origin to point B, a variable. Angle 2 is zero, 3 is the angle that AB makes with the x axis, and 4 is the constant angle that slider 4 makes with the x axis. Differentiating, j  θ d  d  j  θ a  j  b  ω e   c   e dt  dt 

Substituting the Euler equivalents,



 

    d c   cosθ  j  sinθ

d a  b  ω sin θ  j  cos θ dt

 dt 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-15b-2

Separating into real and imaginary components and solving for 3. Note that dc/dt = VB and da/dt = VA ω 

3.

  b   sin θ  tan  θ  cos θ  VA tan θ

ω  13.288

rad sec

Differentiate the velocity equation, expand it and solve for 3 and AB. d

 a  b α  j  ej  θ  b ω 2 j  ej  θ  d2 c  ej  θ    2 2

2

dt

dt

Substituting the Euler equivalents, d

2

dt

2



 

  

a  b  α sin θ  j  cos θ 2

  

  

d

 b  ω  cos θ  j  sin θ

2

dt

2

 0

  

 

c  cos θ  j  sin θ

Separating into real and imaginary components and solving for 3 and AB. Note that d 2c/dt2 = AB and d 2a/dt2 = AA

α 

AB 

4.

 

 b  cos θ  θ 2

AA  sin θ  b  ω  sin θ  θ

 



α  479.924

sec

 

2

b  α cos θ  b  ω  sin θ

 

rad

AB  912.662

sin θ

2

in sec

2

Determine the acceleration of the coupler point C using equations 7.32.









  Rca ω2 cosθ  δ  j  sinθ  δ

ACA  Rca α sin θ  δ  j  cos θ  δ

ACA  ( 726.910  117.729j)

in sec

AA  AA AC  ( 711.910  117.729j)

2

AC  AA  ACA in sec

2

AC  721.579

in sec

2

arg AC  170.610 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-16-1

PROBLEM 7-16 Statement:

For the linkage shown in Figure P7-6a, write the vector loop equations; differentiate them, and do a complete position, velocity, and acceleration analysis of the linkage. Measure the linkage geometry from the figure. Assume 2 = 10 rad/sec and 2 = 20 rad/sec2.

Given:

Link lengths and angles: Link 2 (O2 to A)

a  5.6 mm

Link 4 (O4 to C)

c  9.5 mm

Link 3 offset (A to B)

f  9.5 mm

Link 1 (O2 to O4)

d  38.8 mm

Link 2 position, velocity and acceleration Solution: 1.

θ  135  deg

ω  10

rad

α  20

sec

rad sec

2

See Figure P7-6a and Mathcad file P0716.

Draw the mechanism to scale and define a vector loop using the fourbar inverted slider-crank derivation in Section 7.3 as a model. 9.5 y

B

B 135.00°

A

2

2

5.6 O2

2

3 R3

O2

3

1

R5 A R2

R1 4

4 R4

C

38.8 O4

O4

1

C 4 x

9.5

2.

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b. R2  R5  R1  R4  R3 a e

j  θ

 f e

j  θ

 d  e

j  θ

 c e

j  θ

 b e

j  θ

where a is the distance from pivot O2 to point A, a constant; f is the distance from A to B, a constant; b is the distance from B to C, a variable; and c is the distance from pivot O4 to point C, a constant. Angle 2 is the input crank angle, 3 is the angle that BC makes with the x axis (measured from C), and 4 is the variable angle that link 4 makes with the x axis. The angular relationships are θ  θ

and

θ  θ  90 deg

Substituting the Euler equivalents,

  

   f  cosθ  j  sinθ  d  c cosθ  j  sinθ   b   cos θ  j  sin θ 

a  cos θ  j  sin θ

If we stipulate that f = c, this reduces to

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-16-2

  

   d  b cosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for 3 and b.



 

θ  174.7 deg

θ  θ  90 deg

θ  84.7 deg

b 

3.

 

θ  atan2 a  cos θ  d a  sin θ

  sin θ

a  sin θ

b  42.9 mm

Differentiate the position equation to get the velocity equation. a e

Position (f and c terms cancel) a  j  ω e

Velocity

j  θ

 bdot e

j  θ

j  θ

 d  b  e

 b  j  ω e

j  θ

j  θ

Separating into real and imaginary components and solving for 3 and bdot. ω 





a  cos θ  θ b

 

 ω

ω  1.00

 

b  ω sin θ  a  ω sin θ

bdot 

 

rad sec mm

bdot  35.8

sec

cos θ 4.

Differentiate the velocity equation to get the acceleration equation. Velocity

a  j  ω e

Acceleration

a  j  α e

j  θ

j  θ

 bdot e

j  θ

 b  j  ω e

2 j  θ

2

 a  j  ω  e

j  θ

 bddot e

j  θ

 b  j  α e

 bdot j  ω e

j  θ

1

2

 b  j  ω  e

b

  a  α cos θ  θ  a  ω  sin θ  θ  bdot ω



α  9.50



2



rad sec

bddot 



2

     2    bdot ω cos θ  b   α cos θ  ω  sin θ

1

sin θ

bddot  316.0

 a   α cos θ  ω  sin θ

 

mm sec

2

2



2 j  θ

Separating into real and imaginary components and solving for 3 and bddot. α 

j  θ

   

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-17-1

PROBLEM 7-17 Statement:

For the linkage shown in Figure P7-6b, write the vector loop equations; differentiate them, and do a complete position, velocity, and acceleration analysis of the linkage. Use the linkage geometry given below. Assume 2 = 10 rad/sec and 2 = 20 rad/sec2.

Given:

Measured lengths and angles: Link 1

d  61.9 mm

Link 2

a  15.0 mm

Link 3

b  45.8 mm

Link 4

c  18.1 mm

Link 5

e  23.1 mm

Offset

f  2.6 mm

from x' axis

Crank angle:

θ  45 deg

Coordinate rotation angles

α  23.3 deg Global XY system to local xy system

Global XY system

β  113.3  deg Local xy system to local x'y' system γ  90 deg Link 2 position, velocity and acceleration Solution: 1.

Global XY system to local x'y' system θ  68.3 deg

ω  10

rad sec

α  20

rad sec

2

See Figure P7-6b and Mathcad file P0717.

Draw the mechanism to scale and label it. x'

Y

y

6 A 2 O2

C 3

1

5

2

X 23.300°

B

1

113.300° 4

4 y' O4 1

x

2.

This mechanism can be analyzed as a pin-jointed fourbar (links 1, 2, 3, and 4) and a fourbar slider-crank (links 1, 4, 5, and 6). Link 4 is the common, non-stationary link in the two branches and is the input to the slider-crank. Since the vector loops are the same as those defined for the pin-jointed and slider-crank linkages, we can use the equations derived in the text with slight modification of variable names for the slider-crank. There are three coordinate systems: the global XY frame, the local xy frame for the pin-jointed fourbar, and the local x'y' frame for the slider crank. Inputs to the fourbars must be in their respective local coordinates. All output will be given in local coordinate system.

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

K1  4.1267

K2 

d c

K2  3.4199

DESIGN OF MACHINERY - 5th Ed.

2

K3 

2

SOLUTION MANUAL 7-17-2

2

a b c d

2

K3  4.2110

2 a c

 

 

A  cos θ  K1  K2 cos θ  K3

A  0.8104

 

B  2  sin θ

B  1.8583

 

C  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.





2

θ  2  atan2 2  A B  5.

C  6.7034

B  4  A  C  360  deg

θ  125.692 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

K4  1.3515

2 a b

 

D  cos θ  K1  K4 cos θ  K5

D  7.4978

 

E  2  sin θ

E  1.8583

 

F  K1   K4  1   cos θ  K5 6.



8.

F  0.0160

Use equation 4.13 to find values of 3 for the open circuit.



2

θ  2  atan2 2  D E  7.

K5  4.2406

E  4  D F

  360deg

θ  0.955 deg

Determine the angular velocity of links 3 and 4 using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  3.357

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  9.307

rad sec

rad sec

Using the Euler identity to expand equation 7.13a for AB. Determine the magnitude, and direction (in the local coordinate system).



 

   a ω2 cosθ  j  sinθ

AB  a  α sin θ  j  cos θ AB  ( 833  1283i)

mm sec

The acceleration of pin B is

AB  1530

mm sec

9.

θAB  arg AB

AB  AB

2

2

at

θAB  123.01 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  14.700 mm

B  0.763 mm

D  10.560 mm

E  45.794 mm

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-17-3

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ 3

2

 

2

C  2.264  10 mm sec

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  18.160 mm sec α 

9.

2

C D  A  F

α  34.706

A  E  B D

rad sec

α 

2

C  E  B F

α  152.221

A  E  B D

rad sec

Use equation 7.13c to determine the acceleration of point C.



 

   c ω2 cosθ  j  sinθ

AC  c α sin θ  j  cos θ AC  ( 1323  2881i)

mm sec

θAC  arg AC

AC  AC

2

AC  3170

The acceleration of pin C is

mm sec

at

2

θAC  114.7 deg

10. Determine 5 and the vertical distance from O4 to C (d') for the slider-crank using equations 4.16 and 4.17.

 c sin θ  β  f  π e  

θ  163.7 deg



d'  39.8 mm

θ  asin 



 

d'  c cos θ  β  e cos θ

11. Determine the angular velocity of link 5 using equation 6.22a.

ω 





c cos θ  β   ω e cos θ

 

ω  7.421

rad sec

12. Determine the angular acceleration of link 5 using equation 7.16d.

α 







2



2

 

c α cos θ  β  c ω  sin θ  β  e ω  sin θ

 

e cos θ

α  122.305

sec

13. Use equation 7.16e for the acceleration of pin C.





2





 

2

 

AC  c α sin θ  β  c ω  cos θ  β  e α sin θ  e ω  cos θ AC  162.9

in sec

2

rad

A negative sign means that AC is downward

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-18-1

PROBLEM 7-18 Statement:

For the linkage shown in Figure P7-6c, write the vector loop equations; differentiate them, and do a complete position, velocity, and acceleration analysis of the linkage. Use the linkage geometry given below. Assume 2 = 10 rad/sec and 2 = 20 rad/sec2.

Given:

Measured lengths and angles: Link 21

a1  11.7 mm

Link 22

a2  20.0 mm

Link 3

b1  25.0 mm

Link 5

b2  25.9 mm

Offset

c1  3.7 mm

Offset'

c2  24.7 mm from x' axis

θ  61.3 deg

Crank angle:

Link 2 velocity and acceleration Solution: 1.

θ  13.3 deg ω  10

rad

α  20

sec

rad sec

2

See Figure P7-6c and Mathcad file P0718.

Draw the mechanism to scale and label it. x'

24.7

Y 25.9 20.0 C

6 1

5 11.7

2

D 13.3°

X, y O2

A

1 3 61.3° 25.0 B

y'

1 4

x 3.7

2.

This mechanism can be analyzed as a fourbar slider-crank (links 1, 2, 3, and 4) and a fourbar slider-crank (links 1, 2, 5, and 6). Link 2 is the common, non-stationary link in the two branches and is the input to both slider-cranks. Since the vector loops are the same as those defined for the slider-crank linkage, we can use the equations derived in the text with slight modification of variable names. There are three coordinate systems: the global XY frame, the local xy frame for the first slider-crank, and the local x'y' frame for the second slider crank. Inputs to the fourbars must be in their respective local coordinates. All output will be given in local coordinate system.

3.

Determine  and the vertical distance from O2 to B (d1) for the first slider-crank using equations 4.16 and 4.17.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-18-2

 a1 sin θ  c1  π b1  

θ  asin 

 

θ  164.8 deg

 

d1  a1 cos θ  b1 cos θ 4.

Determine the angular velocity of link 3 using equation 6.22a. ω 

5.

d1  29.7 mm

   

a1 cos θ   ω b1 cos θ

ω  2.329

rad sec

Using the Euler identity to expand equation 7.15b for AA, determine its magnitude, and direction.



 

   a1 ω2 cosθ  j  sinθ

AA  a1 α sin θ  j  cos θ AA  ( 767.114  913.889i)

mm sec

2

AA  1193

The acceleration of pin A is

mm sec

6.

θAA  130.0 deg

at

2

Determine the angular acceleration of link 3 using equation 7.16d.

α 

7.

θAA  arg AA

AA  AA

 

  b1 cos θ 2

 

2

a1 α cos θ  a1 ω  sin θ  b1 ω  sin θ

α  36.4

rad sec

2

Use equation 7.16e for the acceleration of pin B.

 

 

2

 

2

 

AB  a1 α sin θ  a1 ω  cos θ  b1 α sin θ  b1 ω  cos θ AB  659

mm sec

8.

A negative sign means that AB is upward

2

Determine  and the distance perpendicular to the x' axis from O2 to BD (d2) for the second slider-crank using equations 4.16 and 4.17.

 a2 sin θ  c2  π b2  

θ  asin 

 

θ  230.9 deg

 

d2  a2 cos θ  b2 cos θ 9.

d2  35.8 mm

Determine the angular velocity of link 5 using equation 6.22a. ω 

   

a2 cos θ   ω b2 cos θ

ω  11.915

rad sec

10. Using the Euler identity to expand equation 7.15b for AC, determine its magnitude, and direction.



 

   a2 ω2 cosθ  j  sinθ

AC  a2 α sin θ  j  cos θ AC  ( 2038.378  70.828i )

mm sec

2

AC  AC

θAC  arg AC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-18-3

AC  2040

The acceleration of pin C is

mm sec

at deg θAC  178.0

2

11. Determine the angular acceleration of link 5 using equation 7.16d.

α 

 

  b2 cos θ 2

2

 

a2 α cos θ  a2 ω  sin θ  b2 ω  sin θ

α  179.0

rad sec

12. Use equation 7.16e for the acceleration of pin D.

 

2

 

 

2

 

AD  a2 α sin θ  a2 ω  cos θ  b2 α sin θ  b2 ω  cos θ AD  7956

mm sec

2

A negative sign means that AD is downward and to the right

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-19-1

PROBLEM 7-19 Statement:

For the linkage shown in Figure P7-6d, write the vector loop equations; differentiate them, and do a complete position, velocity, and acceleration analysis of the linkage. Use the linkage geometry given below. Assume 2 = 10 rad/sec and 2 = 20 rad/sec2.

Given:

Measured lengths and angles: Link 21

a1  15.0 mm

Link 22

a2  15 mm

Link 3

b1  40.9 mm

Link 5

b2  44.7 mm

Offset

c1  1.0 mm

Offset'

c2  0.0 mm

θ  65.8 deg

Crank angle:

Solution: 1.

θ  24.2 deg ω  10

Link 2 velocity and acceleration

from x' axis

rad

α  20

sec

rad sec

2

See Figure P7-6d and Mathcad file P0719.

Draw the mechanism to scale and label it. Y, x 1.0

1

4

B 40.9 65.8°

3

44.7 A 2

y

24.2°

5

6 C

O2

X

1

1 15.0

2.

This mechanism can be analyzed as a fourbar slider-crank (links 1, 2, 3, and 4) and a fourbar slider-crank (links 1, 2, 5, and 6). Link 2 is the common, non-stationary link in the two branches and is the input to both slider-cranks. Since the vector loops are the same as those defined for the slider-crank linkage, we can use the equations derived in the text with slight modification of variable names. There are two coordinate systems: the global XY frame and the local xy frame for the first slider-crank. Inputs to the fourbars must be in their respective local coordinates. All output will be given in local coordinate system.

3.

Determine  and the vertical distance from O2 to B (d1) for the first slider-crank using equations 4.16 and 4.17.

 a1 sin θ  c1  π b1  

θ  asin 

 

 

d1  a1 cos θ  b1 cos θ

θ  198.1 deg d1  45.0 mm

DESIGN OF MACHINERY - 5th Ed.

4.

Determine the angular velocity of link 3 using equation 6.22a. ω 

5.

SOLUTION MANUAL 7-19-2

   

a1 cos θ   ω b1 cos θ

ω  1.581

rad sec

Using the Euler identity to expand equation 7.15b for AA, determine its magnitude, and direction.



 

   a1 ω2 cosθ  j  sinθ

AA  a1 α sin θ  j  cos θ mm

AA  ( 341.249  1491.157i )

sec

2

AA  1530

The acceleration of pin A is

mm sec

6.

θAA  102.9 deg

at

2

Determine the angular acceleration of link 3 using equation 7.16d.

α 

7.

θAA  arg AA

AA  AA

 

  b1 cos θ 2

 

2

a1 α cos θ  a1 ω  sin θ  b1 ω  sin θ

α  37.5

rad sec

2

Use equation 7.16e for the acceleration of pin B.

 

2

 

 

2

 

AB  a1 α sin θ  a1 ω  cos θ  b1 α sin θ  b1 ω  cos θ AB  37.5

mm sec

8.

A positive sign means that AB is upward

2

Determine  and the distance perpendicular to the x' axis from O2 to BD (d2) for the second slider-crank using equations 4.16 and 4.17.

 a2 sin θ  c2  π b2  

θ  asin 

 

θ  172.1 deg

 

d2  a2 cos θ  b2 cos θ 9.

d2  58.0 mm

Determine the angular velocity of link 5 using equation 6.22a. ω 

   

a2 cos θ   ω b2 cos θ

ω  3.090

rad sec

10. Determine the angular acceleration of link 5 using equation 7.16d. α 

 

  b2 cos θ 2

2

 

a2 α cos θ  a2 ω  sin θ  b2 ω  sin θ

α  6.4

sec

11. Use equation 7.16e for the acceleration of pin C.

 

2

 

 

2

 

AC  a2 α sin θ  a2 ω  cos θ  b2 α sin θ  b2 ω  cos θ AC  1875

mm sec

2

rad

A negative sign means that AC is to the left

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-20-1

PROBLEM 7-20 Statement:

Figure P7-7 shows a sixbar linkage with the dimensions and crank angle given below. Find the angular acceleration of link 6 if 2 is a constant 1 rad/sec.

Given:

Link lengths: Link 2

a  1.00 in

Link 3

b  5.00 in

Link 6

d  3.00 in

Distance DB

LDB  1.50 in

Link 2 position, velocity, and acceleration:θ  45 deg Solution: 1.

c  0.0 in

Offset:

ω  1 

rad

α  0 

sec

rad sec

2

See Figure P7-7 and Mathcad file P0720.

Links 1, 2, 3, and 5 constitute a fourbar slider-crank. In order to solve for the accelerations at points B, C and D, we will need 3, and 3. From the graphical position solution below, θ  171.870  deg ω 

Using equation 6.22a,

   

a  ω cos θ  b cos θ

ω  0.143 rad sec

1

CW

Axis of Slip Axis of Transmission 15.566°

Y

O6 6

B

171.870°

2

4

D

3

C 5

X

O2

2.

The graphical solution for accelerations of pin-jointed linkages uses equation 7.4: (APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

For point C, this becomes: AC = (ABt + ABn) + (ACBt + ACBn) , where 2

2

ABn  a  ω

ABn  1.000 in sec

θABn  θ  180  deg

θABn  225.000 deg

ABt  a  α

ABt  0.000 in sec

ACBn  b  ω

θACBn  θ

2

2

ACBn  0.102 in sec

2

θACBn  171.870 deg

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-20-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn. From the tip of ABn, draw ACBn at an angle of ACBn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of ACBn, draw construction lines in the directions of AC (horizontal) and ACBt, respectively. The intersection of these two lines are the tips of ACBt, and AC. 2.837 Y AC X t ACB

2.799

0

0.25 IN/S/S

Acceleration Scale n

AB n

ACB

5.

From the graphical solution above, Acceleration scale factor

in

ka  0.25

sec

6.

2

AC  2.837  ka

AC  0.709 in sec

ACBt  2.799  ka

ACBt  0.700 in sec

at an angle of 180 deg

2

Calculate 3 using equation 7.6. α 

7.

2

ACBt

α  0.140 rad sec

b

2

CCW

In order to solve for the acceleration at points D, we will need 6, and 6. From the graphical position solution above, θ  15.566 deg  180  deg

θ  195.566 deg

From the vector diagram in Figure P7-7, VD  0.40

in sec

Vslip  0.65 8.

and

ω 

VD

ω  0.133

d

in sec

For point D, use equation 7.19, referenced to point B instead of O2: (ADt + ADn)= AB + (ADBt + ADBn + ADBcor + ADBslip) , where ADn  d  ω

2

θADn  θ  180  deg

ADn  0.053 in sec

θADn  15.566 deg

2

rad sec

DESIGN OF MACHINERY - 5th Ed.

AB  a  ω

SOLUTION MANUAL 7-20-3

2

AB  1.000 in sec

θAB  θ  180  deg

θAB  225.000 deg

ADBt  LDB α

ADBt  0.210 in sec

θADBt  θ  90 deg

θADBt  81.870 deg

2

9.

2

2

2

ADBn  LDB ω

ADBn  0.031 in sec

θADBn  θ

θADBn  171.870 deg

ADBcor  2  Vslip  ω

ADBcor  0.186 in sec

θADBcor  θ  90 deg

θADBcor  261.870 deg

2

Repeat procedure of step 4 for the equation in step 8. Y ADn 0

X

0.25 IN/S/S

Acceleration Scale 3.483 n DB

A

t ADB cor ADB

AB

ADt

slip ADB

10. From the graphical solution above, Acceleration scale factor

ka  0.25

in sec

ADt  3.483  ka

2

ADt  0.871 in sec

2

at an angle of -74.434 deg

The angular acceleration of link 6 is α 

ADt d

α  0.290

rad sec

2

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-21-1

PROBLEM 7-21 Statement:

The linkage in Figure P7-8a has the dimensions and crank angle given below. Find 4, AA, and AB in the global coordinate system for the position shown for 2 = 15 rad/sec clockwise (CW) and 2 = 25 rad/sec2 CCW. Use the acceleration difference graphical method.

Given:

Solution: 1.

Link lengths: Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

Crank angle:

θ  62 deg

Input crank angular velocity

ω  15 rad sec

Coordinate rotation angle

α  25 deg

Local xy system 1

α  25 rad sec

2

Global XY system to local xy system

See Figure P7-8a and Mathcad file P0721.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Y

Direction of AAt

y A

37.000° 70.133°

2

3

O2 X 2

22.319° B

Direction of ABAt 4

Direction of ABt

O4

x

2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  180  deg  70.133 deg  α

θ  275.133 deg

θ  180  deg  22.319 deg  α

θ  182.681 deg

Using equation (6.18),

3.

 

 

ω  13.869 rad sec

 

 

ω  8.654 rad sec

ω 

a  ω sin θ  θ  b sin θ  θ

ω 

a  ω sin θ  θ  c sin θ  θ

The graphical solution for accelerations uses equation 7.4:

1

1

(APt + APn) = (AAt + AAn) + (APAt + APAn)

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-21-2

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  8237.9 mm sec

θABn  θ  180  deg

θABn  2.681 deg

2

AAn  a  ω

AAn  26100.0 mm sec

θAAn  θ  180  deg

θAAn  242.000 deg

AAt  a  α

AAt  2900.0 mm sec

θAAt  θ  90 deg

θAAt  152.000 deg

2

5.

2

2

2

ABAn  b  ω

ABAn  20773 mm sec

θABAn  θ  180  deg

θABAn  95.133 deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn +  and AAn at an angle of AAn + . From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn + . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt.

n

ABA

41.409

Y

y

t

ABA

X 131.308

AB x 149.340°

16.401° n

AB t

AB

AA

t

AA

6.

0

200 mm/s/s

Acceleration Scale n

AA

From the graphical solution above, Acceleration scale factor

ka  200 

mm sec

2

AA  131.308  ka

AA  26262 mm sec

AB  41.409 ka

AB  8282 mm sec

2

2

at an angle of -149.34 deg at an angle of -16.40 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-22-1

PROBLEM 7-22 The linkage in Figure P7-8a has the dimensions and crank angle given below. Find 4, AA, and

Statement:

AB in the global coordinate system for the position shown for 2 = 15 rad/sec clockwise (CW) and 2 = 25 rad/sec2 CCW. Use an analytical method. Given:

Link lengths:

Solution: 1. 2.

Link 2 (O2 to A)

a  116  mm

Link 3 (A to B)

b  108  mm

Link 4 (B to O4)

c  110  mm

Link 1 (O2 to O4)

d  174  mm

Crank angle:

θ  62 deg

Input crank angular velocity

ω  15 rad sec

Coordinate rotation angle

β  25 deg

Local xy system 1

α  25 rad sec

2

Global XY system to local xy system

See Figure P7-8a and Mathcad file P0722.

Draw the linkage to scale and label it. Y

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.5000 2

K3 

y A

d c 2

K2  1.5818 2

2

a b c d

3 2

O2

2

X

K3  1.7307

2 a c

 

2

 

A  cos θ  K1  K2 cos θ  K3

B

 

B  2  sin θ

O4

4

 

C  K1   K2  1   cos θ  K3 A  0.0424 3.

B  1.7659

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B  4.

x

C  2.0186

B  4 A  C



θ  182.681 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

 

D  cos θ  K1  K4 cos θ  K5

 

E  2  sin θ

2

K4  1.6111 D  2.0021 E  1.7659

 

F  K1   K4  1   cos θ  K5

F  0.0589

K5  1.7280

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 7-22-2

Use equation 4.13 to find values of 3 for the crossed circuit.





2

θ  2  atan2 2  D E  6.

7.

E  4  D F



θ  275.133 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

 

ω  13.869

 

 

ω  8.654

ω 

a  ω sin θ  θ  b sin θ  θ

ω 

a  ω sin θ  θ  c sin θ  θ

rad sec

rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction (in the global coordinate system).



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ mm

AA  ( 14814  21683i)

sec

AA  26261

The acceleration of pin A is

mm sec

8.

θAA  arg AA  β

AA  AA

2

at

2

θAA  149.3 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  5.145 mm

B  107.567 mm

D  109.880 mm

E  9.662 mm

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ 4

2

 

2

C  2.490  10 mm sec

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ 3

F  1.380  10 mm sec α 

9.

C D  A  F

2

α  231.119

A  E  B D

rad sec

α 

2

C  E  B F A  E  B D

α  7.768

sec

Use equation 7.13c to determine the acceleration of point B for the crossed circuit.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 8189  1239i)

mm sec

2

The acceleration of pin B is

θAB  arg AB  β

AB  AB AB  8282

mm sec

2

at

θAB  16.4 deg

rad

(Global)

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-23-1

PROBLEM 7-23 Statement:

The linkage in Figure P7-8a has the dimensions and crank angle given below. Find and plot 4, AA, and AB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec CW and 2 = 25 rad/sec2 CCW.

Given:

Link lengths: Link 2 (O2 to A)

a  116  mm

Link 4 (B to O4)

c  110  mm

Solution: 1.

d  174  mm

Link 1 (O2 to O4)

ω  15 rad sec

Input crank angular velocity

b  108  mm

Link 3 (A to B) 1

α  25 rad sec

2

See Figure P7-8a and Mathcad file P0723.

Draw the linkage to scale and label it. Y y A

2 3 2

O2

X 2

B O4

4

x

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

2



b c

arg1  1.083

a d b c

arg2  0.094

a d

θ2toggle  acos arg2

θ2toggle  95.4 deg

The other toggle angle is the negative of this. Thus, θ  θ2toggle  0.5 deg θ2toggle  1  deg  θ2toggle  0.5 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

K1  1.5000

K2 

d c

K2  1.5818

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 7-23-2

2

2

a b c d

K3 

2

K3  1.7307

2 a c

 

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the crossed circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  1.6111

2 a b

 

K5  1.7280

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA. Determine the x and y components in the local coordinate system.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

AAx θ  Re AA θ 9.

 

  

AAy θ  Im AA θ

Use equations 7.12 to determine the angular acceleration of link 4.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

  

 

  

 

 

2

 

 2

    c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

DESIGN OF MACHINERY - 5th Ed.

 

α θ 

SOLUTION MANUAL 7-23-3

        A  θ  E θ  B θ  D θ C θ  E θ  B θ  F θ

10. Use equation 7.13c to determine the acceleration of point B. Determine the x and y components in the local coordinate system.

 

 

    j  cosθθ  c ωθ2 cosθθ  j  sinθθ

AB θ  c α θ  sin θ θ

 

  

ABx θ  Re AB θ

 

  

ABy θ  Im AB θ

11. Plot the angular acceleration for link 4 and the acceleration components for pins B and C.

Angular Accel., rad/sec^2

ANGULAR ACCELERATION OF LINK 4

0  1000  2000  3000  4000  100

 50

0

50

100

Crank Angle, deg

ACCELERATION OF POINT A 30

Acceleration, m/sec^2

20 10 0  10  20  30  100

 50

0 Crank Angle, deg

x component y component

50

100

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-23-4

ACCELERATION OF POINT B 300

Acceleration, m/sec^2

200 100 0  100  200  300  100

 50

0 Crank Angle, deg

x component y component

50

100

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-24-1

PROBLEM 7-24 Statement:

The linkage in Figure P7-8b has the dimensions and crank angle given below. Find 4, AA, and

Given:

AB in the global coordinate system for the position shown for  = 20 rad/sec CCW. Use the acceleration difference graphical method. Link lengths:

Solution: 1.

Link 2 (A to B)

a  40 mm

Link 3 (B to C)

b  96 mm

Link 4 (C to D)

c  122  mm

Link 1 (A to D)

d  162  mm

Crank angle:

θ  93 deg

Input crank angular velocity

ω  20 rad sec

Coordinate rotation angle

α  36 deg

Local xy system 1

α  0  rad sec

2

Global XY system to local xy system

See Figure P7-8b and Mathcad file P0724.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Direction of AAt

Direction of ABt

Y 2

Direction of ABAt

y

B

57.0° 3

A

2

X O2

36.0° 4

O4 x

2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  31.486 deg

θ  132.406  deg

Using equation (6.18), ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.388 rad sec

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  5.870 rad sec

1

1

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  4203 mm sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-24-2

θABn  θ  180  deg

θABn  47.594 deg

2

AAn  a  ω

AAn  16000 mm sec

θAAn  θ  180  deg

θAAn  273.000 deg

AAt  a  α

AAt  0.000 mm sec 2

5.

2

2 2

ABAn  b  ω

ABAn  2787 mm sec

θABAn  θ  180  deg

θABAn  148.514 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn and AAn at an angle of AAn . From the tip of AAn, draw AAt at an angle of AAt . From the tip of AAt, draw ABAn at an angle of BAn . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt.

Y

0

500 mm/s/s y

Acceleration Scale X 24.340

n

AB

AB x

t

AB

AA

t ABA n

22.244

ABA 6.

From the graphical solution above, Acceleration scale factor

ka  500 

mm sec

7.

2 2

AA  AAn

AA  16000 mm sec

AB  24.340 ka

AB  12170 mm sec

ABt  22.244 ka

ABt  11122 mm sec

2

at an angle of 273.0 deg (Global) at an angle of 242.610 deg

2

Calculate 4 using equation 7.6. α 

ABt c

α  91.2 rad sec

2

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-25-1

PROBLEM 7-25 Statement:

The linkage in Figure P7-8b has the dimensions and crank angle given below. Find , AA, and

Given:

AB in the global coordinate system for the position shown for  = 20 rad/sec CCW constant. Use an analytical method. Link lengths:

Solution: 1.

Link 2 (A to B)

a  40 mm

Link 3 (B to C)

b  96 mm

Link 4 (C to D)

c  122  mm

Link 1 (A to D)

d  162  mm

Crank angle:

θ  93 deg

Input crank angular velocity

ω  20 rad sec

Coordinate rotation angle

β  36 deg

Local xy system 1

α  0  rad sec

Global XY system to local xy system

See Figure P7-8b and Mathcad file P0725.

Draw the linkage to scale and label it.

y

Y 2.

2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  4.0500 2

K3 

2

d

2

2

57.0°

2

c

B

3 X

O2

K2  1.3279

a b c d

A

36.0° 4

2

K3  3.4336

2 a c

 

 

A  cos θ  K1  K2 cos θ  K3

 

O4

B  2  sin θ

x

 

C  K1   K2  1   cos θ  K3 A  0.5992 3.

B  1.9973

C  7.6054

Use equation 4.10b to find values of 4 for the open circuit in the local xy coordinate system.





2

θ  2  atan2 2  A B  4.

B  4 A  C

θ  132.386 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

 

D  cos θ  K1  K4 cos θ  K5

 

E  2  sin θ

2

K4  1.6875

K5  2.8875

D  7.0782 E  1.9973

 

F  K1   K4  1   cos θ  K5 5.

  2 π

F  1.1265

Use equation 4.13 to find values of 3 for the open circuit in the local xy coordinate system.

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 7-25-2



2

θ  2  atan2 2  D E  6.

7.

E  4  D F

  2 π

θ  31.504 deg

Determine the angular velocity of links 3 and 4 using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  5.385

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  5.868

rad sec

rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction (in the global coordinate system).



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  ( 837  15978i)

mm sec

AA  16000

The acceleration of pin A is

mm sec

8.

θAA  arg AA  β

AA  AA

2

at

2

θAA  123.0 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  90.111 mm

B  50.166 mm

D  82.244 mm

E  81.850 mm

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ 3

2

 

2

C  4.368  10 mm sec

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ 4

F  1.433  10 mm sec α 

9.

C D  A  F A  E  B D

2

α  81.037

rad sec

α 

2

C  E  B F A  E  B D

α  93.586

sec

Use equation 7.13c to determine the acceleration of point B for the open circuit.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ

AB  ( 5601  10800i)

mm sec

The acceleration of pin B is

2

θAB  arg AB  β

AB  AB AB  12166

mm sec

2

at

θAB  153.4 deg

rad

(Global)

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-26-1

PROBLEM 7-26 Statement:

Given:

The linkage in Figure P7-8b has the dimensions and crank angle given below. Find and plot , AA, and AB in the local coordinate system for the maximum range of motion that this linkage allows if  = 20 rad/sec CCW constant. Link lengths: Link 2 (A to B)

a  40 mm

Link 3 (B to C)

b  96 mm

Link 4 (C to D)

c  122  mm

Link 1 (A to D)

d  162  mm

ω  20 rad sec

Input crank angular velocity Solution: 1. 2.

1

α  0  rad sec

See Figure P7-8b and Mathcad file P0726.

Draw the linkage to scale and label it.

y

Y

The range of 2 for this Grashof crank-rocker is:

2

θ  0  deg 1  deg  360  deg

A

57.0°

2 3.

2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  4.0500 2

2

a b c d

O2

36.0° 4

d c

2

K3  3.4336

2 a c

 

X

K2  1.3279

2

K3 

B

3

 

O4 x

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

4.

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

K4  1.6875

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

K5  2.8875

DESIGN OF MACHINERY - 5th Ed.

7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

8.

SOLUTION MANUAL 7-26-2

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA. Determine the x and y components in the local coordinate system.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

 

AAx θ  Re AA θ 9.

  

AAy θ  Im AA θ

Use equations 7.12 to determine the angular acceleration of link 4.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

  

 

  

 

 

2

 

 2

    c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

        A  θ  E θ  B θ  D θ C θ  E θ  B θ  F θ

10. Use equation 7.13c to determine the acceleration of point B. Determine the x and y components in the local coordinate system.

 

 

    j  cosθθ  c ωθ2 cosθθ  j  sinθθ

AB θ  c α θ  sin θ θ

 

  

 

ABx θ  Re AB θ

  

ABy θ  Im AB θ

11. Plot the angular acceleration for link 4 and the acceleration components for pins A and B. ANGULAR ACCELERATION OF LINK 4 Angular Accel., rad/sec^2

200 100 0  100  200

0

45

90

135

180

225

Crank Angle, deg

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-26-3

ACCELERATION OF POINT A

Acceleration, m/sec^2

20

10

0

 10

 20

0

45

90

135

180

225

270

315

360

Crank Angle, deg x component y component

ACCELERATION OF POINT B 20

Acceleration, m/sec^2

10

0

 10

 20

0

45

90

135

180

Crank Angle, deg x component y component

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-27-1

PROBLEM 7-27 Statement:

The offset crank-slider linkage in Figure P7-8f has the dimensions and crank angle given below. Find AA, and AB in the global coordinate system for the position shown for  = 25 rad/sec CW, constant. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2 (D to E)

a  63 mm

Offset

c  52 mm

Link 2 position, velocity, and acceleration: θ  141  deg

1.

ω  25

rad sec

α  0 

α  90 deg

Coordinate rotation angle: Solution:

b  130  mm

Link 3 (E to F)

rad sec

See Figure P7-8f and Mathcad file P0727.

In order to solve for the accelerations at point F, we will need 3, and 3. From the graphical position solution below (in the local coordinate system), θ  44.828 deg ω 

Using equation 6.22a,

   

a  ω cos θ  b cos θ

ω  13.276 rad sec

1

Direction of AB 4 B

Direction of ABAt

1 3 44.828°

Direction of AAt

Y

A 2 51.000°

O2

X, y

x

2.

The graphical solution for accelerations uses equation 7.4: (APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

For point F, this becomes: AF = (AEt + AEn) + (AFEt + AFEn) , where (angles in the global coordinate system) AEn  a  ω

2

AEn  39375  mm sec

θAEn  θ  α  180  deg

θAEn  231.000  deg

AEt  a  α

AEt  0.000  mm sec 2

2

2

AFEn  b  ω

AFEn  22911  mm sec

θAFEn  θ  α

θAFEn  45.172 deg

2

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-27-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw AEn at an angle of AEn. From the tip of AEn, draw AFEn at an angle of AFEn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of AFEn, draw construction lines in the directions of AF (vertical) and AFEt, respectively. The intersection of these two lines are the tips of AFEt, and AF. Y

X,y

0

500 mm/s/s

Acceleration Scale x 76.546 n

AE AF t AFE n

AFE

5.

From the graphical solution above, Acceleration scale factor

ka  500 

mm sec

AF  76.546 ka

2

AF  38273  mm sec

2

at an angle of -90 deg (global)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-28-1

PROBLEM 7-28 Statement:

The offset crank-slider linkage in Figure P7-8f has the dimensions and crank angle given below. Find AA, and AB in the global coordinate system for the position shown for  = 25 rad/sec CW, constant. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  63 mm

Offset

c  52 mm

Link 2 position, velocity, and acceleration: θ  141  deg

1.

ω  25

rad

rad

α  0 

sec

sec

α  90 deg

Coordinate rotation angle: Solution:

b  130  mm

Link 3 (A to B)

2

See Figure P7-8f and Mathcad file P0728.

Draw the linkage to a convenient scale. 4

2.

Determine 3 (in the local coordinate system) and d using equations 4.16 for the crossed circuit.

 a  sin θ  b 

θ  asin

 

c

 

 

d  141.160  mm

Y 52.000

Determine the angular velocity of link 3 using equation 6.22a:

A 2 51.000°

   

a cos θ ω    ω b cos θ 4.

3

θ  44.828 deg

d  a  cos θ  b  cos θ 3.

B 1

ω  13.276

rad O2

sec

Using the Euler identity to expand equation 7.15b for AB, determine its magnitude, and direction (global).



 

X, y

x

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ

AA  ( 30600.122  24779.490i) 

mm sec

AA  39375 

The acceleration of pin A is

mm sec

5.

at

2

θAA  129.0  deg

Determine the angular acceleration of link 3 using equation 7.16d.

α 

6.

θAA  arg AA  α

AA  AA

2

 

  b  cos θ 2

2

 

a  α cos θ  a  ω  sin θ  b  ω  sin θ

α  93.574

sec

Use equation 7.16e for the acceleration of pin B.

 

2

 

 

2

 

AB  a  α sin θ  a  ω  cos θ  b  α sin θ  b  ω  cos θ AB  38274 

mm sec

2

rad

A positive sign means that AB is downward

2

DESIGN OF MACHINERY

SOLUTION MANUAL 7-29-1

PROBLEM 7-29 Statement:

The offset crank-slider linkage in Figure P7-8f has the dimensions and crank angle given below. Find and plot AA, and AB in the global coordinate system for the maximum range of motion that this linkage allows if  = 25 rad/sec CW, constant..

Given:

Link lengths: Link 2 (O2 to A)

a  63 mm

Offset

c  52 mm ω  25

Link 2 velocity, and acceleration:

1. 2.

rad

rad

α  0 

sec

sec

2

α  90 deg

Coordinate rotation angle: Solution:

See Figure P7-8f and Mathcad file P0729.

Y

Draw the linkage to a convenient scale.

4

Determine the range of motion for this slider-crank linkage.

B

1 3

θ  0  deg 2  deg  360  deg 3.

Determine 3 using equations 4.16 for the crossed circuit.

 

 a  sin θ  c   b  

2

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ 

5.

A

52.000

θ θ  asin 4.

b  130  mm

Link 3 (A to B)

  a   ω b cos θ θ 

O2

cos θ

2

X, y

x

Using the Euler identity to expand equation 7.15b for AA, determine its X and Y components in the global coordinate system.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

  

 

  

  

AAX θ  Re AA θ  cos α  Im AA θ  sin α AAY θ  Re AA θ  sin α  Im AA θ  cos α 6.

Determine the angular acceleration of link 3 using equation 7.16d.

 

α θ  7.

 

   2    b  cos θ θ  2

a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

Use equation 7.16e for the acceleration of pin B.

 

2     2  b  α θ  sin θ θ   b  ω θ  cos θ θ 

AB θ  a  α sin θ  a  ω  cos θ 

8.

Plot the components of AA and the magnitude of AB. A positive value for AB is downward, a negative value, upward.

DESIGN OF MACHINERY

SOLUTION MANUAL 7-29-2

PIN A ACCELERATION COMPONENTS

Acceleration, m/sec^2

40

20

0

 20

 40

0

45

90

135

180

225

270

315

360

Crank Angle, deg x component y component

PIN B ACCELERATION MAGNITUDE 100

Acceleration, m/sec^2

50

0

 50

 100

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-30-1

PROBLEM 7-30 Statement:

The linkage in Figure P7-8d has the dimensions and crank angle given below. Find AA, AB, and

Given:

Abox in the global coordinate system for the position shown for  = 30 rad/sec CW, constant . Use the acceleration difference graphical method. Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  30 mm

Link 3 (A to B)

b  150  mm

Link 4 (O4 to B)

c  30 mm

Link 1 (O2 to O4)

d  150  mm

Crank angle:

θ  58 deg

Input crank angular velocity

ω  30 rad sec

Global XY system 1

α  0  rad sec

2

See Figure P7-8d and Mathcad file P0730.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest.

Vbox 1

Direction of ABAt

A 2

58°

B

3

58° Direction of ABt

O4

O2

4

Direction of AAt 2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the global XY coordinate system), θ  0  deg

θ  0.000 deg

θ  θ

θ  58.000 deg

This is a special-case Grashof in the parallelogram configuration. Therefore, ω  0.0 rad sec

1

ω  ω (APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  27000 mm sec

θABn  θ  180  deg 2

θABn  238.000 deg

AAn  a  ω

AAn  27000 mm sec

θAAn  θ  180  deg

θAAn  238.000 deg

AAt  a  α

AAt  0.0 mm sec 2

ABAn  b  ω

2

ABAn  0 mm sec

2

2

2

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 7-30-2

In this case, there is no need to draw an acceleration diagram since AAt and ABAn are zero. This means that ABAt and ABt will also be zero and AA = AAn, AB = ABn.

6.

Since ABAt = 0, 3 = 0 and, since AB = AA, 4 = 2= 0.

7.

For the box, equation 7.4 becomes: Abox = (AAt + AAn) + (AboxAt + AboxAn) , where AboxAt and AboxAn are both zero since 3 and 3 are zero. Therefore, Abox = AAx.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-31-1

PROBLEM 7-31 Statement:

The linkage in Figure P7-8d has the dimensions and crank angle given below. Find AA, AB, and

Given:

Abox in the global coordinate system for the position shown for  = 30 rad/sec CW, constant. Use an analytical method. Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  30 mm

Link 3 (A to B)

b  150  mm

Link 4 (O4 to B)

c  30 mm

Link 1 (O2 to O4)

d  150  mm

Crank angle:

θ  58 deg

Input crank angular velocity

ω  30 rad sec

1

α  0  rad sec

2

See Figure P7-8d and Mathcad file P0731.

Draw the linkage to a convenient scale and label it.

E Vbox 1

A

58°

2

3

58° B

O2

2.

O4

4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.0000 2

K3 

d c

K2  5.0000 2

2

a b c d

2

K3  1.0000

2 a c

 

 

A  cos θ  K1  K2 cos θ  K3

 

B  2  sin θ

 

C  K1   K2  1   cos θ  K3 A  6.1197 3.

B  1.6961

Use equation 4.10b to find values of 4 for the open circuit.





θ  2  atan2 2  A B  θ  θ  360  deg 4.

C  2.8205

2

B  4 A  C



θ  302.000 deg θ  58.000 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

K4 

SOLUTION MANUAL 7-31-2

2

d b

2

2

c d a b

K5 

2

K4  1.0000

2 a b

 

 

D  cos θ  K1  K4 cos θ  K5

D  8.9402

 

E  2  sin θ

E  1.6961

 

F  K1   K4  1   cos θ  K5 5.

F  0.0000

Use equation 4.13 to find values of 3 .





2

θ  2  atan2 2  D E 

E  4  D F



θ  360.000 deg

θ  θ  360  deg 6.

7.

K5  5.0000

θ  0.000 deg

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

 

ω  0.000

 

 

ω  30.000

ω 

a  ω sin θ  θ  b sin θ  θ

ω 

a  ω sin θ  θ  c sin θ  θ

rad sec rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  ( 14308  22897i)

mm sec

The acceleration of pin A is

AA  27000

mm sec

8.

θAA  arg AA

AA  AA

2

θAA  122.0 deg

at

2

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  1.002 in

B  0.000 in

D  0.626 in

E  5.906 in

 

2

 

2

 

2

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  0.000 mm sec

2

 

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  0.000 mm sec α  9.

C D  A  F A  E  B D

2

α  0.000

rad sec

2

Use equation 7.13c to determine the acceleration of point B.

α 

C  E  B F A  E  B D

α  0.000

rad sec

2

DESIGN OF MACHINERY - 5th Ed.



SOLUTION MANUAL 7-31-3

 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 14308  22897i)

mm sec

The acceleration of pin B is

2

θAB  arg AB

AB  AB AB  27000

mm sec

at

2

θAB  122.0 deg

10. This is a special case Grashof in the parallelogram configuration. All points on link 3 have the same velocity and acceleration. The acceleration of the box will be equal to the X-component of the acceleration of any point on link 3. Abox  Re AA The acceleration of the box is Abox  14308

mm sec

2

a negative sign means Abox is to the left

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-32-1

PROBLEM 7-32 Statement:

The linkage in Figure P7-8d has the dimensions and crank angle given below. Write a computer program or use an equation solver to find and plot AA, AB, and Abox in the global coordinate system for the maximum range of motion that this linkage allows if  = 30 rad/sec CW, constant .

Given:

Link lengths: Link 2 (O2 to A)

a  30 mm

Link 3 (A to B)

Link 4 (O4 to B)

c  30 mm

Link 1 (O2 to O4)

ω  30 rad sec

Input crank angular velocity Solution: 1.

1

α  0  rad sec

b  150  mm d  150  mm 2

See Figure P7-8d and Mathcad file P0732.

Draw the linkage to a convenient scale and label it.

Vbox 1

A

3

58°

2

58° B

O2

2.

O4

4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.0000 2

2

a b c d

2

K3  1.0000

2 a c

 

c

K2  5.0000

2

K3 

d

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 3.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

 

2

2

c d a b 2 a b

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

2

K4  1.0000

K5  5.0000

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-32-2

 

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 .



 



 

 2  4 Dθ F θ 

 

θ θ  2   atan2 2  D θ E θ  6.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ 

7.

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA. Determine the XY components.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

AAX θ  Re AA θ 8.

 

  

AAY θ  Im AA θ

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

 

 

2

 

 2     c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C' θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F' θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

9.

        A'  θ  E' θ  B' θ  D' θ C' θ  D' θ  A' θ  F' θ

 

α θ 

        A'  θ  E' θ  B' θ  D' θ C' θ  E' θ  B' θ  F' θ

Use equation 7.13c to determine the acceleration of point B.

 

       j  cosθθ  2  c ω θ   cos θ θ   j  sin θ θ  

AB θ  c α θ  sin θ θ

 

  

ABX θ  Re AB θ

 

  

ABY θ  Im AB θ

10. This is a special case Grashof in the parallelogram configuration. All points on link 3 have the same velocity an acceleration. The acceleration of the box will be equal to the X-component of the acceleration of any point on link 3.

 

  

Abox θ  Re AA θ

11. Plot the accelerations over the range: θ  0  deg 2  deg  360  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-32-3

ACCELERATION OF PINS A & B

Acceleration, m/sec^2

40

20

0

 20

 40

0

45

90

135

180

225

270

315

360

Input Angle, deg x component y component

ACCELERATION OF THE BOX 40

Acceleration, m/sec^2

20

0

 20

 40

0

45

90

135

180

Input Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-33-1

PROBLEM 7-33 Statement:

The linkage in Figure P7-8g has the dimensions and crank angle given below. Find 4, AA, and

Given:

AB in the global coordinate system for the position shown if  = 15 rad/sec CW, constant. Use the acceleration difference graphical method. Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  49 mm

Link 3 (A to B)

b  100  mm

Link 4 (O4 to B)

c  153  mm

Link 1 (O2 to O4)

d  87 mm

Crank angle:

θ  148  deg Local xy system

Input crank angular velocity

ω  15 rad sec

Coordinate rotation angle

β  119  deg Global XY system to local xy system

1

α  0  rad sec

2

See Figure P7-8e and Mathcad file P0733.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Y

Direction of ABt

Direction of ABAt O6

B 3 29.000°

2

4 C

A

5

X

6

O2

Direction of A y

D

O4 119.000° x 2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  266.812  deg

θ  208.876  deg

Using equation (6.18), ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  7.576 rad sec

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  4.967 rad sec

1

1

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where (angles in the global coordinate system)

DESIGN OF MACHINERY - 5th Ed. 2

2

ABn  3775 mm sec

θABn  θ  180  deg  β

θABn  90.124 deg

AAn  a  ω

2

AAn  11025 mm sec

θAAn  θ  180  deg  β

θAAn  209.000 deg

AAt  a  α

AAt  0.000 mm sec

ABn  c ω

5.

SOLUTION MANUAL 7-33-2

2

2

ABAn  b  ω

2

ABAn  5740 mm sec

θAABn  θ  180  deg  β

θAABn  32.188 deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn and AAn at an angle of AAn . From the tip of AAn, draw AAt at an angle of AAt. From the tip of AAt, draw ABAn at an angle of ABAn . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt. Y

X 42.029 y x 116.604° AB A

n A

t BA

A

n

0

AB

100 mm/s/s

t B

A

Acceleration Scale 18.740mm n

ABA

6.

From the graphical solution above, Acceleration scale factor ka  100 

mm sec

7.

2

AA  AAn

AA  11025 mm sec

AB  42.029 ka

AB  4203 mm sec

ABt  18.740 ka

ABt  1874 mm sec

2

2

at an angle of 209 deg at an angle of -116.6 deg

2

Calculate 4 using equation 7.6. α 

ABt c

α  12.2 rad sec

2

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-34-1

PROBLEM 7-34 The linkage in Figure P7-8g has the dimensions and crank angle given below. Find 4, AA, and

Statement:

AB in the global coordinate system for the position shown if  = 15 rad/sec CW and 2 = 10 rad/sec CCW, constant. Use an analytical method. Link lengths: Link 2 (O2 to A) Link 3 (A to B) a  49 mm b  100  mm

Given:

c  153  mm

Link 4 (O4 to B)

Solution: 1. 2.

Crank angle:

θ  148  deg Local xy system (see layout below)

Input crank angular velocity Coordinate rotation angle

ω  15 rad sec α  10 rad sec   119  deg Global XY system to local xy system

1

2

See Figure P7-8g and Mathcad file P0734. Y

Draw the linkage to scale and label it. Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.7755 2

K3 

O6 B

d

3

c 29.000°

K2  0.5686 2

2

a b c d

C

K3  1.5592

2 a c

 

5

   

y

B  1.0598

119.000° x

C  4.6650

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B 

B  4 A  C



θ  208.876 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

2 a b

 

D  cos θ  K1  K4 cos θ  K5

K4  0.8700 D  3.0104

 

E  2  sin θ

E  1.0598

 

F  K1   K4  1   cos θ  K5 5.

D

O4

C  K1   K2  1   cos θ  K3

4.

X

6

O2

 

B  2  sin θ

A  0.5821

A

2

4

2

A  cos θ  K1  K2 cos θ  K3

3.

d  87 mm

Link 1 (O2 to O4)

F  2.2367

Use equation 4.13 to find values of 3 for the crossed circuit.





θ  2  atan2 2  D E 

2

E  4  D F



θ  266.892 deg

K5  0.3509

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 7-34-2

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  7.570

rad

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  4.959

rad

sec

sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction (in the local coordinate system).



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  ( 9090  6258i)

mm sec

AA  11036

The acceleration of pin A is

mm sec

8.

θAA  arg AA  

AA  AA

2

at

2

θAA  84.46 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  73.887 mm

B  99.853 mm

D  133.977 mm

E  5.422 mm

 

2

 

2

 

2

 

2

 

2

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ 3

C  6.106  10 mm sec

 

2

2

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ 3

F  2.353  10 mm sec α 

9.

C D  A  F

2

α  49.646

A  E  B D

rad sec

α 

2

C  E  B F A  E  B D

α  15.552

Use equation 7.13c to determine the acceleration of point B for the crossed circuit.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 4444  267i)

mm sec

2

The acceleration of pin B is

θAB  arg AB  

AB  AB AB  4452

mm sec

2

at

θAB  115.6 deg

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-35-1

PROBLEM 7-35 Statement:

At t = 0, the non-Grashof linkage in Figure P7-8g has the local axis at -119 deg and O2A at 29 deg in the global XY coordinate system and 2 = 0. Write a computer program or use an equation solver to find and plot 4, VA, AA, VB, and AB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec CCW, constant. Link lengths:

Given:

Solution: 1. 2.

Link 2 (O2 to A)

a  49 mm

Link 3 (A to B)

Link 4 (O4 to B)

c  153  mm

Link 1 (O2 to O4)

1

b  100  mm d  87 mm

α  15 rad sec

2

Input crank angular velocity

ω  0  rad sec

Initial crank angle:

  148  deg Local xy system (see layout below)

See Figure P7-8g and Mathcad file P0735. Y

Draw the linkage to scale and label it. Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

a d b c

2

2

a d b c

O6

2



2 a d 2

arg2 

2

2

2 a d



b c a d b c a d

θ2toggle  acos arg1

B

arg1  0.840

3

arg2  6.338

2

4

A

θ2toggle  32.9 deg

O2

2

5

The other toggle angle is the negative of this. Thus,

y

θ    0.5 deg   1  deg  360  deg  θ2toggle  0.5 deg

O4

D

x

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.7755

 

d c

K2  0.5686

2

K3 

2

2

a b c d

2

K3  1.5592

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  A θ B θ  5.

X

6

C

 2  4 A θ Cθ 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-35-2 2

d

K4 

b

 

2

2

c d a b

K5 

2

K4  0.8700

2 a b

 

K5  0.3509

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 2, 3, and 4 using equations 6.18.

 

ω θ 





2  θ    α

 

 

a  ω θ

 

a  ω θ

ω θ 

ω θ 

8.

 2  4 Dθ F θ 

E θ

b

 

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA. and determine its magnitude.

 



 

 

 

   a ωθ2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ AA θ  AA θ 9.

Use equations 7.12 to determine the angular acceleration of link 4.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

 

 

 

 2

 

 

  

 

  

 2

    c ωθ2 cosθθ

C θ  a  α sin θ  a  ω θ  cos θ  b  ω θ  cos θ θ

 2    2     c ωθ2 sinθθ C θ  E θ  B θ  F  θ A  θ  E θ  B θ  D θ

F θ  a  α cos θ  a  ω θ  sin θ  b  ω θ  sin θ θ

 

α θ 

10. Use equation 7.13c to determine the acceleration of point B and determine its magnitude.

 

 

    j  cosθθ  c ωθ2 cosθθ  j  sinθθ

AB θ  c α θ  sin θ θ

 

 

AB θ  AB θ

11. Plot the angular velocity and acceleration for link 4 and the velocity and acceleration components for pins A and B.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-35-3

ANGULAR VELOCITY OF LINK 4

Angular Accel., rad/sec^2

20

0

 20

 40 100

150

200

250

300

350

300

350

300

350

Crank Angle, deg

ANGULAR ACCELERATION OF LINK 4 Angular Accel., rad/sec^2

100

50

0  50  100 100

150

200

250

Crank Angle, deg

VELOCITY OF POINT A 500

Velocity, mm/sec

400 300 200 100 0 100

150

200

250

Crank Angle, deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-35-4

ACCELERATION OF POINT A

Acceleration, mm/sec^2

5 4 3 2 1 0 100

150

200

250

300

350

300

350

300

350

Crank Angle, deg

VELOCITY OF POINT B

Velocity, m/sec

2

0

2

4 100

150

200

250

Crank Angle, deg

ACCELERATION OF POINT B

Acceleration, m/sec^2

20

15

10

5

0 100

150

200

250

Crank Angle, deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-36-1

PROBLEM 7-36 Statement:

The 3-cylinder radial compressor in Figure P7-8c has the dimensions and crank angle given below. Find the piston accelerations A6, A7, and A8 for the position shown for  = 15 rad/sec CW, constant. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2

a  19 mm

Offset

c  0  mm

Link 2 position, velocity, and acceleration: θ  53 deg

1.

ω  15

rad sec

α  0 

β  120  deg

Cylinder angular spacing: Solution:

b  70 mm

Link 3

rad sec

See Figure P7-8c and Mathcad file P0736.

In order to solve for the accelerations at piston 7, we will need 4, and 4. From the graphical position solution below (in the local coordinate system), α  90 deg

Coordinate system rotation angle: θ  θ  α

θ  37.000 deg ω 

Using equation 6.22a,

θ  180  deg  9.401  deg

   

a  ω cos θ  b cos θ

ω  3.296 rad sec

θ  170.599 deg

1

Direction of ACBt Direction of A8 Direction of AEB

Y

6.088°

6

E 8

C 3

2

O2 Direction of A6

5

15.629°

X

B

1 4

Direction of ADBt 7 D

9.401°

Direction of A7

(APt + APn) = (AAt + AAn) + (APAt + APAn)

2.

The graphical solution for accelerations uses equation 7.4:

3.

For point D, this becomes: AD = (ABt + ABn) + (ADBt + ADBn) , where (angles in the global coordinate system) 2

2

ABn  a  ω

ABn  4275 mm sec

θABn  θ  α  180  deg

θABn  127.000 deg

ABt  a  α

ABt  0.000 mm sec

ADBn  b  ω

2

θADBn  θ  α

ADBn  760 mm sec

θADBn  80.599 deg

2

2

2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-36-2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn. From the tip of ABn, draw ADBn at an angle of ADBn. Now that the vectors with known magnitudes are drawn, from the origin and the tip of ADBn, draw construction lines in the directions of AD (vertical) and ADBt, respectively. The intersection of these two lines are the tips of ADBt, and AD. t ADB

n

ADB

AD n

0

AB Y

75.171

50 mm/s/s

Acceleration Scale

X,y

x

5.

From the graphical solution above, ka  50

Acceleration scale factor

mm sec

AD  75.171 ka 6.

AD  3759 mm sec

2

at an angle of 90 deg (global)

In order to solve for the accelerations at piston 6, we will need 3, and 3. From the graphical position solution above (in the local coordinate system), α  90 deg  β

Coordinate system rotation angle: θ  θ  α

Using equation 6.22a,

7.

2

θ  157.000 deg ω 

θ  180  deg  6.088  deg

   

a  ω cos θ  b cos θ

ω  3.769 rad sec

1

For point C, equation 7.4 becomes: AC = (ABt + ABn) + (ACBt + ACBn) , where (angles in the global coordinate system) ACBn  b  ω

n

2

ACBn  994.4 mm sec

ACB A

n B

Y

2

θACBn  θ  α

x

t ACB

0

Acceleration Scale

X

62.266

Repeat the procedure of step 4 for the equation in step 7 using ABn and ABt from step 3.

50 mm/s/s

150.000°

AC

θACBn  36.088 deg 8.

θ  173.912 deg

y

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 7-36-3

From the graphical solution above, mm

ka  50

Acceleration scale factor

sec AC  62.266 ka

2

AC  3113 mm sec

2

at an angle of 150 deg (global)

10. In order to solve for the accelerations at piston 8, we will need 5, and 5. From the graphical position solution above (in the local coordinate system), α  360  deg   90 deg  2  β

Coordinate system rotation angle: θ  θ  α

θ  83.000 deg ω 

Using equation 6.22a,

θ  180  deg  15.629 deg

   

a  ω cos θ  b cos θ

ω  0.515 rad sec

θ  195.629 deg

1

11. For point E, equation 7.4 becomes: AE = (ABt + ABn) + (AEBt + AEBn) , where (angles in the global coordinate system) 2

AEBn  b  ω

AEBn  18.583 mm sec

θAEBn  θ  α

θAEBn  225.629 deg

2

12. Repeat the procedure of step 4 for the equation in step 11 using ABn and ABt from step 3. n

AEB

0 A

50 mm/s/s

n B

Acceleration Scale

Y

x

y t EB

A

30.000° AE

X 12.934

Note that, at the acceleration scale chosen, AEBn is so small that it can hardly be seen in the layout above. 13. From the graphical solution above, Acceleration scale factor

ka  50

mm sec

AE  12.934 ka

2

AE  647 mm sec

2

at an angle of 30 deg (global)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-37-1

PROBLEM 7-37 Statement:

The 3-cylinder radial compressor in Figure P7-8c has the dimensions and crank angle given below. Find the piston accelerations A6, A7, and A8 for the position shown for  = 15 rad/sec CW, constant. Use an analytical method.

Given:

Link lengths: Link 2

a  19 mm

Offset

c  0  mm

b  70 mm

Link 3

Link 2 position, velocity, and acceleration: θ  37 deg

1.

α  0 

sec

rad sec

See Figure P7-8c and Mathcad file P0737. Y

Draw the linkage to scale and label it. x''

2.

rad

β  120  deg

Cylinder angular spacing: Solution:

ω  15

Determine 4 and d' using equation 4.17. Coordinate rotation angle α  90 deg (x'y' system)

 a sin θ  θ4  asin  b 

c

π 

 

d'  a  cos θ  b  cos θ4

x'''

y''' 6

E 8

C 3

2

5 X, y'

θ4  170.599 deg

B 1

d'  3.316 in

4 y''

3.

Determine the angular velocity of link 4 using equation 6.22a:

ω4  4.

 

a cos θ   ω b cos θ4

ω4  3.296

7 D

rad

37.000°

sec

x'

Using the Euler identity to expand equation 7.15b for AB, determine its magnitude, and direction (global).



 

   a ω2 cosθ  j  sinθ

AB  a  α sin θ  j  cos θ AB  ( 3414.167  2572.759i )

mm sec

2

AB  4275

The acceleration of pin B is

mm sec

5.

at

2

θAB  127 deg

Determine the angular acceleration of link 4 using equation 7.16d.

α4  6.

θAB  arg AB  α  360  deg

AB  AB

 

  b  cos θ4

a  α cos θ  a  ω  sin θ  b  ω4  sin θ4 2

2

α4  35.456

sec

Use equation 7.16e for the acceleration of pin D.

 

 

AD  a  α sin θ  a  ω  cos θ  b  α4 sin θ4  b  ω4  cos θ4 2

rad

2

2

2

DESIGN OF MACHINERY - 5th Ed.

mm

AD  3759

sec 7.

SOLUTION MANUAL 7-37-2

A negative sign means that AD is inward

2

Determine 3 and d'' using equation 4.17. θ  θ  120  deg

θ  157.000 deg

 a sin θ  c  π b  

  asin 

 

  173.912 deg

 

d''  a  cos θ  b  cos  8.

d''  2.052 in

Determine the angular velocity of link 3 using equation 6.22a:  

9.

(x''y'' system)

   

a cos θ   ω b cos 

  3.769

rad sec

Determine the angular acceleration of link 3 using equation 7.16d.

 

 

  b  cos  2

2

 

a  α cos θ  a  ω  sin θ  b    sin 

  22.483

rad sec

2

10. Use equation 7.16e for the acceleration of pin C.

 

2

 

 

 

2

AC  a  α sin θ  a  ω  cos θ  b   sin   b    cos  AC  3113

mm sec

A positive sign means that AC is outward

2

11. Determine 5 and d''' using equation 4.17. θ  θ  120  deg

θ  277.000 deg

 a sin θ  c  π b  

θ5  asin 

(x'''y''' system)

θ5  195.629 deg

 

d'''  a  cos θ  b  cos θ5

d'''  2.745 in

12. Determine the angular velocity of link 5 using equation 6.22a:

ω5 

 

a cos θ   ω b cos θ5

ω5  0.515

rad sec

13. Determine the angular acceleration of link 5 using equation 7.16d.

α5 

 

  b  cos θ5

a  α cos θ  a  ω  sin θ  b  ω5  sin θ5 2

2

α5  62.869

sec

14. Use equation 7.16e for the acceleration of pin E.

 

 

AE  a  α sin θ  a  ω  cos θ  b  α5 sin θ5  b  ω5  cos θ5 AE  646.72

mm sec

2

2

rad

2

A positive sign means that AE is outward

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-38-1

PROBLEM 7-38 Statement:

The 3-cylinder radial compressor in Figure P7-8c has the dimensions and crank angle given below. Find and plot the piston accelerations A6, A7, and A8 for one revolution of the crank if  = 15 rad/sec CW, constant.

Given:

Link lengths: Link 2

a  19 mm

Offset

c  0  mm

Link 2 velocity, and acceleration: ω  15

1. 2.

rad sec

sec

2

Draw the linkage to scale and label it. Note that there are three local coordinate systems. Determine the range of motion for this slider-crank linkage. This will be the same in each coordinate frame.

Y

x'' 6

E 8

C 3

a b



2

5 X, y'

(x'y' system)

Determine the angular velocity of link 4 using equation 6.22a:

ω4 θ 

x'''

y'''

Determine 4 using equation 4.17.

 a sin θ  c  θ4 θ  asin  π b   4.

rad

See Figure P7-8c and Mathcad file P0738.

θ  0  deg 2  deg  360  deg 3.

α  0 

α  120  deg

Cylinder angular spacing: Solution:

b  70 mm

Link 3

B 1 4 y''

   ω cos θ4 θ 

7 D

cos θ

37.000° 5.

Determine the angular acceleration of link 4 using equation 7.16d.

α4 θ  6.

 

x'

   2    b  cos θ4 θ  2

a  α cos θ  a  ω  sin θ  b  ω4 θ  sin θ4 θ

Use equation 7.16e for the acceleration of pin D.

 

2     2  b  α4 θ  sin θ4 θ   b  ω4 θ  cos θ4 θ 

AD θ  a  α sin θ  a  ω  cos θ 

7.

Determine 3 using equation 4.17.

 a sin θ  α  c  π b  

θ3 θ  asin  8.

Determine the angular velocity of link 3 using equation 6.22a:

9.

a cos θ  α   ω b cos θ3 θ Determine the angular acceleration of link 3 using equation 7.16d.

ω3 θ 

    

(x''y'' system)

DESIGN OF MACHINERY - 5th Ed.

α3 θ 

SOLUTION MANUAL 7-38-2





  b  cos θ3 θ 

 2   

2

a  α cos θ  α  a  ω  sin θ  α  b  ω3 θ  sin θ3 θ

10. Use equation 7.16e for the acceleration of pin C.

 

2     2  b  α3 θ  sin θ3 θ   b  ω3 θ  cos θ3 θ 

AC θ  a  α sin θ  α  a  ω  cos θ  α 

11. Determine 5 and d''' using equation 4.17.

 a sin θ  2  α  b 

θ5 θ  asin 

c

π 

(x'''y''' system)

12. Determine the angular velocity of link 5 using equation 6.22a:

ω5 θ 





a cos θ  2  α   ω b cos θ5 θ

  

13. Determine the angular acceleration of link 5 using equation 7.16d.

α5 θ 





  b  cos θ5 θ  2

 2   

a  α cos θ  2  α  a  ω  sin θ  2  α  b  ω5 θ  sin θ5 θ

14. Use equation 7.16e for the acceleration of pin E.

 

2     2  b  α5 θ  sin θ5 θ   b  ω5 θ  cos θ5 θ 

AE θ  a  α sin θ  2  α  a  ω  cos θ  2  α 

15. Plot the piston accelerations. PISTON ACCELERATIONS 4

Acceleration, m/sec^2

2

0 2 4 6

0

30

60

90

120

150

180

210

Piston D Crank Angle, deg Piston C Piston D Piston E

240

270

300

330

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-39-1

PROBLEM 7-39 Statement:

Figure P7-9 shows a linkage in one position. Find the instantaneous accelerations of points A, B, and P if link O2A is rotating CW at 40 rad/sec.

Given:

Link lengths: Link 2 (A to B)

a  5.00 in

Link 3 (B to C)

b  4.40 in

Link 4 (C to D)

c  5.00 in

Link 1 (A to D)

d  9.50 in

Rpa  8.90 in

δ  56 deg

Coupler point:

Crank angle and motion: θ  50 deg Solution:

ω  40 rad sec

1

α  0  rad sec

2

See Figure P7-9 and Mathcad file P0739.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

P

K1 

d

K1  1.9000 2

K3 

d

K2 

a

c

K2  1.9000 2

2

a b c d

y

Y

2

K3  2.4178

2 a c

 

B

 

3

A  cos θ  K1  K2 cos θ  K3

 

B  2  sin θ

2

x 50.000°

3.

B  1.5321

14.000°

C  2.4537





2

B  4 A  C



θ  246.992 deg

θ  θ  360  deg

θ  113.008 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2 a b

 

D  cos θ  K1  K4 cos θ  K5

   

Use equation 4.13 to find values of 3 .



θ  2  atan2 2  D E  θ  θ  360  deg

K4  2.1591

E  1.5321

F  K1   K4  1   cos θ  K5



2

D  2.3605

E  2  sin θ

5.

X

O2

Use equation 4.10b to find values of 4 for the open circuit. θ  2  atan2 2  A B 

4.

O4

1

 

C  K1   K2  1   cos θ  K3 A  0.0607

4

A

2

E  4  D F

F  0.1539



θ  349.895 deg θ  10.105 deg

K5  2.4911

DESIGN OF MACHINERY - 5th Ed.

6.

7.

SOLUTION MANUAL 7-39-2

Determine the angular velocity of links 3 and 4 using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  41.552

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  26.320

rad sec rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ in

AA  ( 5142.3  6128.4i )

sec The acceleration of pin A is

in

AA  8000

sec 8.

θAA  arg AA

AA  AA

2

at 2

θAA  130.0 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  4.602 in

B  0.772 in

D  1.954 in

E  4.332 in

 

2

 

2

 

2

4

2

 

2

 

2

α  356.538

rad

 

C  a  α sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  1.398  10 in sec

 

2

3

2

 

F  a  α cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  4.273  10 in sec α  9.

C D  A  F A  E  B D

sec

α 

2

C  E  B F A  E  B D

α  2.977  10

Use equation 7.13c to determine the acceleration of point B.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 12346.3  9005.8i )

in sec

The acceleration of pin B is

2

θAB  arg AB

AB  AB in

AB  15282

sec

at 2

θAB  143.9 deg

10. Use equations 7.32 to find the acceleration of the point C.



      Rpa ω   cos θ  δ  j  sin θ  δ 

ACA  Rpa α sin θ  δ  j  cos θ  δ 2

AC  AA  ACA AC  AC

AC  23073

in sec

2

arg AC  111.525 deg

3 rad

sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-40-1

PROBLEM 7-40 Statement:

Figure P7-10 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the acceleration of the coupler point P at 2-deg increments of crank angle. Check your results with program FOURBAR.

Units:

rpm  2  π rad min

Given:

Link lengths:

Solution: 1. 2.

1

Link 2 (O2 to A)

a  10 mm

Link 3 (A to B)

b  20.6 mm

Link 4 (B to O4)

c  23.3 mm

Link 1 (O2 to O4)

d  22.2 mm

Coupler point:

Rpa  30.6 mm

δ  31 deg

Crank motion:

ω  100  rpm

α  0  rad sec

See Figure P7-10 and Mathcad file P0740.

Draw the linkage to scale and label it. Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.2200 2

K3 

 

 

B

y

d

3

c

K2  0.9528 2

2

a b c d

b p

K3  1.5265

2 a c

 

A

 

2

a

 

B θ  2  sin θ

4

2

 

 

1

O2



 



 

 2  4 A θ Cθ 

 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

K4  1.0777

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 Use equation 4.13 to find values of 3 .

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

x O4

Use equation 4.10b to find values of 4 for the open circuit. θ θ  2   atan2 2  A θ B θ 

5.

4

c d

C θ  K1   K2  1   cos θ  K3

4.

P

2

A θ  cos θ  K1  K2 cos θ  K3

3.

2

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 using equations 6.18.

K5  1.1512

DESIGN OF MACHINERY - 5th Ed.

 

a  ω

 

a  ω

ω θ 

b

ω θ  7.

c

SOLUTION MANUAL 7-40-2



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 8.

Use equations 7.12 to determine the angular accelerations of link 3.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

 

 

2

 

 2     c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C' θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F' θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ  9.

        A'  θ  E' θ  B' θ  D' θ C' θ  D' θ  A' θ  F' θ

Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ  δ  j  sin θ θ  δ  AP θ  AA θ  APA θ APA θ  Rpa α θ  sin θ θ  δ  j  cos θ θ  δ

 

 

θAP θ  arg AP θ 

AP θ  AP θ

10. Plot the magnitude and direction of the coupler point P. (See next page.) θ  0  deg 1  deg  360  deg MAGNITUDE OF COUPLER POINT ACCELERATION

Acceleration, in/sec^2

200

150

100

50

0

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-40-3

DIRECTION OF COUPLER POINT ACCELERATION 200

Direction Angle, deg

100

0

 100

 200

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-41-1

PROBLEM 7-41 Statement:

Figure P7-11 shows a linkage that operates at 500 crank rpm. Find and plot the magnitude and direction of the acceleration of point B at 2-deg increments of crank angle. Check your result with program FOURBAR.

Given:

Link lengths: Link 2 (O2 to A)

a  2.000  in

Link 3 (A to B)

b  8.375  in

Link 4 (B to O4)

c  7.187  in

Link 1 (O2 to O4)

d  9.625  in

ω  500  rpm

Input crank angular velocity

α  0  rad sec Solution:

2

1

See Figure P7-11 and Mathcad file P0741.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof crank rocker.

A

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  4.8125 2

2

a b c d

O2 d c

4

1

2

K3  2.7186

2 a c

 

 

O4

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

K4  1.1493

K5  3.4367

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

B

2

K2  1.3392

2

K3 

3 2

θ  0  deg 2  deg  360  deg 3.

ω  52.360 rad sec

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

DESIGN OF MACHINERY - 5th Ed.

 

ω θ 

 

ω θ  8.

SOLUTION MANUAL 7-41-2

    b sin θ θ  θ θ  a  ω sin θ  θ θ   c sin θ θ  θ θ  a  ω

sin θ θ  θ



Use equations 7.12 to determine the angular acceleration of link 4.

     D θ  c cos θ θ 

     E θ  b  cos θ θ 

A θ  c sin θ θ

B θ  b  sin θ θ

 

 

2

 

 2

    c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ  9.

        A  θ  E θ  B θ  D θ C θ  E θ  B θ  F θ

Determine the acceleration of point B using equations 7.13c.

 

 

    j  cosθθ  c ωθ2 cosθθ  j  sinθθ

AB θ  c α θ  sin θ θ

 

 

θAB θ  arg AB θ 

AB θ  AB θ

10. Plot the magnitude and angle of the acceleration at point B. MAGNITUDE OF ACCELERATION AT B Acceleration, in/sec^2

8000 6000 4000 2000 0

0

60

120

180

240

300

360

300

360

DIRECTION OF ACCELERATION AT B

Angle, deg

100

0

 100

 200

0

60

120

180

240

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-42-1

PROBLEM 7-42 Statement:

Figure P7-12 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the acceleration of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR. Link lengths:

Given:

Solution:

Link 2 (O2 to A)

a  0.785  in

Link 3 (A to B)

b  0.356  in

Link 4 (B to O4)

c  0.950  in

Link 1 (O2 to O4)

d  0.544  in

Coupler point:

Rpa  1.09 in

δ  0  deg

Crank speed:

ω  20 rpm

α  0  rad sec

2

See Figure P7-12 and Mathcad file P0742.

1.

Draw the linkage to scale and label it.

2.

Using the geometry defined in Figure 3-1a in the text, determine the input crank angles (relative to the line O2O4) at which links 2 and 3, and 3 and 4 are in toggle.

y

 a2  d 2  ( b  c) 2  θ  acos 2 a d  

3 B 3 A

θ  158.286 deg 4

θ  θ  0.5 deg θ  1  deg  θ  0.5 deg 3.

d

K2 

a

K1  0.6930 2

K3 

2

 

d

x O2

c

2

2

a b c d

2

 

K3  1.1317

2 a c

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 

C θ  K1   K2  1   cos θ  K3

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

O4

K2  0.5726

B θ  2  sin θ 4.

2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

P

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

K4  1.5281

      E θ  2  sin θ F  θ  K1   K4  1   cos θ  K5

D θ  cos θ  K1  K4 cos θ  K5

6.

Use equation 4.13 to find values of 3 .

 





 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

K5  0.2440

DESIGN OF MACHINERY - 5th Ed.

7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

SOLUTION MANUAL 7-42-2

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 9.

Use equations 7.12 to determine the angular accelerations of link 3.

     D' θ  c cos θ θ 

     E' θ  b  cos θ θ 

A' θ  c sin θ θ

 

 

 

 

2

B' θ  b  sin θ θ

 

 2     c ωθ2 cosθθ

C' θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ

   2     c ωθ2 sinθθ C'  θ  D' θ  A'  θ  F' θ A'  θ  E' θ  B' θ  D' θ 2

F' θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

10. Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ  δ  j  sin θ θ  δ  AP θ  AA θ  APA θ APA θ  Rpa α θ  sin θ θ  δ  j  cos θ θ  δ

 

 

θAP θ  arg AP θ 

AP θ  AP θ

11. Plot the magnitude and direction of the coupler point P. MAGNITUDE OF COUPLER POINT ACCELERATION

Acceleration, in/sec^2

40

30

20

10

0  200

 150

 100

 50

0

50

100

150

200

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-42-3

DIRECTION OF COUPLER POINT ACCELERATION 200

Direction Angle, deg

100

0

 100

 200  200

 150

 100

 50

0

Crank Angle, deg

50

100

150

200

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-43-1

PROBLEM 7-43 Statement:

Figure P7-13 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the acceleration of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.86 in

Link 3 (A to B)

b  1.85 in

Link 4 (B to O4)

c  0.86 in

Link 1 (O2 to O4)

d  2.22 in

Coupler point:

Rpa  1.33 in

δ  0  deg

Crank motion:

ω  80 rpm

α  0  rad sec

2

See Figure P7-13 and Mathcad file P0743.

Draw the linkage to scale and label it.

y

B

3 4 P

O4

O2 3 2

A

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

2



b c a d b c a d

θ2toggle  acos arg2

arg1  1.228

arg2  0.439

θ2toggle  116.0 deg

The other toggle angle is the negative of this. Thus, θ  θ2toggle  0.5 deg θ2toggle  1  deg  θ2toggle  0.5 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-43-2

d

K1 

K2 

a

K1  2.5814 2

2

2

2

K3  2.0181

2 a c

 

c

K2  2.5814

a b c d

K3 

d

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  1.2000

2 a b

 

K5  2.6244

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 .

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 9.

Use equations 7.12 to determine the angular accelerations of link 3.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

 

 

2

 

 2     c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C' θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F' θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

DESIGN OF MACHINERY - 5th Ed.

 

α θ 

SOLUTION MANUAL 7-43-3

        A'  θ  E' θ  B' θ  D' θ C' θ  D' θ  A' θ  F' θ

10. Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ  δ  j  sin θ θ  δ 

APA θ  Rpa α θ  sin θ θ  δ  j  cos θ θ  δ

 

 

 

 

 

AP θ  AA θ  APA θ

θAP θ  arg AP θ 

AP θ  AP θ

11. Plot the magnitude and direction of the coupler point P.

Acceleration, in/sec^2

MAGNITUDE OF COUPLER POINT ACCELERATION

150

100

50

0  200

 100

0

100

200

DIRECTION OF COUPLER POINT ACCELERATION 200

Direction Angle, deg

100

0

 100

 200  200

 100

0

100

200

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-44-1

PROBLEM 7-44 Statement:

Figure P7-14 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the acceleration of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.72 in

Link 3 (A to B)

b  0.68 in

Link 4 (B to O4)

c  0.85 in

Link 1 (O2 to O4)

d  1.82 in

Coupler point:

Rpa  0.97 in

δ  54 deg

Crank motion:

ω  80 rpm

α  0  rad sec

2

See Figure P7-14 and Mathcad file P0744.

Draw the linkage to scale and label it. P y

B

3 4

A 2

x O2

2.

O4

Determine the range of motion for this non-Grashof triple rocker using equations 4.37. 2

arg1 

2

2



2 a d 2

arg2 

2

a d b c

2

2

a d b c 2 a d

2



b c

arg1  1.451

a d b c

arg2  0.568

a d

θ2toggle  acos arg2

θ2toggle  55.4 deg

The other toggle angle is the negative of this. Thus, θ  θ2toggle  0.5 deg θ2toggle  1  deg  θ2toggle  0.5 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d a

K1  2.5278

K2 

d c

K2  2.1412

DESIGN OF MACHINERY - 5th Ed. 2

SOLUTION MANUAL 7-44-2

2

2

a b c d

K3 

2

K3  3.3422

2 a c

 

 

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  2.6765

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K5  3.6465

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 .



 



 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Using the Euler identity to expand equation 7.13a for AA.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 9.

Use equations 7.12 to determine the angular accelerations of link 3.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

 

 

2

 

 2     c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C' θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F' θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

        A'  θ  E' θ  B' θ  D' θ C' θ  D' θ  A' θ  F' θ

10. Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ  δ  j  sin θ θ  δ  AP θ  AA θ  APA θ APA θ  Rpa α θ  sin θ θ  δ  j  cos θ θ  δ

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 7-44-3

 

θAP θ  arg AP θ 

AP θ  AP θ

11. Plot the magnitude and direction of the coupler point P.

Acceleration, in/sec^2

MAGNITUDE OF COUPLER POINT ACCELERATION

200

100

0  60

 40

 20

0

20

40

60

Crank Angle, deg

DIRECTION OF COUPLER POINT ACCELERATION

Direction Angle, deg

50

0

 50

 100  60

 40

 20

0 Crank Angle, deg

20

40

60

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-45-1

PROBLEM 7-45 Statement:

Given:

Figure P7-15 shows a power hacksaw that is an offset crank-slider mechanism that has the dimensions given below. Draw an equivalent linkage diagram and then calculate and plot the acceleration of the saw blade with respect to the piece being cut over one revolution of the crank, which rotates at 50 rpm. Link lengths: Link 2 (O2 to A)

a  75 mm

Link 3 (A to B)

b  170  mm ω  50 rpm

Input crank angular velocity Solution: 1.

c  45 mm

Offset

α  0  rad sec

2

See Figure P7-15 and Mathcad file P0745.

Draw the equivalent linkage to a convenient scale and label it.

y

B

3

b

A

4 a 2

c

2

O2 2.

Determine the range of motion for this slider-crank linkage. θ  0  deg 2  deg  360  deg

3.

Determine 3 using equations 4.16 for the crossed circuit.

 a  sin θ  c   b  

 

θ θ  asin 4.

Determine the angular velocity of link 3 using equation 6.22a:

 

ω θ  5.

b



   ω cos θ θ  cos θ

Determine the angular acceleration of link 3 using equation 7.16d.

 

α θ  6.

a

 

   2    b  cos θ θ  2

a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

Use equation 7.16e for the acceleration of pin B.

 

2     2  b  α θ  sin θ θ   b  ω θ  cos θ θ 

AB θ  a  α sin θ  a  ω  cos θ 

x

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-45-2

ACCELERATION OF POINT B 4

Acceleration, m/sec^2

2

0

2

4

0

60

120

180 Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-46-1

PROBLEM 7-46 Statement:

Figure P7-16 shows a walking beam indexing and pick-and-place mechanism that can be analyzed as two fourbar linkages driven by a common crank. Calculate and plot the relative acceleration between points E and P for one revolution of gear 2.

Given:

Link lengths (walking-beam linkage): Link 2 (O2 to A)

a'  40 mm

Link 3 (A to D)

b'  108  mm

Link 4 (O4 to D)

c'  40 mm

Link 1 (O2 to O4)

d'  108  mm

Link lengths (pick and place linkage): Link 2 (O5 to B)

a  13 mm

Link 7 (B to C)

b  193  mm

Link 6 (C to O6)

c  92 mm

Link 1 (O5 to O6)

d  128  mm

Rocker point E:

u  164  mm

Crank speed:

ω  10 rpm

1.

2

ϕ  143  deg

Gears 4 & 5 phase angle Solution:

α  0  rad sec

See Figure P7-16 and Mathcad file P0746.

Draw the walking-beam linkage to scale and label it. 30 mm Y

P

58 mm

80°

A

D b'

c'

a' d'

x'

O2

O4

X

y'

2.

Determine the range of motion for this mechanism. θ  0  deg 2  deg  360  deg

3.

(local x'y' coordinate system)

This part of the mechanism is a special-case Grashof in the parallelogram configuration. As such, the coupler does not rotate, but has curvilinear motion with every point on it having the same velocity and acceleration. Therefore, it is only necessary to calculate the X-component of the acceleration at point A in order to determine the acceleration of the cylinder center, P.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

AAx θ  Re AA θ In the global coordinate frame,

 

 

AP θ  AAx θ 4.

Draw the pick-and-place linkage to scale and label it.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-46-2

E

C

7 6

b

c

O6 5.

B

a O5

Establish the relationship between 5 and 2. Note that gear 5 is driven by gear 4 and that their ratio is -1 (i.e., they rotate in opposite directions with the same speed). Also, because the walking beam fourbar is a special Grashof, 4 = 2. Thus,

 

θ θ  θ  ϕ 6.

5

d 1

ω  ω

and

α  α

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  9.8462 2

2

a b c d

2

K3  5.1137

2 a c

 

c

K2  1.3913

2

K3 

d

    K1  K2 cosθθ  K3

A θ  cos θ θ

 

  

B θ  2  sin θ θ

 

     K3

C θ  K1   K2  1   cos θ θ 7.

Use equation 4.10b to find values of 6 for the crossed circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  8.

B θ

Determine the values of the constants needed for finding 7 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

2 a b

    K1  K4 cosθθ  K5

D θ  cos θ θ

 

2

c d a b

  

E θ  2  sin θ θ

K4  0.6632

K5  9.0351

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-46-3

 

     K5

F θ  K1   K4  1   cos θ θ 9.

Use equation 4.13 to find values of 7 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

 2  4 Dθ F θ 

E θ

10. Determine the angular velocity of links 7 and 6 using equations 6.18.

         

ω θ 

 

a  ω sinθ θ  θ θ  b sin θ θ  θ θ

 

a  ω sin θ θ  θ θ  c sin θ θ  θ θ

ω θ 

     

   

11. Use equations 7.12 to determine the angular acceleration of link 6.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

  

 

  

 

    a ω2 cosθθ  2 2  b  ω θ θ   cos θ θ   c ω θ  cos θ θ 

 

    a ω2 sinθθ  2 2  b  ω θ θ   sin θ θ   c ω θ  sin θ θ 

C θ  a  α sin θ θ

F θ  a  α cos θ θ

 

α θ 

        A  θ  E θ  B θ  D θ C θ  E θ  B θ  F θ

12. Determine the acceleration of the rocker point E using equations 7.13c (substituting the distance to point E from O6 for the distance c).

 

 

    j  cosθθ  u ωθ2 cosθθ  j  sinθθ

AE θ  u  α θ  sin θ θ

13. Transform this into the global XY system.

     AEX  θ  AEx  θ

     AEY  θ  AEx  θ

AEx θ  Re AE θ

 

 

AEy θ  Im AE θ

 

AEXY θ  AEX θ  j  AEY θ

14. Calculate and plot the acceleration of E relative to P. (See next page).

 

 

 

AEP θ  AEXY θ  AP θ

 



 

AEPX θ  Re AEP θ

 



 

AEPY θ  Im AEP θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-46-4

RELATIVE ACCELERATION of E with respect to P 80 70

Acceleration, mm/sec^2

60 50 40 30 20 10 0

0

30

60

90

120

150

180

210

Crank Angle, deg

240

270

300

330

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-47-1

PROBLEM 7-47 Statement:

Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder. In the position shown, it has the dimensions given below. The V-links are rigidly attached to O4A. The air cylinder is retracted at a constant acceleration of 0.1 m/sec2. Draw a kinematic diagram of the mechanism, write the necessary equations, and calculate and plot the angular acceleration of the paper roll and the linear acceleration of its center as it rotates through 90 deg CCW from the position shown.

Given:

Link lengths and angles:

Paper roll location from O4:

Link 4 (O4 to A)

c  300  mm

u  707.1  mm

Link 1 (O2 to O4)

d  930  mm

δ  181  deg

Link 4 initial angle

θ  62.8 deg

addot  100  mm sec

Input cylinder acceleration Solution: 1.

with respect to local x axis 2

See Figure P7-17 and Mathcad file P0747.

Draw the mechanism to scale and define a vector loop using the fourbar derivation in Section 6.7 as a model. V-Link

Roll Center

707.107

45.000° x

O4 4

c 46.000° A

1

O4

d

4

3

O2

2 b

R1

R4 2 A

R3

R2

O2

a f y

2.

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for f, 2, and 4. R1  R4  R2  R3 d e

j  θ

 c e

j  θ

(a)

 a  e

j  θ

 b e

j  θ

(b)

where a is the distance from the origin to the cylinder piston, a variable; b is the distance from the cylinder piston to A, a constant; and c is the distance from 4 to point A, a constant. Angle 1 is zero, 3 = 2, and 4 is the variable angle that the rocker arm makes with the x axis. Solving the position equations: Let

f  a  b

then, making this substitution and substituting the Euler equivalents,

  

 

  

 

d  c cos θ  j  sin θ  f  cos θ  j  sin θ

(c)

Separating into real and imaginary components and solving for 2 and f,

 



 

 

θ θ  atan2 d  c cos θ c sin θ

(d)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-47-2

  sin θ θ  c sin θ

 

f θ 

(e)

For constant deceleration of the hydraulic cylinder rod, the velocity of the rod is

 

adot θ  addot

  

 

2  f θ  f θ addot

Differentiate equation b. j  c ω e

j  θ



 d f   ej  θ   j  f  ω  ej  θ     dt 

(f)

Substituting the Euler equivalents,



 

 

c ω sin θ  j  cos θ 

d f   dt

   cos θ   j  sin θ    f  ω   sin θ   j  cos θ         

(g)

Separating into real and imaginary components and solving for 4 and 2. Note that df/dt = adot.

 

ω θ 

 

ω θ  3.

  c sin θ θ  θ adot θ

(h)

 

     f  θ  sin θ θ 

c ω θ  adot θ  cos θ θ

(i)

Differentiate equation f, expand the result and separate into real and imaginary parts to solve for 4. j  c α e

j  θ

2

2 j  θ

 j  c ω  e

 addot e

j  θ

 j  adot ω e

 j  adot ω e

j  θ

j  θ

 j  f  α e



j  θ

(f) 2

Separating into real and imaginary components and solving for 4.

 addot  2 adot θ   ω  θ   f  θ   ω  θ  2  sin 2  θ  θ             

 

α θ 





 

c sin θ  θ θ

Plot 4 over a range of 4 of θ  θ θ  1  deg  θ  90 deg ANGULAR ACCELERATION, LINK 4 Angular Acceleration, rad/sec^2

4.

 2    

 c ω θ  sin θ θ  θ

1 0 1 2 3 4 60

80

100

120

Link 4 Angle, deg

140

2 j  θ

 j  f  ω  e

160

DESIGN OF MACHINERY - 5th Ed.

5.

SOLUTION MANUAL 7-47-3

Determine the acceleration of the center of the paper roll using equation 7.31. The direction is in the local xy coordinate system.

 

 







AU θ  u  α θ  sin θ  δ  j  cos θ  δ

 

 

θAU  θ  arg AU θ 

AU θ  AU θ

Plot the magnitude and direction of the acceleration of the paper roll center.

Acceleration, m/sec^2

MAGNITUDE OF PAPER CENTER ACCELERATION

2

1

0 60

80

100

120

140

160

Rocker Arm Position, deg

DIRECTION OF PAPER CENTER ACCELERATION 200

100 Vector Angle, deg

6.

  u ωθ2 cosθ  δ  j  sinθ  δ

0

 100

 200 60

80

100

120

Rocker Arm Position, deg

140

160

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-48-1

PROBLEM 7-48 Statement:

Figure P7-18 shows a mechanism and its dimensions. Find the accelerations of points A, B, and C for the position shown.

Given:

Lengths and angles:

Solution: 1.

Link 2 (O2 to A)

a  0.80 in

Link 1 (O2 to O4)

d  1.85 in

Link 4 (O4 to B)

a'  2.97 in

Link 5 (B to C)

b'  2.61 in

Crank angle

θ  37.5 deg

Coordinate rotation angle

β  81.5 deg

Input crank motion

ω  40

Local xy system c'  3.25 in

Slider-crank offset

rad

rad

α  1500

min

min

2

See Figure P7-18 and Mathcad file P0748.

Draw the mechanism to scale and define a vector loop for the input portion (links 1, 2, 3, and 4) using the fourbar crank-slider derivation in Section 7.3 as a model. 6 C

5 B

Y 4

O2

y R2

2 A

3

y

O2

A

R1 R3

37.5° X

O4 x

2.

O4 x

81.5°

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b (distance from O4 to A). R2  R1  R3 a e

j  θ

 d  b  e

j  θ

Substituting the Euler equivalents,

  

   d  bcosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for 3 and b.



 

 

θ  atan2 a  cos θ  d a  sin θ

θ  158.2 deg

DESIGN OF MACHINERY - 5th Ed.

b  3.

SOLUTION MANUAL 7-48-2

  sin θ

a  sin θ

b  1.31 in

Differentiate the position equation, expand it and solve for 3 and bdot. a  j  ω e ω 

j  θ

a  ω b

bdot 

 b  j  ω e



j  θ

 bdot e

j  θ



 cos θ  θ

 

ω  0.208

 

a  ω cos θ  b  ω cos θ

 

rad sec

bdot  0.459

sin θ 4.

sec

Differentiate the velocity equation, expand it and solve for 3. a  j   e

j  θ

2 j  θ

2

 a  j  ω  e

 bdot j  ω e

j  θ

 b  j   e

2 j  θ

2

 b  j  ω  e α 

1 b

j  θ

 bddot e



j  θ

 bdot j  ω e

j  θ

  a  α cos θ  θ  a  ω  sin θ  θ  2  bdot ω





2





rad

α  0.249

sec 5.

in

2

Determine the acceleration of point A on link 2 (in the local xy coordinate system) using equations 7.13a.



 

   a ω2 cosθ  j  sinθ

AA  a  α sin θ  j  cos θ AA  AA

in

AA  0.487

sec 6.

2

θAA  arg AA

θAA  174.348 deg

Determine the acceleration of points A and B on link 3 (in the Global XY coordinate system) using equations 7.13a. Transform 3 to the global coordinate frame:



 

θ  θ  β  360  deg

θ  120.337 deg

   b ω2 cosθ  j  sinθ

AA3  b  α sin θ  j  cos θ AA3  AA3

AA3  0.331

in sec



 

2

θAA3  arg AA3

θAA3  20.518 deg

   a' ω2 cosθ  j  sinθ

AB  a' α sin θ  j  cos θ AB  AB

AB  0.752

in sec

7.

2

θAB  arg AB

Determine 5 using equation 4.16.

 a' sin θ  c'  π b'  

θ  asin 

θ  195.254 deg

θAB  20.518 deg

DESIGN OF MACHINERY - 5th Ed.

8.

Determine the angular velocity of link 5 using equation 6.22a. ω 

9.

SOLUTION MANUAL 7-48-3

   

a' cos θ   ω b' cos θ

ω  0.124

rad sec

Determine the angular acceleration of link 5 using equation 7.16d.

α 

 

  b' cos θ 2

2

 

a' α cos θ  a' ω  sin θ  b' ω  sin θ

α  0.100

sec

10. Use equation 7.16e for the acceleration of pin C.

 

2

 

 

2

 

AC  a' α sin θ  a' ω  cos θ  b' α sin θ  b' ω  cos θ AC  0.73

in sec

2

rad

A positive sign means that AC is to the right

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-49-1

PROBLEM 7-49 Statement:

Figure P7-19 shows a walking beam mechanism. Calculate and plot the acceleration Aout for one revolution of the input crank 2 rotating at 100 rpm.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  1.00 in

Link 3 (A to B)

b  2.06 in

Link 4 (B to O4)

c  2.33 in

Link 1 (O2 to O4)

d  2.22 in

Coupler point:

p  3.06 in

δ  31 deg

Crank speed:

ω  100  rpm

α  0  rad sec

2

See Figure P7-19 and Mathcad file P0749.

Draw the linkage to scale and label it. Y

x

y O4 4

1 26.00°

X

O2

P

2 A 3 B

2.

Determine the range of motion for this Grashof crank rocker. θ  0  deg 2  deg  360  deg

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  2.2200 2

K3 

 

d c

K2  0.9528 2

2

a b c d 2 a c

2

K3  1.5265

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find values of 4 for the crossed circuit.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-49-2



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. 2

d

K4 

K5 

b

 

2

2

c d a b

2

K4  1.0777

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K5  1.1512

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

a  ω

 

a  ω

ω θ 

ω θ  8.

 2  4 Dθ F θ 

E θ

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the acceleration of point A using equation 7.13a.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 9.

Use equations 7.12 to determine the angular acceleration of link 3.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

  

 

  

 

 

2

 

 2

    c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

        A  θ  E θ  B θ  D θ

C θ  D θ  A θ  F θ

10. Determine the acceleration of the coupler point P using equations 7.32.

 

           2  p  ω θ   cos θ θ  δ  j  sin θ θ  δ 

APA θ  p  α θ  sin θ θ  δ  j  cos θ θ  δ

 

 

 

AP θ  AA θ  APA θ

11. Plot the X-component (global coordinate system) of the acceleration of the coupler point P. (See next page). Coordinate rotation angle:

 

  

α  26 deg

  

Aout θ  Re AP θ  cos α  Im AP θ  sin α

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-49-3

Aout

Acceleration, in/sec^2

400

200

0

 200

 400

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-50-1

PROBLEM 7-50 Statement:

Given:

Figure P7-20 shows a surface grinder. The workpiece is oscillated under the spinning grinding wheel by the slider-crank linkage that has the dimensions given below. Calculate and plot the acceleration of the grinding wheel contact point relative to the workpiece over one revolution of the crank. Link lengths: Link 2 (O2 to A)

a  22 mm

Link 3 (A to B)

b  157  mm

Grinding wheel diameter

d  90 mm

Input crank angular velocity

ω  30 rpm

Offset

CCW

Grinding wheel angular velocity ω  3450 rpm Solution: 1.

CCW

See Figure P7-20 and Mathcad file P0750.

Draw the linkage to scale and label it.

5

4 2 3

A

B

2

c

O2 2.

Determine the range of motion for this slider-crank linkage. θ  0  deg 2  deg  360  deg

3.

Determine 3 using equation 4.17.

 a sin θ  b 

 

θ θ  asin  4.

 

a b



   ω cos θ θ  cos θ

Determine the angular acceleration of link 3 using equation 7.16d.

 

α θ  6.

π 

Determine the angular velocity of link 3 using equation 6.22a:

ω θ  5.

c

 

   2    b  cos θ θ  2

a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

Use equation 7.16e for the acceleration of pin B.

 

2     2  b  α θ  sin θ θ   b  ω θ  cos θ θ 

AB θ  a  α sin θ  a  ω  cos θ 

c  40 mm

α  0  rad sec

2

DESIGN OF MACHINERY - 5th Ed.

The acceleration of the grinding wheel contact point relative to the workpiece, which has zero tangential acceleration due to constant angular velocity, is AB (positive to the right). RELATIVE ACCELERATION AT CONTACT POINT 200

100

Acceleration, mm/sec^2

7.

SOLUTION MANUAL 7-50-2

0

 100

 200

 300

0

60

120

180 Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-51-1

PROBLEM 7-51 Statement:

Figure P7-21 shows a drag-link mechanism with dimensions. Write the necessary equations and solve them to calculate and plot the angular acceleration of link 4 for an input of 2 = 1 rad/sec. Comment on the uses for this mechanism.

Given:

Link lengths: Link 2 (L2)

a  1.38 in

Link 3 (L3)

b  1.22 in

Link 4 (L4)

c  1.62 in

Link 1 (L1)

d  0.68 in

ω  1  rad sec

Input crank angular velocity Solution:

1

α  0  rad sec

CW

2

See Figure P7-21 and Mathcad file P0751.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof double crank.

y

A

3 B

θ  0  deg 2  deg  360  deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.4928 2

K3 

 

2 2

d

4

c

K2  0.4198 2

2

a b c d

x O2

2

K3  0.7834

2 a c

 

 

 

A θ  cos θ  K1  K2 cos θ  K3 4.

O4

 



 



 

 2  4 A θ Cθ 

 

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

2 a b

 

K4  0.5574

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  7.

 

C θ  K1   K2  1   cos θ  K3

Use equation 4.10b to find values of 4 for the open circuit. θ θ  2   atan2 2  A θ B θ 

5.

 

B θ  2  sin θ

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

ω θ 

a  ω b



    sin θ θ  θ θ  sin θ θ  θ

K5  0.3655

DESIGN OF MACHINERY - 5th Ed.

 

ω θ  8.

a  ω c



SOLUTION MANUAL 7-51-2



  sin θ θ  θ θ  sin θ  θ θ

Use equations 7.12 to determine the angular acceleration of link 4.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

 

 

 

2

 

 

  

 

  

 2

    c ωθ2 cosθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ

   2     c ωθ2 sinθθ C θ  E θ  B θ  F  θ A  θ  E θ  B θ  D θ 2

F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

Plot the angular acceleration of link 4.

ANGULAR ACCELERATION, LINK 4 2

Angular Acceleration, rad/sec^2

9.

1

0

1

2

0

60

120

180 Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-52-1

PROBLEM 7-52 Statement:

Figure P7-22 shows a mechanism with dimensions. Use a graphical method to calculate the accelerations of points A, B, and C for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle O2O4 makes with X axis

θ  56.5 deg

Link 2 (O2A)

a  1.35 in

Angle O2A makes with X axis

θ  14 deg

Link 4 (O4B)

e  1.36 in

Link 5 (BC)

f  2.69 in

Link 6 (CO6)

g  1.80 in

Angle CO6 makes with X axis

θ  88 deg

ω  20 rad sec

Motion of link 2 Solution: 1.

1

α  0  rad sec

CW

2

See Figure P7-22 and Mathcad file P0752.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  27.000

in sec

θVA3  θ  90 deg

θVA3  76.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-52-2

Y 0

10 in/sec

1.295 X V trans

V A3 2.369

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

10 in sec

in

Vtrans  1.295  in kv

Vtrans  12.950

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  12.95

in sec

Determine the angular velocity of link 4 using equation 6.7.

ω 

VA4 c

c  0.939  in and

ω  13.791

rad

θ  132.661  deg

CW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

θVA4  θ  90 deg 8.

in

Vslip  23.690

From the linkage layout above:

7.

1

Vslip  2.369  in kv

VA4  Vtrans 6.

V slip

VB  18.756

in sec

θVA4  42.661 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-52-3

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VCB

Direction of VB

B

Y O4

4

C A 3

Direction of VC 2

X O2

O6

VB

0

10 in/sec

Y

V CB X VC 2.088

9.

From the velocity triangle we have: Velocity scale factor:

kv 

10 in sec

1

θVC  θ  90 deg

in in

VC  2.088  in kv

VC  20.9

VCB  1.519  in kv

VCB  15.2

θVC  2.0 deg

sec in sec

10. Determine the angular velocity of links 5 and 6 using equation 6.7. ω 

ω 

VCB f VC g

ω  5.647

rad

CCW

sec

ω  11.600

rad sec

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-52-4

11. For the acceleration of point A, use equation 7.19: (AA2t + AA2n) = AA4t + AA4n + AAcor + AAslip , where AA2n  a  ω

2

AA2n  540.000 in sec

θAA  θ  180  deg

θAA  194.000 deg

AA2t  a  α

AA2t  0.000 in sec 2

2

2 2

AA4n  c ω

AA4n  178.6 in sec

θAA4n  θ

θAA4n  132.661 deg

AAcor  2  Vslip  ω

AAcor  653.430 in sec

θAAcor  θ  90 deg

θAAcor  222.661 deg

2

12. Repeat procedure of steps 3 and 7 for the equation in step 11.

1.751 slip

AA t

AA4 AA4

0

2.501 n A4

A

Y

100 IN/S/S

Acceleration Scale

88.220°

cor

AA

X

AA2

13. From the acceleration polygon above, Acceleration scale factor

in

ka  100 

sec

2 2

AA4  2.501  ka

AA4  250.1 in sec

AA4t  1.751  ka

AA4t  175.1 in sec

at an angle of 88.22 deg

2

The angular acceleration of link 4 is α 

AA4t c

α  186.5

rad sec

CCW

2

14. The graphical solution for accelerations in pin-jointed fourbars uses equation 7.4: (APt + APn) = (AAt + AAn) + (APAt + APAn)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-52-5

15. For point C, this becomes: (ACt + ACn) = (ABt + ABn) + (ACBt + ACBn) , where ACn  g  ω

2

ACn  242.2 in sec

θACn  θ  180  deg ABn  e ω

2

θACn  268.000 deg

2

ABn  258.7 in sec

2

θABn  θ  180  deg

θABn  312.661 deg

ABt  e α

ABt  253.6 in sec

θABt  θ  90 deg

θABt  222.661 deg

2

ACBn  f  ω

2

ACBn  85.78 in sec

2

θ  27.5 deg

θACBn  θ

θACBn  27.500 deg

16. Repeat procedure of step 12 for the equation in step 15. Y

Y X

X 84.453°

91.769°

2.443 A

n B

0

100 IN/S/S

n B

A

Acceleration Scale

3.623

ACn

ABt

AC ACt

t ACB

ABt

AB n ACB

17. From the acceleration polygon above, Acceleration scale factor

ka  100 

in sec

2 2

AB  3.623  ka

AB  362.3 in sec

AC  2.443  ka

AC  244.3 in sec

2

at an angle of -91.8 deg at an angle of -84.5 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-53-1

PROBLEM 7-53 Statement:

Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical method to calculate the accelerations of points A, B, and C for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle O2O4 makes with X axis

Link 2 (L2)

a  1.00 in

Angle link 2 makes with X axis θ  99 deg

Link 4 (L4)

e  4.76 in

Link 5 (L5)

f  4.55 in

Offset (O2C)

g  2.86 in

Angular velocity of link 2 Solution: 1.

ω  10 rad sec

1

CCW

θ  195.5  deg

α  0  rad sec

2

See Figure P7-23 and Mathcad file P0753.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission

Direction of VA3

4

Y Axis of slip A 3 2.068

2 44.228° O2

X O4

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  10.000

in sec

θVA3  θ  90 deg

θVA3  189.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-53-2

a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line. Y 0

5 in/sec

X

VA3 V trans

1.154

4.

kv 

5  in sec

1

in in

Vslip  1.634  in kv

Vslip  8.170

Vtrans  1.154  in kv

Vtrans  5.770

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  Vtrans

6.

1.634

From the velocity triangle we have: Velocity scale factor:

5.

Vslip

VA4  5.77

in sec

Determine the angular velocity of link 4 using equation 6.7. From the linkage layout above: ω 

VA4 c

c  2.068  in and

ω  2.790

rad

θ  44.228 deg

CCW

sec

7.

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. (See next page.)

8.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-53-3

Direction of VCB Direction of VB B 5 5.805°

C 6

4 Direction of VC

Y

A 3

2 44.228° O2

X O4

9.

From the velocity triangle we have: VB

kv 

Velocity scale factor: VC  1.659  in kv

5  in sec

VC  8.30

0

1

5 in/sec

in in

Y

sec V CB

θVC  180  deg VCB  1.913  in kv

VCB  9.57

X

VC

in

1.659

sec

10. Determine the angular velocity of link 5 using equation 6.7. From the linkage layout above: ω 

VCB

θ  5.805  deg

ω  2.102

f

rad

CCW

sec

11. For the acceleration of point A, use equation 7.19: (AA2t + AA2n) = AA4t + AA4n + AAcor + AAslip , where AA2n  a  ω

2

AA2n  100.000 in sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-53-4

θAA  θ  180  deg

θAA  279.000 deg

AA2t  a  α

AA2t  0.000 in sec 2

2 2

AA4n  c ω

AA4n  16.099 in sec

θAA4n  θ  180  deg

θAA4n  224.228 deg

AAcor  2  Vslip  ω

AAcor  45.591 in sec

θAAcor  θ  90 deg

θAAcor  45.772 deg

2

(Vslip is negative)

12. Repeat procedure of steps 3 and 7 for the equation in step 11. Y

X

n

AA4

1.581 69.810° AA4

t AA4

0

25 IN/S/S

slip

AA

Acceleration Scale

1.444

AA2 cor

AA

13. From the acceleration polygon above, Acceleration scale factor

in

ka  25

sec

2 2

AA4  1.581  ka

AA4  39.5 in sec

AA4t  1.444  ka

AA4t  36.1 in sec

at an angle of -69.81 deg

2

The angular acceleration of link 4 is α 

AA4t

α  17.5

c

rad sec

CW

2

14. The graphical solution for accelerations in pin-jointed fourbars uses equation 7.4: (APt + APn) = (AAt + AAn) + (APAt + APAn) 15. For point C, this becomes: AC = (ABt + ABn) + (ACBt + ACBn) , where ABn  e ω

2

θABn  θ  180  deg

ABn  37.056 in sec

θABn  224.228 deg

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-53-5 2

ABt  e α

ABt  83.09 in sec

θABt  θ  90 deg

θABt  45.772 deg

2

ACBn  f  ω

ACBn  20.108 in sec

θACBn  θ

θACBn  5.805 deg

2

16. Repeat procedure of step 12 for the equation in step 15. 1.717

Y

AC

n

AB

X

69.808°

t ACB

0

25 IN/S/S

Acceleration Scale 3.639

AB t B

A

n

ACB

17. From the acceleration polygon above, Acceleration scale factor

ka  25

in sec

2 2

AB  3.639  ka

AB  91.0 in sec

AC  1.717  ka

AC  42.9 in sec

2

at an angle of -69.81 deg at an angle of 0 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-54-1

PROBLEM 7-54 Statement:

Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical method to calculate the accelerations of points A, B, and C for one revolution of the input link.

Given:

Link lengths and angles:

Solution: 1.

Link 1 (O2O4)

d  1.69 in

Link 4 (L4)

a'  4.76 in

Link 2 (L2)

a  1.00 in

Link 5 (L5)

b'  4.55 in

Input crank motion

ω  10 rad sec

Coordinate rotation angle

β  164.5  deg

1

α  0  rad sec

CCW Offset (AE)

2

c'  2.86 in

See Figure P7-23 and Mathcad file P0754.

Draw the mechanism to scale and define a vector loop for the input portion (links 1, 2, 3, and 4) using the fourbar crank-slider derivation in Section 7.3 as a model. θ  0  deg 0.5 deg  360  deg B 5 C 6

4

Y

A 3

2 O2

15.5°

X x

O4 y

R2

R3

R1 x y

DESIGN OF MACHINERY - 5th Ed.

2.

SOLUTION MANUAL 7-54-2

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b (distance from O4 to A). R2  R1  R3 a e

j  θ

 d  b  e

j  θ

Substituting the Euler equivalents,

  

   d  bcosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for 3 and b.

 



 

 

  sin θ θ 

 

θ θ  atan2 a  cos θ  d a  sin θ a  sin θ

b θ 

3.

Differentiate the position equation, expand it and solve for 3 and bdot. a  j  ω e

j  θ

 

ω θ 

a  ω

 

b θ

 

bdot θ 

4.

 b  j  ω e

j  θ



 bdot e

j  θ

 

 cos θ  θ θ

 

    sin θ θ 

  

a  ω cos θ  b θ  ω θ  cos θ θ

Differentiate the velocity equation, expand it and solve for 3. a  j   e

j  θ

2

2 j  θ

 a  j  ω  e

 bdot j  ω e 2

j  θ

2 j  θ

 b  j  ω  e

 

α θ  5.

1

 

b θ

 b  j   e

j  θ

 bddot e

j  θ

  bdot j  ω e

j  θ

  a  α cos θ  θ θ

   a ω2 sinθθ  θ  2 bdotθ ωθ



Determine the acceleration of point A on link 2 (in the global XY coordinate system) using equations 7.13a.

 



 

 

 

   a ω2 cosθ  j  sinθ

AA2 θ  a  α sin θ  j  cos θ AA2 θ  AA2 θ 6.

θAA2 θ  arg AA2 θ   β

Determine the acceleration of points A and B on link 4 (in the Global XY coordinate system) using equations 7.13a. Transform and rename 3 to the global coordinate frame:

θ θ  θ θ  β

Rename 3 to 4:

α θ  α θ

 

 

 

 

 

 

ω θ  ω θ

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 7-54-3

         j  cosθθ  2  b  θ  ω θ   cos θ θ   j  sin θ θ  

AA4 θ  b θ  α θ  sin θ θ

 

 

θAA4 θ  arg AA4 θ 

AA4 θ  AA4 θ

 

       j  cosθθ  2  a' ω θ   cos θ θ   j  sin θ θ  

AB θ  a' α θ  sin θ θ

 

 

θAB θ  arg AB θ 

AB θ  AB θ 7.

Determine 5 using equation 4.16.

 a' sin θ θ   c'   b'  

 

θ θ  asin 8.

Determine the angular velocity of link 5 using equation 6.22a:

 

ω θ 

9.

       

a' cos θ θ   ω θ b' cos θ θ

Determine the angular acceleration of link 5 using equation 7.16d.

 

α θ 

 

    a' ωθ2 sinθθ  b' ωθ2 sinθθ b' cos θ θ 

a' α θ  cos θ θ

10. Use equation 7.16e for the acceleration of pin C.

 

      a' ωθ2 cosθθ  2  b' α θ  sin θ θ   b' ω θ  cos θ θ 

AC θ  a' α θ  sin θ θ

ACCELERATION OF POINT A 250

Acceleration, in/sec^2

200

150

100

50

0

0

60

120

180 Crank Angle, deg

240

300

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-54-4

Acceleration, in/sec^2

ACCELERATION OF POINT B

1500

1000

500

0

0

60

120

180

240

300

360

300

360

Crank Angle, deg

ACCELERATION OF POINT C

Acceleration, in/sec^2

1000

500

0

 500

 1000

0

60

120

180 Crank Angle, deg

240

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-55-1

PROBLEM 7-55 Statement:

Figure P7-24 shows a drum pedal mechanism . For the dimensions given below, find and plot the output acceleration of the linkage over its range of motion if the input velocity Vin is a constant.

Given:

Link lengths: Link 2 (O2A)

a  100  mm

Link 3 (AB)

b  28 mm

Link 4 (O4B)

c  64 mm

Link 1 (O2O4)

d  56 mm

Link 3 (AP)

rout  124  mm

Distance to force application: rin  48 mm

Link 2

Vin  3  m sec

Input velocity:

1

α  0  rad sec

θ  162  deg

Range of positions of link 2:

2

δ  0  deg

θ  171  deg

See Figure P7-24 and Mathcad file P0755. Solution: 1. Draw the mechanism to scale and label it. 2.

P

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:

3

α  180  deg





θ  θ  α  θ  α  1  deg  θ  α 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  0.5600 2

K3 

 

3

2

2

2

2

 

 

 

1

O4

 

A θ  cos θ  K1  K2 cos θ  K3

2

x

K3  1.2850

2 a c

Vin

A

c

K2  0.8750

a b c d

Fin

4

d

K2 

a

B

y

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 4.

Use equation 4.10b to find value of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  5.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

 

 

K4  2.0000

 

D θ  cos θ  K1  K4 cos θ  K5

 

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ 

K5  1.7543

 

E θ  2  sin θ

F θ  K1   K4  1   cos θ  K5 6.

 2  4 Dθ F θ 

E θ

O2

DESIGN OF MACHINERY - 5th Ed.

7.

Determine the angular velocity of link 2 using equation 6.7 and links 3 and 4 using equations 6.18. Vin

ω 

ω  62.500

rin

 

a  ω

 

a  ω

ω θ 

ω θ 

8.

SOLUTION MANUAL 7-55-2

b

c

rad sec



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Determine the acceleration of point A using equation 7.13a.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ 9.

Use equations 7.12 to determine the angular acceleration of link 3.

 

  

B θ  b  sin θ θ

 

  

E θ  b  cos θ θ

A θ  c sin θ θ

D θ  c cos θ θ

 

  

 

  

 

 

2

 

 2

    c ωθ2 cosθθ

 

 

2

 

 2     c ωθ2 sinθθ

C θ  a  α sin θ  a  ω  cos θ  b  ω θ  cos θ θ F θ  a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

α θ 

        A  θ  E θ  B θ  D θ

C θ  D θ  A θ  F θ

10. Determine the acceleration of the coupler point P using equations 7.32.

 

           2  rout ω θ   cos θ θ  δ  j  sin θ θ  δ  AP θ  AA θ  APA θ APA θ  rout α θ  sin θ θ  δ  j  cos θ θ  δ

11. Plot the magnitude of the acceleration of the coupler point P. (See next page).

 

 

Aout θ  AP θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-55-3

Aout 222000

Acceleration, in/sec^2

220000

218000

216000

214000

212000  18

 16.3

 14.7

 13

 11.3

 9.7

8

Crank Angle, deg

Note the acceleration scale values. If the scale went to zero, Aout would be a horizontal (constant) line over the range of 2 plotted.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-56-1

PROBLEM 7-56 Statement:

A tractor-trailer tipped over while negotiating an on-ramp to the New York Thruway. The road has a 50-ft radius at that point and tilts 3 deg toward the outside of the curve. The 45-ft-long by 8-ft-wide by 8.5-ft-high trailer box (13 ft from ground to top) was loaded with 44 415 lb of paper rolls in two rows by two high as shown in Figure P7-25. The rolls are 40-in-dia by 38-in-long and weigh about 900 lb each. They are wedged against rolling backward but not against sliding sidewards. The empty trailer weighed 14 000 lb. The driver claims that he was traveling at less than 15 mph and that the load of paper shifted inside the trailer, struck the trailer sidewall, and tipped the truck. The paper company that loaded the truck claims the load was properly stowed and would not shift at that speed. Independent test of the coefficient of friction between similar paper rolls and a similar trailer floor give a value of 0.43 +/- 0.08. The composite center of gravity of the loaded trailer is estimated to be 7.5 ft above the road. Determine the truck speed that would cause the truck to just begin to tip and the speed at which the rolls will just begin to slide sidways. What do you think caused the accident?

Given:

Weight of paper

Wp  44415  lbf

Weight of trailer

Wt  14000  lbf

Radius of curve

r  50 ft

Nominal coefficient of friction

μnom  0.43

Coefficient of friction uncertainty

u μ  0.08

Trailer width

w  8  ft

Height of CG from pavement

h  7.5 ft

Assumptions: 1. The paper rolls act as a monolith since they are tightly strapped together with steel bands. 2. The tractor has about 15 deg of potential roll freedom versus the trailer due to their relative angle in plan during the turn combined with the substantial pitch freedom in the fifth wheel. So the trailer can tip independently of the tractor. 3. The outside track width of the trailer tires is equal to the width of the trailer. Solution: 1.

See Figure P7-25 and Mathcad file P0756.

First, calculate the location of the trailer's CG with respect to the outside wheel when it is on the reverse-banked curve. From the figure at right, Tilt angle

θ  3  deg

a  h  tan( θ )

a  0.393 ft

w

b  3.607 ft

b 

2

a

xbar  b  cos( θ )

xbar  3.602 ft

ybar  b  sin( θ ) 

h

3° 7.500'

ybar

cos( θ )

ybar  7.699 ft The coordinates of the CG of the loaded trailer with respect to the lower outside corner of the tires are: xbar  3.602 ft

a

b

ybar  7.699 ft

xbar 4.000'

DESIGN OF MACHINERY - 5th Ed.

2.

SOLUTION MANUAL 7-56-2

The trailer is on the verge of tipping over when the couple due to centrifugal force is equal to the couple formed by the weight of the loaded trailer acting through its CG and the vertical reaction at the outside edge of the tires. At this instant, it is assumed that the entire weight of the trailer is reacted at the outside tires with the inside tires carrying none of the weight. Any increase in tangential velocity of the tractor and trailer will result in tipping. Summing moments about the tire edge (see figure below),

M

Fw xbar  Fc ybar = 0

(1)

where Fc is the centrifugal force due to the normal acceleration as the tractor and trailer go through the curve. The normal acceleration is a tip =

vtip

Fc

2

(2)

r

and the force necessary to keep the tractor trailer following a circular path is Fc = mtot  a tip

Fw ybar (3)

where mtot is the total mass of the trailer and its payload. Combining equations (2) and (3) and solving for vtip, we have vtip =

Fc r

Rx Ry xbar

(4)

mtot

or, vtip =

Fc r g

(5)

Fw

3. Calculate the minimum tipping velocity of the tractor/trailer. From equations (1) and (5), Total weight

Fw  Wt  Wp

Centrifugal force required to tip the trailer

Fc 

Minimum tipping speed

vtip 

xbar ybar

 Fw

Fc r g Fw

Fw  58415 lbf Fc  27329 lbf

vtip  18.7 mph

Thus, with the assumptions that we have made, the trailer would not begin to tip over until it reached a speed of vtip  18.7 mph 4.

The load will slip when the friction force between the paper rolls and the trailer floor is no longer sufficient to react the centrifugal force on the paper rolls. Looking at the FBD of the paper rolls below, we see that Normal force between paper and floor

Fn = Wp cos( θ )  Fcp sin( θ )

(6)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-56-3

Tangential force tending to slide the paper Ft = Wp sin( θ )  Fcp cos( θ )

Fcp

(7)

Wp

Centrifugal force on the paper 2

Wp vs Fcp =  as =  g g r Wp

But, the maximum friction force is

Ft

(8)

Fn

Ff = μ  Fn = Ft

(9)

Substituting equation (9) into (7), then combining (6) and (7) to eliminate Fn, and solving for Fcp yields

Fcp =

Wp ( μ  cos( θ )  sin( θ ) )

(10)

μ  sin( θ )  cos( θ )

Substituting equation (10) into (8), to eliminate Fcp, and solving for vs yields

vs =

5.

 μ  cos( θ )  sin( θ )   r g  μ  sin( θ )  cos( θ )   

(11)

Use the upper and lower limit on the coefficient of friction to determine an upper and lower limit on the speed necessary to cause sliding. Maximum coefficient

μmax  μnom  u μ

μmax  0.510

Minimum coefficient

μmin  μnom  u μ

μmin  0.350

Maximum velocity to cause sliding

vsmax 

 μmax  cos( θ )  sin( θ )   μ  sin( θ )  cos( θ )   r g  max 

vsmax  18.3 mph

Minimum velocity to cause sliding

vsmin 

6.

 μmin  cos( θ )  sin( θ )   μ  sin( θ )  cos( θ )   r g  min 

vsmin  14.8 mph

This very rough analysis shows that , if the coefficient of friction was at or near the low end of its measured value, the paper load could slide at a tractor/trailer speed of 15 mph, which would lead to the trailer tipping over. In any case, it appears that the paper load would slide before the truck would tip with the load in place.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-57-1

PROBLEM 7-57 Statement:

Figure P7-26 shows a V-belt drive. The sheaves (pulleys) have pitch diameters of 150 and 300 mm, respectively. The smaller sheave is driven at a constant 1750 rpm. For a cross-sectional, differential element of the belt, write the equations of its acceleration for one complete trip around both pulleys including its travel between the pulleys. Compute and plot the acceleration of the differential element versus time for one circuit around the belt path. What does your analysis tell you about the dynamic behavior of the belt?

Given:

Sheave radii and speed: r2  75 mm

r4  150  mm

ω  1750 rpm

Assumptions: Center distance: C  450  mm Solution: 1.

See Figure P7-26 and Mathcad file P0757.

Draw a schematic representation of the V-belt drive to scale and label it.

443.706 B 3 9.594°

A 4

2

R150.000 D

R75.000

C

From the layout,

2.

Angle to point of tangency

β  9.594  deg

Distance from A to B

LAB  443.706  mm

Distance from B to C

LBC   π  2  β  r4

Distance from C to D

LCD  443.706  mm

Distance from D to A

LDA   π  2  β  r2

LDA  210.502 mm

Total path length

L  LAB  LBC  LCD  LDA

L  1619.387 mm

Calculate the angular velocity of each sheave. Sheave 2 Sheave 4

3.

LBC  521.473 mm

ω  183.260 ω 

r2 r4

 ω

rad sec ω  91.630

rad sec

Calculate the acceleration of an element on the belt for each portion of the path, starting at A.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-57-2

mm

AAB  0 

From A to B the acceleration is zero since the belt velocity is constant

sec

2

From B to C the tangential acceleration is zero since the belt velocity is constant The normal component is ABC  r4 ω

6 mm

2

ABC  1.259  10

sec

2

ACD  0 

From C to D the acceleration is zero since the belt velocity is constant

mm sec

2

From D to A the tangential acceleration is zero since the belt velocity is constant The normal component is ADA  r2 ω

6 mm

2

ADA  2.519  10

sec 4.

2

Plot the acceleration over the entire path using a path variable of s. s  0  mm 5  mm  L Define a range function that will plot a variable only between two limits using the Heaviside step function . R( s a b )  Φ ( s  a )  Φ ( s  b ) The acceleration function for the entire path is. Let

s1  LAB

s2  LAB  LBC

s3  LAB  LBC  LCD

A ( s)  AAB  R s 0  mm s1  ABC  R s s1 s2  ACD  R s s2 s3  ADA  R s s3 L

BELT ACCELERATION ALONG PATH

Acceleration, m/sec^2

3000

2000

1000

0

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Distance Along Path, m

5.

The graph shows the sudden change in acceleration as the belt enters and leaves a sheave. This results in infinite jerk at these points. This results in belt "hop" at these points, a condition that will cause eventual fatigue failure and wear in the belt. Because of the belt hop caused by infinite jerk at the initial belt/sheave tangency points the span of the belt is continuously vibrating.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-58-1

PROBLEM 7-58 Statement:

Write a program using an equation solver or any computer language to solve for the displacements, velocities, and accelerations in an offset crank-slider linkage as shown in Figure P7-2. Plot the variation in all link's angular and pin's linear positions, velocities, and accelerations with a constant angular velocity input to the crank over one revolution for both open and crossed configurations of the linkage. To test the program, use data from row a of Table P7-2. Check your results with program SLIDER.

Enter:

Link lengths: a  1.4 in

Link 2

Link 3

c  1  in

Offset:

ω  10

Link 2 velocity and acceleration: Crank position range: Solution: 1.

b  4  in rad

α  0 

sec

rad sec

2

θ  0  deg 2  deg  360  deg

See Figure P7-2 and Mathcad file P0758.

Draw the linkage and label it.

Y 4 B 3 b

A

c 2 a

2 X

O2 d 2.

Determine 3 and d using equations 4.16 and 4.17. Open:

 a  sin θ  b 

 

θ θ  asin 

 

 

c

π 

  

d 2 θ  a  cos θ  b  cos θ θ

Crossed:

 a sin θ  b 

 

θ θ  asin

 

 

c

 

  

d 1 θ  a  cos θ  b  cos θ θ 3.

Determine the angular velocity of link 3 using equation 6.22a. Open

 

ω θ 

a b



   ω cos θ θ  cos θ

DESIGN OF MACHINERY - 5th Ed.

Crossed

4.

SOLUTION MANUAL 7-58-2

 

ω θ 

a b



   ω cos θ θ  cos θ

Determine the velocity of pin A using equation 6.23a:

 



 

 

VA θ  a  ω sin θ  j  cos θ

 

  

 

VAX θ  Re VA θ 5.

6.

  

VAY θ  Im VA θ

Determine the velocity of pin B using equation 6.22b:

 

 

    

 

 

    

Open

VB1 θ  a  ω sin θ  b  ω θ  sin θ θ

Crossed

VB2 θ  a  ω sin θ  b  ω θ  sin θ θ

Using the Euler identity to expand equation 7.15b for AA, determine its x and y components.

 



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

 

AAX θ  Re AA θ 7.

Determine the angular acceleration of link 3 using equation 7.16d.

Open

Crossed

8.

  

AAY θ  Im AA θ

 

2

   2    b  cos θ θ 

 

2

 

a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

 

a  α cos θ  a  ω  sin θ  b  ω θ  sin θ θ

α θ 

α θ 

   2    b  cos θ θ 

Use equation 7.16e for the acceleration of pin B.

 

2     2  b  α θ  sin θ θ   b  ω θ  cos θ θ 

 

2     2  b  α θ  sin θ θ   b  ω θ  cos θ θ 

Open:

AB2 θ  a  α sin θ  a  ω  cos θ 

Crossed:

AB1 θ  a  α sin θ  a  ω  cos θ 

(See plots on the following pages.)

DESIGN OF MACHINERY - 5th Ed.

Plot the angular position of link 3 and the distance of pin B from the y axis for open (solid) and crossed (dashed) configurations.

ANGULAR POSITION OF LINK 3 250 200

Angle, deg

150 100 50 0  50

0

45

90

135

180

225

270

315

360

270

315

360

Crank Angle, deg Open Crossed

POSITION OF PIN B

Distance d, in

9.

SOLUTION MANUAL 7-58-3

6 5 4 3 2 1 0 1 2 3 4 5 6

0

45

90

135

180

Crank Angle, deg Open Crossed

225

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-58-4

10. Plot the angular velocity of link 3 and the velocities of pins A and B for open (solid) and crossed (dashed) configurations. ANGULAR VELOCITY OF LINK 3 4

Anglular Velocity, rad/sec

3 2 1 0 1 2 3 4

0

45

90

135

180

225

270

315

360

270

315

360

270

315

360

Crank Angle, deg

X & Y VELOCITY COMPONENTS OF PIN A

Velocity, in/sec

20

10

0  10  20

0

45

90

135

180

225

Crank Angle, deg

VELOCITY OF PIN B

Velocity, in/sec

20

10

0  10  20

0

45

90

135

180

Crank Angle, deg

225

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-58-5

11. Plot the angular acceleration of link 3 and the accelerations of pins A and B for open (solid) and crossed (dashed configurations. ANGULAR ACCELERATION OF LINK 3

Anglular Acceleration, rad/sec^2

60

30

0

 30

 60

0

45

90

135

180

225

270

315

360

270

315

360

270

315

360

Crank Angle, deg

X & Y ACCELERATION COMPONENTS OF PIN A

Acceleration, in/sec^2

200

100

0  100  200

0

45

90

135

180

225

Crank Angle, deg

ACCELERATION OF PIN B

Acceleration, in/sec^2

200 100 0  100  200

0

45

90

135

180

Crank Angle, deg

225

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-59-1

PROBLEM 7-59 Statement:

Write a program using an equation solver or any computer language to solve for the displacements, velocities, and accelerations in an inverted slider-crank linkage as shown in Figure P7-3. Plot the variation in all link's angular and pin's linear positions, velocities, and accelerations with a constant angular velocity input to the crank over one revolution for both open and crossed configurations of the linkage. To test the program, use data from row e of Table P7-3 except for the value of 2, which will be set to zero for this exercise.

Enter:

Link lengths: Link 2

a  4  in

Angle between links 3 and 4

γ  30 deg

Link 2 velocity and accel.

ω  45

1.

rad

α  0 

sec

d  8  in

Link 1

rad sec

2

θ  0  deg 2  deg  360  deg

Crank position range: Solution:

c  2  in

Link 4

See Figure P7-3 and Mathcad file P0759.

Draw the linkage and label it.

B y

 4

3 b A

a 2

c

2 d

02 2.

x

1

04

Use the equations in Section 4.7 to solve for the positions of links 3 and 4 and for the length b.

 

 



 



P θ  a  sin θ  sin γ  a  cos θ  d  cos γ

 

 



 



Q θ  a  sin θ  cos γ  a  cos θ  d  sin γ

 

R  c sin γ

Open:

 

 

S θ  R  Q θ



 

  



 

θ θ  2  atan2 2  S θ  T θ 

 

 

θ θ  θ θ  γ

 

b 1 θ 

 

 

T θ  2  P θ

   sin θ θ 

a  sin θ  c sin θ θ

 

 2  4 Sθ U θ

T θ

 

U θ  Q θ  R

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-59-2



 

  

 

θ θ  2  atan2 2  S θ T θ 

Crossed:

 

 2  4 Sθ U θ

T θ

 

θ θ  θ θ  γ

 

b 2 θ 

3.

 

   sin θ θ 

a  sin θ  c sin θ θ

Calculate the angular velocity of links 3 and 4 and the slip velocity using equations 6.30. Open:

 

ω θ 

 

bdot1 θ 

   b 1 θ  c cos γ

a  ω cos θ  θ θ

 

         c sinθθ cos θ θ 

a  ω sin θ  ω θ  b 1 θ  sin θ θ

 

 

ω θ  ω θ

 

Crossed: ω θ 

 

bdot2 θ 

   b 2 θ  c cos γ

a  ω cos θ  θ θ

 

         c sinθθ cos θ θ 

a  ω sin θ  ω θ  b 2 θ  sin θ θ

 

 

ω θ  ω θ 4.

Solve for the accelerations using equations (7.26) and (7.27). Open:

 

  

P1 θ  a  α cos θ θ  θ

 



 

 2   

 

 

R1 θ  c ω θ  sin θ θ  θ θ

 

 

  

2

Q1 θ  a  ω  sin θ θ  θ

  

 

 

T1 θ  b 1 θ  c cos θ θ  θ θ

 

α θ 

 

 

 

 

P1 θ  Q1 θ  R1 θ  S 1 θ

 

T1 θ

 

2

  

  

 

   



  



K1 θ  a  ω  b 1 θ  cos θ θ  θ  c cos θ θ  θ

   c sinθθ  θ

L1 θ  a  α b 1 θ  sin θ  θ θ M1 θ  ω θ   b 1 θ

 

 2

 

 

 2  c2  2 b1θ c cosθθ  θθ     

 

S 1 θ  2  bdot1 θ  ω θ

 

N1 θ  2  bdot1 θ  c ω θ  sin θ θ  θ θ



DESIGN OF MACHINERY - 5th Ed.

 

bddot1 θ  

 

SOLUTION MANUAL 7-59-3

 

 

 

 

K1 θ  L1 θ  M1 θ  N1 θ

 

T1 θ



 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

 

AAX θ  Re AA θ

 

  

AAY θ  Im AA θ

       j  cosθθ  2  c ω θ   cos θ θ   j  sin θ θ  

AB1 θ  c α θ  sin θ θ

 

 

θAB1 θ  arg AB1 θ 

AB1 θ  AB1 θ Crossed:

 

  

P2 θ  a  α cos θ θ  θ

 



 

 2   

 

 

R2 θ  c ω θ  sin θ θ  θ θ

 

 

  

2

Q2 θ  a  ω  sin θ θ  θ

  

 

 

T2 θ  b 2 θ  c cos θ θ  θ θ

 

α θ 

 

 

 

 

P2 θ  Q2 θ  R2 θ  S 2 θ

 

T2 θ

 

2

  

  

 

   



  



K2 θ  a  ω  b 2 θ  cos θ θ  θ  c cos θ θ  θ

   c sinθθ  θ

L2 θ  a  α b 2 θ  sin θ  θ θ M2 θ  ω θ   b 2 θ

 2  c2  2 b2θ c cosθθ  θθ

 

 2

 

 

    

 

 

 

N2 θ  2  bdot2 θ  c ω θ  sin θ θ  θ θ

 

bddot2 θ  

 

 

 

K2 θ  L2 θ  M2 θ  N2 θ

 

T2 θ

       j  cosθθ  2  c ω θ   cos θ θ   j  sin θ θ  

AB2 θ  c α θ  sin θ θ

 

 

AB2 θ  AB2 θ

 

S 2 θ  2  bdot2 θ  ω θ

θAB2 θ  arg AB2 θ 



DESIGN OF MACHINERY - 5th Ed.

Plot the angular position of link 4 and the distance b for open (solid) and crossed (dashed) configurations.

ANGULAR POSITION OF LINK 4 400

Angle, deg

300

200

100

0

 100

0

45

90

135

180

225

270

315

360

225

270

315

360

Crank Angle, deg

LENGTH b 20

10 Distance b, in

5.

SOLUTION MANUAL 7-59-4

0

 10

 20

0

45

90

135

180

Crank Angle, deg

DESIGN OF MACHINERY - 5th Ed.

Plot the angular acceleration of link 4 and the accelerations of points A and B for open (solid) and crossed (dashed) configurations. ANGULAR ACCELERATION OF LINK 4

Anglular Acceleration, rad/sec^2

5000 3750 2500 1250 0  1250  2500  3750  5000

0

45

90

135

180

225

270

315

360

270

315

360

270

315

360

Crank Angle, deg

X & Y ACCELERATION COMPONENTS OF PIN A

Acceleration, in/sec^2

10000

5000

0  5000  10000

0

45

90

135

180

225

Crank angle, deg

ACCELERATION OF PIN B 10000 Acceleration, in/sec^2

6.

SOLUTION MANUAL 7-59-5

7500

5000

2500

0

0

45

90

135

180

Crank Angle, deg

225

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-60-1

PROBLEM 7-60 Statement:

Write a program using an equation solver or any computer language to solve for the displacements, velocities, and accelerations in a geared fivebar linkage as shown in Figure P7-4. Plot the variation in all link's angular and pin's linear positions, velocities, and accelerations with a constant angular velocity input to the crank over one revolution for both open and crossed configurations of the linkage. To test the program, use data from row a of Table P7-4. Check your results with program FIVEBAR.

Enter:

Link lengths: Link 1

f  6  in

Link 3

b  7  in

Link 2

a  1  in

Link 4

c  9  in

d  4  in

Link 5

Gear ratio, phase angle, and crank velocity and acceleration:

Solution: 1.

λ  2

ϕ  30 deg

ω  10 rad sec

Coupler data:

Rpa  6  in

δ  30 deg

1

α  0  rad sec

2

See Figure P7-4 and Mathcad file P0760.

Determine the angle of link 5 using the equation in Figure P6-4.

 

θ θ  λ θ  ϕ 2.

Determine the values of the constants needed for finding 3 and 4 from equations 4.28h and 4.28i.

 







 

 







 

A θ  2  c d  cos λ θ  ϕ  a  cos θ  f



B θ  2  c d  sin λ θ  ϕ  a  sin θ

 

2



           D θ  C θ  A  θ E θ  2  B θ 2

2

2

2

C θ  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ



 





  a cosθ  f 

 





  a sinθ

 

 

 

F θ  A θ  C θ

G θ  2  b   d  cos λ θ  ϕ H θ  2  b   d  sin λ θ  ϕ

 

2

2

2

2



  

2

K θ  a  b  c  d  f  2  a  f  cos θ   2  d  a  cos θ  f  cos λ θ  ϕ    2  a  d  sin θ  sin λ θ  ϕ

        L θ  K θ  G θ M  θ  2  H  θ 3.



 

 

 

N θ  G θ  K θ

Use equations 4.28h and 4.28i to find values of 3 and 4 for the open and crossed circuits. OPEN

 





 

 

M θ

 





 

 

E θ

 





 

 

M θ

 





 

 

E θ

θ θ  2   atan2 2  L θ M θ  θ θ  2   atan2 2  D θ E θ 

CROSSED

θ θ  2   atan2 2  L θ M θ  θ θ  2   atan2 2  D θ E θ 

 2  4 Lθ N θ 

 2  4 Dθ F θ   2  4 Lθ N θ 

 2  4 Dθ F θ 

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-60-2

4.

Use equation 6.32c to find 5. ω  λ ω

5.

Calculate 3 and 4 and the pin velocities using equations 6.33. OPEN

 

ω θ 

        d ω sinθθ  θθ b   cos θ θ  2  θ θ   cos θ θ  

2  sin θ θ  a  ω sin θ  θ θ

      d ω sinθθ c sin θ θ  VA θ  a  ω  sin θ  j  cos θ   

ω θ 

 

 

a  ω sin θ  b  ω θ  sin θ θ

  

 

VAx θ  Re VA θ

 

  

VAy θ  Im VA θ

 

    j  cosθθ

VBA1 θ  b  ω θ  sin θ θ

 



 

 

 



    j  cosθθ

VC θ  d  ω sin θ θ

 

VB1 θ  VA θ  VBA1 θ

 

 

VB1x θ  Re VB1 θ



 

VB1y θ  Im VB1 θ

CROSSED

 

ω θ 

        d ω sinθθ  θθ b   cos θ θ  2  θ θ   cos θ θ  

2  sin θ θ  a  ω sin θ  θ θ

      d ω sinθθ c sin θ θ  VBA2 θ  b  ω θ   sin θ θ   j  cos θ θ    

ω θ 

 

a  ω sin θ  b  ω θ  sin θ θ

 

 

 



 

VB2 θ  VA θ  VBA2 θ

 

VB2x θ  Re VB2 θ

 



 

VB2y θ  Im VB2 θ

6.

Use equation 7.28c to find 5. α  λ α

7.

Calculate 3 and 4 and the pin accelerations using equations 7.29. OPEN

    a ω2 cosθ  θθ  2 2  b  ω θ  cos θ θ  θ θ   d  ω  cos θ θ  θ θ   2  d  α sin θ θ  θ θ   c ω θ b  sin θ θ  θ θ 

a  α sin θ  θ θ

 

α θ 

    a ω2 cosθ  θθ  2 2  c ω θ  cos θ θ  θ θ   d  ω  cos θ θ  θ θ   2  d  α sin θ θ  θ θ   b  ω θ c sin θ θ  θ θ  a  α sin θ  θ θ

 

α θ 

DESIGN OF MACHINERY - 5th Ed.

 



SOLUTION MANUAL 7-60-3

 

   a ω2 cosθ  j  sinθ

AA θ  a  α sin θ  j  cos θ

 

  

 

AAx θ  Re AA θ

  

AAy θ  Im AA θ

 

       j  cosθθ  2  b  ω θ   cos θ θ   j  sin θ θ   AB1 θ  AA θ  ABA1 θ ABA1 θ  b  α θ  sin θ θ

 



 

AB1x θ  Re AB1 θ

 

 



 

AB1y θ  Im AB1 θ



    j  cosθθ  2  c ω   cos θ θ   j  sin θ θ   ACx  θ  Re AC θ  ACy  θ  Im AC θ  AC θ  c α sin θ θ

CROSSED

    a ω2 cosθ  θθ  2 2  b  ω θ  cos θ θ  θ θ   d  ω  cos θ θ  θ θ   2  d  α sin θ θ  θ θ   c ω θ b  sin θ θ  θ θ 

a  α sin θ  θ θ

 

α θ 

    a ω2 cosθ  θθ  2 2  c ω θ  cos θ θ  θ θ   d  ω  cos θ θ  θ θ   2  d  α sin θ θ  θ θ   b  ω θ c sin θ θ  θ θ  a  α sin θ  θ θ

 

α θ 

 

       j  cosθθ  2  b  ω θ   cos θ θ   j  sin θ θ   AB2 θ  AA θ  ABA2 θ ABA2 θ  b  α θ  sin θ θ

 



 

AB2x θ  Re AB2 θ

 



 

AB2y θ  Im AB2 θ

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-61a-1

PROBLEM 7-61a Statement:

Find the acceleration of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming a constant 2 = 1 rad/sec CW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400  in Crank angle:

θ2XY  110  deg

  102  deg

Coordinate angle

Solution: 1.

Input crank angular velocity

  1  rad sec

Input crank angular acceleration

  0  rad sec

1

CW

2

See Figure P6-33 and Mathcad file P0761a.

Draw the linkage to scale and label it.

Direction of AAt Y Direction of ABAt

148.950°

A 3

Direction of ABt

B

2 4 O2

5 X

57.635° y

158.818° 6

O4 C x

102.000° Direction of AC Direction of ACBt

  θ2XY   2.

  212.000 deg

In order to solve for the acceleration at point B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  148.950  deg  180  deg  

θ  70.950 deg

θ  57.635 deg  

θ  159.635 deg

Using equation (6.18), ω 

a   sin θ    b sin θ  θ

 

 

ω  0.832 rad sec

ω 

a   sin   θ  c sin θ  θ

 

 

ω  0.591 rad sec

1

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-61a-2

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  0.806 in sec

θABn  θ  180  deg  

5.

2

θABn  122.365 deg 2

AAn  a  

2

AAn  2.170 in sec

θAAn    180  deg  

θAAn  290.000 deg

AAt  a  

AAt  0.0 in sec

θAAt    90 deg  

θAAt  200.000 deg

2

2

ABAn  b  ω

2

ABAn  1.429 in sec

θABAn  θ  180  deg  

θABAn  148.950 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn +  and AAn at an angle of AAn + . From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn + . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt. Y

0

1 IN/S/S

X

n

0.850 A B AB

Acceleration Scale

t B

103.340°

A

t BA

A

AA n

AA

n

A BA

6.

From the graphical solution above, Acceleration scale factor

ka  1.000 

in sec

7.

2

AA  AAn

AA  2.170 in sec

AB  0.850  ka

AB  0.850 in sec

2 2

at an angle of 290.0 deg at an angle of -103.340 deg

From Problem 6-70a, the angular velocity of link 5 is   0.145  rad sec

1

CCW. From the graphical

layout,   158.818  deg in the global XY coordinate system. 8.

For point C, equation 7.4 becomes: AC = AB + (ACBt + ACBn) , where AB is known and 2

ACBn  e 

ACBn  0.114 in sec

2

DESIGN OF MACHINERY - 5th Ed.

θACBn  

SOLUTION MANUAL 7-61a-3

θACBn  158.818 deg

Y 0.005 AC X

0

0.5 IN/S/S t ACB

Acceleration Scale

AB n

A CB 9.

From the graphical solution above, Acceleration scale factor

ka  0.50

in sec

AC  0.005  ka

2

AC  0.0025 in sec

2

at an angle of 0.000 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-61b-1

PROBLEM 7-61b Find the acceleration of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X

Statement:

axis assuming a constant 2 = 1 rad/sec CW. Use an analytical method. Given:

Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400  in Crank angle:

θ2XY  110  deg

  102  deg

Coordinate angle

Solution: 1.

Input crank angular velocity

ω2  1  rad sec

Input crank angular acceleration

α2  0  rad sec

1

CW

2

See Figure P6-33 and Mathcad file P0761b.

Draw the linkage to scale and label it.

Y A 3 B

2 4

5 X

O2

y 6

O4 x

2.

C

102°

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. Transform crank angle to the local xy coordinate system:

θ2  θ2XY   K1 

θ2  212.000 deg

d

K2 

a

K1  0.4608 2

K3 

d c

K2  0.4329 2

2

a b c d

2

2 a c

K3  0.6755

A  cos θ2  K1  K2 cos θ2  K3 C  K1   K2  1   cos θ2  K3 A  0.2662

B  1.0598

C  2.3515

B  2  sin θ2

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 7-61b-2

Use equation 4.10b to find values of 4 for the open circuit.





2

θ4xy  2  atan2 2  A B  4.

B  4 A  C



θ4xy  200.365 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

2 a b

K5  0.5178

D  cos θ2  K1  K4 cos θ2  K5

5.

7.

D  2.2370

E  2  sin θ2

E  1.0598

F  K1   K4  1   cos θ2  K5

F  0.3808

Use equation 4.13 to find values of 3 for the open circuit.





2

θ3xy  2  atan2 2  D E  6.

K4  0.4838

E  4  D F



θ3xy  289.050 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

ω3 

a  ω2 sin θ4xy  θ2  b sin θ3xy  θ4xy

ω3  0.832

rad

ω4 

a  ω2 sin θ2  θ3xy  c sin θ4xy  θ3xy

ω4  0.591

rad

sec

sec

Use equations 7.12 to determine the angular accelerations of links 3 and 4. A  c sin θ4xy

B  b  sin θ3xy

D  c cos θ4xy

E  b  cos θ3xy

A  0.804 in

B  1.954 in

D  2.166 in

E  0.675 in

C  a  α2 sin θ2  a  ω2  cos θ2  b  ω3  cos θ3xy  c ω4  cos θ4xy 2

C  0.618

2

2

in sec

2

F  a  α2 cos θ2  a  ω2  sin θ2  b  ω3  sin θ3xy  c ω4  sin θ4xy 2

F  0.079

8.

2

C D  A  F A  E  B D

α3  0.267

rad sec

2

Transform 4 back to the global XY system.

θ4  θ4xy   9.

Determine 5 using equation 4.17. Offset:

2

in sec

α3 

2

cc  0  in

θ4  302.365 deg

α4 

C  E  B F A  E  B D

α4  0.120

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-61b-3

 c sin θ4  cc  π e  

θ5  asin 

θ5  158.818 deg

10. Determine the angular velocity of link 5 using equation 6.22a:

ω5 

c cos θ4   ω4 e cos θ5

ω5  0.145

rad sec

11. Determine the angular acceleration of link 5 using equation 7.16d. c α4 cos θ4  c ω4  sin θ4  e ω5  sin θ5 2

α5 

2

α5  0.156

e cos θ5

sec

12. Use equation 7.16e for the acceleration of pin C. AC  c α4 sin θ4  c ω4  cos θ4  e α5 sin θ5  e ω5  cos θ5 2

AC  0.00161

in sec

2

rad

2

A positive sign means that AC is to the right.

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-62-1

PROBLEM 7-62 Statement:

Given:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular acceleration of link 4 and the linear acceleration of slider 6 in the sixbar crank-slider linkage of Figure 3-33 as a function of the angle of input link 2 for a constant 2 = 1 rad/sec CW. Plot Ac both as a function of 2 and separately as a function of slider position as shown in the figure. Link lengths: Link 2 (O2 to A)

a  2.170  in

Link 3 (A to B)

b  2.067  in

Link 4 (O4 to B)

c  2.310  in

Link 1 (O2 to O4)

d  1.000  in

Link 5 (B to C)

e  5.400  in   102  deg

Coordinate angle

Solution:

θ2XY  0  deg 1  deg  360  deg

Crank angle:

Input crank angular velocity

ω2  1  rad sec

Input crank angular acceleration

α2  0  rad sec

1

CW

2

See Figure 3-33 and Mathcad file P0762.

1.

Transform crank angle to the local xy coordinate system: θ2 θ2XY   θ2XY  

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  0.4608

a 2

K3 

2

2

a b c d

K2 

d

K2  0.4329

c

2

K3  0.6755

2 a c

A  θ2XY   cos θ2 θ2XY    K1  K2 cos θ2 θ2XY    K3 B θ2XY   2  sin θ2 θ2XY   C θ2XY   K1   K2  1   cos θ2 θ2XY    K3 3.

Use equation 4.10b to find values of 4 for the open circuit.





θ4xy θ2XY   2   atan2 2  A  θ2XY  B θ2XY   4.



B θ2XY   4  A  θ2XY   C θ2XY   2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

K4  0.4838

2 a b

K5  0.5178

D θ2XY   cos θ2 θ2XY    K1  K4 cos θ2 θ2XY    K5 E θ2XY   2  sin θ2 θ2XY   F  θ2XY   K1   K4  1   cos θ2 θ2XY    K5 5.

Use equation 4.13 to find values of 3 for the open circuit.





θ3xy θ2XY   2   atan2 2  D θ2XY  E θ2XY   6.



E θ2XY   4  D θ2XY   F  θ2XY   2

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-62-2

ω3 θ2XY  

a  ω2 sin θ4xy θ2XY   θ2 θ2XY    b sin θ3xy θ2XY   θ4xy θ2XY  

ω4 θ2XY  

a  ω2 sin θ2 θ2XY   θ3xy θ2XY    c sin θ4xy θ2XY   θ3xy θ2XY  

Use equations 7.12 to determine the angular acceleration of link 4. A  θ2XY   c sin θ4xy θ2XY  

B θ2XY   b  sin θ3xy θ2XY  

D θ2XY   c cos θ4xy θ2XY  

E θ2XY   b  cos θ3xy θ2XY  

C θ2XY   a  α2 sin θ2 θ2XY    a  ω2  cos θ2 θ2XY    2

 b  ω3 θ2XY   cos θ3xy θ2XY    c ω4 θ2XY   cos θ4xy θ2XY   2

2

F  θ2XY   a  α2 cos θ2 θ2XY    a  ω2  sin θ2 θ2XY    2

 b  ω3 θ2XY   sin θ3xy θ2XY    c ω4 θ2XY   sin θ4xy θ2XY   2

α4 θ2XY  

2

C θ2XY   E θ2XY   B θ2XY   F  θ2XY  A  θ2XY   E θ2XY   B θ2XY   D θ2XY  ANGULAR ACCELERATION - LINK 4

Angular Acceleration, rad/s

2

1

0

1

0

45

90

135

180

225

Crank Angle, deg

8.

Transform 4 back to the global XY system.

θ4 θ2XY   θ4xy θ2XY   

9.

Determine 5 using equation 4.17. Offset: cc  0  in

 c sin θ4 θ2XY    cc  π e  

θ5 θ2XY   asin 

10. Determine the angular velocity of link 5 using equation 6.22a:

ω5 θ2XY  

c cos θ4 θ2XY     ω4 θ2XY  e cos θ5 θ2XY  

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-62-3

11. Determine the angular acceleration of link 5 using equation 7.16d. c α4 θ2XY   cos θ4 θ2XY    c ω4 θ2XY   sin θ4 θ2XY    2

α5 θ2XY  

 e ω5 θ2XY   sin θ5 θ2XY   2

e cos θ5 θ2XY  

12. Use equation 7.16e for the acceleration of pin C. AC  θ2XY   c α4 θ2XY   sin θ4 θ2XY    c ω4 θ2XY   cos θ4 θ2XY    2

 e α5 θ2XY   sin θ5 θ2XY    e ω5 θ2XY   cos θ5 θ2XY   2

ACCELERATION - PIN C 6

Acceleration, in/sec^2

4

2

0

2

4

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-63a-1

PROBLEM 7-63a Statement:

Find the angular acceleration of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global

Given:

Link lengths:

X axis assuming constant 2 = 10 rad/sec CW. Use a graphical method. Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

  36.0 deg

Output rocker angle:

θ  90 deg Global XY system ω  10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure 3-34b and Mathcad file P0763a.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest.

Direction of ACDt Y

Direction of ADt

Direction of AAt X 2 A

D

O2

5

6

C

y

Direction of AABt

O6 3

5

4 x

Direction of ACt

O4

B Direction of ABDt

2.

Since this linkage is a Stephenson's II sixbar, we will have to start at link 6 and work back to link 2. We will assume a value for 6 and eventually find a value for 2. We will then multiply the magnitudes of all velocities by the ratio of the actual 2 to the found 2. Use Problem 6-73 for the link angular velocities. Assume:

  100  rad sec

2

CCW

From Problem 6-73 and the graphical layout (angles in the global XY coordinate system):   24.124 rad sec   14.64  rad sec   14.64  rad sec   3.016  rad sec

1

1 1 1

CW

  90.000 deg

CW

  217.003  deg

CW

  144.195  deg

CW

  144.628  deg

  253.003  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-63a-2

  10.000 rad sec

1

  221.690  deg

CW

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point C, this becomes: (ACt + ACn) = (ADt + ADn) + (ACDt + ACDn) , where 2

ACn  c 

ACn  455.450 in sec

θACn    180  deg

θACn  324.195 deg

ADn  a  

2

ADn  897.394 in sec

θADn    180  deg

θADn  270.000 deg

ADt  a  

ADt  154.200 in sec

θADt    90 deg

θADt  180.000 deg

2

5.

2

2

2

ACDn  b  

ACDn  462.523 in sec

θACDn    180  deg

θACDn  37.003 deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ACn at an angle of ACn and ADn at an angle of ADn. From the tip of ADn, draw ADt at an angle of ADt + . From the tip of ADt, draw ACDn at an angle of CDn. Now that the vectors with known magnitudes are drawn, from the tips of ACn and ACDn, draw construction lines in the directions of ACt and ACDt, respectively. The intersection of these two lines are the tips of ACt, ACt, and ACDt.

n

AC

0

200 IN/S/S

Acceleration Scale

AC

t

AC 1.755

t

ACD AD n

ACD n

AD t

AD 0.425

6.

From the graphical solution above, Acceleration scale factor

ka  200 

in sec

ACt  1.755  ka

2

ACt  351.00 in sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-63a-3

ACt

 

  165.176 rad sec

c

ACDt  0.425  ka ACDt

  7.

ACDt  85.00 in sec

2

CW

For point B, equation 7.4 becomes: AB = AD + (ABDt + ABDn) , where 2

8.

CW

2

  39.388 rad sec

b

2

ABDn  p  

ABDn  701.715 in sec

θABDn    180  deg

θABDn  73.003 deg

ABDt  p  

ABDt  128.957 in sec

θABDt  θABDn  90 deg

θABDt  163.003 deg

2

1.010

2

AB

0

200 IN/S/S

Acceleration Scale

For point A, equation 7.4 becomes: (AAt + AAn) = AB + (AABt + AABn) , where 2

110.996°

t ABD

AAn  g  

AAn  155.600 in sec

θAAn    180  deg

θAAn  41.690 deg

2

AD

AABn  f  

2

AABn  38.641 in sec

θAABn    180  deg

2 n

ABD

θAABn  35.372 deg

0.153

t

AA

n

AA AA

2.021

AB

0 t AAB

100 IN/S/S

Acceleration Scale

n

AAB

9.

The requirement for this problem is that 2 = 0 (constant 2). For this to be so AAt must be zero. To do this the magnitude of AB must be smaller as shown above. Correction ratio:

r 

Corrected value of 6:

0.153

r  0.076

2.021   r 

  7.571

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-63b-1

PROBLEM 7-63b Statement:

Find the angular acceleration of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming constant 2 = 10 rad/sec CW. Use an analytic method.

Given:

Solution: 1.

Link lengths: Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Output rocker angle:

θ6  90 deg

Global XY system

Input crank angular velocity

ω2  10 rad sec

Input crank angular acceleration

α2  0.0 rad sec

1

CW

2

See Figure P6-34b and Mathcad file P0763b.

Since this linkage is a Stephenson's II sixbar an iterative solution must be used. This problem is suited to a longer-term project rather than a daily homework problem.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-64-1

PROBLEM 7-64 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular acceleration of link 6 in Figure 3-34b as a function of 2 for a constant 2 = 10 rad/sec CW.

Given:

Solution: 1.

Link lengths: Link 2 (O2 to A)

g  1.556  in

Link 3 (A to B)

f  4.248  in

Link 4 (O4 to C)

c  2.125  in

Link 5 (C to D)

b  2.158  in

Link 6 (O6 to D)

a  1.542  in

Link 5 (B to D)

p  3.274  in

Link 1 X-offset

d X  3.259  in

Link 1 Y-offset

d Y  2.905  in

Angle CDB

δ5  36.0 deg

Output rocker angle:

θ6  90 deg

Global XY system

Input crank angular velocity

ω2  10 rad sec

Input crank angular acceleration

α2  0.0 rad sec

1

CW

2

See Figure P6-34b and Mathcad file P0764.

Since this linkage is a Stephenson's II sixbar an iterative solution must be used. This problem is suited to a longer-term project rather than a daily homework problem.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-65a-1

PROBLEM 7-65a Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular acceleration of link 6 assuming a constant 2 = 10 rad/sec CCW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286  in

Link 6 (O6 to E)

g  0.771  in

Link 1 (O4 to O6)

h  0.786  in

  90 deg

Angle BO4D

  157  deg

Crank angle:

Solution: 1.

Input crank angular velocity

  10 rad sec

Input crank angular acceleration

  0  rad sec

1

CCW

2

See Figure 3-35 and Mathcad file P0765a.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Direction of AAt Direction of ADt

Y A

D

122.085° 33.359°

2

100.938° 5

3 4 O2

X

6 O4 O6 E

35.228°

B Direction of AEt Direction of ABAt

Direction of AEDt

Direction of ABt

2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above, θ  33.359 deg

θ  33.359 deg

θ  122.085  deg

θ  122.085 deg

θ  122.085  deg  

θ  34.915 deg

Using equation (6.18),

 

 

ω  1.398 rad sec

 

 

ω  6.496 rad sec

ω 

a   sin θ    b sin θ  θ

ω 

a   sin   θ  c sin θ  θ

1

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-65a-2

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  54.275 in sec

θABn  θ  180  deg

θABn  57.915 deg

2

AAn  a  

AAn  100.000 in sec

θAAn    180  deg

θAAn  270.000 deg

AAt  a  

AAt  0.000 in sec

θAAt    90 deg

θAAt  0.000 deg

2

5.

2

2

2

2

ABAn  b  ω

ABAn  7.429 in sec

θABAn  θ  180  deg

θABAn  146.641 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn and AAn at an angle of AAn. From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn. Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt,

6.

respectively. The intersection of these two lines are the tips of AB, ABt, and ABAt. From the graphical solution at right, in

ka  25

Acceleration scale factor

sec AB  2.919  ka

AB  73.0 in sec

1.951

2 n

AB

2

ABt AB

at an angle of 15.969 deg ABt  1.951  ka   6.

ABt  48.8 in sec

ABt

2

  37.928 rad sec

c

15.969° t ABA

2

CCW 2.919

From the graphical layout,   100.938  deg  180  deg

  79.062 deg

  35.228 deg

  35.228 deg

0

AA n

AA

Acceleration Scale

Using equation (6.18), ω 

ω 

 

 

 

 

e ω sin   θ  f sin   

e ω sin θ    g sin   

25 IN/S/S

n

ABA

ω  9.804 rad sec

1

ω  15.885 rad sec

1

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-65a-3

For point E, this becomes: (AEt + AEn) = (ADt + ADn) + (AEDt + AEDn) , where 2

AEn  g  ω

AEn  194.560 in sec

θAEn    180  deg

θAEn  144.772 deg

2

ADn  e ω

ADn  60.310 in sec

θADn  θ  180  deg

θADn  214.915 deg

ADt  e 

ADt  54.199 in sec

θADt  θ  90 deg

θADt  124.915 deg

2

θAEDn    180  deg

θAEDn  100.938 deg

AE

AEt

n

AED

n

AE

0

50 IN/S/S

Acceleration Scale

AD ADt n

AD

From the graphical solution above, Acceleration scale factor

in

ka  50

sec AEt  0.239  ka AEt g

2

AEDn  123.597 in sec

t AED

 

2

AEDn  f  ω

0.239

8.

2

AEt  11.950 in sec

2

2

  15.499 rad sec

2

CCW

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-65b-1

PROBLEM 7-65b Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular acceleration of link 6 assuming a constant 2 = 10 rad/sec CCW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286  in

Link 6 (O6 to E)

g  0.771  in

Link 1 (O4 to O6)

h  0.786  in

Angle BO4D

δ4  157  deg

θ2  90 deg

Crank angle:

Solution: 1.

Input crank angular velocity

ω2  10 rad sec

Input crank angular acceleration

α2  0  rad sec

1

CCW

2

See Figure P6-35 and Mathcad file P0765b.

Draw the linkage to scale and label it.

Y A

D

122.085° 2

3

33.359°

100.938° 5

4 O2

X

6 O4 O6 E

35.228°

B 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.8570 2

K3 

d c

K2  2.9992 2

2

a b c d

2

K3  1.2015

2 a c

A  cos θ2  K1  K2 cos θ2  K3 B  2  sin θ2 C  K1   K2  1   cos θ2  K3 A  2.6555 3.

B  2.0000

Use equation 4.10b to find values of 4 for the crossed circuit.





θ41  2  atan2 2  A B  4.

C  5.0585

2

B  4 A  C



θ41  237.915 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY - 5th Ed.

K4 

5.

SOLUTION MANUAL 7-65b-2

2

d

K5 

b

7.

2

2

K4  1.0150

2 a b

D  cos θ2  K1  K4 cos θ2  K5

D  7.6284

E  2  sin θ2

E  2.0000

F  K1   K4  1   cos θ2  K5

F  0.0856





2

E  4  D F



θ3  326.641 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

ω3 

a  ω2 sin θ41  θ2  b sin θ3  θ41

ω3  1.398

ω4 

a  ω2 sin θ2  θ3  c sin θ41  θ3

ω4  6.496

rad sec rad sec

Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

θ42  θ41  157  deg  360  deg 8.

K5  3.7714

Use equation 4.13 to find values of 3 for the crossed circuit.

θ3  2  atan2 2  D E  6.

2

c d a b

θ42  34.915 deg

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1 

h

K2 

e

K1  0.5500 2

K3 

e f

h g

K2  1.0195 2

2

g h

2

K3  0.7263

2  e g

A  cos θ42  K1  K2 cos θ42  K3 B  2  sin θ42 C  K1   K2  1   cos θ42  K3 A  0.1603 9.

B  1.1447

C  0.3796

Use equation 4.10b to find values of 6 for the open circuit.





θ6  2  atan2 2  A B 

2

B  4 A  C



θ6  35.228 deg

10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. K4 

h f

2

K5 

2

2  e f

D  cos θ42  K1  K4 cos θ42  K5 E  2  sin θ42

2

g h e f

2

K4  0.6112 K5  1.0119 D  0.2408 E  1.1447

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-65b-3

F  K1   K4  1   cos θ42  K5

F  0.7807

11. Use equation 4.13 to find values of 5 for the open circuit.





2

θ5  2  atan2 2  D E 

E  4  D F



θ5  280.938 deg

12. Determine the angular velocity of links 5 and 6 for the open circuit using equations 6.18.

 e ω4  sin θ6  θ42   f  sin θ5  θ6

ω5  9.804

 e ω4  sin θ42  θ5   g  sin θ6  θ5

ω6  15.885

ω5   ω6  

rad sec rad sec

13. Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit. A  c sin θ41

B  b  sin θ3

D  c cos θ41

E  b  cos θ3

A  1.090 in

B  2.090 in

D  0.683 in

E  3.174 in

C  a  α2 sin θ2  a  ω2  cos θ2  b  ω3  cos θ3  c ω4  cos θ41 2

2

2

in

C  35.034

sec

2

F  a  α2 cos θ2  a  ω2  sin θ2  b  ω3  sin θ3  c ω4  sin θ41 2

2

in

F  141.900

sec

α3 

2

2

C D  A  F

α3  36.545

A  E  B D

rad sec

2

α4 

C  E  B F A  E  B D

α4  37.931

rad sec

14. Use equations 7.12 to determine the angular accelerations of links 5 and 6 for the open circuit. Use link 4 as the input to the second fourbar stage. A  g  sin θ6

B  f  sin θ5

D  g  cos θ6

E  f  cos θ5

A  0.037 ft

B  0.105 ft

D  0.052 ft

E  0.020 ft

C  e α4 sin θ42  e ω4  cos θ42  f  ω5  cos θ5  g  ω6  cos θ6 2

2

2

ft

C  4.583

2.000

s

F  e α4 cos θ42  e ω4  sin θ42  f  ω5  sin θ5  g  ω6  sin θ6 2

F  1.588

2

2

ft 2.000

s

α5 

C D  A  F A  E  B D

α5  38.104

rad sec

2

α6 

C  E  B F A  E  B D

α6  15.486

rad sec

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-66-1

PROBLEM 7-66 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular acceleration of link 6 in the sixbar linkage of Figure 3-35 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Link 2 (O2 to A)

a  1.000  in

Link 3 (A to B)

b  3.800  in

Link 4 (O4 to B)

c  1.286  in

Link 1 (O2 to O4)

d  3.857  in

Link 4 (O4 to D)

e  1.429  in

Link 5 (D to E)

f  1.286  in

Link 6 (O6 to E)

g  0.771  in

Link 1 (O4 to O6)

h  0.786  in

  1  rad sec

Input crank angular velocity Solution:

1

CCW

  0  rad sec

2

See Figure 3-35 and Mathcad file P0766.   0  deg 1  deg  360  deg

1.

Define the range of the input angle:

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  3.8570 2

2

a b c d

2

K3  1.2015

2 a c

 

c

K2  2.9992

2

K3 

d

 

 

 

A   cos   K1  K2 cos   K3

 

 

B   2  sin 

 

C   K1   K2  1   cos   K3 3.

Use equation 4.10b to find values of 4 for the crossed circuit.



 



 

 

   2   atan2 2  A  B   4.

 2  4 A  C 

B 

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

2 a b

 

 

 

D   cos   K1  K4 cos   K5

 

K4  1.0150

K5  3.7714

 

E   2  sin 

 

F   K1   K4  1   cos   K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

   2   atan2 2  D  E   6.

 2  4 D F  

E 

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

a  

 

a  

  

  

b

c



    sin      



  sin      

sin    



sin    

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-66-2

Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

 

 

      157  deg  360  deg 8.

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1 

h

K2 

e

K1  0.5500 2

e f

2

g h

2

K3  0.7263

2  e g

 

g

K2  1.0195

2

K3 

h

    K1  K2 cos  K3

A'   cos  

 

  

B'   2  sin  

 

     K3

C'   K1   K2  1   cos   9.

Use equation 4.10b to find values of 6 for the open circuit.



 



 

 2  4 A'  C' 

 

   2   atan2 2  A'  B'  

B' 

10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. K4 

2

h

K5 

f

 

2

2

g h e f

2

K4  0.6112

2  e f

    K1  K4 cos  K5

D'   cos  

 

  

E'   2  sin  

 

     K5

F'   K1   K4  1   cos  

11. Use equation 4.13 to find values of 5 for the open circuit.

 





 

 

   2   atan2 2  D'  E'  

 2  4 D' F' 

E' 

12. Determine the angular velocity of link 6 for the open circuit using equations 6.18.   

 

 e    sin          f  sin      

 

 e    sin          g  sin      

  

13. Use equations 7.12 to determine the angular acceleration of link 4.

 

  

B   b  sin  

 

  

E   b  cos  

A   c sin  

D   c cos  

 

 

  

 

  

2     2 2  b     cos     c    cos   

C   a   sin   a    cos  

K5  1.0119

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 7-66-3

2     2 2  b     sin     c    sin   

F   a   cos   a    sin  

α4  

        A    E   B   D  C    E    B    F 

14. Use equations 7.12 to determine the angular accelerations of links 5 and 6 for the open circuit. Use link 4 as the input to the second fourbar stage.

 

  

B'   f  sin  

 

  

E'   f  cos  

A'   g  sin  

D'   g  cos  

 

  

 

  

 

      e 2 cos  2 2  f     cos     g     cos   

 

      e 2 sin  2 2  f     sin     g     sin   

C'   e α4   sin  

F'   e α4   cos  

α6  

        A'    E'   B'   D'  C'   E'   B'   F' 

ANGULAR ACCELERATION - LINK 6

Angular Acceleration, rad/sec^2

4

2

0

2

4

0

45

90

135

180

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-67-1

PROBLEM 7-67 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular acceleration of link 8 in the linkage of Figure 3-36 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Input crank (L2)

a  0.450

First coupler (L3)

b  0.990

Common rocker (O4B)

c  0.590

First ground link (O2O4)

d  1.000

Common rocker (O4C)

a'  0.590

Second coupler (CD)

b'  0.325

Output rocker (L6)

c'  0.325

Second ground link (O4O6) d'  0.419

Link 7 (L7)

e  0.938

Link 8 (L8)

f  0.572

Link 5 extension (DE)

p  0.823

Angle DCE

δ  7.0 deg

Angle BO4C

α  128.6  deg

Input crank angular velocity Solution: 1.

  1  rad sec

1

CCW

See Figure 3-36 and Mathcad file P0767.

See problem 4-43 for the position solution. The velocity and acceleration solutions will use the same vector loop equations for links 5, 6, 7, and 8, differentiated with respect to time. This problem is suitable for a project assignment and is probably too long for an overnight assignment.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-68-1

PROBLEM 7-68 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and direction of the acceleration of point P in Figure 3-37a as a function of 2 for a constant 2 = 1 rad/sec CCW. Also calculate and plot the acceleration of point P versus point A.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  0.136

Link 3 (A to B)

b  1.000

Link 4 (B to O4)

c  1.000

Link 1 (O2 to O4)

d  1.414

Coupler point:

Rpa  2.000

  0  deg

Crank speed:

  1  rad sec

1

  0  rad sec

2

See Figure 3-37a and Mathcad file P0768.

Determine the range of motion for this Grashof crank rocker. θ  0  deg 1  deg  360  deg

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  10.3971 2

K3 

c

K2  1.4140

2

2

a b c d

2

K3  7.4187

2 a c

 

d

 

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

B θ  2  sin θ

 

C θ  K1   K2  1   cos θ  K3 3.

Use equation 4.10b to find values of 4 for the open circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d b

K5 

2

2

c d a b

2

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K4  1.4140

K5  7.4187

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the open circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

a  

 

a  

ω θ 

ω θ 

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-68-2

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.

 



 

   a 2 cosθ  j  sinθ

AA θ  a   sin θ  j  cos θ 8.

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

 

 

A' θ  c sin θ θ

D' θ  c cos θ θ

2

 

  

 

  

 

 2     c ωθ2 cosθθ

C' θ  a   sin θ  a    cos θ  b  ω θ  cos θ θ

 

2     C'  θ  D' θ  A'  θ  F' θ A'  θ  E' θ  B' θ  D' θ

 2     c ωθ2 sinθθ C'  θ  E' θ  B' θ  F' θ α θ  A'  θ  E' θ  B' θ  D' θ

F' θ  a   cos θ  a    sin θ  b  ω θ  sin θ θ

 

α θ 

Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ    j  sin θ θ    AP θ  AA θ  APA θ APA θ  Rpa α θ  sin θ θ    j  cos θ θ  

 

 

θAp θ  arg AP θ 

AP θ  AP θ

 

ACCELERATION MAGNITUDE - POINTS P and A 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.0

45.0

90.0

135.0

180.0

225.0

Crank Angle, deg Point P Point A

θAA θ  arg AA θ 

270.0

 

AA θ  AA θ

θAp θ  if  θ  91 deg θAp θ  2  π θAp θ 

Acceleration, in/sec^2

9.

315.0

360.0

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-68-3

ACCELERATION VECTOR DIRECTION - POINTS P and A 360

Acceleration Vector Angle, deg

315 270 225 180 135 90 45 0  45  90  135  180

0

45

90

135

180

Crank Angle, deg Point P Point A

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-69-1

PROBLEM 7-69 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and the direction of the acceleration of point P in Figure 3-37b as a function of 2. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths: Input crank (L2)

a  0.50

First coupler (AB)

b  1.00

Rocker 4 (O4B)

c  1.00

Rocker 5 (L5)

c'  1.00

Ground link (O2O4)

d  0.75

Second coupler 6 (CD)

b'  1.00

Coupler point (DP)

p  1.00

Distance to OP (O2OP)

d'  1.50

Crank speed: Solution: 1.

  1  rad sec

1

  0  rad sec

2

See Figure 3-37b and Mathcad file P07-69.

Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Define a position vector whose tail is at point D and whose tip is at point P and another whose tail is at O4 and whose tip is at point D. Then, since R5 = RAB and RDP = -R4, the position vector from O2 to P is P = R1 + RAB - R4. Separating this vector equation into real and imaginary parts gives the equations for the X and Y coordinates of the coupler point P.

 

 

 

XP = d  b  cos θ  c cos θ

 

YP = b  sin θ  c sin θ

2.

Define one revolution of the input crank: θ  0  deg 0.5 deg  360  deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1 

d a

K1  1.5000

 

2

d

K2 

K3 

c

K2  0.7500

 

2

2

a b c d

2

2 a c

K3  0.8125

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

 



 



 

C θ  K1   K2  1   cos θ  K3

B θ  2  sin θ

 

 2  4 A θ Cθ   2 π

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

 

2

d

K5 

b

2

2

c d a b

2

2 a b

 

 

 

D θ  cos θ  K1  K4 cos θ  K5

 

K4  0.7500

K5  0.8125

 

E θ  2  sin θ

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ   2 π

E θ

Define a local xy coordinate system with origin at OP and with the positive x axis to the right. The coordinates of P are transformed to xP = XP - d', yP = YP.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-69-2

 

    c cosθθ  d'

xP θ  d  b  cos θ θ

 

    c sinθθ

yP θ  b  sin θ θ 7.

Use equations 6.18 to calculate 3 and 4.

 

a  

 

a  

 θ 

 θ  8.

b

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

 

 

2

 

 2     c θ2 cosθθ

 

 

2

 

 2     c θ2 sinθθ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

C' θ  a   sin θ  a    cos θ  b   θ  cos θ θ F' θ  a   cos θ  a    sin θ  b   θ  sin θ θ

 

α θ 

 

α θ 

        A'  θ  E' θ  B' θ  D' θ C' θ  E' θ  B' θ  F' θ

Differentiate the position equations twice with respect to time to get the acceleration components. APx θ  b   α θ  sin θ θ

      θ2 cosθθ  2  c  α θ  sin θ θ    θ  cos θ θ  2 APy  θ  b   α θ  cos θ θ    θ  sin θ θ    2  c  α θ  cos θ θ    θ  sin θ θ    

 

AP θ 

 2  APyθ2

APx θ

VELOCITY MAGNITUDE of POINT P 0.6 0.4 Velocity, 1/sec

9.

        A'  θ  E' θ  B' θ  D' θ C' θ  D' θ  A' θ  F' θ

0.2 0  0.2  0.4  0.6

0

45

90

135

180

Crank Angle, deg x component y component

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-70a-1

PROBLEM 7-70a Statement:

Find the angular accelerations of links 3 and 4 and the linear accelerations of points A, B and P1 in the XY coordinate system for the linkage in Figure P7-27 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec, constant. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use a graphical method.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

  45 deg

Coordinate rotation angle

α  126.582  deg

Input crank angular velocity

ω  10 rad sec

Global XY system to local xy system

1

α  0  rad sec

CCW

2

See Figure P7-27 and Mathcad file P0770a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity acceleration of interest. Direction of ABt Direction of ABAt B

x

4

P1 O4

29.063° Y

3

126.582°

99.055° Direction of AP1t A

45.000°

2

X O2

  45 deg  α   81.582 deg 2.

y

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  99.055 deg  α

θ  27.527 deg

θ  29.063 deg  α

θ  97.519 deg

Using equation (6.18),

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-70a-2

ω 

a  ω sin θ    b sin θ  θ

 

 

ω  0.511 rad sec

ω 

a  ω sin   θ  c sin θ  θ

 

 

ω  2.353 rad sec

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where 2

ABn  283.838 in sec

θABn  θ  180  deg

2

θABn  277.519 deg

2

AAn  a  ω

AAn  1400.0 in sec

θAAn    180  deg

θAAn  98.418 deg

AAt  a  α

AAt  0.0 in sec

θAAt    90 deg

θAAt  8.418 deg

2

5.

1

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

ABn  c ω

1

2

2

2

ABAn  b  ω

ABAn  20.921 in sec

θABAn  θ  180  deg

θABAn  207.527 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn +  and AAn at an angle of AAn + . From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn + . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt. x

0

Y

n

X

AB

20 in/s/s y

80.620°

Acceleration Scale 39.675 ABt

42.136

AB

AA t ABA n

ABA

6.

From the graphical solution above, Acceleration scale factor

ka  20.0

in sec

AA  AAn

2

AA  1400 in sec

2

at an angle of -135.00 deg

DESIGN OF MACHINERY - 5th Ed.

4.

2

AB  42.136 ka

AB  842.7 in sec

ABt  39.675 ka

ABt  793.500 in sec

  7.

SOLUTION MANUAL 7-70a-3

ABt

  15.480 rad sec

c

at an angle of -80.62 deg 2

at an angle of -60.937 deg

2

Determine the distance from O4 to P1 and the angle O4P1makes with the x axis. 2

2

Distance O2O4:

d 

dX  dY

Distance P1O4:

u 

px  d2  py2

Angle O4P1:

  atan

d  79.701 in u  48.219 in

 py    px  d 

  43.497 deg

Determine the acceleration at point P1. AP1t  u  

AP1t  746.431 in sec

AP1n  u  ω

2

AP1 

2

AP1t  AP1n

AP1n  267.001 in sec 2

AP1  792.748 in sec

 AP1t    9.921  deg  60.397 deg  AP1n 

atan

2 2

2

at an angle of 80.079 deg at an angle of -9.921 deg

at an angle of 60.397 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-70b-1

PROBLEM 7-70b Statement:

Find the angular accelerations of links 3 and 4 and the linear accelerations of points A, B and P1 in the XY coordinate system for the linkage in Figure P7-27 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec, constant. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use an analytical method.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  14.00  in

Link 3 (A to B)

b  80.00  in

Link 4 (O4 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 Y-offset

d Y  76.00  in  12.00  in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

θ2XY  45 deg

Coordinate rotation angle

α  126.582  deg

Input crank angular velocity

ω  10 rad sec

Global XY system to local xy system

1

CCW

α  0  rad sec

2

See Figure P7-27 and Mathcad file P0770b.

Draw the linkage to scale and label it. B

x

4

P1 O4

29.063° Y

3

126.582°

99.055°

A

  θ2XY  α   81.582 deg d 

2

dX  dY

X O2

2 y

d  79.701 in 2.

45.000°

2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.6929 2

K3 

d c

K2  1.5548 2

2

a b c d

2

2 a c

 

K3  1.9340

 

A  cos   K1  K2 cos   K3

 

C  K1   K2  1   cos   K3

 

B  2  sin 

DESIGN OF MACHINERY - 5th Ed.

A  3.8401 3.

SOLUTION MANUAL 7-70b-2

B  1.9785

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B  4.

C  7.2529

B  4 A  C



θ  262.482 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d b

2

2

c d a b

K5 

2

K4  0.9963

2 a b

 

 

D  cos   K1  K4 cos   K5

D  10.0081

 

E  2  sin 

E  1.9785

 

F  K1   K4  1   cos   K5 5.



7.

F  1.0849

Use equation 4.13 to find values of 3 for the crossed circuit.



2

θ  2  atan2 2  D E  6.

K5  4.6074

E  4  D F



θ  332.475 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. ω 

a  ω sin θ    b sin θ  θ

 

 

ω  0.511

ω 

a  ω sin   θ  c sin θ  θ

 

 

ω  2.353

rad sec

rad sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction (in the global coordinate system).



 

   a ω2 cos  j  sin

AA  a  α sin   j  cos  AA  ( 205  1385i)

in

The acceleration of pin A is

AA  1400

in sec

8.

θAA  arg AA  α

AA  AA

2

sec

at 2

θAA  225 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the crossed circuit.

 

 

A  c sin θ

 

B  b  sin θ 3

A  1.291  10 mm B  939.044 mm

 

 

D  c cos θ

E  b  cos θ

D  170.343 mm

E  1.802  10 mm

2

 

2

 

2

2

 

2

 

2

 

C  a  α sin   a  ω  cos   b  ω  cos θ  c ω  cos θ C  260.638 in sec

2

 

 

F  a  α cos   a  ω  sin   b  ω  sin θ  c ω  sin θ 3

F  1.113  10 in sec

2

3

DESIGN OF MACHINERY - 5th Ed.

α 

9.

SOLUTION MANUAL 7-70b-3

C D  A  F

α  14.227

A  E  B D

rad sec

α 

2

C  E  B F A  E  B D

α  15.479

sec

Use equation 7.13c to determine the acceleration of point B for the crossed circuit.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 749  385i)

in sec

θAB  arg AB  α

AB  AB

2

The acceleration of pin B is

in

AB  842.7

sec

at 2

θAB  279.4 deg

(Global)

10. Use equation 7.31 to determine the acceleration of the point P1 on link 4. u 

px  d2  py2

u  48.219 in

 py    px  d 

  141.014 deg



  u ω2 cosθ    j  sinθ  

  360  deg  θ  atan







AP1  u  α sin θ    j  cos θ   AP1  ( 320  725i)

in sec

2

θAP1  arg AP1  α

AP1  AP1

The acceleration of point P1 is AP1  792.7

in sec

at 2

θAP1  60.39 deg

rad

(Global)

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-71-1

PROBLEM 7-71 Statement:

Find the angular accelerations of links 3 and 4 and the linear accelerations of points A, B and P1 in the XY coordinate system for the linkage in Figure P7-27 in the position shown. Assume that 2 = 45 deg in the XY coordinate system and 2 = 10 rad/sec, constant. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use an analytical method.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  14.00  in

Link 4 (O2 to B)

c  51.26  in

Link 1 X-offset

d X  47.5 in

Link 1 (O2 to O2)

d 

2

dX  dY

2

Link 3 (A to B)

b  80.00  in

Link 1 Y-offset

d Y  76.00  in  12.00  in

d  79.701 in

Coupler point x-offset

p x  114.68 in

Coupler point y-offset p y  33.19  in

Crank angle:

  0  deg 1  deg  360  deg

Coordinate rotation angle

α  126.582  deg

Input crank angular velocity

ω  10 rad sec

1

Global XY system to local xy system α  0  rad sec

CCW

See Figure P7-27 and Mathcad file P0771.

Draw the linkage to scale and label it.

B

x

4

P1 O4

Y

3

A 2

X O2

y

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  5.6929 2

K3 

 

d c

K2  1.5548 2

2

a b c d 2 a c

 

2

K3  1.9340

 

A   cos   K1  K2 cos   K3

 

 

B   2  sin 

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-71-2

 

 

C   K1   K2  1   cos   K3 3.

Use equation 4.10b to find values of 4 for the crossed circuit.



 



 

 

θ   2   atan2 2  A  B   4.

 2  4 A  C 

B 

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  0.9963

2 a b

 

K5  4.6074

 

D   cos   K1  K4 cos   K5

 

 

E   2  sin 

 

 

F   K1   K4  1   cos   K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.



 



 

 

θ   2   atan2 2  D  E   6.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

a  ω

 

a  ω

ω  

ω  

7.

 2  4 D F  

E 

b

c



    sin θ   θ  



  sin θ   θ  

sin θ   



sin   θ 

Use equations 7.12 to determine the angular acceleration of link 4.

     D'   c cos θ  

     E'   b  cos θ  

A'   c sin θ 

 

 

B'   b  sin θ 

2

 

 2     c ω2 cosθ

C'   a  α sin   a  ω  cos   b  ω   cos θ 

 

2     C'    E'   B'   F'  A'    E'   B'   D' 

 2     c ω2 sinθ

F'   a  α cos   a  ω  sin   b  ω   sin θ 

 

α   8.

Use equation 7.31 to determine and plot the acceleration of the point P1 on link 4. u 

px  d2  py2

u  48.219 in

  141.067  deg

 

           2  u  ω    cos θ     j  sin θ    

AP1   u  α   sin θ     j  cos θ   

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 7-71-3



 



θAP1   arg AP1   α

AP1   AP1 

θAP1   if  θAP1   100  deg θAP1   2  π θAP1   MAGNITUDE OF Ap 2000

Acceleration, in/sec^2

1500

1000

500

0

0

45

90

135

180

225

270

315

360

270

315

360

Crank Angle, deg

DIRECTION OF Ap (Global)

Direction Angle, deg

100

0

 100

 200

0

45

90

135

180

225

Crank Angle, deg

AP1 ( 81.582 deg)  792.706

in sec

2

θAP1( 81.582 deg)  60.447 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-72a-1

PROBLEM 7-72a Statement:

Find the angular accelerations of links 3 and 4 and the linear acceleration of point P in the XY coordinate system for the linkage in Figure P7-28 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system, 2 = 1 rad/sec, and 2 = 10 rad/sec2. The position of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  9.17 in

Link 3 (A to B)

b  12.97  in

Link 4 (O4 to B)

c  9.57 in

Link 1 X-offset

d X  2.79 in

Link 1 Y-offset

d Y  6.95 in

Coupler point data:

p  15.00  in

δ  0  deg

Crank angle:

θ  26.000 deg α  68.121 deg

Coordinate rotation angle

ω  1  rad sec

Input crank angular velocity Solution: 1.

Global XY system to local xy system 1

  10 rad sec

CW

2

See Figure P7-28 and Mathcad file P0772a.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Y y

O2

X Direction ABAt 2 1

68.121°

Direction APAt

26.000° O4 B

4

P

A

Direction AAt

72.224° 3 60.472°

Direction ABt

x

2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  72.224 deg

θ  72.224 deg

θ  60.472 deg

θ  60.472 deg

Using equation (6.18), ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  3.465 rad sec

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  4.656 rad sec

1

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-72a-2

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  207.476 in sec

θABn  θ  180  deg  α

θABn  172.351 deg

AAn  a  ω

2

AAn  9.170 in sec

θAAn  θ  180  deg  α

θAAn  85.879 deg

AAt  a  

AAt  91.700 in sec

θAAt  θ  90 deg  α

θAAt  4.121 deg

2

5.

2

2

2

ABAn  b  ω

ABAn  155.694 in sec

θABAn  θ  180  deg  α

θABAn  184.103 deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn +  and AAn at an angle of AAn + . From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn + . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt.

6.

From the graphical solution at right, Acceleration scale factor

ka  10.0

in sec

AA  0.922  ka

2

AA  9.220 in sec

2

at an angle of 1.590 deg AB  7.156  ka

AB  71.560 in sec

2

at an angle of 99.204 deg t

ABAt  7.169  ka   7.

ABAt

ABAt  71.690 in sec   5.527 rad sec

b

2

AB

7.156

t

ABA

7.169

2 AB

For point P, equation 7.4 becomes: AP = AA + (APAt + APAn) , where APAn  p  ω

2

APAn  180.062 in sec

99.204°

Y

2

y

n

AA

1.590° t

AA

n

AB

X

n

A BA

θAPAn  θ  δ  180  deg  α

AA 0.922

θAPAn  184.103 deg APAt  p  

APAt  82.911 in sec

θAPAt  θAPAn  90 deg

2

θAPAt  94.103 deg

x

0

20 IN/S/S

Acceleration Scale

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 7-72a-3

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. n

A PA

t

APA AP

157.174°

Y y

9.065

0

20 IN/S/S

X AA

Acceleration Scale x

9.

From the graphical solution above, Acceleration scale factor

ka  10.0

in sec

AP  9.065  ka

2

AP  90.650 in sec

2

at an angle of 157.174 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-72b-1

PROBLEM 7-72b Statement:

Find the angular accelerations of links 3 and 4 and the linear acceleration of point P in the XY coordinate system for the linkage in Figure P7-28 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system, 2 = 1 rad/sec, and 2 = 10 rad/sec2. The position

Given:

of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Use an analytical method. Link lengths: Link 2 (O2 to A)

a  9.174  in

Link 4 (O4 to B)

c  9.573  in

Link 1 X-offset

d X  2.790  in

Link 1(O2 to O4)

d 

2

dX  dY

Rpa  15.00  in

Crank angle:

θ  26.000 deg

Link 1 Y-offset

d Y  6.948  in

d  7.487 in δ  0  deg

α  68.121 deg

Global XY system to local xy system

ω  1  rad sec

Input crank angular velocity

1.

b  12.971 in

2

Coupler point data:

Coordinate rotation angle

Solution:

Link 3 (A to B)

1

  10 rad sec

CW

See Figure P7-28 and Mathcad file P0772b.

Draw the linkage to scale and label it. Y y

O2

X 2 68.121°

1 26.000°

O4 B

4

P

A 72.224° 3 60.472° x

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.8161 2

K3 

c

K2  0.7821 2

2

a b c d

 

d

2

2 a c

K3  0.3622

 

A  cos θ  K1  K2 cos θ  K3

 

C  K1   K2  1   cos θ  K3

 

B  2  sin θ

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-72b-2

A  0.2581 3.

B  0.8767

C  0.4234

Use equation 4.10b to find values of 4 for the crossed circuit.





2

θ  2  atan2 2  A B 

B  4 A  C



θ  299.512 deg

θ  θ  360  deg 4.

θ  60.488 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

 

2

K4  0.5772

2 a b

 

D  cos θ  K1  K4 cos θ  K5

D  0.3096

 

E  2  sin θ

E  0.8767

 

F  K1   K4  1   cos θ  K5 5.

F  0.4749

Use equation 4.13 to find values of 3 .





2

θ  2  atan2 2  D E 

E  4  D F



θ  287.764 deg

θ  θ  360  deg 6.

7.

K5  0.9111

θ  72.236 deg

Determine the angular velocity of links 3 and 4 using equations 6.18. ω 

a  ω sin θ  θ  b sin θ  θ

 

 

ω  3.467

rad

ω 

a  ω sin θ  θ  c sin θ  θ

 

 

ω  4.658

rad

sec

sec

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.



 

   a ω2 cosθ  j  sinθ

AA  a   sin θ  j  cos θ AA  ( 32.0  86.5i )

in sec

The acceleration of pin A is

AA  92.198

in sec

8.

θAA  arg AA  α

AA  AA

2

at 2

θAA  1.590 deg

(Global)

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

 

 

 

A  c sin θ

B  b  sin θ

D  c cos θ

E  b  cos θ

A  8.331 in

B  12.353 in

D  4.716 in

E  3.957 in

 

2

 

2

 

2

2

 

2

 

2

 

C  a   sin θ  a  ω  cos θ  b  ω  cos θ  c ω  cos θ C  86.722 in sec

2

 

 

F  a   cos θ  a  ω  sin θ  b  ω  sin θ  c ω  sin θ F  118.753 in sec

2

DESIGN OF MACHINERY - 5th Ed.

α  9.

SOLUTION MANUAL 7-72b-3

C D  A  F

α  55.307

A  E  B D

rad sec

α 

2

C  E  B F A  E  B D

α  71.596

Use equation 7.13c to determine the acceleration of point B.



 

   c ω2 cosθ  j  sinθ

AB  c α sin θ  j  cos θ AB  ( 698.8  156.9i)

in sec

The acceleration of pin B is

θAB  arg AB  α

AB  AB

2

AB  716.18

in sec

at 2

θAB  99.228 deg

10. Use equations 7.32 to find the acceleration of the point P.



      Rpa ω   cos θ  δ  j  sin θ  δ 

APA  Rpa α sin θ  δ  j  cos θ  δ 2

AP  AA  APA AP  AP

AP  830

in sec

2

 

arg AP  α  100.214 deg

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-73-1

PROBLEM 7-73 Statement:

For the linkage in Figure P7-28, write a computer program or use an equation solver to calculate and plot the angular velocity and acceleration of links 3 and 4, and the magnitude and direction of the velocity and acceleration of point P as a function of 2 through its possible range of motion starting at the position shown. The position of the coupler point P on link 3 with respect to point A is: p = 15.00, 3 = 0 deg. Assume that, at t = 0, 2 = -94.121 deg in the XY coordinate system, 2 = 0, and 2 = 10 rad/sec2, constant.

Given:

Link lengths: Link 2 (O2 to A)

a  9.174  in

Link 4 (O4 to B)

c  9.573  in

Link 1 X-offset

d X  2.790  in

Link 1(O2 to O4)

d 

2

dX  dY

Link 1 Y-offset

d Y  6.948  in

d  7.487 in

Rpa  15.00  in

Crank angle:

θ  26.000 deg 25.9 deg  15 deg

δ  0  deg

α  68.121 deg

θ  26 deg

Global XY system to local xy system

ω  0  rad sec

Input crank angular velocity

1.

b  12.971 in

Coupler point data:

Coordinate rotation angle

Solution:

2

Link 3 (A to B)

1

  10 rad sec

See Figure P7-28 and Mathcad file P0773.

Draw the linkage to scale and label it.

Y y

O2

X 2 1 26.000° O4 B

4

P

A

3

x

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  0.8161 2

K3 

 

d c

K2  0.7821 2

2

a b c d 2 a c

2

K3  0.3622

 

 

A θ  cos θ  K1  K2 cos θ  K3

 

 

C θ  K1   K2  1   cos θ  K3

 

 

B θ  2  sin θ

2

DESIGN OF MACHINERY - 5th Ed.

3.

SOLUTION MANUAL 7-73-2

Use equation 4.10b to find values of 4 for the crossed circuit.



 



 

 2  4 A θ Cθ 

 

θ θ  2   atan2 2  A θ B θ  4.

B θ

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

 

2

2

c d a b

2

K4  0.5772

2 a b

 

K5  0.9111

 

D θ  cos θ  K1  K4 cos θ  K5

 

 

E θ  2  sin θ

 

 

F θ  K1   K4  1   cos θ  K5 5.

Use equation 4.13 to find values of 3 .

 





 

 

θ θ  2   atan2 2  D θ E θ  6.

 2  4 Dθ F θ 

E θ

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

ω θ 





2  θ  θ  

 

 

a  ω θ

 

a  ω θ

ω θ 

ω θ 

b

 

c



    sin θ θ  θ θ 



  sin θ θ  θ θ 

sin θ θ  θ



sin θ  θ θ

2

50 40

1.5

 

ω  θ 

 

sec rad

ω  θ 

1

0.5

rad

20 10

0  30

7.

sec 30

 25

 20

 15

0  26

 10

 22

θ

θ

deg

deg

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction.

 



 

   a ωθ2 cosθ  j  sinθ

AA θ  a   sin θ  j  cos θ 8.

 24

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

 

  

B' θ  b  sin θ θ

 

  

E' θ  b  cos θ θ

A' θ  c sin θ θ

D' θ  c cos θ θ

 

  

 

  

 20

DESIGN OF MACHINERY - 5th Ed.

 

SOLUTION MANUAL 7-73-3

 

 2  

 2     c ωθ2 cosθθ

   2   C'  θ  D' θ  A'  θ  F' θ A'  θ  E' θ  B' θ  D' θ

 2     c ωθ2 sinθθ C'  θ  E' θ  B' θ  F' θ α θ  A'  θ  E' θ  B' θ  D' θ

C' θ  a   sin θ  a  ω θ  cos θ  b  ω θ  cos θ θ

 

F' θ  a   cos θ  a  ω θ  sin θ  b  ω θ  sin θ θ

 

α θ 

14 150

12 2

 

sec

 

α θ 

10

rad

2

sec

100

rad

8

50

6  30

9.

 25

 20

 15

0  26

 10

 24

 22

θ

θ

deg

deg

 20

Use equations 7.32 to find the acceleration of the point P.

 

           2  Rpa ω θ   cos θ θ  δ  j  sin θ θ  δ  AP θ  AA θ  APA θ APA θ  Rpa α θ  sin θ θ  δ  j  cos θ θ  δ

 

 

θAp θ  arg AP θ  α



AP θ  AP θ



θAp θ  if  θAp θ  0 θAp θ  2  π θAp θ 

4

MAGNITUDE

DIRECTION

1 10

3

8 10

 

AP θ 

2

sec in

3

θAp θ

3

deg

6 10 4 10

150

100 3

2 10

0  26

 24

 22

 20

50  26

 24

 22

θ

θ

deg

deg

 20

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-74-1

PROBLEM 7-74 Statement:

Derive analytical expressions for the accelerations of points A and B in Figure P7-29 as a function of 3, 3, 3 and the length AB of link 3. Use a vector loop equation.

Solution:

See Figure P7-29 and Mathcad file P0774.

1.

Establish the global XY system such that the coordinates of the intersection of the slot centerlines is at (d X,d Y ). Then, define position vectors R1X, R1Y , R2, R3, and R4 as shown below.

Y 4 3 R3 R2

B

3

C 2

R4

A 1

R 1Y

X R 1X 2.

Write the vector loop equation: R1Y + R2 + R3 - R1X - R4 = 0 then substitute the complex number notation for each position vector. The equation then becomes:

 π  π j   j θ   2 j ( 0) 3 j ( 0) 2 dY  e    a e  c e  dX  e  b e   = 0 j

3.

Differentiate this equation with respect to time.

d a  j  c  e dt 3.

 

j 

 j  π   2 d    b e    = 0 dt

Substituting the Euler identity into this equation gives: Va  jc    cos θ3  j  sin θ3   Vb j = 0

4.

Separate this equation into its real (x component) and imaginary (y component) parts, setting each equal to zero. Va  c  sin θ3 = 0

5.

Solve for the two unknowns Va and Vb in terms of the independent variables 3 and 3 Va = c  sin θ3

6.

c  cos θ3  Vb = 0 Vb = c  cos θ3

Differentiate again with respect to time to get the accelerations. Aa = c   cos θ3 2

Ab = c   sin θ3 2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-75-1

PROBLEM 7-75 Statement:

The linkage in Figure P7-30a has link 2 at 120 deg in the global XY coordinate system. Find 6 and AD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW and 2 = 50 rad/sec2 CW. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  6.20 in

Link 3 (A to B)

b  4.50 in

Link 4 (O4 to B)

c  3.00 in

Link 5 (C to D)

e  5.60 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to D)

f  3.382  in

Link 1 X-offset

d X  7.80 in

Link 1 Y-offset

d Y  0.62 in

Angle ACB

  0.0 deg

Angle BO4D

  110.0  deg

Input rocker angle:

θ  120  deg

Global XY system

ω  10 rad sec

Input crank angular velocity Solution: 1.

1

  50 rad sec

CCW

2

See Figure P7-30a and Mathcad file P0775.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Direction of AAt Direction of ACAt Axis of slip

A Y

87.972° 113.057° 5

D

C

110°

2

3

Axis of transmission

120° 175.455°

411.709° B

x Direction of ADCt

O4

  113.057  deg

X

O2 Direction of ABt

Direction of ABAt

  11.709 deg y

Coordinate rotation angle:   175.455  deg 2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system),

θ2xy  θ  

θ2xy  295.455 deg

θ3xy    

θ3xy  62.398 deg

θ4xy    

θ4xy  187.164 deg

Using equation (6.18), ω 

a  ω sin θ4xy  θ2xy  b sin θ3xy  θ4xy

ω  15.924 rad sec

1

DESIGN OF MACHINERY - 5th Ed.

ω 

SOLUTION MANUAL 7-75-2

a  ω sin θ2xy  θ3xy  c sin θ4xy  θ3xy

ω  20.107 rad sec

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω

2

ABn  1212.852 in sec

θABn    180  deg

1

2

θABn  191.709 deg

2

AAn  a  ω

AAn  620.000 in sec

θAAn  θ  180  deg

θAAn  300.000 deg

AAt  a  

AAt  310.000 in sec

θAAt  θ  90 deg

θAAt  30.000 deg

2

2

2

ABAn  b  ω

ABAn  1141.131 in sec

θABAn    180  deg

θABAn  66.943 deg

t ABA

2

5.727

t B

A

AB

4.158

Y n

A BA

131.968°

4.814 X

n

AB 0

AA

500 IN/S/S

A Acceleration Scale

1.386

n A

t A

A

33.435°

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 7-75-3

From the graphical solution above, Acceleration scale factor

in

ka  500 

sec

2

AA  1.386  ka

AA  693.0 in sec

AB  4.814  ka

AB  2407.0 in sec

ABAt  5.727  ka

ABAt  2863.5 in sec

 

ABAt b

 

ABt

ABt  2079.0 in sec

at an angle of 131.968 deg

2 2

CW

2

  693.000 rad sec

c

at an angle of -33.435 deg

2

  636.333 rad sec

ABt  4.158  ka

7.

2

2

CCW

For point C, equation 7.4 becomes: AC = AA + (ACAt + ACAn) , where 2

ACAn  p  ω

ACAn  570.566 in sec

θACAn    180  deg

θACAn  66.943 deg

ACAt  p  

ACAt  1431.8 in sec

θACAt  θACAn  90 deg

θACAt  156.943 deg t

ACA

2

2

Y

AC 126.220° 0

500 IN/S/S

n

A CA

1.745

X

Acceleration Scale

AA 8.

From the graphical solution above, Acceleration scale factor

ka  500 

in sec

AC  1.745  ka 9.

2

AC  872.50 in sec

2

at an angle of 126.220 deg

Determining the acceleration of point D requires the (graphical) solution of two equations simultaneously. They are: AD = AC + (ADCt + ADCn) and AD = ADt + ADn + ADcor + ADslip , where AC is known from the above analysis and From the velocity analysis (see Problem 6-91) ADCn  e 

2

  35.13  rad sec

1

ADCn  6911 in sec

Vslip  136.20 in sec 2

1

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-75-4

θADCn  177.972  deg  180  deg

θADCn  357.972 deg

ADt  f  

ADt  2343.7 in sec

θADt      90 deg

θADt  211.709 deg

ADn  f  ω

2

ADn  1367.3 in sec

θADn  θADt  90 deg

θADn  301.709 deg

ADcor  2  Vslip  ω

ADcor  5477.1 in sec

θADcor  θADt  180  deg

θADcor  31.709 deg

2

2

2

Y

n

A DC AC

X

ADt 33.485° A A

0

cor D

ADslip

n D

2000 IN/S/S

AD

3.700

t ADC

Acceleration Scale

8.

From the graphical solution above, Acceleration scale factor

ka  2000

in sec

AD  3.700  ka

2

AD  7400 in sec   

2

at an angle of -33.485 deg   693.0 rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-76-1

PROBLEM 7-76 Statement:

The linkage in Figure P7-30a has link 2 at 120 deg in the global XY coordinate system. Find 6 and AD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW and 2 = 50 rad/sec2 CW. Use an analytical method.

Given:

Solution: 1.

Link lengths: Link 2 (O2 to A)

a  6.20 in

Link 3 (A to B)

b  4.50 in

Link 4 (O4 to B)

c  3.00 in

Link 5 (C to D)

h  5.60 in

Link 3 (A to C)

p  2.25 in

Link 4 (O4 to D)

f  3.382  in

Link 1 X-offset

d X  7.80 in

Link 1 Y-offset

d Y  0.62 in

Angle ACB

δ3  0.0 deg

Angle BO4D

δ4  110.0  deg

Input rocker angle:

θ2XY  120  deg

Global XY system

Coordinate transformation angle:

δ  175.455  deg

Input crank angular velocity

ω2  10 rad sec

Input crank angular acceleration

α2  50 rad sec

1

(CCW)

2

(CW)

See Figure P7-30a and Mathcad file P0776.

Draw the linkage to scale and label it.

A

6

Y

71.487° D

5

C

110°

3

120°

55.455° B 16.254°

4

x

2

O4

175.455° X

O2 y d 

Calculate the distance O2O4:

Transform 2XY into the local coordinate system: 2.

2

dX  dY

2

d  7.825 in

θ2  θ2XY  δ

θ2  55.455 deg

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K2 

a

K1  1.2620 2

K3 

d c

K2  2.6082 2

2

a b c d 2 a c

2

K3  2.3767

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-76-2

A  cos θ2  K1  K2 cos θ2  K3 B  2  sin θ2 C  K1   K2  1   cos θ2  K3 A  0.2028 3.

B  1.6474

Use equation 4.10b to find values of 4 for the open circuit.





2

θ4  2  atan2 2  A B  4.

B  4 A  C

2

d

K5 

b

7.

θ4  163.746 deg

2

2

c d a b

2

K4  1.7388

2 a b

D  cos θ2  K1  K4 cos θ2  K5

D  1.6967

E  2  sin θ2

E  1.6474

F  K1   K4  1   cos θ2  K5

F  0.3067

K5  1.9877

Use equation 4.13 to find values of 3 for the open circuit.





2

θ3  2  atan2 2  D E  6.



Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

5.

C  1.5927

E  4  D F

  2 π

θ3  648.512 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

ω3 

a  ω2 sin θ4  θ2  b sin θ3  θ4

ω3  15.924

ω4 

a  ω2 sin θ2  θ3  c sin θ4  θ3

ω4  20.107

rad sec rad sec

Use equations 7.12 to determine the angular accelerations of links 3 and 4 for the open circuit. A  c sin θ4

B  b  sin θ3

D  c cos θ4

E  b  cos θ3

A  21.328 mm

B  108.386 mm

D  73.154 mm

E  36.291 mm

C  a  α2 sin θ2  a  ω2  cos θ2  b  ω3  cos θ3  c ω4  cos θ4 2

3

C  2.134  10 in sec

2

2

2

F  a  α2 cos θ2  a  ω2  sin θ2  b  ω3  sin θ3  c ω4  sin θ4 2

3

F  1.087  10 in sec

α3  8.

C D  A  F A  E  B D

2

2

2

α3  636.368

rad sec

2

α4 

C  E  B F A  E  B D

α4  692.987

rad sec

Establish a vector loop that defines the position of point D with respect to O4 and write the loop equation.

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-76-3

A 2.517°

Y

71.487° R5

D

C 5

R BC

3 110° R4

RD

2 120° 175.455°

55.455° B

x O4

4

X

O2

16.254° y

RD = R4  RBC  R5

f e



 = c ejθ4  p  ej  θ3π  h ejθ5

j θ4 δ4

where f and the angles are functions of time and c, p, h, and 4 are constants. 9.

Solve the vector loop equation for 5 by substituting the Euler identity for the unit vectors and then separating into real and imaginary parts. f   cos θ4  δ4  j  sin θ4  δ4  = c  cos θ4  j  sin θ4   p   cos θ3  π  j  sin θ3  π    h   cos θ5  j  sin θ5  f  cos θ4  δ4 = c cos θ4  p  cos θ3  π  h  cos θ5 f  sin θ4  δ4 = c sin θ4  p  sin θ3  π  h  sin θ5 tan  θ5 =

f  sin θ4  δ4  c sin θ4  p  sin θ3  π

f  cos θ4  δ4  c cos θ4  p  cos θ3  π

θ5  atan2 f  cos θ4  δ4  c cos θ4  p  cos θ3  π f  sin θ4  δ4  c sin θ4  p  sin θ3  π  f  3.382 in

θ5  2.518 deg

10. Differentiate the position equaton and solve for 5 and fdot by substituting the Euler identity for the unit vectors and then separating into real and imaginary parts. f  ω4  sin θ4  δ4  j  cos θ4  δ4   fdot   cos θ4  δ4  j  sin θ4  δ4 

=

c ω4 sin θ4  j  cos θ4  p  ω3 sin θ3  π  j  cos θ3  π  h  ω5  sin θ5  j  cos θ5 f  ω4 sin θ4  δ4  fdot  cos θ4  δ4 = c ω4 sin θ4  p  ω3 sin θ3  π  h  ω5 sin θ5 f  ω4 cos θ4  δ4  fdot  sin θ4  δ4 = c ω4 cos θ4  p  ω3 cos θ3  π  hω5 cos θ5 Let

A  f  ω4 sin θ4  δ4  c ω4 sin θ4  p  ω3 sin θ3  π

A  71.929

in

B  f  ω4 cos θ4  δ4  c ω4 cos θ4  p  ω3 cos θ3  π

B  86.747

in

s s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-76-4

then fdot  cos θ4  δ4 = A  h  ω5 sin θ5

fdot  sin θ4  δ4 = B  h  ω5 cos θ5

Eliminating fdot and solving for 5,

ω5 

A  tan  θ4  δ4  B

h   cos θ5  sin θ5  tan θ4  δ4 

and

A  h  ω5 sin θ5

fdot 

ω5  35.145

rad s in

fdot  136.252

cos θ4  δ4

s

11. Differentiate the velocity equaton and solve for 5 and fddot by substituting the Euler identity for the unit vectors and then separating into real and imaginary parts. f  α4 j  e





j  θ 4 δ 4

  f  ω 2 ej   θ4δ4  2 fdot  ω  j  ej   θ4δ4  fddot  ej   θ4δ4 4

c  j  α4 e

j  θ4

4

=

 j   θ3π  ω 2 ej   θ3π  h  j  α  ej  θ5  ω  ej  θ5 3 5   p  j  e   5 

2 j  θ4

 ω4  e

f  α4  sin θ4  δ4  j  cos θ4  δ4   f  ω4   cos θ4  δ4  j  sin θ4  δ4    2  fdot  ω4  sin θ4  δ4  j  cos θ4  δ4   fddot   cos θ4  δ4  j  sin θ4  δ4  2

=

c α4  sin θ4  j  cos θ4   c ω4   cos θ4  j  sin θ4   2

 p  α3  sin θ3  π  j  cos θ3  π   p  ω3   cos θ3  π  j  sin θ3  π   2

 h  α5  sin θ5  j  cos θ5   h  ω5   cos θ5  j  sin θ5  2

Let

C  f  α4 sin θ4  δ4  f  ω4  cos θ4  δ4  2  fdot  ω4 sin θ4  δ4  2

 c  α4 sin θ4  ω4  cos θ4   p   α3 sin θ3  π  ω3  cos θ3  π  2

2

 h  ω5  cos θ5 2

C  3003.51

in 2.00

s

D  f  α4 cos θ4  δ4  f  ω4  sin θ4  δ4  2  fdot  ω4 cos θ4  δ4  2

 c  α4 cos θ4  ω4  sin θ4  p   α3 cos θ3  π  ω3  sin θ3  π   2

2

 h  ω5  sin θ5 2

D  1295.03

in 2.00

s

then, similar to the velocity solution,

α5 

C tan  θ4  δ4  D

h   cos θ5  sin θ5  tan  θ4  δ4 

fddot 

C  h  α5 sin θ5 cos θ4  δ4

α5  1025.02

rad 2

s

fddot  5505.35

in 2.00

s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-76-5

12. Using the terms in the acceleration equation in step 10, define the components of AD and then combine them to determine the total acceleration of point D.

ADtangential  f  α4  sin θ4  δ4  j  cos θ4  δ4  ADnormal  f  ω42  cos θ4  δ4  j  sin θ4  δ4  ADcoriolis  2  fdot  ω4  sin θ4  δ4  j  cos θ4  δ4  ADslip  fddot   cos θ4  δ4  j  sin θ4  δ4  AD  ADtangential  ADnormal  ADcoriolis  ADslip AD  ( 6592.71  3687.93i)

in

in the local coordinate frame

2.00

s Magnitude:

AD 

AD  7554.11

AD

in 2.00

s Angle in local coordinate frame:

 

θAD  arg AD

θAD  150.778 deg

Angle in global coordinate frame:

θADXY  θAD  δ

θADXY  326.233 deg

The angular accelaration of block 6 is the same as link 4, that is,

α6  α4

α6  692.987

rad 2

s

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-77-1

PROBLEM 7-77 Statement:

The linkage in Figure P7-30b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 4, AA, AB, and AP if 2 = 15 rad/sec CW and 2 = 100 rad/sec2 CW. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.75 in

Link 3 (A to B)

b  3.26 in

Link 4 (O4 to B)

c  2.75 in

Link 1 (O4 to B)

d  4.43 in

Coupler point data:

p  1.63 in

δ  0  deg

ω  15 rad sec

Input crank angular velocity Solution: 1.

1

  100  rad sec

CW

2

See Figure P7-30b and Mathcad file P0777.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest.

Direction of ABt Direction of ABA B

P

O2

O4 36.351°

A

θ  36.352 deg

Direction of AAt 2.

In order to solve for the accelerations at points A and B, we will need 3, 3, and 4. From the graphical position solution above (in the local xy coordinate system), θ  90.000 deg

θ  90.000 deg

θ  180  deg  θ

θ  143.648 deg

Using equation (6.18),

 

 

ω  1.924  10

 

 

ω  15.000 rad sec

ω 

a  ω sin θ  θ  b sin θ  θ

ω 

a  ω sin θ  θ  c sin θ  θ

 15

The graphical solution for accelerations uses equation 7.4:

4.

For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where 2

1

1

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

ABn  c ω

rad sec

ABn  618.750 in sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-77-2

θABn  θ  180  deg

θABn  323.648 deg

2

AAn  a  ω

AAn  618.750 in sec

θAAn  θ  180  deg

θAAn  143.648 deg

AAt  a  

AAt  275.000 in sec

θAAt  θ  90 deg

θAAt  126.352 deg

2

5.

2

2

2

ABAn  b  ω

ABAn  0.000 in sec

θABAn  θ  180  deg

θABAn  270.000 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn +  and AAn at an angle of AAn + . From the tip of AAn, draw AAt at an angle of AAt + . From the tip of AAt, draw ABAn at an angle of BAn + . Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of ABt, ABt, and ABAt. 3.841 167.610° t A

A

0

AB

Y

n

AA

t ABA

400 IN/S/S

9.425°

AA X

t

AB

celeration Scale 1.693

n

AB 2.218

6.

From the graphical solution above, Acceleration scale factor

ka  400 

in sec

AA  677.2 in sec

AB  2.218  ka

AB  887.2 in sec

ABAt  3.841  ka

ABAt  1536.4 in sec

ABAt

at an angle of 167.610 deg

2

at an angle of 9.425 deg

2

  471.288 rad sec

b

2

CW

For point P, equation 7.4 becomes: AP = AA + (APAt + APAn) , where 2

2

APAn  0.000 in sec

θAPAn  θ  δ  180  deg

θAPAn  270.000 deg

APAt  p  

APAt  768.2 in sec

θAPAt  θAPAn  90 deg

θAPAt  360.000 deg

APAn  p  ω

8.

2

AA  1.693  ka

  7.

2

2

Since 3 = 0 the acceleration at P is one-half that at B and is in the same direction as AB.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-78-1

PROBLEM 7-78 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 4, AA, AB, and AP if 2 = 15 rad/sec CW and 2 = 100 rad/sec2 CW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a  2.75 in

Link 3 (A to B)

b  3.26 in

Link 4 (O4 to B)

c  2.75 in

Link 1 (O4 to B)

d  4.43 in

RPA  1.63 in

δ3  0  deg

Coupler point data:

Solution: 1.

1

Input crank angular velocity

ω2  15 rad sec

Input crank angular acceleration

α2  100  rad sec

CW

2

CW

See Figure P6-33b and Mathcad file P0778.

Draw the linkage to scale and label it.

Y

B

O4

O2

X

36.351° A From the figure, 2.

θ2  36.351 deg

From the problem statement we have:

θ3  90 deg 3.

4.

θ4  θ2  180  deg

θ4  216.351 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

ω3 

a  ω2 sin θ4  θ2  b sin θ3  θ4

ω3  1.924  10

ω4 

a  ω2 sin θ2  θ3  c sin θ4  θ3

ω4  15.000

 15 rad

sec

rad

Using the Euler identity to expand equation 7.13a for AA. Determine the magnitude, and direction. AA  a  α2  sin θ2  j  cos θ2   a  ω2   cos θ2  j  sin θ2  2

AA  ( 335  588i)

in sec

2

The acceleration of pin A is

θAA  arg AA

AA  AA AA  677.1

in sec

5.

CCW

sec

at 2

θAA  119.7 deg

Use equations 7.12 to determine the angular accelerations of links 3 and 4.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-78-2

A  c sin θ4

B  b  sin θ3

D  c cos θ4

E  b  cos θ3

A  1.630 in

B  3.260 in

D  2.215 in

E  0.0 in

C  a  α2 sin θ2  a  ω2  cos θ2  b  ω3  cos θ3  c ω4  cos θ4 2

C  833.683 in sec

2

2

2

F  a  α2 cos θ2  a  ω2  sin θ2  b  ω3  sin θ3  c ω4  sin θ4 F  954.989 in sec

α3  6.

2

2

2

α3  471.320

rad

2

C D  A  F A  E  B D

sec

α4 

2

C  E  B F A  E  B D

α4  431.175

Use equation 7.13c to determine the acceleration of point B. AB  c α4  sin θ4  j  cos θ4   c ω4   cos θ4  j  sin θ4  2

AB  ( 30509  14941i)

mm sec

The acceleration of pin B is

AB  1337.5

in sec

7.

θAB  arg AB

AB  AB

2

at 2

θAB  26.092 deg

Use equations 7.32 to find the acceleration of the point P. APA  RPA α3  sin θ3  δ3  j  cos θ3  δ3    RPA ω3   cos θ3  δ3  j  sin θ3  δ3  2

AP  AA  APA AP  AP

AP  730.37

in sec

2

 

arg AP  53.649 deg

rad sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-79-1

PROBLEM 7-79 Statement:

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at cross heads 2 and 5. Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2. Use a graphical method.

Given:

Link lengths: Link 3 (A to B)

b  34.32  in

Link 4 (B to C)

c  50.4 in

Link 2 Y-offset

a  59.5 in

Link 5 X-offset

d  57 in

AP3  31.5 in

BP3  22.2 in

BP4  41.52  in

CP 4  27.0 in

Coupler point data:

Solution:

Input velocities:

V2Y  20 in sec

Input accelerations

AA  75 in sec

1

2

V5X  20 in sec AC  75 in sec

1

2

See Figure P7-30c and Mathcad file P0779.

1.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest.

2.

In order to solve for the accelerations at point B, we will need 3, 3, 4, and 3. From the velocity solution (Problem 6-98),

Y

θ  320.123  deg   1.749  rad sec

1

P3

A

CCW Direction of AA

3

θ  122.718  deg   1.177  rad sec 3.

Direction of AP3At Direction of ABAt Direction of ABCt

2

1

Direction of AP4Ct B

5

Use equation 7.4 to (graphically) determine the magnitude of the acceleration at point B, the magnitude of the relative accelerations ABA, ABC and the angular accelerations of links 3 and 4. The equations to be solved (simultaneously) graphically are

X C Direction of AC

AB = AA + ABA

AB = AC + ABC

Eliminating AB by combing equations and expanding, AA + (ABAt + ABAn) = AC + (ABCt + ABCn) AA  75.000 in sec

P4

4

CW

2

AC  75.000 in sec

2

2

θAA  270  deg θAC  180  deg

ABAn  b  

ABAn  104.985 in sec

θABAn  θ  180  deg

θABAn  140.123 deg

2

ABCn  c 

ABCn  69.821 in sec

θABCn  θ  180  deg

θABCn  57.282 deg

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-79-2

a.

Choose a convenient velocity scale and layout the known vectors AA and AC

b.

From the tip of AA, draw known vector ABAn.

c.

From the tip of AC, draw known vector ABCn.

d. From the tips of ABAn and ABCn draw construction lines in the known directions of these vectors. e. From the origin, draw a construction line to the intersection of the two construction lines in step d. f. Complete the vector triangle by drawing ABA from the tip of AA to the intersection of the AB construction line and drawing AB from the tail of AA to the intersection of the ABA construction line. And then do the same with the ACB vector

Y

AC X

5.701

A

n BC

141.390° A

n BA

AA

4.436

t ABC

AB 0

t ABA

50 IN/S/S

4.409 Acceleration Scale

6.

From the graphical solution above, Acceleration scale factor

ka  50

in sec

2

AB  5.701  ka

AB  285.1 in sec

ABAt  4.409  ka

ABAt  220.5 in sec

 

ABAt b

ABCt  4.436  ka   7.

2

ABCt c

  6.423 rad sec

2

2

ABCt  221.8 in sec   4.401 rad sec

at an angle of -141.390 deg

CW

2

2

From the graphical solution, the angles from A to P3 and C to P4 are

CCW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-79-3

θP3  9.250  deg 8.

The accelerations of points P3 and P4 with respect to A are: 2

2

AP3An  AP3  

AP3An  96.359 in sec

AP3At  AP3  

AP3At  202.336 in sec

AP4Cn  CP4 

2

AP4Cn  37.404 in sec

AP4Ct  CP4  3.

θP4  67.313 deg

2

2

AP4Ct  118.821 in sec

2

θAP3An  θP3  180  deg

θAP3An  170.750 deg

θAP3At  θP3  90 deg

θAP3At  80.750 deg

θAP4Cn  θP4  180  deg

θAP4Cn  112.687 deg

θAP4Ct  θP4  90 deg

θAP4Ct  157.313 deg

Use equation 7.4 to (graphically) determine the magnitude of the acceleration at points P3 and P4.

2.832

AP3 = AA + (AP3At + AP3An)

Y

AP4 = AC + (AP4Ct + AP4Cn)

6.

A P4

164.000°

t AP4C

From the graphical solution at right,

n

A P4C

Acceleration scale factor ka  200 

X

AC n

A P3A

AA 87.517°

in sec

AP3  4.577  ka

2

AP3  915.4 in sec

2

AP4  566.4 in sec

200 IN/S/S

Acceleration Scale

at an angle of -87.517 deg AP4  2.832  ka

0

2

4.577

at an angle of 164.000 deg

t AP3A

A P3

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-80-1

PROBLEM 7-80 Statement:

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at cross heads 2 and 5. Find AB, AP3, and AP4 if the crossheads are each moving toward the origin of the XY coordinate system with a speed of 20 in/sec and are decelerating at 75 in/sec2. Use an analytical method.

Given:

Link lengths: Link 3 (A to B)

b  34.32  in

Link 4 (B to C)

c  50.4 in

Link 2 Y-offset

a  59.5 in

Link 5 X-offset

d  57 in

AP3  31.5 in

BP3  22.2 in

BP4  41.52  in

CP 4  27.0 in

Coupler point data:

Solution:

Input velocities:

V2Y  20 in sec

Input accelerations

AA  75 in sec

1

2

V5X  20 in sec AC  75 in sec

1

2

See Figure P7-30c and Mathcad file P0780.

1.

Draw the linkage to a convenient scale and lable it.

2.

In order to solve for the accelerations at point B, we will need 3, 3, 4, and 3. From the velocity solution (Problem 6-98),

Y

θ  320.123  deg   1.749  rad sec 3.

2

θ  122.718  deg 1

  1.177  rad sec

CCW

1

CW

P3

A 3

Use equation 7.4 to (analytically) determine the magnitude of the acceleration at point B, the magnitude of the relative accelerations ABA, ABC and the angular accelerations of links 3 and 4. The equations to be solved simultaneously are AB = AA + ABA

B

C

AA + (ABAt + ABAn) = AC + (ABCt + ABCn) 2

AC  75.000 in sec

2

2

Let

θAA  270  deg θAC  180  deg

ABAn  b  

ABAn  104.985 in sec

θABAn  θ  180  deg

θABAn  140.123 deg

2

5 X

AB = AC + ABC

Eliminating AB by combing equations and expanding,

AA  75.000 in sec

P4

4

2

2

ABCn  c 

ABCn  69.821 in sec

θABCn  θ  180  deg

θABCn  57.282 deg

AAy   AA

AAy  75.000 in sec

ABAnx  ABAn  cos θABAn

ABAnx  80.568 in sec

ABAny  ABAn  sin θABAn

ABAny  67.310 in sec

2 2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-80-2 2

ACx   AC

ACx  75.000 in sec

ABCnx  ABCn  cos θABCn

ABCnx  37.738 in sec

ABCny  ABCn  sin θABCn

ABCny  58.743 in sec

θABAt  θABAn  90 deg

θABAt  50.123 deg

θABCt  θABCn  90 deg

θABCt  32.718 deg

mBCt  tan  θABCt

mBCt  0.642

mBAt  tan θABAt

2 2

mBAt  1.197

Write the equations for the two lines that represent the vectors ABAt and ABCt and solve them simultaneously to find the coordinates of AB: ABx 

mBCt   ACx  ABCnx   mBAt ABAnx  ABCny   AAy  ABAny  mBCt  mBAt

ABy  mBCt  ABx   ACx  ABCnx   ABCny ABx  222.804 in sec AB 

2

ABx  ABy

2

2

θAB  atan2 ABx ABy 

ABy  177.941 in sec AB  285.140 in sec

θAB  141.388 deg

A similar approach can be taken to find AP3 and AP4.

2

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-81-1

PROBLEM 7-81 Statement:

The crosshead linkage shown in Figure P7-30c has 2 DOF with inputs at cross heads 2 and 5. At t = 0, crosshead 2 is at rest at the origin of the global XY coordinate system and crosshead 5 is at rest at (70,0). Write a computer program to find and plot AP3 and AP4 for the first 5 sec of motion if A2 = 0.5 in/sec2 upward and A5 = 0.5 in/sec2 to the left.

Given:

Link lengths: Link 3 (A to B)

b  34.32  in

Link 4 (B to C)

c  50.4 in

Link 2 Y-offset

a  59.5 in

Link 5 X-offset

d  57 in

AP3  31.5 in

BP3  22.2 in

  39.128 deg

BP4  41.52  in

CP 4  27.0 in

  55.405 deg

Coupler point data:

A2  0.5 in sec

Input accelerations Solution: 1.

2

A5  0.5 in sec

2

See Figure P7-30c and Mathcad file P0781.

Draw the linkage to a convenient scale and lable it.

Y

2 P3

A 3

R3

b B a 1

c

R2

P4

4

 3

5

R4 X

4

R5

C d t  0  sec 0.1 sec  5  sec a ( t)  a 0  0.5 A2  t

a 0  0  in

2

d ( t)  d 0  0.5A5  t

V2( t)  A2  t 2.

d 0  70 in 2

V5( t)  A5  t

Define a vector loop as shown above. Summing the vectors around the loop, R2  R3  R4  R5 = 0

    a  b  sin   c sin  = 0

b  cos   c cos   d = 0

3.

Substitute the polar notation and Euler equivalents and solve for 3 and 4 using the method of Section 4.5 and the identities in equations 4.9. 2

K1( t) 

2

2

a( t)  b  c  d( t) 2 c

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-81-2

A ( t)  K1( t)  d ( t)

B( t)  2  a ( t)



2

( t)  2  atan2 2  A ( t) B( t)  2

K2( t)  

2

B( t )  4  A ( t )  C ( t )

2

a ( t)  b  c  d ( t)



2

2 b

D( t)  K2( t)  d ( t)

E( t)  2  a ( t)



F ( t)  K2( t)  d ( t)

2

( t)  2  atan2 2  D( t) E( t)  4.

C( t)  K1( t)  d ( t)

E( t)  4  D( t)  F ( t)



Differentiate the position equations with respect to time and solve for 3 and 4.

 

 

b   sin   c  sin   V5 = 0

 

 

V2  b   cos   c  cos  = 0 ( t)  

( t) 

5.







V2( t)  sin ( t)  V5( t)  cos ( t) b  sin ( t)  ( t)











V2( t)  sin ( t)  V5( t)  cos ( t)



c sin ( t)  ( t)







Differentiate the velocity equations with respect to time and solve for 3 and 4. b    sin     cos 

 

   c   sin  2 cos  A5 = 0

2

A2  b    cos     sin 

 

   c   cos  2 sin = 0

2



A' ( t)  b  sin ( t)





B'( t)  c sin ( t)



2





2





C' ( t)  b  ( t)  cos ( t)  c ( t)  cos ( t)  A5



D'( t)  b  cos ( t) 2





E'( t)  c cos ( t)





2







F'( t)  b  ( t)  sin ( t)  c ( t)  sin ( t)  A2

( t) 

6.

B'( t)  F'( t)  C' ( t)  E'( t)

( t) 

A' ( t)  E'( t)  B'( t)  D'( t)

C' ( t)  D'( t)  A' ( t)  F'( t) A' ( t)  E'( t)  B'( t)  D'( t)

Using equations 6.32, solve for the accelerations at P3.

         2  ( t)   cos ( t)    j  sin ( t)    

AP3A( t)  AP3  ( t)  sin ( t)    j  cos ( t)  

AP3( t)  j  A2  AP3A( t)

AP3 ( t)  AP3( t)

θAP3( t)  if  θAP3( t)  0 θAP3( t)  2  π θAP3( t) 

θAP3( t)  arg AP3( t) 

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-81-3

Plot the magnitude and direction of the acceleration at P3. MAGNITUDE - P3 80

60

2

AP3 ( t ) 

sec

40

in

20

0

0

1

2

3

4

5

t sec

DIRECTION - P3 200

190

θAP3( t )

180

deg

170

160

0

1

2

3

4

5

t

8.

sec

Using equations 6.32, solve for the accelerations at P4.

         2  ( t)   cos ( t)    j  sin ( t)    

AP4A( t)  CP4 ( t)  sin ( t)    j  cos ( t)  

AP4( t)  j  A5  AP4A( t)

AP4 ( t)  AP4( t)

θAP4( t)  if  θAP4( t)  0 θAP4( t)  2  π θAP4( t) 

θAP4( t)  arg AP4( t) 

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 7-81-4

Plot the magnitude and direction of the acceleration at P4. MAGNITUDE - P4 40

30

2

AP4 ( t ) 

sec

20

in

10

0

0

1

2

3

4

5

t sec

DIRECTION - P3 350

348

346

θAP4( t ) deg 344

342

340

0

1

2

3 t sec

4

5

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-82-1

PROBLEM 7-82 Statement:

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find 2 and AA in the position shown if the velocity of the slider is constant at 20 in/sec downward. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  12 in

Link 3 (A to B)

b  24 in

Link 4 (O4 to B)

c  18 in

Link 5 (C to D)

f  24 in

Link 4 (O4 to C)

e  18 in

Link 1 X-offset

d X  19 in

Link 1 Y-offset

d Y  28 in

  0.0 deg

Angle BO4C

VD  20 in sec

Input slider velocity Solution: 1.

1

θVD  90.0 deg

See Figure P7-30d and Mathcad file P0782.

Draw the linkage to a convenient scale. Indicate the directions of the acceleration vectors of interest. Direction of ACt

Direction of ACDt C

Direction of ABt O4 19.963°

4

116.161°

B 5

Y

D 3

O2

2

114.410°

6 X

A

Direction of AD

Direction of AABt Direction of AAt

2.

In order to solve for the accelerations at points A, B and C, we will need 2, 2, 3, 3, and 4 4. From the graphical position solution above and the velocity solution (see Problem 6-99),   0.000  deg

  1.648  rad sec

θ  114.410  deg

  0.282  rad sec

θ  199.963  deg

  1.003  rad sec

1 1 1

CCW CCW CW

θ  19.963 deg   116.161  deg

  0.286  rad sec

1

CW

(APt + APn) = (AAt + AAn) + (APAt + APAn)

3.

The graphical solution for accelerations uses equation 7.4:

4.

For point C, this becomes: (ACt + ACn) = AD + (ACDt + ACDn) , where

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-82-2 2

ACn  e 

ACn  18.108 in sec

θACn  θ  180  deg

θACn  199.963 deg

AD  0  in sec ACDn  f  

2

2

ACDn  1.963 in sec

θACDn    180  deg 5.

2

2

θACDn  296.161 deg

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ACn at an angle of ACn +  and ADn at an angle of ADn + . From the tip of ADn, draw ADt at an angle of ADt + . From the tip of ADt, draw ACDn at an angle of CDn + . Now that the vectors with known magnitudes are drawn, from the tips of ACn and ACDn, draw construction lines in the directions of ACt and ACDt, respectively. The intersection of these two lines are the tips of ACt, AC, and ACDt. 0

5 IN/S/S Y

Acceleration Scale 3.706

X

n

A CD n

AC 147.759°

AC 0.788

6.

t CD

A

AtC

From the graphical solution above, ka  5.0

Acceleration scale factor

in sec

2

AC  3.706  ka

AC  18.530 in sec

ACt  0.788  ka

ACt  3.940 in sec

 

ACt

at an angle of -147.759 deg

2

  0.219 rad sec

e

2

2

CW

Since link 4 is straight and the distance from O4 to B is the same as to C, AB  AC 7.

AB  18.530 in sec

2

at an angle of 32.241 deg

For point A, equation 7.4 becomes: (AAt + AAn) = AB + (AABt + AABn) , where 2

AAn  a  

AAn  32.591 in sec

θAAn    180  deg

θAAn  180.000 deg

2

2

2

AABn  b  

AABn  1.909 in sec

θAABn  θ

θAABn  114.410 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-82-3

0

10 IN/S/S

n

A AB Y

Acceleration Scale

AB

n

AA X 0.993

AAt

t AAB

AA

163.062°

3.407

8.

From the graphical solution above, Acceleration scale factor

ka  10

in sec

2

AA  3.407  ka

AA  34.070 in sec

AAt  0.993  ka

AAt  9.930 in sec

 

AAt a

2

at an angle of -163.062 deg

2

  0.828 rad sec

2

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-83-1

PROBLEM 7-83 Statement:

The linkage in Figure P7-30d has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find 2 and AA in the position shown if the velocity of the slider is constant at 20 in/sec downward. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

c  12 in

Link 3 (A to B)

b  24 in

Link 4 (O4 to B)

a  18 in

Link 5 (C to D)

f  24 in

Link 4 (O4 to C)

e  18 in

Link 1 X-offset

d X  19 in

Link 1 Y-offset

d Y  28 in

Link 1 (O2 to O4)

d 

2

dX  dY

Axis rotation angle:

  124.160  deg

Input slider velocity

VD  20 in sec

Input slider acceleration AD  0  in sec Solution: 1.

2

1

d  33.838 in

Downward (positive x' direction)

2

See Figure P7-30d and Mathcad file P0783.

Draw the linkage to a convenient scale and label it. C O4 y'

19.963°

4

116.161°

B 5

Y x'

y" D

3

O2 x"

2.

2

114.410°

6 X

A

124.160°

From the graphical position solution above and the velocity solution (see Problem 6-99), Local x"y"coordinate system: Output

Input

1

  124.160  deg

  1.648  rad sec

θ  58.570 deg

  0.282  rad sec

θ  324.123  deg

  1.003  rad sec

1 1

CCW CCW CW

Local x'y' coordinate system:

3.

θ  109.963  deg

  1.003  rad sec

  206.161  deg

  0.286  rad sec

Solve equations 7.16b and c for 2 (which is 4 in this case):

1 1

CW CW

DESIGN OF MACHINERY - 5th Ed.

  4.

SOLUTION MANUAL 7-83-2

 



2



AD  cos   e   cos   θ  f  



e sin   θ



2

  0.219  rad sec

2

Use equations 7.12 to determine the angular accelerations of link 2. A  c sin 

 

B  b  sin θ

 

D  c cos 

 

E  b  cos θ

A  9.930  in

B  20.479 in

D  6.738  in

E  12.515 in

 

2

 

2

 

2

2

 

2

 

2

 

 

C  a   sin θ  a    cos θ  b    cos θ  c   cos  C  36.278 in sec

2

 

 

F  a   cos θ  a    sin θ  b    sin θ  c   sin  F  32.758 in sec α 

9.

2

C  E  B F A  E  B D

α  0.827 

rad sec

2

Use equation 7.13c to determine the acceleration of point A.



 

   c 2 cos  j  sin

AA  c α sin   j  cos  AA  ( 26.510  21.397i ) 

in sec

The acceleration of pin A is

2

θAA  arg AA  

AA  AA AA  34.068

in sec

at 2

θAA  163.068  deg

(Global)

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-84-1

PROBLEM 7-84 Statement:

The linkage in Figure P7-30a has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis at t = 0. Write a computer program or use an equation solver to find and plot AD as a function of 2, over the possible range of motion of link 2, in the global XY coordinate system.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a  12 in

Link 3 (A to B)

b  24 in

Link 4 (O4 to B)

c  18 in

Link 5 (C to D)

f  24 in

Link 4 (O4 to C)

e  18 in

Link 1 X-offset

d X  19 in

Link 1 Y-offset

d Y  28 in

Link 1 (O2 to O4)

d 

2

dX  dY

2

d  33.838 in

Axis rotation angle:

  55.840 deg

  90.000 deg

Input velocity & accel:

ω2  1  rad sec

Crank angle:

θ2XY  70 deg 69 deg  180  deg

1

α2  0  rad sec

2

θ2 θ2XY   θ2XY  

See Figure P7-30d and Mathcad file P0784.

Draw the linkage to a convenient scale and label it. C

x' O4 y" 4 B

5

Y x"

D y' 3 2

O2

2.

55.840°

6 X

A

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  2.8198

a 2

K3 

2

2

a b c d

K2 

d c

K2  1.8799

2

2 a c

K3  2.4005

A  θ2XY   cos θ2 θ2XY    K1  K2 cos θ2 θ2XY    K3 B θ2XY   2  sin θ2 θ2XY   C θ2XY   K1   K2  1   cos θ2 θ2XY    K3 3.

Use equation 4.10b to find values of 4 for the open circuit.





θ4xy θ2XY   2   atan2 2  A  θ2XY  B θ2XY  



B θ2XY   4  A  θ2XY   C θ2XY   2

DESIGN OF MACHINERY - 5th Ed.

4.

SOLUTION MANUAL 7-84-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d b

2

2

c d a b

K5 

2

K4  1.4099

2 a b

K5  2.6753

D θ2XY   cos θ2 θ2XY    K1  K4 cos θ2 θ2XY    K5 E θ2XY   2  sin θ2 θ2XY   F  θ2XY   K1   K4  1   cos θ2 θ2XY    K5 5.

Use equation 4.13 to find values of 3 for the open circuit.





θ3xy θ2XY   2   atan2 2  D θ2XY  E θ2XY   6.

7.



E θ2XY   4  D θ2XY   F  θ2XY   2

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

ω3 θ2XY  

a  ω2 sin θ4xy θ2XY   θ2 θ2XY    b sin θ3xy θ2XY   θ4xy θ2XY  

ω4 θ2XY  

a  ω2 sin θ2 θ2XY   θ3xy θ2XY    c sin θ4xy θ2XY   θ3xy θ2XY  

Use equations 7.12 to determine the angular acceleration of link 4. A  θ2XY   c sin θ4xy θ2XY  

B θ2XY   b  sin θ3xy θ2XY  

D θ2XY   c cos θ4xy θ2XY  

E θ2XY   b  cos θ3xy θ2XY  

C θ2XY   a  α2 sin θ2 θ2XY    a  ω2  cos θ2 θ2XY    2

 b  ω3 θ2XY   cos θ3xy θ2XY    c ω4 θ2XY   cos θ4xy θ2XY   2

2

F  θ2XY   a  α2 cos θ2 θ2XY    a  ω2  sin θ2 θ2XY    2

 b  ω3 θ2XY   sin θ3xy θ2XY    c ω4 θ2XY   sin θ4xy θ2XY   2

α4 θ2XY   8.

2

C θ2XY   E θ2XY   B θ2XY   F  θ2XY  A  θ2XY   E θ2XY   B θ2XY   D θ2XY 

Transform 4 to the local x"y"coordinate system and add 180 deg to get the link from O4 to C, which is the input angle to the crank-slider portion of the linkage.

θ4 θ2XY   θ4xy θ2XY   180  deg     9.

Determine 5 in the x"y" coordinate system using equation 4.17. Offset: cc  27.5 in

 e sin θ4 θ2XY    cc  π f  

θ5 θ2XY   asin 

10. Determine the angular velocity of link 5 using equation 6.22a:

ω5 θ2XY  

e cos θ4 θ2XY     ω4 θ2XY  f cos θ5 θ2XY  

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-84-3

11. Determine the angular acceleration of link 5 using equation 7.16d. e α4 θ2XY   cos θ4 θ2XY    e ω4 θ2XY   sin θ4 θ2XY    2

α5 θ2XY  

 f  ω5 θ2XY   sin θ5 θ2XY   2

f  cos θ5 θ2XY  

12. Use equation 7.16e for the acceleration of pin D. AD  θ2XY   e α4 θ2XY   sin θ4 θ2XY    e ω4 θ2XY   cos θ4 θ2XY    2

 f  α5 θ2XY   sin θ5 θ2XY    f  ω5 θ2XY   cos θ5 θ2XY   2

ACCELERATION - PIN D

20





 AD θ2XY 

2

sec

10

in

0

 100

 50

0

50

100

θ2XY deg

Positive is up (positive Y direction in the global coordinate system).

150

200

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-85-1

PROBLEM 7-85 Statement:

For the linkage of Figure P7-30e, write a computer program or use an equation solver to find and plot AD in the global coordinate system for one revolution of link 2 if 2 is constant at 10 rad/sec CW.

Given:

Link lengths: Link 2 (O2 to A)

a  5.0 in

Link 3 (A to B)

b  5.0 in

Link 4 (O4 to B)

c  6.0 in

Link 1 (O2 to O4)

d  2.5 in

Link 5 (B to C)

e  15 in

Angle BO4C

  83.621 deg

θ2  0  deg 1  deg  360  deg

Crank angle:

ω2  10 rad sec

Input crank angular velocity Solution:

1

α2  0  rad sec

2

See Figure P7-30e and Mathcad file P0785.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a crankslider mechanism using the output of the fourbar, link 4, as the input to the slider-crank.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1 

d

K1  0.5000

a 2

K3 

2

2

a b c d

K2 

d

K2  0.4167

c

2

K3  0.7042

2 a c

A  θ2  cos θ2  K1  K2 cos θ2  K3 B θ2  2  sin θ2 C θ2  K1   K2  1   cos θ2  K3 3.

Use equation 4.10b to find values of 4 for the open circuit.





θ41 θ2  2   atan2 2  A  θ2 B θ2  4.



B θ2  4  A  θ2  C θ2  2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4 

2

d

K5 

b

2

2

c d a b

2

K4  0.5000

2 a b

D θ2  cos θ2  K1  K4 cos θ2  K5 E θ2  2  sin θ2 F  θ2  K1   K4  1   cos θ2  K5 5.

Use equation 4.13 to find values of 3 for the open circuit.





θ3 θ2  2   atan2 2  D θ2 E θ2  6.



E θ2  4  D θ2  F  θ2   2

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

ω3 θ2 

a  ω2 b



sin θ41 θ2  θ2

sin θ3 θ2  θ41 θ2 

K5  0.4050

DESIGN OF MACHINERY - 5th Ed.

a  ω2

ω4 θ2  7.

c



SOLUTION MANUAL 7-85-2

sin θ2  θ3 θ2 

sin θ41 θ2  θ3 θ2 

Use equations 7.12 to determine the angular acceleration of link 4. A  θ2  c sin θ41 θ2 

B θ2  b  sin θ3 θ2 

D θ2  c cos θ41 θ2 

E θ2  b  cos θ3 θ2 

C θ2  a  α2 sin θ2  a  ω2  cos θ2  2

 b  ω3 θ2  cos θ3 θ2   c ω4 θ2  cos θ41 θ2  2

2

F  θ2  a  α2 cos θ2  a  ω2  sin θ2  2

 b  ω3 θ2  sin θ3 θ2   c ω4 θ2  sin θ41 θ2  2

α4 θ2 

2

C θ2  E θ2  B θ2  F  θ2

A  θ2  E θ2  B θ2  D θ2

ANGULAR ACCEL - LINK 4 200

100

α4 θ2 

2

sec

0

rad  100

 200

0

45

90

135

180

225

270

θ2 deg

8.

Transform 4 to the slider-crank coordinate system (origin at O4) system.

θ42 θ2  θ41 θ2   9.

Determine 5 using equation 4.17. Offset: cc  0  in

 c sin θ42 θ2   cc  π e  

θ5 θ2  asin 

10. Determine the angular velocity of link 5 using equation 6.22a:

ω5 θ2 

c cos θ42 θ2    ω4 θ2 e cos θ5 θ2 

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-85-3

11. Determine the angular acceleration of link 5 using equation 7.16d. c α4 θ2  cos θ42 θ2   c ω4 θ2  sin θ42 θ2   2

α5 θ2 

 e ω5 θ2  sin θ5 θ2  2

e cos θ5 θ2 

12. Use equation 7.16e for the acceleration of pin D. AD  θ2  c α4 θ2  sin θ42 θ2   c ω4 θ2  cos θ42 θ2   2

 e α5 θ2  sin θ5 θ2   e ω5 θ2  cos θ5 θ2  2

ACCELERATION - PIN D

3

2 10

3

1 10

 

AD θ2 

2

sec in

0

3

 1 10

0

45

90

135

180

θ2 deg

225

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-1

PROBLEM 7-86 Statement:

The linkage of Figure P6-33f has link 2 at 130 deg in the global XY coordinate system. Find AD in the global coordinate system for the position shown if 2 = 15 rad/sec CW and 2 = 50 rad/sec2 CW. Use the acceleration difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a  5.0 in

Link 3 (A to B)

b  8.4 in

Link 4 (O4 to B)

c  2.5 in

Link 1 (O2 to O4)

d 1  12.5 in

Link 5 (C to E)

e  8.9 in

Link 5 (C to D)

h  5.9 in

Link 6 (O6 to E)

f  3.2 in

Link 7 (D to F)

k  6.4 in

Link 3 (A to C)

g  2.4 in

d 2  10.5 in

Link 1 (O2 to O6)

θ2  130  deg

Crank angle:

Slider axis offset and angle:

Solution: 1.

s  11.7 in

  150  deg

Input crank angular velocity

ω2  15 rad sec

Input crank angular acceleration

α2  50 rad sec

1

2

CW CW

See Figure P6-33f and Mathcad file P0786.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VF 8

Y

F

Direction of VFD

Direction of VE

7 E

Direction of VEC

6 Direction of VDC

5

Direction of VCA Direction VBA

C

Direction of VB

O6

D

Direction of VA

A

3

2

B 4 O4

O2

X

Angles measured from layout:

2.

θVB  24.351 deg

θVBA  79.348 deg

θVCA  θVBA

θVE  64.594 deg

θVEC  162.461  deg

θVDC  θVEC

θVF  150.00 deg

θVFD  198.690  deg

θ3  169.348  deg

θ4  65.649 deg

θ5  72.461 deg

θ6  154.594  deg

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA  a  ω2

VA  75.000

in sec

θ7  108.690  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-2

θVA  θ2  90 deg 3.

θVA  40.000 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equations to be solved graphically are VB = VA + VBA

and

VC = VA + VCA

a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA, draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

2.668

VA 0.943 V CA

0

VC

25 in/sec

3.302

Y

22.053° X

V BA VB 3.192

4.

From the velocity polygon we have: Velocity scale factor: VB  3.192  in kv

ω4 

VB c

VBA  3.302  in kv

ω3  5.

VBA b

kv 

25 in sec

1

in

VB  79.800

ω4  31.920

in rad

CW

sec

VBA  82.550

ω3  9.827

θVB  24.351 deg

sec

in

θVBA  79.348 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VCA and determine the magnitude and velocity of VC from the velocity polygon above. in VCA  g  ω3 VCA  23.586 θVCA  79.348 deg sec VCA Length of VCA on velocity polygon: vCA  vCA  0.943 in kv VC  2.668  in kv

VC  66.700

in sec

θVC  22.053deg

DESIGN OF MACHINERY - 5th Ed.

6.

SOLUTION MANUAL 7-86-3

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point E, the magnitude of the relative velocity VED, and the angular velocity of link 5. The equations to be solved graphically are VE = VC + VEC

and

VD = VC + VDC

a. Choose a convenient velocity scale and layout the known vector VC. b. From the tip of VC, draw a construction line with the direction of VEC, magnitude unknown. c. From the tail of VC, draw a construction line with the direction of VE, magnitude unknown. d. Complete the vector triangle by drawing VEC from the tip of VC to the intersection of the VE construction line and drawing VE from the tail of VC to the intersection of the VEC construction line. 1.821

1.207 V EC VE

1.716 0

V DC

VD

25 in/sec VC Y

45.934°

X 1.900

7.

From the velocity polygon we have: Velocity scale factor: VE  1.716  in kv

ω6 

VE f

VEC  1.821  in kv

ω5  8.

VEC e

kv 

25 in sec

1

in

VE  42.900

ω6  13.406

in rad in

θVEC  162.461 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VDE and determine the magnitude and velocity of VD from the velocity polygon above. VDC  h  ω5

VDC  30.179

in

VD  1.900  in kv

VD  47.500

θVDC  162.461 deg

sec vDC 

Length of VDC on velocity polygon:

9.

CW

sec

VEC  45.525

ω5  5.115

θVE  64.594 deg

sec

in sec

VDC kv

vDC  1.207 in

θVD  45.934deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point F, the magnitude of the relative velocity VFD, and the angular velocity of link 5. The equation to be solved graphically is VF = VD + VFD

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-4

a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VFD, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VF, magnitude unknown. d. Complete the vector triangle by drawing VFD from the tip of VD to the intersection of the VF construction line and drawing VF from the tail of VD to the intersection of the VFD construction line.

2.454 Y 0

VD

25 in/sec

V FD 150.000° VF

45.934°

X 1.158

10. From the velocity polygon we have: Velocity scale factor:

kv 

25 in sec in

in

VF  1.158  in kv

VF  28.950

VFD  2.454  in kv

VFD  61.350

ω7 

VFD

ω7  9.586

k

1

sec

θVF  150.000 deg

in sec

rad

CCW

sec

11. The graphical solution for accelerations uses equation 7.4:

(APt + APn) = (AAt + AAn) + (APAt + APAn)

12. For point B, this becomes: (ABt + ABn) = (AAt + AAn) + (ABAt + ABAn) , where ABn  c ω4

2

ABn  2547.2 in sec

θABn  θ4  180  deg 2

θABn  114.351 deg

AAn  a  ω2

AAn  1125.0 in sec

θAAn  θ2  180  deg

θAAn  50.000 deg

AAt  a  α2

AAt  250.0 in sec

θAAt  θ2  90 deg

θAAt  40.000 deg

2

2

2

2

2

ABAn  b  ω3

ABAn  811.3 in sec

θABAn  θ3  180  deg

θABAn  349.348 deg

13. Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw ABn at an angle of ABn and AAn at an angle of AAn. From the tip of AAn, draw AAt at an angle of AAt. From the tip of AAt, draw ABAn at an angle of BAn. Now that the vectors with known magnitudes are drawn, from the tips of ABn and ABAn, draw construction lines in the directions of ABt and ABAt, respectively. The intersection of these two lines are the tips of AB, ABt, and ABAt.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-5

Y 0

1000 in/s/s

1.152 X

cceleration Scale

AA A

n

ABA 37.471°

AAt

n A

n

AB

3.358 t ABA

AB t B

A

14. From the graphical solution above, Acceleration scale factor

ka  1000

in sec

2 2

AA  1.152  ka

AA  1152 in sec

ABAt  3.358  ka

ABAt  3358 in sec

α3 

ABAt

α3  399.762

b

θAA  37.471 deg

2

rad sec

CW

2

15. For point C, : AC = AA + (ACAt + ACAn) , where Y

X 3

AA  1.152  10 in sec

2

θAA  37.471 deg

AA 50.502°

θAAn  θ2  180  deg

θAAn  50.000 deg

ACAt  g  α3

ACAt  959.4 in sec

θACAt  θ3  90 deg

θACAt  79.348 deg

ACAn  g  ω3

2

θACAn  θ3  180  deg

n

ACA

2

ACAn  231.8 in sec

4.150

2

θACAn  349.348 deg

0

500 in/s/s

Acceleration Scale

16. From the graphical solution above,

AC

t ACA

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-6

in

ka  500 

Acceleration scale factor

sec AC  4.150  ka

2

AC  2075 in sec

2

θAC  50.502 deg

17. For point E: (AEt + AEn) = AC + (AECt + AECn) , where AEn  f  ω6

2

AEn  575.1 in sec

θAEn  θ6  180  deg 2

Acceleration Scale

θAEn  25.406 deg

n

2

θAECn  θ5  180  deg

θAECn  107.539 deg ka  500 

in sec

α5 

2

AECt  1349 in sec

AECt

sec

AEt

AE

2

AC

rad

α5  151.517

e

X

AE

AECn  232.9 in sec

AECt  2.697  ka

500 in/s/s

2

AECn  e ω5

Acceleration scale factor

0

Y

CCW

t AEC

2

n

AEC 2.697

18. For point D, : AD = AC + (ADCt + ADCn) , where AC  2075.0 in sec

2

θAC  50.502 deg 2

ADCt  h  α5

ADCt  893.9 in sec

θADCt  θ5  90 deg

θADCt  162.461 deg

2

θADCn  θ5  180  deg

θADCn  107.539 deg

AD  3.194  ka

3.194

in sec

125.841°

AD 2

AC  2075 in sec

AE 2

θAD  125.841  deg 19. For point F, : AF = AD + (AFDt + AFDn) , where 2

Acceleration Scale

2

ADCn  154.4 in sec

ka  500 

AFDn  k ω7

AFDn  588.10 in sec

θAFDn  θ7  180  deg

θAFDn  71.310 deg

500 in/s/s

X

ADCn  h  ω5

Acceleration scale factor

0

Y

2

t

ADC

n

ADC

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-86-7

Y 0

500 in/s/s

4.033 X

cceleration Scale

30.000°

AF AD

t AFD

n

AFD

Acceleration scale factor

ka  500 

in sec

AF  4.033  ka

2

AF  2017 in sec

2

θAD  30.00  deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-87-1

PROBLEM 7-87 Statement:

Figure 3-14 shows a crank-shaper quick-return mechanism with the following dimensions: L2 = 4.80 in, L4 = 24.00 in, L5 = 19.50 in, the distance from link 4's fixed pivot (O4) to link 2's fixed pivot (O2) is 16.50 in, and the vertical distance from O2 to the pivot point on link 6 is 6.465 in. Use a graphical method to calculate the acceleration of link 6 when 2 = 45 deg. Assume that link 2 has a constant angular velocity of 2 rad/sec CW.

Given:

Link lengths and angles: Link 2

L2  4.80 in

Link 4

L4  24.00  in

Link 5

L5  19.50  in ω  2  rad sec

Angular velocity of link 2 Solution: 1.

Angle link 2 makes with X axis θ  45 deg

1

CW

α  0  rad sec

2

See Figure P3-14 and Mathcad file P0787.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

C 6

5

B

6.465" 4

O2

14.519° y

2 A 3

Axis of slip

13.538"

Axis of transmission

4 Direction of VA3 45.000°

O4 x

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  L2 ω

3.

VA3  9.600

in sec

θVA3  θ  90 deg

θVA3  45.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-87-2

a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line. 4.

From the velocity triangle we have: kv 

Velocity scale factor:

5  in sec

1

0.975"

Vtrans

in

y

in

Vslip  1.654  in kv

Vslip  8.270

Vtrans  0.975  in kv

Vtrans  4.875

1.654"

sec in

x

Vslip

sec

0

5 in/sec

VA3 5.

The true velocity of point A on link 4 is Vtrans, VA4  Vtrans

6.

VA4  4.875

sec

Determine the angular velocity of link 4 using equation 6.7. From the linkage layout above: ω 

VA4 c

VB  L4 ω 7.

in

c  13.538 in and

ω  0.360

rad

VB  8.642

in

θ  180  deg  14.519 deg θ  165.481 deg

CCW

sec sec

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VCB C 6

5

B Direction of VB

Direction of VC

0.806° 4

O2

y

2 A 3 4 45.000°

O4 x

DESIGN OF MACHINERY - 5th Ed.

8.

SOLUTION MANUAL 7-87-3

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

9.

From the velocity triangle we have:

Velocity scale factor: VC  1.669  in kv

kv 

5  in sec in

VC  8.345

1.730"

0.434"

1

VB

VCB

in

y

VC

sec

0

θVC  180  deg

5 in/sec

x

VCB  0.434  in kv

VCB  2.170

in

1.669"

sec

10. Determine the angular velocity of link 5 using equation 6.7. θ  270.806  deg

From the linkage layout above: ω 

VCB

ω  0.111

L5

rad

CCW

sec

11. For the acceleration of point A, use equation 7.19: (AA2t + AA2n) = AA4t + AA4n + AAcor + AAslip , where 2

AA2n  L2 ω

AA2n  19.200 in sec

θAA  θ  180  deg

θAA  225.000 deg

2

2

AA4n  c ω

AA4n  1.755 in sec

θAA4n  θ  180  deg

θAA4n  345.481 deg

AAcor  2  Vslip  ω

AAcor  5.956 in sec

θAAcor  θ  90 deg

θAAcor  75.481 deg

(Vslip is negative)

2

2

AA2t  L2 α

AA2t  0.000 in sec

AAcor AAslip

AA2

2.259" AA4 t AA4

n AA4

13. From the acceleration polygon above,

y

2.254" x

12. Repeat procedure of steps 3 and 7 for the equation in step 11. (See next page).

2

0

10 in/sec

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-87-4

ka  10

Acceleration scale factor

in sec

2 2

AA4  2.259  ka

AA4  22.6 in sec

AA4t  2.254  ka

AA4t  22.5 in sec

at an angle of -100.285 deg

2

The angular acceleration of link 4 is α 

AA4t

α  1.665

c

rad sec

CCW

2

14. The graphical solution for accelerations in pin-jointed fourbars uses equation 7.4: (APt + APn) = (AAt + AAn) + (APAt + APAn) 15. For point C, this becomes: AC = (ABt + ABn) + (ACBt + ACBn) , where ABn  L4 ω

2

ABn  3.112 in sec

2

θABn  θ  180  deg

θABn  345.481 deg

ABt  L4 α

ABt  39.96 in sec

θABt  θ  90 deg

θABt  75.481 deg

2

2

2

ACBn  L5 ω

ACBn  0.241 in sec

θACBn  θ

θACBn  270.806 deg

16. Repeat procedure of step 12 for the equation in step 15.

3.748" AC

ABn

y t ACB

x 0

10 in/sec

ABt n ACB

17. From the acceleration polygon above, Acceleration scale factor

ka  10

in sec

AC  3.748  ka

2

AC  37.5 in sec

2

at an angle of 90 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-88-1

PROBLEM 7-88 Statement:

Repeat Problem 7-87 using an analytical method to calculate the acceleration of point C for one revolution of the input crank (link 2).

Given:

Link lengths and angles: Link 1 (O2O4)

d  16.50  in

Link 2 (L2)

a  4.80 in

Link 4 (L4)

a'  24.00  in

Link 5 (L5)

b'  19.50  in ω  2  rad sec

Angular velocity of link 2 Solution: 1.

d'  22.965 in

Vertical offset from O4 to C

1

α  0  rad sec

2

See Figure 3-14 and Mathcad file P0788.

Draw the mechanism to scale and define a vector loop for the input portion (links 1, 2, 3, and 4) using the fourbar crank-slider derivation in Section 7.3 as a model. θ  0  deg 0.5 deg  360  deg

c'

C 6

5

B

4

O2

y

2

A 3

d' 4

2 y R2

O4 R1

x R3

x

DESIGN OF MACHINERY - 5th Ed.

2.

SOLUTION MANUAL 7-88-2

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b (distance from O4 to A). R2  R1  R3 a e

j  θ

 d  b  e

j  θ

Substituting the Euler equivalents,

  

   d  bcosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for 3 and b.

 

   a  sin θ sin θ θ 

 

θ θ  atan2 a  cos θ  d a  sin θ

 

b θ  3.

Differentiate the position equation, expand it and solve for 3 and bdot. a  j  ω e

j  θ

 

ω θ 

a  ω

 

b θ

j  θ



 bdot e

j  θ

 

 cos θ  θ θ

 

    sin θ θ 

  

a  ω cos θ  b θ  ω θ  cos θ θ

 

bdot θ  4.

 b  j  ω e

Differentiate the velocity equation, expand it and solve for 3. a  j   e

j  θ

2

2 j  θ

 a  j  ω  e

 bdot j  ω e 2

j  θ

2 j  θ

 b  j  ω  e

 

α θ  5.

1

 

b θ

j  θ

 bddot e



j  θ

 bdot j  ω e

j  θ

  a  α cos θ  θ θ

   a ω2 sinθθ  θ  2 bdotθ ωθ



The position, angular velocity, and angular acceleration are the same for links 3 and 4.

 

 

 

θ θ  θ θ 6.

 b  j   e

 

ω θ  ω θ

 

 

α θ  α θ

Write a vector loop equation for links 1, 4, 5, and 6, expand the result and separate into real and imaginary parts to solve for 5 and c' (horizontal distance from O4 to C).

 3 π   j  θ j  θ j π 2  c'  e   d' e = a' e  b' e j

R6  R7 = R4  R5 Substituting the Euler equivalents,

  

   b' cosθ  j  sinθ

j  c'  d' = a' cos θ  j  sin θ

Separating into real and imaginary components and solving for 5 and c'.

 

 a' cos θ θ   d'   b'  

θ θ  acos

 



    b' sinθθ

c' θ   a' sin θ θ

DESIGN OF MACHINERY - 5th Ed.

7.

SOLUTION MANUAL 7-88-3

Differentiate the position equation, expand it and solve for 5 and VC.

 3 π   j  θ j  θ 2  VC  e  = a' ω j  e  b' ω j  e j 

Substituting the Euler equivalents,



 

   b' ω sinθ  j  cosθ

VC = a' ω sin θ  j  cos θ

Separating into real and imaginary components and solving for 5 and VC.

        VC θ  a' ω θ  cos θ θ   b' ω θ  cos θ θ  a' sin θ θ ω θ     ω θ b' sin θ θ

 

Differentiate the position equation, expand it and solve for 5 and AC.

 3 π    2 j  θ  α  ej  θ  b' j   j  ω 2 ej  θ  α  ej  θ 2  AC  e  = a' j   j  ω  e       j 

Substituting the Euler equivalents,

      a'  sinθ  j  cosθ  2  b' ω   cos θ  j  sin θ   b'   sin θ  j  cos θ  2

AC = a' ω  cos θ  j  sin θ

Separating into real and imaginary components and solving for 5 and AC.

 

    a' ωθ2 sinθθ  b' ωθ2 cosθθ b' sin θ θ 

 

a' α θ  cos θ θ

 

      a' ωθ2 sinθθ  2  b' α θ  cos θ θ   b' ω θ  sin θ θ 

α θ 

AC θ  a' α θ  cos θ θ

ACCELERATION OF POINT C 100

Acceleration, in/sec^2

8.

50

 

AC θ 

2

sec

0

in

 50

 100

0

45

90

135

180

225

θ deg Crank Angle, deg

270

315

360

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-89-1

PROBLEM 7-89 Statement:

Figure P7-22 shows a mechanism with dimensions. Use a graphical method to determine the accelerations of points A and B for the position shown. Ignore links 5 and 6. ω 2 = 24 rad/s clock-wise.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle O2O4 makes with X axis

θ  56.5 deg

Link 2 (O2A)

a  1.35 in

Angle O2A makes with X axis

θ  14 deg

Link 4 (O4B)

e  1.36 in ω  24 rad sec

Motion of link 2 Solution: 1.

1

α  0  rad sec

CW

2

See Figure P7-22 and Mathcad file P0789.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  32.400

in sec

θVA3  θ  90 deg

θVA3  76.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-89-2

Y 0

12 in/sec

1.295" X Vtrans

VA3 2.369"

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

12 in sec in

in

Vslip  28.428

Vtrans  1.295  in kv

Vtrans  15.540

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  15.54 

in sec

Determine the angular velocity of link 4 using equation 6.7. From the linkage layout above: ω 

7.

1

Vslip  2.369  in kv

VA4  Vtrans 6.

Vslip

VA4

c  0.939  in and

ω  16.550

c

rad

CW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

VB  22.507

in sec

θVA4  θ  90 deg 8.

θ  132.661  deg

θVA4  42.661 deg

For the acceleration of point A, use equation 7.19: (AA2t + AA2n) = AA4t + AA4n + AAcor + AAslip , where AA2n  a  ω

2

AA2n  777.600  in sec

θAA  θ  180  deg

θAA  194.000  deg

AA2t  a  α

AA2t  0.000  in sec 2

AA4n  c ω

2

2

AA4n  257.2  in sec

2

DESIGN OF MACHINERY - 5th Ed.

9.

SOLUTION MANUAL 7-89-3

θAA4n  θ

θAA4n  132.661  deg

AAcor  2  Vslip  ω

AAcor  940.940  in sec

θAAcor  θ  90 deg

θAAcor  222.661  deg

2

Repeat procedure of steps 3 and 7 for the equation in step 8.

Y cor

AA

2.572" t

A A4 0

A A4

100 IN/S/S

3.647"

n A A4

87.504° X

cor AA

A A2 10. From the acceleration polygon above, Acceleration scale factor

ka  100 

in sec

2 2

AA4  3.647  ka

AA4  364.7  in sec

AA4t  2.572  ka

AA4t  257.2  in sec

at an angle of 87.50 deg

2

The angular acceleration of link 4 is α 

AA4t

α  273.9 

c

rad sec

CCW

2

11. For point B: ABn  e ω

2

ABn  372.5  in sec

2

θABn  θ  180  deg

θABn  312.661  deg

ABt  e α

ABt  372.5  in sec

θABt  θ  90 deg

θABt  222.661  deg

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-90-1

PROBLEM 7-90 Statement:

Figure P7-22 shows a mechanism with dimensions. Use an analytical method to calculate the accelerations of points A and B for the position shown. Ignore links 5 and 6. ω 2 = 24 rad/s clock-wise.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.22 in

Angle link 2 makes with X axis θ  42.5 deg

Link 2 (O2A)

a  1.35 in

Angle link 3 makes with X axis θ  103.839  deg

Link 4 (O4B)

c  1.36 in ω  24 rad sec

Motion of link 2 Solution: 1.

1

α  0  rad sec

2

See Figure P7-22 and Mathcad file P0790.

Draw the mechanism to scale and define a vector loop for links 1, 2, 3, and 4 using the four- bar crank-slider derivation in Section 7.3 as a model.

B Axis of slip X b = 0.939"

O4

4

103.839°

R3

d = 1.220"

Y

Axis of transmission

R1 42.500°

A 3

2

R2 O2 a = 1.350"

2.

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b (distance from O4 to A). R2 = R1  R3 a e

j  θ

= d  b e

j  θ

Substituting the Euler equivalents,

  

  = d  bcosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for b.

DESIGN OF MACHINERY - 5th Ed.

b  3.

SOLUTION MANUAL 7-90-2

  sin θ

a  sin θ

b  0.939 in

Differentiate the position equation, expand it and solve for 3 and bdot. a  j  ω e ω 

j  θ

a  ω b

bdot 

= b  j  ω e



j  θ

 bdot e

j  θ



 cos θ  θ

 

 

a  ω cos θ  b  ω cos θ

 

ω  16.544

rad

bdot  28.430

in

sin θ 4.

s

Differentiate the velocity equation, expand it and solve for 3. a  j   e

j  θ

2

2 j  θ

 a  j  ω  e

= bdot j  ω e

j  θ

α 

1 b

 b  j   e

2 j  θ

2

 b  j  ω  e

5.

s

j  θ

 bddot e



j  θ

 bdot j  ω e

  a  α cos θ  θ  a  ω  sin θ  θ  2  bdot ω





2





j  θ

α  275.059 

rad 2

s

Determine the acceleration of point A on link 2 (in the local XY coordinate system) using equations 7.13a.



 

   a ω2 cosθ  j  sinθ

AA2  a  α sin θ  j  cos θ AA2  AA2

AA2  777.600 

θAA2  arg AA2

in 2

θAA2  137.500  deg

s 6.

Determine the acceleration of points A and B on link 4 (in the local XY coordinate system) using equations 7.13a. Rename 3 to θ4:

θ  θ

Rename 3 to 4:

α  α ω  ω



 

   b ω2 cosθ  j  sinθ

AA4  b  α sin θ  j  cos θ AA4  AA4

AA4  364.484 

in 2

θAA4  arg AA4

θAA4  31.019 deg

s



 

   a ω2 cosθ  j  sinθ

AB  a  α sin θ  j  cos θ AB  AB

AB  523.844 

in 2

s

θAB  arg AB

θAB  31.019 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-91-1

PROBLEM 7-91 Statement:

Figure P7-23 shows a quick-return mechanism with dimensions. Use a graphical method to calculate the accelerations of points A, B, and C for the position shown. 2  = 16 rad/s. Ignore links 5 and 6.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle O2O4 makes with X axis

Link 2 (L2)

a  1.00 in

Angle link 2 makes with X axis θ  99 deg

Link 4 (L4)

e  4.76 in

Angular velocity of link 2 Solution: 1.

ω  16 rad sec

1

CCW

θ  195.5  deg

α  0  rad sec

2

See Figure P7-23 and Mathcad file P0791.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission

Direction of VA3

4

Y Axis of slip A 3 2.068

2 44.228° O2

X O4

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3  a  ω

3.

VA3  16.000

in sec

θVA3  θ  90 deg

θVA3  189.0  deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-91-2

a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

Y 0

8 in/sec

X

VA3

Vtrans

4.

From the velocity triangle we have: Velocity scale factor:

5.

kv 

in

Vtrans  1.154  in kv

Vtrans  9.232 

in sec in sec

The true velocity of point A on link 4 is Vtrans, VA4  9.23

in sec

Determine the angular velocity of link 4 using equation 6.7.

ω 

VA4

c  2.068  in and

ω  4.464 

c

rad

θ  44.228 deg

CCW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e ω

VB  21.250

θVA4  θ  90 deg 8.

1

Vslip  13.072

From the linkage layout above:

7.

8  in sec

Vslip  1.634  in kv

VA4  Vtrans 6.

1.634"

Vslip

1.154"

in sec

θVA4  45.772 deg

For the acceleration of point A, use equation 7.19: (AA2t + AA2n) = AA4t + AA4n + AAcor + AAslip , where AA2n  a  ω

2

AA2n  256.000  in sec

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-91-3

θAA  θ  180  deg

θAA  279.000  deg

AA2t  a  α

AA2t  0.000  in sec 2

9.

2 2

AA4n  c ω

AA4n  41.214 in sec

θAA4n  θ  180  deg

θAA4n  224.228  deg

AAcor  2  Vslip  ω

AAcor  116.712  in sec

θAAcor  θ  90 deg

θAAcor  134.228  deg

2

Repeat procedure of steps 3 and 7 for the equation in step 8. 0

Y

25 IN/S/S

Acceleration Scale

n

X

AA4

4.042" 69.810°

AA4 t A4

A 3.711"

slip

AA

AA2 cor

AA

10. From the acceleration polygon above, Acceleration scale factor

ka  25

in sec

2

AA4  4.042  ka

AA4  101.0  in sec

AA4t  3.711  ka

AA4t  92.8 in sec

2

at an angle of -69.81 deg

2

The angular acceleration of link 4 is α 

AA4t c

α  44.9

rad sec

2

CW

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-91-4

11. For point B: ABn  e ω

2

ABn  94.9 in sec

2

θABn  θ  180  deg

θABn  224.228  deg

ABt  e α

ABt  213.5  in sec

θABt  θ  90 deg

θABt  134.228  deg

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-92-1

PROBLEM 7-92 Statement:

Figure P7-23 shows a quick-return mechanism with dimensions. Use an analytical method to calculate the accelerations of points A and B for the position shown. Ignore links 5 and 6. ω 2 = 16 rad/s.

Given:

Link lengths and angles: Link 1 (O2O4)

d  1.69 in

Angle link 2 makes with X axis θ  96.517 deg

Link 2 (O2A)

a  1.00 in

Angle link 3 makes with X axis θ  151.289  deg

Link 4 (O4B)

e  4.76 in

Motion of link 2 Solution: 1.

ω  16 rad sec

1

α  0  rad sec

2

See Figure P7-23 and Mathcad file P0792.

Draw the mechanism to scale and define a vector loop for links 1, 2, 3, and 4 using the four- bar crank-slider derivation in Section 7.3 as a model.

B

Axis of transmission 4

Axis of slip A 3 2.068" 1.000"

R2 151.289°

96.517° R3

2

O2 R1

X O4

1.690

Y

2.

Write the vector loop equation, expand the result and separate into real and imaginary parts to solve for 3 and b (distance from O4 to A). R2 = R1  R3

DESIGN OF MACHINERY - 5th Ed.

a e

j  θ

= d  b e

SOLUTION MANUAL 7-92-2 j  θ

Substituting the Euler equivalents,

  

  = d  bcosθ  j  sinθ

a  cos θ  j  sin θ

Separating into real and imaginary components and solving for b. b  3.

  sin θ

a  sin θ

b  2.068 in

Differentiate the position equation, expand it and solve for 3 and bdot. a  j  ω e ω 

j  θ

a  ω b

bdot 

= b  j  ω e



j  θ

 bdot e

j  θ



 cos θ  θ

 

ω  4.463 

 

a  ω cos θ  b  ω cos θ

 

rad s

bdot  13.070

in

sin θ 4.

Differentiate the velocity equation, expand it and solve for 3. a  j   e

j  θ

2

2 j  θ

 a  j  ω  e

= bdot j  ω e

j  θ

α 

1 b

 b  j   e

2 j  θ

2

 b  j  ω  e

5.

s

j  θ

 bddot e



j  θ

 bdot j  ω e

  a  α cos θ  θ  a  ω  sin θ  θ  2  bdot ω





2





j  θ

α  44.710

rad 2

s

Determine the acceleration of point A on link 2 (in the local XY coordinate system) using equations 7.13a.



 

   a ω2 cosθ  j  sinθ

AA2  a  α sin θ  j  cos θ AA2  AA2

AA2  256.000 

θAA2  arg AA2

in 2

θAA2  83.483 deg

s 6.

Determine the acceleration of points A and B on link 4 (in the local XY coordinate system) using equations 7.13a. Rename 3 to θ4:

θ  θ

Rename 3 to 4:

α  α



 

ω  ω

   b ω2 cosθ  j  sinθ

AA4  b  α sin θ  j  cos θ AA4  AA4

AA4  101.226 

in 2

θAA4  arg AA4

θAA4  94.703 deg

s



 

   a ω  cosθ  j  sinθ

AB  a  α sin θ  j  cos θ AB  AB

AB  48.944

2

in 2

s

θAB  arg AB

θAB  94.703 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-93a-1

PROBLEM 7-93a Statement:

Given:

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P7-2. The link lengths and the values of d, d-dot, and d-double-dot are defined in Table P7-5. For row a, find the acceleration of the pin joint A and the angular acceleration of the crank using a graphical method. Link lengths: a  1.4 in

Link 2 Offset Solution: 1.

c  1  in

Link 3

b  4  in

θ2  176.041  deg

ddot  10 in sec

1

dddot  0  in sec

2

See Figure P7-2, Table P7-5, and Mathcad file P0793a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

Direction of VBA 13.052° B

. d = VB

176.041° A

000 b = 4. a = 1.400

c = 1.000"

O2

d = 2.500" 0

10 inches/sec

Direction of VA 2.

Use equation 6.6.24b to (graphically) determine the magnitude of the velocity at point A. The equation to be solved graphically is

VA

VA = VB + VBA a. Choose a convenient velocity scale and layout the known vector VB. b. From the tip of VB, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VB, draw a construction line with the direction of VA, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VBA construction line. 3.

VBA

3.414" 3.330"

Y

86.041°

From the velocity triangle we have:

103.052°

VB

1.000"

X

DESIGN OF MACHINERY - 5th Ed.

Velocity scale factor:

SOLUTION MANUAL 7-93a-2

kv 

10 in sec

1

in in

VA  3.330  in kv

VA  33.300

VBA  3.414  in kv

VBA  34.140

θVB  86.041 deg

sec in

θVBA  103.052  deg  180deg

sec

θVBA  76.948 deg 4.

Use equation 6.7 to find the angular velocity of the crank (link 2).

ω2  ω3 

VA

ω2  23.786

a VBA

ω3  8.535 

b

rad

CW

sec

rad

CW

sec

5.

The graphical solution for accelerations uses equation 7.4:

6.

For point A, this becomes:

AAt + AAn = ABt - (ABAt + ABAn) , where

2

AAn  a  ω2

AAn  792.064  in sec

θAAn  θ2  180  deg

θAAn  356.041  deg

ABt  dddot

ABt  0.000  in sec

θABt  0  deg

θABt  0.000  deg

2

4.

(APt + APn) = (AAt + AAn) + (APAt + APAn)

2

2

ABAn  b  ω3

ABAn  291.385  in sec

θABAn  13.052 deg  180  deg

θABAn  193.052  deg

2

Choose a convenient acceleration scale and draw the vectors with known magnitude and direction. From the origin, draw AAn at an angle of AAn. From the origin, draw -ABAt at an angle of ABt. Now that the vectors with known magnitudes are drawn, from the tip AAn and the tip of -ABAt, draw construction lines in the directions of AAt and ABAn, respectively. The intersection of these two lines are the tips of AAt and ABAn.

5.

From the graphical solution below, in

Acceleration scale factor ka  200 

sec

2 2

AA  8.895  ka

AA  1779 in sec

AAt  7.965  ka

AAt  1593 in sec

α2 

AAt a

α2  1138

rad sec

2

2

at an angle of -67.52 deg

DESIGN OF MACHINERY - 5th Ed.

Y

SOLUTION MANUAL 7-93a-3

0

200 IN/S/S

Acceleration Scale

n -A BA

X

n

AA

67.521°

t

-A A4

AA t

AA

7.965" 8.895"

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-94a-1

PROBLEM 7-94a The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P7-2. The link lengths and the values of d, d-dot and d-double-dot are defined in Table P7-5. For row a, find the acceleration of pin joint A and the angular acceleration of the crank using the analytic method. Draw the linkage to scale and label it before setting up the equations. Link lengths:

Statement:

Given:

Link 2 (O2 A)

a  1.4 in

Slider position

d  2.5 in dddot  0 

Slider acceleration:

b  4  in

Link 3 (AB) Slider velocity in

ddot  10

Offset (yB) in s

2

s

See Figure P7-2, Table P7-5, and Mathcad file P0794a.

Solution: 1.

Draw the linkage to scale and label it. 13.052° B

. .. d d

176.041° 000 b = 4.

A

a = 1.400

c = 1.000"

O2

d = 2.500"

2.

Determine the open value of 2 using equations 4.20 and 4.21. 2

2

2

K1  a  b  c  d

2

2

K2  2  a  c

K2  2.8 in

K3  2  a  d

K3  7 in

A  K1  K3

A  0.21 in

B  2  K2

B  5.6 in

C  K1  K3

C  13.79 in

2 2

2 2



2

θ2  2  atan2 2  A B  3.

2

K1  6.79 in

B  4 A  C



θ2  176.041  deg

Determine the value of 3 using equation 4.16a or 4.17.

β ( a b c d α) 

θ  asin



a  sin( α)  c 

 

b

d 1  a  cos( α)  b  cos( θ ) return θ if d 1 = d asin 



a  sin( α)  c  b

  π otherwise 

c  1  in

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 7-94a-2

θ3  β  a b c d θ2 4.

Determine the value of ω 2 and ω 3 using equations 6.24.

ω2 

ω3  5.

6.

θ3  193.052  deg

ddot cos θ3

ω2  23.785

a   cos θ2  sin θ3  sin θ2  cos θ3  a  ω2 cos θ2

ω3  8.525 

b  cos θ3

s

rad s

Determine the value of VA using equation 6.7. in

VA  a  ω2

VA  33.299

θVA  θ2  sign ω2  90 deg

θVA  86.041 deg

s

Determine the value of α2 using equation 7.17b. a  ω2   cos θ2  cos θ3  sin θ2  sin θ3   b  ω3  dddot cos θ3 2

α2 

α2  1139.37 

2

a   cos θ2  sin θ3  sin θ2  cos θ3 

rad 2

s 7.

rad

Determine the value of AA using equation 7.3. AA  a  α2  sin θ2  j  cos θ2   a  ω2   cos θ2  j  sin θ2  2

AA  AA

AA  1780.93

in sec

θAA  arg AA

2

θAA  67.553 deg

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-1-1

PROBLEM 8-1 Statement:

Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

Solution:

See Figure P8-1 and Mathcad file P0801.

1.

Draw the cam and follower to scale. Axis of slip

Axis of transmission

4

2

O2

2.

O4

As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.

A 3 B

2

O2

4

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-2-1

PROBLEM 8-2 Statement:

Figure P8-1 shows the cam and follower from Problem 6-65. Using graphical methods, find the pressure angle at the position shown.

Solution:

See Figure P8-1 and Mathcad file P0802.

1.

Draw the cam and follower to scale. Axis of slip

Axis of transmission

2

4

O2

2.

O4

As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them. Direction of motion, link 4

55.3° Axis of transmission

2

O2

4

O4

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-3-1

PROBLEM 8-3 Statement:

Figure P8-2 shows the cam and follower. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

Solution:

See Figure P8-2 and Mathcad file P0803.

1.

Draw the cam and follower to scale.

4 Common Normal

3

2

2.

As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.

4

O4

B

3

A 2 O2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-4-1

PROBLEM 8-4 Statement:

Figure P8-2 shows the cam and follower. Using graphical methods, find the pressure angle at the position shown.

Solution:

See Figure P8-2 and Mathcad file P0804.

1.

Draw the cam and follower to scale.

4 Common Normal

3

2

2.

As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them. Direction of motion, link 4 Common Normal 4.9° 4

3

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-5-1

PROBLEM 8-5 Statement:

Figure P8-3 shows the cam and follower. Using graphical methods, find and sketch the equivalent fourbar linkage for this position of the cam and follower.

Solution:

See Figure P8-3 and Mathcad file P0805.

1.

Draw the cam and follower to scale. Common Normal

4

3

2

2.

As described in Section 8.1 and Figure 8-1, find the centers of curvature of the cams, which are located on the common normal (axis of transmission). They will be the locations of the moving pivots of the effective pin-jointed fourbar linkage.

Slider 1

4

3 2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-6-1

PROBLEM 8-6 Statement:

Figure P8-3 shows the cam and follower. Using graphical methods, find the pressure angle at the position shown.

Solution:

See Figure P8-3 and Mathcad file P0806.

1.

Draw the cam and follower to scale. Common Normal

4

3

2

2.

As defined in Section 8.6 and Figure 8-41, the pressure angle is the angle between the direction of motion of the follower and the direction of the axis of transmission. Establish those two directions and measure the angle between them.

Direction of motion, link 4 13.8° Common Normal 4

3

2

DESIGN OF MACHINERY - 5th Ed.

SOLUTION MANUAL 8-7-1

PROBLEM 8-7 Statement:

Given:

Design a double-dwell cam to move a follower from 0 to 2.5 in in 60 deg, dwell for 120 deg, fall 2.5 in in 30 deg and dwell for the remainder. The total cycle must take 4 sec. Choose suitable programs for rise and fall to minimize accelerations. Plot the s v a j diagrams. RISE

DWELL

β1  60 deg

β2  120  deg

h 1  2.5 in Cycle time: Solution: 1.

3.

DWELL

β3  30 deg

h 2  0  in

β4  150  deg

h 3  2.5 in

h 4  0  in

τ  4  sec

See Mathcad file P0807.

The camshaft turns 2 rad during the time for one cycle. Thus, its speed is ω 

2.

FALL

2  π rad

ω  1.571

rad

sec τ From Table 8-3, the motion program with lowest acceleration that does not have infinite jerk is the modified trapezoidal. The modified trapezoidal motion is defined in local coordinates by equations 8.15 through 8.19. The numerical constants in these SCCA equations are given in Table 8-2. b  0.25

c  0.50

d  0.25

Cv  2.0000

Ca  4.8881

Cj  61.426

The SCCA equations for the rise or fall interval () are divided into 5 subintervals. These are: for 0
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF