Design For Concrete-Filled CHS
July 16, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Design For Concrete-Filled CHS...
Description
RQ_ONEN HQ_IEG KEM_NRT_QBTQ_A ZTA. CTD
Onsad ie AB4 mir Biebrata-ccad BFR
Typa
Bietrnbt8 E>:2 - ERB ERB Daskge Aegkeaar8 Aegkeaar8 H[M Npprivkeg Aegkeaar8 Dnta88 >?/?2/?: Dnta >?/?2/?:?> ?> Bncbucntkie Mir8 LZD>d Daskge Dntn Qtkckzntkie rntki :.7>
Bfabl
IL
Bi`piskta Bicu`e Rpabkmkbntkie
Bicu`e caegtf Ammabtkva caegtf y-y Ammabtkva caegtf z-z Bicu`e Typa Daskge Cindkeg Daskge Nxknc Mirba Daskge Oaedkeg @i`aet (AED) Daskge Abbaetrkbkty @i`aet (`kd-caegtf) @ntarknc Zripartkas Rtrubturnc Rtaac Bfnrnbtarkstkb ykacd straegtf @iducus acnstkb im staac Znrtknc snmaty mnbtir Daskge straegtf Biebrata Biebrata grnda Bfnrnbtarkstkb vncua im bi`prasskva straegtf Znrtknc snmaty mnbtir Daskge vncua im bi`prasskva straegtf Rabnet `iducus im acnstkbkty Rabtkie Zripartkas Rtrubturnc Rtaac Dkn`atar Tfkbleass
Rabtkie Nran Rabied `i`aet im nran Zcnstkb `iducus Bfabl mir Cibnc Oublckeg Biebrata Nran im biebrata
C0 >> ` Cay0 >> ` Caz0 = ` Biebrata-mkccad BFR EAd0 >271: @Ad0 : EAda:0 7=:
lE lE` lE`
yd 0 ?=1 m yd
E/``?
B2?/4: Bfiisa `ntarknc ? m bl 0 2?.: E/`` βb0 >.1: m bd0 ?>.2 E/``? Ab`0 2.>A+:4 E/``?
Rabtkie BFR 6>2*>7.1 D0 6>2 `` t0 >7.1 `` Nn0 42721
``?
Kn0 2.4=A+:; ``4 W pc,y0 >>:7=>4> ``2 d/t0 4=.1 Nb0 47126;
IL
Zcnstkb `iducus
Wb 76461>1; ``2
Briss Rabtkie _askstneba
Nn m yd Nb m bd Ns m sd
Rtaac bietrkoutkie mnbtir
bcnusa =.7.2.? (>)
E pc,_d0 ?>72>
lE
δ0 :.12
5:.? & 3:.; Il
Acnstkb Oublckeg Cind
Zar`neaet cind (nssu`keg =:% im daskge cind)
bcnusa =.7.>(;)
``?
Kb0 >.6A+>: ``4
Keput dntn Keput dntn Keput dntn
R?71 ≤4: Bfiisa `ntarknc m y 0 ?=1 E/``? An0 ?>:::: E/``? βn0 >.::
Rabied `i`aet im nran
E pc . _d
Keput dntn Keput dntn Keput dntn
bcnusa =.7.2.2 (2)
EG,Ad0 6?1:
lE
ύt0 >.::
Braap biammkbkaet mir kemkccad ficciw sabtkie
Ab,amm 0 >.;A+:4 E/``?
Ammabtkva Acnstkb @iducus
Ab,amm
Ab` / (> ( E G,Ad / E Ad ) t )
L a0 :.=:
Birrabtkie mnbtir
(AK)amm 0 ;27>76
Ammabtkva mcaxurnc stkmmeass
lE`?
( AK )ay An K ny L a Abd K by As K sy Acnstkb oublckeg cind
E bry
?
Ebr 0 7=442
( AK )ay
lE
C?ay
Eie-dk`aeskienc scaedareass rntki
bcnusa =.7.2.2 (?)
E pc,_l 0
Bfnrnbtarkstkb pcnstkb raskstneba
E pc . _l
?=6:?
lE
Nn m y Nb m bl Ns m sl
Rcaedareass
y 0
E pc , _l
y
: .1 ;
3 ? Il
E bry
Biemkea`aet ammabt im bkrbucnr briss sabtkie Abbaetrkbkty im cindkeg
bcnusa =.7.2.? (=)
a0 :.:: a/d0 :.::
Bieskdar biemkea`aet km8 μ3:.1 & a/d3:.> Aefnebad pcnstkb raskstneba
`` 3:.> IL
y 0 :.1;
E pc,_d0 ?>72>
t m y
Ei Biemkea`aet lE
E pc,_d n Nn m yd Nb m bd >+b d m bl Ns m sd Oublckeg _askstneba
bcnusa =.7.2.1
_akemiraba`aet rntki Oublckeg burva n
ώs0 :.::
∁0:.1(>+( ́∟ ∟:.?)+ :.?)+ ́UU?? ) 0▮(=4&>// 0▮(=4&> _adubntkie mnbtir (+∘(U?∟ ́ Oublckeg raskstneba U? )))
ύ0 :.7? χ 0 :.6;
ώs32% AB4 Tnoca =.1
ξ 0 : .? >
E o,_d0 >;4:1
lE
γ>0 :.7>
Rnmaty mnbtir
RNTKRMKAD!
Bi`okead bi`prasskie ned Oeadkeg ketarnbtkie burva Rabtkie pcnstkb `iducus
Eautrnc nxks pisktkie
fe
Nb m bd - N se ? m sd - m bd fe0 >44
bcnusa =.7.2.? (1)
``
?dm bd 4t ? m yd - m bd W pb0 76461>1; ``2
Zcnstkb `iducus mir biebrata Zcnstkb `iducus mir biebrata wktfke ?f e W pbe
d - ?t fe
?
W pbe0 >=>;26=? ``2
W ps e
W pn0 >>:7=>4> ``2
Zcnstkb `iducus mir strubturnc staac Zcnstkb `iducus mir staac wktfke ?f e
W pne0 7?61>=
W pne df e? - W ps e - W pbe Oeadkeg _askstneba
@`nx,_d0 277?
lE`
@ 0 - m W pc,_d 24:7
lE`
@ `nx,_d m yd W pn :. : .1 m bd W pb m sd W ps @
@
. _d `mirba nx,_d Biebrata pcraskstneba
m W yd
E p` , _d Nb m bd
pne
:.1 m
bd
W
pbe
``2
sd
pse
E p`,_d0 >:>4?
lE
Ketarnbtkie Dkngrn`8 Ziket N O B
@N0 :
Oaedkeg @i`aet @ (lE`)
@0:
Bi`prasskie mirba E (lE)
E0E pc,_d
E 0 ?>72> lE
Oaedkeg @i`aet @ (lE`)
@0@ pc,_d
@O0 24:7
lE`
Bi`prasskie mirba E (lE)
E0:
EO0 :
lE
Oaedkeg @i`aet @ (lE`)
@0@ pc,_d
@B0 24:7
lE`
Bi`prasskie mirba E (lE)
E0E p`,_d
EB0 >:>4?
lE
Oaedkeg @i`aet @ (lE`)
@0@`nx,_d
@D0 277?
lE`
E0:.1E p`,_d
ED0 1:7>
lE
D Bi`prasskie mirba E (lE)
lE`
N
Ketarnbie Burva ?1:::
N B D O
N ?::::
: 24:7 277? 24:7
?>72> >:>4? 1:7> :
>1::: ) E l ( e
B
>::::
D
1:::
:
:
1::
>:::
>1::
?:::
?1::
2:::
21::
O
4:::
@ (lE`)
?ed irdar ammabt Ammabtkva mcaxurnc stkmmeass ( AK ) amm,KKy
L i ( An K ny
bcnusa =.7.2.4
L a,KK Aamm K by
A s K sy ) (AK)amm,KK,y0 6>>;>? L a,KK0 :.1
lE`?
L i0 :.; Ammabtkva oublckeg cind
E br ,y ,amm
mir aed `i`aet
?
( AK )am ammm , KK , y
C?ay Ebr,amm 0 ==??1
lE
Bieskdar ?ed irdar ammabt
ο0 :.==
l / (> E Ad / E br ,amm ) >.: mir `i`aet mri` `a`oar k`parmabtkie
l / (> E Ad / E br ,amm ) >.:
l >0 :.62 ο0 > l ?0 >.?=
Oaedkeg `i`aet nmtar `idkmkbntkie
@ y , Ad
l>,y @ Ad ,y l ? ,y E Ad a: ,y
@a`oar k`parmabtkie
@Ad0 >?=; a:0 2=.=7
bi`okead bi`prasskie ned oaedkeg `i`aet raskstneba bfabl γd0 :.=; 0(Y(,)∟Y)/(Y(,)∟Y(,) )
Y/(Y Y(,) )3Y
Rnmaty _ntki
lE` `` Bcnusa =.7.2.=
γ?0 :.14 ξ@0 :.;:
RNTKRMKAD!
View more...
Comments