DESIGN OF MACHINERY SOLUTION MANUAL Chapter 6

March 4, 2017 | Author: Kagrath | Category: N/A
Share Embed Donate


Short Description

DESIGN OF MACHINERY SOLUTION MANUAL Chapter 6...

Description

DESIGN OF MACHINERY

SOLUTION MANUAL 6-1a-1

PROBLEM 6-1a Statement:

A ship is steaming due north at 20 knots (nautical miles per hour). A submarine is laying in wait 1/2 mile due west of the ship. The sub fires a torpedo on a course of 85 degrees. The torpedo travels at a constant speed of 30 knots. Will it strike the ship? If not, by how many nautical miles will it miss? Hint: Use the relative velocity equation and solve graphically or analytically.

Units:

naut_mile  1

knots  

naut_mile hr

Given:

Vs  20 knots

Speed of ship

t  15 deg

Vt  30 knots

Speed of torpedo

s  90 deg di  0.5 naut_mile

Initial distance between ship and torpedo

Note that, for compass headings, due north is 0 degrees, due east 90 degrees, and the angle increases clockwise. However, in a right-handed Cartesian system, due north is 90 degrees (up) and due east is 0 degrees (to the right). The Cartesian system has been used above to define the ship and torpedo headings. Solution:

See Mathcad file P0601a.

1.

The key to this solution is to recognize that the only information of interest is the relative velocity of one vessel to the other. The ship captain wants to know the relative velocity of the torpedo versus the ship, Vts = Vt - Vs. In effect, we want to resolve the situation with respect to a moving coordinate system attached to the ship.

2.

The figure below shows the initial positions of the torpedo and ship and their velocities. Vs = 20 knots Vt = 30 knots

torpedo

0.5 n. mi.

ship

3.

The figure below shows the vector diagram that solves the relative velocity equation Vts = Vt - Vs. For the torpedo to hit the moving ship, the relative velocity vector has to be perpendicular to the ship's velocity vector (if you were on the ship observing the torpedo, it would appear to be headed directly for you). As the velocity diagram shows, the relative velocity vector is not perpendicular to the ship's velocity vector so it will miss and pass behind the ship.

4.

Determine the distance by which the torpedo will miss the ship.

Vt

Time required for torpedo to travel 0.5 nautical miles due east tt_east  

di



Vt cos t

tt_east 62.117 s

Distance traveled by the torpedo due north in that time



dt_north  Vt sin t  tt_east

dt_north 0.134naut_mile

Distance traveled by the ship due north in that time ds_north   Vs  tt_east

ds_north 0.345naut_mile

Distance by which the torpedo will miss the ship dmiss  ds_north dt_north

dmiss 0.211naut_mile

-Vs 22.89° V ts

DESIGN OF MACHINERY

SOLUTION MANUAL 6-1b-1

PROBLEM 6-1b Statement:

Given:

A plane is flying due south at 500 mph at 35,000 feet altitude, straight and level. A second plane is initially 40 miles due east of the first plane, also at 35,000 feet altitude, flying straight and level at 550 mph. Determine the compass angle at which the second plane would be on a collision course with the first. How long will it take for the second plane to catch the first? Hint: Use the relative velocity equation and solve graphically or analytically. Speed of first plane

V1  500 mph

Speed of second plane

V2  550 mph

Initial distance between planes

di  40 mi

1  270 deg

Note that, for compass headings, due north is 0 degrees, due east 90 degrees, and the angle increases clockwise. However, in a right-handed Cartesian system, due north is 90 degrees (up) and due east is 0 degrees (to the right). The Cartesian system has been used above to define the plane headings. Solution:

See Mathcad file P0601b.

1.

The key to this solution is to recognize that the only information of interest is the relative velocity of one plane to the other. For a collision to occur, the relative velocity of the second plane with respect to the first must be perpendicular to the velocity vector of the first.

2.

The figure below shows the initial positions of the two planes and their velocities.

plane 1

40 mi.

plane 2



V1 = 500 mph

V2 = 550 mph

3.

The figure below shows the vector diagram that solves the relative velocity equation V2 = V1 + V21. To construct this diagram, chose a convenient velocity scale and draw V1 to its correct length with the arrow head pointing straight down (indicating due south). From the tip of the vector, layoff a horizontal construction line to the left (due west) an undetermined length. From the tail of the V1 vector, construct a circle whose radius is equal to the scaled length of vector V2. The intersection of the circle and the horizontal construction line determines the length of V21. Draw the arrowheads for V2 and V21 pointing toward the intersection of the circle and construction line. Label the horizontal vector V21 and the vector that joins the tail of V1 with the head of V21 as V2. The angle between V1 and V2 is the required direction for V2 in order that plane 2 collides with plane 1.

4.

The angle can also be determined analytically from the velocity triangle as follows.

V1   acos  V2  5.



24.620° V2

24.620 deg

V1 

V 21



The time it will take for the second plane to catch the first is the time that it will take plane 2 to travel the 40 miles to the west. t 

di

V2  sin 

t 628.468 s

t 10.474 min

DESIGN OF MACHINERY

SOLUTION MANUAL 6-2-1

PROBLEM 6-2 Statement:

A point is at a 6.5-in radius on a body in pure rotation with = 100 rad/sec. The rotation center is at the origin of a coordinate system. When the point is at position A, its position vector makes a 45 deg angle with the X axis. At position B, its position vector makes a 75 deg angle with the X axis. Draw this system to some convenient scale and: a. Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms. b. Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. c. Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the velocity difference numerically. d. Check the result of part c with a graphical method.

Given:

Solution: 1.

Rotation speed

rad  100 sec

Vector angles

A  45 deg

Vector magnitude

R 6.5 in

B  75 deg

See Mathcad file P0602.

Calculate the magnitude of the velocity at points A and B using equation 6.3. V R 

V 650.000

in sec

2.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

3.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA . Repeat for the line segment OB, labeling it RB.

4.

Choose a convenient velocity scale and draw the two velocity vectors VA and VB at the tips of RA and RB, respectively. The velocity vectors will be perpendicular to their respective position vectors.

Y 0

8

1

2 in

Distance scale:

VB B

0

VA

500 in/sec

Velocity scale:

6 A 4

RB RA

2

0 a.

X 2

4

6

8

Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY

Polar form:

SOLUTION MANUAL 6-2-2  j 4

j A

RA  R e

RA  6.5 e

 j 4

j A

VA  R j  e Cartesian form:

VA  650e j



 

VA  R j cos A j  sin A VA ( 459.619 459.619j)

b.

in sec

Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. Polar form:

 j 4

j B

RB  R e

RA  6.5 e

75  j 180

j B

VB  R j  e

Cartesian form:

VB  650e j



 

VB  R j cos B j  sin B VB ( 627.852 168.232j)

c.

Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. VBA  VB VA

d.

in sec

VBA (168.232 291.387j )

in sec

Check the result of part c with a graphical method. Solve the equation VB = VA + VBA using a velocity scale of 250 in/sec per drawing unit.

Y

Velocity scale factor in kv  250 sec

0

1.166

Horizontal component

Velocity scale:

VA VBA

VBAx  0.673 kv VBAx 168.3

500 in/sec

VB

in sec

Ov

X

0.673

Vertical component VBAy  1.166 kv

VBAy 291.5

in sec

On the layout above the X and Y components of VBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-3-1

PROBLEM 6-3 Statement:

Given:

Solution: 1.

A point A is at a 6.5-in radius on a body in pure rotation with = -50 rad/sec. The rotation center is at the origin of a coordinate system. At the instant considered its position vector makes a 45 deg angle with the X axis. A point B is at a 6.5-in radius on another body in pure rotation with = +75 rad/sec. Its position vector makes a 75 deg angle with the X axis. Draw this system to some convenient scale and: a. Write an expression for the particle's velocity vector in position A using complex number notation, in both polar and Cartesian forms. b. Write an expression for the particle's velocity vector in position B using complex number notation, in both polar and Cartesian forms. c. Write a vector equation for the velocity difference between points B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. d. Check the result of part c with a graphical method. Rotation speeds

rad  50 sec

rad  75 sec

Vector angles

A  45 deg

B  75 deg

Vector magnitude

R 6.5 in

See Mathcad file P0603.

Calculate the magnitude of the velocity at points A and B using equation 6.3. VA   R 

VA 325.000

VB   R 

VB 487.500

in sec in

sec

1.

Establish an X-Y coordinate frame and draw a circle with center at the origin and radius R.

2.

Draw lines from the origin that make angles of 45 and 75 deg with respect to the X axis. Label the intersections of the lines with the circles as A and B, respectively. Make the line segment OA a vector by putting an arrowhead at A, pointing away from the origin. Label the vector RA . Repeat for the line segment OB, labeling it RB.

3.

Choose a convenient velocity scale and draw the two velocity vectors VA and VB at the tips of RA and RB, respectively. The velocity vectors will be perpendicular to their respective position vectors. Y 0

8 VB

1

2 in

Distance scale: B

0

500 in/sec

Velocity scale:

6 A 4

RB RA

2

0

a.

VA

X 2

4

6

8

Write an expression for the particle's velocity vector on body A using complex number notation, in both polar and Cartesian forms.

DESIGN OF MACHINERY

Polar form:

SOLUTION MANUAL 6-3-2  j 4

j A

RA  R e

RA  6.5 e

 j 4

j A

VA  R j  e Cartesian form:

VA  325e j

 

 

VA  R j cos A j sin A VA ( 229.810 229.810j)

b.

in sec

Write an expression for the particle's velocity vector on body B using complex number notation, in both polar and Cartesian forms. Polar form:

 j 4

j B

RB  R e

RA  6.5 e

75  j 180

j B

VB  R j  e Cartesian form:

VB  487.5e j

 

 

VB  R j cos B j sin B VB ( 470.889 126.174j)

c.

sec

Write a vector equation for the velocity difference between the points on bodies B and A. Substitute the complex number notation for the vectors in this equation and solve for the position difference numerically. VBA  VB VA

d.

in

VBA (700.699 355.984j)

in sec

Check the result of part c with a graphical method. Solve the equation VB = VA + VBA using a velocity scale of 250 in/sec per drawing unit.

Y

Velocity scale factor in kv  250 sec

0

Velocity scale:

Horizontal component VBAx  2.803 kv VBAx 700.7

500 in/sec

VB 1.424

Ov

VBA

VA

in sec

X

2.803

Vertical component VBAy  1.424 kv

VBAy 356.0

in sec

On the layout above the X and Y components of VBA are equal to the real and imaginary components calculated, confirming that the calculation is correct.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-4a-1

PROBLEM 6-4a Statement:

For the fourbar defined in Table P6-1, line a , find the velocities of the pin joints A and B, and of the instant centers I1,3 and I2,4. Then calculate 3 and 4 and find the velocity of point P. Use a graphical method.

Given:

Link lengths: Link 1

d  6 in

Link 2

a  2 in

Link 3

b  7 in

Link 4

c  9 in

 30 deg

Crank angle:

 10 rad sec

Crank velocity:

1

Coupler point data: Rpa   6 in Solution: 1.

 30 deg

See Figure P6-1 and Mathcad file P0604a.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. B 0

1 IN

SCALE

P 5.9966 6.8067

148.2007°

3.3384 I 1,3

A

117.2861°

88.8372° O2

O4

I 2,4 1.7118

4.2882

From the layout above:

2.

O2I24  1.7118 in

O4I24  4.2882 in

AI13  3.3384 in

BI13  5.9966 in

 117.2861 deg

 88.8372 deg

PI13  6.8067 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-4a-2

in

VA   a 

VA 20.0

VA  90 deg

VA 120.0 deg

sec

Determine the angular velocity of link 3 using equation 6.9a.  

VA AI13

5.991

rad

CW

sec

4.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13  in VB 35.925 sec VB  90 deg VB 27.286 deg

5.

Use equation 6.9c to determine the angular velocity of link 4.  

6.

VB c

3.99

rad

CW

sec

Use equation 6.9d and inspection of the layout to determine the magnitude and direction of the velocity at point P. in

VP  PI13 

VP 40.778

VP  148.2007 deg 90 deg

VP 58.201 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-5a-1

PROBLEM 6-5a Statement:

Given:

A general fourbar linkage configuration and its notation are shown in Figure P6-1. The link lengths, coupler point location, and the values of 2 and 2 for the same fourbar linkages as used for position analysis in Chapter 4 are redefined in Table P6-1, which is the same as Table P4-1. For row a, find the velocities of the pin joints A and B, and coupler point P. Calculate 3 and 4. Draw the linkage to scale and label it before setting up the equations. Link lengths: d 6

Link 1

Link 2

a 2

Rpa  6

Coupler point:

b 7

Link 3

c 9

Link 4

 30 deg  30 deg

Link 2 position and velocity:

 10

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Mathcad file P0605a.

Draw the linkage to scale and label it. y

2.

B

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 3.0000 2

K3  

OPEN

d 3

c

4

K 2 0.6667 2

2

a b c d

2

2 a c



88 .837°

K 3 2.0000

117.28 6°

A 2



O2

A cos  K 1 K 2 cos  K3

115.211°



B 2 sin 

143.660 °



C K 1  K2 1  cos  K 3 A 0.7113

B 1.0000

CROSSED

C 3.5566 B'

3.

Use equation 4.10b to find values of 4 for the open and crossed circuits. Open:

Crossed: 4.

 

2



 2atan2 2 A B  B 4 A C

477.286 deg

 360 deg

117.286 deg

 

O4

2

 2atan2 2 A B  B 4  A C



216.340 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

x

DESIGN OF MACHINERY

K4  

SOLUTION MANUAL 6-5a-2 2

d

K5  

b



2

2

c d a b

2

K 4 0.8571

2 a b



D cos  K 1 K 4 cos  K 5

D 1.6774



E 2 sin 

E 1.0000



F K 1  K4 1   cos  K 5 5.

Crossed:

7.

F 2.5906

Use equation 4.13 to find values of 3 for the open and crossed circuits. Open:

6.

K 5 0.2857

 



2

 2atan2 2 D E  E 4 D F

448.837 deg

 360 deg

88.837 deg

 



2

 2atan2 2 D E  E 4  D F

244.789 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.  

a  sin   b sin 

 

 

5.991

 

a  sin   c sin 

 

 

3.992

Determine the velocity of points A and B for the open circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA 10.000 17.321j

arg  VA120 deg

VA 20

  

 

VB  c  sin  j  cos  VB 31.928 16.470j 8.

arg  VB27.286 deg

VB 35.926

Determine the velocity of the coupler point P for the open circuit using equations 6.36.

 







VPA  Rpa sin  j  cos  VPA 31.488 17.337j VP  VA VPA VP 21.488 34.658j 9.

VP 40.779

arg  VP 58.201 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.  

a  sin   b sin 

 

 

0.662

 

a  sin   c sin 

 

 

2.662

10. Determine the velocity of point B for the crossed circuit using equations 6.19.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-5a-3

  

 

VB  c  sin  j  cos  VB 14.195 19.295j

arg  VB126.340 deg

VB 23.954

11. Determine the velocity of the coupler point P for the crossed circuit using equations 6.36.

 







VPA  Rpa sin  j  cos  VPA 3.960 0.332j VP  VA VPA VP 13.960 16.989j

VP 21.989

arg  VP 129.411 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-6a-1

PROBLEM 6-6a Statement:

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of 2 and 2 are defined in Table P6-2. For row a, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint using a graphical method.

Given:

Link lengths:

Solution: 1.

Link 2

a 1.4 in

Link 3

b  4 in

Offset

c  1 in

 45 deg

 10 rad sec

1

See Figure P6-2 and Mathcad file P0606a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VBA Y

Axis of transmission

Direction of VA

A 2

3

45.000°

Axis of slip and Direction of VB

B 179.856° 1.000 X

O2

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in VA   a  VA 14.000 VA  90 deg sec

VA 135 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB, magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

0

5 units/sec

VA Y

135.000° V BA X

VB

From the velocity triangle we have: 1.975

DESIGN OF MACHINERY

Velocity scale factor:

VB  1.975 in kv

5.

SOLUTION MANUAL 6-6a-2

kv  

5 in sec

1

in

VB 9.875

in sec

VB  180 deg

Since the slip axis and the direction of the velocity of point B are parallel, Vslip = VB.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-7a-1

PROBLEM 6-7a Statement:

The general linkage configuration and terminology for an offset fourbar slider-crank linkage are shown in Fig P6-2. The link lengths and the values of 2 and 2 are defined in Table P6-2. For row a, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint using the analytic method. Draw the linkage to scale and label it before setting up the equations.

Given:

Link lengths: Link 2 (O2 A) Crank angle

Solution: 1.

a 1.4

Link 3 (AB) b  4

Offset (yB )

 45 deg

Crank angular velocity

 10

c 1

See Figure P6-2 and Mathcad file P0607a.

Draw the linkage to scale and label it. Y d2 = 3.010

d1 = 4.990

3(CROSSED)

B'

A 2

0.144°

45.000°

B

3 (OPEN)

179.856° 1.000 X

O2

2.

Determine 3 and d using equations 4.16 and 4.17. Crossed:



sin  c  a  asin  b  



0.144 deg

 

d2  a  cos  b cos 

Open:

d2 3.010



sin  c  a   asin   b  



 

d1  a  cos  b cos  3.

4.

180.144 deg d1 4.990

Determine the angular velocity of link 3 using equation 6.22a:

  

2.475

  

2.475

Open

a cos       b cos 

Crossed

a cos       b cos 

Determine the velocity of pin A using equation 6.23a:

 

 

VA  a  sin  j cos  VA 9.899 9.899i

VA 14.000

arg  VA135.000 deg

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-7a-2

Determine the velocity of pin B using equation 6.22b: Open

VB1  a  sin  b  sin 



 

VB1 9.875

Crossed

VB2  a  sin  b  sin 



 

VB2 9.924

The angle of VB is 0 deg if VB is positive and 180 deg if VB negative. 6.

The velocity of slip is the same as the velocity of pin B.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-8a-1

PROBLEM 6-8a Statement:

The general linkage configuration and terminology for an inverted fourbar slider-crank linkage are shown in Fig P6-3. The link lengths and the values of 2 and 2 and are defined in Table P6-3. For row a , using a graphical method, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint. Draw the linkage to scale.

Given:

Link lengths: Link 1 d  6 in c  4 in

Link 4 Solution: 1.

Link 2

a  2 in

 90 deg

 30 deg

 10 rad sec

1

See Figure P6-3 and Mathcad file P0608a.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VA Axis of transmission and direction of VBA Axis of slip and Direction of VB

B y

1. 793 90.0°

b a 30.000°

127.333° c 142. 666°

A

d

x 04

02

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in VA   a  VA 20.000 VA  90 deg sec

VA 120 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B on link 3. The equation to be solved graphically is VB3 = VA3 + VBA3 a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

0

VA

52.667° VB 0.771

1

kv  

10 in  sec in

Y V BA

From the velocity triangle we have: Velocity scale factor:

10 in/sec

1.846

X

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-8a-2

in

VB3  0.771 in  kv

VB3 7.710

VBA3  1.846 in kv

VBA3 18.460

sec in sec

Determine the angular velocity of link 3 using equation 6.7. From the linkage layout above: b  1.793 in and  

VBA3 b

10.296

rad

7.

 142.666 deg CW

sec

The way in which link 3 slides in link 4 requires that 6.

VB3  52.667 deg

 

Determine the magnitude and sense of the vector VB4 using equation 6.7. in

VB4   c 

VB4 41.182

VB4  90 deg

VB4 52.666 deg

sec

Note that VB3 and VB4 are in the same direction in this case. The velocity of slip is in

Vslip   VB3 VB4

Vslip 33.472

slip  VB4 180 deg

slip 232.666 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-9a-1

PROBLEM 6-9a Statement:

The general linkage configuration and terminology for an inverted fourbar slider-crank linkage are shown in Fig P6-3. The link lengths and the values of 2 and 2 and are defined in Table P6-3. For row a , using an analytic method, find the velocities of the pin joints A and B and the velocity of slip at the sliding joint. Draw the linkage to scale and label it before setting up the equations.

Given:

Link lengths: Link 1 d 6

Link 2

c 4

Link 4

a 2

 90 deg

 30 deg

 10

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Mathcad file P0609a.

Draw the linkage to scale and label it. B y 90.0°

b

127.333° c

A

142. 666°

a 30.000°

d

x 04

02 B'

169. 040° 79. 041°

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

    Q a  sin   cos   a cos d  sin  P a  sin  sin   a cos  d  cos 

3.

Q 4.268

R c sin 

R 4.000

T  2 P

T 2.000

S R Q

S 0.268

U Q R

U 8.268

Use equation 4.22c to find values of 4 for the open and crossed circuits. OPEN CROSSED

4.

P 1.000

2   2    2 atan2  2 S T  T 4 S U

  2 atan2 2  S T  T 4 S U 

142.667 deg 169.041 deg

Use equation 4.18 to find values of 3 for the open and crossed circuits.

DESIGN OF MACHINERY

5.

6.

7.

SOLUTION MANUAL 6-9a-2

OPEN

 

232.667 deg

CROSSED

 

259.041 deg

Determine the magnitude of the instantaneous "length" of link 3 from equation 4.20a. OPEN

b1  

CROSSED

b2  

   sin   

a sin  c sin 

b1 1.793

   sin 

a sin  c  sin 

b2 1.793

Determine the angular velocity of link 4 using equation 6.30c: OPEN

 

CROSSED

 









a  cos  b 1 c  cos 

10.292

a  cos  b 2 c  cos 

3.639

Determine the velocity of pin A using equation 6.23a:

 

 

VA   a sin  j  cos  VA 10.000 17.321i 8.

VA 20.000

Determine the velocity of point B on link 4 using equation 6.31: OPEN

 

VB4x1  c   sin 

VB4x1 24.966

 

VB4y1 32.734

VB4y1  c   cos  2

VB41   VB4x1 VB4y1

2

VB41 41.168

VB1  atan2  VB4x1  VB4y1 CROSSED

 

VB4x2  c   sin 

 

2

VB42   VB4x2 VB4y2

VB1 52.667 deg VB4x2 2.767

VB4y2  c   cos 

VB4y2 14.289

2

VB42 14.555

VB2  atan2  VB4x2  VB4y2 9.



arg VA 120.000 deg

VB2 79.041 deg

Determine the slip velocity using equation 6.30a: OPEN

Vslip1  

CROSSED

Vslip2  



   cos 

 



   cos 

 

a  sin  b 1 sin  c sin 

a  sin  b 2 sin  c sin 

Vslip1 33.461

Vslip2 33.461

DESIGN OF MACHINERY

SOLUTION MANUAL 6-10a-1

PROBLEM 6-10a Statement:

The link lengths, gear ratio (), phase angle (), and the values of 2 and 2 for a geared fivebar

Given:

from row a of Table P6-4 are given below. Draw the linkage to scale and graphically find 3 and 4, using a graphical method. Link lengths: Link 1

f  6 in

Link 3

b  7 in

Link 2

a  1 in

Link 4

c  9 in

Link 5

d  4 in

Gear ratio, phase angle, and crank angle:  2 Solution: 1.

 30 deg

150 deg

Choose the pitch radii of the gears. Since the gear ratio is positive, an idler must be used between gear 2 and gear 5. Let the idler be the same diameter as gear 5, and let all three gears be in line.

r5  

 

f

r2 r5

r5 1.200in

3

r2  r 5

r2 2.400in

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VBC Direction of VBA

Direction of VC

Direction of VA

4

C

B 3

A

2

4.

1

Determine the angle of link 5 using the equation in Figure P6-4.

f r2 3  r5

3.

 10 rad sec

See Figure P6-4 and Mathcad file P0610a.

   2.

 60 deg

5 O5

O2

Use equation 6.7 to calculate the magnitude of the velocity at points A and C. in

VA   a 

VA 10.00

  

20.000

rad

VC   d 

VC 80.00

in

sec

  60 deg 90 deg

sec

sec

  150 deg 90 deg

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-10a-2

Use equation 6.5 to (graphically) determine the magnitudes of the relative velocity vectors VBA and VBC . The equation to be solved graphically is the last of the following three. VB = VA + VBA

VB = VC + VBC

VA + VBA = VC + VBC

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , layout the known vector VC. d. From the tip of VC, draw a construction line with the direction of VBC, magnitude unknown. e. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VBC construction line and drawing VBC from the tip of VC to the intersection of the VBA construction line. 6.

From the velocity triangle we have:

0

50 in/sec

1

Velocity scale factor:

kv  

Y

50 in  sec

VA

in

X

7.

VBA  4.562 in  kv

VBA 228.100

VBC  3.051 in kv

VBC 152.550

in sec VC

in sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

   

VBA b VBC c

Both links are rotating CCW.

32.586 16.950

4.562

rad

3.051

sec rad sec

V BA V BC

DESIGN OF MACHINERY

SOLUTION MANUAL 6-11a-1

PROBLEM 6-11a Statement:

Given:

The general linkage configuration and terminology for a geared fivebar linkage are shown in Figure P6-4. The link lengths, gear ratio (), phase angle (), and the values of 2 and 2 are defined in Table P6-4. For row a, find 3 and 4, using an analytic method. Draw the linkage to scale and label it before setting up the equations. Link lengths: Link 1

d 4

Link 2

a 1

Link 3

b 7

Link 4

c 9

Link 5

f 6

Input angle

 60 deg

Gear ratio

 2.0

Phase angle

 30 deg

 10

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-4 and Mathcad file P0611a.

Draw the linkage to scale and label it. y C

4

B

1 77.715 2°

173.6 421° 3

5 12 4.050 1°

2

x

O2

3

150. 0000°

11 5.4074 °

O5

4

B`

2.

Determine the values of the constants needed for finding 3 and 4 from equations 4.24h and 4.24i.

     B 2  c a sin  dsin  A 2 c d cos   a cos   f

2

2

2

2

2



      

B 20.412

 

C  a b c d  f 2 af cos      2  d  a  cos   f  cos             2 a d sin  sin  

A 36.646

C 37.431

D C A

D 0.785

E 2  B

E 40.823

F A C

F 74.077

DESIGN OF MACHINERY

SOLUTION MANUAL 6-11a-2

    H 2 b  d sin   asin    

G 2 b d  cos   a  cos  f   

2

2

2

2

2



H 15.876

 

K  a b c d  f 2 af cos      2 da cos  f  cos      

    2 a d sin   sin  

3.

K 26.569

L K G

L 1.933

M  2 H

M 31.751

N G K

N 55.072

Use equations 4.24h and 4.24i to find values of 3 and 4 for the open and crossed circuits. OPEN

CROSSED

4.

G 28.503

2    atan22D E  E2 4DF    2 atan22LM  M2 4LN    2 atan22D E  E2 4 DF    2

 2atan2 2 L M  M 4  L N

173.642 deg



177.715 deg



115.407 deg



124.050 deg

Determine the position and angular velocity of gear 5 from equations 4.23c and 6.32c   

150.000 deg

  

20.000

Angular velocity of links 3 and 4 from equations 6.33 OPEN

    

32.585  

  



CCW



  c sin 



a  sin  b   sin  d   sin 

16.948

CROSSED

 

2 sin  a  sin  d  sin    bcos 2   cos 

CCW

    

 

  



2 sin  a  sin  d  sin    bcos 2   cos  75.191  

CW



  c sin 



a  sin  b   sin  d   sin 

59.554

CW

CCW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-12-1

PROBLEM 6-12 Statement:

Find all of the instant centers of the linkages shown in Figure P6-5.

Solution:

See Figure P6-5 and Mathcad file P0612.

a.

This is a fourbar slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. C

2,3 Y

A

1,2

2

3

3,4

X O2

B

4

1,4 at infinity

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 1,3 1 4

2,4

C

2 3

A 1,2

2

3

3,4

2,3

O2

4 B 1,4 at infinity 1,4 at infinity

b.

This is a fourbar with planetary motion (roller 3), n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1) 2

C 6

2,3 at contact point (behind link 4) 1,3

Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them.

1 3 A 4

c.

This is a fourbar with n  4.

2 O

1.

Determine the number of instant centers for this mechanism using equation 6.8a.

2

1,2 and 2,4 and 1,4

DESIGN OF MACHINERY

C  2.

SOLUTION MANUAL 6-12-2

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. C 2,3

3,4 3 A

B 4

2

O2

O4 1,2

3.

1,4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 1,3 at infinity

1,3 at infinity

1

C 2,3

4

3,4

2

3 3 2,4 at infinity

A

2

2,4 at infinity

4

O2

2,4 at infinity

B

2,4 at infinity

O4 1,2

1,4

1,3 at infinity

1,3 at infinity

d.

This is a fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

3,4

1,2 3 O2 A

4

2 1,4 at infinity

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-12-3 2,3

3,4

1,2 1 3 O2

4

A

2,4

4

2 3

2

1,3

1,4 at infinity 1,4 at infinity

e.

This is a threebar with n  3.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 3

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 1,2 2

1,3 3

O2

3.

O3

Use Kennedy's Rule and a linear graph to find the remaining IC, I2,3 I2,3: I1,2 -I1,3 Common normal 1 2,3 1,2 2 O2

1,3 3

3

2

O3

f.

This is a fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1) 2

C 6

Draw the linkage to scale and identify those ICs that can be found by inspection.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-12-4 3,4

1,4 at infinity

3.

C

B

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

4 3

I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 2,3 VA

A

2

2,4 at infinity 3,4

1,4 at infinity

1,2 at infinity C

B

1

4

3 1,3

4

2 3

2,3 VA

A

2

1,2 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-13-1

PROBLEM 6-13 Statement:

Find all of the instant centers of the linkages shown in Figure P6-6.

Solution:

See Figure P6-6 and Mathcad file P0613.

a.

This is a fourbar inverted slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

2

3 3,4 at infinity 1 1,2 4

1 1,4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 3,4 at infinity 2,3

2,4 2

1 4

3

2

3,4 at infinity 1

3

1,2 4

1 1,4

1,3

b.

This is a sixbar with slider, n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1) 2

C 15

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

5,6 6 2,3 2

1,6 at infinity 3

1

5

I1,5: I1,6 -I5,6 and I1,4 -I4,5

3,4; 3,5; 4,5

I2,5: I1,2 -I1,5 and I2,4 -I4,5

1 4

1,2

I3,6: I1,6 -I1,3 and I3,4 -I4,6

I4,6: I1,6 -I1,4 and I4,5 -I5,6

I2,4: I1,2 -I1,4 and I2,3 -I3,4

I2,6: I1,2 -I1,6 and I2,5 -I5,6

1,4

1

DESIGN OF MACHINERY

SOLUTION MANUAL 6-13-2 3,6

1,3

1,6 at infinity 2,5

to 2,4

5,6 6 to 2,4

1,5

2,3

1 1,6 at infinity

2 3

6

2

1

5

5

1,6 at infinity

3 4

3,4; 3,5; and 4,5 1 4

1,2

1,4

2,6 4,6

1,6 at infinity 1

c.

This is a sixbar with slider and roller with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 15 2 Draw the linkage to scale and identify those ICs that can be found by inspection. 2,5 5,6

3.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs.

1,2

5

6 1

2,3

2

I2,6: I1,2 -I1,6 and I2,5 -I5,6 1

I1,5: I1,6 -I5,6 and I1,2 -I2,5

1,6 3

I4,5: I1,4 -I1,5 and I2,4 -I2,5 I3,6: I3,6 -I5,6 and I2,3 -I2,6 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I3,5: I3,4 -I4,5 and I2,5 -I2,3

I2,4: I1,2 -I1,4 and I2,5 -I2,4

I4,6: I4,5 -I5,6 and I3,4 -I3,6

4 3,4

3,5 2,5 4,5

1,4 at infinity

1,5

5,6

1,2

5

1 6

2,6

1

2,3

2

6

2,4

2

1,4 at infinity 5

1

1,6

3

4,6 3,6 4 3,4

1,4 at infinity

1

d.

This is a sixbar with slider and roller with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 15

2 2.

3 4

Draw the linkage to scale and identify those ICs that can be found by inspection.

1,3

1

1,4 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-13-3

3,4 4 1 1,4 3

5,6 5

1,2

2

6 2,3; 2,5; and 3,5

1

1

1,6 at infinity

3.

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

I3,6: I1,6 -I1,3 and I3,5 -I5,6

I2,6: I1,2 -I1,6 and I2,5 -I5,6

I1,5: I1,6 -I5,6 and I1,2 -I2,5

I4,5 : I1,4 -I1,5 and I3,5-I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

I4,6: I1,6 -I1,4 and I4,5 -I5,6 2,4 4,6 3,4 4,5

4

1,3

1 1

1,4 6 3

1,5

1,6 at infinity

2

5

3 4

2,6

5,6 5

1,2

2 1

6 2,3; 2,5; and 3,5

3,6

1

1,6 at infinity 1,6 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-14-1

PROBLEM 6-14 Statement:

Find all of the instant centers of the linkages shown in Figure P6-7.

Solution:

See Figure P6-7 and Mathcad file P0614.

a.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

3,4

2,3

3

I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

2

4

1,2

1,4

3,4 1 3 2

2,3

4

1 2

4 3

1,2 2,4 1

1,4

1,3

b.

This is a fourbar inverted slider-crank, n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

2,3 3 1,4

4 2

I2,4: I1,2 -I1,4 and I2,3 -I3,4 1

3,4 at infinity 1,2

2,3 1

3 1,4

4

4

2

2

2,4 3

1

1,2

3,4 at infinity

1,3 3,4 at infinity

1,4 at infinity

c.

This is a fourbar double slider with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1) 2

4 3,4 3

C 6

2,3 2 1

Draw the linkage to scale and identify those ICs that can be found by inspection. 1,2 at infinity

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-14-2

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 1,4 at infinity

I1,3: I1,2 -I2,3 and I1,4 -I3,4

2,4 at infinity

1,3

I2,4: I1,2 -I1,4 and I2,3 -I3,4 1

4 3,4

4

2

3 3

2,3 2 1 1,2 at infinity

d.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

2,3

3,4

1,2

I2,4: I1,2 -I1,4 and I2,3 -I3,4

3

2

4 1,4

1 2,3

1,3

1

3,4 4

3

2

2

4 1,4

3

2,4 1 1,2

e.

This is a fourbar effective slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2 2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

2,3

I2,4: I1,2 -I1,4 and I2,3 -I3,4

3,4 3

2

4

1,3

2,3 1 1,2

1

2,4 4

3,4 3

2

2 3

4 1 1,2 1,4 at infinity

1,4 at infinity

1,4 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-14-3

f.

This is a fourbar cam-follower with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2. 3.

n ( n 1)

C 6 2 Draw the linkage to scale and identify those ICs that can be found by inspection. 3,4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

2,3

I2,4: I1,2 -I1,4 and I2,3 -I3,4

3

1,4 4

2

2,4

1

3,4 1,3 1

1,2 at infinity

2,3 4

3

1,4

2

4 3

2

1 1,2 at infinity 1,2 at infinity

g.

This is a fourbar slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

2,3

2 3,4

I1,3: I1,2 -I2,3 and I1,4 -I3,4

3

4

1,2

I2,4: I1,2 -I1,4 and I2,3 -I3,4

1,4 at infinity

1 1,3 2,3

1,4 at infinity 2,4

1

2

3,4 3

4

2

4 3

1,2

2

2,3 1

h.

This is a fourbar inverted slider-crank with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

1,2

1,4 at infinity

C 6 2 Draw the linkage to scale and identify those ICs that can be found by inspection.

1

3 3,4 at infinity 4 1,4

1

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-14-4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

3,4 at infinity

2,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

2

2,3

1

1,2 4

2

1 3

3,4 at infinity

3 3,4 at infinity

1,3 4 1

1,4

i.

This is a fourbar slider-crank (hand pump) with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 6 2 Draw the linkage to scale and identify those ICs that can be found by inspection. 2,3

3

3,4 4 1,2 at infinity

2

1

1,4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 2,3 3 1,3

1,2 at infinity

3,4

1 4

1,2 at infinity

2

4

1

2,4

1,2 at infinity 1,4

2 3

DESIGN OF MACHINERY

SOLUTION MANUAL 6-15-1

PROBLEM 6-15 Statement:

Find all of the instant centers of the linkages shown in Figure P6-8.

Solution:

See Figure P6-8 and Mathcad file P0615.

a.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 6

2

2.

Draw the linkage to scale and identify those ICs that can be found by inspection.

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

2,3 B

I1,3: I1,2 -I2,3 and I1,4 -I3,4 2

3

I2,4: I1,2 -I1,4 and I2,3 -I3,4 O2

1,2

B 4

O4

3,4 1,4 2,3

1,2

1

2 4

2

3 3 4 1,3 3,4 and 2,4 1,4

b.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

2,3

C 6

2 Draw the linkage to scale and identify those ICs that can be found by inspection, which in this case, is all of them.

2 O2

B

A

3

3,4 4

3.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

1,4

1,2

O4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-15-2

I2,4: I1,2 -I1,4 and I2,3 -I3,4 1,3

1

2,3 B

A

2,4

4

3

2 3

2

O2

3,4 4 1,4

1,2

O4

c.

This is an eightbar (three slider-cranks with a common crank) with n  8.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

3.

n ( n 1)

C 28

2

Draw the linkage to scale and identify those ICs that can be found by inspection.

7

Use Kennedy's Rule and a linear graph to find the remaining 15 ICs.

1,7 at infinity

4

2

1,6 at infinity

I2,7: I1,2 -I1,7 and I2,4 -I4,7

3,6

5

8

1,8 at infinity 1

3

2,3; 2,4; 2,5; 3,4; 3,5; and 4,5

I1,5: I1,2 -I2,5 and I1,8 -I5,8 I2,6: I1,2 -I1,6 and I2,3 -I3,6

5,8

1,2

4,7

6

I3,7: I1,3 -I1,7 and I3,4 -I4,7

I6,8: I2,7 -I2,8 and I3,7 -I3,8

I3,8: I1,3 -I3,8 and I3,5 -I5,8

I4,6: I1,6 -I1,4 and I3,4 -I3,6

I2,8: I1,2 -I1,8 and I2,5 -I5,8

I4,8: I3,8 -I3,4 and I4,5 -I5,8

I5,6: I2,5 -I2,6 and I3,5 -I3,6

I1,4: I1,7 -I4,7 and I1,2 -I2,4

I5,7: I2,5 -I2,7 and I3,5 -I3,7

I6,7: I2,6 -I2,7 and I3,6 -I3,7

I1,3: I1,2 -I2,3 and I1,6 -I3,6

I6,8: I4,6 -I4,8 and I3,6 -I3,8

4,7

7

4

2

3 2,8

1,6 at infinity 3,6

Note that, for clarity, not all ICs are shown.

8

5

1,8 at infinity 2,6 3,8 2,3; 2,4; 2,5; 3,4; 3,5; and 4,5 3,7

1,7 at infinity 2,7

5,8

1,2 4,6

1,4

6 1

1,3

To 1,5 To 1,5

DESIGN OF MACHINERY

SOLUTION MANUAL 6-15-3

d.

This is a pin-jointed fourbar with n  4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

E

C 6

2 Draw the linkage to scale and identify those ICs that can be found by inspection.

1

2,3

3.

3,4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4

3 2

I1,3: I1,2 -I2,3 and I1,4 -I3,4

4 1,2

I2,4: I1,2 -I1,4 and I2,3 -I3,4

1,4

E

1,3 at infinity

1

1

2,3

4

3,4

2

3 3

2 2,4 at infinity 4 1,2

1,4

e.

This is an eightbar with n  8.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 6

2

2,3

3,4

1,2

Draw the linkage to scale and identify those ICs that can be found by inspection.

4

4,6 2

4,7

5 4,5

2,5

3.

1,4

3

The remaining 17 ICs are at infinity.

6

7

7,8

6,8 8 4

3,4

1,4 at infinity 3

1

f.

This is an offset crank-slider with n 4.

1.

Determine the number of instant centers for this mechanism using equation 6.8a.

2,3

C  2 1,2

1,8

2.

n ( n 1) 2

C 6

Draw the linkage to scale and identify those ICs that can be found by inspection.

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-15-4

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs, I1,3 and I2,4 I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 4

3,4 1,3

1,4 at infinity

1 3

1

4

2

2,3

2

3

2,4

1,4 at infinity 1,2

g.

This is a sixbar with n  6.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

3.

3,4

1,6

2,3

3

n ( n 1)

C 15 2 Draw the linkage to scale and identify those ICs that can be found by inspection.

1,4 2 4

6

5

2,5

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs. I1,3: I1,4 -I4,3 and I1,2 -I3,2

5,6

1,4

I1,5: I1,6 -I5,6 and I1,2 -I2,5

4,5

I3,5: I1,3 -I1,5 and I3,2 -I2,5 I2,4: I1,2 -I1,4 and I3,4 -I2,3 I2,6: I1,6 -I1,2 and I2,5 -I5,6 I4,6: I1,4 -I1,6 and I2,4 -I2,6

3,5 at infinity 3,4

I4,5: I4,6 -I5,6 and I3,4 -I3,5

1,6 2,4 3

I3,6: I3,4 -I4,6 and I3,5 -I5,6

3,5 at infinity

1,2 2 4

2,3 and 1,5

6 5

4,5 and 1,3

1,4 4,6 at infinity

3,6

5,6 2,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-16a-1

PROBLEM 6-16a Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA , VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 0.80 in

1.

p 1.33  in

Link 3 (A to B)

b 1.93 in

Angle BAC

 38.6 deg

Offset

c 0.38 in

Crank angle:

 34.3 deg

Input crank angular velocity Solution:

Coupler point data: Distance from A to C

 15 rad sec

1

CCW

See Figure P6-5a and Mathcad file P0616a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VCA Direction of VA

C

Y

A

38.600°

34.300° X

154.502°

O2

Direction of VB B

Direction of VBA

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

VA 12.00

in

  34.3 deg 90 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

0

VA

5 in/sec

Y

2.197

124.300° V BA X

VB 2.298

DESIGN OF MACHINERY

4.

SOLUTION MANUAL 6-16a-2

From the velocity triangle we have: Velocity scale factor:

5.

5 in sec

1

in in

VB  2.298 in kv

VB 11.490

VBA  2.197 in  kv

VBA 10.985

VBA

in sec

b

5.692

rad sec

Determine the magnitude and sense of the vector VCA using equation 6.7. VCA   p 

VCA 7.570

in sec

CA  ( 154.502 180 38.6 90) deg 7.

B  180 deg

sec

Determine the angular velocity of link 3 using equation 6.7.  

6.

kv  

CA 76.898 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA

VA

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, layout the (now) known vector VCA . c. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector.

Y 0

V CA

5 in/sec

153.280° VC X

8.

From the velocity triangle we have: Velocity scale factor:

VC  1.130 in  kv

1.130

kv  

5 in sec

1

in

VC 5.650

in sec

C  153.28 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-16b-1

PROBLEM 6-16b Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA , VB, and

Given:

VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the instant center graphical method. Link lengths: Coupler point data: Link 2 (O2 to A)

a 0.80 in

Distance from A to C

p 1.33  in

Link 3 (A to B)

b 1.93 in

Angle BAC

 38.6 deg

Offset

c 0.38 in

Input crank angular velocity Solution: 1.

 34.3 deg

Crank angle:

 15 rad sec

1

CCW

See Figure P6-5a and Mathcad file P0616b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout: AI13  2.109 in

1,3 2.109

BI13  2.019 in

0.993 116.732°

CI13  0.993 in 2,4

C  (360 116.732)  deg 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

C 2.019

A 1,2

2

3

O2

4

VA   a  VA 12.000

B

in

1,4 at infinity

VA 124.3 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

1,4 at infinity

sec

VA  90 deg 3.

3,4

2,3

VA AI13

5.690

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13 

VB 11.488

in sec

VC  180 deg 5.

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. in

VC  CI13 

VC 5.650

VC  C 90 deg

VC 153.268 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-16c-1

PROBLEM 6-16c Statement:

The linkage in Figure P6-5a has the dimensions and crank angle given below. Find 3, VA , VB, and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use an analytical method.

Given:

Link lengths:

Coupler point data:

Link 2 (O2 to A)

a 0.80 in

Distance from A to C

Rca  1.33 in

Link 3 (A to B)

b 1.93 in

Angle BAC

 38.6  deg

Offset

c 0.38 in  15 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure P6-5a and Mathcad file P0616c.

C

Draw the linkage to scale and label it. Y

2.

 34.3 deg

Crank angle:

Determine 3 and d using equation 4.17.

A

38.600°

34.300° X O2

154.502°

0.380"

B



sin  c  a   asin   b   154.502 deg



 

d1  a  cos  b cos  3.

d1 2.403 in

Determine the angular velocity of link 3 using equation 6.22a:

  

a cos       b cos  4.

5.691

rad sec

Determine the velocity of pin A using equation 6.23a:

 

 

VA  a  sin  j cos  VA ( 6.762 9.913j) 5.

in sec

VA 12.000

arg  VA124.300 deg

in sec

Determine the velocity of pin B using equation 6.22b:



 

VB  a  sin  b  sin  VB 11.490 6.

in

VB 11.490

sec

arg  VB180.000 deg

in sec

Determine the velocity of the coupler point C for the open circuit using equations 6.36.

 







VCA  Rca sin  j cos  VCA (1.716 7.371j)

in sec

VC  VA VCA VC ( 5.047 2.542j)

in sec

VC 5.651

in sec

arg  VC153.268 deg

Note that 3 is defined at point B for the slider-crank and at point A for the pin-jointed fourbar. Thus, to use equation 6.36a for the slider-crank, 180 deg must be added to the calculated value of 3.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-17a-1

PROBLEM 6-17a Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3, 4, VA , VB , and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the velocity difference graphical method.

Given:

Link lengths:

Coupler point:

Link 2 (point of contact to A)

a 0.75 in

Distance A to C

p 1.2 in

Link 3 (A to B)

b 1.5 in

Angle BAC

 30 deg

Link 4 (point of contact to B)

c 0.75 in

Link 1 (between contact points)

d 1.5 in

 15 rad sec

Input crank angular velocity Solution: 1.

 77 deg

Crank angle: 1

See Figure P6-5c and Mathcad file P0617a.

Although the mechanism shown in Figure P6-5c is not entirely pin-jointed, it can be analyzed for the position shown by its effective pin-jointed fourbar, which is shown below. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. 0

0.5

1 in

Direction of VCA Y

C Direction of VA Direction of VBA

30.000°

Direction of VB

3

A

B b 4

2 a

77.000°

c d

X

O2

O4 Effective link 2

2.

Effective link 4

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

77.000°

VA 11.250

in sec

  77 deg 90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-17a-2

Direction of VB

Y

Direction of V BA

167.000° VA

VB X

0

4.

5 in/sec

From the velocity triangle we have: VB   VA

in

VB 11.250

sec

  167 deg

in VBA  0  sec 5.

Determine the angular velocity of links 3 and 4 using equation 6.7.  

  6.

VBA b VB c

rad sec rad

15.000

sec

Determine the magnitude of the vector VCA using equation 6.7. VCA   p 

7.

0.000

VCA 0.000

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA Normally, we would draw the velocity triangle represented by this equation. However, since VCA is zero, in

VC   VA

VC 11.250

C  

C 167.000 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-17b-1

PROBLEM 6-17b Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3, 4,

Given:

VA , VB , and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use the instant center graphical method. Link lengths: Coupler point: Link 2 (point of contact to A)

a 0.75 in

Link 3 (A to B)

b 1.5 in

Link 4 (point of contact to B)

c 0.75 in

Link 1 (between contact points)

d 1.5 in

Solution: 1.

p 1.2 in

Angle BAC

 30 deg

Crank angle:

 15 rad sec

Input crank angular velocity

Distance A to C

1

 77 deg

CCW

See Figure P6-5c and Mathcad file P0617b.

Although the mechanism shown in Figure P6-5c is not entirely pin-jointed, it can be analyzed for the position shown by its effective pin-jointed fourbar, which is shown below. Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 1,3 at infinity

1,3 at infinity C

2,3

3,4 30.000°

3

2,4 at infinity A

2

77.000° 2,4 at infinity

O2

77.000° 2,4 at infinity

O4 1,2

1,3 at infinity

Since I

1,3

2,4 at infinity

B

4

1,4

1,3 at infinity

is at infinity, link 3 is not rotating (  0  rad sec

1

). Thus, the velocity of every point on link 3 is

the same. From the layout above:  77.000 deg 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA   a  VA 11.250 sec

VA  90 deg 3.

 0.000 deg

VA 167.0 deg

Determine the magnitude of the velocity at point B knowing that it is the same as that of point A. in

VB   VA

VB 11.250

VB  90 deg

VB 167.000 deg

sec

DESIGN OF MACHINERY

4.

Use equation 6.9c to determine the angular velocity of link 4.  

5.

SOLUTION MANUAL 6-17b-2

VB c

15

rad

CCW

sec

Determine the magnitude of the velocity at point C knowing that it is the same as that of point A. in

VC   VA

VC 11.250

VC  VA

VC 167.000 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-17c-1

PROBLEM 6-17c Statement:

The linkage in Figure P6-5c has the dimensions and effective crank angle given below. Find 3, 4,

Given:

VA , VB , and VC for the position shown for 2 = 15 rad/sec in the direction shown. Use an analytical method. Link lengths: Coupler point: Link 2 (point of contact to A)

a 0.75 in

Distance A to C

Rca  1.2 in

Link 3 (A to B)

b 1.5 in

Angle BAC

 30 deg

Link 4 (point of contact to B)

c 0.75 in

Link 1 (between contact points)

d 1.5 in

Crank angle:

 77 deg

 15 rad sec

Input crank angular velocity

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure P6-5c and Mathcad file P0617c.

Draw the linkage to scale and label it. Y

C

30.000°

0

0.5

1 in

3

A

B b 4

2 77.000°

a

c

77.000°

d

X

O2

O4 Effective link 2

2.

Effective link 4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.0000

2

d

K3  

c

K 2 2.0000

2

2 a c

K 3 1.0000

  B 2 sin  C K 1  K2 1  cos K 3

A cos  K 1 K 2 cos  K3

A 1.2250 3.

B 1.9487

C 2.3251

Use equation 4.10b to find values of 4 for the open circuit.

 

2



 2atan2 2 A B  B 4 A C

2

a b c d

437.000 deg

2

DESIGN OF MACHINERY

SOLUTION MANUAL 6-17c-2

 360 deg 4.

77.000 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

2

K 4 1.0000

2 a b

K 5 2.0000

  E 2 sin  F K 1  K4 1   cos K 5

D cos  K 1 K 4 cos  K 5

5.

6.

D 3.5501 E 1.9487 F 0.0000

Use equation 4.13 to find values of 3 for the open circuit.

 



2

 2atan2 2 D E  E 4 D F

360.000 deg

 360 deg

0.000deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

    a  sin      c sin   

7.

a  sin   b sin 

0.000

rad sec

15.000

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA ( 10.962 2.531j)

  

in sec

VA 11.250

 

in sec

arg  VA167.000 deg

VB  c  sin  j  cos  VB ( 10.962 2.531j) 8.

in

VB 11.250

sec

in sec

arg  VB167.000 deg

Determine the velocity of the coupler point C for the open circuit using equations 6.36.

 







VCA  Rca sin  j cos  VCA 0.000

in sec

VC  VA VCA VC ( 10.962 2.531j)

in sec

VC 11.250

in sec

arg  VC167.000 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-18a-1

PROBLEM 6-18a Statement:

Given:

Solution: 1.

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use the velocity difference graphical method. Link lengths and angles: Coupler point: Link 3 (A to B)

b 1.8 in

Distance A to C

p 1.44  in

Coupler angle

 128 deg

Angle BAC

 49 deg

Slider 4 angle

 59 deg

Input slider velocity

VA  10 in sec

1

See Figure P6-5f and Mathcad file P0618a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VB 0

0.5

1 in

Y

Direction of VBA

C

B 4

Direction of VCA

3 b

49.000°

128.000°

59.000°

VA

X A

2.

The magnitude and sense of the velocity at point A. VA 10.000

3.

2

in sec

  180 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

0

5 in/sec

Y

VBA 4.784 VB

3.436

38.000°

59.000° X

VA

DESIGN OF MACHINERY

4.

SOLUTION MANUAL 6-18a-2

From the velocity triangle we have: Velocity scale factor:

5.

5 in sec

1

in in

VB  3.438 in kv

VB 17.190

VBA  4.784 in  kv

VBA 23.920

VBA

in

  38 deg

sec

13.289

rad

VCA 19.136

in

b sec Determine the magnitude and sense of the vector VCA using equation 6.7. VCA   p 

sec

CA  ( 128 49 90)  deg 7.

  59 deg

sec

Determine the angular velocity of link 3 using equation 6.7.  

6.

kv  

CA 11.000 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA a. b. c.

Choose a convenient velocity scale and layout the known vector VA . From the tip of VA, layout the (now) known vector VCA. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector. 0

5 in/sec

Y 1.902 VA X 11.000°

22.572° VC VCA

3.827

8.

From the velocity triangle we have:

Velocity scale factor:

VC  1.902 in  kv

kv  

5 in sec

1

in

VC 9.510

in sec

C  22.572 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-18b-1

PROBLEM 6-18b Statement:

Given:

Solution: 1.

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use the instant center graphical method. Link lengths and angles: Coupler point: Link 3 (A to B)

b 1.8 in

Distance A to C

p 1.44  in

Coupler angle

 128 deg

Angle BAC

 49 deg

Slider 4 angle

 59 deg

VA  10 in sec

Input slider velocity

See Figure P6-5f and Mathcad file P0618b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 2,4 at infinity

From the layout:

3,4

1,4 at infinity

C

B

AI13  0.753 in

BI13  1.293 in

CI13  0.716 in

C  67.428 deg

4

0.716 67.428° 3

2.

4.

VA AI13

13.280

1,3

1.293

Determine the angular velocity of link 3 using equation 6.9a.  

3.

1

0.753

rad

VA

CW

sec

A

2 2,3

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection.

1,2 at infinity

in

VB  BI13 

VB 17.17

VB  

VB 59.000 deg

sec

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. in

VC  CI13 

VC 9.509

VC  C 90 deg

VC 22.572 deg

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-18c-1

PROBLEM 6-18c Statement:

The linkage in Figure P6-5f has the dimensions and coupler angle given below. Find 3, VA, VB, and VC for the position shown for VA = 10 in/sec in the direction shown. Use an analytical method.

Given:

Link lengths and angles:

Solution: 1.

Coupler point:

Link 3 (A to B)

b 1.8 in

Distance A to C

Rca  1.44 in

Coupler angle

 128 deg

Angle BAC

 49 deg

Slider 4 angle

 59 deg

VA  10 in sec

Input slider velocity

1

See Figure P6-5f and Mathcad file P0618c.

Draw the mechanism to scale and define a vector loop using the fourbar slider-crank derivation in Section 6.7 as a model. 0

0.5

1 in

Y

C

B 4 R3 R4 3 b

49 .0 00°

12 8.00 0°

59.0 00° VA

X

R2

2.

A

2

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for 3 and VB. R2 R3  R4 j 

a e

j 

b e

j 

 c  e

where a is the distance from the origin to point A, a variable; b is the distance from A to B, a constant; and c is the distance from the origin to point B, a variable. Angle 2 is zero, 3 is the angle that AB makes with the x axis, and 4 is the constant angle that slider 4 makes with the x axis. Differentiating, j    d d  j a  j b  e   c   e dt dt  

Substituting the Euler equivalents, d  d  a b sin  j  cos    c  cos  j sin  dt dt  Separating into real and imaginary components and solving for 3 and VB . Note that dc/dt = VB and da/dt = VA

 

 

VB  

 

 b sin tancos VA tan 

 cos 

VA b  sin 

 

 

13.288

VB 17.180

rad sec in

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-18c-2

 

 

arg  VB59.000 deg

VB  VB cos  j sin  3.

Determine the velocity of the coupler point C using equations 6.36.

 







VCA  Rca sin  j  cos  VCA (18.783 3.651j)

in sec

VA  VA VC  VA VCA VC ( 8.783 3.651j)

in sec

VC 9.512

in sec

arg  VC22.572 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-19-1

PROBLEM 6-19 Statement:

The cam-follower in Figure P6-5d has O2A = 0.853 in. Find V4, Vtrans, and Vslip for the position shown with 2 = 20 rad/sec in the direction (CCW) shown.

Given:

 20 rad sec

1

O A a 0.853 in 2

Assumptions: Rolling contact (no sliding) Solution: 1.

See Figure P6-5d and Mathcad file P0619.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Direction of VA Axis of transmission

Direction of V4 3 O2

4

B A 2

Axis of slip 0.853

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

VA 17.060

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is VA = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA. b. From the tip of VA, draw a construction line with the direction of Vslip , magnitude unknown. c. From the tail of VA , draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line.

Y 0.768 0

VA

10 in/sec

1.523

Vslip

Vtrans

V4

X

0.870

4.

From the velocity triangle we have: 1

Velocity scale factor:

Vslip  1.523 in  kv

kv  

10 in  sec in

Vslip 15.230

in sec

Vtrans  0.768 in kv

Vtrans 7.680

V4  0.870 in kv

V4 8.700

in sec

in sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-20-1

PROBLEM 6-20 Statement:

The cam-follower in Figure P6-5e has O2A = 0.980 in and O3A = 1.344 in. Find 3, Vtrans, and Vslip for the position shown with 2 = 10 rad/sec in the direction (CW) shown.

Given:

 10 rad sec

1

Distance from O to A: a  0.980 in 2

Distance from O3 to A: b  1.344 in Assumptions: Roll-slide contact Solution:

See Figure P6-5e and Mathcad file P0620.

1.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A.

Direction of VA2 Axis of transmission Direction of VA3

VA   a 

VA 9.800

in

Axis of slip

sec 2

3.

O2

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is

3

A

O3

1.344

VA2 = Vtrans + VA2slip

0.980

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line. Y 0

4.

From the velocity triangle we have: Velocity scale factor:

5 in sec

1

1.599

in

VA2slip 5.670

Vtrans  1.599 in kv

Vtrans 7.995

VA3  2.598 in  kv

sec

2.598

in sec

VA3slip 10.240 VA3 12.990

V trans

in

V A2

in

V A2slip

VA3

VA3 b

The relative slip velocity is

9.665

V A3slip

in sec

Vslip  VA3slip VA2slip

rad

1.134

sec

Determine the angular velocity of link 3 using equation 6.7.  

6.

kv  

VA2slip  1.134 in kv

VA3slip  2.048 in kv

5.

5 in/sec

CCW

sec Vslip 4.570

in sec

2.048

X

DESIGN OF MACHINERY

SOLUTION MANUAL 6-21a-1

PROBLEM 6-21a Statement:

The linkage in Figure P6-6b has L1 = 61.9, L2 = 15, L 3 = 45.8, L4 = 18.1, L5 = 23.1 mm. 2 is 68.3 deg in the xy coordinate system, which is at -23.3 deg in the XY coordinate system. The X component of O2C is 59.2 mm. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the velocity difference graphical method.

Given:

Link lengths:

Solution:

Link 1

d 61.9 mm

Link 2

a 15.0 mm

Link 3

b 45.8 mm

Link 4

c 18.1 mm

Link 5

e 23.1 mm

Offset

f 59.2 mm

from O2

Crank angle:

 45 deg

Coordinate rotation angle

 23.3  deg Global XY system to local xy system

Global XY system

See Figure P6-6b and Mathcad file P0621a.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW.

y 5,6 6

mm VA  10 sec

2,3 A

Direction of VCB C

4 5.0° 3

2

1

5

X

O2

VC  45 deg 90 deg

23 .3 °

B

1

VC 135.000 deg 3.

Direction of VC

Direction of VA Y

Direction of VBA 4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is

O4 x

1 Direction of VB

VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 4.

From the velocity triangle we have: VA

Y

Velocity scale factor:

kv  

5 mm sec

1

5 mm/sec

2.053

in

VB  2.248 in kv VB 11.2

0

mm sec

VB  ( 360 167.558 ) deg

V BA

X 167.553°

VB 2.248

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-21a-2

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the (now) known vector VB. b. From the tip of VB, draw a construction line with the direction of VCB , magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line. VA

Y 0

V BA

5 mm/sec

X VB 1.128 VC V CB

6.

From the velocity triangle we have: kv  

Velocity scale factor:

VC  1.128 in  kv

7.

The ratio V

/V I5,6

8.

is

VC

5 mm sec

1

in

VC 5.6

mm sec

VC  270 deg

0.564

VA

I2,3

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Tin

Fin =

rin

Fout =

mA =

Pout Vout

Fout Fin

Pin

=

rin in =

=

=

Pin VA

Pout VC

Pout VA  VC Pin

mA  

VA VC

mA 1.773

DESIGN OF MACHINERY

SOLUTION MANUAL 6-21b-1

PROBLEM 6-21b Statement:

The linkage in Figure P6-6b has L1 = 61.9, L2 = 15, L 3 = 45.8, L4 = 18.1, L5 = 23.1 mm. 2 is 68.3 deg in the xy coordinate system, which is at -23.3 deg in the XY coordinate system. The X component of O2C is 59.2 mm. Find, for the position shown, the velocity ratio VI5,6/VI2,3 and the mechanical advantage from link 2 to link 6. Use the instant center graphical method.

Given:

Link lengths:

Solution: 1.

Link 1

d 61.9 mm

Link 2

a 15.0 mm

Link 3

b 45.8 mm

Link 4

c 18.1 mm

Link 5

e 23.1 mm

Offset

f 59.2 mm

from O2

Crank angle:

 45 deg

Coordinate rotation angle

 23.3  deg Global XY system to local xy system

Global XY system

See Figure P6-6b and Mathcad file P0621b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout:

2.

AI13  44.594 mm

BI13  50.121 mm

BI15  22.683 mm

CI15  11.377 mm

1,3

5,6

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW.

6 1,5

2,3 A

mm VA  10 sec

2

50.12 1

C

3

1

5

22.68 3

X

O2

VC  90 deg

B 1

VC 135.000 deg 3.

11 .3 77

44.59 4 Y

4

Determine the angular velocity of link 3 using equation 6.9a.

O4 1

 

VA

0.224

AI13

rad

CW

sec

4.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm VB  BI13  VB 11.239 sec

5.

Determine the angular velocity of link 5 using equation 6.9a.  

6.

VB

0.495

BI15

The ratio V

/V I5,6

8.

CW

sec

Determine the magnitude of the velocity at point C using equation 6.9b. Determine its direction by inspection. VC  CI15 

7.

rad

is I2,3

VC VA

VC 5.637

mm

downward

sec

0.56

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider.

DESIGN OF MACHINERY

Tin

Fin =

rin

Fout =

mA =

SOLUTION MANUAL 6-21b-2

Pout Vout

Fout Fin

Pin

=

rin in =

=

=

Pin VA

Pout VC

Pout VA  VC Pin

mA  

VA VC

mA 1.77

DESIGN OF MACHINERY

SOLUTION MANUAL 6-22a-1

PROBLEM 6-22a Statement:

Given:

Solution: 1.

The linkage in Figure P6-6d has L2 = 15, L3 = 40.9, L5 = 44.7 mm. 2 is 24.2 deg in the XY coordinate system. Find, for the position shown, the velocity ratio VI5,6 /VI2,3 and the mechanical advantage from link 2 to link 6. Use the velocity difference graphical method. Link lengths: Link 2

a 15.0 mm

Link 3

b 40.9 mm

Link 5

c 44.7 mm

Offset

f  0 mm

Crank angle:

 24.2 deg

from O2

See Figure P6-6d and Mathcad file P0622a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

4 1

C

Direction of VBA

3

Direction of VA

5,6 A

5

2

O2

6 B

2,3

1

1

Direction of VB

2.

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. mm VA  10 sec

3.

VC  90 deg

VC 114.200 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. VA Y 0

5 mm/sec

VBA X

VB 1.073

DESIGN OF MACHINERY

4.

SOLUTION MANUAL 6-22a-2

From the velocity triangle we have: kv  

Velocity scale factor:

VB  1.073 in kv

5.

The ratio V

/V I5,6

6.

is

VB

5 mm sec

1

in

VB 5.4

mm sec

VB  180 deg

0.54

VA

I2,3

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Tin

Fin =

rin

Fout =

mA =

Pout Vout

Fout Fin

Pin

=

rin in

=

=

=

Pin VA

Pout VB

Pout VA  VB Pin

mA  

VA VB

mA 1.86

DESIGN OF MACHINERY

SOLUTION MANUAL 6-22b-1

PROBLEM 6-22b Statement:

Given:

Solution: 1.

The linkage in Figure P6-6d has L2 = 15, L3 = 40.9, L5 = 44.7 mm. 2 is 24.2 deg in the XY coordinate system. Find, for the position shown, the velocity ratio VI5,6 /VI2,3 and the mechanical advantage from link 2 to link 6. Use the instant center graphical method. Link lengths: Link 2 Link 3 a 15.0 mm b 40.9 mm Link 5

c 44.7 mm

Crank angle:

 24.2 deg

f  0 mm

Offset

from O2

See Figure P6-6d and Mathcad file P0622b.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 4 1

C

3

1,5

48.561

26.075

5,6 A

5

2

O2

6 B

2,3

1

1

From the layout: AI15  48.561 mm 2.

BI15  26.075 mm

Choose an arbitrary value for the magnitude of the velocity at I2,3 (point A). Let link 2 rotate CCW. mm VA  10 sec

3.

VA

0.206

AI15

The ratio V

/V I5,6

6.

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI15 

5.

VC 114.200 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

VC  90 deg

is I2,3

VB

VB 5.370

mm

to the left

sec

0.54

VA

Use equations 6.12 and 6.13 to derive an expression for the mechanical advantage for this linkage where the input is a rotating crank and the output is a slider. Fin =

mA =

Tin rin Fout Fin

=

=

Pin rin in

=

Pout VA  VC Pin

Pin

Fout =

VA mA  

VA VB

Pout Vout

mA 1.86

=

Pout VC

DESIGN OF MACHINERY

SOLUTION MANUAL 6-23-1

PROBLEM 6-23 Statement:

Generate and draw the fixed and moving centrodes of links 1 and 3 for the linkage in Figure P6-7a.

Solution:

See Figure P6-7a and Mathcad file P0623.

1.

Draw the linkage to scale, find the instant center I1,3 , and repeat for several positions of the linkage. The locus of points I1,3 is the fixed centrode.

FIXED CENTRODE

2.

Invert the linkage, grounding link 3. Draw the linkage to scale, find the instant center I1,3 , and repeat for several positions of the linkage. The locus of points I1,3 is the moving centrode. (See next page.)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-23-2

MOVING CENTRODE

DESIGN OF MACHINERY

SOLUTION MANUAL 6-24-1

PROBLEM 6-24 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find f, VA, and VB for the position shown for = 15 rad/sec clockwise (CW). Use the velocity difference graphical method.

Given:

Link lengths:

Crank angle:

Link 2 (O2 to A)

a 116 mm

Link 3 (A to B)

b 108 mm

Link 4 (B to O4)

c 110 mm

Link 1 (O2 to O4)

d 174 mm

Coordinate rotation angle Solution: 1.

 37 deg

Global XY system

Input crank angular velocity  15 rad sec

 25 deg

1

Global XY system to local xy system

See Figure P6-8a and Mathcad file P0624.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Y

Direction of VA A

37.000° 70.133°

2

3

O2

X

d

22.319° B

Direction of VBA 4

Direction of VB

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

O4

VA 1740.0

mm sec

A  37 deg 90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-24-2

0

1000 mm/sec

Y

X 0.952 53.000° VB VBA

VA

1.498 112.319°

4.

From the velocity triangle we have: Velocity scale factor:

5.

1000  mm sec

mm

VB 952.0

VBA  1.498 in  kv

VBA 1498.0

sec mm sec

Determine the angular velocity of link 3 using equation 6.7. VBA b

13.87

rad sec

Determine the angular velocity of link 4 using equation 6.7.  

VB c

8.655

1

in

VB  0.952 in kv

  6.

kv  

rad sec

B  112.319 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-25-1

PROBLEM 6-25 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find f, VA, and VB for the position shown for = 15 rad/sec clockwise (CW). Use the instant center graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 116 mm

Link 3 (A to B)

b 108 mm

Link 4 (B to O4)

c 110 mm

Link 1 (O2 to O4)

d 174 mm

Coordinate rotation angle Solution: 1.

Crank angle:  37 deg

Global XY system

Input crank angular velocity  15 rad sec

 25 deg

1

Global XY system to local xy system

See Figure P6-8a and Mathcad file P0625.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. Y

From the layout:

2,3

A

AI13  125.463 mm

125.463

BI13  68.638 mm 2

 157.681 deg

3

O2 1,2

X 2,4 157.681°

1,3 B

2.

3.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

5.

4

O4

3,4 1,4

mm

VA   a 

VA 1740.0

VA  90 deg

VA 53.0 deg

sec

Determine the angular velocity of link 3 using equation 6.9a.  

4.

68.638

VA

13.869

rad

CW AI13 sec Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 

VB 951.915

VB  90 deg

VB 247.681 deg

sec

Use equation 6.9c to determine the angular velocity of link 4.  

VB c

8.654

rad sec

CCW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-26-1

PROBLEM 6-26 Statement:

The linkage in Figure P6-8a has the dimensions and crank angle given below. Find 4, VA , and VB for the position shown for = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Link lengths:

Crank angle:

Link 2 (O2 to A)

a 116 mm

Link 3 (A to B)

b 108 mm

Link 4 (B to O4)

c 110 mm

Link 1 (O2 to O4)

d 174 mm

 62 deg

Global XY system

Input crank angular velocity  15 rad sec

1

CW

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution:

See Figure P6-8a and Mathcad file P0626.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a.

y A

K1   K2  

d

K 1 1.5000

a d

3 62.000°

K 2 1.5818

c 2

K3  

2 O2

2

2

a b c d

2

2

K 3 1.7307

2 a c

B

  B 2 sin  C K 1  K2 1  cos K 3

4

A cos  K 1 K 2 cos  K3

A 0.0424 3.

B 1.7659

x

C 2.0186

Use equation 4.10b to find values of 4 for the crossed circuit.

 

2

 2atan2 2 A B  B 4  A C 4.



182.681 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b

2

2 a b

  E 2 sin  F K 1  K4 1   cos K 5

D cos  K 1 K 4 cos  K 5

5.

O4

Use equation 4.13 to find values of 3 for the crossed circuit.

K 4 1.6111 D 2.0021 E 1.7659 F 0.0589

K 5 1.7280

DESIGN OF MACHINERY

SOLUTION MANUAL 6-26-2

 



2

 2atan2 2 D E  E 4  D F 6.

7.

275.133 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

 

13.869

 

 

8.654

 

a  sin   b sin 

 

a  sin   c sin 

rad sec

rad sec

Determine the velocity of points A and B for the crossed circuit using equations 6.19.

 

 

VA   a sin  j  cos  VA ( 1536.329 816.881j)

  

mm sec

VA 1740.000

 

mm sec

arg  VA 28.000 deg

VB  c sin  j  cos  VB ( 44.524 950.875j)

mm sec

VB 951.917

mm sec

arg  VB 87.319 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-27-1

PROBLEM 6-27 Statement:

The linkage in Figure P6-8a has the dimensions given below. Find and plot 4, VA , and VB in the

Given:

local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec clockwise (CW). Link lengths: Link 2 (O2 to A)

a 116 mm

Link 4 (B to O4)

c 110 mm  15 rad sec

Input crank angular velocity Two argument inverse tangent

Link 3 (A to B)

b 108 mm

Link 1 (O2 to O4)

d 174 mm

1

CW

atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure P6-8a and Mathcad file P0627.

Draw the linkage to scale and label it. y

2.

A

Determine the range of motion for this non-Grashof triple rocker using equations 4.33. 2

arg 1  

2

2

2 a d 2

arg 2  

2

a d b c

2

2



2

a d b c 2 a d



b c

2

a d

3

O2

b c

62.000°

2

a d

B

arg 1 1.083

arg 2 0.094 4

2toggle  acos arg 2

2toggle 95.4deg x

The other toggle angle is the negative of this. Thus,  2toggle  2toggle 1 deg  2toggle 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 1.5000 2

K3  

d c

K 2 1.5818 2

2

a b c d 2 a c

2

K 3 1.7307

    B  2 sin  C  K 1  K 2 1   cos K 3

A   cos  K1 K 2 cos  K 3

4.

Use equation 4.10b to find values of 4 for the crossed circuit.







O4

 

 2

   

  2 2 A   B   B  4  A   C   atan2 

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-27-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

2

K 4 1.6111

2 a b

K 5 1.7280

    E  2 sin  F  K1  K 4 1  cos K5

D   cos  K1 K 4 cos  K5

6.

Use equation 4.13 to find values of 3 for the crossed circuit.







 

   

 2

  2 2 D   E   E  4  D   F   atan2  7.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

   8.

       



  

       

Determine the velocity of points A and B for the crossed circuit using equations 6.19.



 

 

VA   a sin  j  cos 



  



VAx   Re VA 



  

VAy   Im VA 

    

  

VB   c   sin  j cos 



  



VBx   Re VB 

Plot the angular velocity of the output link, 4, and the x and y components of the velocities at points A and B. ANGULAR VELOCITY OF LINK 4 60 40 Angular Velocity, rad/sec

9.

  

VBy   Im VB 

20 0



sec    rad

20 40 60 80 100 100

75

50

25

0  deg

25

50

75

100

DESIGN OF MACHINERY

SOLUTION MANUAL 6-27-3

VELOCITY COMPONENTS, POINT A 2000

Joint Velocity, mm/sec

1000



sec VAx   mm



sec VAy   mm

0

1000

2000 100

75

50

25

0

25

50

75

100

 deg

VELOCITY COMPONENTS, POINT B 4000

Joint Velocity, mm/sec

3000 2000 sec VBx   mm 1000

 

sec VBy   mm

0 1000 2000 3000 100

75

50

25

0  deg

25

50

75

100

DESIGN OF MACHINERY

SOLUTION MANUAL 6-28-1

PROBLEM 6-28 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and VB

Given:

for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use the velocity difference graphical method. Link lengths: Crank angle: Link 2 (O2 to A)

a 40 mm

Link 3 (A to B)

b 96 mm

Link 4 (B to O4)

c 122 mm

Link 1 (O2 to O4)

d 162 mm

 57 deg

Input crank angular velocity  20 rad sec

 36 deg

Coordinate rotation angle

Global XY system

1

Global XY system to local xy system

Solution: See Figure P6-8b and Mathcad file P0628. 1. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. 2.

Direction of VA

Use equation 6.7 to calculate the magnitude of the velocity at point A. Y

VA   a  VA 800.000

mm sec

2

Direction of VB

y A

2

B 3 X

O2

A  90 deg 3.

Direction of VBA

4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA

O4 x

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 0

4.

400 mm/sec

From the velocity triangle we have: 147.000°

Velocity scale factor: 1

kv  

VA

400 mm  sec

Y

in

VB  1.790 in kv

VB 716.0

mm

1.293" V BA

sec X

B  186.406 deg VBA  1.293 in  kv 5.

mm

6.406°

1.790"

sec

85.486°

Determine the angular velocity of link 3 using equation 6.7.  

6.

VBA 517.2

VB

VBA b

5.388

rad sec

Determine the angular velocity of link 4 using equation 6.7.

 

VB c

5.869

rad sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-29-1

PROBLEM 6-29 Statement:

Given:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use the instant center graphical method. Link lengths: Crank angle: a 40 mm  57 deg Global XY system Link 2 (O2 to A) Input crank angular velocity b 96 mm Link 3 (A to B) 1 c 122 mm  20 rad sec Link 4 (B to O4) d 162 mm Link 1 (O2 to O4) Coordinate rotation angle

Solution: 1.

 36 deg

Global XY system to local xy system

See Figure P6-8b and Mathcad file P0629.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. From the layout: AI13  148.700 mm

1,3

BI13  133.192 mm

 96.406 deg 2.

133.192

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA   a  VA 800.0 sec

VA  90 deg 3.

148.700

Y 2

A

2

VA 147.0 deg

y

B 3 X

O2 4

Determine the angular velocity of link 3 using equation 6.9a.  

VA AI13

5.380

rad

96.406°

CW

sec

O4 x

4.

5.

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 

VB 716.6

VB  90 deg

VB 186.406 deg

sec

Use equation 6.9c to determine the angular velocity of link 4.  

VB c

5.874

rad sec

CCW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-30-1

PROBLEM 6-30 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for 2 = 20 rad/sec counterclockwise (CCW). Use an analytical method.

Given:

Link lengths:

Crank angle:

Link 2 (O2 to A)

a 40 mm

Link 3 (A to B)

b 96 mm

Link 4 (B to O4)

c 122 mm

Link 1 (O2 to O4)

d 162 mm

 57 deg

Global XY system

Input crank angular velocity  20 rad sec

1

Coordinate rotation angle

 36 deg

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0

Global XY system to local xy system return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution:

See Figure P6-8b and Mathcad file P0630.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 4.0500 2

K3  

c

2

2

4

K 3 3.4336

2 a c

 

B 1.9973

O4 x



B 2 sin 

C 7.6054

Use equation 4.10b to find values of 4 for the open circuit.

 

2

2 

132.386 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

  E 2 sin  F K 1  K4 1   cos K 5

2

2 a b

D cos  K 1 K 4 cos  K 5

K 4 1.6875

K 5 2.8875

D 7.0782 E 1.9973 F 1.1265

Use equation 4.13 to find values of 3 for the open circuit.

 

2



 2atan2 2  D E  E 4 D F 2  6.

X 93.000

2

 2atan2 2  A B  B 4 A C

5.

B

3

O2

  C K 1  K2 1  cos K 3

4.

A

2

d

A cos  K 1 K 2 cos  K3

3.

2

y

K 2 1.3279

a b c d

A 0.5992

Y

31.504 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

DESIGN OF MACHINERY

7.

SOLUTION MANUAL 6-30-2

 

 

5.385

 

 

5.868

 

a  sin   b sin 

 

a  sin   c sin 

rad sec

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA ( 798.904 41.869j)

 

mm sec

VA 800.000

mm

VB 715.900

mm

 

sec

arg  VA177.000 deg

VB  c  sin  j  cos  VB ( 528.774 482.608j)

mm sec

sec

arg  VB137.614 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-31-1

PROBLEM 6-31 Statement:

The linkage in Figure P6-8b has the dimensions and crank angle given below. Find and plot 4, VA , and VB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 20 rad/sec counterclockwise (CCW).

Given:

Link lengths: Link 2 (O2 to A)

a 40 mm

Link 3 (A to B)

b 96 mm

Link 4 (B to O4)

c 122 mm

Link 1 (O2 to O4)

d 162 mm

1

Input crank angular velocity

 20 rad sec

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0

CCW

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution:

See Figure P6-8b and Mathcad file P0631.

1.

Draw the linkage to scale and label it.

2.

Determine Grashof condition.

Y 2

Condition( S  L P Q)   SL  S L

y B

3

A

93.000 X

2

PQ  P Q

O2 4

return "Grashof" if SL PQ return "Special Grashof" if SL = PQ return "non-Grashof" otherwise O4

Condition( a  d b c ) "Grashof"

x

Crank-rocker

 0 deg  1 deg   360 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 4.0500



2

d

K3  

c

K 2 1.3279



2

2

2 a c

K 3 3.4336





A   cos  K1 K 2 cos  K 3



2

a b c d



B   2 sin 



C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

   2  atan2 2 A   B   B  4 A  C    5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b



2

K5  



2

2

c d a b

2

2 a b



D   cos  K1 K 4 cos  K5

K 4 1.6875

K 5 2.8875

DESIGN OF MACHINERY

SOLUTION MANUAL 6-31-2

  F  K1  K 4 1  cos K5 E   2 sin 

6.

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

   2  atan2 2 D   E   E  4 D  F    7.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.



a  sin    b sin   



a  sin   c sin   

   8.

       

  

       

Determine the velocity of points B and C for the open circuit using equations 6.19.



 

 

VA    a sin  j  cos 



  



VAx   Re VA 



  

VAy   Im VA 

    

  

VB   c  sin  j cos 



  



VBx   Re VB 

Plot the angular velocity of the output link, 4, and the magnitudes of the velocities at points B and C. ANGULAR VELOCITY OF LINK 4 10 Angular Velocity, rad/sec

9.

  

VBy   Im VB 

5



sec   rad

0

5

10

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-31-3

VELOCITY COMPONENTS, POINT A

Joint Velocity, mm/sec

1000



sec VAx   mm



sec VAy   mm

500

0

500

1000

0

45

90

135

180

225

270

315

360

 deg

VELOCITY COMPONENTS, POINT B

Joint Velocity, mm/sec

1000 600



sec VBx   mm

200



200

sec VBy   mm

600 1000

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-32-1

PROBLEM 6-32 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown if 2 = 25 rad/sec CW. Use the velocity difference graphical method.

Given:

Link lengths:

Solution:

Link 2

a 63 mm

Crank angle:

 51 deg

Link 3

b 130 mm

Input crank angular velocity

Offset

c 52 mm

 25 rad sec

1

CW

See Figure P6-8f and Mathcad file P0632.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

VA 1575.0

Direction of VB 4 B

mm

Direction of VBA

1

sec

3

A  51 deg 90 deg 3.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is

Direction of VA A 2 51.000°

VB = VA + VBA O2

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. 4.

0

From the velocity triangle we have: Velocity scale factor:

kv  

VB  2.208 in kv

VB  270 deg

1000  mm sec

1000 mm/sec

Y

1 X

in VB 2208

mm VA

sec 2.208

VB V BA

DESIGN OF MACHINERY

SOLUTION MANUAL 6-33-1

PROBLEM 6-33 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown for 2 = 25 rad/sec CW. Use the instant center graphical method.

Given:

Link lengths: Link 2

a 63 mm

Crank angle:

 51 deg

Link 3

b 130 mm

Offset

c 52 mm

 25 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-8f and Mathcad file P0633.

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis. 166.309 4 B

1,3

1 3

A

118.639

2

O2

From the layout above: AI13  118.639 mm 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA   a  VA 1575.0 sec

VA  90 deg 3.

VA 39.0 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

BI13  166.309 mm

VA AI13

13.276

rad

CCW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. VB  BI13 

VB  270 deg

VB 2207.8

mm sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-34-1

PROBLEM 6-34 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find VA, and VB for the position shown for 2 = 25 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2

a 63 mm

Link 3

b 130 mm

Offset

c 52 mm

 141 deg

Crank angle:

Local xy coordinate system Input crank angular velocity  25 rad sec

Solution:

See Figure P6-8f and Mathcad file P0634.

Y

1.

Draw the linkage to a convenient scale.

2.

Determine 3 and d using equations 4.16 for the crossed circuit.

4



sin  c  a   asin   b  





1 3

d 141.160 mm

A

52.000 2

Determine the angular velocity of link 3 using equation 6.22a:

 

a cos       b cos  4.

B

44.828 deg

d  a cos  b cos  3.

1

13.276

rad

141.000°

sec

x

Determine the velocity of pin A using equation 6.23a:

 

X, y

O2

 

VA  a  sin  j cos  VA ( 991.180 1224.005i )

mm

mm sec

VA  arg  VA 90 deg

In the global coordinate system, 5.

VA 1575.000

sec

arg  VA51.000 deg

VA 39.000 deg

Determine the velocity of pin B using equation 6.22b:





VB  a  sin  b   sin 

VB 2207.849

mm sec

VB  VB In the global coordinate system,

VB  arg  VB 90 deg

VB 90.000 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-35-1

PROBLEM 6-35 Statement:

The offset slider-crank linkage in Figure P6-8f has the dimensions and crank angle given below. Find and plot VA , and VB in the global coordinate system for the maximum range of motion that this linkage allows if 2 = 25 rad/sec CW.

Given:

Link lengths: Link 2

a 63 mm

Link 3

b 130 mm

Input crank angular velocity Solution:

c 52 mm

Offset

 25 rad sec

1

See Figure P6-8f and Mathcad file P0635.

1.

Draw the linkage to a convenient scale. The coordinate rotation angle is  90 deg

2.

Determine the range of motion for this slider-crank linkage.

Y 4

 0 deg  2 deg   360 deg 3.

B

1

Determine 3 using equations 4.16 for the crossed circuit.

3



sin  c  a    asin   b  



4.

Determine the angular velocity of link 3 using equation 6.22a:

2

   

a cos        b cos  



5.

 

 

VA    a sin  j  cos 



  

VAx   Re VA 



  





VAy   Im VA 

In the global coordinate system,





VAX   VAy  6.

VAY   VAx 

Determine the velocity of pin B using equation 6.22b:





    

VBx   a  sin  b    sin   In the global coordinate system,





VBY   VBx  7.

X, y

O2

Determine the x and y components of the velocity of pin A using equation 6.23a:



A

52.000

Plot the x and y components of the velocity of A. (See next page.)

2 x

DESIGN OF MACHINERY

SOLUTION MANUAL 6-35-2

VELOCITY OF POINT A 2000

Velocity, mm/sec

1000



sec VAX  mm



sec VAY  mm

0

1000

2000

0

60

120

180

240

300

360

 deg

Plot the velocity of point B. VELOCITY OF POINT B 2000

1000 Velocity, mm/sec

7.

0



sec VBY  mm 1000

2000

3000

0

60

120

180  deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-36-1

PROBLEM 6-36 Statement:

Given:

The linkage in Figure P6-8d has the dimensions and crank angle given below. Find VA, VB , and Vbox for the position shown for 2 = 30 rad/sec clockwise (CW). Use the velocity difference graphical method. Link lengths: Link 2 Link 3 a 30 mm b 150 mm Link 4

c 30 mm

Crank angle:

 58 deg

Global XY system  30 rad sec

Input crank angular velocity Solution:

d 150 mm

Link 1 1

CW

See Figure P6-8d and Mathcad file P0636.

1.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

VA 900.000

mm

Vbox

sec

1

Direction of VBA

A  58 deg 90 deg 3.

Direction of VA

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is

A

B

3

Direction of VB

2 O4

O2

4

VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. Y

4.

From the velocity triangle we have: Direction of VBA

VB   VA

X 0

VB 900.000

5.

in VBA  0  sec

VA

Determine the angular velocity of links 3 and 4 using equation 6.7.  

6.

VB

sec

B  32 deg

500 mm/sec

3 2.000°

mm

VBA

0.000

b

rad sec

 

VB c

30.000

rad sec

Determine the magnitude of the vector Vbox . This is a special case Grashof mechanism in the parallelogram configuration. Link 3 does not rotate, therefore all points on link 3 have the same velocity. The velocity Vbox is the horizontal component of VA. mm Vbox  VA cos A Vbox 763.243 sec



DESIGN OF MACHINERY

SOLUTION MANUAL 6-37-1

PROBLEM 6-37 Statement:

The linkage in Figure P6-8d has the dimensions and effective crank angle given below. Find VA,

Given:

VB , and Vbox in the global coordinate system for the position shown for 2 = 30 rad/sec CW. Use an analytical method. Link lengths: Link 2

a 30 mm

Link 3

b 150 mm

Link 4

c 30 mm

Link 1

d 150 mm

Crank angle:

 58 deg

Input crank angular velocity

 30 rad sec

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0

1

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-8d and Mathcad file P0637. Vbox

Draw the linkage to scale and label it. 1

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 5.0000 2

K3  

2

2

c O2

K 3 1.0000

  C K 1  K2 1  cos K 3



A cos  K 1 K 2 cos  K3

3.

4.

B 1.6961

B 2 sin 

C 2.8205

Use equation 4.10b to find values of 4 for the open circuit.

 



2

 2atan2 2 A B  B 4 A C

418.000 deg

 360 deg

58.000 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

  E 2 sin  F K 1  K4 1   cos K 5

D cos  K 1 K 4 cos  K 5

5.

O4

2

2 a c

A 6.1197

B

2

K 2 5.0000

a b c d

3

A

d

Use equation 4.13 to find values of 3 for the open circuit.

2

K 4 1.0000 D 8.9402 E 1.6961 F 0.0000

K 5 5.0000

4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-37-2

 

6.

7.

2



 2atan2 2 D E  E 4 D F

360.000 deg

 360 deg

0.000deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

 

 

0.000

 

 

30.000

 

a  sin   b sin 

 

a  sin   c sin 

rad sec rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA ( 763.243 476.927j)

  

mm sec

VA 900.000

 

mm sec

arg  VA32.000 deg

VB  c  sin  j  cos 

mm VB 900.000 arg  VB32.000 deg sec sec Determine the velocity Vbox. Since link 3 does not rotate (this is a special case Grashof linkage in the parallelogram mode), all points on it have the same velocity. Therefore, VB ( 763.243 476.927j)

8.

Vbox   VA

mm

Vbox 900.000

mm sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-38-1

PROBLEM 6-38 Statement:

The linkage in Figure P6-8d has the dimensions and effective crank angle given below. Find and plot VA , VB , and Vbox in the global coordinate system for the maximum range of motion that this linkage allows if 2 = 30 rad/sec CW.

Given:

Link lengths: Link 2

a 30 mm

Link 3

b 150 mm

Link 4

c 30 mm

Link 1

d 150 mm

1

Input crank angular velocity

 30 rad sec

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-8d and Mathcad file P0638.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this special-case Grashof double crank.

Vbox 1

 0 deg  2 deg   360 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 5.0000 2

K3  

d

B

O2

O4

c

K 2 5.0000 2

2

a b c d

2

K 3 1.0000

2 a c

    C  K 1  K 2 1   cos K 3



A   cos  K1 K 2 cos  K 3

4.

3

A 2



B   2 sin 

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

2

2 a b

K 4 1.0000

    E  2 sin  F  K1  K 4 1  cos K5

D   cos  K1 K 4 cos  K5

6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

  2 2 D   E   E  4 D   F  atan2 

K 5 5.0000

4

DESIGN OF MACHINERY

7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

       



a  sin     b sin  



a  sin    c sin  

  

  

8.

SOLUTION MANUAL 6-38-2

       

Determine the velocity of points A and B for the open circuit using equations 6.19.



 

 

VA    a sin  j  cos 





VA    VA 



    

  

VB   c  sin   j  cos  





VB    VB  9.

Plot the angular velocity of the output link, 4, and the magnitudes of the velocities at points A and B. Since this is a special-case Grashof linkage in the parallelogram configuration, 3 = 0 and 4 = 2 for all values of 2. Similarly, VA , VB , and Vbox all have the same constant magnitude through all values of 2. ( 5 deg ) 30.000

rad sec

VA (5  deg) 900.000

mm

VB (5  deg) 900.000

mm

sec

sec

( 135 deg) 30.000

rad sec

VA (135 deg ) 900.000

mm

VB (135 deg ) 900.000

mm

sec

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-39-1

PROBLEM 6-39 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and VB

Given:

for the position shown for 2 = 15 rad/sec clockwise (CW). Use the velocity difference graphical method. Link lengths: Link 2 (O2 to A)

a 49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b 100 mm

Link 5 (C to D)

b'  100 mm

Link 4 (B to O4)

c 153 mm

Link 6 (D to O6)

c'  153 mm

Link 1 (O2 to O4)

d 87 mm

Link 1 (O2 to O6)

d'  87 mm

 29 deg

Crank angle:

Solution: 1.

Global XY system

Input crank angular velocity

 15 rad sec

Coordinate rotation angle

 119 deg

1

CW

Global XY system to local xy system

See Figure P6-8g and Mathcad file P0639.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Y

Direction of VB

Direction of VBA O6

B 3 29.000°

A

2

4 C

6

O2

X

Direction of VA

5

D

O4 2.

Use equation 6.7 to calculate the magnitude of the velocity at point B. VB   a 

3.

VB 735.0

mm sec

B  29 deg 90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A, the magnitude of the relative velocity VAB, and the angular velocity of link 3. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VA , magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line.

DESIGN OF MACHINERY 0

SOLUTION MANUAL 6-39-2 500 mm/sec

Y 0.124°

1.517 VB

X VBA

VA

4.

From the velocity triangle we have: 1

Velocity scale factor:

VA  1.517 in kv

5.

kv  

500 mm  sec

VA 758.5

in mm sec

Determine the angular velocity of link 4 using equation 6.7.  

VA c

4.958

rad sec

A  0.124 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-40-1

PROBLEM 6-40 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and VB

Given:

for the position shown for 2 = 15 rad/sec clockwise (CW). Use the instant center graphical method. Link lengths: Link 2 (O2 to A)

a 49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b 100 mm

Link 5 (C to D)

b'  100 mm

Link 4 (B to O4)

c 153 mm

Link 6 (D to O6)

c'  153 mm

Link 1 (O2 to O4)

d 87 mm

Link 1 (O2 to O6)

d'  87 mm

 29 deg

Crank angle:

Solution: 1.

Global XY system

Input crank angular velocity

 15 rad sec

Coordinate rotation angle

 119 deg

1

CW

Global XY system to local xy system

See Figure P6-8g and Mathcad file P0640.

Y

Draw the linkage to scale in the position given, find the instant centers, distances from the pin joints to the instant centers and the angles that links 3 and 4 make with the x axis.

97.094 O6 B 3

From the layout: AI13  97.094 mm

BI13  100.224 mm

1,3

100.224

 89.876 deg 2.

3.

5.

A 6

O2 89.876°5

D

O4

VA 61.0 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

C

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. mm VA   a  VA 735.0 sec

VA  90 deg

2

4

VA AI13

7.570

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. Determine its direction by inspection. mm

VB  BI13 

VB 758.694

VB  90 deg

VB 0.124 deg

sec

Use equation 6.9c to determine the angular velocity of link 4.  

VB c

4.959

rad sec

CW

X

DESIGN OF MACHINERY

SOLUTION MANUAL 6-41-1

PROBLEM 6-41 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find 4, VA, and VB for the position shown for 2 = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a 49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b 100 mm

Link 5 (C to D)

b'  100 mm

Link 4 (B to O4)

c 153 mm

Link 6 (D to O6)

c'  153 mm

Link 1 (O2 to O4)

d 87 mm

Link 1 (O2 to O6)

d'  87 mm

 148 deg Local xy system

Crank angle:

Input crank angular velocity

 15 rad sec

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-8g and Mathcad file P0641.

1.

Draw the linkage to scale and label it.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

Y

d

K2  

a

K 1 1.7755 2

K3  

O6

d

B

3

c

K 2 0.5686 2

2

a b c d

2

K 3 1.5592

2 a c

C

  B 2 sin  C K 1  K2 1  cos K 3

O2 148.000°

A cos  K 1 K 2 cos  K3

A 0.5821 3.

B 1.0598

D O4 x

C 4.6650

Use equation 4.10b to find values of 4 for the crossed circuit.

 

2



d b

2

K5  

2

2

c d a b

2

2 a b

  E 2 sin  F K 1  K4 1   cos K 5

D cos  K 1 K 4 cos  K 5

5.

208.876 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

Use equation 4.13 to find values of 3 for the crossed circuit.

K 4 0.8700 D 3.0104 E 1.0598 F 2.2367

X

6

5

 2atan2 2 A B  B 4  A C 4.

A

2

4

K 5 0.3509

y

DESIGN OF MACHINERY

SOLUTION MANUAL 6-41-2

 



2

 2atan2 2 D E  E 4  D F 6.

7.

266.892 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.  

a  sin   b sin 

 

 

7.570

rad

 

a  sin   c sin 

 

 

4.959

rad

sec

sec

Determine the velocity of points B and A for the crossed circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA ( 389.491 623.315j )

  

mm sec

VA 735.000

 

mm sec

arg  VA58.000 deg

VB  c  sin  j  cos  VB ( 366.389 664.362j)

mm sec

VB 758.694

mm sec

arg  VB118.876 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-42-1

PROBLEM 6-42 Statement:

The linkage in Figure P6-8g has the dimensions and crank angle given below. Find and plot 4, VA, and VB in the local coordinate system for the maximum range of motion that this linkage allows if 2 = 15 rad/sec clockwise (CW).

Given:

Link lengths: Link 2 (O2 to A)

a 49 mm

Link 2 (O2 to C)

a'  49 mm

Link 3 (A to B)

b 100 mm

Link 5 (C to D)

b'  100 mm

Link 4 (B to O4)

c 153 mm

Link 6 (D to O6)

c'  153 mm

Link 1 (O2 to O4)

d 87 mm

Link 1 (O2 to O6)

d'  87 mm

 15 rad sec

Input crank angular velocity

1

Two argument inverse tangent atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-8g and Mathcad file P0642.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.33. 2

arg 1  

2

2 a d 2

2

2toggle  acos arg 1



2

a d b c 2 a d

O6

2

a d b c 2

arg 2  

2

Y



b c a d b c a d

B

arg 1 0.840 arg 2 6.338

3

A

2

4 C

O2

2toggle 32.9deg

2

5

The other toggle angle is the negative of this. Thus,

D

 2toggle  2toggle 1 deg   360 deg 2toggle

O4 x

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 1.7755

2

d

K3  

c

K 2 0.5686

2

a b c d 2 a c

K 3 1.5592

    C  K 1  K 2 1   cos K 3



A   cos  K1 K 2 cos  K 3

4.

2



B   2 sin 

Use equation 4.10b to find values of 4 for the crossed circuit.







 

 2

   

  2 2 A   B   B  4  A   C   atan2  5.

X

6

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

2

y

DESIGN OF MACHINERY

K4  

SOLUTION MANUAL 6-42-2 2

d

K5  

b

2

2

c d a b

2

K 4 0.8700

2 a b

    F  K1  K 4 1  cos K5



D   cos  K1 K 4 cos  K5

6.

K 5 0.3509



E   2 sin 

Use equation 4.13 to find values of 3 for the crossed circuit.







 

   

 2

  2 2 D   E   E  4  D   F   atan2  7.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

   8.

       



  

       

Determine the velocity of points A and B for the crossed circuit using equations 6.19.

   VBx  Re VB  

 

VB    a sin  j  cos 





  

VBy   Im VB 

    

  

VA   c  sin   j  cos  



  



VAx   Re VA 

Plot the angular velocity of the output link, 4, and the x and y components of the velocities at points B and A. ANGULAR VELOCITY OF LINK 4 60 40

Angular Velocity, rad/sec

9.

  

VAy   Im VA 

20 0



sec    rad

20 40 60 80 100

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-42-3

VELOCITY COMPONENTS, POINT B 1000

Joint Velocity, mm/sec

500



sec VBx   mm



sec VBy   mm

0

500

1000

0

45

90

135

180

225

270

315

360

315

360

 deg

VELOCITY COMPONENTS, POINT A 4000

Joint Velocity, mm/sec

3000 2000



sec VAx   mm 1000



sec VAy   mm

0 1000 2000 3000

0

45

90

135

180  deg

225

270

DESIGN OF MACHINERY

SOLUTION MANUAL 6-43-1

PROBLEM 6-43 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below. Find piston velocities V6, V7, and V8 for the position shown for 2 = 15 rad/sec clockwise (CW). Use the velocity difference graphical method.

Given:

Link lengths:

Solution: 1. 2.

Link 2

a 19 mm

Links 3, 4, and 5

b 70 mm

c  0 mm

Offset

Crank angle:

 53 deg Global XY system

Input crank angular velocity

 15 rad sec

Cylinder angular spacing

 120 deg

1

CW

See Figure P6-8c and Mathcad file P0643.

Direction of V62 Direction of V8

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Use equation 6.7 to calculate the magnitude of the velocity at rod pin on link 2.

8 6

V2  a 

V2 285.0

3

mm

X

Direction of V6

1 4

Use equation 6.5 to (graphically) determine the magnitude of the velocity at pistons 6, 7, and 8.. The equations to be solved graphically are V7 = V2 + V72

2 5

sec

2  53 deg 90 deg 3.

Direction of V82

Y

V6 = V2 + V62

Direction of V72 7

V8 = V2 + V82 Direction of V7

a. Choose a convenient velocity scale and layout the known vector V2. b. From the tip of V2, draw a construction line with the direction of V72 , magnitude unknown. c. From the tail of V2, draw a construction line with the direction of V7, magnitude unknown. d. Complete the vector triangle by drawing V72 from the tip of V2 to the intersection of the V7 construction line and drawing V7 from the tail of V2 to the intersection of the V72 construction line. e. Repeat for V6 and V8. 0

4.

200 mm/sec

From the velocity triangle we have: 1

Velocity scale factor:

kv  

V7  1.046 in kv

Y

200 mm  sec in

V62

V7 209.2

1.046

V82

V6 83.4

V7

mm sec

V6  150 deg V8 292.6

X

V8

sec

V2

V8  1.463 in kv

V6

mm

V7  270 deg V6  0.417 in kv

0.417

1.463

mm sec

V8  210 deg

V72

DESIGN OF MACHINERY

SOLUTION MANUAL 6-44-1

PROBLEM 6-44 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below. Find V6, V7, and V8 for the position shown for 2 = 15 rad/sec clockwise (CW). Use an analytical method.

Given:

Link lengths: Link 2

a 19 mm b 70 mm

Links 3, 4, and 5

Solution: 1. 2.

Input crank angular velocity

 15 rad sec

Cylinder angular spacing

 120 deg

1

Draw the linkage to scale and label it.

Crank angle:

 37 deg

CW

Local x'y' system

Y

x''

Determine 4 and d' using equation 4.17.

170.599 deg

x'''

y''' 8 6



3

5 X, y'

2

(x'y' system)





d'  a cos  b cos 

1

d' 3.316in

4 y''

Determine the angular velocity of link 4 using equation 6.22a:

 

7

a cos       b cos  4.

c  0 mm

See Figure P6-8c and Mathcad file P0644.

sin  c  a  asin    b  

3.

Offset

3.296

rad sec 37.000°

Determine the velocity of the rod pin on link 2 using equation 6.23a:

 

x'

 

V2   a sin  j  cos  V2 ( 171.517 227.611i )

mm

V2 285.000

sec

sec

arg  V253.000 deg

V2  arg V290 deg

In the global coordinate system, 5.

mm

V2 143.000 deg

Determine the velocity of piston 7 using equation 6.22b:





V7  a  sin  b   sin  V7 209.204

mm

V7 209.204

sec

In the global coordinate system, 6.

sec

arg  V70.000deg

V7  arg V790 deg

V7 90.000 deg

Determine 3 and d'' using equation 4.17.  120 deg

157.000 deg



sin  c  a  asin    b  





d''  a  cos  b cos  7.

mm

173.912 deg d'' 2.052 in

Determine the angular velocity of link 5 using equation 6.22a:

 

a cos       b cos 

3.769

rad sec

(x''y'' system)

DESIGN OF MACHINERY

8.

SOLUTION MANUAL 6-44-2

Determine the velocity of the rod pin on link 2 using equation 6.23a:

 

 

V2   a sin  j  cos  V2 ( 111.358 262.344i)

mm sec

arg  V267.000 deg

mm sec

V2  arg V2150 deg

In the global coordinate system, 9.

V2 285.000

V2 217.000 deg

Determine the velocity of piston 6 using equation 6.22b:





V6  a  sin  b   sin  V6 83.378

mm

V6 83.378

sec

arg  V60.000deg

mm sec

V6  arg V6150 deg

In the global coordinate system,

V6 150.000 deg

10. Determine 5 and d''' using equation 4.17.  120 deg

277.000 deg



sin  c  a  asin    b  



(x'''y''' system)

195.629 deg



d'''   a cos  b cos 

d''' 2.745in

11. Determine the angular velocity of link 5 using equation 6.22a:

 

a cos       b cos 

0.515

rad sec

12. Determine the velocity of the rod pin on link 2 using equation 6.23a:

 

 

V2   a sin  j  cos  V2 ( 282.876 34.733i)

mm sec

V2 285.000

mm sec

V2  arg V230 deg

In the global coordinate system,

arg  V2173.000 deg

V2 143.000 deg

13. Determine the velocity of piston 8 using equation 6.22b:





V8  a  sin  b   sin  V8 292.592

mm sec

In the global coordinate system,

V8 292.592

mm sec

V8  arg V830 deg

arg  V8180.000 deg

V8 210.000 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-45-1

PROBLEM 6-45 Statement:

The 3-cylinder radial compressor in Figure P6-8c has the dimensions and crank angle given below. Find and plot V6, V7, and V8 for one revolution of the crank if 2 = 15 rad/sec clockwise (CW).

Given:

Link lengths:

Solution: 1. 2.

Link 2

a 19 mm

Links 3, 4, and 5

b 70 mm

c  0 mm

Offset

Input crank angular velocity

 15 rad sec

Cylinder angular spacing

 120 deg

1

CW

See Figure P6-8c and Mathcad file P0645.

Draw the linkage to scale and label it. Note that there are three local coordinate systems.

Y

x''

x'''

y''' 8

Determine the range of motion for this slider-crank linkage. This will be the same in each coordinate frame.

6 3

5 X, y'

 0 deg  2 deg   360 deg 3.

2

Determine 4 using equation 4.17.

1 4

sin c  a   asin    (x'y' system) b   4.

y'' 7

Determine the angular velocity of link 3 using equation 6.22a:

   

a cos        b cos  



5.

x'

Determine the velocity of piston 7 using equation 6.22b:





    

V7   a  sin  b   sin  6.

Determine 3 using equation 4.17.





sin  c  a    asin    b  



7.

(x''y'' system)

Determine the angular velocity of link 3 using equation 6.22a:

    

a cos        b cos  



8.

Determine the velocity of piston 6 using equation 6.22b:







    

V6   a  sin  b   sin  9.

Determine 5 and d''' using equation 4.17.





sin 2  c  a    asin    b  



10. Determine the angular velocity of link 5 using equation 6.22a:

    

 a cos 2       b cos 



11. Determine the velocity of piston 8 using equation 6.22b:

(x'''y''' system)

DESIGN OF MACHINERY



SOLUTION MANUAL 6-45-2





    

V8   a  sin 2  b   sin  12. Plot the velocities of pistons 6, 7, and 8.

VELOCITY OF PISTONS 6, 7, AND 8 400

Velocity, mm/sec



sec 200 V6  mm



sec V7  mm

0



sec V8  mm

200

400

0

60

120

180  deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-46-1

PROBLEM 6-46 Statement:

Figure P6-9 shows a linkage in one position. Find the instantaneous velocities of points A, B, and P if link O2A is rotating CW at 40 rad/sec.

Given:

Link lengths: Link 2

a 5.00 in

Link 3

b 4.40 in

Link 4

c 5.00 in

Link 1

d 9.50 in

Rpa  8.90 in

 56 deg

Coupler point:

 50 deg

Crank angle and speed:

 40 rad sec

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-9 and Mathcad file P0646.

1.

Draw the linkage to scale and label it. All calculated angles are in the local xy system.

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 1.9000 2

K3  

P

d c

y

K 2 1.9000 2

2

a b c d

Y B

2

2 a c



K 3 2.4178

3 A



4

A cos  K 1 K 2 cos  K3 2



B 2 sin 

14.000°



3.

4.

B 1.5321

X

O2

C 2.4537

Use equation 4.10b to find values of 4 for the open circuit.

 



2

 2atan2 2 A B  B 4 A C

473.008 deg

 360 deg

113.008 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

  E 2 sin  F K 1  K4 1   cos K 5

2 a b

D cos  K 1 K 4 cos  K 5

5.

O4

1

C K 1  K2 1  cos  K 3 A 0.0607

x 50.000°

2

K 4 2.1591 D 2.3605 E 1.5321 F 0.1539

Use equation 4.13 to find values of 3 for the open circuit.

 

2



 2atan2 2 D E  E 4 D F

370.105 deg

K 5 2.4911

DESIGN OF MACHINERY

SOLUTION MANUAL 6-46-2

 360 deg 6.

10.105 deg

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

    a  sin      c sin   

7.

a  sin   b sin 

41.552

rad sec

26.320

rad sec

Determine the velocity of points A and B for the open circuit using equations 6.19.

 

 

VA  a  sin  j cos  VA ( 153.209 128.558j)

  

in

VA 200.000

sec

 

in sec

arg  VA40.000 deg

VB  c  sin  j  cos 

in in VB 131.598 arg  VB23.008 deg sec sec Determine the velocity of the coupler point P for the open circuit using equations 6.36. VB ( 121.130 51.437j)

8.

 







VPA  Rpa sin  j  cos  VPA ( 338.121 149.797j )

in sec

VP  VA VPA VP (184.912 21.239j)

in sec

VP 186.128

in sec

arg  VP 173.448 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-47-1

PROBLEM 6-47 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and direction of the velocity of point P in Figure 3-37a as a function of 2 for a constant 2 = 1 rad/sec CCW. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths: Link 2 (O2 to A)

a 1.00

Link 3 (A to B)

b 2.06

Link 4 (B to O4)

c 2.33

Link 1 (O2 to O4)

d 2.22

Coupler point:

Rpa  3.06

 31 deg

Crank speed:

 1 rad  sec

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-10 and Mathcad file P0647.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof crank rocker.

B

y 3

 0 deg  2 deg   360 deg 3.

b

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.2200 2

K3  

2

a b c d

A

d c

2



4

c

x

1



A   cos  K1 K 2 cos  K 3



2

O2

K 3 1.5265



a

4

d

2

2 a c



p

K 2 0.9528 2

P

O4



B   2 sin 



C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d b



K5  



2

2

c d a b

2

2 a b





D   cos  K1 K 4 cos  K5



K 4 1.0777

K 5 1.1512



E   2 sin 



F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

  2 2 D   E   E  4 D   F  atan2 

DESIGN OF MACHINERY

7.

SOLUTION MANUAL 6-47-2

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin    b sin    



a  sin   c sin    

   8.

       



  

       

Determine the velocity of point A using equations 6.19.



 

 



VA    a sin  j  cos  9.



VA    VA 

Determine the velocity of the coupler point P using equations 6.36.

       VP  VA VPA 

   

VPA   Rpa   sin   cos    j   10. Plot the magnitude and direction of the velocity at coupler point P.







  

Direction: VP1   arg VP 

VP    VP 

Magnitude:

VP  if  VP1 0  VP1 2  VP1   MAGNITUDE

Velocity, mm/sec

3

2



VP 

1

0

0

45

90

135

180

225

270

315

360

 deg

DIRECTION

Vector Angle, deg

300



VP  200 deg 100

0

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-48-1

PROBLEM 6-48 Statement:

Figure P6-11 shows a linkage that operates at 500 crank rpm. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of point B at 2-deg increments of crank angle. Check your result with program FOURBAR.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2 (O2 to A)

a 2.000 in

Link 3 (A to B)

Link 4 (B to O4)

c 7.187 in

Link 1 (O2 to O4)

 500 rpm

Input crank angular velocity

b 8.375 in

52.360 rad  sec

d 9.625 in 1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution:

y  atan  x    otherwise   

See Figure P6-11 and Mathcad file P0648.

1.

Draw the linkage to scale and label it.

2.

Determine the range of motion for this Grashof crank rocker.

A 3 2

 0 deg  1 deg   360 deg 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 4.8125 2

K3  

1

d

2

2

O4

2

K 3 2.7186

2 a c

    C  K 1  K 2 1   cos K 3





B   2 sin 

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b





2

2

c d a b

2

2 a b



K 4 1.1493



D   cos  K1 K 4 cos  K5



K 5 3.4367



E   2 sin 



F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







4

c

A   cos  K1 K 2 cos  K 3

4.

O2

K 2 1.3392

a b c d

B

2

 

 2

   

  2 2 D   E   E  4 D   F  atan2 

DESIGN OF MACHINERY

7.

SOLUTION MANUAL 6-48-2

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

   8.

       



  

       

Determine the velocity of point B using equations 6.19.



    

  

VB   c  sin   j  cos  





VB1  arg  VB   

VB    VB 

Plot the magnitude and angle of the velocity at point B. MAGNITUDE OF VELOCITY AT B

Velocity, in/sec

150

100



sec VB  in 50

0

0

60

120

180

240

300

360

 deg

VB  if  VB1 0  VB1  VB1   DIRECTION OF VELOCITY AT B 50 45 40 Angle, deg

9.

35



VB 

30

deg 25 20 15 10

0

60

120

180  deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-49-1

PROBLEM 6-49 Statement:

Figure P6-12 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2 (O2 to A)

a 0.785 in

Link 3 (A to B)

b 0.356 in

Link 4 (B to O4)

c 0.950 in

Link 1 (O2 to O4)

d 0.544 in

Coupler point:

Rpa  1.09 in

 0  deg

Crank speed:

 20 rpm atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution:

See Figure P6-12 and Mathcad file P0649. y

1.

Draw the linkage to scale and label it.

2.

Using the geometry defined in Figure 3-1a in the text, determine the input crank angles (relative to the line O2O4) at which links 2 and 3, and 3 and 4 are in toggle.

2

2

a d ( b c)  acos 2 a d 

P 3 B 3

A

2

 

4 2

158.286 deg

2

  2 deg    3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 0.6930

O4

d c

2

K 2 0.5726

K3  

    C  K 1  K 2 1   cos K 3

2

2

a b c d



A   cos  K1 K 2 cos  K 3

4.

x O2

2 a c

2

K 3 1.1317



B   2 sin 

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

2

K 4 1.5281

K 5 0.2440

DESIGN OF MACHINERY

SOLUTION MANUAL 6-49-2

    F  K1  K 4 1  cos K5



D   cos  K1 K 4 cos  K5 6.



E   2 sin 

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

  2 2 D   E   E  4 D   F  atan2  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.

        a  sin        c sin     

  

8.

a  sin     b sin  

Determine the velocity of point A using equations 6.19.



 

 

VA    a sin  j  cos  9.

Determine the velocity of the coupler point P using equations 6.36.

       VP  VA VPA 

   

VPA   Rpa   sin   j cos   10. Plot the magnitude and direction of the coupler point P. Magnitude:







  

Direction: VP   arg VP 

VP    VP 

Velocity, mm/sec

MAGNITUDE



sec VP  in

50

0 200

150

100

50

0

50

100

150

200

 deg

DIRECTION Vector Angle, deg

200



VP 

0

deg

200 200

150

100

50

0  deg

50

100

150

200

DESIGN OF MACHINERY

SOLUTION MANUAL 6-50-1

PROBLEM 6-50 Statement:

Figure P6-13 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2 (O2 to A)

a 0.86 in

Link 3 (A to B)

b 1.85 in

Link 4 (B to O4)

c 0.86 in

Link 1 (O2 to O4)

d 2.22 in

Coupler point:

Rpa  1.33 in

 0  deg

Crank speed:

 80 rpm atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-13 and Mathcad file P0650.

Draw the linkage to scale and label it. y

B

3 4 P

O2

O4 3 2

A

2.

Determine the range of motion for this non-Grashof triple rocker using equations 4.33. 2

arg 1  

2

2

2 a d 2

arg 2  

2

a d b c 2

2

2

a d b c 2 a d

2toggle  acos arg 2

 

b c a d b c a d

The other toggle angle is the negative of this. Thus,

arg 1 1.228 arg 2 0.439

2toggle 116.0deg

x

DESIGN OF MACHINERY

SOLUTION MANUAL 6-50-2

 2toggle  2toggle 1 deg  2toggle 3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.5814





2

d

K3  

c

2

2

2 a c

K 2 2.5814

K 3 2.0181



B   2 sin 



A   cos  K1 K 2 cos  K 3



2

a b c d





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

   

 2

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 1.2000

2 a b







D   cos  K1 K 4 cos  K5



K 5 2.6244



E   2 sin 



F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

  2 2 D   E   E  4 D   F  atan2  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18.



  

8.

       

a  sin     b sin  



  

       

a  sin    c sin  

Determine the velocity of point A using equations 6.19.



 

 

VA    a sin  j  cos  9.

Determine the velocity of the coupler point P using equations 6.36.



     

   

VPA   Rpa   sin   j cos  







VP   VA  VPA 

10. Plot the magnitude and direction of the coupler point P. Magnitude:

(See next page)





VP    VP 

Direction:

VP  arg VP  

DESIGN OF MACHINERY

SOLUTION MANUAL 6-50-3

MAGNITUDE 20

Velocity, mm/sec

15



sec VP  10 in

5

0 150

100

50

0

50

100

150

50

100

150

 deg

DIRECTION 200

Vector Angle, deg

100



VP 

0

deg

100

200 150

100

50

0  deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-51-1

PROBLEM 6-51 Statement:

Figure P6-14 shows a linkage and its coupler curve. Write a computer program or use an equation solver to calculate and plot the magnitude and direction of the velocity of the coupler point P at 2-deg increments of crank angle over the maximum range of motion possible. Check your results with program FOURBAR.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2 (O2 to A)

a 0.72 in

Link 3 (A to B)

b 0.68 in

Link 4 (B to O4)

c 0.85 in

Link 1 (O2 to O4)

d 1.82 in

Coupler point:

Rpa  0.97 in

 54 deg

Crank speed:

 80 rpm atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-14 and Mathcad file P0651.

Draw the linkage to scale and label it. P y

B

3 4

A 2

x O2

2.

O4

Determine the range of motion for this non-Grashof triple rocker using equations 4.33. 2

arg 1  

2

2

2 a d 2

arg 2  

2

a d b c 2

2

2

a d b c 2 a d

 

b c a d b c a d

2toggle  acos arg 2 The other toggle angle is the negative of this. Thus,  2toggle  2toggle 1 deg  2toggle

arg 1 1.451 arg 2 0.568

2toggle 55.4deg

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-51-2

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.5278 2

K3  

c

K 2 2.1412 2

2

a b c d

2

K 3 3.3422

2 a c



d





A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 2.6765

2 a b



K 5 3.6465



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

  2 2 D   E   E  4 D   F  atan2  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

   8.

       



  

       

Determine the velocity of point A using equations 6.19.



 

 

VA    a sin  j  cos  9.

Determine the velocity of the coupler point P using equations 6.36.



     

   

VPA   Rpa   sin   j cos  







VP   VA  VPA 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-51-3

10. Plot the magnitude and direction of the coupler point P.





Magnitude:

VP    VP 

Direction:

VP  arg VP  

MAGNITUDE 20

Velocity, in/sec

15



sec VP  10 in

5

0

60

40

20

0

20

40

60

 deg

DIRECTION 200

Vector Angle, deg

150 100



VP 

50

deg 0 50 100

60

40

20

0  deg Crank Angle, deg

20

40

60

DESIGN OF MACHINERY

SOLUTION MANUAL 6-52-1

PROBLEM 6-52 Statement:

Figure P6-15 shows a power hacksaw that is an offset slider-crank mechanism that has the dimensions given below. Draw an equivalent linkage diagram; then calculate and plot the velocity of the saw blade with respect to the piece being cut over one revolution of the crank, which rotates at 50 rpm.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2

a 75 mm

Link 3

b 170 mm  50 rpm

Input crank angular velocity Solution: 1.

c 45 mm

Offset

See Figure P6-15 and Mathcad file P0652.

Draw the equivalent linkage to a convenient scale and label it. y

B

3

b

A

4 a 2

c

O2

2.

Determine the range of motion for this slider-crank linkage.  0 deg  2 deg   360 deg

3.

Determine 3 using equations 4.16 for the crossed circuit.



sin  c  a    asin   b  



4.

Determine the angular velocity of link 3 using equation 6.22a:

   

a cos        b cos  



5.

Determine the velocity of pin B using equation 6.22b:





    

VB   a   sin  b   sin 

7.

Plot the magnitude of the velocity of B. (See next page.)

2 x

DESIGN OF MACHINERY

SOLUTION MANUAL 6-52-2

VELOCITY OF POINT B 600

Velocity, mm/sec

400

200



sec VB  mm 0

200

400

0

60

120

180  deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-53-1

PROBLEM 6-53 Statement:

Figure P6-16 shows a walking-beam indexing and pick-and-place mechanism that can be analyzed as two fourbar linkages driven by a common crank. Calculate and plot the absolute velocities of points E and P and the relative velocity between points E and P for one revolution of gear 2.

Units:

rpm  2  rad  min

Given:

Link lengths ( walking-beam linkage):

1

Link 2 (O2 to A)

a'  40 mm

Link 3 (A to D)

b'  108 mm

Link 4 (O4 to D)

c'  40 mm

Link 1 (O2 to O4)

d'  108 mm

Link lengths (pick and place linkage): Link 5 (O5 to B)

a 13 mm

Link 7 (B to C)

b 193 mm

Link 6 (C to O6)

c 92 mm

Link 1 (O5 to O6)

d 128 mm

u 164 mm

Crank speed:

 10 rpm

Rocker point E:

 143 deg

Gears 4 & 5 phase angle

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-16 and Mathcad file P0653.

Draw the walking-beam linkage to scale and label it. 30 mm Y

P

58 mm

80°

A

D c'

b'

a' d'

x'

O2

O4

2.

Determine the range of motion for this mechanism.  0 deg  2 deg   360 deg

3.

X

y'

(local x'y' coordinate system)

This part of the mechanism is a special-case Grashof in the parallelogram configuration. As such, the coupler does not rotate, but has curvilinear motion with ever point on it having the same velocity. Therefore, it is only necessary to calculate the X-component of the velocity at point A in order to determine the velocity of the cylinder center, P.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-53-2



 

 

VA   a' sin  j  cos 



  

VAx   Re VA  In the global X-Y coordinate frame,





VP   VAx  4.

Draw the pick and place linkage to scale and label it.

E

C

7 6

b

c

O6 5.



 

and

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1  

d

K 1 9.8462

a 2

K3  

2

2

a b c d



K2  

d c

2

2 a c

  

K 3 5.1137

  

A   cos  K 1 K2 cos  K 3



  

B   2 sin  



  

C   K 1  K 2 1   cos  K3 7.

B

a O5

Establish the relationship between 5 and 2. Note that gear 5 is driven by gear 4 and that their ratio is -1 (i.e., they rotate in opposite directions with the same speed). Also, because the walking beam fourbar is special Grashof, 4 = 2. Thus,    

6.

5

d 1

Use equation 4.10b to find values of 6 for the crossed circuit.

K 2 1.3913

DESIGN OF MACHINERY

SOLUTION MANUAL 6-53-3







 

   

 2

   2  atan2 2 A   B   B  4 A   C     8.

Determine the values of the constants needed for finding 7 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 0.6632

2 a b

  

  

D   cos  K 1 K 4 cos   K 5



  

E   2 sin  



  

F   K1  K 4 1  cos   K 5 9.

Use equation 4.13 to find values of 7 for the crossed circuit.







 

   

 2

   2  atan2 2 D   E   E  4 D   F    10. Determine the angular velocity of links 6 and 7 using equations 6.18.

         



a  sin           b sin    



a  sin     c sin   

  

  

         

10. Determine the velocity of the rocker point E using equations 6.34.



    

  

VE    u  sin  j  cos  11. Transform this into the global XY system.



  







VEx   Re VE 



VEX   VEx 







12. Calculate and plot the velocity of E relative to P.





VEY   VEx 

VEXY   VEX  j  VEY 



  

VEy   Im VE 



VEP   VEXY  VP 

K 5 9.0351

DESIGN OF MACHINERY

SOLUTION MANUAL 6-53-4

RELATIVE VELOCITY 100

Velocity, mm/sec

80



sec VEP   mm

60 40

20

0

0

30

60

90

120

150

180

210

 deg Crank Angle, deg

240

270

300

330

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-54-1

PROBLEM 6-54 Statement:

Figure P6-17 shows a paper roll off-loading mechanism driven by an air cylinder. In the position shown, it has the dimensions given below. The V-links are rigidly attached to O4A. The air cylinder is retracted at a constant velocity of 0.2 m/sec. Draw a kinematic diagram of the mechanism, write the necessary equations, and calculate and plot the angular velocity of the paper roll and the linear velocity of its center as it rotates through 90 deg CCW from the position shown.

Given:

Link lengths and angles:

Paper roll location from O4:

Link 4 (O4 to A)

c 300 mm

u 707.1 mm

Link 1 (O2 to O4)

d 930 mm

 181 deg

Link 4 initial angle

 62.8 deg

adot  200 mm sec

Input cylinder velocity Solution: 1.

with respect to local x axis 1

See Figure P6-17 and Mathcad file P0654.

Draw the mechanism to scale and define a vector loop using the fourbar derivation in Section 6.7 as a model. V-Link

Roll Center

707.107

45.000° x

O4 4

c 46.000°

A

1

O4

d

4

3

2 b

O2

R4

R1 2

A

R3

R2

O2

a f y

2.

Write the vector loop equation, differentiate it, expand the result and separate into real and imaginary parts to solve for f, 2, and 4. R1 R4  R2 R3 j 

d e

j 

c e

(a) j 

  a e

j 

b e

(b)

where a is the distance from the origin to the cylinder piston, a variable; b is the distance from the cylinder piston to A, a constant; and c is the distance from 4 to point A, a constant. Angle 1 is zero, 3 = 2, and 4 is the variable angle that the rocker arm makes with the x axis. Solving the position equations: Let

f a b

then, making this substitution and substituting the Euler equivalents,

 

    

 

d c cos  j sin    fcos  j  sin 

(c)

Separating into real and imaginary components and solving for 2 and f,







 

   atan2 d c cos   c sin 

(d)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-54-2



f   

 sin    c sin 

(e)

Differentiate equation b.  j   d  j   f   e  j f e dt 

j 

j c e

(f)

Substituting the Euler equivalents,

d  c sin  j cos    f  cos  j  sin  f sin  j  cos  dt 

 

 

 

 

 

 

(g)

Separating into real and imaginary components and solving for 4 . Note that df/dt = adot.



  

3.

adot

(h)

  

c sin   

Plot 4 over a range of 4 of   1 deg  90 deg

ANGULAR VELOCITY, LINK 4 1.2

Angular Velocity, rad/sec

1 0.8



sec   0.6 rad 0.4 0.2 0 60

80

100

120

140

160

 deg Link 4 Angle, deg

4.

Determine the velocity of the center of the paper roll using equation 6.35. The direction is in the local xy coordinate system.



  











VU   arg  VU  

VU    u  sin  j  cos  VU    VU  5.

Plot the magnitude and direction of the velocity of the paper roll center. (See next page.)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-54-3

MAGNITUDE OF PAPER CENTER VELOCITY 800

Velocity, mm/sec

600



sec VU   400 mm

200

0 60

80

100

120

140

160

 deg Rocker Arm Position, deg

DIRECTION OF PAPER CENTER VELOCITY 80

Vector Angle, deg

60

40



VU 

20

deg 0

20

40 60

80

100

120  deg

Rocker Arm Position, deg

140

160

DESIGN OF MACHINERY

SOLUTION MANUAL 6-55a-1

PROBLEM 6-55a Statement:

Figure P6-18 shows a powder compaction mechanism. Calculate its mechanical advantage for the position shown.

Given:

Link lengths: Link 2 (A to B)

a 105 mm

Link 3 (B to D)

b 172 mm

c 27 mm

Offset

Distance to force application:

Solution: 1.

Link 2 (AC)

rin  301 mm

Position of link 2:

 44 deg

Let

1

  1 rad  sec

See Figure P6-18 and Mathcad file P0655a.

Draw the linkage to scale and label it. X

2.

Determine 3 using equation 4.17.

4 D



sin  c  a  asin    b  

C

164.509 deg 3.

3

Determine the angular velocity of link 3 using equation 6.22a: 44.000°

 

a cos       b cos  4.

B 2

Determine the velocity of pin D using equation 6.22b:





VD  a  sin  b  sin  5.

Y

Positive upward

Calculate the velocity of point C using equation 6.23a:

 

 

VC  rin sin  j  cos  VC   VC 6.

Calculate the mechanical advantage using equation 6.13. mA  

VC VD

mA 3.206

A

DESIGN OF MACHINERY

SOLUTION MANUAL 6-55b-1

PROBLEM 6-55b Statement:

Figure P6-18 shows a powder compaction mechanism. Calculate and plot its mechanical advantage as a function of the angle of link AC as it rotates from 15 to 60 deg.

Given:

Link lengths: Link 2 (A to B)

a 105 mm

Link 3 (B to D)

b 172 mm

Offset

c 27 mm

Distance to force application: rin  301 mm

Link 2 (AC)

Initial and final positions of link 2: Solution: 1.

 15 deg

 60 deg

See Figure P6-18 and Mathcad file P0655b.

Draw the linkage to scale and label it. X

4 D C

3

 2

B 2

Y

2.

A

Determine the range of motion for this slider-crank linkage.   1 deg  

3.

Determine 3 using equation 4.17.



sin  c  a    asin    b  



4.

Determine the angular velocity of link 3 using equation 6.22a:

   

a cos        b cos  



5.

Determine the velocity of pin D using equation 6.22b:





    

VD   a  sin  b    sin   6.

Calculate the velocity of point C using equation 6.23a:

1

Let   1 rad  sec

Positive upward

DESIGN OF MACHINERY

SOLUTION MANUAL 6-55b-2



 

 

VC   rin sin  j  cos 





VC    VC 

Calculate the mechanical advantage using equation 6.13.



mA   

 VD  VC 

MECHANICAL ADVANTAGE 12 11 10 9 8 Mechanical Advantage

7.

7



m A  6 5 4 3 2 1 0 15

20

25

30

35

40  deg

Crank Angle, deg

45

50

55

60

DESIGN OF MACHINERY

SOLUTION MANUAL 6-56-1

PROBLEM 6-56 Statement:

Figure P6-19 shows a walking beam mechanism. Calculate and plot the velocity Vout for one revolution of the input crank 2 rotating at 100 rpm.

Units:

rpm  2  rad  min

Given:

Link lengths:

1

Link 2 (O2 to A)

a 1.00 in

Link 3 (A to B)

b 2.06 in

Link 4 (B to O4)

c 2.33 in

Link 1 (O2 to O4)

d 2.22 in

Coupler point:

Rpa  3.06 in

 31 deg

Crank speed:

 100 rpm atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure P6-19 and Mathcad file P0656.

Draw the linkage to scale and label it. Y

x

y O4 4

1 26.00°

X

O2

P

2 A 3 B

2.

Determine the range of motion for this Grashof crank rocker.  0 deg  2 deg   360 deg

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.2200 2

K3  

c

K 2 0.9528 2

2

a b c d



d

2 a c



2

K 3 1.5265



A   cos  K1 K 2 cos  K 3

DESIGN OF MACHINERY



SOLUTION MANUAL 6-56-2



B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

   

 2

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 1.0777

2 a b



K 5 1.1512



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

  2 2 D   E   E  4 D   F  atan2  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

  

8.

       



  

       

Determine the velocity of point A using equations 6.19.



 

 

VA    a sin  j  cos  9.

Determine the velocity of the coupler point P using equations 6.36.



     

   

VPA   Rpa   sin   j cos  







VP   VA  VPA 

10. Plot the X-component (global coordinate system) of the velocity of the coupler point P. Coordinate rotation angle:



  

 26 deg

  

Vout   Re VP   cos  Im VP   sin 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-56-3

Vout 15

Velocity, in/sec

10

5



sec Vout  in 0

5

10

0

45

90

135

180  deg

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-57a-1

PROBLEM 6-57a Statement:

Figure P6-20 shows a crimping tool. For the dimensions given below, calculate its mechanical advantage for the position shown.

Given:

Link lengths: Link 2 (AB)

a 0.80 in

Link 3 (BC)

b 1.23 in

Link 4 (CD)

c 1.55 in

Link 1 (AD)

d 2.40 in

Link 4 (CD)

rout  1.00 in

Distance to force application: rin  4.26 in

Link 2 (AB)

 49 deg

Initial position of link 2: Solution: 1.

See Figure P6-20 and Mathcad file P0657a.

Draw the mechanism to scale and label it. A

2

B

2

3

F in

C F out

1 4

49.000°

D

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 3.0000 2

K3  

d c

K 2 1.5484 2

2

a b c d

2

K 3 2.9394

2 a c





A cos  K 1 K 2 cos  K3



B 2 sin 



C K 1  K2 1  cos  K 3 A 0.4204 3.

B 1.5094

C 4.2675

Use equation 4.10b to find value of 4 for the open circuit.

 

2

 2atan2 2  A B  B 4 A C 4.



236.482 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

2

K 4 1.9512

K 5 2.8000

DESIGN OF MACHINERY

SOLUTION MANUAL 6-57a-2





D cos  K 1 K 4 cos  K 5

D 3.8638



E 2 sin 

E 1.5094



F K 1  K4 1   cos  K 5 5.

F 0.8241

Use equation 4.13 to find values of 3 for the open circuit.

 

2



 2atan2 2  D E  E 4 D F 6.

325.961 deg

Referring to Figure 6-10, calculate the values of the angles and .  

374.961 deg

If > 360 deg, subtract 360 deg from it.  if  360 deg  360 deg  

14.961 deg

 

89.479 deg

If > 90 deg, subtract it from 180 deg.  if  90 deg  180 deg   7.

89.479 deg

Using equation 6.13e, calculate the mechanical advantage of the linkage in the position shown. mA  

c sin  rin  a sin   rout

mA 31.969

DESIGN OF MACHINERY

SOLUTION MANUAL 6-57b-1

PROBLEM 6-57b Statement:

Figure P6-20 shows a crimping tool. For the dimensions given below, calculate and plot its mechanical advantage as a function of the angle of link AB as it rotates from 60 to 45 deg.

Given:

Link lengths: Link 2 (AB)

a 0.80 in

Link 3 (BC)

b 1.23 in

Link 4 (CD)

c 1.55 in

Link 1 (AD)

d 2.40 in

Link 4 (CD)

rout  1.00 in

Distance to force application: rin  4.26 in

Link 2 (AB)

 60 deg

Range of positions of link 2: Solution: 1.

 45 deg

See Figure P6-20 and Mathcad file P0657b.

Draw the mechanism to scale and label it.

A

2

B

2

3

F in

C F out

1 4

2

D

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4).   1 deg  

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 3.0000 2

K3  

c

K 2 1.5484 2

2

a b c d



d

2 a c



2

K 3 2.9394



A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find value of 4 for the open circuit.







 

 2

   

   2  atan2 2 A   B   B  4 A  C    5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12.

DESIGN OF MACHINERY

K4  

SOLUTION MANUAL 6-57b-2 2

d

K5  

b



2

2

c d a b

2

K 4 1.9512

2 a b



K 5 2.8000



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

   2  atan2 2 D   E   E  4 D  F    7.

Referring to Figure 6-10, calculate the values of the angles and .







  

  

   

Using equation 6.13e, calculate and plot the mechanical advantage of the linkage over the given range.



mA   

  rin  a sin  rout c sin 

MECHANICAL ADVANTAGE vs HANDLE ANGLE 60

50 Mechanical Advantage

8.

40



m A 

30

20

10 45

48

51

54  deg

Handle Angle, deg

57

60

DESIGN OF MACHINERY

SOLUTION MANUAL 6-58-1

PROBLEM 6-58 Statement:

Figure P6-21 shows a locking pliers. Calculate its mechanical advantage for the position shown. Scale any dimensions needed from the diagram.

Solution:

See Figure P6-21 and Mathcad file P0658.

1.

Draw the linkage to scale in the position given and find the instant centers.

F

1,4

1,2

P 1

O4

O2 2 3

B

A F

2.

2,3

4

P

3,4 and 1,3

Note that the linkage is in a toggle position (links 2 and 3 are in line) and the angle between links 2 and 3 is 0 deg. From the discussion below equation 6.13e in the text, we see that the mechanical advantage for this linkage in this position is theoretically infinite.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-59a-1

PROBLEM 6-59a Statement:

Given:

Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamping it at D. The linkage will toggle when link 2 reaches 90 deg. For the dimensions given below, calculate its mechanical advantage for the position shown. Link lengths: Link 2 (O2A) a 70 mm c 34 mm

Link 4 (O4B)

Link 3 (AB)

b 35 mm

Link 1 (O2O4)

d 48 mm

Link 4 (O4D)

rout  82 mm

Distance to force application: rin  138 mm

Link 2 (O2C)

 104 deg

Initial position of link 2: Solution: 1.

Global XY system

See Figure P6-22 and Mathcad file P0659a.

Draw the mechanism to scale and label it. To establish the position of O4 with respect to O2 (in the global coordinate frame), draw the linkage in the toggle position with 2 = 90 deg. The fixed pivot O4 is then 48 mm from O2 and 34 mm from B' (see layout). Y C' C

Linkage in toggle position

A'

A 3 2

x

B

D

4

D'

B' 135.0 69°

O4

X O2 y

2.

Calculate the value of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:  

3.

 135.069 deg

31.069 deg

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K 1 0.6857

a 2

K3  

2

2

a b c d 2 a c

K2  

d c

2

K 3 1.4989

K 2 1.4118

DESIGN OF MACHINERY

SOLUTION MANUAL 6-59a-2





A cos  K 1 K 2 cos  K3



B 2 sin 



C K 1  K2 1  cos  K 3 A 0.4605 4.

B 1.0321

C 0.1189

Use equation 4.10b to find value of 4 for the open circuit.

 

2

 2atan2 2  A B  B 4 A C 5.



129.480 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

2 a b

K 5 1.4843



D cos  K 1 K 4 cos  K 5

D 0.1388



E 2 sin 

E 1.0321



F K 1  K4 1   cos  K 5 6.

F 0.4804

Use equation 4.13 to find values of 3 for the open circuit.

 

2



 2atan2 2  D E  E 4 D F 7.

K 4 1.3714

196.400 deg

Referring to Figure 6-10, calculate the values of the angles and .  

165.331 deg

If > 90 deg, subtract it from 180 deg.  if  90 deg  180 deg  

14.669 deg

 

66.920 deg

If > 90 deg, subtract it from 180 deg.  if  90 deg  180 deg   8.

66.920 deg

Using equation 6.13e, calculate the mechanical advantage of the linkage in the position shown. mA  

c sin  rin  a sin   rout

mA 2.970

DESIGN OF MACHINERY

SOLUTION MANUAL 6-59b-1

PROBLEM 6-59b Statement:

Figure P6-22 shows a fourbar toggle clamp used to hold a workpiece in place by clamping it at D. The linkage will toggle when link 2 reaches 90 deg. For the dimensions given below, calculate and plot its mechanical advantage as a function of the angle of link AB as link 2 rotates from 120 to 90 deg (in the global coordinate system).

Given:

Link lengths: Link 2 (O2A)

a 70 mm

Link 3 (AB)

b 35 mm

Link 4 (O4B)

c 34 mm

Link 1 (O2O4)

d 48 mm

Link 4 (O4D)

rout  82 mm

Distance to force application: rin  138 mm

Link 2 (O2C)

 120 deg

Range of positions of link 2: Solution: 1.

 90.1 deg Global XY system

See Figure P6-22 and Mathcad file P0659b.

Draw the mechanism to scale and label it. To establish the position of O4 with respect to O2 (in the global coordinate frame), draw the linkage in the toggle position with 2 = 90 deg. The fixed pivot O4 is then 48 mm from O2 and 34 mm from B' (see layout). Linkage in initial position Y C'

C Linkage in final position

A' A

3

4

B

2

x

D

B' 135.069 °

O4

D'

X O2 y

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:

 135.069 deg

  1 deg   3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d a

K 1 0.6857

K2  

d c

K 2 1.4118

DESIGN OF MACHINERY 2

K3  

SOLUTION MANUAL 6-59b-2 2

2

a b c d

2

K 3 1.4989

2 a c







A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find value of 4 for the open circuit.







 

 2

   

   2  atan2 2 A   B   B  4 A  C    5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 1.3714

2 a b



K 5 1.4843



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

   2  atan2 2 D   E   E  4 D  F    7.

Referring to Figure 6-10, calculate the values of the angles and .







  

  

    8.

Using equation 6.13e, calculate and plot the mechanical advantage of the linkage over the given range.



mA   

  rin  a sin  rout c sin 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-59b-3

50

40

30



m A 

20

10

0 90

95

100

105  deg

110

115

120

DESIGN OF MACHINERY

SOLUTION MANUAL 6-60-1

PROBLEM 6-60 Statement:

Figure P6-23 shows a surface grinder. The workpiece is oscillated under the spinning grinding wheel by the slider-crank linkage that has the dimensions given below. Calculate and plot the velocity of the grinding wheel contact point relative to the workpiece over one revolution of the crank.

Units:

rpm  2  rad  min

Given:

Link lengths:

Solution: 1.

1

Link 2 (O2 to A)

a 22 mm

Link 3 (A to B)

b 157 mm

Offset

Grinding wheel diameter

d 90 mm

Input crank angular velocity

 120 rpm

CCW

Grinding wheel angular velocity

 3450 rpm

CCW

c 40 mm

See Figure P6-23 and Mathcad file P0660.

Draw the linkage to scale and label it.

5

4 2 3

A

B

2

c

O2

2.

Determine the range of motion for this slider-crank linkage.  0 deg  2 deg   360 deg

3.

Determine 3 using equation 4.17.



sin  c  a    asin    b  



4.

Determine the angular velocity of link 3 using equation 6.22a:

   

a cos        b cos  



5.

Determine the velocity of pin B using equation 6.22b:





    

VB   a   sin  b   sin  6.

Calculate the velocity of the grinding wheel contact point using equation 6.7:

Positive to the right

DESIGN OF MACHINERY

SOLUTION MANUAL 6-60-2

d VG     2

m

Directed to the right

sec

The velocity of the grinding wheel contact point relative to the workpiece, which has velocity VB , is





VGB   VG VB 

RELATIVE VELOCITY AT CONTACT POINT 16.6

16.5

16.4

Velocity, m/sec

7.

VG 16.258

16.3



sec VGB  m 16.2

16.1

16

15.9

0

60

120

180  deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-61-1

PROBLEM 6-61 Statement:

Figure P6-24 shows an inverted slider-crank mechanism. Given the dimensions below, find 2, 3, 4, VA4, Vtrans, and Vslip for the position shown with VA2 = 20 in/sec in the direction shown.

Given:

Link lengths: a 2.5 in

Link 2 (O2A)

Link 4 (O4A)

c 4.1 in

Link 1 (O2O4)

d 3.9 in

Measured angles:

trans  26.5 deg

 75.5 deg

Velocity of point A on links 2 and 3: Solution: 1.

slip  116.5 deg

VA2  20 in  sec

1

VA3  VA2

See Figure P6-24 and Mathcad file P0661.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Y

Axis of slip A

O2

X

11.500° 2 3

Direction of VA4

1 Axis of transmission 4 Direction of VA2 O4

2.

Use equation 6.7 to calculate the angular velocity of link 2.  

3.

VA2 a

8.000

rad

CW

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on links 2 and 3.. The equation to be solved graphically is VA3 = Vtrans + VA3slip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of VA3slip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing VA3slip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the VA3slip construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-61-2

Y

0

10 in/sec

1.686

X

Axis of slip

VA4

V trans

V A4slip 1.509

V A3

Axis of transmission VA3slip

2.064

4.

From the velocity triangle we have: 1

Velocity scale factor:

5.

kv  

10 in  sec in in

VA4  1.686 in  kv

VA4 16.9

Vslip  2.064 in  kv

Vslip 20.6

Vtrans  1.509 in kv

Vtrans 15.1

sec in sec in sec

Determine the angular velocity of link 4 using equation 6.7.  

VA4 c

Because link 3 slides within link 4, 3 = 4.

4.1

rad sec

CW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-62-1

PROBLEM 6-62 Statement:

Figure P6-25 shows a drag-link mechanism with dimensions. Write the necessary equations and solve them to calculate and plot the angular velocity of link 4 for an input of 2 = 1 rad/sec. Comment on the uses for this mechanism.

Given:

Link lengths: Link 2 (L2)

a 1.38 in

Link 3 (L3)

b 1.22 in

Link 4 (L4)

c 1.62 in

Link 1 (L1)

d 0.68 in

1

Input crank angular velocity

 1 rad  sec

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0

CW

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure P6-25 and Mathcad file P0662.

Draw the linkage to scale and label it. y

A

3 B

2 2 4 x O2

2.

O4

Determine the range of motion for this Grashof double crank.  0 deg  2 deg   360 deg

3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 0.4928 2

K3  

c

K 2 0.4198 2

2

a b c d



d

2 a c



2

K 3 0.7834



A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3

DESIGN OF MACHINERY

4.

SOLUTION MANUAL 6-62-2

Use equation 4.10b to find values of 4 for the open circuit.







 

   

 2

  2 2 A   B   B  4 A   C   atan2  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b





2

2

c d a b

2

K 4 0.5574

2 a b

K 5 0.3655



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

   

 2

  2 2 D   E   E  4 D   F  atan2  7.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin     b sin  



a  sin    c sin  

  

       

Plot the angular velocity of link 4.

ANGULAR VELOCITY, LINK 4 0.5

Angular Velocity, rad/sec

9.

       



  

1



sec    1.5 rad

2

2.5

0

60

120

180  deg Crank Angle, deg

240

300

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-63-1

PROBLEM 6-63 Statement:

Figure P6-25 shows a drag-link mechanism with dimensions. Write the necessary equations and solve them to calculate and plot the centrodes of instant center I2,4 .

Given:

Measured link lengths: Link 2 (L2)

L2  1.38  in

Link 3 (L3)

L3  1.22  in

Link 4 (L4)

L4  1.62  in

Link 1 (L1)

L1  0.68  in

1

Input crank angular velocity

 1 rad  sec

Two argument inverse tangent

atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure P6-25 and Mathcad file P0663.

Draw the linkage to scale and label it. Instant center I2,4 is at the intersection of line AB with line O2O4. To get the first centrode, ground link 2 and let link 3 be the input. Then we have a L3

b L4

c L1 A

d L2 3 B

2 y 2 4 O2 4

x

2.

O4

Determine the range of motion for this Grashof double rocker. From Figure 3-1a on page 80, one toggle angle is

 a d ( b c)  acos 2 a d  2

2

2

 

124.294 deg

The other toggle angle is the negative of this. The range of motion is   1 deg    3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d a

K 1 1.1311

K2  

d c

K 2 2.0294

DESIGN OF MACHINERY

SOLUTION MANUAL 6-63-2

2

K3  

2

2

a b c d

2

K 3 0.7418

2 a c







A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find values of 4 for the open circuit.







 

   

 2

  2 2 A   B   B  4 A   C   atan2  5.

Calculate the coordinates of the intersection of line BC with line AD. This will be the instant center I2,4 .



Line BC:

y x tan 

Line AD:

y 0  ( x d)  tan 



Eliminating y and solving for the x- and y-coordinates of the intersection,



x 24   

6.

   tan    tan d tan  



 

y24   x 24   tan 

Plot the fixed centrode. FIXED CENTRODE 10

y-Coordinate, in

5



y24 

0

in 5

10

10

5

0



x24  in

x-Coordinate, in

7.

Invert the linkage, making C and D the fixed pivots. Then, a L1

8.

b L2

c L3

Determine the range of motion for this Grashof crank rocker.  0 deg  0.5 deg  360 deg

d L4

5

10

DESIGN OF MACHINERY

SOLUTION MANUAL 6-63-3

4 A

x

3 B

y

2

2

4 O2

9.

O4

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 2.3824 2

K3  

c

K 2 1.3279 2

2

a b c d



d

2

K 3 1.6097

2 a c





A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 10. Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  11. Calculate the coordinates of the intersection of line BC with line AD. This will be the instant center I2,4 .



Line AD:

y x tan 

Line BC:

y 0  ( x d)  tan 



Eliminating y and solving for the x- and y-coordinates of the intersection,



x 24   

6.

   tan    tan d tan  

Plot the moving centrode. (See next page.)



 

y24   x 24   tan 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-63-4

MOVING CENTRODE 10

y-Coordinate, in

5



y24 

0

in 5

10

10

5

0



x24  in

x-Coordinate, in

5

10

DESIGN OF MACHINERY

SOLUTION MANUAL 6-64-1

PROBLEM 6-64 Statement:

Figure P6-26 shows a mechanism with dimensions. Use a graphical method to calculate the velocities of points A, B, and C and the velocity of slip for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d 1.22 in

Angle O2O4 makes with X axis

 56.5 deg

Link 2 (O2A)

a 1.35 in

Angle 2 makes with X axis

 14 deg

Link 4 (O4B)

e 1.36 in

Link 5 (BC)

f 2.69 in

Link 6 (O6C)

g 1.80 in

Angle O6C makes with X axis

 88 deg

Angular velocity of link 2 Solution: 1.

 20 rad sec

1

CW

See Figure P6-26 and Mathcad file P0664.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of slip Y

Axis of transmission O4

4

0.939

132.661° A 3 2 X O2

Direction of VA3

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA3   a 

3.

VA3 27.000

in sec

VA3  90 deg

VA3 76.0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-64-2

Y

0

10 in/sec

1.295 X Vtrans

V A3 2.369

4.

Vslip

From the velocity triangle we have: 1

Velocity scale factor:

5.

in

Vtrans  1.295 in kv

Vtrans 12.950

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4 12.95

in sec

Determine the angular velocity of link 4 using equation 6.7.

 

VA4 c

c 0.939 in and

13.791

rad

 132.661 deg

CW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e 

VA4  90 deg 8.

in

Vslip 23.690

From the linkage layout above:

7.

10 in  sec

Vslip  2.369 in  kv

VA4  Vtrans 6.

kv  

VB 18.756

in sec

VA4 42.661 deg

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. (See next page.)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-64-3

Direction of VCB

Direction of VB

B

Y O4

4

C A 3

Direction of VC 2

X O2

O6

9.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VCB , magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line. VB

0

10 in/sec

Y

VCB X VC 2.088

10. From the velocity triangle we have: 1

Velocity scale factor: VC  2.088 in  kv

kv  

10 in  sec

VC 20.9

in in sec

VC  90 deg VC 2.0 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-65-1

PROBLEM 6-65 Statement:

Figure P6-27 shows a cam and follower. Distances are given below. Find the velocities of points A and B, the velocity of transmission, velocity of slip, and 3 if 2 = 50 rad/sec (CW). Use a graphical method.

Given:

 50 rad sec

1

Distance from O2 to A:

a 1.890 in

Distance from O3 to B:

b 1.645 in

Assumptions: Roll-slide contact Solution: 1.

See Figure P6-27 and Mathcad file P0665.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest. Axis of slip Direction of VB

1. 890

Axis of transmission A

B

3

2

O2

O3

1. 645

Direction of VA

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

VA 94.500

in sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A. The equation to be solved graphically is VA = Vtrans + VAslip a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA and drawing Vtrans from the tail of VA to the intersection of the Vslip construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-65-2

0

50 in/sec

VB 2.304

VBslip

Y 1.317 X

3.256

Vtrans

1.890 VA

4.

VA2slip

From the velocity triangle we have: 1

Velocity scale factor:

5.

kv  

50 in  sec in in

VA  1.890 in kv

VA 94.5

VB  2.304 in kv

VB 115.2

Vslip  3.256 in  kv

Vslip 162.8

Vtrans  1.317 in kv

Vtrans 65.8

sec in sec in sec in sec

Determine the angular velocity of link 3 using equation 6.7.  

VB b

70.0

rad sec

CW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-66-1

PROBLEM 6-66 Statement:

Figure P6-28 shows a quick-return mechanism with dimensions. Use a graphical method to calculate the velocities of points A, B, and C and the velocity of slip for the position shown.

Given:

Link lengths and angles: Link 1 (O2O4)

d 1.69 in

Angle O2O4 makes with X axis

 15.5 deg

Link 2 (L2)

a 1.00 in

Angle link 2 makes with X axis

 99 deg

Link 4 (L4)

e 4.76 in

Link 5 (L5)

f 4.55 in

Offset (O2C)

g 2.86 in

Angular velocity of link 2 Solution: 1.

 10 rad sec

1

CCW

See Figure P6-28 and Mathcad file P0666.

Draw the linkage to scale and indicate the axes of slip and transmission as well as the directions of velocities of interest.

B

Axis of transmission

Direction of VA3

4

Y Axis of slip A 3 2.068

2 44.228° O2

X O4

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A on links 2 and 3. VA2   a 

3.

VA2 10.000

in sec

VA2  90 deg

VA2 189.0deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity components at point A on link 3. The equation to be solved graphically is VA3 = Vtrans + Vslip

DESIGN OF MACHINERY

SOLUTION MANUAL 6-66-2

a. Choose a convenient velocity scale and layout the known vector VA3. b. From the tip of VA3, draw a construction line with the direction of Vslip, magnitude unknown. c. From the tail of VA3, draw a construction line with the direction of Vtrans, magnitude unknown. d. Complete the vector triangle by drawing Vslip from the tip of Vtrans to the tip of VA3 and drawing Vtrans from the tail of VA3 to the intersection of the Vslip construction line. Y 0

5 in/sec

X

V A3 V trans

1.154

4.

kv  

in in

Vtrans  1.154 in kv

Vtrans 5.770

sec in sec

The true velocity of point A on link 4 is Vtrans, VA4 5.77

in sec

Determine the angular velocity of link 4 using equation 6.7.

 

VA4 c

c 2.068 in and

2.790

rad

 44.228 deg

CCW

sec

Determine the magnitude and sense of the vector VB using equation 6.7. VB  e 

VB  90 deg 8.

1

Vslip 8.170

From the linkage layout above:

7.

5 in sec

Vslip  1.634 in  kv

VA4  Vtrans 6.

1.634

From the velocity triangle we have: Velocity scale factor:

5.

V slip

VB 13.281

in sec

VB 134.228 deg

Draw links 1, 4, 5, and 6 to a convenient scale. Indicate the directions of the velocity vectors of interest. (See next page.)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-66-3

Direction of VCB Direction of VB B 5 5.805°

C 6

4 Direction of VC

Y

A 3

2 44.228° O2

X O4

9.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VCB , magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

10. From the velocity triangle we have:

Velocity scale factor: VC  1.659 in  kv

kv  

5 in sec

VC 8.30

VB

1

0

5 in/sec

in in sec

Y

VC  180 deg V CB X

VC 1.659

DESIGN OF MACHINERY

SOLUTION MANUAL 6-67-1

PROBLEM 6-67 Statement:

Given:

Figure P6-29 shows a drum pedal mechanism . For the dimensions given below, find and plot the mechanical advantage and the velocity ratio of the linkage over its range of motion. If the input velocity Vin is a constant and Fin is constant, find the output velocity, output force, and power in over the range of motion. Link lengths: Link 2 (O2A)

a 100 mm

Link 3 (AB)

b 28 mm

Link 4 (O4B)

c 64 mm

Link 1 (O2O4)

d 56 mm

Link 3 (AP)

rout  124 mm

Distance to force application: rin  48 mm

Link 2

Solution: 1.

1

Input force and velocity:

Fin  50 N

Vin  3  m sec

Range of positions of link 2:

 162 deg

 171 deg

See Figure P6-29 and Mathcad file P0667.

Draw the mechanism to scale and label it. P

3

B 3

Fin Vin

4

A  2

2

x

1

O4

O2 y

2.

Calculate the range of 2 in the local coordinate system (required to calculate 3 and 4). Rotation angle of local xy system to global XY system:



 180 deg



  1 deg    3.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 0.5600 2

K3  

c

K 2 0.8750 2

2

a b c d



d

2 a c



2

K 3 1.2850



A   cos  K1 K 2 cos  K 3

DESIGN OF MACHINERY

SOLUTION MANUAL 6-67-2





B   2 sin 





C   K 1  K 2 1   cos  K 3 4.

Use equation 4.10b to find value of 4 for the open circuit.







 

 2

   

   2  atan2 2 A   B   B  4 A  C    5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 2.0000

2 a b



K 5 1.7543



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

   2  atan2 2 D   E   E  4 D  F    Using equations 6.13d and 6.18a, where out is 3, calculate and plot the mechanical advantage of the linkage over the given range.



mA   

     rin  a sin   rout

b sin  

MECHANICAL ADVANTAGE

Mechanical Advantage

7.

0.13



m A  0.12

0.11

0.1 162

164

166

168  deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY

8.

SOLUTION MANUAL 6-67-3

Calculate and plot the velocity ratio using equation 6.13d,



mV   

1



mA 

VELOCITY RATIO 10

Velocity Ratio

8 6



m V 

4 2 0 162

164

166

168

170

172

 deg Pedal Angle, deg

Calculate and plot the output velocity using equation 6.13a.





Vout   Vin mV 

OUTPUT VELOCITY 30

Velocity, m/sec

9.

20



sec Vout  m 10

0 162

164

166

168  deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY

SOLUTION MANUAL 6-67-4

10. Calculate and plot the output force using equation 6.13a.





Fout   Fin mA 

OUTPUT FORCE 8

Force, N

6



F out 

4

N 2

0 162

164

166

168  deg

Pedal Angle, deg

170

172

DESIGN OF MACHINERY

SOLUTION MANUAL 6-68-1

PROBLEM 6-68 Statement:

Figure 3-33 shows a sixbar slider crank linkage. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-33 and Mathcad file P0668.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 15

2

Draw the linkage to scale and identify those ICs that can be found by inspection (8).

Y 2,3 3

3,4; 3,5; 4,5 1,6 at infinity

2 4

5

1,2 O2

X

1,4

6 O4

2.

1,5

5,6

Use Kennedy's Rule and a linear graph to find the remaining 7 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,6; and I4,6

1

I1,5: I1,6 -I5,6 and I1,4 -I4,5

6

2

5

3

I2,5: I1,2 -I1,5 and I2,3 -I3,5 I1,3: I1,2 -I2,3 and I1,5 -I3,5 I3,6: I1,6 -I1,3 and I3,5 -I5,6 I2,4: I2,3 -I3,4 and I2,5 -I4,5 I2,6: I1,2 -I1,6 and I2,5 -I5,6 I4,6: I1,4 -I1,6 and I4,5 -I5,6

4

2,5 2,6

Y

2,3 4,6 3,6

3 3,4; 3,5; 4,5; 2,4

2 4 1,2 O2

1,6 at infinity

5 X

1,4

6 O4 1,3

5,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-69-1

PROBLEM 6-69 Statement:

Calculate and plot the centrodes of instant center I24 of the linkage in Figure 3-33 so that a pair of noncircular gears can be made to replace the driver dyad 23.

Given:

Link lengths: Input crank (L2)

L2  2.170

Fourbar coupler (L3)

L3  2.067

Output crank (L4)

L4  2.310

Fourbar ground link (L1)

L1  1.000

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent:

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure 3-33 and Mathcad file P0669.

Invert the linkage, grounding link 2 such that the input link is 3, the coupler is 4, and the output link is 1. a L3

b L4

c L1

d L2

2.

Define the input crank motion for this inversion:  47 deg  47.5 deg  102.5 deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1  

d

K2  

a

K 1 1.0498



2

d

K3  

c

K 2 2.1700



2

2

a b c d

2

2 a c

K 3 1.1237



A   cos  K1 K 2 cos  K 3





B   2 sin 











C   K 1  K 2 1   cos  K 3

 

 2

   

  2 2 A   B   B  4 A   C   atan2 

   



 

   if  2    2    5.

Calculate the coordinates of the intersection of links 1 and 3 in the xy coordinate system.

       

d tan   x 242    tan  tan 



6.

 

Invert the linkage, grounding link 4 such that the input link is 1, the coupler is 2, and the output link is 3. a L1

8.



y242   x 242  tan 

b L2

c L3

d L4

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit). K1  

d

K2  

a

K 1 2.3100



d c

K 2 1.1176





A   cos  K1 K 2 cos  K 3

2

K3  

2

2

a b c d

K 3 1.4271

2 a c

2

DESIGN OF MACHINERY

SOLUTION MANUAL 6-69-2













C   K 1  K 2 1   cos  K 3

B   2 sin 



 

   

 2

  2 2 A   B   B  4 A   C   atan2 

   



 

   if  2    2    5.

Calculate the coordinates of the intersection of links 1 and 3 in the xy coordinate system.

       

d tan   x 244    tan  tan 





 

y244   x 244  tan 

LINK 2 GROUNDED 5 4 3 2 1



y242  0 1 2 3 4 5

4

3

2

1

0



1

x242 

7.

Define the input crank motion for this inversion:  41 deg  42 deg   241 deg LINK 4 GROUNDED 10 8 6 4 2

0

y244 

2 4 6 8 10

10

8

6

4

2

0

2



x244 

4

6

8

10

DESIGN OF MACHINERY

SOLUTION MANUAL 6-70a-1

PROBLEM 6-70a Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 2.170 in

Link 3 (A to B)

b 2.067 in

Link 4 (O4 to B)

c 2.310 in

Link 1 (O2 to O4)

d 1.000 in

Link 5 (B to C)

e 5.400 Crank angle:

2  110 deg

 102 deg

Coordinate angle

1

  1 rad  sec

Input crank angular velocity Solution: 1.

CW

See Figure P6-33 and Mathcad file P0670a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VA Y Direction of VBA A

147.635° 3 Direction of VB

B

2 4 O2

5 58.950°

158.818°

X

6

O4 C Direction of VC Direction of VCB 2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA   a 

VA 2.170

VA  2 90 deg

VA 20.000 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

0

SOLUTION MANUAL 6-70a-2

VA

1 in/sec

Y

X VBA

VB 1.325

4.

From the velocity triangle we have: Velocity scale factor:

VB  1.325 in kv 5.

kv  

1 in sec

1

in

VB 1.325

in

VB  31.050 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C, the magnitude of the relative velocity VCB, and the angular velocity of link 3. The equation to be solved graphically is VC = VB + VCB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VCB , magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCB from the tip of VB to the intersection of the VC construction line and drawing VC from the tail of VB to the intersection of the VCB construction line.

0

1.400

1 in/sec

Y VC X

VB 4.

V CB

From the velocity triangle we have: Velocity scale factor:

VC  1.400 in  kv

kv  

1 in sec

1

in

VC 1.400

in sec

VC  0.0 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-70b-1

PROBLEM 6-70b Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a 2.170 in

Link 3 (A to B)

b 2.067 in

Link 4 (O4 to B)

c 2.310 in

Link 1 (O2 to O4)

d 1.000 in

Link 5 (B to C)

e 5.400 Crank angle:

2  110 deg

 102 deg

Coordinate angle

1

  1 rad  sec

Input crank angular velocity Solution: 1.

CW

See Figure 3-33 and Mathcad file P0670b.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5 , and the distances from the pin joints to the instant centers. See Problem 6-68 for the determination of IC locations.

1,5

Y A 3 B

2 4

5 X

O2

C

6

O4 1,3 From the layout above: AI13  2.609 in 2.

BI13  1.641 in

BI15  9.406 in

CI15  9.896 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A.

DESIGN OF MACHINERY

3.

VA 2.170

VA  2 90 deg

VA 20.0 deg

VA AI13

0.832

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. The direction of VB is down and to the right VB 1.365

in sec

Use equation 6.9c to determine the angular velocity of link 5.  

6.

sec

Determine the angular velocity of link 3 using equation 6.9a.

VB  BI13  5.

in

VA   a 

  4.

SOLUTION MANUAL 6-70b-2

VB BI15

0.145

rad

CCW

sec

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI15 

VC 1.436

in sec

to the right

DESIGN OF MACHINERY

SOLUTION MANUAL 6-70c-1

PROBLEM 6-70c Statement:

Find the velocity of the slider in Figure 3-33 for 2 = 110 deg with respect to the global X axis assuming 2 = 1 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a 2.170 in

Link 3 (A to B)

b 2.067 in

Link 4 (O4 to B)

c 2.310 in

Link 1 (O2 to O4)

d 1.000 in

Link 5 (B to C)

e 5.400 in Crank angle:

2XY  110 deg

 102 deg

Coordinate angle

2  1 rad  sec

Input crank angular velocity

1

CW

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-33 and Mathcad file P0670c.

Draw the linkage to scale and label it.

Y A 3 B

2 4

5 X

O2

y 6

O4 x 2.

C

102°

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. Transform crank angle to the local xy coordinate system:

2  2XY  K1  

d

K 1 0.4608

a 2

K3  

2 212.000 deg

2

2

a b c d 2 a c



K2  

d c

2

K 3 0.6755



A cos 2 K 1 K 2 cos 2 K3

K 2 0.4329

DESIGN OF MACHINERY

SOLUTION MANUAL 6-70c-2



B 2 sin 2



C K 1  K2 1  cos 2 K 3 A 0.2662 3.

B 1.0598

C 2.3515

Use equation 4.10b to find values of 4 for the open circuit.

 

2

2

4xy  2atan2 2 A B  B 4 A C 4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b



2

K 4 0.4838

2 a b

K 5 0.5178



D cos 2 K 1 K 4 cos 2 K 5

D 2.2370



E 2 sin 2

E 1.0598



F K 1  K4 1   cos 2 K 5 5.

F 0.3808

Use equation 4.13 to find values of 3 for the open circuit.

 



2

3xy  2atan2 2 D E  E 4 D F 2   6.

 

 

a 2 sin 2 3xy  c sin 4xy 3xy

4 0.591

4 57.635 deg

cc  0  in

sin 4cc  c 5  asin    e  



5 158.818 deg



dd  c  cos 4 e cos 5

dd 6.272in

Determine the angular velocity of link 5 using equation 6.22a:

4 c cos 5     4 e cos 5 7.

sec

Determine 5 and d, with respect to O4, using equation 4.17. Offset:

6.

rad

Transform 4 back to the global XY system.

4  4xy  5.

3xy 70.950 deg

Determine the angular velocity of link 4 for the open circuit using equations 6.18.

4   7.

4xy 159.635 deg

5 0.145

rad sec

Determine the velocity of pin C using equation 6.22b:





VC  c  4 sin 4 e 5 sin 5 VC 1.436

in sec

VC 1.436

in sec



arg VC 0.000deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-71-1

PROBLEM 6-71 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 4 and the linear velocity of slider 6 in the sixbar slider-crank linkage of Figure 3-33 as a function of the angle of input link 2 for a constant 2 = 1 rad/sec CW. Plot Vc both as a function of 2 and separately as a function of slider position as shown in the figure. What is the percent deviation from constant velocity over 240 deg < 2 < 270 deg and over 190 < 2 < 315 deg?

Given:

Link lengths: Input crank (L2)

a 2.170

Fourbar coupler (L3)

b 2.067

Output crank (L4)

c 2.310

Sllider coupler (L 5)

e 5.40

d 1.000

Fourbar ground link (L1)

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent: Crank velocity:

return 1.5  if x = 0 y 0

rad  1  sec

 y if x 0 return atan  x     y  atan  x    otherwise   

Solution:

See Figure 3-33 and Mathcad file P0671.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slider-crank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.

2.

Define one revolution of the input crank:  0 deg  1 deg   360 deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY coordinate system. 2

K1  

d

K2  

a

K 1 0.4608



K3  

d c

K 2 0.4329



2

2

a b c d

2

2 a c

K 3 0.6755



A   cos  K1 K 2 cos  K 3













C   K 1  K 2 1   cos  K 3

B   2 sin 



 

 2

   

  2 2 A   B   B  4 A   C   deg atan2 102 4.

If the calculated value of 4 is greater than 2, subtract 2from it and if it is negative, make it positive.

   



 

  if   2    2   

   



 

   if  0    2    5.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

  

sin   c    asin  e 





  

 

  

f   c  cos   e  cos  

DESIGN OF MACHINERY

5.

SOLUTION MANUAL 6-71-2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b



2

2

c d a b

2

K 4 0.4838

2 a b



K 5 0.5178



D   cos  K1 K 4 cos  K5





E   2 sin 





F   K1  K 4 1  cos  K5 6.

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

   2  atan2 2 D   E   E  4 D  F    7.

Determine the angular velocity of link 4 for the open circuit using equations 6.18.



   

  

 

a  sin   c sin  102 deg  

 

0.5 0.75 1



  1.25 1.5 1.75 2

0

45

90

135

180

225

270

 deg

8.

Determine the angular velocity of link 5 using equation 6.22a:

      

c cos        e cos 



9.

Determine the velocity of pin C using equation 6.22b:



    

    

VC   c    sin  e    sin 

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-71-3

2 1 0



VC  1 2 3 4

0

45

90

135

180

225

270

315

360

 deg

2

1

0



VC  1

2

3

4

3

4

5



f 

6

7

8

DESIGN OF MACHINERY

SOLUTION MANUAL 6-72-1

PROBLEM 6-72 Statement:

Figure 3-34 shows a Stephenson's sixbar mechanism. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-34 and Mathcad file P0672.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 15

2

a.

In part (a) of the figure. ___________________________________________________________________

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

1,2 O2

2 2,3

1,6

5,6

4,6

6 O6 3

5

1,4 O4

4,5 4 5

2.

3,5

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6 -I5,6 and I1,4 -I4,5 I2,5: I1,2 -I1,5 and I2,3 -I3,5 I1,3: I1,2 -I2,3 and I1,5 -I3,5 I3,4: I1,4 -I1,3 and I4,5 -I3,5 I2,8: I2,3 -I3,4 and I2,5 -I4,5 I2,6: I1,2 -I1,6 and I2,5 -I5,6 I3,6: I1,3 -I1,6 and I3,5 -I5,6

1,2; 2,5; 2,4; 2,6

I4,6: I1,4 -I1,6 and I4,5 -I5,6 O2

1 6

2

2 6 3

5

3 4

1,6

5,6

2,3

5

O6

1,5

1,4 O4

4,5 4 5 3,5; 1,3; 3,4; 3,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-72-2

b.

In part (b) of the figure. ___________________________________________________________________

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

1,2 5,6 2

O2

2,3

5

6

4,5 3

4

5

1,6 O6 1,4 O4

3,5

2.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6 -I5,6 and I1,4 -I4,5

3,6

1,2

I2,5: I1,2 -I1,5 and I2,3 -I3,5

5,6; 4,6 2 2,3

I1,3: I1,2 -I2,3 and I1,5 -I3,5

O2

5 4,5

3

5

I3,4: I1,4 -I1,3 and I4,5 -I3,5

6 1,6 O6 1,4; 1,5 O4

4

I2,4: I2,3 -I3,4 and I2,5 -I4,5 I2,6: I1,2 -I1,6 and I2,5 -I5,6

2,6

I3,6: I1,3 -I1,6 and I3,5 -I5,6 I4,6: I1,4 -I1,6 and I4,5 -I5,6

3,5; 3,4 To 1,3 1 6

2

5

3 4

2,5; 2,4; 2,8

DESIGN OF MACHINERY

SOLUTION MANUAL 6-72-3

c.

In part (c) of the figure. ___________________________________________________________________

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

2,3 2

1,6 1,2

4,5

O2 5 5

3

6 O6 1,4 O4

4 3,5

2.

5,6

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,4; I3,6; and I4,6 I1,5: I1,6 -I5,6 and I1,4 -I4,5

I2,4: I2,3 -I3,4 and I2,5 -I4,5

I2,5: I1,2 -I1,5 and I2,3 -I3,5

I2,6: I1,2 -I1,6 and I2,5 -I5,6

I1,3: I1,2 -I2,3 and I1,5 -I3,5

I3,6: I1,3 -I1,6 and I3,5 -I5,6

I3,4: I1,4 -I1,3 and I4,5 -I3,5

I4,6: I1,4 -I1,6 and I4,5 -I5,6

2,3 4,6

1

1,6

2 6

1,2; 2,5; 2,4: 2,6 4,5

2

O2 5

3 4

5 5

3

4 3,5; 1,3; 3,4; 3,6

1,5

6 O6 1,4 O4

5,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-73a-1

PROBLEM 6-73a Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

g 1.556 in

Link 3 (A to B)

f 4.248 in

Link 4 (O4 to C)

c 2.125 in

Link 5 (C to D)

b 2.158 in

Link 6 (O6 to D)

a 1.542 in

Link 5 (B to D)

p 3.274 in

Link 1 X-offset

dX  3.259 in

Link 1 Y-offset

dY  2.905 in

Angle CDB

5  36.0  deg

Output rocker angle:

 90 deg Global XY system  10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure 3-34b and Mathcad file P0673a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VCD Y

Direction of VD

Direction of VA X 2 A

D

O2

5

6

C Direction of VAB

O6 3

5

Direction of VC

4 O4 B

Direction of VBD 2.

Since this linkage is a Stephenson's II sixbar, we will have to start at link 6 and work back to link 2. We will assume a value for 6 and eventually find a value for 2. We will then multiply the magnitudes of all velocities by the ratio of the actual 2 to the found 2. Use equation 6.7 to calculate the magnitude of the velocity at point D. 1 Assume: CW   1 rad  sec VD   a 

3.

VD 1.542

in sec

VD  0 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C, the magnitude of the relative velocity VCD, and the angular velocity of link 5. The equation to be solved graphically is VC = VD + VCD a. b.

Choose a convenient velocity scale and layout the known vector VD. From the tip of VD, draw a construction line with the direction of VCD, magnitude unknown.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-73a-2

c. From the tail of VD, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCD from the tip of VD to the intersection of the VC construction line and drawing VC from the tail of VD to the intersection of the VCD construction line. 0

1 in/sec

1.289

VC

VCD

1.309 127.003°

54.195° VD

4.

From the velocity triangle we have: kv  

Velocity scale factor:

5.

1

in in

VC  1.289 in  kv

VC 1.289

VCD  1.309 in kv

VCD 1.309

VC  54.195 deg

sec in

VCD  127.003  deg

sec

Determine the angular velocity of links 5 and 4 using equation 6.7.    

6.

1 in sec

VCD b VC c

0.607

rad

0.607

rad

sec

sec

Determine the magnitude and sense of the vector VBD using equation 6.7. VBD   p 

VBD 1.986

in sec

VBD  VCD 5 7.

VBD 163.003 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B. The equation to be solved graphically is VB = VD + VBD a. b. c.

Choose a convenient velocity scale and layout the known vector VD. From the tip of VD, layout the (now) known vector VBD. Complete the vector triangle by drawing VB from the tail of VD to the tip of the VBD vector. 0

V BD VB 0.682 121.607°

VD

1 in/sec

DESIGN OF MACHINERY

8.

SOLUTION MANUAL 6-73a-3

From the velocity triangle we have:

kv  

Velocity scale factor:

VB  0.682 in kv 9.

1 in sec

1

in

VB 0.682

in

VB  121.607  deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A, the magnitude of the relative velocity VAB, and the angular velocity of link 2. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VA , magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line. VAB

0

VB

1 in/sec

VA 0.645

131.690°

10. From the velocity triangle we have:

Velocity scale factor:

VA  0.645 in kv

kv  

1 in sec

1

in

VA 0.645

in

VA  131.690  deg

sec

11. Determine the angular velocity of link 2 with respect to the assumed value of 6 using equation 6.7.

 

VA g

0.415

rad sec

12. Calculate the actual value of the angular velocity of link 6.  

 rad   sec

24.124

rad sec

CW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-73b-1

PROBLEM 6-73b Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

g 1.556 in

Link 3 (A to B)

f 4.248 in

Link 4 (O4 to C)

c 2.125 in

Link 5 (C to D)

b 2.158 in

Link 6 (O6 to D)

a 1.542 in

Link 5 (B to D)

p 3.274 in

Link 1 X-offset

dX  3.259 in

Link 1 Y-offset

dY  2.905 in

Angle CDB

5  36.0  deg

Output rocker angle:

 90 deg Global XY system

Input crank angular velocity Solution: 1.

 10 rad sec

1

CW

See Figure 3-34b and Mathcad file P0673b.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5 , and the distances from the pin joints to the instant centers. See Problem 6-72b for determination of IC locations. D A

2

O2

5

6

C 3

5

4 B

To 1,3

From the layout above: AI13  22.334 in

BI13  23.650 in

BI15  1.124 in

DI15  2.542 in

O6 1,5 O4

DESIGN OF MACHINERY

2.

SOLUTION MANUAL 6-73b-2

Start from point D with an assumed value for 6 and work to find 2. Then, use the ratio of the actual vale of 2 to the found value to calculate the actual value of 6. Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point D. rad  1 sec in VD   a  VD 1.542 sec

VD  90 deg 3.

Determine the angular velocity of link 3 using equation 6.9a.  

4.

VD DI15

VB BI13

VB 0.682

in sec

0.029

rad

CCW

sec

VA 0.644

in

to the left

sec

Use equation 6.9c to determine the angular velocity of link 2 based on the assumed value of 6.  

8.

CW

sec

Determine the magnitude of the velocity at point A using equation 6.9b. VA   AI13 

7.

rad

Use equation 6.9c to determine the angular velocity of link 3.  

6.

0.607

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI15 

5.

VD 0.0 deg

VA g

0.414

rad

CW

sec

Multiply the assumed vaue of 6 by the ratio of 21 over 22 to get the value of 6 for 2 = 10 rad/sec.  

 rad   sec

24.166

rad sec

CW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-73c-1

PROBLEM 6-73c Statement:

Find the angular velocity of link 6 in Figure 3-34b for 6 = 90 deg with respect to the global X axis assuming 2 = 10 rad/sec CW. Use an analytic method.

Given:

Link lengths: Link 2 (O2 to A)

g 1.556 in

Link 3 (A to B)

f 4.248 in

Link 4 (O4 to C)

c 2.125 in

Link 5 (C to D)

b 2.158 in

Link 6 (O6 to D)

a 1.542 in

Link 5 (B to D)

p 3.274 in

Link 1 X-offset

dX  3.259 in

Link 1 Y-offset

dY  2.905 in

Angle CDB

5  36.0  deg

Link 1 (O4 to O6)

d 1.000 in

Output rocker angle:

6XY  90 deg

Global XY system

Input crank angular velocity

 10 rad sec

Coordinate rotationm angle

 90 deg

Two argument inverse tangent

1

CW

atan2 (x  y)   return 0.5  if x = 0 y 0 return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure 3-34b and Mathcad file P0673c.

Transform the crank angle to the local coordinate system. Draw the linkage to scale and label it.

6  6XY 

6 180.000 deg

Y

2 A

D

O2

5

X

6

C O6 3

5

y

4 O4 B x

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d a

K 1 0.6485

K2  

d c

K 2 0.4706

2

K3  

2

2

a b c d

K 3 0.4938

2 a c

2

DESIGN OF MACHINERY

SOLUTION MANUAL 6-73c-2





A cos 6 K 1 K 2 cos 6 K3

A 0.6841



B 2 sin 6

B 0.0000



C K 1  K2 1  cos 6 K 3 3.

C 2.6129

Use equation 4.10b to find values of 4 for the crossed circuit.

 



2

4  2atan2 2  A B  B 4 A C 4.

4 234.195 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b



2

2 a b

K 5 0.5288



D cos 6 K 1 K 4 cos 6 K 5

D 2.6407



E 2 sin 6

E 0.0000



F K 1  K4 1   cos 6 K 5 5.

K 4 0.4634

F 0.6563

Use equation 4.13 to find values of 5 for the crossed circuit.

 

2



51  2atan2 2 D E  E 4  D F 6.

51 307.003 deg

Determine the angular velocity of links 4 and 5 for the open circuit using equations 6.18. Initially assume 6 = 1 rad/sec. then by trial and error, change it to make 2 = 10 rad/ sec CW. 1

6   1 rad  sec

 

 

5 0.607

rad

 

 

4 0.607

rad

5  

a 6 sin 4 6  b sin 51 4

4  

a 6 sin 6 51  c sin 4 51

sec

sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-74-1

PROBLEM 6-74 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 3-34 as a function of 2 for a constant 2 = 1 rad/sec CW.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

g 1.556 in

Link 3 (A to B)

f 4.248 in

Link 4 (O4 to C)

c 2.125 in

Link 5 (C to D)

b 2.158 in

Link 6 (O6 to D)

a 1.542 in

Link 5 (B to D)

p 3.274 in

Link 1 X-offset

dX  3.259 in

Link 1 Y-offset

dY  2.905 in

Angle CDB

5  36.0  deg

Link 1 (O4 to O6)

d 1.000 in

Output rocker angle:

6XY  90 deg

Global XY system

Input crank angular velocity

 10 rad sec

Coordinate rotationm angle

 90 deg

1

CW

See Figure P6-34 and Mathcad file P0674.

This problem is long and may be more appropriate for a project assignment. The solution involves defining vector loops and solving the resulting equations using a method such as Newton-Raphson.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-75-1

PROBLEM 6-75 Statement:

Figure 3-35 shows a Stephenson's sixbar mechanism. Find all of its instant centers in the position shown:

Given:

Number of links n  6

Solution:

See Figure 3-35 and Mathcad file P0675.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

n ( n 1)

C 15

2

a.

In part (a) of the figure. ___________________________________________________________________

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7). 4,5

5 5,6

4

2 1,2 O2

O4

3

2,3

1,4

6

1,6 O6

3,4

2.

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3 ; I1,5 ; I2,4 ; I2,5 ; I2,6 ; I3,5 ; I3,6 ; and I4,6 4,5

5 4

2 2,3

1,2; 2,5; 2,4; 2,6 O2

3

O4

5,6 1,4

6

1,6 O6

4,6 1,3; 3,5; 3,6

3,4

I1,5: I1,6 -I5,6 and I1,4 -I4,5 I1,3: I1,2 -I2,3 and I1,4 -I3,4 I3,5: I1,5 -I1,3 and I3,4 -I4,5 I2,5: I1,2 -I1,5 and I2,3 -I3,5 I2,4: I2,3 -I3,4 and I2,5 -I4,5 I2,6: I1,2 -I1,6 and I2,5 -I5,6 I3,6: I1,3 -I1,6 and I3,5 -I5,6 I4,6: I1,4 -I1,6 and I4,5 -I5,6

1,5

1

6

2

5

3 4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-75-2

b.

In part (b) of the figure. ___________________________________________________________________

1.

Draw the linkage to scale and identify those ICs that can be found by inspection (7).

1,6 2 2,3

1,4 1,2

3

4

O2

5

O4 5,6

3,4

2.

4,5 6

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3; I1,5; I2,4; I2,5; I2,6; I3,5; I3,6; and I4,6 I1,5: I1,6 -I5,6 and I1,4 -I4,5

I2,4: I2,3 -I3,4 and I2,5 -I4,5

I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,6: I1,2 -I1,6 and I2,5 -I5,6

I3,5: I1,5 -I1,3 and I3,4 -I4,5

I3,6: I1,3 -I1,6 and I3,5 -I5,6

I2,5: I1,2 -I1,5 and I2,3 -I3,5

I4,6: I1,4 -I1,6 and I4,5 -I5,6 1,5

1,2

1

2 6

2

2,3 3

5

3

4,5

1,4 O2

6

4 O4

5,6 4

1,2; 2,5; 2,4; 2,6 3,4; 1,3; 3,5; 3,6

4,6 5

1,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-76a-1

PROBLEM 6-76a Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 1.000 in

Link 3 (A to B)

b 3.800 in

Link 4 (O4 to B)

c 1.286 in

Link 1 (O2 to O4)

d 3.857 in

Link 4 (O4 to D)

e 1.429 in

Link 5 (D to E)

f 1.286

Link 6 (O6 to E)

g 0.771 in

Crank angle:

2  90 deg

 10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure 3-35 and Mathcad file P0676a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VA Direction of VD

Y A

D

122.085° 33.359°

2

100.938° 5

3 4 O2

X

6 O 4 O6 E

35.228°

B Direction of VE Direction of VBA

Direction of VED

Direction of VB

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA   a 

VA 10.000

VA  2 90 deg

VA 180.000 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-76a-2

Y 1.671 1.063 0

5 in/sec

VB

V BA

X

VA

4.

From the velocity triangle we have: kv  

Velocity scale factor:

VBA  1.063 in  kv

VBA 5.315 6.497

c

VB  147.915  deg

sec in

VBA  56.641 deg

sec

rad

CW

sec

Calculate the magnitude and direction of VD . VD  e 

6.

in

VB 8.355

VB

1

in

VB  1.671 in kv

  5.

5 in sec

VD 9.284

in

VD  55.085 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point E, the magnitude of the relative velocity VED, and the angular velocity of link 3. The equation to be solved graphically is VE = VD + VED a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VED, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VE, magnitude unknown. d. Complete the vector triangle by drawing VED from the tip of VD to the intersection of the VE construction line and drawing VE from the tail of VD to the intersection of the VED construction line.

4.

Y

From the velocity triangle we have: kv  

Velocity scale factor:

VE  2.450 in kv  

5 in sec

5 in/sec

1

in

VE 12.250

0

X

in sec

2.450

VE VD

g

15.888

rad

CW

VE

sec VDE

DESIGN OF MACHINERY

SOLUTION MANUAL 6-76b-1

PROBLEM 6-76b Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a 1.000 in

Link 3 (A to B)

b 3.800 in

Link 4 (O4 to B)

c 1.286 in

Link 1 (O2 to O4)

d 3.857 in

Link 4 (O4 to D)

e 1.429 in

Link 5 (D to E)

f 1.286

Link 6 (O6 to E)

g 0.771 in

Crank angle:

2  90 deg

Input crank angular velocity Solution: 1.

 10 rad sec

1

CCW

See Figure 3-35 and Mathcad file P0676a.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5 , and the distances from the pin joints to the instant centers. See Problem 6-68 for the determination of IC locations.

1,5 A 2

D 5

3 4 O2

6 O4 O6 E

B

1,3 From the layout above: AI13  7.152 in 2.

BI13  5.975 in

DI15  0.947 in

EI15  1.249 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA   a  VA 10.000 sec

VA  2 90 deg 3.

BI15  1.740 in

VA 180.0 deg

Determine the angular velocity of link 3 using equation 6.9a.  

VA AI13

1.398

rad sec

CCW

DESIGN OF MACHINERY

4.

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI13 

5.

VB c

VD DI15

6.496

rad

CW

sec

VD 9.283

in sec

9.803

rad

CW

sec

Determine the magnitude of the velocity at point E using equation 6.9b. VE  EI15 

9.

sec

Use equation 6.9c to determine the angular velocity of link 5.  

8.

in

Determine the magnitude of the velocity at point D using equation 6.9b. VD  e 

7.

VB 8.354

Use equation 6.9c to determine the angular velocity of link 4.  

6.

SOLUTION MANUAL 6-76b-2

VE 12.244

in sec

Use equation 6.9c to determine the angular velocity of link 6.  

VE g

15.88

rad sec

CW

DESIGN OF MACHINERY

SOLUTION MANUAL 6-76c-1

PROBLEM 6-76c Statement:

Use a compass and straightedge to draw the linkage in Figure 3-35 with link 2 at 90 deg and find the angular velocity of link 6 assuming 2 = 10 rad/sec CCW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a 1.000 in

Link 3 (A to B)

b 3.800 in

Link 4 (O4 to B)

c 1.286 in

Link 1 (O2 to O4)

d 3.857 in

Link 4 (O4 to D)

e 1.429 in

Link 5 (D to E)

f 1.286 in

Link 6 (O6 to E)

g 0.771 in

Link 1 (O4 to O6)

h 0.786 in

2  90 deg

Crank angle:

2  10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure 3-35 and Mathcad file P0676c.

Draw the linkage to scale and label it.

Y A

D

122.085° 2

3

33.359°

100.938° 5

4 O2

X

6 O4 O6 E

35.228°

B 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

a b c d

d

K 1 3.8570

c

K 2 2.9992

2

K 3 1.2015

2 a c





A cos 2 K 1 K 2 cos 2 K3



B 2 sin 2



C K 1  K2 1  cos 2 K 3 A 2.6555 3.

B 2.0000

C 5.0585

Use equation 4.10b to find values of 4 for the crossed circuit.

 

2

41  2atan2 2 A B  B 4  A C 4.



41 237.915 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d b

K5  



2



2 a b

D cos 2 K 1 K 4 cos 2 K 5



2

c d a b

2

K 4 1.0150 D 7.6284

K 5 3.7714

DESIGN OF MACHINERY

SOLUTION MANUAL 6-76c-2

 F K 1  K4 1   cos 2K 5 E 2 sin 2

5.

E 2.0000 F 0.0856

Use equation 4.13 to find values of 3 for the crossed circuit.

 



2

3  2atan2 2  D E  E 4 D F 6.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

3  

 

 

 

 

a 2 sin 41 2  b sin 3 41

3 1.398

42  41 157 deg 360 deg 8.

rad sec

a 2 sin 2 3 rad  4 6.496 c sin 41 3 sec Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

4  

7.

3 326.641 deg

42 34.915 deg

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1  

h

K2  

e 2

K3  

2

2

e f g h

h

K 1 0.5500

g

K 2 1.0195

2

K 3 0.7263

2g e

    B 2 sin 42 C K 1  K2 1  cos 42K 3

A cos 42 K 1 K 2 cos 42 K 3

A 0.1603 9.

B 1.1447

C 0.3796

Use equation 4.10b to find values of 6 for the open circuit.

 

2

6  2atan2 2  A B  B 4 A C



6 35.228 deg

10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. K4  

2

h

K5  

f

 

2

2

g h e f 2 ef

 

D cos 42 K 1 K4 cos 42 K 5

 

E 2 sin 42

2

K 4 0.6112

K 5 1.0119

D 0.2408 E 1.1447

 

F K 1  K4 1   cos 42 K 5

F 0.7807

11. Use equation 4.13 to find values of 5 for the open circuit.

 

2



5  2atan2 2  D E  E 4 D F

5 280.938 deg

12. Determine the angular velocity of link6 for the open circuit using equations 6.18.

4 sin 42 5 e 6     6 5  g sin 

6 15.885

rad sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-77-1

PROBLEM 6-77 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 6 in the sixbar linkage of Figure 3-35 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Link 2 (O2 to A)

a 1.000 in

Link 3 (A to B)

b 3.800 in

Link 4 (O4 to B)

c 1.286 in

Link 1 (O2 to O4)

d 3.857 in

Link 4 (O4 to D)

e 1.429 in

Link 5 (D to E)

f 1.286 in

Link 6 (O6 to E)

g 0.771 in

Link 1 (O4 to O6)

h 0.786 in

 1 rad  sec

Input crank angular velocity Solution:

1

CCW

See Figure 3-35 and Mathcad file P0677.   0 deg  1 deg  360 deg

1.

Define the range of the input angle:

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

a b c d

d

K 1 3.8570

c

2

K 3 1.2015

2 a c



K 2 2.9992







A   cos  K 1 K 2 cos  K3





B   2 sin 



C   K1  K 2 1  cos  K 3 3.

Use equation 4.10b to find values of 4 for the crossed circuit.







 

 2

   

    2 atan2  2 A   B   B  4 A  C     4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b





2

2

c d a b

2

K 4 1.0150

2 a b





D   cos  K 1 K4 cos  K 5



K 5 3.7714



E   2 sin 



F   K 1  K 4 1  cos  K 5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.







 

 2

   

    2 atan2  2 D   E   E  4 D  F     6.

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

        a  sin         c sin     

   

7.

a  sin    b sin    

Link 4 will be the input to the second fourbar (links 4, 5, 6, and 1). Let the angle that link 4 makes in the second fourbar be

DESIGN OF MACHINERY

SOLUTION MANUAL 6-77-2





    157 deg 360 deg 8.

Determine the values of the constants needed for finding 6 from equations 4.8a and 4.10a. K1  

h

K2  

e 2

K3  

2

2

e f g h

h

K 1 0.5500

g

2

K 3 0.7263

2g e



K 2 1.0195

  

  



  

A'   cos   K1 K 2 cos   K 3 B'   2  sin 



  

C'   K 1  K 2 1  cos   K 3 9.

Use equation 4.10b to find values of 6 for the open circuit.







  

 2

   

    2 atan2  2 A'   B'   B'  4 A'  C'     10. Determine the values of the constants needed for finding 5 from equations 4.11b and 4.12. K4  

2

h

K5  

f



2

2

g h e f

2

K 4 0.6112

2 ef

  

  



K 5 1.0119

  

D'   cos   K1 K 4 cos   K 5 E'   2  sin 



  

F'   K 1  K 4 1  cos  K5 11. Use equation 4.13 to find values of 5 for the open circuit.







 

   

 2

    2 atan2  2 D'   E'   E'  4 D'   F'    12. Determine the angular velocity of link6 for the open circuit using equations 6.18.



         

 sin     e         g sin   



ANGULAR VELOCITY - LINK 6 3 2



1

  

0 1 2

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-78-1

PROBLEM 6-78 Statement:

Figure 3-36 shows an eightbar mechanism. Find all of its instant centers in the position shown in part (a) of the figure:

Given:

Number of links n  8

Solution:

See Figure 3-36a and Mathcad file P0678.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 28

2

Draw the linkage to scale and identify those ICs that can be found by inspection (11). 1,4; 1,8; 4,8 3,4

4,5

3 4 1,2 2

O4

O2

5,6

6

1,6

5

O6

8

2,3 7

7,8

5,7

2.

Use Kennedy's Rule and a linear graph to find the remaining 17 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

1,4; 1,8; 4,8; 5,8; 1,5

1,7

I4,6: I1,4 -I1,6 and I4,5 -I5,6 I2,4: I1,2 -I1,4 and I2,3 -I3,4

3,4; 1,3

4,5; 3,5

3

I2,8: I2,4 -I4,8 and I1,2 -I1,8

2

4 O2

1,2; 2,4

O4

8

7,8

2,6; 2,8; 6,8; 2,7 at infinity

1 8

I2,6: I1,2 -I1,6 and I2,4 -I4,6

5

7

3

I2,5: I2,6 -I5,6 and I2,3 -I4,5

6

4 5

I3,5: I3,4 -I4,5 and I2,3 -I2,5 I3,6: I2,3 -I2,6 and I3,5 -I5,6 I3,7: I3,6 -I6,7 and I2,3 -I2,7

I5,8: I5,6 -I6,8 and I4,5 -I4,8

I3,8: I3,7 -I7,8 and I2,3 -I2,8

I1,5: I1,6 -I5,6 and I1,4 -I4,5

I4,7: I4,6 -I6,7 and I3,4 -I3,7

I1,7: I1,8 -I7,8 and I1,6 -I6,7

3,6; 3,7; 3,8 6,7

7 4,7

2

I6,8: I2,8 -I2,6 and I1,8 -I1,6

I2,7: I2,8 -I7,8 and I2,6 -I6,7

O6

5,6; 4,6

2,5

2,3

I6,7: I5,6 -I5,7 and I6,8 -I7,8

6

1,6

5,7

DESIGN OF MACHINERY

SOLUTION MANUAL 6-79-1

PROBLEM 6-79 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the angular velocity of link 8 in the linkage of Figure 3-36 as a function of 2 for a constant 2 = 1 rad/sec CCW.

Given:

Link lengths: Input crank (L2)

a 0.450

First coupler (L3)

b 0.990

Common rocker (O4B)

c 0.590

First ground link (O2O4)

d 1.000

Common rocker (O4C)

a'  0.590

Second coupler (CD)

b'  0.325

Output rocker (L6)

c'  0.325

Second ground link (O4O6) d'  0.419

Link 7 (L7)

e 0.938

Link 8 (L8)

f 0.572

Link 5 extension (DE)

p 0.823

Angle DCE

 7.0 deg

Angle BO4C

 128.6 deg

Input crank angular velocity Solution: 1.

 1 rad  sec

1

CCW

See Figure 3-36 and Mathcad file P0679.

See problem 4-43 for the position solution. The velocity solution will use the same vector loop equations for links 5, 6, 7, and 8, differentiated with respect to time. This problem is suitable for a project assignment and is probably too long for an overnight assignment.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-80-1

PROBLEM 6-80 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and direction of the velocity of point P in Figure 3-37a as a function of 2 for a constant 2 = 1 rad/sec CCW. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths: Link 2 (O2 to A)

a 0.136

Link 3 (A to B)

b 1.000

Link 4 (B to O4)

c 1.000

Link 1 (O2 to O4)

d 1.414

Coupler point:

Rpa  2.000

  0 deg

Crank speed:

 1 rad  sec

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure 3-37a and Mathcad file P0680.

Determine the range of motion for this Grashof crank rocker.  0 deg  2 deg   360 deg

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 10.3971 2

K3  

c

K 2 1.4140

2

2

a b c d

2

K 3 7.4187

2 a c



d





A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 3.

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

    E  2 sin  F  K1  K 4 1  cos K5

D   cos  K1 K 4 cos  K5

5.

Use equation 4.13 to find values of 3 for the open circuit.

2

K 4 1.4140

K 5 7.4187

DESIGN OF MACHINERY

SOLUTION MANUAL 6-80-2







 

 2

   

  2 2 D   E   E  4 D   F  atan2  6.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin    b sin    



a  sin   c sin    

   7.

       



  

       

Determine the velocity of point A using equations 6.19.



 

 



VA    a sin  j  cos  8.



VA    VA 

Determine the velocity of the coupler point P using equations 6.36.



     

   

VPA   Rpa   sin   cos    j  







VP   VA  VPA 

Plot the magnitude and direction of the velocity at coupler point P.





Magnitude:

VP    VP 

Direction:

VP1  arg  VP    VP  if  VP1 0  VP1 2  VP1   MAGNITUDE 0.18

0.16 Velocity, mm/sec

9.

 0.14 VA   VP 

0.12

0.1

0

45

90

135

180  deg

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-80-3

DIRECTION

Vector Angle, deg

300



VP  200 deg

100

0

0

45

90

135

180  deg

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-81-1

PROBLEM 6-81 Statement:

Calculate the percent error of the deviation from constant velocity magnitude of point P in Figure 3-37a.

Given:

Link lengths: Link 2 (O2 to A)

a 0.136

Link 3 (A to B)

b 1.000

Link 4 (B to O4)

c 1.000

Link 1 (O2 to O4)

d 1.414

Coupler point:

Rpa  2.000

  0 deg

Crank speed:

 1 rad  sec

1

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     Solution: 1.

y  atan  x    otherwise   

See Figure 3-37a and Mathcad file P0681.

Determine the range of motion for this Grashof crank rocker.  0 deg  2 deg   360 deg

2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a

K 1 10.3971 2

K3  

c

K 2 1.4140

2

2

a b c d

2

K 3 7.4187

2 a c



d





A   cos  K1 K 2 cos  K 3





B   2 sin 





C   K 1  K 2 1   cos  K 3 3.

Use equation 4.10b to find values of 4 for the open circuit.







 

 2

   

  2 2 A   B   B  4 A   C   atan2  4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

    E  2 sin  F  K1  K 4 1  cos K5

D   cos  K1 K 4 cos  K5

5.

Use equation 4.13 to find values of 3 for the open circuit.

2

K 4 1.4140

K 5 7.4187

DESIGN OF MACHINERY

SOLUTION MANUAL 6-81-2







 

   

 2

  2 2 D   E   E  4 D   F  atan2  6.

Determine the angular velocity of links 3 and 4 for the open circuit using equations 6.18. a  sin    b sin    



a  sin   c sin    

   7.

       



  

       

Determine the velocity of point A using equations 6.19.



 

 



VA    a sin  j  cos  8.



VA    VA 

Determine the velocity of the coupler point P using equations 6.36.



     

   

VPA   Rpa   sin   cos    j  







VP   VA  VPA 

Calculate the magnitude of the velocity at coupler point P.





VP    VP 

Magnitude:



err   

Deviation from constant speed:

  VA 

VP  VA 

DEVIATION FROM CONSTANT SPEED 30

20

Percent Error

9.



err 

10

% 0

10

20

0

45

90

135

180  deg

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-82-1

PROBLEM 6-82 Statement:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the magnitude and the direction of the velocity of point P in Figure 3-37b as a function of 2. Also calculate and plot the velocity of point P versus point A.

Given:

Link lengths: Input crank (L2)

a 0.50

First coupler (AB)

b 1.00

Rocker 4 (O4B)

c 1.00

Rocker 5 (L5)

c'  1.00

Ground link (O2O4)

d 0.75

Second coupler 6 (CD)

b'  1.00

Coupler point (DP)

p 1.00

Distance to OP (O2OP)

d'  1.50

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent:

return 1.5  if x = 0 y 0

rad  1 sec

Crank speed:

 y if x 0 return atan  x     y  atan  x    otherwise   

Solution: 1.

See Figure 3-37b and Mathcad file P0682.

Links 4, 5, BC, and CD form a parallelogram whose opposite sides remain parallel throughout the motion of the fourbar 1, 2, AB, 4. Define a position vector whose tail is at point D and whose tip is at point P and another whose tail is at O4 and whose tip is at point D. Then, since R5 = RAB and RDP = -R4, the position vector from O2 to P is P = R1 + RAB - R4. Separating this vector equation into real and imaginary parts gives the equations for the X and Y coordinates of the coupler point P.







XP = d b cos  c  cos 



YP = b sin  c  sin 

2.

Define one revolution of the input crank:  0 deg  0.5 deg  360 deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the crossed circuit). K1  

d

K2  

a

K 1 1.5000



2

d

K3  

c

K 2 0.7500



2

2

a b c d

2

2 a c

K 3 0.8125



A   cos  K1 K 2 cos  K 3















C   K 1  K 2 1   cos  K 3

B   2 sin 

 

 2

   

   2  atan2 2 A   B   B  4 A  C    2 4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b





2

2

c d a b

2

2 a b



D   cos  K1 K 4 cos  K5





F   K1  K 4 1  cos  K5 5.

Use equation 4.13 to find values of 3 for the crossed circuit.

K 4 0.7500



K 5 0.8125



E   2 sin 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-82-2







 

   

 2

   2  atan2 2 D   E   E  4 D  F    2 6.

Define a local xy coordinate system with origin at OP and with the positive x axis to the right. The coordinates of P are transformed to x P = XP - d ', y P = YP .



  

  

x P   d b cos  c cos  d'



  

  

yP   b  sin  c sin   7.

Use equations 6.18 to calculate 3 and 4.



a  sin     b sin   



a  sin    c sin   

   

       

Differentiate the position equations with respect to time to get the velocity components.



    

    



    

    





VPx   b   sin  c   sin   VPy    b   cos  c   cos 



2

2

VP    VPx  VPy 

MAGNITUDE 0.6 0.4

Velocity, mm/sec

8.

       

   

0.2

 VPy  VPx 

0

0.2 0.4 0.6

0

45

90

135

180  deg

Crank Angle, deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-83-1

PROBLEM 6-83 Statement:

Find all instant centers of the linkage in Figure P6-30 in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-30 and Mathcad file P0683.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). 3,4

4

P1

1,4

O4

3

P2

Y

2,3 2 1,2

X O2

1,3

2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

3,4

4

P1 O4 P2

1,4 3 Y

2,3 2 1,2

X O2 2,4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-84a-1

PROBLEM 6-84a Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg

Given:

in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use a graphical method. Link lengths: Link 2 (O2 to A)

a 14.00 in

Link 3 (A to B)

b 80.00 in

Link 4 (O4 to B)

c 51.26 in

Link 1 X-offset

dX  47.5 in

Link 1 Y-offset

dY  76.00 in 12.00 in

Coupler point x-offset

px  114.68 in

Coupler point y-offset

py  33.19 in

Crank angle:

 45 deg  10 rad sec

Input crank angular velocity

1

CCW

Solution: See Figure P6-30 and Mathcad file P0684a. 1. Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VB Direction of VBA B

x

4

P1 O4

29.063°

P 2

3

Y

99.055° 45.000° A 2

X O2

Direction of VA

y

2.

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

VA 140.000

in sec

VA  45 deg 90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-84a-2

0

100 in/sec

0.409" Y 1.206" 119.063° VBA VB

VA

135.000°

9.055°

4.

X

From the velocity triangle we have: kv  

Velocity scale factor:

5.

VB 120.600

VBA  0.409 in  kv

VBA 40.900

in sec

VB  119.063  deg

in sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

 

VBA

0.511

b VB

2.353

c

rad sec

rad sec

Transform the xy coordinates of point P1 into the XY system using equations 4.0b. Coordinate transformation angle

7.

1

in

VB  1.206 in kv

 

6.

100 in  sec

 atan2 dX  d Y

126.582 deg

PX   px cos  p y sin 

PX 94.998 in

PY  px sin  py cos 

PY 72.308 in

Calculate the distance from O4 to P1 and use equation 6.7 to calculate the velocity at P1. Distance from O4 to P1: VP1  e 

e 

PX dX2 PY dY2 VP1 113.446

in sec

e 48.219 in

DESIGN OF MACHINERY

SOLUTION MANUAL 6-84b-1

PROBLEM 6-84b Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg

Given:

in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use the method of instant centers. Link lengths: Link 2 (O2 to A)

a 14.00 in

Link 3 (A to B)

b 80.00 in

Link 4 (O4 to B)

c 51.26 in

Link 1 X-offset

dX  47.5 in

Link 1 Y-offset

dY  76.00 in 12.00 in

Coupler point x-offset

px  114.68 in

Coupler point y-offset

py  33.19 in

Crank angle:

 45 deg  10 rad sec

Input crank angular velocity Solution: 1.

1

CCW

See Figure P6-30 and Mathcad file P0684b.

Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

1,3

B

4

P1 O4 P2

3 Y

A 2

X O2

From the layout above: AI13  273.768 in 2.

BI13  235.874 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA   a  VA 140.000 sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-84b-2

VA  90 deg 3.

Determine the angular velocity of link 3 using equation 6.9a.  

4.

VA 135.0 deg

VA

0.511

AI13

VB 120.622

VB

2.353

c

sec

rad

CCW

sec

Transform the xy coordinates of point P1 into the XY system using equations 4.0b. Coordinate transformation angle

7.

in

Use equation 6.9c to determine the angular velocity of link 4.  

6.

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI13 

5.

rad

 atan2 dX  d Y

PX   px cos  p y sin 

PX 94.998 in

PY  px sin  py cos 

PY 72.308 in

126.582 deg

Calculate the distance from O4 to P1 and use equation 6.7 to calculate the velocity at P1. Distance from O4 to P1: VP1  e 

e 

PX dX2 PY dY2

VP1 113.467

in sec

e 48.219 in

DESIGN OF MACHINERY

SOLUTION MANUAL 6-84c-1

PROBLEM 6-84c Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of points A, B and P1 in the XY coordinate system for the linkage in Figure P6-30 in the position shown. Assume that 2 = 45 deg

Given:

in the XY coordinate system and 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Use an analytical method. Link lengths: Link 2 (O2 to A)

a 14.00 in

Link 3 (A to B)

b 80.00 in

Link 4 (O4 to B)

c 51.26 in

Link 1 X-offset

dX  47.5 in

Link 1 Y-offset

dY  76.00 in 12.00 in

Coupler point x-offset

px  114.68 in

Coupler point y-offset

py  33.19 in

Crank angle:

2XY  45 deg

 126.582 deg

Coordinate transformation angle:

2  10 rad sec

Input crank angular velocity Solution: 1.

XY coord system 1

CCW

See Figure P6-30 and Mathcad file P0684c.

Draw the linkage to scale and label it. x

B

97.519°

4

P1 O4

27.528°

P2

3 81.582°

Y

126.582° 45.000° A 2

X O2

y

Transform the crank angle from global to local coordinate system:

2  2XY  2

2

d  d X dY

Distance O2O4: 2.

2 81.582 deg d 79.701 in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

a b c d 2 a c



d

K 1 5.6929

c

2

K 3 1.9340



A cos 2 K 1 K 2 cos 2 K3



C K 1  K2 1  cos 2 K 3 A 3.8401

K 2 1.5548

B 1.9785

C 7.2529



B 2 sin 2

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-84c-2

Use equation 4.10b to find values of 4 for the crossed circuit.

 



2

4  2atan2 2  A B  B 4 A C 4.

4 262.482 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d b

2

2

c d a b

K5  

2

K 4 0.9963

2 a b

  E 2 sin 2 F K 1  K4 1   cos 2K 5

D cos 2 K 1 K 4 cos 2 K 5

5.

D 10.0081 E 1.9785 F 1.0849

Use equation 4.13 to find values of 3 for the crossed circuit.

 



2

3  2atan2 2  D E  E 4 D F 6.

7.

K 5 4.6074

3 332.475 deg

Determine the angular velocity of links 3 and 4 for the crossed circuit using equations 6.18.

 

 

3 0.511

 

 

4 2.353

3  

a 2 sin 4 2  b sin 3 4

4  

a 2 sin 2 3  c sin 4 3

rad sec

rad sec

Determine the velocity of points A and B for the crossed circuit using equations 6.19.

 

 

VA   a 2sin 2 j  cos 2 VA ( 138.492 20.495j)

in

VA 140.000

sec

VAXY  arg VA 

in sec

VAXY 135.000 deg

 

 

VB  c 4sin 4 j  cos 4 VB ( 119.588 15.781j)

in

VBXY  arg VB  8.

9.

VB 120.624

sec

in sec

VBXY 119.064 deg

Calculate the distance from O4 to P1 and the angle BO4P1.

px d2 py2

Distance from O4 to P1:

e 

 py  4  180 deg atan  px d 

4 136.503 deg

Determine the velocity of point P1 using equations 6.35.

 







VP1  e  4sin 4  j  cos 4  VP1 ( 55.122 99.181j)

VPXY  arg VP1

in sec

VP1 113.469

in sec

VPXY 245.646 deg

e 48.219 in

DESIGN OF MACHINERY

SOLUTION MANUAL 6-85-1

PROBLEM 6-85 Statement:

Given:

Write a computer program or use an equation solver such as Mathcad, Matlab, or TKSolver to calculate and plot the absolute velocity of point P1 in Figure P6-30 as a function of 2 for 2 = 10 rad/sec. The coordinates of the point P1 on link 4 are (114.68, 33.19) with respect to the xy coordinate system. Link lengths: Link 2 (O2 to A)

a 14.00 in

Link 3 (A to B)

b 80.00 in

Link 4 (O4 to B)

c 51.26 in

Link 1 X-offset

dX  47.5 in

Link 1 Y-offset

dY  76.00 in 12.00 in

Coupler point x-offset

px  114.68 in

Coupler point y-offset

py  33.19 in

Crank angle:

2XY   0 deg  1 deg  360 deg  126.582 deg

Coordinate transformation angle: Input crank angular velocity Solution: 1.

XY coord system

 10 rad sec

1

CCW

See Figure P6-30 and Mathcad file P0685.

Draw the linkage to scale and label it. x

B

97.519°

4

P1 O4

27.528°

P2

3 81.582°

Y

126.582° 45.000° A 2

X O2

y

Transform the crank angle from global to local coordinate system:

 

 2XY  2XY  2

2.

2

d  d X dY

Distance O2O4:

d 79.701 in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

a b c d

 

d c

K 1 5.6929

K 2 1.5548

2

2 a c

K 3 1.9340

  K 1 K 2cos2XY K 3

A 2XY  cos 2XY

     C 2XY  K 1  K 2 1  cos  2XY  K 3 B 2XY  2  sin 2XY

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-85-2

Use equation 4.10b to find values of 4 for the crossed circuit.

 





   4A2XY C2XY   

   

 2XY  2 2 A 2XY  B 2XY  B 2XY atan2 4.

2

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

2

K 4 0.9963

2 a b

K 5 4.6074

    K 1 K4cos2XY K 5 E 2XY  2  sin  2XY   F 2XY  K 1  K 4 1  cos  2XY  K 5 D 2XY  cos 2XY

5.

Use equation 4.13 to find values of 3 for the crossed circuit.

 





   4D2XY F2XY  

   

 2XY  2 2 D 2XY  E 2XY  E 2XY atan2 6.

Determine the angular velocity of link 4 for the crossed circuit using equations 6.18.

 

 2XY   7.

         

a  sin 2XY 2XY  c sin 2XY 2XY

Calculate the distance from O4 to P1 and the angle BO4P1. e 

Distance from O4 to P1:

px d2 py2

e 48.219 in

 py   180 deg atan  px d 

136.503 deg

Determine and plot the velocity of point P1 using equations 6.35.

 

     

   

 

 



VP1 2XY  e  2XY sin  2XY  cos  2XY   j  

VPXY  2XY  arg VP1 2XY 

VP1 2XY   VP1 2XY



P1 VELOCITY MAGNITUDE 200

150 Velocity - in/sec

8.

2





sec VP1 2XY  100 in

50

0

0

45

90

135

180

225

2XY deg Crank Angle - Global XY System

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-85-3

P1 VELOCITY DIRECTION

Velocity angle - Global XY System

300 250 200

 

VPXY 2XY

150

deg 100 50 0

0

45

90

135

180

225

2XY deg Crank Angle - Global XY System

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-86-1

PROBLEM 6-86 Statement:

Find all instant centers of the linkage in Figure P6-31 in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-31 and Mathcad file P0686.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). Y y

O2 1,2

X 2 1 O4 1,4 3,4

4

P

2,3 x 3

2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4 Y y

O2 1,2

X 2 1 O4 1,4

1,3

3,4

4

P

2,3 x 3 2,4

DESIGN OF MACHINERY

SOLUTION MANUAL 6-87a-1

PROBLEM 6-87a Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00,  3 = 0 deg. Use a graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 9.17 in

Link 3 (A to B)

b 12.97 in

Link 4 (O4 to B)

c 9.57 in

Link 1 X-offset

dX  2.79 in

Link 1 Y-offset

dY  6.95 in

Coupler point data:

p 15.00 in

 0  deg

Crank angle:

 94.121 deg

Solution: 1.

1

  1 rad  sec

Input crank angular velocity

CW

See Figure P6-31 and Mathcad file P0687a.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Y y

O2

X Direction VBA 2 1

68.121°

Direction VPA

26.000° O4 B

4 Direction VA

P

A 72. 224° 3 60. 472°

Direction VB

x

2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA   a 

VA 9.170

VA  90 deg

VA 184.121 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-87a-2

Y 0

25 in/sec VA X

1.798"

1.783" VBA

4.

VB

From the velocity triangle we have: 1

Velocity scale factor:

5.

25 in  sec in

in

VB  1.783 in kv

VB 44.575

VBA  1.798 in  kv

VBA 44.950

 

VBA b VB c

in

VBA  274.103 deg

sec

3.466

rad

4.658

rad

sec

sec

Determine the magnitude and sense of the vector VPA using equation 6.7. VPA   p 

VPA 51.985

in sec

VPA  VBA 7.

VB  262.352  deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7.  

6.

kv  

VPA 274.103 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point P. The equation to be solved graphically is VP = VA + VPA a. b. c.

8.

Choose a convenient velocity scale and layout the known vector VA . From the tip of VA, layout the (now) known vector VPA. Complete the vector triangle by drawing VP from the tail of VA to the tip of the VPA vector. Y

From the velocity triangle we have:

0

25 in/sec VA

1

Velocity scale factor:

VP  2.059 in kv

P  96.051 deg

kv  

X

25 in  sec in

VP 51.475

96.051°

in 2.059"

sec VPA

VP

DESIGN OF MACHINERY

SOLUTION MANUAL 6-87b-1

PROBLEM 6-87b Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00,  3 = 0 deg. Use the method of instant centers.

Given:

Link lengths: Link 2 (O2 to A)

a 9.174 in

Link 3 (A to B)

b 12.971 in

Link 4 (O4 to B)

c 9.573 in

Link 1 X-offset

dX  2.790 in

Link 1 Y-offset

dY  6.948 in

Coupler point data:

p 15.00 in

 0  deg

Crank angle:

 94.121 deg

Solution: 1.

1

  1 rad  sec

Input crank angular velocity

CW

See Figure P6-31 and Mathcad file P0687b.

Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

Y y

O2

X 2 1 O4

1,3

B

4

P

A x 3 From the layout above: AI13  2.647 in 2.

VA 184.121 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

PI13  14.825 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA   a  VA 9.174 sec

VA  90 deg 3.

BI13  12.862 in

VA AI13

3.466

rad sec

Determine the magnitude of the velocity at point B using equation 6.9b. in VB  BI13  VB 44.577 sec

CW

DESIGN OF MACHINERY

5.

Use equation 6.9c to determine the angular velocity of link 4.  

6.

SOLUTION MANUAL 6-87b-2

VB c

4.657

rad

CW

sec

Determine the magnitude of the velocity at point P using equation 6.9b. VP  PI13 

VP 51.381

in sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-87c-1

PROBLEM 6-87c Statement:

Find the angular velocities of links 3 and 4 and the linear velocity of point P in the XY coordinate system for the linkage in Figure P6-31 in the position shown. Assume that 2 = -94.121 deg in the XY coordinate system and 2 = 1 rad/sec. The position of the coupler point P on link 3 with respect to point A is: p = 15.00,  3 = 0 deg. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a 9.174 in

Link 3 (A to B)

b 12.971 in

Link 4 (O4 to B)

c 9.573 in

Link 1 X-offset

dX  2.790 in

Link 1 Y-offset

dY  6.948 in

Coupler point data:

p 15.00 in

 0  deg

Crank angle:

2XY  94.121 deg Global XY coord system  68.121 deg

Coordinate transformation angle:

2  1 rad  sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-31 and Mathcad file P0687c.

Draw the linkage to scale and label it.

Y y

O2

X 2 1

26.000°

68.121°

O4 B

4

P

A 72.224° 3 60.472° Transform crank angle into local xy coordinate system:

2  2XY 

2.

2 26.000 deg 2

2

d  d X dY

Calculate distance O2O4:

x

d 7.487in

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

d c

a b c d

K 1 0.8161

2

2 a c

K 3 0.3622

  C K 1  K2 1  cos 2K 3

A cos 2 K 1 K 2 cos 2 K3 A 0.2581

K 2 0.7821

B 0.8767

C 0.4234



B 2 sin 2

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-87c-2

Use equation 4.10b to find values of 4 for the crossed circuit.

 

2

2

4  2atan2 2  A B  B 4 A C 4.

4 60.488 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

  E 2 sin 2 F K 1  K4 1   cos 2K 5

2

K 4 0.5772

2 a b

D cos 2 K 1 K 4 cos 2 K 5

5.

D 0.3096 E 0.8767 F 0.4749

Use equation 4.13 to find values of 3 for the crossed circuit.

 



2

3  2atan2 2  D E  E 4 D F 2  6.

7.

K 5 0.9111

3 72.236 deg

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

 

3 3.467

rad

 

 

4 4.658

rad

3  

a 2 sin 4 2  b sin 3 4

4  

a 2 sin 2 3  c sin 4 3

sec

sec

Determine the velocity of points A and B using equations 6.19.

 

 

VA   a 2sin 2 j  cos 2 VA ( 4.022 8.246i)

in

VA 9.174

sec

VAXY  arg VA 

in sec

VAXY 184.121 deg

 

 

VB  c 4sin 4 j  cos 4 VB ( 38.807 21.967i)

in sec

VBXY  arg VB  8.

VB 44.593

in sec

VBXY 97.633 deg

Determine the velocity of the coupler point P for the crossed circuit using equations 6.36.

 







VPA   p 3sin 3  j  cos 3  VPA ( 4.127 1.322i)

ft s

VP  VA VPA

VP ( 3.792 2.009i)

VPXY  arg VP 

VPXY 96.039 deg

ft s

VP 51.501

in sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-88-1

PROBLEM 6-88 Statement:

Figure P6-32 shows a fourbar double slider known as an elliptical trammel. F ind all its instant centers in the position shown.

Given:

Number of links n  4

Solution:

See Figure P6-32 and Mathcad file P0688.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 6

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). Y

3,4 4

2,3

To 1,4 at infinity

3 2

1

X

To 1,2 at infinity

2.

Use Kennedy's Rule and a linear graph to find the remaining 2 ICs. I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,4: I1,2 -I1,4 and I2,3 -I3,4

Y

2,3

3,4 4 1,3

To 1,4 at infinity

3 2

1

To 2,4 at infinity

X

To 1,2 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-89-1

PROBLEM 6-89 Statement:

The elliptical trammel in Figure P6-32 must be driven by rotating link 3 in a full circle. Points on line AB describe ellipses. Find and draw (mannually or with a computer) the fixed and moving centrodes of instant center I13 . (Hint: These are called the Cardan circles.)

Solution:

See Figure P6-32 and Mathcad file P0689.

1.

The instant center I13 is shown as the point P in the diagram below. The length of link 3, c, is constant and it is a diagonal of the rectangle OBPA. Therefore, the other diagonal, OP, has a constant length, c, regardless of the current lengths a and b . Thus, the point P (I13) travels on a circle of radius c. This circle is the fixed centrode.

c 4 B

P 3

b O

2 A

1

a

2.

Now, invert the mechanism by holding link 3 fixed and allowing the slots to move, which can only be in a circle about O. The locus of points P will then be a circle of radius 0.5c with center at O'. This is the moving centrode.

c 4 B

P 3 O'

b O

2 A

1

a

DESIGN OF MACHINERY

SOLUTION MANUAL 6-90-1

PROBLEM 6-90 Statement:

Derive analytical expressions for the velocities of points A and B in Figure P6-32 as a function of 3, 3 and the length AB of link 3. Use a vector loop equation.

Solution:

See Figure P6-32 and Mathcad file P0690.

1.

Establish the global XY system such that the coordinates of the intersection of the slot centerlines is at (dX ,dY). Then, define position vectors R1X , R1Y, R2, R3, and R4 as shown below. Y 4 B

3 R3 R2

3

C R4

2 A

1

R 1Y

X

R 1X

2.

Write the vector loop equation: R1Y + R2 + R3 - R1X - R4 = 0 then substitute the complex number notation for each position vector. The equation then becomes:

 j  2 

dY e 3.

j( 0)

a e

 j  2 

 d e j (0 ) be

j 3

c  e

X

=0

Differentiate this equation with respect to time.   j       2 d d  a  j c e   b e = 0 j 

dt 4.

dt

Substituting the Euler identity into this equation gives:

 

 Vbj = 0

Va jc cos 3 j sin 3 5.

Separate this equation into its real (x component) and imaginary (y component) parts, setting each equal to zero.



Va c   sin 3 = 0 6.



c  cos 3 Vb = 0

Solve for the two unknowns Va and Vb in terms of the independent variables 3 and 3



Va = c   sin 3



Vb = c   cos 3

DESIGN OF MACHINERY

SOLUTION MANUAL 6-91-1

PROBLEM 6-91 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6 and

Given:

VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use the velocity difference graphical method. Link lengths: Link 2 (O2 to A)

a 6.20 in

Link 3 (A to B)

b 4.50 in

Link 4 (O4 to B)

c 3.00 in

Link 5 (C to D)

e 5.60 in

Link 3 (A to C)

p 2.25  in

Link 4 (O4 to D)

f 3.382 in

Link 1 X-offset

dX  7.80  in

Link 1 Y-offset

dY  0.62  in

Angle ACB

3  0.0 deg

Angle BO4D

4  110.0 deg

Input rocker angle:

 120 deg

Global XY system

 10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33a and Mathcad file P0691.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VA Direction of VCA Axis of slip

A Y

87.972° 113.057° 5

D

C

110°

2

3

120°

Axis of transmission Direction of VDC

411.709° B O4

O2 Direction of VB

2.

Direction of VBA

Use equation 6.7 to calculate the magnitude of the velocity at point A. VA   a 

3.

X

VA 62.000

in sec

VA  120 deg 90 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 5. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-91-2

Y 0

50 in/sec

X VA

1.206 VB VBA 78.291°

1.433 4.

From the velocity triangle we have: 1

Velocity scale factor:

5.

8.

in in

VB 60.300

VBA  1.433 in  kv

VBA 71.650

VB  78.291 deg

sec in

VBA  23.057 deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7.

 

7.

50 in  sec

VB  1.206 in kv

 

6.

kv  

VBA b VB c

15.922

rad

CCW

sec

20.100

rad

CW

sec

Determine the magnitude and sense of the vector VCA using equation 6.7. in

VCA   p 

VCA 35.825

VCA  VBA 3

VCA 23.057 deg

sec

Determine the magnitude and sense of the vector Vtrans using equation 6.7. in

Vtrans   f 

Vtrans 67.978

trans  VB 4

trans 31.709 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VA + VCA a. b. c.

Choose a convenient velocity scale and layout the known vector VA . From the tip of VA, layout the (now) known vector VCA. Complete the vector triangle by drawing VC from the tail of VA to the tip of the VCA vector.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-91-3

Y 0

50 in/sec

X VA VC

0.991

VCA 114.720° 9.

From the velocity triangle we have: 1

Velocity scale factor:

VC  0.991 in  kv 9.

kv  

50 in  sec in

VC 49.550

in

VC  114.720 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point D, the magnitude of the relative velocity VDC. The equations to be solved (simultaneously) graphically are VD = VC + VDC

and

VD = Vtrans + Vslip

a. Choose a convenient velocity scale and layout the known vector VC. b. From the tip of VC, draw a construction line with the direction of VDC, magnitude unknown. c. Repeat steps a and b with Vtrans and Vslip. c. From the tail of VC, draw a construction line to the intersection of the two construction lines. d. Complete the vector polygon by drawing VDC from the tip of VC to the intersection of the VD construction line and drawing VD from the tail of VC to the intersection of the VDC construction line. 10. From the velocity polygon we have:

Y VD V slip

VDC

Velocity scale factor:

3.045

95.189°

1

kv  

50 in  sec in

V trans VD  3.045 in  kv

VD 152.250

in

X

sec

VD  95.189 deg

0 VC

 

20.100

rad sec

50 in/sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-92-1

PROBLEM 6-92 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6 and

Given:

VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use the instant center graphical method. Link lengths: Link 2 (O2 to A)

a 6.20 in

Link 3 (A to B)

b 4.50 in

Link 4 (O4 to B)

c 3.00 in

Link 5 (C to D)

e 5.60 in

Link 3 (A to C)

p 2.25  in

Link 4 (O4 to D)

f 3.382 in

Link 1 X-offset

dX  7.80  in

Link 1 Y-offset

dY  0.62  in

Angle ACB

3  0.0 deg

Angle BO4D

4  110.0 deg

Input rocker angle:

 120 deg

Global XY system

 10 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33a and Mathcad file P0692.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5 , and the distances from the pin joints to the instant centers. 2,3 A

6 1,5

5,6 5

D

Y

1,6

3 3,5 C

3,6 2 1,3

To 4,6 at infinity

B 3,4

4 O4

1,2

1,4

O2

X

From the layout above: AI13  3.893 in 2.

BI13  3.788 in

VA 210.0 deg

Determine the angular velocity of link 3 using equation 6.9a.  

4.

CI15  1.411 in DI15  4.333 in DI16  7.573 in

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at point A. in VA   a  VA 62.000 sec

VA  90 deg 3.

CI13  3.113 in

VA AI13

15.926

rad sec

Determine the magnitude of the velocity at point B using equation 6.9b. VB  BI13 

VB 60.328

in sec

CCW

DESIGN OF MACHINERY

5.

Use equation 6.9c to determine the angular velocity of links 4 and 6.  

VB c

w6   6.

rad

w 6 20.109

rad

CW

sec CW

sec

VC 49.578

in sec

Determine the angular velocity of link 5 using equation 6.9a.  

8.

20.109

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI13 

7.

SOLUTION MANUAL 6-92-2

VC CI15

35.137

rad

CW

sec

Determine the magnitude of the velocity at point D using equation 6.9b. VD  DI15 

VD 152.247

in sec

@ 95.185 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-93-1

PROBLEM 6-93 Statement:

The linkage in Figure P6-33a has link 2 at 120 deg in the global XY coordinate system. Find 6 and

Given:

VD in the global XY coordinate system for the position shown if 2 = 10 rad/sec CCW. Use an analytical method. Link lengths: Link 2 (O2 to A)

a 6.20 in

Link 3 (A to B)

b 4.50 in

Link 4 (O4 to B)

c 3.00 in

Link 5 (C to D)

e 5.60 in

Link 3 (A to C)

p 2.25  in

Link 4 (O4 to D)

f 3.382 in

Link 1 X-offset

dX  7.80  in

Link 1 Y-offset

dY  0.62  in

Angle ACB

3  0.0 deg

Angle BO4D

4  110.0 deg

Input rocker angle:

2XY  120 deg

Global XY system

 175.455 deg

Coordinate transformation angle:

2  10 rad sec

Input crank angular velocity

1

CCW

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent

return 1.5  if x = 0 y 0

 y if x 0 return atan  x     y  atan  x    otherwise    Solution: 1.

See Figure P6-33a and Mathcad file P0691.

Draw the linkage to scale and label it. A

6

Y

71.487° D

5

C

110°

120°

55.455° B 16.254°

4

x

2

3

O4

175.455°

O2 y

Calculate the distance O2O4:

2

2

d  d X dY

d 7.825in

Transform 2XY into the local coordinate system: 2  2XY 2 55.455 deg 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d a

K2  

d c

K 1 1.2620

K 2 2.6082

X

DESIGN OF MACHINERY

SOLUTION MANUAL 6-93-2

2

K3  

2

2

a b c d

2

K 3 2.3767

2 a c

  C K 1  K2 1  cos 2K 3



A cos 2 K 1 K 2 cos 2 K3 A 0.2028

3.

B 1.6474

B 2 sin 2

C 1.5927

Use equation 4.10b to find values of 4 for the open circuit.

 



2

41  2atan2 2 A B  B 4 A C 4.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

2

d

K5  

b

2

2

c d a b

2

2 a b

  E 2 sin 2 F K 1  K4 1   cos 2K 5

D cos 2 K 1 K 4 cos 2 K 5

5.

K 4 1.7388

K 5 1.9877

D 1.6967 E 1.6474 F 0.3067

Use equation 4.13 to find values of 3 for the open circuit.

 

2



3  2atan2 2  D E  E 4 D F 2  6.

41 163.746 deg

3 71.488 deg

At this point write vector loop equations for links 3, 4, 5, and 6 to solve for the position and velocty of link 6.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-94-1

PROBLEM 6-94 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 2.75 in

Link 3 (A to B)

b 3.26 in

Link 4 (O4 to B)

c 2.75 in

Link 1 (O4 to B)

d 4.43 in

Coupler point data:

p 1.63  in

 0  deg  15 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33b and Mathcad file P0694.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VB Direction of VBA B

O4

O2 36.351° A

Direction of VA  36.352 deg 2.

3.

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA   a 

VA 41.250

VA  90 deg

VA 126.352 deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equation to be solved graphically is VB = VA + VBA a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

4.

Without actually drawing the vector polygon, we see that VA and VB have the same angle with respect to the X axis. Therefore,

DESIGN OF MACHINERY

SOLUTION MANUAL 6-94-2

VB   VA 5.

 

7.

in VBA  0  sec

VB  VA

VBA   0 deg

Determine the angular velocity of links 3 and 4 using equation 6.7.  

6.

and

VBA b VB c

0.000

rad sec

15.000

rad sec

Determine the magnitude and sense of the vector VPA using equation 6.7. in

VPA   p 

VPA 0.000

VPA  VBA

VPA 0.000deg

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point P. The equation to be solved graphically is VP = VA + VPA a. b. c.

8.

Choose a convenient velocity scale and layout the known vector VA . From the tip of VA, layout the (now) known vector VPA. Complete the vector triangle by drawing VP from the tail of VA to the tip of the VPA vector.

Again, without drawing the vector polygon we see that, VP   VA At this instant, link 3 is in pure translation with every point on it having the same velocity.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-95-1

PROBLEM 6-95 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use the instant center graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 2.75 in

Link 3 (A to B)

b 3.26 in

Link 4 (O4 to B)

c 2.75 in

Link 1 (O4 to B)

d 4.43 in

Coupler point data:

p 1.63  in

 0  deg  15 rad sec

Input crank angular velocity

1

CW

Solution: See Figure P6-33b and Mathcad file P0695. 1. Draw the linkage to scale in the position given, find instant center I1,3 and the distance from the pin joints to the instant center.

Y

B

4 P

O2 2

O4

X

3 36.351° A

Since O2A and O4B are parallel, I 1,3 is at infinity and link 3 does not rotate for this instantaneous position of the linkage. Thus, link 3 is in pure translation and all points on it will have the same velocity. 2.

Use equation 6.7 and inspection of the layout to determine the magnitude and direction of the velocity at points A, B, and P, which will be the same. VA   a 

VA 41.250

in sec

 36.351 deg

VA  90 deg

VA 126.351 deg

The velocity vectors for points B and P are identical to VA .

DESIGN OF MACHINERY

SOLUTION MANUAL 6-96-1

PROBLEM 6-96 Statement:

The linkage in Figure P6-33b has link 3 perpendicular to the X-axis and links 2 and 4 are parallel to each other. Find 3, VA, VB, and VP if 2 = 15 rad/sec CW. Use an analytical method.

Given:

Link lengths: Link 2 (O2 to A)

a 2.75 in

Link 3 (A to B)

b 3.26 in

Link 4 (O4 to B)

c 2.75 in

Link 1 (O4 to B)

d 4.43 in

Coupler point data:

p 1.63  in

 0  deg w2  15 rad sec

Input crank angular velocity Solution: 1.

1

CW

See Figure P6-33b and Mathcad file P0696.

Draw the linkage to a convenient scale and label it.

B

P

O2

O4 36.351°

A  36.351 deg 2.

Determine the values of the constants needed for finding 4 from equations 4.8a and 4.10a. K1  

d

K2  

a 2

K3  

2

2

a b c d

d

K 1 1.6109

c

2

K 3 1.5949

2 a c

  B 2 sin  C K 1  K2 1  cos K 3

A cos  K 1 K 2 cos  K3

3.

A 0.5081 B 1.1855 C 1.1029

Use equation 4.10b to find values of 4 for the open circuit.

 

2

 2 atan2 2 A B  B 4 A C 4.

2 

143.649 deg

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b

2

2 a b

  E 2 sin  F K 1  K4 1   cos K 5

D cos  K 1 K 4 cos  K 5

5.

K 2 1.6109

Use equation 4.13 to find values of 3 for the open circuit.

K 4 1.3589 D 1.3983 E 1.1855 F 0.2127

K 5 1.6873

DESIGN OF MACHINERY

SOLUTION MANUAL 6-96-2

 

2

2

 2 atan2 2 D E  E 4 D F 6.

7.

89.995 deg

Determine the angular velocity of links 3 and 4 using equations 6.18.

 

 

0.000

rad

 

 

15.000

rad

 

a w 2 sin   b sin 

 

a w 2 sin   c sin 

sec

sec

Determine the velocity of points A and B using equations 6.19.

 

 

VA   a w 2sin  j  cos  VA ( 24.450 33.223i)

in

VA 41.250

sec

VAXY  arg VA 

in sec

VAXY 126.351 deg

 

 

VB  c sin  j  cos  VB ( 24.450 33.223i)

in

VB 41.250

sec

VBXY  arg VB  8.

in sec

VBXY 126.351 deg

Determine the velocity of the coupler point P using equations 6.36.

 







VPA   p sin  j  cos 



VPA  1.936 10

4

VP  VA VPA

VPXY  arg VP 

1.676i 10

8

in sec

VP 41.250

in sec

VPXY 126.351 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-97-1

PROBLEM 6-97 Statement:

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at crossheads 2 and 5. Find instant centers I1,3 and I1,4.

Given:

Number of links n  5

Solution:

See Figure P6-33c and Mathcad file P06976.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 10

2

Draw the linkage to scale and identify those ICs that can be found by inspection (4). 2,5 at infinity 2 3,4

1,2 at infinity

3 2,3 1

4 5

4,5 1,5 at infinity

2.

Use Kennedy's Rule and a linear graph to find the remaining ICs required to find I1,3 and I1,4 . I2,4: I1,2 -I1,4 and I2,3 -I3,4

2,5 at infinity 3,4

I3,5: I2,3 -I2,5 and I4,5 -I3,4

2

I1,4: I1,2 -I2,4 and I1,5 -I4,5 I1,3: I1,2 -I2,3 and I1,4 -I3,4

1,3; 1,4

1,2 at infinity

3 2,3; 2,4 1

4 5

4,5; 3,5 1,5 at infinity

DESIGN OF MACHINERY

SOLUTION MANUAL 6-98-1

PROBLEM 6-98 Statement:

The crosshead linkage shown in Figure P6-33c has 2 DOF with inputs at cross heads 2 and 5. Find VB , VP3, and VP4 if the crossheads are each moving toward the origin of the XY coordinate system with a speed of 20 in/sec. Use a graphical method.

Given:

Link lengths: Link 3 (A to B)

b 34.32 in

Link 4 (B to C)

c 50.4 in

Link 2 Y-offset

a 59.5 in

Link 5 X-offset

d 57 in

AP3  31.5 in

BP3  22.2 in

BP4  41.52 in

CP4  27.0 in

Coupler point data:

1

V2Y  20 in  sec

Input velocities: Solution: 1.

V5X  20 in  sec

1

See Figure P6-33c and Mathcad file P0698.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Y

Direction of VP3A Direction of VBA Direction of VBC

2 P3

A Direction of VA

3

Direction of VP4C B

P4

4

5 X C Direction of VC 2.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocities VBA, VBC and the angular velocities of links 3 and 4. The equations to be solved (simultaneously) graphically are VB = VA + VBA

VC = VB + VCB

a. Choose a convenient velocity scale and layout the known vectors VA and VC b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tip of VC, draw a construction line with the direction of VCB, magnitude unknown. d. From the origin, draw a construction line to the intersection of the two construction lines in steps b and c. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line. And then do the same with the VCB vector (See next page)

DESIGN OF MACHINERY

SOLUTION MANUAL 6-98-2

5.932

V BC

Y 0

10 in/sec

VB V BA

60.123° 32.718°

46. 990°

X

VC

6.004

4. 385

VA

3.

From the velocity triangles we have: 1

Velocity scale factor:

4.

10 in  sec in

in

VB  4.385 in kv

VB 43.850

VBA  6.004 in  kv

VBA 60.040

VBC  5.932 in kv

VBC 59.320

VB  46.990 deg

sec in

VBA  60.123 deg

sec in

VBC  32.718 deg

sec

Determine the angular velocity of links 3 and 4 using equation 6.7.    

6.

kv  

VBA b VBC c

1.749

rad

CCW

sec

1.177

rad

CW

sec

Determine the magnitudes of the vectors VP3A and VP4C using equation 6.7. VP3A   AP3 

VP3A 55.107

in sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-98-3

VP4C   CP4  7.

in

VP4C 47.234

sec

Use equation 6.5 to (graphically) determine the magnitude of the velocities at points P3 and P4. The equations to be solved graphically are VP3 = VA + VP3A a. b. c. d.

VP4 = VC + VP4C

Choose a convenient velocity scale and layout the known vector VA . From the tip of VA, layout the (now) known vector VP3A. Complete the vector triangle by drawing VP3 from the tail of VA to the tip of the VP3A vector. Repeat for VP4.

V P3A

V P3 Y

0

3.537

10 in/sec

VP4 164.011°

V P4C

104.444°

X

VC 6.598

VA

8.

From the velocity triangles we have: 1

Velocity scale factor:

kv  

10 in  sec in

VP3  3.537 in  kv

VP3 35.370

VP4  6.598 in  kv

VP4 65.980

in sec in sec

P3  104.444 deg P4  164.011 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-99-1

PROBLEM 6-99 Statement:

The linkage in Figure P6-33d has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find VA in the position shown if the velocity of the slider is 20 in/sec downward. Use the velocity difference graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 12 in

Link 3 (A to B)

b 24 in

Link 4 (O4 to B)

c 18 in

Link 5 (C to D)

f 24 in

Link 4 (O4 to C)

e 18 in

Link 1 X-offset

dX  19 in

Link 1 Y-offset

dY  28 in

4  0.0 deg

Angle BO4C

 0 deg

Output crank angle:

VD  20 in  sec

Input slider velocity Solution: 1.

Global XY system 1

VD  90.0  deg

See Figure P6-33d and Mathcad file P0699.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest. Direction of VC

Direction of VCD C

Direction of VB O4 19.963°

4

116.161°

B 5

Y

D 3

O2

2

114.410°

A

6 X

Direction of VD

Direction of VAB Direction of VA

2.

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point C. The equation to be solved graphically is VC = VD + VCD a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VCD, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VC, magnitude unknown. d. Complete the vector triangle by drawing VCD from the tip of VD to the intersection of the VC construction line and drawing VC from the tail of VD to the intersection of the VCD construction line.

DESIGN OF MACHINERY

SOLUTION MANUAL 6-99-2

Y

X 1.806 0

10 in/sec 70.037°

VC VD VCD

3.

From the velocity triangle we have: 1

Velocity scale factor:

VC  1.806 in  kv 4.

kv  

10 in  sec in

VC 18.060

in

VC  70.037 deg

sec

Determine the magnitude and sense of the vector VB . VB   VC

VB 18.060

in sec

VB  VC 180 deg 5.

VB 109.963 deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point A. The equation to be solved graphically is VA = VB + VAB a. Choose a convenient velocity scale and layout the known vector VB . b. From the tip of VB, draw a construction line with the direction of VAB, magnitude unknown. c. From the tail of VB , draw a construction line with the direction of VA , magnitude unknown. d. Complete the vector triangle by drawing VAB from the tip of VB to the intersection of the VA construction line and drawing VA from the tail of VB to the intersection of the VAB construction line.

6.

From the velocity triangle we have:

Y

Velocity scale factor:

V AB

1

kv  

10 in  sec

VB

in

VA  1.977 in kv VA 19.770

VA

1.977

0

in sec

VA  90.0  deg

X

10 in/sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-100-1

PROBLEM 6-100 Statement:

The linkage in Figure P6-33a has the path of slider 6 perpendicular to the global X-axis and link 2 aligned with the global X-axis. Find VA in the position shown if the velocity of the slider is 20 in/sec downward. Use the instant center graphical method.

Given:

Link lengths:

Solution: 1.

Link 2 (O2 to A)

a 12 in

Link 3 (A to B)

b 24 in

Link 4 (O4 to B)

c 18 in

Link 5 (C to D)

f 24 in

Link 3 (A to C)

p 2.25  in

Link 4 (O4 to C)

e 18 in

Link 1 X-offset

dX  19 in

Link 1 Y-offset

dY  28 in

Angle BO4C

4  0.0 deg

Output crank angle:

 0 deg

Input slider velocity

VD  20 in  sec

Global XY system 1

VD  90.0  deg

See Figure P6-33d and Mathcad file P06100.

Draw the linkage to scale in the position given, find instant centers I1,3 and I1,5 , and the distances from the pin joints to the instant centers. C

O4

4

5

B 1,5

D 3 1,3

2

O2

6

A

From the layout above: AI13  70.085 in 2.

VD DI15

VC e

CW

sec

VC 18.057

in sec

1.003

rad

CW

sec

Determine the magnitude of the velocity at point B using equation 6.9b. VB  c 

6.

rad

Use equation 6.9c to determine the angular velocity of link 4.  

5.

0.286

Determine the magnitude of the velocity at point C using equation 6.9b. VC  CI15 

4.

CI15  63.095 in

Use equation 6.9c to determine the angular velocity of link 5.  

3.

BI13  64.013 in

VB 18.057

Determine the angular velocity of link 3 using equation 6.9a.

in sec

DI15  69.886 in

DESIGN OF MACHINERY

  7.

VB BI13

SOLUTION MANUAL 6-100-2

0.282

rad

CCW

sec

Determine the magnitude of the velocity at point A using equation 6.9b. in Upward VA   AI13  VA 19.769 sec

DESIGN OF MACHINERY

SOLUTION MANUAL 6-101-1

PROBLEM 6-101 Statement:

For the linkage of Figure P6-33e, write a computer program or use an equation solver to find and plot VD in the global coordinate system for one revolution of link 2 if 2 = 10 rad/sec CW.

Given:

Link lengths: a 5.00

Input crank (L2)

Output crank (O4B) c  6.00 d 2.500

Fourbar ground link (L1)

b 5.00

Slider coupler (L 5)

e 15.00

Angle BO4C

 83.621 deg

atan2 (x  y)   return 0.5  if x = 0 y 0

Two argument inverse tangent: Crank velocity:

Fourbar coupler (L3)

return 1.5  if x = 0 y 0

rad  10 sec

 y if x 0 return atan  x     y  atan  x    otherwise   

Solution:

See Figure P6-33e and Mathcad file P06101.

1.

This sixbar drag-link mechanism can be analyzed as a fourbar Grashof double crank in series with a slider-crank mechanism using the output of the fourbar, link 4, as the input to the slider-crank.

2.

Define one revolution of the input crank:  0 deg  1 deg   360 deg

3.

Use equations 4.8a and 4.10 to calculate 4 as a function of 2 (for the open circuit) in the global XY coordinate system. K1  

d

K2  

a

K 1 0.5000



2

d

K3  

c

K 2 0.4167



2

2

a b c d

2

2 a c

K 3 0.7042



A   cos  K1 K 2 cos  K 3













C   K 1  K 2 1   cos  K 3

B   2 sin 



 

   

 2

  2 2 A   B   B  4 A   C   atan2  4.

If the calculated value of 4 is greater than 2, subtract 2from it and if it is negative, make it positive.

   



 

  if   2    2   

   



 

   if  0    2    5.

Determine the slider-crank motion using equations 4.16 and 4.17 with 4 as the input angle.

  

sin    c    asin   e  





  

  

f   c  cos    e cos  5.

Determine the values of the constants needed for finding 3 from equations 4.11b and 4.12. K4  

d b

2

K5  

2

2

c d a b 2 a b

2

DESIGN OF MACHINERY

SOLUTION MANUAL 6-101-2

K 4 0.5000



K 5 0.4050





D   cos  K1 K 4 cos  K5





E   2 sin  6.





F   K1  K 4 1  cos  K5

Use equation 4.13 to find values of 3 for the open circuit.







 

 2

   

   2  atan2 2 D   E   E  4 D  F    7.

Determine the angular velocity of link 4 for the open circuit using equations 6.18.



    8.

       

a  sin    c sin   

Determine the angular velocity of link 5 using equation 6.22a:

      

c cos         e cos  



9.

Determine the velocity of pin D using equation 6.22b:



    

    

VD   c    sin   e    sin   50

25

0



VD  25

50

75

100

0

45

90

135

180  deg

225

270

315

360

DESIGN OF MACHINERY

SOLUTION MANUAL 6-102-1

PROBLEM 6-102 Statement:

For the linkage of Figure P6-33f, locate and identify all instant centers.

Given:

Number of links n  8

Solution:

See Figure P6-33f and Mathcad file P06102.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

1.

n ( n 1)

C 28

2

To 1,8 at infinity 7,8

8

Draw the linkage to scale and identify those ICs that can be found by inspection (10).

7 5,6 6

2.

Use Kennedy's Rule and a linear graph to find the remaining 18 ICs.

1,6 O6

5,7

I1,3: I1,2 -I2,3 and I1,4 -I3,4

5

I1,5: I1,6 -I5,6 and I1,3 -I3,5 2,3

I2,4: I1,2 -I1,4 and I2,3 -I3,4 I4,5: I1,4 -I1,5 and I3,5 -I3,4

3,4

I2,5: I1,2 -I1,5 and I2,4 -I4,5

4

I2,6: I1,2 -I1,6 and I2,5 -I5,6

3

2

3,5

1,4

O4

1,2

O2

I3,6: I2,3 -I2,6 and I1,2 -I1,6 5,8

I5,8: I5,7 -I7,8 and I1,5 -I1,8 I4,8: I4,5 -I5,8 and I1,8 -I1,4

To 1,8 at infinity

I2,8: I2,4 -I4,8 and I1,2 -I1,8 I3,8: I3,4 -I4,8 and I1,3 -I1,8

1,5

8

7,8

I6,8: I5,8 -I5,6 and I2,8 -I2,6

6,7 1,7

I2,7: I2,8 -I7,8 and I2,5 -I5,7

7 5,6

1,3; 3,8

I6,7: I5,6 -I5,7 and I6,8 -I7,8

6

I3,7: I3,6 -I6,7 and I2,3 -I2,7

1,6 O6

5,7

I4,6: I1,4 -I1,6 and I4,5 -I5,6 5

I4,7: I4,6 -I6,7 and I3,4 -I3,7

3,7

6,8 2,7

I1,7: I1,8 -I7,8 and I1,6 -I6,7

2,3 4,5 4,7

3 1,4 O4

2,4

3,5

2,5

2

4 3,4 O2

1,2

2,8 4,8

To 2,6 and 3,6 4,6

DESIGN OF MACHINERY

SOLUTION MANUAL 6-103-1

PROBLEM 6-103 Statement:

The linkage of Figure P6-33f has link 2 at 130 deg in the global XY coordinate system. Find VD in the global coordinate system for the position shown if 2 = 15 rad/sec CW. Use any graphical method.

Given:

Link lengths: Link 2 (O2 to A)

a 5.0 in

Link 3 (A to B)

b 8.4 in

Link 4 (O4 to B)

c 2.5 in

Link 1 (O2 to O4)

d1  12.5  in

Link 5 (C to E)

e 8.9 in

Link 5 (C to D)

h 5.9 in

Link 6 (O6 to E)

f 3.2 in

Link 7 (D to F)

k 6.4 in

Link 3 (A to C)

g 2.4 in

d2  10.5  in

Link 1 (O2 to O6)

2  130 deg

Crank angle:

Slider axis offset and angle:

s 11.7 in

 15 rad sec

Input crank angular velocity Solution: 1.

 150 deg 1

CW

See Figure P6-33f and Mathcad file P06103.

Draw the linkage to a convenient scale. Indicate the directions of the velocity vectors of interest.

Direction of VF 8 Direction of VFD

Y

F

Direction of VE

7 E

Direction of VEC

6 Direction of VDC

5

Direction of VCA Direction VBA

C

Direction of VB

O6

D

Direction of VA

A

3

2

B 4 O4

X

O2

Angles measured from layout:

2.

VB  24.351 deg

VBA  79.348 deg

VCA  VBA

VE  64.594 deg

VEC  162.461 deg

VDC  VEC

VF  150.00 deg

VFD  198.690 deg

Use equation 6.7 to calculate the magnitude of the velocity at point A. in

VA   a 

VA 75.000

VA  2 90 deg

VA 40.000 deg

sec

DESIGN OF MACHINERY

3.

SOLUTION MANUAL 6-103-2

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point B, the magnitude of the relative velocity VBA, and the angular velocity of link 3. The equations to be solved graphically are VB = VA + VBA

and

VC = VA + VCA

a. Choose a convenient velocity scale and layout the known vector VA . b. From the tip of VA, draw a construction line with the direction of VBA, magnitude unknown. c. From the tail of VA , draw a construction line with the direction of VB , magnitude unknown. d. Complete the vector triangle by drawing VBA from the tip of VA to the intersection of the VB construction line and drawing VB from the tail of VA to the intersection of the VBA construction line.

2.668

VA 0.943 V CA

0

VC

25 in/sec

3.302

Y 22. 053° X

V BA VB 3. 192

4.

From the velocity polygon we have: 1

Velocity scale factor:

25 in  sec in

in

VB  3.192 in kv

VB 79.800

VBA  3.302 in  kv

VBA 82.550

  5.

kv  

VBA b

9.827

VB 24.351 deg

sec in

VBA 79.348 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VCA and determine the magnitude and velocity of VC from the velocity polygon above. VCA  g 

VCA 23.586

Length of VCA on velocity polygon: v CA   VC  2.668 in  kv

in sec

VCA

v CA 0.943in

kv

VC 66.700

VCA 79.348 deg

in sec

VC  22.053deg

DESIGN OF MACHINERY

6.

SOLUTION MANUAL 6-103-3

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point E, the magnitude of the relative velocity VED, and the angular velocity of link 5. The equations to be solved graphically are VE = VC + VEC

and

VD = VC + VDC

a. Choose a convenient velocity scale and layout the known vector VC. b. From the tip of VC, draw a construction line with the direction of VEC, magnitude unknown. c. From the tail of VC, draw a construction line with the direction of VE, magnitude unknown. d. Complete the vector triangle by drawing VEC from the tip of VC to the intersection of the VE construction line and drawing VE from the tail of VC to the intersection of the VEC construction line. 1. 821

1.207 V EC VE

1.716 0

VD

V DC

25 in/sec VC Y

45.934°

X 1.900

7.

From the velocity polygon we have: 1

Velocity scale factor:

in in

VE 42.900

VEC  1.821 in kv

VEC 45.525

VEC e

5.115

VE 64.594 deg

sec in

VEC 162.461 deg

sec

rad

CCW

sec

Calculate the magnitude and direction of VDE and determine the magnitude and velocity of VD from the velocity polygon above. VDC   h 

Length of VDC on velocity polygon: VD  1.900 in  kv 9.

25 in  sec

VE  1.716 in kv

  8.

kv  

VDC 30.179 v DC  

in sec

VDC

v DC 1.207 in

kv

VD 47.500

VDC 162.461 deg

in sec

VD  45.934deg

Use equation 6.5 to (graphically) determine the magnitude of the velocity at point F, the magnitude of the relative velocity VFD, and the angular velocity of link 5. The equation to be solved graphically is VF = VD + VFD

DESIGN OF MACHINERY

SOLUTION MANUAL 6-103-4

a. Choose a convenient velocity scale and layout the known vector VD. b. From the tip of VD, draw a construction line with the direction of VFD, magnitude unknown. c. From the tail of VD, draw a construction line with the direction of VF, magnitude unknown. d. Complete the vector triangle by drawing VFD from the tip of VD to the intersection of the VF construction line and drawing VF from the tail of VD to the intersection of the VFD construction line. Y 0

VD

25 in/sec

V FD 150.000° VF

45.934°

X 1.158

10. From the velocity polygon we have: 1

Velocity scale factor:

VF  1.158 in kv

kv  

25 in  sec in

VF 28.950

in sec

VF 150.000 deg

DESIGN OF MACHINERY

SOLUTION MANUAL 6-104-1

PROBLEM 6-104 Statement:

For the linkage of Figure P6-34, locate and identify all instant centers.

Given:

Number of links n  6

Solution:

See Figure P6-34 and Mathcad file P06104.

1.

Determine the number of instant centers for this mechanism using equation 6.8a. C 

2.

n ( n 1)

C 15

2

Draw the linkage to scale and identify those ICs that can be found by inspection (7). 4,5 C

3,4

2,3

B

5

A

3

5,6 3

D

4

2

6 E 3,6 O4

1,4

2.

1,2 O2

1

Use Kennedy's Rule and a linear graph to find the remaining 8 ICs: I1,3 ; I1,5 ; I1,6 ; I2,4; I2,5; I2,6; I3,5; and I4,6 I2,4: I1,2 -I1,4 and I2,3 -I3,4

I3,5: I2,3 -I2,5 and I3,4 -I4,5

I4,6: I3,4 -I3,6 and I4,5 -I5,6

I1,3: I1,2 -I2,3 and I1,4 -I3,4

I2,6: I1,4 -I4,6 and I2,3 -I3,6

I1,5: I1,2 -I2,5 and I1,3 -I3,5

I2,5: I2,6 -I5,6 and I2,4 -I4,5

I1,6: I1,3 -I3,6 and I1,4 -I4,6

1 6

2

5

3 4

1,3

1,5 3,5

4,6

4,5

2,5

C

2,3

B 3,4

5

2,6

A

3

5,6 3

D

2

4

2,4

6 E 3,6 1,4

1,6

O4

1

1,2 O2

DESIGN OF MACHINERY

SOLUTION MANUAL 6-105-1

PROBLEM 6-105 Statement:

For the linkage of Figure P6-34, show that I1,6 is stationary for all positions of link 2.

Given:

Link lengths:

Solution: 1.

Input crank (L2)

a 1.75

First coupler (AB)

b 1.00

First rocker (O4B)

c 1.75

Ground link (O2O4)

d 1.00

Second input (BC)

e 1.00

Second coupler (L5)

f 1.75

Output rocker (L6)

g 1.00

Third coupler (BE)

h 1.75

Ternary link (AE)

k 2.60

See Figure P6-34 and Mathcad file P06105.

Because the linkage is symmetrical and composed of two parallelograms the analysis can be done with simple trigonometry. We will show that the path of point E on link 6 is a circle and that the center of the circle is the instant center I1,6 .

C e

f

B

5

= 25.396°

3

h

A

b 3

RP k

R2

4

D g 6

2 a

c

E

RE

x

O4

1 d

O2 y

2.

Calculate the fixed angle that line AB (b) makes with line AE (k) using the law of cosines. This is the angle that the coupler point, E, makes with link 3 in the fourbar made up of links 1, 2, 3, and 4. Because links 1, 2, 3, and 4 are a parallelogram, link 4 will have the same angle as link 2 and AB will always be parallel to O2O4.

b k h  acos b k  2 2

3.

2

2

 

25.396 deg

Define the vectors R2, RP, and RE as shown above. Then, RE = R2 + RP or,

  

 

cos   = acos  jsin  k    jsin  Separating into real and imaginary parts, the coordinates of point E for all positions of link 2 are:









x E    a cos  k cos  yE   a  sin  k  sin 

DESIGN OF MACHINERY

SOLUTION MANUAL 6-105-2

This pair of equations represent the parametric equation of a circle with radius a and center at x EC  k cos 

x EC 2.349

yEC  k  sin 

yEC 1.115

4.

Define one revolution of the input crank:  0 deg  1 deg   360 deg

5.

Plot the position of point E as a function of the angle of input link 2.

PATH OF POINT E 4

2.349

3

2



yE 

1.115

1

0

1

0

1

2



3

4

5

xE 

6.

From Problem 6-104, the instant center I1,6 is located at the intersection of a line through O4 that is parallel to BE (angle ) with a line through E that is parallel to O2A (angle 2). (See figure on next page). The coordinates of the intersection of these two lines for the position shown ( 64.036 deg ) are:

Angle BAE:

b h k  acos b h  2

Coordinates of point E:

xE  a  cos  k cos 

2

2

2

 



x E 3.115



yE 0.458

yE  a sin  k sin   Line through E with angle 2:

Coordinates of point O4:



y( x )   x x E  tan  yE x O4  d

39.582 deg

yO4  0

DESIGN OF MACHINERY

SOLUTION MANUAL 6-105-3

Line through O4 with angle :

y( x )   x x O4  tan  

Solving for the intersection (point F, the instant center I1,6 ) of these two lines: xF  

 tan  tan  

xE  tan  yE d tan  

x F 2.349

yF   xF d  tan  

yF 1.115

These are the coordinates of the instant center I1,6 and the center of the circle through which point E passes. Thus, the instant center I1,6 is stationary and is a hinge point that link 6 rotates about with respect to link 1.

1,3

1,5 3,5

4,6

4,5

2,5

C

2,3

B 3,4

5 5,6

39.582° D

3

2

4

6

2,6

A

3

2,4

64.036°

E 3,6

1,4

O4

1

1,2 O2 1.115"

1.750" 1,6

F 2.349"

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF