Design of Industrial Building Using ETABS
December 21, 2016 | Author: Navin Ramroop | Category: N/A
Short Description
Download Design of Industrial Building Using ETABS...
Description
MEMORY STRUCTURES
PROJECT: INDUSTRIAL BUILDING USING LRFD This memory comprises calculating seismic-resistant structural analysis model adopted for metal structures taking into consideration the recommendations of the following standards: • STANDARD TECHNICAL BUILDING E.020 CHARGES • STANDARD TECHNICAL BUILDING DESIGN SEISMIC RESISTANT E.030 • STANDARD TECHNICAL BUILDING E-090 METAL STRUCTURES MODELING IN INDUSTRIAL ETABS The structure is in industrial use with some alternative structural configurations in the front
An analysis using the program ETABS V13.1.1 as a result the structural response (strains and stresses) of the structure will be obtained is performed. With the data obtained, it will proceed with the steel design of all elements as indicated by structural technical standards.
MATERIAL PROPERTIES We define the following materials used in the metal structure Steel bars : A36 use a steel with the following characteristics;; Weight per unit volume: 7849kg / m3 Modulus of elasticity (E): 20389 Poisson's ratio (OR) = 0.3 Shear modulus (G) = 7841.93 Aluminum Use aluminum to cover the roof of the nave with the following characteristics: Weight per unit volume: 2713 Modulus of elasticity (E): 7101 Poisson's ratio (OR) = 0.33 Shear modulus (G) = 2669.55 Concrete We use concrete footings with the following characteristics: Weight per unit volume: 2400kg / m3 Modulus of elasticity (E): 2188.2 Poisson's ratio (OR) = 0.2 Shear modulus (G) = 911.75
Load Combinations The load combinations introduce the program considering the E-090 standard that indicates the following load combinations:
In our project: Our project is located in the city of Ica so take a load value zero snow as well as zero load rain. In our project the value of imposed dead load (due to accessories, lighting, etc. and others) will be 30kg / m2.
INTRODUCED IN COMBINATION PROGRAM
VIEW OF CHARGES INTRODUCED
MODEL FEATURES The model as seen in the figure consists of 9 steel frames that are laterally braced and ceiling profiles by cross (cross san andres) .These sections have been designed following the standard AISC LRFD 93 using the program as Etabs steel design module.
The front porch will be composed of the following profiles shown PORTICO FRONT (HUB 1-1)
PORTICO BACK (HUB 9-9)
GATES INTERMEDIATE (2-2 AXLE SHAFT 8-8)
SEISMIC ANALYSIS
The seismic analysis of steel structure will be made by the static analysis of earthquake in the direction of the X axis and Y-axis and .so we need to calculate the first base shear coefficient must find the basal ZUCS / R
V = *
!"#$ %
SEISMIC WEIGHT
Z = factor of our project area (Ica -zona3) S = parameter floor of our project (intermediate floor S2) C = seismic amplification factor (2.5Tp / T) U = Factor by type of building (our project is a type C Building) R = reduction coefficient tables structural systems (ductile Porticos moments resistant joints on the shaft axis XX and YY cross braced) .No evaluaemos relative displacements (Drift). So :
In the program by entering the following values:
The weight of the structure is obtained for a class C building adding to the dead load 25% of the live load as mandated by the RNE. (E-030)
ANALYSIS OF WIND
The whole structure is subject to wind action, but also when they are in areas where wind speed is significant, or are more vulnerable to aerodynamic effects. In the case of steel, because of its relatively low and large surfaces exposed to the wind own weight, they can be more important that the charges due to the earthquake .Tendremos to do an analysis of the map that indicates value curves average wind speed and other Although the wind has dynamic nature, is satisfactory deal in the wind like a static load, this being devel pressure that the following equation;;
Pressures acting on the structure;; Wind axis x-x The pressure P1, this is directly assigned to the columns in a distributed manner (Windward);; the calculated pressure is multiplied by the tax area of the enclosure or the distance between .then columns columns front and back porch a load of 36kg / m is assigned as they have lower tax area and intermediate columns is assigned 72 kg / m . The pressure P2 is assigned to the beams and columns of the front and back porches considering its tributary width. The pressure P3 is assigned to the columns on the right side (leeward). The pressure P4 is assigned to the surface (cover) to windward The pressure P5 is assigned to the surface (cover) to leeward Y-AXIS WIND AND We followed the same procedure considering where each pressure is applied.
Results The results once the structural analysis computer made us throw the following: CHARTS ENVELOPE Diagram 3-3 Surround time (max)
Axial force diagram Columns
SHEAR FORCE DIAGRAM (SHEAR 2-2)
Structure weight
The weight of the structure can be obtained from a combination of loads create considering the section of the E-030 technical standard for a building type C and reviewing the results of the reactions at the base
The weight of the structure is 568 tonf. as shown in FIG. CUTTING BASE BY EARTHQUAKE From our analysis we quake: EARTHQUAKE X-X Vxx = 0.07 * Pestructura Vxx = 0.07 * 568 = 39.76 tonf EARTHQUAKE Y-Y Vy-y = 0.11 * 568 = 62.48 tonf Displacement quake Analyze quake displacements at the nodes of the top of the structure, then analyzing the knot in the case of the envelope has shifted 0.03 mm in the x-axis (lateral displacement) it is acceptable.
The vertical displacement at the ridge: -0.1 mm relative to the z axis (acceptable)
ANALYSIS OF WIND EFFECTS
TABLE: Base Reactions FZ MX MY MZ Load Case / Combo FX FY tonf tonf tonf tonf-‐m tonf-‐m tonf-‐m -‐ Wind 4032 2.6795 12.8791 203.0692 193.5197 102.0246
X m 0
Lateral displacement by wind : 0.0372mm (acceptable)
Vertical displacement in ridge wind: 0.2 mm
Y m 0
Z m 0
PROFILE DESIGN FOR COLUMNS AND BEAMS, ETC To design the AISC LRFD 93 standard is used and the program is responsible for selecting ETABS, a group of selected profiles for our bars, which support the demand for that profile
SECTION we discuss: Columns W18X60 front porch
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Envelope)
LRFD 93 AISC Steel Section Check (Strength Envelope) LRFD 93 AISC Steel Section Check (Strength Envelope)
Element Details Level
Element
Section
Combo
Location
Frame Type
Classification
Story1
C20
W18X60
SURROUND
3860.9
Moment Resisting Frame
Seismic
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
11354.8
409571722.8
189.9
1771964.4
5649.7
2015608.9
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
903222.2
20853194.4
42.9
217193.7
4872.9
337573.5
1.03E + 12
Material Properties E (kgf / mm)
f (kgf / mm)
r22 (mm)
α
20389.02
35.15
42.9
NA
LLRF and Demand / Capacity Ratio L (mm)
LLRF
Stress Ratio Limit
4200.0
0.806
0.95
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.799
0.059 +
0.726 +
0.015
Forces and Moments Stress Check
Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
3860.9
-16.9328
46.3036
0.15
-19.2376
-0.0793
Biaxial Axial Force & Moment Design Factors (H1-1b)
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.919
1.71
0.85
1
1
2,175
Minor Bending
0.919
1,202
0.85
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
16.9328
144.0049
359.2452
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
46.3036
63.7701
Minor Bending
0.15
10.3074
Shear Design
Vu Force (tonf)
φVn Capacity (tonf)
Major Shear
19.2376
87.3626
0.22
Minor Shear
.0793
101.2888
0.001
Stress Ratio
BEAM W14X109 (PORTICO FRONT)
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story2
B41
2020.3
SURROUND
Moment Resisting Frame
W14X109
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
20645.1
516126967.7
158.1
2841952.8
13501.1
3146316.3
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
2963567.8
186055447.2
94.9
1003427.1
4843.5
1519080.8
5.409E + 12
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.942
0.036 +
0.902 +
0.004
Stress Check Forces and Moments (H1-1b) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
2020.3
47.6066
89.7629
.1894
-70.4667
0.0373
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.914
1
1
1
1
2.16
L Factor
K
Cm
B1
B2
Cb
Minor Bending
0.914
1
1
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
47.6066
598.5652
653173
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
89.7629
99.5436
Minor Bending
.1894
47.6198
Shear Design
φVn Capacity (tonf)
Vu Force (tonf)
Stress Ratio
Major Shear
70.4667
86.8363
0.811
Minor Shear
0.0373
242.0505
1.539E-04
BEAM W14X61 (GATES INTERMEDIATE)
ETABS 2013 Steel Frame Design
LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story2
B300
222
SURROUND
Moment Resisting Frame
W14X61
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
11548.4
266388112.4
151.9
1509024.6
6935.5
1671480.5
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
911546.8
44536762.5
62.1
350683.2
3362.9
537495.7
1.268E + 12
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.932
0.018 +
0.913 +
1.63E-04
Stress Check Forces and Moments (H1-1b) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
222
-6.8335
-48.3039
0.0027
-20.3008
-0.0012
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.984
1
0.85
1
1
1,051
Minor Bending
0.143
1
0.85
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
6.8335
186.7076
365.3687
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
48.3039
52.8825
Minor Bending
0.0027
16.6424
Shear Design
Vu Force (tonf)
φVn Capacity (tonf)
Major Shear
20.3008
60.2909
0.337
Minor Shear
0.0012
124341
9.942E-06
Stress Ratio
BELTS W6X9
ETABS 2013 Steel Frame Design
LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story2
B254
1714.3
SURROUND
Moment Resisting Frame
W6X9
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
1729
6826195.4
62.8
91101
910.9
102091.4
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
16857.4
915709.1
2. 3
18300.3
647.1
28185.8
4755313148
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
25.31
NA
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.091
0.069 +
0.019 +
0.002
Stress Check Forces and Moments (H1-1b) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
1714.3
5.4595
.0447
0.0015
-0.0058
0.0026
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
Major Bending
1
1
1
1
1
1,228
Minor Bending
0.429
1
1
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
5.4595
27.7751
39.3863
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
.0447
2.3256
Minor Bending
0.0015
.6253
Shear Design φVn Capacity (tonf)
Vu Force (tonf)
Stress Ratio
Major Shear
0.0058
8.3529
0.001
Minor Shear
0.0026
11.7577
2.25E-04
LATERAL BRACING W14X22
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story1
D11
2900
SURROUND
Moment Resisting Frame
W14X22
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
4187.1
82830053.7
140.6
476062.2
1801.1
544050.5
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
86576.1
2913620
26.4
45883.8
2032.9
71939.2
8.369E + 10
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Stress Check Message - kl / r> 200
Demand / Capacity (D / C) Ratio (H1-1a) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.433
0.401 +
0.03 +
0.003
Stress Check Forces and Moments (H1-1a) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
2900
-5.2068
-0.2143
-0.0063
-0.1199
-0.0023
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.5
1
0.85
1
1
1.55
Minor Bending
1
1
1
1,426
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
5.2068
12.9925
132.4717
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
.2143
6.3257
Minor Bending
0.0063
2.1775
Shear Design Vu Force (tonf)
φVn Capacity (tonf)
Major Shear
.1199
36.4464
0.003
Minor Shear
0.0023
32.2901
7.228E-05
Stress Ratio
BEAMS (PORTICO FRONT) W12X14
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story2
B10
1010.2
SURROUND
Moment Resisting Frame
W12X14
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
2683.9
36878104.3
117.2
244015.8
960.5
285134.9
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
29302.7
982306.2
19.1
19482.9
1535.5
31135.4
2.147E + 10
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.154
0.04 +
0.109 +
0.005
Stress Check Forces and Moments (H1-1b) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
1010.2
6.8632
0.8744
0.0044
1.1299
-0.0151
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
Major Bending
1.78
1
1
1
1
1,149
Minor Bending
0.89
1
1
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
6.8632
42.0294
84.9125
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
0.8744
8,011
Minor Bending
0.0044
.9246
Shear Design
Vu Force (tonf)
φVn Capacity (tonf)
Stress Ratio
Major Shear
1.1299
27.5285
0.041
Minor Shear
0.0151
17.2198
0.001
COLUMNS (BACK) W14X109
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story2
C46
5565.2
DStlS1
Moment Resisting Frame
W14X109
Compact
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
20645.1
516126967.7
158.1
2841952.8
13501.1
3146316.3
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
2963567.8
186055447.2
94.9
1003427.1
4843.5
1519080.8
5.409E + 12
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Demand / Capacity (D / C) Ratio (H1-1a) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.727
0.369 +
0.356 +
0.002
Stress Check Forces and Moments (H1-1a) (Combo DStlS1) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
5565.2
-80.1928
-39.9117
-0.1216
11.1465
0.031
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.941
1,213
0.378
1
1
2,184
L Factor
K
Cm
B1
B2
Cb
Minor Bending
0.941
2,035
0.434
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
80.1928
217.5067
653173
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
39.9117
99.5436
Minor Bending
.1216
47.6198
Shear Design φVn Capacity (tonf)
Vu Force (tonf)
Stress Ratio
Major Shear
11.1465
86.8363
0.128
Minor Shear
0.031
242.0505
1.279E-04
W18X60 INTERMEDIATE COLUMNS
ETABS 2013 Steel Frame Design LRFD 93 AISC Steel Section Check (Strength Summary)
Element Details Level
Element
Location (mm)
Combo
Element Type
Section
Classification
Story1
C29
3860.9
SURROUND
Moment Resisting Frame
W18X60
Seismic
Design Code Parameters Φb
Φc
Φt
Φv
Φc, Angle
0.9
0.85
0.9
0.85
0.9
Section Properties A (mm²)
I33 (mm⁴)
r33 (mm)
S33 (mm³)
Av3 (mm²)
Z33 (mm³)
11354.8
409571722.8
189.9
1771964.4
5649.7
2015608.9
J (mm⁴)
I22 (mm⁴)
r22 (mm)
S22 (mm³)
Av2 (mm²)
Z22 (mm³)
Cw (mm⁶)
903222.2
20853194.4
42.9
217193.7
4872.9
337573.5
1.03E + 12
Material Properties E (kgf / mm)
f (kgf / mm)
α
20389.02
35.15
NA
Demand / Capacity (D / C) Ratio (H1-1b) D / C Ratio
Axial Ratio
Flexural RatioMajor
Flexural RatioMinor
0.799
0.058 +
0.726 +
0.015
Stress Check Forces and Moments (H1-1b) (Combo Surround) Location (mm)
Pu (tonf)
Mu33 (tonf-m)
Mu22 (tonf-m)
Vu2 (tonf)
Vu3 (tonf)
3860.9
-16.7635
-46.3013
.1502
19.2322
-0.0793
Biaxial Axial Force & Moment Design Factors
L Factor
K
Cm
B1
B2
Cb
L Factor
K
Cm
B1
B2
Cb
Major Bending
0.919
1.71
0.85
1
1
2,191
Minor Bending
0.919
1,202
0.85
1
1
Axial Force and Capacities Pu Force (tonf)
φPnc Capacity (tonf)
φPnt Capacity (tonf)
16.7635
144.0049
359.2452
Moments and Capacities
Mu Moment (tonf-m)
φMn Capacity (tonf-m)
Major Bending
46.3013
63.7701
Minor Bending
.1502
10.3074
Shear Design
φVn Capacity (tonf)
Vu Force (tonf)
Stress Ratio
Major Shear
19.2322
87.3626
0.22
Minor Shear
.0793
101.2888
0.001
View more...
Comments