Design For Concrete-Filled CHS

July 16, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Design For Concrete-Filled CHS...

Description

 

RQ_ONEN HQ_IEG KEM_NRT_QBTQ_A ZTA. CTD

Onsad ie AB4 mir Biebrata-ccad BFR

Typa

Bietrnbt8 E>:2 - ERB ERB Daskge Aegkeaar8 Aegkeaar8 H[M  Npprivkeg Aegkeaar8 Dnta88 >?/?2/?: Dnta >?/?2/?:?> ?> Bncbucntkie Mir8 LZD>d Daskge Dntn Qtkckzntkie rntki :.7>

Bfabl

 

IL 

Bi`piskta Bicu`e Rpabkmkbntkie

Bicu`e caegtf Ammabtkva caegtf y-y Ammabtkva caegtf z-z Bicu`e Typa Daskge Cindkeg Daskge Nxknc Mirba Daskge Oaedkeg @i`aet (AED) Daskge Abbaetrkbkty @i`aet (`kd-caegtf) @ntarknc Zripartkas Rtrubturnc Rtaac Bfnrnbtarkstkb ykacd straegtf @iducus acnstkb im staac Znrtknc snmaty mnbtir Daskge straegtf Biebrata Biebrata grnda Bfnrnbtarkstkb vncua im bi`prasskva straegtf Znrtknc snmaty mnbtir Daskge vncua im bi`prasskva straegtf Rabnet `iducus im acnstkbkty Rabtkie Zripartkas Rtrubturnc Rtaac Dkn`atar Tfkbleass

Rabtkie Nran Rabied `i`aet im nran Zcnstkb `iducus Bfabl mir Cibnc Oublckeg Biebrata Nran im biebrata

C0 >> ` Cay0 >> ` Caz0 = ` Biebrata-mkccad BFR  EAd0 >271: @Ad0 :  EAda:0 7=:

lE lE` lE`

yd 0 ?=1 m yd

 E/``?

B2?/4: Bfiisa `ntarknc ? m bl 0 2?.:  E/`` βb0 >.1: m bd0 ?>.2  E/``? Ab`0 2.>A+:4  E/``?

Rabtkie BFR 6>2*>7.1 D0 6>2 `` t0 >7.1 `` Nn0 42721

``?

Kn0 2.4=A+:; ``4 W pc,y0 >>:7=>4> ``2 d/t0 4=.1 Nb0 47126;

IL 

Zcnstkb `iducus

Wb 76461>1; ``2

Briss Rabtkie _askstneba

Nn m yd  Nb m bd  Ns m sd 

Rtaac bietrkoutkie mnbtir

bcnusa =.7.2.? (>)

 E pc,_d0 ?>72>

lE

δ0 :.12

5:.? & 3:.; Il  

Acnstkb Oublckeg Cind

Zar`neaet cind (nssu`keg =:% im daskge cind)

bcnusa =.7.>(;)

``?

Kb0 >.6A+>: ``4



Keput dntn Keput dntn Keput dntn

R?71 ≤4: Bfiisa `ntarknc m y 0 ?=1  E/``? An0 ?>::::  E/``? βn0 >.::

Rabied `i`aet im nran

 E pc . _d

Keput dntn Keput dntn Keput dntn

bcnusa =.7.2.2 (2)

 EG,Ad0 6?1:

lE

 

ύt0 >.::

Braap biammkbkaet mir kemkccad ficciw sabtkie

Ab,amm 0 >.;A+:4  E/``?

Ammabtkva Acnstkb @iducus

 Ab,amm



Ab` / (>  ( E G,Ad / E Ad  ) t )

L a0 :.=:

Birrabtkie mnbtir

(AK)amm 0 ;27>76

Ammabtkva mcaxurnc stkmmeass

lE`?

( AK )ay  An K ny  L a Abd K by  As K sy Acnstkb oublckeg cind

 E bry





?

 Ebr 0 7=442

( AK )ay

lE

 C?ay

Eie-dk`aeskienc scaedareass rntki

bcnusa =.7.2.2 (?)

 E pc,_l 0

Bfnrnbtarkstkb pcnstkb raskstneba

 E pc . _l



?=6:?

lE

Nn m y  Nb m bl  Ns m sl 

Rcaedareass

  y 0

 E  pc , _l 

  y  

: .1 ;

3 ? Il  

 E bry

Biemkea`aet ammabt im bkrbucnr briss sabtkie Abbaetrkbkty im cindkeg

bcnusa =.7.2.? (=)

a0 :.:: a/d0 :.::

Bieskdar biemkea`aet km8 μ3:.1 & a/d3:.> Aefnebad pcnstkb raskstneba



`` 3:.> IL  

  y 0 :.1;

 E pc,_d0 ?>72>

t   m y 

Ei Biemkea`aet lE

 E pc,_d  n Nn m yd  Nb m bd  >+b d m bl    Ns m sd Oublckeg _askstneba

bcnusa =.7.2.1

_akemiraba`aet rntki Oublckeg burva n

ώs0 :.::

∁0:.1(>+( ́∟ ∟:.?)+ :.?)+ ́UU?? )  0▮(=4&>//  0▮(=4&> _adubntkie mnbtir  (+∘(U?∟ ́ Oublckeg raskstneba U? )))

ύ0 :.7? χ 0 :.6;

ώs32% AB4 Tnoca =.1

ξ 0 : .? >

 E o,_d0 >;4:1

lE

γ>0 :.7>

Rnmaty mnbtir

RNTKRMKAD!

Bi`okead bi`prasskie ned Oeadkeg ketarnbtkie burva Rabtkie pcnstkb `iducus

 Eautrnc nxks pisktkie

fe

 Nb  m  bd  -  N se  ?  m   sd  -  m  bd   fe0 >44



bcnusa =.7.2.? (1)

``

?dm  bd   4t  ?  m   yd  -  m  bd   W pb0 76461>1; ``2

Zcnstkb `iducus mir biebrata Zcnstkb `iducus mir biebrata wktfke ?f e W  pbe

 d   -  ?t  fe  

 



?

W pbe0 >=>;26=? ``2

  W ps e

W pn0 >>:7=>4> ``2

Zcnstkb `iducus mir strubturnc staac Zcnstkb `iducus mir staac wktfke ?f e

W pne0 7?61>=

W  pne   df e?  - W  ps e - W  pbe Oeadkeg _askstneba

@`nx,_d0 277?

lE`

@ 0 - m W  pc,_d 24:7

lE`

 @ `nx,_d    m yd W pn  :. : .1 m bd W pb  m sd W ps  @



@

. _d `mirba nx,_d Biebrata  pcraskstneba



m W   yd

 E p` , _d  Nb m bd 

pne

 :.1 m

bd

W

pbe

``2

sd

pse

 E p`,_d0 >:>4?

lE

   

Ketarnbtkie Dkngrn`8 Ziket N O B

@N0 :

Oaedkeg @i`aet @ (lE`)

@0:

Bi`prasskie mirba E (lE)

E0E pc,_d

 E 0 ?>72>   lE

Oaedkeg @i`aet @ (lE`)

  @0@ pc,_d

@O0 24:7

lE`

Bi`prasskie mirba E (lE)

E0:

 EO0 :

lE

Oaedkeg @i`aet @ (lE`)

  @0@ pc,_d

@B0 24:7

lE`

Bi`prasskie mirba E (lE)

E0E p`,_d

 EB0 >:>4?

lE

Oaedkeg @i`aet @ (lE`)

@0@`nx,_d

@D0 277?

lE`

E0:.1E p`,_d

 ED0 1:7>

lE

D Bi`prasskie mirba E (lE)

 

lE`

N

 

Ketarnbie Burva ?1:::

N B D O

N ?::::

: 24:7 277? 24:7

?>72> >:>4? 1:7> :

>1:::     )    E     l     (    e

B

>::::

D

1:::

:

:

1::

>:::

>1::

?:::

?1::

2:::

21::

O

4:::

@ (lE`)

?ed irdar ammabt Ammabtkva mcaxurnc stkmmeass ( AK ) amm,KKy



L i ( An K ny

bcnusa =.7.2.4 

L a,KK Aamm K by



A s K sy ) (AK)amm,KK,y0 6>>;>? L a,KK0 :.1

lE`?

L i0 :.; Ammabtkva oublckeg cind

 E br ,y ,amm    

mir aed `i`aet

  

?

( AK )am ammm , KK , y

 C?ay Ebr,amm 0 ==??1

lE

Bieskdar ?ed irdar ammabt

ο0 :.==

l    / (>  E Ad / E br ,amm  )  >.: mir `i`aet mri` `a`oar k`parmabtkie

l    / (>  E Ad / E br ,amm  )  >.:

l >0 :.62 ο0 > l ?0 >.?=

Oaedkeg `i`aet nmtar `idkmkbntkie

 @  y , Ad

 l>,y @ Ad ,y  l ? ,y E Ad a: ,y

@a`oar k`parmabtkie

@Ad0 >?=; a:0 2=.=7

bi`okead bi`prasskie ned oaedkeg `i`aet raskstneba bfabl γd0 :.=; 0(Y(,)∟Y)/(Y(,)∟Y(,) )

Y/(Y Y(,) )3Y

Rnmaty _ntki

lE` `` Bcnusa =.7.2.=

γ?0 :.14 ξ@0 :.;:

RNTKRMKAD!

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF