Descripción: For designing anchor blocks for Small Hydropower Scheme...
Description
Desing of Achor Blocks a Anchor Block No. 1 a1 a2 aH1
180 430
= = =
aH2
6.9
l1
=
6.9
l2
=
9.5
L2 D
= = = = =
4 0.88
t
0
L1= 27.4
Upsteam length of pipe upto expansion joint Length of pipe upto 1st saddle 11 =
=
7.85 T/m 3mm 0.003m
Static Weight Per Meter S1 = S2 = Dt x 0.88 0.003 x 7.85 0.065 T / m
3
Area A
D 2 4
0.608m 2
H = 606.6-59262=13.98m Weight of water in the pipe per meter W1 = W2 = Q V
= = =
1.65m3/sec 1.85
Coefficient of friction between concrete and steel C = 0.45 Sin u2 = 0.682 Cos u2 = 0.731
3.042m/sec
Tan u2 = 1 1.1
Design of Anchor Block No. 1 Vertical component forces acting on the pipes are (i) Upper W
(i)
Lower W.
= =
=
0.933
1
1/2 (W. + S.) l. cos
0.608 0.065 x 6.9 x 0.951 2 1/2 (W. + S.) l. cos
a
=
2
0.608 0.065 x 9.5 x 0.731 2 W1
W2
1.2
=
Z-comp.
W {z
=
W {rSinu - cos 1
=
Y- comp
W {y
=
W {r Cos
=
x- comp
W {x
=
W {rSinu - sin
=
Z-comp.
W 2z
=
W 2 Sin Cos
=
1.594
Y-comp.
W 2y
=
W 2 Cos
=
1.709
X- comp.
W 2x
=
W 2 Sin Sin
=
0
Frictional force due to the upper portion of the penstoch pipe to the block is l T1 = S1 L1 sin a 1 C (W1 S1 ) L1 1 Cos a 1
= =
0
2
0.065x27.4 sin 18 + 0.45(0.608 + 0.065)(27.4 - 6.9) Cos 180 2 0.550 + 6.898 = 7.448 or = 6.348T
Considering the worst case we have T1 T2
=
=
l S2 L2 sina2 C(21S21)L2 2 Cosa2 2 0.065 x 4.0 x sin 430 + 0.45 (0.608 + 0.065) (4.0 - 9.5/2) Cos 430 0.177 + 0.166 = 0.343 or -0.112
= = Considering the worst case we have T2
T1
T2
1.3
= T1x
=
Y - comp.
T1y
=
Z - comp.
T1z
=
X - comp.
T2x
=
T1 .Cos a1 Sin a H T 1 . Sin a 1 T1 .Cos a1 Cos a H T2 .Cos a 2 Sina H
Y - comp.
T2y
=
T 2 . Sin a
Z - comp.
T2z
=
P2
g . D2
P1z
P2x
=
H
=
P2 Cos a 1 Sin a
=
H
Cos = a1 . Cos a 2 , Cos a H Sin a1 . Sin a 2
Considering the worst case we have Psz Z- comp.
0.179 T 0.026 T
=
0.026 T
= 0.179 x Cos 18 x Cos 0
Cos
Hydrostatic Pressure due to High Water Level Ps = a 2 HA r sin 1 2 Psx X-comp.
= =
0
P2z
Psy
=
0 0.179 x Sin 180
P2=Cos a1 Sin a H P =2 Cos a 2 Cos a H
Y- comp.
=
22 / 7 x 9.81 x 0.882
3
= = = 1.4
=
Where coeficient of frictioi f = 0.02
2 2 f Q21 L1 2x0.02 x 1.85 x 27.4
=
P2y
=
2
2x0.02 x 1.852 x 27.4 22 / 7 x 9.81 x 0.883
=P1 Cos a 1 Sin a P1=Sin a1 P =1 Cos a1 cos a H
P2y
=
3 1
=
P1x
=
T2 .Cos a 2 Sina H
Component force due to the friction of the inside water is calculated as P1 2 f Q21 L1 =
=
P2
0.343
X - comp.
gD
P1
7.448
0 0,026 x Sin 430
=
-0.025 x Cos 430 x Cos 00
Ps (Cos a 1 2 Sin / 2
=
Ps ( Cos a 1 Sin a 2 Sin / 2
=
=
or
=
18 0 Sin 2 aH
=
Psy
=
=
Cos 180 . Cos 430. Cos 00 + Sin 180. sin 430 Cos (180 + 430) Cos 610 = 0 0 61 or 25
2 x13.98 x 0.608 x Sin
=
0
= 2
=
-0.977
Ps (Cos a1 Cosa H Cosa 2 2 Sin / 2
=
Ps (Cos a1 Cosa H Cosa 2 2 Sin / 2 or Psz
Considering the worst case we have
=
= 1.35
1.5 Contrifugal forces due to the motion of water acing on the curved portion. Pct 2 V2 A Sin = /2 2 x 3.0422 x 0.608 x Sin 610/2 = = g 9.81 Pctv Pef (Cos α1 Sin αH) X-comp = = 2 Sin = / 2 Pctv Pef (Sin α1 Sinα2) Y- comp = = 2 Sin = / 2 or = Pctv Considering the worst case we have = -0.126 Pctv
Z-comp
=
Pet(Cosα1 - Cos α2 CosαH) = 2 Sin = / 2 Psy = 0.295
F (X)
F(Y)
Considering the worst case we have
Forces Acting are
F(Z)
F(z) *2.4
W1
1/2 (W 1 + S1)1. Cosα1
= 20.201
0.00
2.100
0.682
W2
1/2 (W 2 + S2)2. Cosα2
= 2.337
0.00
1.709
1.594
T1
S1L1 Sin α1 + C (W 1+S1)(L1-l1/2)Cos α1
= 7.448
0.00
2.302
-7.083
T2
S2L2 Sin α2 + C (W 2+S2)(L2-l2/2)Cos α2
= 2.115
0.00
0.234
-0.251
P1
2
3
= 0.179
0.00
0.055
-0.17
2
3
= 0.026
0.00
0.018
-0.019
0.00
-0.977
1.35
0.00 0.00
-0.214 5.227
0.295 -3.602
2f Q L1 /g π D2
P2
2f Q L1 /g π D2
Ps
2 H A sin = /2 {2V2 Sin = / 2} / g
Pef
= 2.654 = 0.582
2 Weight of Anchor Block Penstock Diameter = Unit Weight of Concrete = 2.1 Figure ABCK V1
Mx W 1 x X1 48.692 13.944 4.3805 2.5553 4.1371 4.6238 78.3327
1.6 1.75 0.45 0.6 2.033 2.8
MZ Remark W 1 x Z1 59.929 18.771 1.5163 1.1794 6.4698 9.959 97.8245
Total Forces and Moments ΣFx = 0.00 ΣFy
=
5.227 + 60.2558
ΣFz
=
-3.602 T
ΣMx
=
ΣMz
=
=
65.483 T
- 1.85 + 78.3326
=
76.483 T -m
6.795 + 97.8238
=
104.619 T - m
4 Sefty against Overturning ΣMz 4.1 X = ΣFy ex
=
Bx - X 2 >Bx 6
= = =
Hence the structure is safe against x-axis ΣMx = 4.2 Z = ΣFy ex
=
Bx - Z
=
104.619 =
1.598
65.483 2.6 -1.598 = 2 2.6 = 6
76.483
0.298 M 0.433
1.168
65.483 3.2 -1.168 =
0.432m
2 < 6
Bz
=
2 3.2 6
=
0.533
Hence the structure is safe against z-axis 5 Safe against Sliding = 5.1 fx
ΣFx
=
ΣFy Hence the structure is safe against sliding in x-axis = ΣFz = 5.2 fz ΣFy Hence the structure is safe against sliding in z-axis 6 Bearing Capacity of the Foundation
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.