Design Calc

January 30, 2018 | Author: Peja Jusoh | Category: Bending, Stress (Mechanics), Density, Corrosion, Screw
Share Embed Donate


Short Description

DAS DASD ADA DASD ASDQWEQW ASD ADA SDASD AWEQAWEQWQEQEQWEQW...

Description

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE: 07.05.2014

DOC. REF. NO.: MSET/M2-234/S-6504ABCD/DC

REVISION: 05

SUBJECT: TITLE PAGE

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE: 2 of 309

DESIGN DATA ITEM NO.

S-6504ABCD MULTIMEDIA BACK WASHABLE ASME SEC.VIII DIV.1, 2010 EDITION 2011a ADDENDA + DEP 31.22. 20.31 JAN 2009

DESIGN CODE

PRESSURE (barg) (Int./Ext.)

16/FV

TEMPERATURE (⁰C) (Max./Min)

60/0

PRESSURE (barg) (Max./Norm./Min)

-/7.2-7.4/- (at Inlet)

TEMPERATURE (⁰C) (Max./Norm./Min.)

-/45/-

HYDROTEST (barg) (1.3xMAPxLSR)(note1)

25.481 (Horizontal Position)

PNEUMATIC

NO

DESIGN

OPERATING

TEST PRESSURE MAWP (hot & corroded) (barg)

16.952

MAP (new & cold) (barg)

19.601

INSIDE DIAMETER / TL TO TL (mm)

2340/1830

TYPE OF HEAD

2:1 ELLIP HEAD

MATERIAL OF CONSTRUCTION (SHELL & HEAD)

SA 516 GR.70N

NORMALISED

NO

PWHT

NO

HEAT TREATMENT IMPACT TEST

NO

MDMT (⁰C)

0

RADIOGRAPHY

HEAD: 100%, SHELL: 100%

JOINT EFFICIENCY

HEAD:1.0 , SHELL: 1.0

CORROSION ALLOWANCE (mm)

3.0

CONTENTS

SEA WATER

ERECTION WEIGHT (kg)

8489

CAPACITY (m3)

11.95

PRESSURE VESSEL DESIGN CALCULATION Note: 1.MAP will be used in lieu of MAWP for determining hydro test pressure (As per DEP 31.22.20.31-Gen, Jan 09)

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE: 07.05.2014

DOC. REF. NO.: MSET/M2-234/S-6504ABCD/DC

REVISION: 05

SUBJECT: TITLE PAGE

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE: 3 of 309

TABLE OF CONTENT NO

CONTENT

PAGE NO.

SECTION A: DRY / EMPTY CASE

1 2 3 4 5

Input Echo Wind Load Calculation Earthquake Load Calculation Stress due Combined Loads Basering Calculation

7 13 17 18 20

SECTION B: OPERATING CASE

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Input Echo Internal Pressure Calculations External Pressure Calculations Element and Detail Weights Nozzle Flange MAWP Wind Load Calculation Earthquake Load Calculation Wind / Earthquake Shear, Bending Wind Deflection Stress due Combined Loads Center of Gravity Calculation Basering Calculation Nozzle Calculation N5 c/w WRC 107 Analysis Nozzle Calculation N1 c/w WRC 107 Analysis Nozzle Calculation N2 c/w WRC 107 Analysis Nozzle Calculation N3 c/w WRC 107 Analysis Nozzle Calculation H1 Nozzle Calculation N4 c/w WRC 107 Analysis

26 33 38 41 44 45 49 50 51 52 55 56 61 68 80 96 115 122

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE: 07.05.2014

DOC. REF. NO.: MSET/M2-234/S-6504ABCD/DC

REVISION: 05

SUBJECT: TITLE PAGE

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE: 3 of 309

TABLE OF CONTENT (CONTINUED NO

24 25 26 27 28

CONTENT

Nozzle Calculation M1 Nozzle Schedule Nozzle Summary MDMT Summary Vessel Design Summary

PAGE NO.

137 147 149 150 152 SECTION C: TEST CASE

29 30 31 32 33

Input Echo Wind Load Calculation Earthquake Load Calculation Stress due Combined Loads Basering Calculation

155 161 165 166 168

SECTION D: TRANSPORTATION CASE

34 35 36 37 38

Input Echo Wind Load Calculation Earthquake Load Calculation Stress due Combined Loads Basering Calculation

174 180 184 185 187

SECTION E: STORM CASE

39 40 41 42 43

Input Echo Wind Load Calculation Earthquake Load Calculation Stress due Combined Loads Basering Calculation

193 200 202 203 206

SECTION F: DAMAGE CASE

44 45

Input Echo Wind Load Calculation

212 219

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE: 07.05.2014

DOC. REF. NO.: MSET/M2-234/S-6504ABCD/DC

REVISION: 05

SUBJECT: TITLE PAGE

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE: 5 of 309

TABLE OF CONTENT (CONTINUED NO

46 47 48

CONTENT

Earthquake Load Calculation Stress due Combined Loads Basering Calculation

PAGE NO.

223 224 227

SECTION G: BLAST CASE

49 50 51 52 53

Input Echo External Pressure Earthquake Load Calculation Stress due Combined Loads Basering Calculation

233 240 243 244 245

ATTACHMENTS

54 55 56

Attachment 1: WRC 297 Calculation Attachment 2: Packed Support Calculation Appendixes: Lifting Lug, Tailing Lug & Base Block Calculation

250 274 284

SECTION A:

DRY / EMPTY CASE This analysis is intent to check stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, wind & earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 7 Input Echo : Step: 1 11:07a Jan 30,2014 PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) 16.000 Design Internal Temperature 60 Type of Hydrotest User Defined Hydro Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 Projection of Nozzle from Vessel Bottom 150.00 Minimum Design Metal Temperature 0 Type of Construction Welded Special Service None Degree of Radiography RT-1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 25.481 User defined MAWP 0.0000 User defined MAPnc 0.0000 (Load Case applicable for Dry/Empty case is as below) Load Case 1 NP+EW+WI+EQ+FW+FS+BW Load Case 2 NP+EW+EQ+WI+FW+FS+BS Load Case 3 IP+WE+EW Load Case 4 IP+VO+OW Load Case 5 IP+VE+EW

bar C

mm mm C

bar bar bar

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 m/sec Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. mm (Vessel is located on structure skid, T.O.S EL+ 19664. Refer Dwg. No.: MLK-58863004234001-B01-39002-0042065-M-DW-001.) Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 mm Distance Upwind of Crest Lh 0.0000 mm Distance from Crest to the Vessel x 0.0000 mm Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000 Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for 1 year Operating is as below.) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.087 G Loading Coefficient Gz 0.087

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 8 Input Echo : Step: 1 11:07a Jan 30,2014 G Loading Coefficient Gy Percent Seismic for Hydrotest

0.049 100.000

Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9

Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7

-------------------------------------------------------------------Element From Node 20 Element To Node 30

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 9 Input Echo : Step: 1 11:07a Jan 30,2014 Element Type Elliptical Description BOTTOM HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight SDSS PLATE 50.000 4961.8 0.0000

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node 30 Element To Node 40 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 10 Input Echo : Step: 1 11:07a Jan 30,2014 Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

60 1.2 SA-516 70 1.0 1.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1

C

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 11 Input Echo : Step: 1 11:07a Jan 30,2014 Nozzle Matl

SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight

30 Weight ANODES 1258.0 784.48

mm N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 12 Input Echo : Step: 1 11:07a Jan 30,2014 Offset from Element Centerline

0.0000

mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

40 Nozzle M1 535.00 762.0 None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

mm mm

N

mm mm

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 13 Wind Load Calculation : Step: 8 11:07a Jan 30,2014

Input Values: Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 Distance Upwind of Crest Lh 0.0000 Distance from Crest to the Vessel x 0.0000 Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

m/sec

mm

mm mm mm

Wind Analysis Results Static Gust-Effect Factor, Operating Case [G]: = min(0.85, 0.925((1 + 1.7 * gQ * Izbar * Q )/( 1 + 1.7 * gV * Izbar))) = min(0.85,0.925((1+1.7*3.400*0.228*0.958)/(1+1.7*3.400*0.228))) = min(0.85, 0.903 ) = 0.850 Natural Frequency of Vessel (Operating) Natural Frequency of Vessel (Empty) Natural Frequency of Vessel (Test)

47.417 Hz 47.417 Hz 41.415 Hz

Note: Per Section 1609 of IBC 2003/06/09 these results are also applicable for the determination of Wind Loads on structures (1609.1.1). User Entered Importance Factor is Force Coefficient Structure Height to Diameter ratio Height to top of Structure

1.150 [Cf] 0.507 1.419 3305.500 mm

This is classified as a rigid structure. Static analysis performed. Sample Calculation for the First Element The ASCE code performs all calculations in Imperial Units only. The wind pressure is therefore computed in these units. Value of [Alpha] and [Zg]: Exposure Category: C from Table C6-2 Alpha = 9.500 : Zg = 274320.000 mm

Effective Height [z]: = Centroid Height + Vessel Base Elevation = 425.000 + 19663.998 = 20088.998 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 14 Wind Load Calculation : Step: 8 11:07a Jan 30,2014 = 65.909 ft. Imperial Units Velocity Pressure coefficient evaluated at height z [Kz]: Because z (65.909 ft.) > 15 ft. = 2.01 * ( z / Zg ) ^(2 / Alpha) = 2.01 * ( 65.909/900.000 )^(2/9.500 ) = 1.159 Type of Hill: No Hill

Wind Directionality Factor [Kd]: = 0.95 per [6-6 ASCE-7 98][6-4 ASCE-7 02/05] As there is No Hill Present: [Kzt]: K1 = 0, K2 = 0, K3 = 0 Topographical Factor [Kzt]: = ( 1 + K1 * K2 * K3 )² = ( 1 + 0.000 * 0.000 * 0.000 )² = 1.0000

Velocity Pressure evaluated at height z, Imperial Units [qz]: = 0.00256 * Kz * Kzt * Kd * I * Vr(mph)² = 0.00256 * 1.159 * 1.000 * 0.950 * 1.150 * 97.085² = 30.6 psf [1463.182 ] N/m² Force on the first element [F]: = qz * G * Cf * WindArea = 30.560 * 0.850 * 0.507 * 27.097 = 356.8 lbs. [1587.2 ] N Element

Hgt (z) K1 K2 K3 Kz Kzt qz mm N/m² --------------------------------------------------------------------------SKIRT 20089.0 0.000 0.000 0.000 1.159 1.000 1463.182 BOTTOM HEAD 20539.0 0.000 0.000 0.000 1.165 1.000 1470.022 SHELL 21429.0 0.000 0.000 0.000 1.175 1.000 1483.208 TOP HEAD 22582.6 0.000 0.000 0.000 1.188 1.000 1499.673

Wind Vibration Calculations This evaluation is based on work by Kanti Mahajan and Ed Zorilla Nomenclature

Cf D Df Dr f f1 L

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 15 Wind Load Calculation : Step: 8 11:07a Jan 30,2014

Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 170762/( 2680.00 * 2436.000² ) = 0.10738E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations ID

Wind Area Elevation Pressure Force Cf cm² mm N/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping ID

Wind Area Elevation Pressure Force cm² mm N/m² N ------------------------------------------------------------------------SDSS PLATE 0.00 20564.00 1470.39 0.00 DIST. & HEADE 0.00 21429.00 1483.21 0.00 ANODES 0.00 21822.00 1488.82 0.00 The Natural Frequency for the Vessel (Ope...) is 47.4165 Hz.

Wind Load Calculation | | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | N/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 1463.18 | 1587.23 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 1470.02 | 93.7269 |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 16 Wind Load Calculation : Step: 8 11:07a Jan 30,2014 30| 40|

40| 50|

21429.0 | 22582.6 |

2961.72 | 2959.20 |

51237.8 | 16017.2 |

1483.21 | 1499.67 |

3274.83 | 1035.09 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 17 Earthquake Load Calculation : Step: 9 11:07a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.087 0.087 0.049

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 47.4165 Hz.

Earthquake Load Calculation | | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 1618.14 | 1618.14 | 20| 30| 875.000 | 18457.0 | 2270.89 | 2270.89 | 30| 40| 1765.00 | 122166. | 15030.9 | 15030.9 | 40| 50| 2655.00 | 23784.1 | 2926.31 | 2926.31 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 18 Stress due to Combined Loads : Step: 15 11:07a Jan 30,2014

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes:

Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+EW+WI+EQ+FW+FS+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -35.11 1010.47 20 1654.80 -18.16 1165.68 30 1654.80 -15.39 1186.02 40 1654.80 -2.68 1165.68 Analysis of Load Case 2 : NP+EW+EQ+WI+FW+FS+BS

Tens. Ratio

Comp. Ratio 0.0347 0.0156 0.0130 0.0023

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 19 Stress due to Combined Loads : Step: 15 11:07a Jan 30,2014

From Node 10 20 30 40

Tensile Stress

All. Tens. Stress 1158.36 1654.80 1654.80 1654.80

Comp. Stress -35.11 -18.16 -15.39 -2.68

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Tens. Ratio

Comp. Ratio 0.0347 0.0156 0.0130 0.0023

Analysis of Load Case 3 : IP+WE+EW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Tens. Ratio

Comp. Ratio 0.0255

Analysis of Load Case 4 : IP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 5 : IP+VE+EW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Absolute Maximum of the all of the Stress Ratio's

0.3827 0.3584 0.3897

Tens. Ratio

Comp. Ratio 0.0255

0.3827 0.3584 0.3897

Tens. Ratio

Comp. Ratio 0.0255

0.3827 0.3584 0.3897 0.3897

Governing Element: TOP HEAD Governing Load Case 3 : IP+WE+EW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 20 Basering Calculations : Step: 17 11:07a Jan 30,2014 Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 70 [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock) Basering Operating All. Stress BASOPE 1379.00 bar Basering Yield Stress 2493.20 bar Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm Nominal Diameter of Bolts BND 38.1000 mm Bolt Corrosion Allowance BCA 0.0000 mm Bolt Material SA-325 Type1 Bolt Operating Allowable Stress SA 3100.02 bar (Allowable stress is amended based on Tensile Strength-Input by TMJV) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000 mm Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2493.2 221.4000 76.0000 38.0000 2 31.7500 125.0000 43.0000

mm mm mm N/cm² bar mm mm mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 177558.9 N Operating Weight of Vessel ROW 177558.9 N Earthquake Moment on Basering EQMOM 37760.4 N-m Wind Moment on Basering WIMOM 9561.6 N-m (As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0 Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables Fact Results for Basering Analysis : Analyze Option

No No 1.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 21 Basering Calculations : Step: 17 11:07a Jan 30,2014

Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3100.0 [Fact]

0.0000 8.3484 133.5739 0.0 3100.02

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *3100 +186259 )/19540.71 ) + 37760/.11156E+10 = 22.48 bar Allowable Stress on Concrete

82.74

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2068.500 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 22.482/2068.500 )½ + 0.0000 = 24.3774 mm

Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 22.482 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 1504.892 , must be less than 2068.500 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress Wt = (Topwth - Bnd), Width of Section

T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 2459/( 2068 * 86.9000 ))½ + 0.0000 T = 28.6472 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 22 Basering Calculations : Step: 17 11:07a Jan 30,2014

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 844/2068 )½ + 0.000 31.0477 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 125.9858 Allowable Buckling Str. per E2-1 1280.94 Actual Buckling Str. at Given Thickness 651.89

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

9.7029

79.0424 125.9858 1070.25 1066.90

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

24.3774 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

28.6472 31.0477 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

9.7029 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 35.108 * ( 9.530 - 0.000 ) = 33.46 N/mm Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 33/[( 0.4 * 2493 ) * 2 * 0.707] = 0.237 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 23 Basering Calculations : Step: 17 11:07a Jan 30,2014

Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 258786.6/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 421.435 N/mm

Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 258786.6 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 240.291 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 421.44² + 240.29²)½ = 485.126 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 485.13/[( 0.4 * 2493 ) * 2 * 0.707] = 3.440 mm Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 258786.6/( 2 * 125.000 ) = 1035.146 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 258786.6 * 65.00/( 2 * 253.150 * 125.000 ) = 265.789 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1035.15² + 265.79²)½ = 1068.724 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1068.72/[( 0.4 * 2493 ) * 2 * 0.707] = 7.579 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness. Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size

4.7625 6.3500 7.5792

mm mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DRY-EMPTY CASE (LOAD CASE 1YEAR) REV Page 24 Basering Calculations : Step: 17 11:07a Jan 30,2014 Required Gusset to Top Plate Double Fillet Weld Size

7.5792

mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION B:

OPERATING CASE

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 26 Input Echo : Step: 1 11:07a Jan 30,2014

PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) Design Internal Temperature Type of Hydrotest Hydrotest Position Projection of Nozzle from Vessel Top Projection of Nozzle from Vessel Bottom Minimum Design Metal Temperature Type of Construction Special Service Degree of Radiography Miscellaneous Weight Percent Use Higher Longitudinal Stresses (Flag) Select t for Internal Pressure (Flag) Select t for External Pressure (Flag) Select t for Axial Stress (Flag) Select Location for Stiff. Rings (Flag) Consider Vortex Shedding Perform a Corroded Hydrotest Is this a Heat Exchanger User Defined Hydro. Press. (Used if > 0) User defined MAWP User defined MAPnc

(Load Load Load Load Load Load Load Load Load Load Load

Case Case Case Case Case Case Case Case Case Case Case

16.000 60 User Defined Hydro Horizontal 0.0000 150.00 0 Welded None RT-1 5.0 Y N N N N N N No 25.481 0.0000 0.0000

bar C

mm mm C

bar bar bar

applicable for Operating case is as below) 1 NP+OW+WI+EQ+FS+FW+BW 2 NP+OW+EQ+WI+FW+FS+BS 3 IP+OW+WI+EQ+FS+FW+BW 4 IP+OW+EQ+WI+FW+FS+BS 5 EP+OW+WI+EQ+FS+FW+BW 6 EP+OW+EQ+WI+FW+FS+BS 7 IP+VO+OW 8 NP+VO+OW 9 FW+FS+BW+BS+IP+OW 10 FS+FW+BW+BS+EP+OW

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 m/sec Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. mm (Vessel is located on structure skid, T.O.S EL+ 19664. Refer Dwg. No.: MLK-58863004234001-B01-39002-0042065-M-DW-001.) Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 mm Distance Upwind of Crest Lh 0.0000 mm Distance from Crest to the Vessel x 0.0000 mm Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 27 Input Echo : Step: 1 11:07a Jan 30,2014

Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for 1 year Operating is as below.) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.087 G Loading Coefficient Gz 0.087 G Loading Coefficient Gy 0.049 Percent Seismic for Hydrotest 100.000 Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9

Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives: Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 28 Input Echo : Step: 1 11:07a Jan 30,2014

-------------------------------------------------------------------Element From Node 20 Element To Node 30 Element Type Elliptical Description BOTTOM HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

20 Liquid SEA WATER -607.50 657.50 1014.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm kg/m³

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node

30

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 29 Input Echo : Step: 1 11:07a Jan 30,2014 Element To Node 40 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 3.0000 mm Nominal Thickness 19.050 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 40.0364 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 44.965 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 49.950001 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 50.029999 1.0140001

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 30 Input Echo : Step: 1 11:07a Jan 30,2014

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

mm mm

N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 31 Input Echo : Step: 1 11:07a Jan 30,2014 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight ANODES 1258.0 784.48 0.0000

mm N mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist

40 Nozzle M1 535.00

mm mm

N

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 32 Input Echo : Step: 1 11:07a Jan 30,2014

Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

762.0 None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

mm

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 33 Internal Pressure Calculations : Step: 3 11:07a Jan 30,2014

Element Thickness, Pressure, Diameter and Allowable Stress : | | Int. Press | Nominal | Total Corr| Element | Allowable | From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)| | | bar | mm | mm | mm | bar | --------------------------------------------------------------------------SKIRT| ... | 9.5300 | ... | 2468.0 | ... | BOTTOM HEA| 16.065 | 22.200 | 3.0000 | 2430.0 | 1379.0 | SHELL| 16.000 | 19.050 | 3.0000 | 2430.0 | 1379.0 | TOP HEAD| 16.000 | 22.200 | 3.0000 | 2430.0 | 1379.0 | Element Required Thickness and MAWP :

| | Design | M.A.W.P. | M.A.P. | Minimum | Required | From| To | Pressure | Corroded | New & Cold | Thickness | Thickness | | | bar | bar | bar | mm | mm | ---------------------------------------------------------------------------SKIRT| ... | No Calc | No Calc | 9.53000 | No Calc | BOTTOM HEA| 16.0000 | 16.9521 | 20.3994 | 18.0000 | 17.1598 | SHELL| 16.0000 | 18.0290 | 21.4199 | 19.0500 | 17.2311 | TOP HEAD| 16.0000 | 17.0175 | 20.3994 | 18.0000 | 17.1021 | Minimum 16.952 19.601 Note : The M.A.P.(NC) is Governed by a Flange ! MAWP: 16.952 bar, limited by: BOTTOM HEAD. Internal Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2010, 2011a

Elliptical Head From 20 To 30 SA-516 70 , UCS-66 Crv. D at 60 C BOTTOM HEAD Longitudinal Joint: Circumferential Joint: Material UNS Number:

Full Radiography per UW-11(a) Type 1 Full Radiography per UW-11(a) Type 1

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (16.065*2436.0000*0.997)/(2*1379.00*1.00-0.2*16.065) = 14.1598 + 3.0000 = 17.1598 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 0.065 bar = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c) = (2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000) = 17.017 - 0.065 = 16.952 bar

Maximum Allowable Pressure, New and Cold [MAPNC]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 34 Internal Pressure Calculations : Step: 3 11:07a Jan 30,2014

= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c) = (2*1379.00*1.00*18.0000)/(1.000*2430.0000+0.2*18.0000) = 20.399 bar Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*D+0.2*t))/(2*E*t) = (16.065*(0.997*2436.0000+0.2*15.0000))/(2*1.00*15.0000) = 1301.847 bar Straight Flange Required Thickness: = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1) = (16.065*1218.0000)/(1379.00*1.00-0.6*16.065)+3.000 = 17.290 mm

Straight Flange Maximum Allowable Working Pressure: Less Operating Hydrostatic Head Pressure of 0.005 bar = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (1379.00 * 1.00 * 19.2000 )/(1218.0000 + 0.6 * 19.2000 ) = 21.534 - 0.005 = 21.529 bar Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 2436.000/( 2 * 610.500 ))^(2))/6 = 0.996728

Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro)

3.925 %

MDMT Calculations in the Knuckle Portion:

Govrn. thk, tg = 18.000 , tr = 15.000 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 1.000 , Temp. Reduction = 0 C Min Metal Temp. w/o impact per UCS-66

-43 C

MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 22.200 , tr = 15.143 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.789 , Temp. Reduction = 12 C

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-37 C -48 C

Cylindrical Shell From 30 To 40 SA-516 70 , UCS-66 Crv. D at 60 C SHELL

Longitudinal Joint: Circumferential Joint: Material UNS Number:

Full Radiography per UW-11(a) Type 1 Full Radiography per UW-11(a) Type 1

K02700

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 35 Internal Pressure Calculations : Step: 3 11:07a Jan 30,2014

= (16.000*1218.0000)/(1379.00*1.00-0.6*16.000) = 14.2311 + 3.0000 = 17.2311 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (1379.00*1.00*16.0500)/(1218.0000+0.6*16.0500) = 18.029 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (1379.00*1.00*19.0500)/(1215.0000+0.6*19.0500) = 21.420 bar

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (16.000*(1218.0000+0.6*16.0500))/(1.00*16.0500) = 1223.806 bar Percent Elongation per UCS-79

(50*tnom/Rf)*(1-Rf/Ro)

0.778 %

Minimum Design Metal Temperature Results: Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

Elliptical Head From 40 To 50 SA-516 70 , UCS-66 Crv. D at 60 C TOP HEAD Longitudinal Joint: Circumferential Joint: Material UNS Number:

Full Radiography per UW-11(a) Type 1 Full Radiography per UW-11(a) Type 1

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (16.000*2436.0000*0.997)/(2*1379.00*1.00-0.2*16.000) = 14.1021 + 3.0000 = 17.1021 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c) = (2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000) = 17.017 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c) = (2*1379.00*1.00*18.0000)/(1.000*2430.0000+0.2*18.0000) = 20.399 bar Actual stress at given pressure and thickness, corroded [Sact]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 36 Internal Pressure Calculations : Step: 3 11:07a Jan 30,2014 = (P*(Kcor*D+0.2*t))/(2*E*t) = (16.000*(0.997*2436.0000+0.2*15.0000))/(2*1.00*15.0000) = 1296.549 bar

Straight Flange Required Thickness: = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1) = (16.000*1218.0000)/(1379.00*1.00-0.6*16.000)+3.000 = 17.231 mm Straight Flange Maximum Allowable Working Pressure: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (1379.00 * 1.00 * 19.2000 )/(1218.0000 + 0.6 * 19.2000 ) = 21.534 bar Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 2436.000/( 2 * 610.500 ))^(2))/6 = 0.996728

Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro)

3.925 %

MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 18.000 , tr = 14.942 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.996 , Temp. Reduction = 0 C

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-43 C -43 C

MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 22.200 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.786 , Temp. Reduction = 12 C

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-37 C -48 C

Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F

Hydrostatic Test Pressure Results: Pressure per Pressure per Pressure per Pressure per Pressure per User Defined

UG99b = UG99b[34] = UG99c = UG100 = PED = Hydrostatic

1.3 * M.A.W.P. * Sa/S 1.3 * Design Pres * Sa/S 1.3 * M.A.P. - Head(Hyd) 1.1 * M.A.W.P. * Sa/S 1.43 * MAWP Test Pressure at High Point

22.038 20.800 25.481 18.647 24.241 25.481

bar bar bar bar bar bar

Horizontal Test performed per: User Hydro Pressure Please note that Nozzle, Shell, Head, Flange, etc MAWPs are all considered when determining the hydrotest pressure for those test types that are based

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 37 Internal Pressure Calculations : Step: 3 11:07a Jan 30,2014

on the MAWP of the vessel. Stresses on Elements due to Hydrostatic Test Pressure: From To BOTTOM HEAD SHELL TOP HEAD

Stress 1738.6 1655.8 1738.6

Allowable 2358.0 2358.0 2358.0

Ratio 0.737 0.702 0.737

Pressure 25.72 25.72 25.72

Elements Suitable for Internal Pressure.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 38 External Pressure Calculations : Step: 4 11:07a Jan 30,2014

External Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2010, 2011a

Elliptical Head From 20 to 30 Ext. Chart: CS-2 at 60 C BOTTOM HEAD Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 15.000 2466.00 164.40 0.0008448 799.44 EMAP = B/(K0*D/t) = 799.4418/(0.9000 *164.4000 ) = 5.4031 bar Results for Required Thickness (Tca): Tca OD D/t Factor A B 6.385 2466.00 386.22 0.0003596 359.52 EMAP = B/(K0*D/t) = 359.5194/(0.9000 *386.2201 ) = 1.0343 bar

Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head. Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (1.727*2436.0000*0.997)/(2*1379.00*1.00-0.2*1.727) = 1.5207 + 3.0000 = 4.5207 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000))/1.67 = 10.190 bar

Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 5.40 , 10.1901 ) = 5.403 bar Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head. Cylindrical Shell From 30 to 40 Ext. Chart: CS-2 at 60 C SHELL Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A 16.050 2468.10 2235.00 153.78 0.9056 0.0007810

B 773.33

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 39 External Pressure Calculations : Step: 4 11:07a Jan 30,2014 EMAP = (4*B)/(3*(D/t)) = (4*773.3347 )/(3*153.7757 ) = 6.7053 bar

Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B 7.579 2468.10 2235.00 325.66 0.9056 0.0002527 252.61 EMAP = (4*B)/(3*(D/t)) = (4*252.6147 )/(3*325.6598 ) = 1.0343 bar Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B 16.050 2468.10 13124.05 153.78 5.3175 0.0001194 119.37 EMAP = (4*B)/(3*(D/t)) = (4*119.3713 )/(3*153.7757 ) = 1.0350 bar Elliptical Head From 40 to 50 Ext. Chart: CS-2 at 60 C TOP HEAD

Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 15.000 2466.00 164.40 0.0008448 799.44 EMAP = B/(K0*D/t) = 799.4418/(0.9000 *164.4000 ) = 5.4031 bar Results for Required Thickness (Tca): Tca OD D/t Factor A B 6.385 2466.00 386.22 0.0003596 359.52 EMAP = B/(K0*D/t) = 359.5194/(0.9000 *386.2201 ) = 1.0343 bar

Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head. Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (1.727*2436.0000*0.997)/(2*1379.00*1.00-0.2*1.727) = 1.5207 + 3.0000 = 4.5207 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000))/1.67 = 10.190 bar Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 5.40 , 10.1901 ) = 5.403 bar Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head. External Pressure Calculations

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 40 External Pressure Calculations : Step: 4 11:07a Jan 30,2014 | | Section | Outside | Corroded | Factor | Factor | From| To | Length | Diameter | Thickness | A | B | | | mm | mm | mm | | bar | --------------------------------------------------------------------------10| 20| 850.000 | ... | ... | No Calc | No Calc | 20| 30| No Calc | 2466.00 | 15.0000 | 0.00084482 | 799.442 | 30| 40| 2235.00 | 2468.10 | 16.0500 | 0.00078096 | 773.335 | 40| 50| No Calc | 2466.00 | 15.0000 | 0.00084482 | 799.442 |

External Pressure Calculations | | External | External | External | External | From| To | Actual T. | Required T.|Des. Press. | M.A.W.P. | | | mm | mm | bar | bar | ---------------------------------------------------------------10| 20| ... | No Calc | ... | No Calc | 20| 30| 18.0000 | 9.38496 | 1.03420 | 5.40309 | 30| 40| 19.0500 | 10.5788 | 1.03420 | 6.70530 | 40| 50| 18.0000 | 9.38496 | 1.03420 | 5.40309 | Minimum 5.403

External Pressure Calculations | | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia | From| To | Bet. Stiff.| Bet. Stiff.| Required | Available | | | mm | mm | mm**4 | mm**4 | ------------------------------------------------------------------10| 20| 850.000 | No Calc | No Calc | No Calc | 20| 30| No Calc | No Calc | No Calc | No Calc | 30| 40| 2235.00 | 13124.1 | No Calc | No Calc | 40| 50| No Calc | No Calc | No Calc | No Calc |

Elements Suitable for External Pressure. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 41 Element and Detail Weights : Step: 5 11:07a Jan 30,2014

Element and Detail Weights

| | Element | Element | Corroded | Corroded | Extra due | From| To | Metal Wgt. | ID Volume |Metal Wgt. | ID Volume | Misc % | | | kg | m³ | kg | m³ | kg | --------------------------------------------------------------------------10| 20| 1277.32 | ... | 1277.32 | ... | 63.8662 | 20| 30| 1304.60 | 2.06031 | 1128.31 | 2.07505 | 65.2302 | 30| 40| 1965.25 | 7.83371 | 1657.80 | 7.87244 | 98.2627 | 40| 50| 1304.60 | 2.06031 | 1128.31 | 2.07505 | 65.2302 | --------------------------------------------------------------------------Total 5851 11.95 5191 12.02 292 Weight of Details

| | Weight of | X Offset, | Y Offset, | From|Type| Detail | Dtl. Cent. |Dtl. Cent. | Description | | kg | mm | mm | ------------------------------------------------20|Liqd| 2139.84 | ... | -303.750 | SEA WATER 20|Nozl| 6.38372 | ... | -607.500 | N5 20|Wght| 506.000 | ... | 50.0000 | INT.PLATE 30|Pack| 950.010 | ... | 63.5000 | SAND 30|Pack| 2523.02 | ... | 241.500 | COARSE GARNET 30|Pack| 4843.05 | ... | 597.500 | FINE GARNET 30|Pack| 1302.01 | ... | 1004.00 | COARSE ANTHRACI 30|Nozl| 48.0766 | 1301.53 | 1453.00 | N1 30|Nozl| 48.0766 | 1301.53 | 277.000 | N2 30|Nozl| 30.7425 | 1280.90 | 1493.00 | N3 30|Nozl| 149.793 | 1351.53 | 365.000 | H1 30|Wght| 420.000 | ... | 865.000 | DIST. & HEADER 30|Wght| 80.0000 | ... | 1258.00 | ANODES 40|Nozl| 12.5407 | -401.500 | 760.710 | N4 40|Nozl| 1043.09 | 378.302 | 1155.04 | M1 30|Pliq| 239.01 | 0.00000 | 63.50000 | 30|Pliq| 484.02 | 0.00000 | 241.50000 | 30|Pliq| 1134.06 | 0.00000 | 597.50000 | 30|Pliq| 776.06 | 0.00000 |1004.00000 | Total Weight of Each Detail Type Total Weight of Packing 9618.1 Total Weight of Packing Liquid 2633.2 Total Weight of Liquid 2139.8 Total Weight of Nozzles 1338.7 Total Weight of Weights 1006.0 --------------------------------------------------------------Sum of the Detail Weights 16735.8 kg

Weight Summation

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 42 Element and Detail Weights : Step: 5 11:07a Jan 30,2014

Fabricated Shop Test Shipping Erected Empty Operating -----------------------------------------------------------------------------6144.4 7989.1 6144.4 7989.1 6144.4 18107.2 ... 12238.2 ... 9618.1 ... 2139.8 1338.7 500.0 1338.7 ... ... ... ... ... ... ... 9618.1 2633.2 ... ... ... ... ... 500.0 ... ... ... ... ... -500.0 ... ... ... ... 1338.7 ... 506.0 ... 506.0 ... ... ... ... ... ... ... 500.0 ... ... ... ... ... 506.0 ... -----------------------------------------------------------------------------7989.1 20727.3 17607.2 18107.2 18107.2 22880.2 kg

Miscellaneous Weight Percent: 5.0 %

Note that the above value for the miscellaneous weight percent has been applied to the shells/heads/flange/tubesheets/tubes etc. in the weight calculations for metallic components. Note: The shipping total has been modified because some items have been specified as being installed in the shop. Weight Summary

Fabricated Wt. Shop Test Wt. Shipping Wt. Erected Wt. Ope. Wt. no Liq Operating Wt. Field Test Wt. Mass of the Upper

Bare Weight W/O Removable Internals Fabricated Weight + Water ( Full ) Fab. Wt + Rem. Intls.+ Shipping App. Fab. Wt + Rem. Intls.+ Insul. (etc) Fab. Wt + Intls. + Details + Wghts. Empty Wt + Operating Liq. Uncorroded Empty Weight + Water (Full) 1/3 of the Vertical Vessel

7989.1 20727.3 8489.0 8489.0 8489.0 22880.2 26926.1 5025.6

kg kg kg kg kg kg kg kg

Outside Surface Areas of Elements

| | Surface | From| To | Area | | | cm² | ---------------------------10| 20| 65904.3 | 20| 30| 70255.5 | 30| 40| 134140. | 40| 50| 70255.5 | ---------------------------Total 340555.438 cm² Element and Detail Weights

| To | From| To |

Total Ele.| Total. Ele.|Total. Ele.| Total Dtl.| Oper. Wgt. | Empty Wgt.| Oper. Wgt.|Hydro. Wgt.| Offset Mom.| No Liquid |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 43 Element and Detail Weights : Step: 5 11:07a Jan 30,2014

| | kg | kg | kg | N-m | kg | --------------------------------------------------------------------------10| 20| 1341.19 | 1341.19 | 1341.19 | ... | 1341.19 | 20| 30| 1882.22 | 4022.05 | 3991.46 | ... | 1882.22 | 30| 40| 12458.3 | 15091.5 | 17058.7 | 3599.99 | 12458.3 | 40| 50| 2425.46 | 2425.46 | 4534.71 | 3920.44 | 2425.46 | Cumulative Vessel Weight

| | Cumulative Ope | Cumulative | Cumulative | From| To | Wgt. No Liquid | Oper. Wgt. | Hydro. Wgt. | | | kg | kg | kg | ------------------------------------------------------10| 20| 18107.2 | 22880.2 | 26926.1 | 20| 30| 16766.0 | 21539.0 | 25584.9 | 30| 40| 14883.8 | 17516.9 | 21593.4 | 40| 50| 2425.46 | 2425.46 | 4534.71 | Note: The cumulative operating weights no liquid in the column above are the cumulative operating weights minus the operating liquid weight minus any weights absent in the empty condition.

Cumulative Vessel Moment | | Cumulative | Cumulative |Cumulative | From| To | Empty Mom. | Oper. Mom. |Hydro. Mom.| | | N-m | N-m | N-m | ------------------------------------------------10| 20| 7520.43 | 7520.43 | 7520.43 | 20| 30| 7520.43 | 7520.43 | 7520.43 | 30| 40| 7520.43 | 7520.43 | 7520.43 | 40| 50| 3920.44 | 3920.44 | 3920.44 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 44 Nozzle Flange MAWP : Step: 6 11:07a Jan 30,2014

Nozzle Flange MAWP Results :

Nozzle Description

----- Flange Rating Operating Ambient Temperature Class Grade|Group bar bar C ---------------------------------------------------------------------------N5 18.9 19.6 60 150 GR 1.1 N1 18.9 19.6 60 150 GR 1.1 N2 18.9 19.6 60 150 GR 1.1 N3 18.9 19.6 60 150 GR 1.1 H1 18.9 19.6 60 150 GR 1.1 N4 18.9 19.6 60 150 GR 1.1 M1 18.9 19.6 60 150 GR 1.1 ---------------------------------------------------------------------------Minimum Rating 18.9 19.6 bar

Note: ANSI Ratings are per ANSI/ASME B16.5 2009 Metric Edition

Note: Large Diameter Flange ratings per ANSI B16.47 2006 edition.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 45 Wind Load Calculation : Step: 8 11:07a Jan 30,2014

Input Values:

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 Distance Upwind of Crest Lh 0.0000 Distance from Crest to the Vessel x 0.0000 Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

m/sec

mm

mm mm mm

Wind Analysis Results

Static Gust-Effect Factor, Operating Case [G]: = min(0.85, 0.925((1 + 1.7 * gQ * Izbar * Q )/( 1 + 1.7 * gV * Izbar))) = min(0.85,0.925((1+1.7*3.400*0.228*0.958)/(1+1.7*3.400*0.228))) = min(0.85, 0.903 ) = 0.850 Natural Frequency of Vessel (Operating) Natural Frequency of Vessel (Empty) Natural Frequency of Vessel (Test)

43.534 Hz 47.417 Hz 39.685 Hz

Note: Per Section 1609 of IBC 2003/06/09 these results are also applicable for the determination of Wind Loads on structures (1609.1.1). User Entered Importance Factor is Force Coefficient Structure Height to Diameter ratio Height to top of Structure

1.150 [Cf] 0.507 1.419 3305.500 mm

This is classified as a rigid structure. Static analysis performed.

Sample Calculation for the First Element The ASCE code performs all calculations in Imperial Units only. The wind pressure is therefore computed in these units. Value of [Alpha] and [Zg]: Exposure Category: C from Table C6-2 Alpha = 9.500 : Zg = 274320.000 mm

Effective Height [z]: = Centroid Height + Vessel Base Elevation = 425.000 + 19663.998 = 20088.998 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 46 Wind Load Calculation : Step: 8 11:07a Jan 30,2014 = 65.909 ft. Imperial Units Velocity Pressure coefficient evaluated at height z [Kz]: Because z (65.909 ft.) > 15 ft. = 2.01 * ( z / Zg ) ^(2 / Alpha) = 2.01 * ( 65.909/900.000 )^(2/9.500 ) = 1.159 Type of Hill: No Hill Wind Directionality Factor [Kd]: = 0.95 per [6-6 ASCE-7 98][6-4 ASCE-7 02/05] As there is No Hill Present: [Kzt]: K1 = 0, K2 = 0, K3 = 0

Topographical Factor [Kzt]: = ( 1 + K1 * K2 * K3 )² = ( 1 + 0.000 * 0.000 * 0.000 )² = 1.0000 Velocity Pressure evaluated at height z, Imperial Units [qz]: = 0.00256 * Kz * Kzt * Kd * I * Vr(mph)² = 0.00256 * 1.159 * 1.000 * 0.950 * 1.150 * 97.085² = 30.6 psf [1.463 ] KN/m² Force on the first element [F]: = qz * G * Cf * WindArea = 30.560 * 0.850 * 0.507 * 27.097 = 356.8 lbs. [1587.2 ] N Element

Hgt (z) K1 K2 K3 Kz Kzt qz mm KN/m² --------------------------------------------------------------------------SKIRT 20089.0 0.000 0.000 0.000 1.159 1.000 1.463 BOTTOM HEAD 20539.0 0.000 0.000 0.000 1.165 1.000 1.470 SHELL 21429.0 0.000 0.000 0.000 1.175 1.000 1.483 TOP HEAD 22582.6 0.000 0.000 0.000 1.188 1.000 1.500

Wind Vibration Calculations This evaluation is based on work by Kanti Mahajan and Ed Zorilla

Nomenclature Cf D Df Dr f f1 L

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 47 Wind Load Calculation : Step: 8 11:07a Jan 30,2014

Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 217566/( 2680.00 * 2436.000² ) = 0.13681E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations

ID

Wind Area Elevation Pressure Force Cf cm² mm KN/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping ID

Wind Area Elevation Pressure Force cm² mm KN/m² N ------------------------------------------------------------------------INT.PLATE 0.00 20564.00 1.47 0.00 DIST. & HEADE 0.00 21429.00 1.48 0.00 ANODES 0.00 21822.00 1.49 0.00 The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz. Wind Load Calculation

| | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | KN/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 1.46318 | 1587.23 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 1.47002 | 93.7269 |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 48 Wind Load Calculation : Step: 8 11:07a Jan 30,2014

30| 40|

40| 50|

21429.0 | 22582.6 |

2961.72 | 2959.20 |

51237.8 | 16017.2 |

1.48321 | 1.49967 |

3274.83 | 1035.09 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 49 Earthquake Load Calculation : Step: 9 11:07a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.087 0.087 0.049

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz. Earthquake Load Calculation

| | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 1618.14 | 1618.14 | 20| 30| 875.000 | 39440.2 | 4852.59 | 2270.89 | 30| 40| 1765.00 | 147987. | 18207.8 | 15030.9 | 40| 50| 2655.00 | 23784.1 | 2926.31 | 2926.31 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 50 Wind/Earthquake Shear, Bending : Step: 10 11:07a Jan 30,2014

The following table is for the Operating Case. Wind/Earthquake Shear, Bending | | Distance to| Cumulative |Earthquake | Wind | Earthquake | From| To | Support| Wind Shear | Shear | Bending | Bending | | | mm | N | N | N-m | N-m | --------------------------------------------------------------------------10| 20| 425.000 | 5990.88 | 27604.8 | 9561.58 | 45629.8 | 20| 30| 875.000 | 4403.65 | 25986.7 | 5142.12 | 22844.2 | 30| 40| 1765.00 | 4309.92 | 21134.1 | 4924.19 | 21665.7 | 40| 50| 2655.00 | 1035.09 | 2926.31 | 298.887 | 844.987 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 51 Wind Deflection : Step: 11 11:07a Jan 30,2014

Wind Deflection Calculations:

The following table is for the Operating Case. Wind Deflection

| | Cumulative | Centroid | Elem. End | Elem. Ang. | From| To | Wind Shear | Deflection |Deflection | Rotation | | | N | mm | mm | | -------------------------------------------------------------10| 20| 5990.88 | 0.00007 |0.00025673 | ... | 20| 30| 4403.65 | 0.00027053 |0.00028450 | ... | 30| 40| 4309.92 | 0.00084697 | 0.0014901 | ... | 40| 50| 1035.09 | 0.0015091 | 0.0015281 | ... | Critical Wind Velocity for Tower Vibration | | 1st Crit. | 2nd Crit. | From| To | Wind Speed | Wind Speed | | | m/sec | m/sec | ------------------------------------10| 20| 642.913 | 4018.21 | 20| 30| 642.392 | 4014.95 | 30| 40| 642.939 | 4018.37 | 40| 50| 642.392 | 4014.95 |

Allowable deflection at the Tower Top (Ope)( 6.000"/100ft. Criteria) Allowable deflection : 13.400 Actual Deflection : 0.002 mm PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 52 Stress due to Combined Loads : Step: 15 11:07a Jan 30,2014

Stress Combination Load Cases for Vertical Vessels:

Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes:

Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress.

An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -20.62 1165.68 30 1654.80 -17.74 1186.02 40 1654.80 -2.68 1165.68 Analysis of Load Case 2 : NP+OW+EQ+WI+FW+FS+BS

Tens. Ratio

Comp. Ratio 0.0425 0.0177 0.0150 0.0023

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 53 Stress due to Combined Loads : Step: 15 11:07a Jan 30,2014 From Node 10 20 30 40

Tensile Stress

All. Tens. Stress 1158.36 1654.80 1654.80 1654.80

Comp. Stress -42.90 -20.62 -17.74 -2.68

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 3 : IP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 635.87 1654.80 1165.68 30 595.22 1654.80 1186.02 40 645.16 1654.80 1165.68 Analysis of Load Case 4 : IP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 635.87 1654.80 1165.68 30 595.22 1654.80 1186.02 40 645.16 1654.80 1165.68 Analysis of Load Case 5 : EP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -63.39 1165.68 30 1654.80 -57.76 1186.02 40 1654.80 -45.44 1165.68 Analysis of Load Case 6 : EP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -63.39 1165.68 30 1654.80 -57.76 1186.02 40 1654.80 -45.44 1165.68

Analysis of Load Case 7 : IP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -32.15 20 631.00 1654.80 30 591.01 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 8 : NP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -32.15 20 1654.80 -17.54 30 1654.80 -14.89

All. Comp. Stress 1010.47 1165.68 1186.02

Tens. Ratio

Comp. Ratio 0.0425 0.0177 0.0150 0.0023

Tens. Ratio

Comp. Ratio 0.0425

0.3843 0.3597 0.3899

Tens. Ratio

Comp. Ratio 0.0425

0.3843 0.3597 0.3899

Tens. Ratio

Comp. Ratio 0.0425 0.0544 0.0487 0.0390

Tens. Ratio

Comp. Ratio 0.0425 0.0544 0.0487 0.0390

Tens. Ratio

Comp. Ratio 0.0318

0.3813 0.3571 0.3897

Tens. Ratio

Comp. Ratio 0.0318 0.0150 0.0126

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 54 Stress due to Combined Loads : Step: 15 11:07a Jan 30,2014

40

1654.80

-2.62

1165.68

Analysis of Load Case 9 : FW+FS+BW+BS+IP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -30.66 20 631.89 1654.80 30 591.69 1654.80 40 645.00 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 10 : FS+FW+BW+BS+EP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -30.66 20 1654.80 -59.41 30 1654.80 -54.23 40 1654.80 -45.28

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Absolute Maximum of the all of the Stress Ratio's

0.0022

Tens. Ratio

Comp. Ratio 0.0303

0.3819 0.3576 0.3898

Tens. Ratio

Comp. Ratio 0.0303 0.0510 0.0457 0.0388 0.3899

Governing Element: TOP HEAD Governing Load Case 3 : IP+OW+WI+EQ+FS+FW+BW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 55 Center of Gravity Calculation : Step: 16 11:07a Jan 30,2014

Shop/Field Installation Options : Packing is installed in the

Shop.

Note : The CG is computed from the first Element From Node Center Center Center Center Center

of of of of of

Gravity Gravity Gravity Gravity Gravity

of of of of of

Packing Liquid Nozzles Added Weights (Operating) Added Weights (Empty)

1406.397 546.250 3305.414 1361.173 1361.173

mm mm mm mm mm

Center of Gravity of Bare Shell New and Cold Center of Gravity of Bare Shell Corroded

1472.506 mm 1435.319 mm

Vessel CG in the Operating Condition Vessel CG in the Fabricated (Shop/Empty) Condition

1443.766 mm 1566.716 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 56 Basering Calculations : Step: 17 11:07a Jan 30,2014 Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 Gr. 70 [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock) Basering Operating All. Stress BASOPE 1792.65 bar Basering Yield Stress 2454.55 bar Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm

Nominal Diameter of Bolts BND 38.1000 mm Bolt Corrosion Allowance BCA 0.0000 mm Bolt Material SA-325 Type1 Bolt Operating Allowable Stress SA 3100.02 bar (Allowable stress is amended based on Tensile Strength-Input by TMJV) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000 mm Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2493.2 221.4000 76.0000 38.0000 2 31.7500 125.0000 43.0000

mm mm mm N/cm² bar mm mm mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 177558.9 N Operating Weight of Vessel ROW 224362.8 N Earthquake Moment on Basering EQMOM 45629.8 N-m Wind Moment on Basering WIMOM 9561.6 N-m (As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0 Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables Fact Results for Basering Analysis : Analyze Option

No No 1.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 57 Basering Calculations : Step: 17 11:07a Jan 30,2014

Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3100.0 [Fact]

0.0000 8.3484 133.5739 0.0 3100.02

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *3100 +235356 )/19540.71 ) + 45629/.11156E+10 = 22.80 bar Allowable Stress on Concrete

82.74

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2688.972 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 22.804/2688.972 )½ + 0.0000 = 21.5332 mm

Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 22.804 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 1526.431 , must be less than 2688.972 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress Wt = (Topwth - Bnd), Width of Section

T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 2459/( 2688 * 86.9000 ))½ + 0.0000 T = 25.1257 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 58 Basering Calculations : Step: 17 11:07a Jan 30,2014

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 844/2688 )½ + 0.000 27.2310 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 125.9861 Allowable Buckling Str. per E2-1 1280.93 Actual Buckling Str. at Given Thickness 651.89

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

9.7029

79.0423 125.9861 1070.25 1066.90

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

21.5332 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

25.1257 27.2310 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

9.7029 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 42.901 * ( 9.530 - 0.000 ) = 40.88 N/mm Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 40/[( 0.4 * 2454 ) * 2 * 0.707] = 0.294 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 59 Basering Calculations : Step: 17 11:07a Jan 30,2014

Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 258786.6/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 421.435 N/mm

Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 258786.6 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 240.291 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 421.44² + 240.29²)½ = 485.126 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 485.13/[( 0.4 * 2454 ) * 2 * 0.707] = 3.495 mm Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 258786.6/( 2 * 125.000 ) = 1035.146 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 258786.6 * 65.00/( 2 * 253.150 * 125.000 ) = 265.789 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1035.15² + 265.79²)½ = 1068.724 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1068.72/[( 0.4 * 2493 ) * 2 * 0.707] = 7.579 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness. Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size

4.7625 6.3500 7.5792

mm mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 60 Basering Calculations : Step: 17 11:07a Jan 30,2014 Required Gusset to Top Plate Double Fillet Weld Size

7.5792

mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 61 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014 INPUT VALUES,

Nozzle Description: N5

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

17.017 60 1.03 60

20 bar C bar C

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Elliptical Head Aspect Ratio of Elliptical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

D Ar t c co

2430.00 2.00 18.0000 3.0000 0.0000

mm mm mm

Distance from Head Centerline

L1

0.0000

mm

User Entered Minimum Design Metal Temperature

SA-516 70 1379.00 bar 1379.00 bar

0.00

mm

C

Type of Element Connected to the Shell : Nozzle

Material [Normalized] Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter Size and Thickness Basis Actual Thickness

SA-105 K03504 Forgings 1379.00 bar 1379.00 bar ID 180.00 50.8000

tn

deg mm.

Actual 13.4600 mm

Flange Material [Normalized] SA-105 Flange Type Long Weld Neck (Refer Dwg. No.:MLK-58863004234001-B01-39002-0042065-M-DW-001, nozzle N5 will be flanged through bottom T.O.S EL+ 19664) Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi ASME Code Weld Type per UW-16

175.0000 9.0000 18.0000 0.0000 0.0000 None

mm mm mm mm mm

Class of attached Flange Grade of attached Flange

150 GR 1.1

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 62 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration)

| | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N5

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

50.800 13.460

mm. mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press] = (P*K1*D))/(2*S*E-0.2*P) per UG-37(a)(3) = (17.02*0.898*2436.0000)/(2 *1379.00*1.00-0.2*17.02) = 13.5125 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (17.02*28.40)/(1379*1.00-0.6*17.02) = 0.3531 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3489 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), no pad Tlnp

113.6000 56.8000 26.1500

mm

mm mm mm

Note:

Taking a UG-36(c)(3)(a) exemption for nozzle: N5. This calculation is valid for nozzles that meet all the requirements of paragraph UG-36. Please check the Code carefully, especially for nozzles that are not isolated or do not meet Code spacing requirements. To force the computation of areas for small nozzles go to Tools->Configuration and check the box to force the UG-37 small nozzle area calculation or force the Appendix 1-10 computation in Nozzle Design Options. UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.]

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 63 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014 Wall Wall Wall Wall Wall Wall Wall

Thickness for Internal/External pressures ta = 3.3531 mm Thickness per UG16(b), tr16b = 4.5000 mm Thickness, shell/head, internal pressure trb1 = 18.0000 mm Thickness tb1 = max(trb1, tr16b) = 18.0000 mm Thickness, shell/head, external pressure trb2 = 3.9105 mm Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Thickness per table UG-45 tb3 = 7.8000 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 7.800 , max( 18.000 , 4.500 ) ] = 7.8000 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3531 , 7.8000 ) = 7.8000 mm Available Nozzle Neck Thickness = 13.4600 mm --> OK Stresses on Nozzle due to External and Pressure Loads per the ASME B31.3 Piping Code (see 319.4.4 and 302.3.5): Sustained : 295.8, Allowable : 1379.0 bar Passed Expansion : 0.0, Allowable : 3151.7 bar Passed Occasional : 19.5, Allowable : 1834.1 bar Passed Shear : 250.1, Allowable : 965.3 bar Passed Note : The number of cycles on this nozzle was assumed to be 7000 or less for the determination of the expansion stress allowable. Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: C ---------------------------------------------------------------------Govrn. thk, tg = 13.460 , tr = 0.353 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.034 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Governing MDMT of all the sub-joints of this Junction

-37 C -104 C :

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 17.02/19.60 = 0.868

Weld Size Calculations, Description: N5

-29 C -36 C

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 64 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014

Intermediate Calc. for nozzle/shell Welds

Tmin

10.4600

mm

Results Per UW-16.1: Nozzle Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm

NOTE : Skipping the nozzle attachment weld strength calculations. Per UW-15(b)(2) the nozzles exempted by UG-36(c)(3)(a) (small nozzles) do not require a weld strength check. Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 16.952

bar

Note: The MAWP of this junction was limited by the parent Shell/Head. The Drop for this Nozzle is : 0.3430 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 193.3431 mm Input Echo, WRC107 Item

1,

Diameter Basis for Vessel Cylindrical or Spherical Vessel Internal Corrosion Allowance Vessel Diameter Vessel Thickness

Design Vessel Vessel Vessel

Temperature Material Cold S.I. Allowable Hot S.I. Allowable

Description: N5 Vbasis Cylsph Cas Dv Tv

ID Spherical 3.0000 mm 4374.000 mm 18.000 mm

Smc Smh

60.00 SA-516 70 1379.00 1379.00

Attachment Type WRC107 Attachment Classification

Type Holsol

Round Hollow

Diameter Basis for Nozzle Corrosion Allowance for Nozzle Nozzle Diameter Nozzle Thickness Nozzle Material Nozzle Cold S.I. Allowable Nozzle Hot S.I. Allowable

Nbasis Can Dn Tn

ID 3.0000 50.800 13.460 SA-105 1379.00 1379.00

Design Internal Pressure Include Pressure Thrust

SNmc SNmh Dp

External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P Longitudinal Shear (SUS) (Vl) V1 Circumferential Shear (SUS) (Vc) V2 Circumferential Moment (SUS) (Mc) M1 Longitudinal Moment (SUS) (Ml) M2 Torsional Moment (SUS) Mt

:

C

bar bar

mm mm mm bar bar

17.017 No

bar

-6000.0 6000.0 4500.0 600.0 800.0 900.0

N N N N-m N-m N-m

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 65 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014

Use Interactive Control WRC107 Version

Version

No March

Include Pressure Stress Indices per Div. 2 Compute Pressure Stress per WRC-368

No No

WRC 107 Stress Calculation for SUStained loads: Radial Load P Circumferential Shear (VC) V2 Longitudinal Shear (VL) V1 Circumferential Moment (MC) M1 Longitudinal Moment (ML) M2 Torsional Moment MT Dimensionless Param: U =

0.21 TAU =

1979

5.00 (

-6000.0 4500.0 6000.0 600.0 800.0 900.0 3.22) RHO =

N N N N-m N-m N-m 1.43

Dimensionless Loads for Spherical Shells at Attachment Junction: -----------------------------------------------------------Curves read for 1979 Figure Value Location -----------------------------------------------------------N(x) * T / P SP 2 0.12770 (A,B,C,D) M(x) / P SP 2 0.14364 (A,B,C,D) N(x) * T * SQRT(Rm * T ) / MC SM 2 0.35598 (A,B,C,D) M(x) * SQRT(Rm * T ) / MC SM 2 0.54535 (A,B,C,D) N(x) * T * SQRT(Rm * T ) / ML SM 2 0.35598 (A,B,C,D) M(x) * SQRT(Rm * T ) / ML SM 2 0.54535 (A,B,C,D) N(y) * T / P M(y) / P N(y) * T * SQRT(Rm * M(y) * SQRT(Rm * N(y) * T * SQRT(Rm * M(y) * SQRT(Rm *

T T T T

) ) ) )

/ / / /

MC MC ML ML

SP SP SM SM SM SM

2 2 2 2 2 2

Stress Concentration Factors Kn = 1.00,

0.20628 0.08376 0.04398 0.41706 0.04398 0.41706

(A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Kb = 1.00

Stresses in the Vessel at the Attachment Junction -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Memb. P | 34 34 34 34 34 34 34 34 Rad. Bend. P | 229 -229 229 -229 229 -229 229 -229 Rad. Memb. MC | 0 0 0 0 -52 -52 52 52 Rad. Bend. MC | 0 0 0 0 -480 480 480 -480 Rad. Memb. ML | -69 -69 69 69 0 0 0 0 Rad. Bend. ML | -640 640 640 -640 0 0 0 0 | Tot. Rad. Str.| -446.4 375.1 974.2 -766.7 -268.8 232.4 796.6 -624.0 ------------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 66 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014 Tang. Tang. Tang. Tang. Tang. Tang.

Memb. Bend. Memb. Bend. Memb. Bend.

P P MC MC ML ML

| 55 55 55 55 55 55 55 55 | 134 -134 134 -134 134 -134 134 -134 | 0 0 0 0 -6 -6 6 6 | 0 0 0 0 -367 367 367 -367 | -8 -8 8 8 0 0 0 0 | -489 489 489 -489 0 0 0 0 | Tot. Tang. Str.| -309.5 402.3 687.5 -560.3 -184.8 281.9 562.9 -440.0 -----------------------------------------------------------------------Shear VC | 24 24 -24 -24 0 0 0 0 Shear VL | 0 0 0 0 -32 -32 32 32 Shear MT | 63 63 63 63 63 63 63 63 | Tot. Shear| 87.8 87.8 38.6 38.6 30.4 30.4 96.0 96.0 -----------------------------------------------------------------------Str. Int. | 489.24 477.51 979.28 773.67 278.68 296.42 830.97 664.91 ------------------------------------------------------------------------

WRC 107 Stress Summations: Vessel Stress Summation at Attachment Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Pm (SUS) | 1242 1242 1242 1242 1242 1242 1242 1242 Rad. Pl (SUS) | -35 -35 103 103 -18 -18 86 86 Rad. Q (SUS) | -410 410 870 -870 -250 250 710 -710 -----------------------------------------------------------------------Long. Pm (SUS) | 1242 1242 1242 1242 1242 1242 1242 1242 Long. Pl (SUS) | 46 46 63 63 48 48 61 61 Long. Q (SUS) | -355 355 623 -623 -233 233 501 -501 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 24 24 -24 -24 -32 -32 32 32 Shear Q (SUS) | 63 63 63 63 63 63 63 63 -----------------------------------------------------------------------Pm (SUS) | 1242 1242 1242 1242 1242 1242 1242 1242 -----------------------------------------------------------------------Pm+Pl (SUS) | 1295 1295 1357 1357 1304 1304 1351 1351 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 975 1719 2221 689 1067 1538 2073 843 ------------------------------------------------------------------------

-----------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1242.31 1379.00 | Passed Pm+Pl (SUS) | 1357.72 2068.50 | Passed Pm+Pl+Q (TOTAL)| 2221.60 4137.00 | Passed

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 67 Nozzle Calcs. : N5 Nozl: 8 11:07a Jan 30,2014

-----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 68 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 INPUT VALUES,

Nozzle Description: N1

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Design Length of Section Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D L t c co

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature

16.952 60 1.03 60

30 bar C bar C

SA-516 70 1379.00 bar 1379.00 bar 2430.00 2235.0000 19.0500 3.0000 0.0000

mm mm mm mm mm

1503.0000

mm

0.00

C

Type of Element Connected to the Shell : Nozzle

Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-106 B K03006 Smls. pipe 1179.01 bar 1179.01 bar ID 0.00 200.0000

deg mm.

Size and Thickness Basis Nominal Nominal Thickness tn 160 (As clarified in CRS, Sch 120 for this size is not available in the market stock)

Flange Material Flange Type Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-105 FFWn can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

200.0000 9.0000 19.0500 0.0000 0.0000

mm mm mm mm mm

Pad Material [Normalized] Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient

SA-516 70 1378.96 bar 1378.96 bar

Sp Spa

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 69 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014

Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16

Dp te Wp Wgpn

Class of attached Flange Grade of attached Flange

350.0000 19.0500 12.0000 19.0500 65.4625 None

mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle).

Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: N1 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

173.050 23.012

mm. mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*1218.0000)/(1379*1.00-0.6*16.95) = 15.0842 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*89.53)/(1179*1.00-0.6*16.95) = 1.2984 mm Required Nozzle thickness under External Pressure per UG-28 : 0.6751 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

358.1004 179.0502 40.1250

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 70 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 27.884 7.005 Area in Shell A1 1.673 14.676 Area in Nozzle Wall A2 12.840 13.268 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 1.501 1.501 Area in Element A5 18.705 18.705 TOTAL AREA AVAILABLE Atot 34.719 48.150

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 281.3869 350.0000 281.3869

Thickness 19.0500 mm 9.0666 mm 19.0500 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (179.0502*15.0842*1.0+2*20.0124*15.0842*1.0*(1-0.85)) = 27.884 cm²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 179.050 ( 1.00 * 16.0500 - 1.0 * 15.084 ) - 2 * 20.012 ( 1.00 * 16.0500 - 1.0 * 15.0842 ) * ( 1 - 0.855 ) = 1.673 cm²

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 71 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 40.12 ) * ( 20.01 - 1.30 ) * 0.8550 = 12.840 cm² Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Trapfr4 = (0.8100 ) * 0.85 + (0.0000 ) * 0.85 + 80.8008² * 1.00 = 1.501 cm²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 350.0000 - 219.0750 ) * 19.0500 * 1.0000 = 18.705 cm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Wall Thickness for Internal/External pressures ta Wall Thickness per UG16(b), tr16b Wall Thickness, shell/head, internal pressure trb1 Wall Thickness tb1 = max(trb1, tr16b) Wall Thickness, shell/head, external pressure trb2 Wall Thickness tb2 = max(trb2, tr16b) Wall Thickness per table UG-45 tb3

Press.] = 4.2984 mm = 4.5000 mm = 18.0842 mm = 18.0842 mm = 3.9139 mm = 4.5000 mm = 10.1600 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 10.160 , max( 18.084 , 4.500 ) ] = 10.1600 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 4.2984 , 10.1600 ) = 10.1600 mm Available Nozzle Neck Thickness = 0.875 * 23.012 = 20.136 mm --> OK Stresses on Nozzle due to External and Pressure Loads per the ASME B31.3 Piping Code (see 319.4.4 and 302.3.5): Sustained : 269.7, Allowable : 1179.0 bar Passed Expansion : 0.0, Allowable : 2677.9 bar Passed Occasional : 34.1, Allowable : 1568.1 bar Passed Shear : 180.0, Allowable : 825.3 bar Passed Note : The number of cycles on this nozzle was assumed to be 7000 or less for the determination of the expansion stress allowable. Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 20.136 , tr = 1.298 , c = 3.0000 mm , E* = 1.00

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 72 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014

Stress Ratio = tr * (E*)/(tg - c) = 0.076 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-7 C -85 C -29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-9 C -12 C -29 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f) Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

-9 C -12 C -29 C : : :

-29 C -45 C -29 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c) Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :

-29 C -36 C -104 C

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 73 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 Design Pressure/Ambient Rating = 16.95/19.60 = 0.865

Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: N1 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

19.0000 16.0500

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 8.0250 = 0.5*TminPad 8.4840 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (27.8838 - 1.6732 + 2 * 20.0124 * 0.8550 * (1.00 * 16.0500 - 15.0842 ) ) * 1379 = 365981.09 N Note: F is always set to 1.0 throughout the calculation.

Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 12.8400 + 18.7054 + 1.5005 - 0.0000 * 0.85 ) * 1379 = 455677.09 N Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 12.8400 + 0.0000 + 0.6925 + ( 5.4923 ) ) * 1379 = 262338.25 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 12.8400 + 0.0000 + 1.5005 + 18.7054 + ( 5.4923 ) ) * 1379 = 531412.31 N

Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 219.0750 * 9.0000 * 0.49 * 1179 = 178914. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 350.0000 * 12.0000 * 0.49 * 1378 = 445751. N Shear, Nozzle Wall [Snw]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 74 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 99.5313 ) * ( 23.0124 - 3.0000 ) * 0.7 * 1179 = 516417. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 219.0750 * 19.0500 * 0.74 * 1378 = 668909. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 219.0750 * ( 19.0500 - 3.0000 ) * 0.74 * 1379 = 563585. N Strength of Failure Paths:

PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + Sonw + 178914 Spew + 445751

SNW ) = ( 445751 + 516416 ) = 962168 N Tpgw + Tngw + Sinw ) + 668908 + 563585 + 0 ) = 1411407 N Tngw + Sinw ) + 563585 + 0 ) = 1009336 N

Failure Path Calculations: 962168 N , must exceed W = 365981 N 1411407 N , must exceed W = 365981 N 1009336 N , must exceed W = 365981 N

or W1 = 455677 N or W2 = 262338 N or W3 = 531412 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 18.029

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 4.9478 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 223.9978 mm Input Echo, WRC107 Item

1,

Diameter Basis for Vessel Cylindrical or Spherical Vessel Internal Corrosion Allowance Vessel Diameter Vessel Thickness Design Vessel Vessel Vessel

Temperature Material Cold S.I. Allowable Hot S.I. Allowable

Attachment Type

Diameter Basis for Nozzle

Description: N1 Vbasis Cylsph Cas Dv Tv

Smc Smh Type Nbasis

:

ID Cylindrical 3.0000 mm 2430.000 mm 19.050 mm 60.00 SA-516 70 1379.00 1379.00 Round ID

C bar bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 75 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014

Corrosion Allowance for Nozzle Nozzle Diameter Nozzle Thickness Nozzle Material Nozzle Cold S.I. Allowable Nozzle Hot S.I. Allowable Thickness of Reinforcing Pad Diameter of Reinforcing Pad

Can Dn Tn

Design Internal Pressure Include Pressure Thrust

mm mm mm

SNmc SNmh

3.0000 173.050 23.012 SA-106 B 1179.01 1179.01

Tpad Dpad

19.050 350.000

mm mm

Dp

16.952 No

bar

-22100.0 22100.0 16600.0 8800.0 11500.0 13200.0

N N N N-m N-m N-m

External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P Longitudinal Shear (SUS) Vl Circumferential Shear (SUS) Vc Circumferential Moment (SUS) Mc Longitudinal Moment (SUS) Ml Torsional Moment (SUS) Mt

Use Interactive Control WRC107 Version

Version

No March

Include Pressure Stress Indices per Div. 2 Compute Pressure Stress per WRC-368

Gamma =

1979 No No

WRC 107 Stress Calculation for SUStained loads: Radial Load P Circumferential Shear VC Longitudinal Shear VL Circumferential Moment MC Longitudinal Moment ML Torsional Moment MT Dimensionless Parameters used :

bar bar

-22100.0 16600.0 22100.0 8800.0 11500.0 13200.0

N N N N-m N-m N-m

35.20

Dimensionless Loads for Cylindrical Shells at Attachment Junction: ------------------------------------------------------------------Curves read for 1979 Beta Figure Value Location ------------------------------------------------------------------N(PHI) / ( P/Rm ) 0.078 4C 6.386 (A,B) N(PHI) / ( P/Rm ) 0.078 3C 5.949 (C,D) M(PHI) / ( P ) 0.078 2C1 0.117 (A,B) M(PHI) / ( P ) 0.078 1C 0.151 (C,D) N(PHI) / ( MC/(Rm**2 * Beta) ) 0.078 3A 0.777 (A,B,C,D) M(PHI) / ( MC/(Rm * Beta) ) 0.078 1A 0.101 (A,B,C,D) N(PHI) / ( ML/(Rm**2 * Beta) ) 0.078 3B 2.715 (A,B,C,D) M(PHI) / ( ML/(Rm * Beta) ) 0.078 1B 0.051 (A,B,C,D) N(x) N(x)

/ ( P/Rm ) / ( P/Rm )

0.078 0.078

3C 4C

5.949 6.386

(A,B) (C,D)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 76 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 M(x) M(x) N(x) M(x) N(x) M(x)

/ / / / / /

( ( ( ( ( (

P ) P ) MC/(Rm**2 MC/(Rm ML/(Rm**2 ML/(Rm

* * * *

Beta) Beta) Beta) Beta)

) ) ) )

0.078 0.078 0.078 0.078 0.078 0.078

Stress Concentration Factors Kn = 1.00,

1C1 2C 4A 2A 4B 2B

0.157 0.117 1.056 0.057 0.768 0.084

(A,B) (C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Kb = 1.00

Stresses in the Vessel at the Attachment Junction -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Memb. P | 32 32 32 32 30 30 30 30 Circ. Bend. P | 125 -125 125 -125 162 -162 162 -162 Circ. Memb. MC | 0 0 0 0 -16 -16 16 16 Circ. Bend. MC | 0 0 0 0 -451 451 451 -451 Circ. Memb. ML | -75 -75 75 75 0 0 0 0 Circ. Bend. ML | -300 300 300 -300 0 0 0 0 | Tot. Circ. Str.| -217.2 132.1 533.5 -318.2 -274.8 302.6 661.4 -567.9 -----------------------------------------------------------------------Long. Memb. P | 30 30 30 30 32 32 32 32 Long. Bend. P | 168 -168 168 -168 125 -125 125 -125 Long. Memb. MC | 0 0 0 0 -22 -22 22 22 Long. Bend. MC | 0 0 0 0 -255 255 255 -255 Long. Memb. ML | -21 -21 21 21 0 0 0 0 Long. Bend. ML | -492 492 492 -492 0 0 0 0 | Tot. Long. Str.| -314.8 333.0 712.8 -609.7 -119.4 139.8 435.9 -326.1 -----------------------------------------------------------------------Shear VC | 13 13 -13 -13 0 0 0 0 Shear VL | 0 0 0 0 -18 -18 18 18 Shear MT | 49 49 49 49 49 49 49 49 | Tot. Shear| 63.6 63.6 36.1 36.1 31.6 31.6 68.2 68.2 -----------------------------------------------------------------------Str. Int. | 346.18 351.41 719.84 614.13 280.97 308.46 680.41 585.78 -----------------------------------------------------------------------Dimensionless Parameters used : Gamma = 76.39 Dimensionless Loads for Cylindrical Shells at Pad edge: ------------------------------------------------------------------Curves read for 1979 Beta Figure Value Location ------------------------------------------------------------------N(PHI) / ( P/Rm ) 0.125 4C 11.559 (A,B) N(PHI) / ( P/Rm ) 0.125 3C 8.126 (C,D) M(PHI) / ( P ) 0.125 2C1 0.046 (A,B) M(PHI) / ( P ) 0.125 1C 0.081 (C,D)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 77 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 N(PHI) M(PHI) N(PHI) M(PHI)

/ / / /

( ( ( (

MC/(Rm**2 MC/(Rm ML/(Rm**2 ML/(Rm

N(x) N(x) M(x) M(x) N(x) M(x) N(x) M(x)

/ / / / / / / /

( ( ( ( ( ( ( (

P/Rm ) P/Rm ) P ) P ) MC/(Rm**2 MC/(Rm ML/(Rm**2 ML/(Rm

* * * *

* * * *

Beta) Beta) Beta) Beta)

Beta) Beta) Beta) Beta)

) ) ) )

0.125 0.125 0.125 0.125

3A 1A 3B 1B

2.979 0.080 8.601 0.030

(A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

) ) ) )

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

3C 4C 1C1 2C 4A 2A 4B 2B

8.126 11.559 0.083 0.047 5.213 0.040 3.006 0.040

(A,B) (C,D) (A,B) (C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Stress Concentration Factors Kn = 1.00,

Kb = 1.00

Stresses in the Vessel at the Edge of Reinforcing Pad -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Memb. P | 129 129 129 129 91 91 91 91 Circ. Bend. P | 238 -238 238 -238 415 -415 415 -415 Circ. Memb. MC | 0 0 0 0 -86 -86 86 86 Circ. Bend. MC | 0 0 0 0 -1073 1073 1073 -1073 Circ. Memb. ML | -328 -328 328 328 0 0 0 0 Circ. Bend. ML | -526 526 526 -526 0 0 0 0 | Tot. Circ. Str.| -486 89 1223 -307 -653 662 1666 -1310 -----------------------------------------------------------------------Long. Memb. P | 91 91 91 91 129 129 129 129 Long. Bend. P | 426 -426 426 -426 240 -240 240 -240 Long. Memb. MC | 0 0 0 0 -152 -152 152 152 Long. Bend. MC | 0 0 0 0 -539 539 539 -539 Long. Memb. ML | -114 -114 114 114 0 0 0 0 Long. Bend. ML | -693 693 693 -693 0 0 0 0 | Tot. Long. Str.| -290 243 1326 -914 -321 276 1061 -497 -----------------------------------------------------------------------Shear VC | 18 18 -18 -18 0 0 0 0 Shear VL | 0 0 0 0 -25 -25 25 25 Shear MT | 42 42 42 42 42 42 42 42 | Tot. Shear| 61 61 23 23 17 17 67 67 -----------------------------------------------------------------------Str. Int. | 504 265 1331 915 654 663 1674 1315 -----------------------------------------------------------------------WRC 107 Stress Summations:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 78 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014

Vessel Stress Summation at Attachment Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 579 596 579 596 579 596 579 596 Circ. Pl (SUS) | -42 -42 107 107 13 13 46 46 Circ. Q (SUS) | -174 174 425 -425 -288 288 614 -614 -----------------------------------------------------------------------Long. Pm (SUS) | 289 289 289 289 289 289 289 289 Long. Pl (SUS) | 9 9 51 51 10 10 54 54 Long. Q (SUS) | -323 323 661 -661 -129 129 381 -381 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 13 13 -13 -13 -18 -18 18 18 Shear Q (SUS) | 49 49 49 49 49 49 49 49 -----------------------------------------------------------------------Pm (SUS) | 579.9 596.8 579.9 596.8 579.9 596.8 579.9 596.8 -----------------------------------------------------------------------Pm+Pl (SUS) | 538.1 555.0 688.1 705.0 594.9 611.8 627.8 644.7 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 407 758 1124 602 312 901 1250 151 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 596.85 1379.00 | Passed Pm+Pl (SUS) | 705.01 2068.50 | Passed Pm+Pl+Q (TOTAL)| 1250.17 4137.00 | Passed -----------------------------------------------------------------------WRC 107 Stress Summations: Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 Circ. Pl (SUS) | -198 -198 457 457 4 4 178 178 Circ. Q (SUS) | -288 288 765 -765 -658 658 1488 -1488 -----------------------------------------------------------------------Long. Pm (SUS) | 639 639 639 639 639 639 639 639 Long. Pl (SUS) | -23 -23 205 205 -22 -22 282 282 Long. Q (SUS) | -266 266 1120 -1120 -298 298 779 -779 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 79 Nozzle Calcs. : N1 Nozl: 9 11:07a Jan 30,2014 Shear Pl (SUS) | 18 18 -18 -18 -25 -25 25 25 Shear Q (SUS) | 42 42 42 42 42 42 42 42 -----------------------------------------------------------------------Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 -----------------------------------------------------------------------Pm+Pl (SUS) | 1080 1097 1736 1753 1283 1300 1457 1474 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 799 1392 2502 1264 625 1957 2948 207 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1294.99 1379.00 | Passed Pm+Pl (SUS) | 1753.36 2068.50 | Passed Pm+Pl+Q (TOTAL)| 2948.30 4137.00 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 80 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 INPUT VALUES,

Nozzle Description: N2

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Design Length of Section Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D L t c co

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature

16.952 60 1.03 60

30 bar C bar C

SA-516 70 1379.00 bar 1379.00 bar 2430.00 2235.0000 19.0500 3.0000 0.0000

mm mm mm mm mm

327.0000

mm

0.00

C

Type of Element Connected to the Shell : Nozzle

Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-106 B K03006 Smls. pipe 1179.01 bar 1179.01 bar ID 144.00 200.0000

deg mm.

Size and Thickness Basis Nominal Nominal Thickness tn 160 (As clarified in CRS, Sch 120 for this size is not available in the market stock)

Flange Material Flange Type Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-105 FFWn can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

200.0000 9.0000 19.0500 0.0000 0.0000

mm mm mm mm mm

Pad Material [Normalized] Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient

SA-516 70 1378.96 bar 1378.96 bar

Sp Spa

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 81 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16

Dp te Wp Wgpn

Class of attached Flange Grade of attached Flange

350.0000 19.0500 12.0000 19.0500 65.4625 None

mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: N2

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

173.050 23.012

mm. mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*1218.0000)/(1379*1.00-0.6*16.95) = 15.0842 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*89.53)/(1179*1.00-0.6*16.95) = 1.2984 mm Required Nozzle thickness under External Pressure per UG-28 : 0.6751 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

358.1004 179.0502 40.1250

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 82 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

= min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 27.884 7.005 Area in Shell A1 1.673 14.676 Area in Nozzle Wall A2 12.840 13.268 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 1.501 1.501 Area in Element A5 18.705 18.705 TOTAL AREA AVAILABLE Atot 34.719 48.150

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 281.3869 350.0000 281.3869

Thickness 19.0500 mm 9.0666 mm 19.0500 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (179.0502*15.0842*1.0+2*20.0124*15.0842*1.0*(1-0.85)) = 27.884 cm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 179.050 ( 1.00 * 16.0500 - 1.0 * 15.084 ) - 2 * 20.012 ( 1.00 * 16.0500 - 1.0 * 15.0842 ) * ( 1 - 0.855 ) = 1.673 cm²

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 83 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 40.12 ) * ( 20.01 - 1.30 ) * 0.8550 = 12.840 cm² Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Trapfr4 = (0.8100 ) * 0.85 + (0.0000 ) * 0.85 + 80.8008² * 1.00 = 1.501 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 350.0000 - 219.0750 ) * 19.0500 * 1.0000 = 18.705 cm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Wall Thickness for Internal/External pressures ta Wall Thickness per UG16(b), tr16b Wall Thickness, shell/head, internal pressure trb1 Wall Thickness tb1 = max(trb1, tr16b) Wall Thickness, shell/head, external pressure trb2 Wall Thickness tb2 = max(trb2, tr16b) Wall Thickness per table UG-45 tb3

Press.] = 4.2984 mm = 4.5000 mm = 18.0842 mm = 18.0842 mm = 3.9139 mm = 4.5000 mm = 10.1600 mm

Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 10.160 , max( 18.084 , 4.500 ) ] = 10.1600 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 4.2984 , 10.1600 ) = 10.1600 mm Available Nozzle Neck Thickness = 0.875 * 23.012 = 20.136 mm --> OK Stresses on Nozzle due to External and Pressure Loads per the ASME B31.3 Piping Code (see 319.4.4 and 302.3.5): Sustained : 269.7, Allowable : 1179.0 bar Passed Expansion : 0.0, Allowable : 2677.9 bar Passed Occasional : 34.1, Allowable : 1568.1 bar Passed Shear : 180.0, Allowable : 825.3 bar Passed Note : The number of cycles on this nozzle was assumed to be 7000 or less for the determination of the expansion stress allowable. Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 20.136 , tr = 1.298 , c = 3.0000 mm , E* = 1.00

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 84 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Stress Ratio = tr * (E*)/(tg - c) = 0.076 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-7 C -85 C -29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-9 C -12 C -29 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f) Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

-9 C -12 C -29 C : : :

-29 C -45 C -29 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c) Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :

-29 C -36 C -104 C

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 85 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 Design Pressure/Ambient Rating = 16.95/19.60 = 0.865 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: N2 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

19.0000 16.0500

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 8.0250 = 0.5*TminPad 8.4840 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (27.8838 - 1.6732 + 2 * 20.0124 * 0.8550 * (1.00 * 16.0500 - 15.0842 ) ) * 1379 = 365981.09 N Note: F is always set to 1.0 throughout the calculation.

Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 12.8400 + 18.7054 + 1.5005 - 0.0000 * 0.85 ) * 1379 = 455677.09 N Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 12.8400 + 0.0000 + 0.6925 + ( 5.4923 ) ) * 1379 = 262338.25 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 12.8400 + 0.0000 + 1.5005 + 18.7054 + ( 5.4923 ) ) * 1379 = 531412.31 N

Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 219.0750 * 9.0000 * 0.49 * 1179 = 178914. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 350.0000 * 12.0000 * 0.49 * 1378 = 445751. N Shear, Nozzle Wall [Snw]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 86 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 99.5313 ) * ( 23.0124 - 3.0000 ) * 0.7 * 1179 = 516417. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 219.0750 * 19.0500 * 0.74 * 1378 = 668909. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 219.0750 * ( 19.0500 - 3.0000 ) * 0.74 * 1379 = 563585. N Strength of Failure Paths:

PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + Sonw + 178914 Spew + 445751

SNW ) = ( 445751 + 516416 ) = 962168 N Tpgw + Tngw + Sinw ) + 668908 + 563585 + 0 ) = 1411407 N Tngw + Sinw ) + 563585 + 0 ) = 1009336 N

Failure Path Calculations: 962168 N , must exceed W = 365981 N 1411407 N , must exceed W = 365981 N 1009336 N , must exceed W = 365981 N

or W1 = 455677 N or W2 = 262338 N or W3 = 531412 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 18.029

bar

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 4.9478 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 223.9978 mm Input Echo, WRC297 Item

1,

Diameter Basis for Cylindrical Shell Shell Corrosion Allowance Shell Diameter Shell Thickness Shell Stress Concentration Factor

Description: N2

:

ID 3.0000 2430.000 19.0500 1.000

mm mm mm

Diameter Basis for Nozzle Nozzle Corrosion Allowance Nozzle Diameter Nozzle Thickness Nozzle Stress Concentration Factor

ID 3.0000 173.050 23.0124 1.000

mm mm mm

Diameter of Reinforcing Pad Thickness of Reinforcing Pad

350.000 19.0500

mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 87 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Note: External Forces and Moments in WRC 107 Convention: This loads are assumed to be SUStained loads.

Design Internal Pressure Radial Load Circumferential Shear Longitudinal Shear Circumferential Moment Longitudinal Moment Torsional Moment

Dp P Vc Vl Mc Ml Mt

16.95 -22100.00 16600.00 22100.00 8800.00 11500.00 13200.00

Include Axial Pressure Thrust Include Pressure Stress Indices per Div. 2

No No

Warning - The ratio, Dn/Tn (9.520) is < 20 check the limitations of WRC bulletin 297. Stress Computations at the Edge of the Nozzle:

WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

= = = = = = = [(d/D)* (D/T)^(1/2)] =

Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = = = =

2471.100 219.075 35.100 20.012 1.754 10.947 0.744

mm mm mm mm

0.156 0.168 0.084 0.150 0.237 0.179 0.149 0.081 0.196 0.156 0.123 0.100

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane) Outplane Outplane Outplane Outplane Outplane

(D) (d) (T) (t)

Membrane Bending Membrane Bending Membrane

(P ) (P ) (Mc) (Mc) (ML)

Au Al Top Top Outside Inside -----------(bar 26 26 90 -90 0 0 0 0 -42 -42

Bu Bl Bottom Bottom Outside Inside )-----------26 26 90 -90 0 0 0 0 42 42

bar N N N N-m N-m N-m

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 88 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Outplane Bending (ML) -314 314 314 -314 Normal Pressure Stress 579 596 579 596 ----------------------- -------- -------- -------- -------Outplane Stress Summary 339 805 1054 261 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 28 28 28 28 Inplane Bending (P ) 180 -180 180 -180 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -66 -66 66 66 Inplane Bending (ML) -501 501 501 -501 Inplane Pressure Stress 289 289 289 289 ----------------------- -------- -------- -------- -------Inplane Stress Summary -69 572 1066 -298 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 13 13 -13 -13 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 49 49 49 49 ----------------------- -------- -------- -------- -------Shear Stress Summary 63 63 36 36

Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Au Al Top Top Outside Inside -----------(bar 428 821

Bu Bl Bottom Bottom Outside Inside )-----------1097 563

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 26 26 26 26 Outplane Bending (P ) 90 -90 90 -90 Outplane Membrane (Mc) -26 -26 26 26 Outplane Bending (Mc) -292 292 292 -292 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 289 289 289 289 ----------------------- -------- -------- -------- -------Outplane Stress Summary 88 492 725 -39

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 89 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 28 28 28 28 Inplane Bending (P ) 180 -180 180 -180 Inplane Membrane (Mc) -58 -58 58 58 Inplane Bending (Mc) -463 463 463 -463 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 579 596 579 596 ----------------------- -------- -------- -------- -------Inplane Stress Summary 267 848 1310 39 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -18 -18 18 18 Torsional Shear (Mt) 49 49 49 49 ----------------------- -------- -------- -------- -------Shear Stress Summary 31 31 68 68 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Left Left Outside Inside -----------(bar 272 851

Du Dl Right Right Outside Inside )-----------1318 157

Nozzle Stresses LONGITUDINAL PLANE (Stresses in the hoop direction)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 26 26 26 26 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) 0 0 0 0 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) -42 -42 42 42 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 81 102 81 102 ----------------------- -------- -------- -------- -------Hoop Stress Summary 66 86 151 171 Nozzle Stresses LONGITUDINAL PLANE (Stresses Normal to pipe cross-section)

Au Al Top Top Outside Inside -----------(bar

Bu Bl Bottom Bottom Outside Inside )------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 90 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 Axial Membrane (P ) 17 17 17 17 Axial Bending (P ) 297 -297 297 -297 Axial Membrane (Mc) 0 0 0 0 Axial Bending (Mc) 0 0 0 0 Axial Membrane (ML) -201 -201 201 201 Axial Bending (ML) -930 930 930 -930 Axial Pressure Stress 40 40 40 40 ----------------------- -------- -------- -------- -------Axial Stress Summary -776 491 1487 -968 Nozzle Stresses LONGITUDINAL PLANE (Shear stress)

Au Al Bu Bl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 24 24 -24 -24 Shear due to (Vl) 0 0 0 0 Shear due to Torsion 87 87 87 87 ----------------------- -------- -------- -------- -------Shear Stress Summary 111 111 63 63

Nozzle Stresses LONGITUDINAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Outside Inside -----------(bar 871 519

Bu Bl Outside Inside )-----------1490 1147

Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses in the hoop direction)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 26 26 26 26 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) -26 -26 26 26 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) 0 0 0 0 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 81 102 81 102 ----------------------- -------- -------- -------- -------Hoop Stress Summary 82 102 134 155 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to pipe cross-section) Axial Axial Axial Axial Axial Axial Axial

Membrane Bending Membrane Bending Membrane Bending Pressure

(P ) (P ) (Mc) (Mc) (ML) (ML) Stress

Cu Cl Left Left Outside Inside -----------(bar 17 17 297 -297 -153 -153 -885 885 0 0 0 0 40 40

Du Dl Right Right Outside Inside )-----------17 17 297 -297 153 153 885 -885 0 0 0 0 40 40

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 91 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

----------------------- -------- -------- -------- -------Axial Stress Summary -683 493 1395 -970 Nozzle Stresses CIRCUMFERENTIAL PLANE (Shear stress)

Cu Cl Du Dl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 0 0 0 0 Shear due to (Vl) -32 -32 32 32 Shear due to Torsion 87 87 87 87 ----------------------- -------- -------- -------- -------Shear Stress Summary 55 55 119 119 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Cu Cl Outside Inside -----------(bar 774 500

Du Dl Outside Inside )-----------1406 1150

Stress Computations at the Edge of the Reinforcing Pad: WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

(D) (d) (T) (t)

= = = = = = = [(d/D)* (D/T)^(1/2)] =

2452.050 350.000 16.050 85.475 0.188 10.000 1.764

mm mm mm mm

Note: Re-pad thickness is added to nozzle thickness to simulate the Re-pad. Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = = = =

0.078 0.159 0.046 0.082 0.294 0.090 0.091 0.071 0.123 0.095 0.038 0.104

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane) Outplane Membrane (P )

Au Al Top Top Outside Inside -----------(bar 70 70

Bu Bl Bottom Bottom Outside Inside )-----------70 70

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 92 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Outplane Bending (P ) 239 -239 239 -239 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -132 -132 132 132 Outplane Bending (ML) -291 291 291 -291 Normal Pressure Stress 1278 1294 1278 1294 ----------------------- -------- -------- -------- -------Outplane Stress Summary 1163 1285 2010 966 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 66 66 66 66 Inplane Bending (P ) 819 -819 819 -819 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -121 -121 121 121 Inplane Bending (ML) -944 944 944 -944 Inplane Pressure Stress 639 639 639 639 ----------------------- -------- -------- -------- -------Inplane Stress Summary 460 708 2590 -937 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 18 18 -18 -18 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 42 42 42 42 ----------------------- -------- -------- -------- -------Shear Stress Summary 61 61 23 23

Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane) Outplane Outplane Outplane Outplane Outplane Outplane

Membrane Bending Membrane Bending Membrane Bending

(P ) (P ) (Mc) (Mc) (ML) (ML)

Au Al Top Top Outside Inside -----------(bar 1169 1292

Bu Bl Bottom Bottom Outside Inside )-----------2591 1904

Cu Cl Left Left Outside Inside -----------(bar 70 70 239 -239 -69 -69 -529 529 0 0 0 0

Du Dl Right Right Outside Inside )-----------70 70 239 -239 69 69 529 -529 0 0 0 0

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 93 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 Normal Pressure Stress 639 639 639 639 ----------------------- -------- -------- -------- -------Outplane Stress Summary 349 931 1547 9

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 66 66 66 66 Inplane Bending (P ) 819 -819 819 -819 Inplane Membrane (Mc) -87 -87 87 87 Inplane Bending (Mc) -1721 1721 1721 -1721 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 1278 1294 1278 1294 ----------------------- -------- -------- -------- -------Inplane Stress Summary 355 2175 3973 -1091 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -25 -25 25 25 Torsional Shear (Mt) 42 42 42 42 ----------------------- -------- -------- -------- -------Shear Stress Summary 17 17 67 67 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Left Left Outside Inside -----------(bar 370 2175

Du Dl Right Right Outside Inside )-----------3975 1109

WRC 297 Stress Summations per ASME Sec. VIII Div. 2:

Vessel Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 579 596 579 596 579 596 579 596 Circ. Pl (SUS) | -16 -16 68 68 -30 -30 86 86 Circ. Q (SUS) | -224 224 404 -404 -283 283 643 -643 -----------------------------------------------------------------------Long. Pm (SUS) | 289 289 289 289 289 289 289 289 Long. Pl (SUS) | -38 -38 94 94 0 0 52 52

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 94 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014

Long. Q (SUS) | -321 321 681 -681 -202 202 382 -382 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 13 13 -13 -13 -18 -18 18 18 Shear Q (SUS) | 49 49 49 49 49 49 49 49 -----------------------------------------------------------------------Pm (SUS) | 579.0 596.0 579.0 596.0 579.0 596.0 579.0 596.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 563.5 580.5 647.6 664.6 550.2 567.2 666.0 682.9 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 427 819 1094 562 271 851 1315 156 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 596.00 1379.00 | Passed Pm+Pl (SUS) | 682.95 2068.50 | Passed Pm+Pl+Q (TOTAL)| 1315.58 4137.00 | Passed -----------------------------------------------------------------------WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 Circ. Pl (SUS) | -62 -62 202 202 -21 -21 153 153 Circ. Q (SUS) | -52 52 530 -530 -902 902 2540 -2540 -----------------------------------------------------------------------Long. Pm (SUS) | 639 639 639 639 639 639 639 639 Long. Pl (SUS) | -55 -55 187 187 1 1 139 139 Long. Q (SUS) | -125 125 1763 -1763 -290 290 768 -768 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 18 18 -18 -18 -25 -25 25 25 Shear Q (SUS) | 42 42 42 42 42 42 42 42 -----------------------------------------------------------------------Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 -----------------------------------------------------------------------Pm+Pl (SUS) | 1216 1232 1480 1496 1258 1273 1431 1447 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1169 1290 2589 1903 369 2175 3972 1111 ------------------------------------------------------------------------

-----------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 95 Nozzle Calcs. : N2 Nozl: 10 11:07a Jan 30,2014 ---------------|-------------------------------------------------------Pm (SUS) | 1294.00 1379.00 | Passed Pm+Pl (SUS) | 1496.48 2068.50 | Passed Pm+Pl+Q (TOTAL)| 3972.85 4137.00 | Passed ------------------------------------------------------------------------

WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Nozzle Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 81 102 81 102 81 102 81 102 Circ. Pl (SUS) | -16 -16 68 68 0 0 52 52 Circ. Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Long. Pm (SUS) | 40 40 40 40 40 40 40 40 Long. Pl (SUS) | -184 -184 218 218 -136 -136 170 170 Long. Q (SUS) | -633 633 1227 -1227 -588 588 1182 -1182 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 24 24 -24 -24 -32 -32 32 32 Shear Q (SUS) | 87 87 87 87 87 87 87 87 -----------------------------------------------------------------------Pm (SUS) | 81.0 102.0 81.0 102.0 81.0 102.0 81.0 102.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 214.4 235.0 263.1 264.1 188.2 208.1 221.6 224.5 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 870 517 1487 1145 772 499 1403 1150 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 102.00 1179.01 | Passed Pm+Pl (SUS) | 264.12 1768.52 | Passed Pm+Pl+Q (TOTAL)| 1487.96 3537.03 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 96 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

INPUT VALUES,

Nozzle Description: N3

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From :

P Temp Pext Tempex

16.952 60 1.03 60

30

bar C bar C

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Design Length of Section Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D L t c co

2430.00 2235.0000 19.0500 3.0000 0.0000

mm mm mm mm mm

Distance from Cylinder/Cone Centerline

L1

450.0000

mm

1543.0000

mm

Distance from Bottom/Left Tangent

User Entered Minimum Design Metal Temperature

SA-516 70 1379.00 bar 1379.00 bar

0.00

C

Type of Element Connected to the Shell : Nozzle

Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter Size and Thickness Basis Nominal Thickness

SA-106 B K03006 Smls. pipe 1179.01 bar 1179.01 bar ID 21.39 150.0000

tn

Flange Material Flange Type

deg mm.

Nominal 160

SA-105 FFWn

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

221.0000 9.0000 19.0500 0.0000 0.0000

mm mm mm mm mm

Pad Material

SA-516 70

[Normalized]

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 97 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16

Sp Spa Dp te Wp Wgpn

Class of attached Flange Grade of attached Flange

1378.96 1378.96 270.0000 19.0500 12.0000 19.0500 50.8625 None

bar bar mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__|

Insert Nozzle With Pad, no Inside projection Note : Checking Nozzle 90 degrees to the Longitudinal axis. Reinforcement CALCULATION, Description: N3

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

131.801 18.237

mm. mm

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*1218.0000)/(1379*1.00-0.6*16.95) = 15.0842 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*68.90)/(1179*1.00-0.6*16.95) = 0.9993 mm Required Nozzle thickness under External Pressure per UG-28 : 0.6043 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d

296.5638 148.2819

mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 98 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Normal to Vessel Wall (Thickness Limit), pad side Tlwp

40.1250

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 23.034 5.786 Area in Shell A1 1.389 12.187 Area in Nozzle Wall A2 10.288 10.574 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 1.871 1.871 Area in Element A5 14.534 14.534 TOTAL AREA AVAILABLE Atot 28.082 39.165

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

68.33

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 218.0695 270.0000 233.0880

Thickness 19.0500 mm 9.3250 mm 18.2372 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (148.2819*15.0842*1.0+2*15.2372*15.0842*1.0*(1-0.85)) = 23.034 cm²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 99 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

= 148.282 ( 1.00 * 16.0500 - 1.0 * 15.084 ) - 2 * 15.237 ( 1.00 * 16.0500 - 1.0 * 15.0842 ) * ( 1 - 0.855 ) = 1.389 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2/sin( alpha3 ) = ( 2 * 40.12 ) * ( 15.24 - 1.00 ) * 0.8550/sin( 71.7 ) = 10.288 cm²

Note: See Appendix L, L-7.7.7(b) for more information. Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Trapfr4 = (0.8100 ) * 0.85 + (0.0000 ) * 0.85 + 117.8090² * 1.00 = 1.871 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 282.7992 - 181.0742 ) * 19.0500 * 1.0000 = 14.534 cm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 15.958 , tr = 0.999 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.077 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-14 C -92 C -29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 15.958 , tr = 0.999 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.077 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-14 C -92 C -29 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 15.958 , tr = 0.999 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.077 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-46 C -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ----------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 100 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 15.958 , tr = 0.999 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.077 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-14 C -92 C -29 C

Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

: : :

-92 C -45 C -45 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C -36 C -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 16.95/19.60 = 0.865 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: N3 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

15.2372 16.0500

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 8.0250 = 0.5*TminPad 8.4840 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (23.0338 - 1.3895 + 2 * 15.2372 * 0.8550 * (1.00 * 16.0500 - 15.0842 ) ) * 1379 = 301928.22 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 101 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 = ( 10.2881 + 14.5335 + 1.8706 - 0.0000 * 0.85 ) * 1379 = 368065.78 N Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 10.2881 + 0.0000 + 0.6925 + ( 4.1818 ) ) * 1379 = 209078.92 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 10.2881 + 0.0000 + 1.8706 + 14.5335 + ( 4.1818 ) ) * 1379 = 425729.66 N Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 181.0742 * 9.0000 * 0.49 * 1179 = 147880. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 270.0000 * 12.0000 * 0.49 * 1378 = 343865. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 82.3390 ) * ( 18.2372 - 3.0000 ) * 0.7 * 1179 = 325276. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 181.0742 * 19.0500 * 0.74 * 1378 = 552880. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 181.0742 * ( 19.0500 - 3.0000 ) * 0.74 * 1379 = 465826. N Strength of Failure Paths:

PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + Sonw + 147879 Spew + 343865

SNW ) = ( 343865 + 325276 ) = 669141 N Tpgw + Tngw + Sinw ) + 552879 + 465825 + 0 ) = 1166584 N Tngw + Sinw ) + 465825 + 0 ) = 809690 N

Failure Path Calculations: 669141 N , must exceed W = 301928 N 1166584 N , must exceed W = 301928 N 809690 N , must exceed W = 301928 N

or W1 = 368065 N or W2 = 209078 N or W3 = 425729 N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 102 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 18.029

bar

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

Note : Checking Nozzle in plane parallel to the vessel axis. Reinforcement CALCULATION, Description: N3

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

131.801 18.237

mm. mm

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*1218.0000)/(1379*1.00-0.6*16.95) = 15.0842 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*68.90)/(1179*1.00-0.6*16.95) = 0.9993 mm Required Nozzle thickness under External Pressure per UG-28 : 0.6043 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 21.453 5.389 Area in Shell A1 1.288 11.299 Area in Nozzle Wall A2 9.769 10.040 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 1.286 1.286 Area in Element A5 14.534 14.534 TOTAL AREA AVAILABLE Atot 26.877 37.159

275.6012 137.8006 40.1250

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS:

Diameter

Thickness

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 103 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

216.0948 270.0000 218.2260

19.0500 8.9552 18.2372

mm mm mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (137.8006*15.0842*1.0+2*15.2372*15.0842*1.0*(1-0.85)) = 21.453 cm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 137.801 ( 1.00 * 16.0500 - 1.0 * 15.084 ) - 2 * 15.237 ( 1.00 * 16.0500 - 1.0 * 15.0842 ) * ( 1 - 0.855 ) = 1.288 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 40.12 ) * ( 15.24 - 1.00 ) * 0.8550 = 9.769 cm²

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Trapfr4 = (0.8100 ) * 0.85 + (0.0000 ) * 0.85 + 59.3712² * 1.00 = 1.286 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 270.0000 - 168.2750 ) * 19.0500 * 1.0000 = 14.534 cm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Wall Thickness for Internal/External pressures ta Wall Thickness per UG16(b), tr16b Wall Thickness, shell/head, internal pressure trb1 Wall Thickness tb1 = max(trb1, tr16b) Wall Thickness, shell/head, external pressure trb2 Wall Thickness tb2 = max(trb2, tr16b) Wall Thickness per table UG-45 tb3 Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 9.220 , max( 18.084 , 4.500 ) ] = 9.2200 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.9993 , 9.2200 ) = 9.2200 mm

Press.] = 3.9993 mm = 4.5000 mm = 18.0842 mm = 18.0842 mm = 3.9139 mm = 4.5000 mm = 9.2200 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 104 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Available Nozzle Neck Thickness = 0.875 * 18.237 = 15.958 mm --> OK Stresses on Nozzle due to External and Pressure Loads per the ASME B31.3 Piping Code (see 319.4.4 and 302.3.5): Sustained : 335.3, Allowable : 1179.0 bar Passed Expansion : 0.0, Allowable : 2612.2 bar Passed Occasional : 34.5, Allowable : 1568.1 bar Passed Shear : 231.3, Allowable : 825.3 bar Passed Note : The number of cycles on this nozzle was assumed to be 7000 or less for the determination of the expansion stress allowable. Weld Size Calculations, Description: N3

Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

15.2372 16.0500

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 8.0250 = 0.5*TminPad 8.4840 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (21.4527 - 1.2882 + 2 * 15.2372 * 0.8550 * (1.00 * 16.0500 - 15.0842 ) ) * 1379 = 281523.06 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 9.7689 + 14.5335 + 1.2862 - 0.0000 * 0.85 ) * 1379 = 352847.69 N Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 9.7689 + 0.0000 + 0.6925 + ( 4.1818 ) ) * 1379 = 201918.66 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 9.7689 + 0.0000 + 1.2862 + 14.5335 + ( 4.1818 ) ) * 1379 = 410511.50 N

Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 168.2750 * 9.0000 * 0.49 * 1179 = 137427. N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 105 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 270.0000 * 12.0000 * 0.49 * 1378 = 343865. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 76.5189 ) * ( 18.2372 - 3.0000 ) * 0.7 * 1179 = 302284. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 168.2750 * 19.0500 * 0.74 * 1378 = 513799. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 168.2750 * ( 19.0500 - 3.0000 ) * 0.74 * 1379 = 432899. N

Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + Sonw + 137426 Spew + 343865

SNW ) = ( 343865 + 302284 ) = 646149 N Tpgw + Tngw + Sinw ) + 513799 + 432898 + 0 ) = 1084124 N Tngw + Sinw ) + 432898 + 0 ) = 776763 N

Failure Path Calculations: 646149 N , must exceed W = 281523 N 1084124 N , must exceed W = 281523 N 776763 N , must exceed W = 281523 N

or W1 = 352847 N or W2 = 201918 N or W3 = 410511 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 18.029

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.

Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 37.3004 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 278.7839 mm Input Echo, WRC297 Item

1,

Diameter Basis for Cylindrical Shell Shell Corrosion Allowance Shell Diameter Shell Thickness Shell Stress Concentration Factor Diameter Basis for Nozzle Nozzle Corrosion Allowance

Description: N3

ID 3.0000 2430.000 19.0500 1.000 ID 3.0000

:

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 106 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Nozzle Diameter Nozzle Thickness Nozzle Stress Concentration Factor

131.801 18.2372 1.000

mm mm

Diameter of Reinforcing Pad Thickness of Reinforcing Pad

270.000 19.0500

mm mm

Note: External Forces and Moments in WRC 107 Convention: This loads are assumed to be SUStained loads. Design Internal Pressure Radial Load Circumferential Shear Longitudinal Shear Circumferential Moment Longitudinal Moment Torsional Moment

Dp P Vc Vl Mc Ml Mt

16.95 -16900.00 12700.00 16900.00 5100.00 6600.00 7600.00

Include Axial Pressure Thrust Include Pressure Stress Indices per Div. 2

No No

Warning - The ratio, Dn/Tn (9.227) is < 20 check the limitations of WRC bulletin 297. Stress Computations at the Edge of the Nozzle: WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

= = = = = = = [(d/D)* (D/T)^(1/2)] =

Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = = = =

(D) (d) (T) (t)

2471.100 168.275 35.100 15.237 2.304 11.044 0.571

mm mm mm mm

0.183 0.169 0.120 0.172 0.213 0.190 0.183 0.124 0.194 0.178 0.165 0.050

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Top Outside

Al Top Inside

Bu Bottom Outside

Bl Bottom Inside

bar N N N N-m N-m N-m

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 107 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

-----------(bar )-----------Outplane Membrane (P ) 23 23 23 23 Outplane Bending (P ) 98 -98 98 -98 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -15 -15 15 15 Outplane Bending (ML) -314 314 314 -314 Normal Pressure Stress 579 596 579 596 ----------------------- -------- -------- -------- -------Outplane Stress Summary 371 820 1033 222 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 25 25 25 25 Inplane Bending (P ) 139 -139 139 -139 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -56 -56 56 56 Inplane Bending (ML) -371 371 371 -371 Inplane Pressure Stress 289 289 289 289 ----------------------- -------- -------- -------- -------Inplane Stress Summary 26 490 881 -138

Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 13 13 -13 -13 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 48 48 48 48 ----------------------- -------- -------- -------- -------Shear Stress Summary 62 62 34 34 Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane) Outplane Outplane Outplane Outplane

Membrane Bending Membrane Bending

(P ) (P ) (Mc) (Mc)

Au Al Top Top Outside Inside -----------(bar 382 831

Bu Bl Bottom Bottom Outside Inside )-----------1040 368

Cu Cl Left Left Outside Inside -----------(bar 23 23 98 -98 -30 -30 -269 269

Du Dl Right Right Outside Inside )-----------23 23 98 -98 30 30 269 -269

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 108 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 289 289 289 289 ----------------------- -------- -------- -------- -------Outplane Stress Summary 112 453 712 -24 Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 25 25 25 25 Inplane Bending (P ) 139 -139 139 -139 Inplane Membrane (Mc) -46 -46 46 46 Inplane Bending (Mc) -314 314 314 -314 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 579 596 579 596 ----------------------- -------- -------- -------- -------Inplane Stress Summary 382 750 1105 214 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -18 -18 18 18 Torsional Shear (Mt) 48 48 48 48 ----------------------- -------- -------- -------- -------Shear Stress Summary 30 30 66 66 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress Nozzle Stresses LONGITUDINAL PLANE (Stresses in the hoop direction)

Cu Cl Left Left Outside Inside -----------(bar 386 753

Du Dl Right Right Outside Inside )-----------1116 273

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 23 23 23 23 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) 0 0 0 0 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) -15 -15 15 15 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 82 103 82 103 ----------------------- -------- -------- -------- -------Hoop Stress Summary 90 110 122 142

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 109 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Nozzle Stresses LONGITUDINAL PLANE (Stresses Normal to pipe cross-section)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Axial Membrane (P ) 23 23 23 23 Axial Bending (P ) 339 -339 339 -339 Axial Membrane (Mc) 0 0 0 0 Axial Bending (Mc) 0 0 0 0 Axial Membrane (ML) -256 -256 256 256 Axial Bending (ML) -1069 1069 1069 -1069 Axial Pressure Stress 41 41 41 41 ----------------------- -------- -------- -------- -------Axial Stress Summary -921 537 1730 -1088

Nozzle Stresses LONGITUDINAL PLANE (Shear stress)

Au Al Bu Bl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 31 31 -31 -31 Shear due to (Vl) 0 0 0 0 Shear due to Torsion 112 112 112 112 ----------------------- -------- -------- -------- -------Shear Stress Summary 143 143 80 80

Nozzle Stresses LONGITUDINAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Outside Inside -----------(bar 1051 581

Bu Bl Outside Inside )-----------1734 1242

Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses in the hoop direction)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 23 23 23 23 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) -30 -30 30 30 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) 0 0 0 0 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 82 103 82 103 ----------------------- -------- -------- -------- -------Hoop Stress Summary 75 96 136 157 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to pipe cross-section)

Axial Membrane (P )

Cu Cl Left Left Outside Inside -----------(bar 23 23

Du Dl Right Right Outside Inside )-----------23 23

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 110 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014

Axial Bending (P ) 339 -339 339 -339 Axial Membrane (Mc) -198 -198 198 198 Axial Bending (Mc) -927 927 927 -927 Axial Membrane (ML) 0 0 0 0 Axial Bending (ML) 0 0 0 0 Axial Pressure Stress 41 41 41 41 ----------------------- -------- -------- -------- -------Axial Stress Summary -721 454 1530 -1005 Nozzle Stresses CIRCUMFERENTIAL PLANE (Shear stress)

Cu Cl Du Dl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 0 0 0 0 Shear due to (Vl) -41 -41 41 41 Shear due to Torsion 112 112 112 112 ----------------------- -------- -------- -------- -------Shear Stress Summary 70 70 153 153 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Outside Inside -----------(bar 809 467

Du Dl Outside Inside )-----------1546 1202

Stress Computations at the Edge of the Reinforcing Pad:

WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

(D) (d) (T) (t)

= = = = = = = [(d/D)* (D/T)^(1/2)] =

2452.050 270.000 16.050 66.100 0.243 10.000 1.361

mm mm mm mm

Note: Re-pad thickness is added to nozzle thickness to simulate the Re-pad. Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = = = =

0.089 0.188 0.055 0.102 0.303 0.081 0.093 0.060 0.155 0.095 0.048 0.115

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 111 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 66 66 66 66 Outplane Bending (P ) 215 -215 215 -215 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -109 -109 109 109 Outplane Bending (ML) -273 273 273 -273 Normal Pressure Stress 1278 1294 1278 1294 ----------------------- -------- -------- -------- -------Outplane Stress Summary 1177 1310 1942 982 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 58 58 58 58 Inplane Bending (P ) 740 -740 740 -740 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -89 -89 89 89 Inplane Bending (ML) -882 882 882 -882 Inplane Pressure Stress 639 639 639 639 ----------------------- -------- -------- -------- -------Inplane Stress Summary 465 749 2410 -835 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 18 18 -18 -18 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 41 41 41 41 ----------------------- -------- -------- -------- -------Shear Stress Summary 59 59 22 22 Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Au Al Top Top Outside Inside -----------(bar 1182 1316

Bu Bl Bottom Bottom Outside Inside )-----------2411 1818

Cu Cl Left Left Outside Inside -----------(bar

Du Dl Right Right Outside Inside )------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 112 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Outplane Membrane (P ) 66 66 66 66 Outplane Bending (P ) 215 -215 215 -215 Outplane Membrane (Mc) -43 -43 43 43 Outplane Bending (Mc) -409 409 409 -409 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 639 639 639 639 ----------------------- -------- -------- -------- -------Outplane Stress Summary 467 855 1373 125

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 58 58 58 58 Inplane Bending (P ) 740 -740 740 -740 Inplane Membrane (Mc) -59 -59 59 59 Inplane Bending (Mc) -1334 1334 1334 -1334 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 1278 1294 1278 1294 ----------------------- -------- -------- -------- -------Inplane Stress Summary 682 1887 3471 -661 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -24 -24 24 24 Torsional Shear (Mt) 41 41 41 41 ----------------------- -------- -------- -------- -------Shear Stress Summary 16 16 66 66 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Left Left Outside Inside -----------(bar 683 1888

Du Dl Right Right Outside Inside )-----------3473 798

WRC 297 Stress Summations per ASME Sec. VIII Div. 2:

Vessel Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|--------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 113 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Circ. Pm (SUS) | 579 596 579 596 579 596 579 596 Circ. Pl (SUS) | 8 8 38 38 -21 -21 71 71 Circ. Q (SUS) | -216 216 412 -412 -175 175 453 -453 -----------------------------------------------------------------------Long. Pm (SUS) | 289 289 289 289 289 289 289 289 Long. Pl (SUS) | -31 -31 81 81 -7 -7 53 53 Long. Q (SUS) | -232 232 510 -510 -171 171 367 -367 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 13 13 -13 -13 -18 -18 18 18 Shear Q (SUS) | 48 48 48 48 48 48 48 48 -----------------------------------------------------------------------Pm (SUS) | 579.0 596.0 579.0 596.0 579.0 596.0 579.0 596.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 587.5 604.5 617.7 634.6 559.2 576.1 651.0 668.0 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 381 830 1036 368 386 753 1113 273 ------------------------------------------------------------------------

-----------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 596.00 1379.00 | Passed Pm+Pl (SUS) | 667.99 2068.50 | Passed Pm+Pl+Q (TOTAL)| 1113.76 4137.00 | Passed -----------------------------------------------------------------------WRC 297 Stress Summations per ASME Sec. VIII Div. 2:

Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 Circ. Pl (SUS) | -43 -43 175 175 -1 -1 117 117 Circ. Q (SUS) | -58 58 488 -488 -594 594 2074 -2074 -----------------------------------------------------------------------Long. Pm (SUS) | 639 639 639 639 639 639 639 639 Long. Pl (SUS) | -31 -31 147 147 23 23 109 109 Long. Q (SUS) | -142 142 1622 -1622 -194 194 624 -624 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 18 18 -18 -18 -24 -24 24 24 Shear Q (SUS) | 41 41 41 41 41 41 41 41 -----------------------------------------------------------------------Pm (SUS) | 1278 1294 1278 1294 1278 1294 1278 1294 -----------------------------------------------------------------------Pm+Pl (SUS) | 1235 1251 1453 1469 1277 1293 1395 1411 ------------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 114 Nozzle Calcs. : N3 Nozl: 11 11:07a Jan 30,2014 Pm+Pl+Q (Total)| 1181 1315 2409 1817 684 1887 3471 797 ------------------------------------------------------------------------

-----------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1294.00 1379.00 | Passed Pm+Pl (SUS) | 1469.47 2068.50 | Passed Pm+Pl+Q (TOTAL)| 3471.01 4137.00 | Passed ------------------------------------------------------------------------

WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Nozzle Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 82 103 82 103 82 103 82 103 Circ. Pl (SUS) | 8 8 38 38 -7 -7 53 53 Circ. Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Long. Pm (SUS) | 41 41 41 41 41 41 41 41 Long. Pl (SUS) | -233 -233 279 279 -175 -175 221 221 Long. Q (SUS) | -730 730 1408 -1408 -588 588 1266 -1266 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 31 31 -31 -31 -41 -41 41 41 Shear Q (SUS) | 112 112 112 112 112 112 112 112 -----------------------------------------------------------------------Pm (SUS) | 82.0 103.0 82.0 103.0 82.0 103.0 82.0 103.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 288.7 309.3 324.7 325.2 224.5 244.2 274.1 276.0 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1051 581 1732 1239 809 467 1544 1199 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 103.00 1179.01 | Passed Pm+Pl (SUS) | 325.22 1768.52 | Passed Pm+Pl+Q (TOTAL)| 1732.07 3537.03 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 115 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014

INPUT VALUES,

Nozzle Description: H1

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Design Length of Section Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D L t c co

Distance from Bottom/Left Tangent

User Entered Minimum Design Metal Temperature

16.952 60 1.03 60

30 bar C bar C

SA-516 70 1379.00 bar 1379.00 bar 2430.00 2235.0000 19.0500 3.0000 0.0000

mm mm mm mm mm

415.0000

mm

0.00

C

Type of Element Connected to the Shell : Nozzle Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-106 B K03006 Smls. pipe 1179.01 bar 1179.01 bar ID 165.00 300.0000

deg mm.

Size and Thickness Basis Nominal Nominal Thickness tn 120 (As clarified in CRS, Sch 40, 60 &160 is insufficient in thickness)

Flange Material Flange Type

SA-105 Weld Neck Flange

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

225.0000 9.0000 19.0500 0.0000 0.0000

mm mm mm mm mm

Pad Material [Normalized] Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient

SA-516 70 1378.96 bar 1378.96 bar

Sp Spa

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 116 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014 Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16 This is a Manway or Access Opening.

Dp te Wp Wgpn

Class of attached Flange Grade of attached Flange

570.0000 19.0500 12.0000 19.0500 123.0750 None

mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: H1

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

273.050 25.400

mm. mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*1218.0000)/(1379*1.00-0.6*16.95) = 15.0842 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*139.53)/(1179*1.00-0.6*16.95) = 2.0236 mm Required Nozzle thickness under External Pressure per UG-28 : 0.8899 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp

558.1000 279.0500 40.1250

Note : The Pad diameter is greater than the Diameter Limit, the

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 117 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014 excess will not be considered . Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 43.072 10.820 Area in Shell A1 2.632 23.089 Area in Nozzle Wall A2 13.981 14.758 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 0.693 0.693 Area in Element A5 33.467 33.467 TOTAL AREA AVAILABLE Atot 50.773 72.007

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 459.1133 570.0000 459.1133

Thickness 19.0500 mm 11.0001 mm 19.0500 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (279.0500*15.0842*1.0+2*22.4000*15.0842*1.0*(1-0.85)) = 43.072 cm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 118 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014

= 279.050 ( 1.00 * 16.0500 - 1.0 * 15.084 ) - 2 * 22.400 ( 1.00 * 16.0500 - 1.0 * 15.0842 ) * ( 1 - 0.855 ) = 2.632 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 40.12 ) * ( 22.40 - 2.02 ) * 0.8550 = 13.981 cm² Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 9.0000² *0.85 + (0.0000 )² *0.85 + 0.0000² * 1.00 = 0.693 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 558.1000 - 323.8500 ) * 19.0500 * 1.0000 = 33.467 cm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h). Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 22.225 , tr = 2.024 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.105 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-4 C -82 C -29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-9 C -12 C -29 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ----------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 119 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014 Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-41 C -45 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 19.050 , tr = 15.084 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-9 C -12 C -29 C

Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

: : :

-29 C -45 C -29 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C -36 C -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 16.95/19.60 = 0.865 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: H1

Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

19.0000 16.0500

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 8.0250 = 0.5*TminPad 8.4840 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (43.0724 - 2.6324 + 2 * 22.4000 * 0.8550 * (1.00 * 16.0500 - 15.0842 ) ) * 1379 = 562738.38 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 120 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014

= ( 13.9806 + 33.4675 + 0.6925 - 0.0000 * 0.85 ) * 1379 = 663822.38 N Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 13.9806 + 0.0000 + 0.6925 + ( 6.1476 ) ) * 1379 = 287102.25 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 13.9806 + 0.0000 + 0.6925 + 33.4675 + ( 6.1476 ) ) * 1379 = 748593.25 N

Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 323.8500 * 9.0000 * 0.49 * 1179 = 264482. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 570.0000 * 12.0000 * 0.49 * 1378 = 725938. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 150.7250 ) * ( 25.4000 - 3.0000 ) * 0.7 * 1179 = 875336. N

Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 323.8500 * 19.0500 * 0.74 * 1378 = 988821. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 323.8500 * ( 19.0500 - 3.0000 ) * 0.74 * 1379 = 833126. N Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + Sonw + 264481 Spew + 725937

Failure 1601273 2086428 1559063

SNW ) = ( 725937 + 875335 ) = 1601273 N Tpgw + Tngw + Sinw ) + 988821 + 833125 + 0 ) = 2086428 N Tngw + Sinw ) + 833125 + 0 ) = 1559063 N Path N , N , N ,

Calculations: must exceed W = 562738 N must exceed W = 562738 N must exceed W = 562738 N

or W1 = 663822 N or W2 = 287102 N or W3 = 748593 N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 121 Nozzle Calcs. : H1 Nozl: 12 11:07a Jan 30,2014 Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 18.029

bar

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 10.8384 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 254.8884 mm PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 122 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

INPUT VALUES,

Nozzle Description: N4

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

16.952 60 1.03 60

40 bar C bar C

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Elliptical Head Aspect Ratio of Elliptical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

D Ar t c co

2430.00 2.00 18.0000 3.0000 0.0000

mm

Distance from Head Centerline

L1

803.0000

mm

User Entered Minimum Design Metal Temperature

SA-516 70 1379.00 bar 1379.00 bar

0.00

mm mm mm

C

Type of Element Connected to the Shell : Nozzle Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter Size and Thickness Basis Nominal Thickness

ID 240.00 80.0000

tn

Flange Material Flange Type Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-106 B K03006 Smls. pipe 1179.01 bar 1179.01 bar

deg mm.

Nominal 160

SA-105 FFWn can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

192.0000 9.0000 18.0000 0.0000 0.0000

mm mm mm mm mm

Pad Material [Normalized] Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient

SA-516 70 1379.00 bar 1379.00 bar

Sp Spa

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 123 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014 Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16

Dp te Wp Wgpn

Class of attached Flange Grade of attached Flange

190.0000 19.0500 14.0000 19.0500 50.5500 None

mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Note : Checking Nozzle in the Meridional direction. Reinforcement CALCULATION, Description: N4

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

66.650 11.125

mm. mm

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press] = (P*K1*D))/(2*S*E-0.2*P) per UG-37(a)(3) = (16.95*0.898*2436.0000)/(2 *1379.00*1.00-0.2*16.95) = 13.4605 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*36.32)/(1179*1.00-0.6*16.95) = 0.5268 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3921 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp

158.6945 79.3473 37.5000

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 124 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Note : The Pad diameter is greater than the Diameter Limit, the excess will not be considered . Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1179.0/1379.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 10.998 2.608 Area in Shell A1 1.185 6.633 Area in Nozzle Wall A2 5.242 5.335 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 0.693 0.693 Area in Element A5 8.801 8.801 TOTAL AREA AVAILABLE Atot 15.921 21.461

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

66.29

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient.

SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 109.2562 190.0000 131.9524

Thickness 19.0500 mm 6.2954 mm 11.1252 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (79.3473*13.4605*1.0+2*8.1252*13.4605*1.0*(1-0.85)) = 10.998 cm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 125 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014 = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 79.347 ( 1.00 * 15.0000 - 1.0 * 13.461 ) - 2 * 8.125 ( 1.00 * 15.0000 - 1.0 * 13.4605 ) * ( 1 - 0.855 ) = 1.185 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2/sin( alpha3 ) = ( 2 * 37.50 ) * ( 8.13 - 0.53 ) * 0.8550/sin( 68.3 ) = 5.242 cm²

Note: See Appendix L, L-7.7.7(b) for more information. Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 9.0000² *0.85 + (0.0000 )² *0.85 + 0.0000² * 1.00 = 0.693 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 158.6945 - 97.0958 ) * 19.0500 * 1.0000 = 8.801 cm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h). Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 9.735 , tr = 0.527 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.078 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-29 C -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 9.735 , tr = 0.527 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.078 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-29 C -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 9.735 , tr = 0.527 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.078 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-48 C -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 18.000 , tr = 13.461 , c = 3.0000 mm , E* = 1.00

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 126 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Stress Ratio = tr * (E*)/(tg - c) = 0.897 , Temp. Reduction = 6 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-43 C -48 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B ---------------------------------------------------------------------Govrn. thk, tg = 9.735 , tr = 0.527 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.078 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-29 C -104 C

Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

: : :

-104 C -48 C -48 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C -36 C -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 16.95/19.60 = 0.865 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: N4 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

8.1252 19.0000

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness 5.6876 = 0.7 * tmin. 9.5000 = 0.5*TminPad

Actual Thickness 6.3630 = 0.7 * Wo mm 9.8980 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (10.9978 - 1.1852 + 2 * 8.1252 * 0.8550 * (1.00 * 15.0000 - 13.4605 ) ) * 1379 = 138257.09 N Note: F is always set to 1.0 throughout the calculation.

Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 5.2422 + 8.8009 + 0.6925 - 0.0000 * 0.85 ) * 1379 = 203192.86 N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 127 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 5.2422 + 0.0000 + 0.6925 + ( 2.0841 ) ) * 1379 = 110572.50 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 5.2422 + 0.0000 + 0.6925 + 8.8009 + ( 2.0841 ) ) * 1379 = 231930.34 N Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 97.0958 * 9.0000 * 0.49 * 1179 = 79296. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 190.0000 * 14.0000 * 0.49 * 1379 = 282317. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 44.1108 ) * ( 11.1252 - 3.0000 ) * 0.7 * 1179 = 92922. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 97.0958 * 19.0500 * 0.74 * 1379 = 296474. N

Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 97.0958 * ( 18.0000 - 3.0000 ) * 0.74 * 1379 = 233444. N Strength of Failure Paths:

PATH11 = ( PATH22 = ( = ( PATH33 = ( = ( Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + SNW ) = ( 282317 + 92922 ) = 375239 N Sonw + Tpgw + Tngw + Sinw ) 79296 + 296474 + 233444 + 0 ) = 609214 N Spew + Tngw + Sinw ) 282317 + 233444 + 0 ) = 515761 N

Failure Path Calculations: 375239 N , must exceed W = 138257 N 609214 N , must exceed W = 138257 N 515761 N , must exceed W = 138257 N

or W1 = 203192 N or W2 = 110572 N or W3 = 231930 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 17.017

bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 128 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

Note : Checking Nozzle in the Latitudinal direction. Reinforcement CALCULATION, Description: N4

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

66.650 11.125

mm. mm

Nozzle input data check completed without errors.

Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press] = (P*K1*D))/(2*S*E-0.2*P) per UG-37(a)(3) = (16.95*0.898*2436.0000)/(2 *1379.00*1.00-0.2*16.95) = 13.4605 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (16.95*36.32)/(1179*1.00-0.6*16.95) = 0.5268 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3921 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp

145.2992 72.6496 37.5000

Note : The Pad diameter is greater than the Diameter Limit, the excess will not be considered .

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 10.096 2.395 Area in Shell A1 1.082 6.056 Area in Nozzle Wall A2 4.872 4.959 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 0.693 0.693 Area in Element A5 8.058 8.058 TOTAL AREA AVAILABLE Atot 14.705 19.765

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient.

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 129 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 107.0065 190.0000 119.9043

Thickness 19.0500 mm 6.1159 mm 11.1252 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (72.6496*13.4605*1.0+2*8.1252*13.4605*1.0*(1-0.85)) = 10.096 cm²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 72.650 ( 1.00 * 15.0000 - 1.0 * 13.461 ) - 2 * 8.125 ( 1.00 * 15.0000 - 1.0 * 13.4605 ) * ( 1 - 0.855 ) = 1.082 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 37.50 ) * ( 8.13 - 0.53 ) * 0.8550 = 4.872 cm² Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 9.0000² *0.85 + (0.0000 )² *0.85 + 0.0000² * 1.00 = 0.693 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 145.2992 - 88.9000 ) * 19.0500 * 1.0000 = 8.058 cm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Wall Thickness for Internal/External pressures ta Wall Thickness per UG16(b), tr16b Wall Thickness, shell/head, internal pressure trb1 Wall Thickness tb1 = max(trb1, tr16b) Wall Thickness, shell/head, external pressure trb2 Wall Thickness tb2 = max(trb2, tr16b) Wall Thickness per table UG-45 tb3 Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 7.800 , max( 17.942 , 4.500 ) ] = 7.8000 mm

Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.5268 , 7.8000 ) = 7.8000 mm

Press.] = 3.5268 mm = 4.5000 mm = 17.9423 mm = 17.9423 mm = 3.9105 mm = 4.5000 mm = 7.8000 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 130 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Available Nozzle Neck Thickness = 0.875 * 11.125 = 9.735 mm --> OK Stresses on Nozzle due to External and Pressure Loads per the ASME B31.3 Piping Code (see 319.4.4 and 302.3.5): Sustained : 551.2, Allowable : 1179.0 bar Passed Expansion : 0.0, Allowable : 2396.3 bar Passed Occasional : 34.1, Allowable : 1568.1 bar Passed Shear : 415.4, Allowable : 825.3 bar Passed Note : The number of cycles on this nozzle was assumed to be 7000 or less for the determination of the expansion stress allowable. Weld Size Calculations, Description: N4 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

8.1252 19.0000

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness 5.6876 = 0.7 * tmin. 9.5000 = 0.5*TminPad

Actual Thickness 6.3630 = 0.7 * Wo mm 9.8980 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (10.0963 - 1.0821 + 2 * 8.1252 * 0.8550 * (1.00 * 15.0000 - 13.4605 ) ) * 1379 = 127247.27 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 4.8723 + 8.0580 + 0.6925 - 0.0000 * 0.85 ) * 1379 = 187848.95 N

Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 4.8723 + 0.0000 + 0.6925 + ( 2.0841 ) ) * 1379 = 105472.38 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 4.8723 + 0.0000 + 0.6925 + 8.0580 + ( 2.0841 ) ) * 1379 = 216586.44 N Strength of Connection Elements for Failure Path Analysis Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 88.9000 * 9.0000 * 0.49 * 1179 = 72603. N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 131 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 190.0000 * 14.0000 * 0.49 * 1379 = 282317. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 40.3874 ) * ( 11.1252 - 3.0000 ) * 0.7 * 1179 = 85079. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 88.9000 * 19.0500 * 0.74 * 1379 = 271449. N

Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 88.9000 * ( 18.0000 - 3.0000 ) * 0.74 * 1379 = 213739. N Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = (

Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + SNW ) = ( 282317 + 85078 ) = 367396 N Sonw + Tpgw + Tngw + Sinw ) 72602 + 271449 + 213739 + 0 ) = 557791 N Spew + Tngw + Sinw ) 282317 + 213739 + 0 ) = 496056 N

Failure Path Calculations: 367396 N , must exceed W = 127247 N 557791 N , must exceed W = 127247 N 496056 N , must exceed W = 127247 N

or W1 = 187848 N or W2 = 105472 N or W3 = 216586 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 17.017

bar

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 17.9745 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 229.2946 mm Input Echo, WRC107 Item

1,

Diameter Basis for Vessel Cylindrical or Spherical Vessel Internal Corrosion Allowance Vessel Diameter Vessel Thickness Design Temperature

Description: N4

Vbasis Cylsph Cas Dv Tv

:

ID Spherical 3.0000 mm 4374.000 mm 18.000 mm 60.00

C

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 132 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

Vessel Material Vessel Cold S.I. Allowable Vessel Hot S.I. Allowable

Smc Smh

SA-516 70 1379.00 1379.00

Attachment Type WRC107 Attachment Classification

Type Holsol

Round Hollow

Diameter Basis for Nozzle Corrosion Allowance for Nozzle Nozzle Diameter Nozzle Thickness Nozzle Material Nozzle Cold S.I. Allowable Nozzle Hot S.I. Allowable

Nbasis Can Dn Tn SNmc SNmh

ID 3.0000 66.650 11.125 SA-106 B 1179.01 1179.01

Tpad Dpad

19.050 190.000

Dp

16.952 No

bar

-8800.0 8800.0 6600.0 1700.0 1300.0 2000.0

N N N N-m N-m N-m

Thickness of Reinforcing Pad Diameter of Reinforcing Pad Design Internal Pressure Include Pressure Thrust

External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P Longitudinal Shear (SUS) (Vl) V1 Circumferential Shear (SUS) (Vc) V2 Circumferential Moment (SUS) (Mc) M1 Longitudinal Moment (SUS) (Ml) M2 Torsional Moment (SUS) Mt

Use Interactive Control WRC107 Version

Version

No March

Include Pressure Stress Indices per Div. 2 Compute Pressure Stress per WRC-368 WRC 107 Stress Calculation for SUStained loads: Radial Load P Circumferential Shear (VC) V2 Longitudinal Shear (VL) V1 Circumferential Moment (MC) M1 Longitudinal Moment (ML) M2 Torsional Moment MT Unitless Prm: U =

0.16 TAU =

5.00 (

4.97) RHO =

bar bar

mm mm mm bar bar mm mm

1979 No No

-8800.0 6600.0 8800.0 1700.0 1300.0 2000.0 4.00 (

N N N N-m N-m N-m 4.19)

Dimensionless Loads for Spherical Shells at Attachment Junction: -----------------------------------------------------------Curves read for 1979 Figure Value Location -----------------------------------------------------------N(x) * T / P SP 4 0.09700 (A,B,C,D) M(x) / P SP 4 0.03346 (A,B,C,D) N(x) * T * SQRT(Rm * T ) / MC SM 4 0.35956 (A,B,C,D)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 133 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014 M(x) * SQRT(Rm * T ) / MC N(x) * T * SQRT(Rm * T ) / ML M(x) * SQRT(Rm * T ) / ML

SM 4 SM 4 SM 4

0.14343 0.35956 0.14343

(A,B,C,D) (A,B,C,D) (A,B,C,D)

N(y) * T / P M(y) / P N(y) * T * SQRT(Rm * M(y) * SQRT(Rm * N(y) * T * SQRT(Rm * M(y) * SQRT(Rm *

SP SP SM SM SM SM

0.34109 0.23202 0.10351 1.09362 0.10351 1.09362

(A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

T T T T

) ) ) )

/ / / /

MC MC ML ML

4 4 4 4 4 4

Stress Concentration Factors Kn = 1.00,

Kb = 1.00

Stresses in the Vessel at the Attachment Junction -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Memb. P | 7 7 7 7 7 7 7 7 Rad. Bend. P | 15 -15 15 -15 15 -15 15 -15 Rad. Memb. MC | 0 0 0 0 -19 -19 19 19 Rad. Bend. MC | 0 0 0 0 -46 46 46 -46 Rad. Memb. ML | -14 -14 14 14 0 0 0 0 Rad. Bend. ML | -35 35 35 -35 0 0 0 0 | Tot. Rad. Str.| -27.3 12.6 72.5 -28.4 -42.6 18.9 87.8 -34.7 -----------------------------------------------------------------------Tang. Memb. P | 25 25 25 25 25 25 25 25 Tang. Bend. P | 105 -105 105 -105 105 -105 105 -105 Tang. Memb. MC | 0 0 0 0 -5 -5 5 5 Tang. Bend. MC | 0 0 0 0 -350 350 350 -350 Tang. Memb. ML | -4 -4 4 4 0 0 0 0 Tang. Bend. ML | -268 268 268 -268 0 0 0 0 | Tot. Tang. Str.| -141.0 184.3 404.1 -343.8 -224.8 265.5 487.9 -425.1 -----------------------------------------------------------------------Shear VC | 13 13 -13 -13 0 0 0 0 Shear VL | 0 0 0 0 -18 -18 18 18 Shear MT | 47 47 47 47 47 47 47 47 | Tot. Shear| 61.2 61.2 33.4 33.4 28.8 28.8 65.8 65.8 -----------------------------------------------------------------------Str. Int. | 167.64 210.81 407.42 347.34 229.26 268.85 498.48 435.88 ------------------------------------------------------------------------

Unitless Prm: U =

0.52 TAU =

0.00 ( 11.19) RHO =

0.00 (

Dimensionless Loads for Spherical Shells at Pad edge: -----------------------------------------------------------Curves read for 1979 Figure Value Location ------------------------------------------------------------

1.85)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 134 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014 N(x) * T / P M(x) / P N(x) * T * SQRT(Rm * M(x) * SQRT(Rm * N(x) * T * SQRT(Rm * M(x) * SQRT(Rm *

N(y) * T / P M(y) / P N(y) * T * SQRT(Rm * M(y) * SQRT(Rm * N(y) * T * SQRT(Rm * M(y) * SQRT(Rm *

T T T T

T T T T

) ) ) )

) ) ) )

/ / / /

/ / / /

MC MC ML ML

SR SR SR SR SR SR

2 2 3 3 3 3

0.13011 0.07925 0.13962 0.22942 0.13962 0.22942

(A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

MC MC ML ML

SR SR SR SR SR SR

2 2 3 3 3 3

0.03885 0.02405 0.04230 0.06864 0.04230 0.06864

(A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Stress Concentration Factors Kn = 1.00,

Kb = 1.00

Stresses in the Vessel at the Edge of Reinforcing Pad -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Memb. P | 50 50 50 50 50 50 50 50 Rad. Bend. P | 185 -185 185 -185 185 -185 185 -185 Rad. Memb. MC | 0 0 0 0 -58 -58 58 58 Rad. Bend. MC | 0 0 0 0 -572 572 572 -572 Rad. Memb. ML | -44 -44 44 44 0 0 0 0 Rad. Bend. ML | -437 437 437 -437 0 0 0 0 | Tot. Rad. Str.| -245.5 258.4 719.2 -528.6 -393.9 379.5 867.6 -649.7 -----------------------------------------------------------------------Tang. Memb. P | 15 15 15 15 15 15 15 15 Tang. Bend. P | 56 -56 56 -56 56 -56 56 -56 Tang. Memb. MC | 0 0 0 0 -17 -17 17 17 Tang. Bend. MC | 0 0 0 0 -171 171 171 -171 Tang. Memb. ML | -13 -13 13 13 0 0 0 0 Tang. Bend. ML | -131 131 131 -131 0 0 0 0 | Tot. Tang. Str.| -72.8 76.3 216.1 -158.8 -117.3 112.5 260.6 -195.0 -----------------------------------------------------------------------Shear VC | 14 14 -14 -14 0 0 0 0 Shear VL | 0 0 0 0 -19 -19 19 19 Shear MT | 23 23 23 23 23 23 23 23 | Tot. Shear| 38.2 38.2 8.8 8.8 3.8 3.8 43.2 43.2 -----------------------------------------------------------------------Str. Int. | 253.55 266.11 719.35 528.80 393.92 379.54 870.66 653.73 -----------------------------------------------------------------------WRC 107 Stress Summations: Vessel Stress Summation at Attachment Junction

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 135 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014

-----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Pm (SUS) | 545 545 545 545 545 545 545 545 Rad. Pl (SUS) | -7 -7 22 22 -11 -11 26 26 Rad. Q (SUS) | -19 19 50 -50 -30 30 61 -61 -----------------------------------------------------------------------Long. Pm (SUS) | 545 545 545 545 545 545 545 545 Long. Pl (SUS) | 21 21 30 30 20 20 31 31 Long. Q (SUS) | -162 162 373 -373 -245 245 456 -456 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 13 13 -13 -13 -18 -18 18 18 Shear Q (SUS) | 47 47 47 47 47 47 47 47 -----------------------------------------------------------------------Pm (SUS) | 545.2 545.2 545.2 545.2 545.2 545.2 545.2 545.2 -----------------------------------------------------------------------Pm+Pl (SUS) | 572.5 572.5 585.8 585.8 574.0 574.0 592.9 592.9 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 544 749 952 520 507 814 1043 521 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 545.24 1379.00 | Passed Pm+Pl (SUS) | 592.91 2068.50 | Passed Pm+Pl+Q (TOTAL)| 1043.73 4137.00 | Passed -----------------------------------------------------------------------WRC 107 Stress Summations: Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Rad. Pm (SUS) | 1237 1237 1237 1237 1237 1237 1237 1237 Rad. Pl (SUS) | 6 6 95 95 -7 -7 108 108 Rad. Q (SUS) | -251 251 623 -623 -386 386 758 -758 -----------------------------------------------------------------------Long. Pm (SUS) | 1237 1237 1237 1237 1237 1237 1237 1237 Long. Pl (SUS) | 1 1 28 28 -2 -2 32 32 Long. Q (SUS) | -74 74 187 -187 -114 114 227 -227 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 14 14 -14 -14 -19 -19 19 19

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 136 Nozzle Calcs. : N4 Nozl: 13 11:07a Jan 30,2014 Shear Q (SUS) | 23 23 23 23 23 23 23 23 -----------------------------------------------------------------------Pm (SUS) | 1237 1237 1237 1237 1237 1237 1237 1237 -----------------------------------------------------------------------Pm+Pl (SUS) | 1256 1256 1335 1335 1252 1252 1351 1351 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1172 1503 1956 1078 1120 1617 2108 1046 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1237.54 1379.00 | Passed Pm+Pl (SUS) | 1351.28 2068.50 | Passed Pm+Pl+Q (TOTAL)| 2108.20 4137.00 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 137 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

INPUT VALUES,

Nozzle Description: M1

Pressure for Reinforcement Calculations Temperature for Internal Pressure Design External Pressure Temperature for External Pressure

From : P Temp Pext Tempex

16.952 60 1.03 60

40 bar C bar C

Shell Material [Normalized] Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Elliptical Head Aspect Ratio of Elliptical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

D Ar t c co

2430.00 2.00 18.0000 3.0000 0.0000

mm

Distance from Head Centerline

L1

535.0000

mm

User Entered Minimum Design Metal Temperature

SA-516 70 1379.00 bar 1379.00 bar

0.00

mm mm mm

C

Type of Element Connected to the Shell : Nozzle

Material [Normalized] Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter Size and Thickness Basis Actual Thickness

SA-516 70 K02700 Plate 1379.00 bar 1379.00 bar OD 45.00 762.0000

tn

deg mm.

Actual 22.2000 mm

Flange Material Flange Type

SA-105 Weld Neck Flange

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

3.0000 1.00 1.00

mm

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

435.0000 9.0000 18.0000 0.0000 0.0000

mm mm mm mm mm

Pad Material [Normalized] Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient

SA-516 70 1379.00 bar 1379.00 bar

Sp Spa

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 138 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16 This is a Manway or Access Opening.

Dp te Wp Wgpn

1375.0000 22.2000 14.0000 22.2000 306.5000 None

Class of attached Flange Grade of attached Flange

mm mm mm mm mm

150 GR 1.1

The Pressure Design option was MAWP + static head (to the nozzle). Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Note : Checking Nozzle in the Meridional direction.

Reinforcement CALCULATION, Description: M1 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Outside Diameter Used in Calculation Actual Thickness Used in Calculation

762.000 22.200

mm. mm

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press] = (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c) = (16.95*2436.0000*0.997)/( 2*1379.00*1.00-0.2*16.95) = 14.9423 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (16.95*381.0000)/(1379*1.00+0.4*16.95) = 4.6607 mm Required Nozzle thickness under External Pressure per UG-28 : 1.9394 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp

1507.4374 753.7187 37.5000

mm mm mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 139 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 1379.0/1379.0 ) = 1.000

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 1379.0/1379.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 1.0 , 1.0 ) = 1.000 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 112.623 24.062 Area in Shell A1 0.435 64.933 Area in Nozzle Wall A2 10.932 12.978 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 2.770 2.770 Area in Element A5 102.065 102.065 TOTAL AREA AVAILABLE Atot 116.201 182.746

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

73.75

Degs.

The MAWP Case Governs the Analysis. Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Diameter Based on given Pad Thickness: 1205.6311 Based on given Pad Diameter: 1375.0000 Based on Shell or Nozzle Thickness: 1340.8619

Thickness 22.2000 mm 16.0662 mm 18.0000 mm

Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (753.7187*14.9423*1.0+2*19.2000*14.9423*1.0*(1-1.00)) = 112.623 cm²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 753.719 ( 1.00 * 15.0000 - 1.0 * 14.942 ) - 2 * 19.200

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 140 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

( 1.00 * 15.0000 - 1.0 * 14.9423 ) * ( 1 - 1.000 ) = 0.435 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2/sin( alpha3 ) = ( 2 * 37.50 ) * ( 19.20 - 4.66 ) * 1.0000/sin( 85.9 ) = 10.932 cm²

Note: See Appendix L, L-7.7.7(b) for more information. Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 9.0000² *1.00 + (0.0000 )² *1.00 + 14.0000² * 1.00 = 2.770 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 1406.7170 - 793.7170 ) * 22.2000 * 1.0000 = 102.065 cm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:

MDMT of the Nozzle Neck to Flange Weld, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 22.200 , tr = 4.661 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.243 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-37 C -104 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 22.200 , tr = 4.661 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.243 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-37 C -104 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 22.200 , tr = 4.661 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.243 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-37 C -104 C

MDMT of Shell to Pad Weld at Pad OD for pad, Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 18.000 , tr = 14.942 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.996 , Temp. Reduction = 0 C

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 141 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-43 C -43 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: D ---------------------------------------------------------------------Govrn. thk, tg = 18.000 , tr = 14.942 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.996 , Temp. Reduction = 0 C Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1)

-43 C -43 C

Governing MDMT of the Nozzle Governing MDMT of the Reinforcement Pad Governing MDMT of all the sub-joints of this Junction

: : :

-43 C -43 C -43 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temp reduction per UCS-66(b)(1)(b) Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C -36 C -104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 16.95/19.60 = 0.865 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT.

Weld Size Calculations, Description: M1 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

19.0000 19.0000

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 9.5000 = 0.5*TminPad 9.8980 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (112.6229 - 0.4349 + 2 * 19.2000 * 1.0000 * (1.00 * 15.0000 - 14.9423 ) ) * 1379 = 1547290.75 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 10.9319 + 102.0645 + 2.7700 - 0.0000 * 1.00 ) * 1379 = 1596328.62 N Weld Load [W2]:

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 142 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014 = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 10.9319 + 0.0000 + 0.8100 + ( 5.7600 ) ) * 1379 = 241337.09 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 10.9319 + 0.0000 + 2.7700 + 102.0645 + ( 5.7600 ) ) * 1379 = 1675754.62 N Strength of Connection Elements for Failure Path Analysis

Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 793.7170 * 9.0000 * 0.49 * 1379 = 758166. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 1375.0000 * 14.0000 * 0.49 * 1379 = 2043086. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 386.8589 ) * ( 22.2000 - 3.0000 ) * 0.7 * 1379 = 2252380. N Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 793.7170 * 22.2000 * 0.74 * 1379 = 2824296. N

Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 793.7170 * ( 18.0000 - 3.0000 ) * 0.74 * 1379 = 1908308. N Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = (

Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + SNW ) = ( 2043086 + 2252380 ) = 4295466 N Sonw + Tpgw + Tngw + Sinw ) 758165 + 2824296 + 1908308 + 0 ) = 5490770 N Spew + Tngw + Sinw ) 2043086 + 1908308 + 0 ) = 3951394 N

Failure 4295466 5490770 3951394

Path N , N , N ,

Calculations: must exceed W = 1547290 N must exceed W = 1547290 N must exceed W = 1547290 N

or W1 = 1596328 N or W2 = 241337 N or W3 = 1675754 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 17.017

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 143 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Nozzle is O.K. for the External Pressure

1.034

bar

Note : Checking Nozzle in the Latitudinal direction. Reinforcement CALCULATION, Description: M1

ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Outside Diameter Used in Calculation Actual Thickness Used in Calculation

762.000 22.200

mm. mm

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Elliptical Head, Tr [Int. Press] = (P*D*K)/(2*S*E-0.2*P) Appendix 1-4(c) = (16.95*2436.0000*0.997)/( 2*1379.00*1.00-0.2*16.95) = 14.9423 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (16.95*381.0000)/(1379*1.00+0.4*16.95) = 4.6607 mm Required Nozzle thickness under External Pressure per UG-28 : 1.9394 UG-40, Limits of Reinforcement : [Internal Pressure] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall, opening length d Normal to Vessel Wall (Thickness Limit), pad side Tlwp Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 MAWP External Area Required Ar 108.122 23.101 Area in Shell A1 0.418 62.338 Area in Nozzle Wall A2 10.904 12.945 Area in Inward Nozzle A3 0.000 0.000 Area in Welds A41+A42+A43 2.770 2.770 Area in Element A5 102.064 102.064 TOTAL AREA AVAILABLE Atot 116.157 180.118

1447.2001 723.6000 37.5000

mm mm mm

Mapnc NA NA NA NA NA NA NA

cm² cm² cm² cm² cm² cm² cm²

90.00

Degs.

The MAWP Case Governs the Analysis.

Nozzle Angle Used in Area Calculations The area available without a pad is Insufficient. The area available with the given pad is Sufficient.

SELECTION OF POSSIBLE REINFORCING PADS: Diameter Based on given Pad Thickness: 1185.5605 Based on given Pad Diameter: 1375.0000 Based on Shell or Nozzle Thickness: 1284.3914

Thickness 22.2000 mm 15.3394 mm 18.0000 mm

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 144 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014 Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (723.6000*14.9423*1.0+2*19.2000*14.9423*1.0*(1-1.00)) = 108.122 cm²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 723.600 ( 1.00 * 15.0000 - 1.0 * 14.942 ) - 2 * 19.200 ( 1.00 * 15.0000 - 1.0 * 14.9423 ) * ( 1 - 1.000 ) = 0.418 cm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 37.50 ) * ( 19.20 - 4.66 ) * 1.0000 = 10.904 cm² Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 9.0000² *1.00 + (0.0000 )² *1.00 + 14.0000² * 1.00 = 2.770 cm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 1375.0000 - 762.0000 ) * 22.2000 * 1.0000 = 102.064 cm²

Note: Per user request, A5 multiplied by 0.75, see UG-37(h). Weld Size Calculations, Description: M1 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

19.0000 19.0000

mm mm

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness Actual Thickness 6.0000 = Min per Code 6.3630 = 0.7 * Wo mm 9.5000 = 0.5*TminPad 9.8980 = 0.7 * Wp mm

Weld Strength and Weld Loads per UG-41.1, Sketch (a) or (b) Weld Load [W]: = (A-A1+2*tn*fr1*(E1*t-tr))*Sv = (108.1225 - 0.4175 + 2 * 19.2000 * 1.0000 * (1.00 * 15.0000 - 14.9423 ) ) * 1379 = 1485473.00 N Note: F is always set to 1.0 throughout the calculation. Weld Load [W1]: = (A2+A5+A4-(Wi-Can/.707)²*fr2)*Sv = ( 10.9045 + 102.0645 + 2.7700 - 0.0000 * 1.00 ) * 1379 = 1595950.75 N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 145 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Weld Load [W2]: = (A2 + A3 + A4 + (2 * tn * t * fr1)) * Sv = ( 10.9045 + 0.0000 + 0.8100 + ( 5.7600 ) ) * 1379 = 240959.22 N Weld Load [W3]: = (A2+A3+A4+A5+(2*tn*t*fr1))*S = ( 10.9045 + 0.0000 + 2.7700 + 102.0645 + ( 5.7600 ) ) * 1379 = 1675376.75 N Strength of Connection Elements for Failure Path Analysis

Shear, Outward Nozzle Weld [Sonw]: = (pi/2) * Dlo * Wo * 0.49 * Snw = ( 3.1416/2.0 ) * 762.0000 * 9.0000 * 0.49 * 1379 = 727869. N Shear, Pad Element Weld [Spew]: = (pi/2) * DP * WP * 0.49 * SEW = ( 3.1416/2.0 ) * 1375.0000 * 14.0000 * 0.49 * 1379 = 2043086. N Shear, Nozzle Wall [Snw]: = (pi *( Dlr + Dlo )/4 ) * ( Thk - Can ) * 0.7 * Sn = (3.1416 * 371.4000 ) * ( 22.2000 - 3.0000 ) * 0.7 * 1379 = 2162375. N

Tension, Pad Groove Weld [Tpgw]: = ( pi/2) * Dlo * Wgpn * 0.74 * Seg = (3.1416/2 ) * 762.0000 * 22.2000 * 0.74 * 1379 = 2711437. N Tension, Shell Groove Weld [Tngw]: = (pi/2) * Dlo * (Wgnvi-Cas) * 0.74 * Sng = ( 3.1416/2.0 ) * 762.0000 * ( 18.0000 - 3.0000 ) * 0.74 * 1379 = 1832052. N Strength of Failure Paths: PATH11 = ( PATH22 = ( = ( PATH33 = ( = (

Summary of Path 1-1 = Path 2-2 = Path 3-3 =

SPEW + SNW ) = ( 2043086 + 2162375 ) = 4205461 N Sonw + Tpgw + Tngw + Sinw ) 727869 + 2711437 + 1832052 + 0 ) = 5271358 N Spew + Tngw + Sinw ) 2043086 + 1832052 + 0 ) = 3875138 N

Failure 4205461 5271358 3875138

Path N , N , N ,

Calculations: must exceed W = 1485473 N must exceed W = 1485473 N must exceed W = 1485473 N

or W1 = 1595950 N or W2 = 240959 N or W3 = 1675376 N

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 17.017

bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 146 Nozzle Calcs. : M1 Nozl: 14 11:07a Jan 30,2014

Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 133.6252 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 587.1768 mm Percent Elongation Calculations: Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro)

3.001 %

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 147 Nozzle Schedule : Step: 25 11:07a Jan 30,2014

Nozzle Schedule: Nominal Flange Noz. Wall Re-Pad Cut Size Sch/Type O/Dia Thk ODia Thick Length mm Cls mm mm mm mm mm -----------------------------------------------------------------------------N5 50 150 LWN 77.720 13.460 193 N4 80 160 N/A 88.900 11.125 190.00 19.05 229 N3 150 160 N/A 168.275 18.237 270.00 19.05 278 N1 200 160 N/A 219.075 23.012 350.00 19.05 223 N2 200 160 N/A 219.075 23.012 350.00 19.05 223 H1 300 120 WNF 323.850 25.400 570.00 19.05 254 M1 762 150 WNF 762.000 22.200 1375.00 22.20 587 Description

General Notes for the above table: The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Thickness. This value does not include weld gaps, nor does it account for shrinkage.

In the case of Oblique Nozzles, the Outside Diameter must be increased. The Re-Pad WIDTH around the nozzle is calculated as follows: Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2 For hub nozzles, the thickness and diameter shown are those of the smaller and thinner section. Nozzle Material and Weld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Nozzle Material Weld Weld Weld Weld Weld mm mm mm mm mm -----------------------------------------------------------------------------N5 SA-105 18.000 9.000 N4 SA-106 B 18.000 9.000 14.000 19.050 N3 SA-106 B 19.050 9.000 12.000 19.050 N1 SA-106 B 19.050 9.000 12.000 19.050 N2 SA-106 B 19.050 9.000 12.000 19.050 H1 SA-106 B 19.050 9.000 12.000 19.050 M1 SA-516 70 18.000 9.000 14.000 22.200 -

Note: The Outside projections below do not include the flange thickness. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In From Datum Angle Outside Inside Component mm deg. mm mm ---------------------------------------------------------------------------N5 180.00 175.00 0.00 BOTTOM HEAD N4 240.00 192.00 0.00 TOP HEAD N3 1543.000 21.39 221.00 0.00 SHELL N1 1503.000 0.00 200.00 0.00 SHELL Nozzle

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 148 Nozzle Schedule : Step: 25 11:07a Jan 30,2014

N2 H1 M1

327.000 415.000

144.00 165.00 45.00

200.00 225.00 435.00

0.00 0.00 0.00

SHELL SHELL TOP HEAD

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 149 Nozzle Summary : Step: 26 11:07a Jan 30,2014

Nozzle Calculation Summary: Description

MAWP Ext MAPNC UG45 [tr] Weld Areas or bar bar Path Stresses --------------------------------------------------------------------------N5 16.95 ... ... OK 7.80 OK NoCalc[*] N1 18.03 OK ... OK 10.16 OK Passed N2 18.03 OK ... OK 10.16 OK Passed N3 18.03 OK ... OK 9.22 OK Passed N3 18.03 OK ... OK 9.22 OK Passed H1 18.03 OK ... ... OK Passed N4 17.02 OK ... OK 7.80 OK Passed N4 17.02 OK ... OK 7.80 OK Passed M1 17.02 OK ... ... OK Passed M1 17.02 OK ... ... OK Passed --------------------------------------------------------------------------Min. - Nozzles 16.95 N5 Min. Shell&Flgs 16.95 20 30 19.60 Computed Vessel M.A.W.P.

16.95

bar

[*] - This was a small opening and the areas were not computed or the MAWP of this connection could not be computed because the longitudinal bending stress was greater than the hoop stress. Check the Spatial Relationship between the Nozzles From Node 20 30 30 30 30 40 40

Nozzle Description N5 N1 N2 N3 H1 N4 M1

Y Coordinate, 0.000 1503.000 327.000 1543.000 415.000 0.000 0.000

Layout Angle, 180.000 0.000 144.000 21.386 165.000 240.000 45.000

Dia. Limit 113.600 358.100 358.100 275.601 558.100 145.299 1447.200

The nozzle spacing is computed by the following: = Sqrt( ll² + lc² ) where ll - Arc length along the inside vessel surface in the long. direction. lc - Arc length along the inside vessel surface in the circ. direction If any interferences/violations are found, they will be noted below. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 150 MDMT Summary : Step: 27 11:07a Jan 30,2014

Minimum Design Metal Temperature Results Summary :

Curve

Basic Reduced UG-20(f) Thickness Gov E* MDMT MDMT MDMT ratio Thk Notes C C C mm ---------------------------------------------------------------------------BOTTOM HEAD [10] D -43 -43 -29 1.000 18.000 1.000 BOTTOM HEAD [7] D -37 -48 -29 0.789 22.200 1.000 SHELL [8] D -41 -45 -29 0.940 19.050 1.000 TOP HEAD [10] D -43 -43 -29 0.996 18.000 1.000 TOP HEAD [7] D -37 -48 -29 0.786 22.200 1.000 N5 [1] C -37 -104 0.034 13.460 1.000 Nozzle Flg [5] -29 -36 0.868 N1 [1] B -9 -29 -29 0.940 19.050 1.000 Nozzle Flg [4] -29 -104 0.076 N2 [1] B -9 -29 -29 0.940 19.050 1.000 Nozzle Flg [4] -29 -104 0.076 N3 [1] D -41 -45 -29 0.940 19.050 1.000 Nozzle Flg [4] -29 -104 0.077 H1 [1] B -9 -29 -29 0.940 19.050 1.000 Nozzle Flg [4] -29 -104 0.105 N4 [1] D -43 -48 -29 0.897 18.000 1.000 Nozzle Flg [4] -29 -104 0.078 M1 [1] D -43 -43 -29 0.996 18.000 1.000 Nozzle Flg [4] -29 -104 0.243 ---------------------------------------------------------------------------Required Minimum Design Metal Temperature 0 C Warmest Computed Minimum Design Metal Temperature -29 C Description

Notes: [ ! ] - This was an impact tested material. [ 1] - Governing Nozzle Weld. [ 4] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(c). [ 5] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(b). [ 6] - MDMT Calculations at the Shell/Head Joint. [ 7] - MDMT Calculations for the Straight Flange. [ 8] - Cylinder/Cone/Flange Junction MDMT. [ 9] - Calculations in the Spherical Portion of the Head. [10] - Calculations in the Knuckle Portion of the Head. [11] - Calculated (Body Flange) Flange MDMT. [12] - Calculated Flat Head MDMT per UCS-66(3)

UG-84(b)(2) was not considered. UCS-66(g) was not considered. UCS-66(i) was not considered. Notes: Impact test temps were not entered in and not considered in the analysis. UCS-66(i) applies to impact tested materials not by specification and UCS-66(g) applies to materials impact tested per UG-84.1 General Note (c). The Basic MDMT includes the (30F) PWHT credit if applicable.

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 151 MDMT Summary : Step: 27 11:07a Jan 30,2014 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 152 Vessel Design Summary : Step: 28 11:07a Jan 30,2014 Design Code: ASME Code Section VIII Division 1, 2010, 2011a Diameter Spec : 2430.000 mm ID Vessel Design Length, Tangent to Tangent Distance of Bottom Tangent above Grade Distance of Base above Grade Specified Datum Line Distance

Skirt Material Specification Shell Material Specification Nozzle Material Specification Nozzle Material Specification Nozzle Material Specification Re-Pad Material Specification

1830.00

mm

20514.00 19664.00 850.00

mm mm mm

SA-516 70 SA-516 70 SA-105 SA-106 B SA-516 70 SA-516 70

[Normalized] [Normalized] [Normalized]

Internal Design Temperature Internal Design Pressure

60 16.000

C bar

External Design Temperature External Design Pressure

60 1.034

C bar

16.952 5.403 25.481

bar bar bar

Maximum Allowable Working Pressure External Max. Allowable Working Pressure Hydrostatic Test Pressure Required Minimum Design Metal Temperature Warmest Computed Minimum Design Metal Temperature Wind Design Code Earthquake Design Code

0 -29

[Normalized] [Normalized]

C C

ASCE-98\02\05\IBC-03\06\STS-1 G-Loading

Element Pressures and MAWP: bar

Element Desc

| Design Pres. | External | M.A.W.P | Corrosion | + Stat. head | Pressure | | Allowance --------------------------------------------------------------------BOTTOM HEAD 16.065 1.034 16.952 3.0000 SHELL 16.000 1.034 18.029 3.0000 TOP HEAD 16.000 1.034 17.017 3.0000 Liquid Level: 657.50 mm

Dens.: 1014.040 kg/m³

Sp. Gr.: 1.015

Element "To" Elev Length Element Thk R e q d T h k Joint Eff Type mm mm mm Int. Ext. Long Circ ----------------------------------------------------------------------Skirt 0.0 850.0 9.5 No Calc No Calc 0.70 0.70 Ellipse 50.0 50.0 22.2 17.2 9.4 1.00 1.00 Cylinder 1780.0 1730.0 19.0 17.2 10.6 1.00 1.00 Ellipse 1830.0 50.0 22.2 17.1 9.4 1.00 1.00 Element thicknesses are shown as Nominal if specified, otherwise are Minimum

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-OPERATING CASE (LOAD CASE 1YEAR) REV Page 153 Vessel Design Summary : Step: 28 11:07a Jan 30,2014

Wind/Earthquake Shear, Bending | | Distance to| Cumulative |Earthquake | Wind | Earthquake | From| To | Support| Wind Shear | Shear | Bending | Bending | | | mm | N | N | N-m | N-m | --------------------------------------------------------------------------10| 20| 425.000 | 5990.88 | 27604.8 | 9561.58 | 45629.8 | 20| 30| 875.000 | 4403.65 | 25986.7 | 5142.12 | 22844.2 | 30| 40| 1765.00 | 4309.92 | 21134.1 | 4924.19 | 21665.7 | 40| 50| 2655.00 | 1035.09 | 2926.31 | 298.887 | 844.987 | Abs Max of the all of the Stress Ratio's : 0.3899 Basering Data : Continuous Top Ring W/Gussets Thickness of Basering Inside Diameter of Basering Outside Diameter of Basering Nominal Diameter of Bolts Diameter of Bolt Circle Number of Bolts Thickness of Gusset Plates Average Width of Gusset Plates Height of Gussets Distance between Gussets Thickness of Top Plate or Ring Circumferential Width of the Top Plate Radial Width of the Top Plate

28.5800 2238.0000 2738.0000 38.1000 2598.0000 16

mm mm mm mm mm

15.8800 125.0000 221.4000 76.0000 31.7500 135.0000 125.0000

mm mm mm mm mm mm mm

Total Wind Shear on Support Total Earthquake Shear on Support Wind Moment on Support Earthquake Moment on Support

5991. 27605. 9562. 45630.

N N N-m N-m

Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads and stresses) during these cases. Also included are moment effects due to eccentric weights if any are present in the input.

Weights: Fabricated Shop Test Shipping Erected Empty Operating Field Test

-

Bare W/O Removable Internals Fabricated + Water ( Full ) Fab. + Rem. Intls.+ Shipping App. Fab. + Rem. Intls.+ Insul. (etc) Fab. + Intls. + Details + Wghts. Empty + Operating Liquid (No CA) Empty Weight + Water (Full)

7989.1 20727.3 8489.0 8489.0 8489.0 22880.2 26926.1

kg kg kg kg kg kg kg

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION C:

TEST CASE This analysis is intent to check stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, wind & earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 155 Input Echo : Step: 1 11:08a Jan 30,2014 PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) 16.000 Design Internal Temperature 60 Type of Hydrotest User Defined Hydro Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 Projection of Nozzle from Vessel Bottom 150.00 Minimum Design Metal Temperature 0 Type of Construction Welded Special Service None Degree of Radiography RT-1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 25.481 User defined MAWP 0.0000 User defined MAPnc 0.0000 (Load Case applicable for Test case is as below) Load Case 1 NP+HW+0.25HI+HE Load Case 2 HP+HW+0.25HI+HE Load Case 3 IP+WF+CW

bar C

mm mm C

bar bar bar

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 m/sec Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. mm (Vessel is located on structure skid, T.O.S EL+ 19664. Refer Dwg. No.: MLK-58863004234001-B01-39002-0042065-M-DW-001.) Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 mm Distance Upwind of Crest Lh 0.0000 mm Distance from Crest to the Vessel x 0.0000 mm Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000 Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for 1 year Operating is as below.) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.087 G Loading Coefficient Gz 0.087 G Loading Coefficient Gy 0.049 Percent Seismic for Hydrotest 100.000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 156 Input Echo : Step: 1 11:08a Jan 30,2014

Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9 Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives: Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7

-------------------------------------------------------------------Element From Node Element To Node Element Type Description

20 30 Elliptical BOTTOM HEAD

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 157 Input Echo : Step: 1 11:08a Jan 30,2014 Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node 20 Detail Type Liquid Detail ID WATER 1 Dist. from "FROM" Node / Offset dist -607.50 Height/Length of Liquid 657.50 Liquid Density 1000.0 (water with density 1000kg/m3 is used for hydrotest) Element From Node 20 Detail Type Nozzle Detail ID N5 Dist. from "FROM" Node / Offset dist 0.0000 Nozzle Diameter 50.799999 Nozzle Schedule None Nozzle Class 150 Layout Angle 180.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 Grade of Attached Flange GR 1.1 Nozzle Matl [Normalized] SA-105 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm kg/m³

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node 30 Element To Node 40 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 3.0000 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 158 Input Echo : Step: 1 11:08a Jan 30,2014 Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

19.050 0.0000 16.000 60 1.0342 60 1.2 SA-516 70 1.0 1.0

Element From Node 30 Detail Type Liquid Detail ID WATER 2 Dist. from "FROM" Node / Offset dist 0.0000 Height/Length of Liquid 1730.0 Liquid Density 1000.0 (water with density 1000kg/m3 is used for hydrotest) Element From Node 30 Detail Type Nozzle Detail ID N1 Dist. from "FROM" Node / Offset dist 1453.0 Nozzle Diameter 200.0 Nozzle Schedule 160 Nozzle Class 150 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N)

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N

mm mm bar C bar C

mm mm kg/m³

mm mm

N

mm mm

N

mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 159 Input Echo : Step: 1 11:08a Jan 30,2014 Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight ANODES 1258.0 784.48 0.0000

N

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density (water with density 1000kg/m3 is used for hydrotest)

40 Liquid WATER 3 0.0000 657.50 1000.0

mm mm kg/m³

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 160 Input Echo : Step: 1 11:08a Jan 30,2014 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

40 Nozzle M1 535.00 762.0 None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

mm mm

N

mm mm

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 161 Wind Load Calculation : Step: 8 11:08a Jan 30,2014

Input Values: Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 Distance Upwind of Crest Lh 0.0000 Distance from Crest to the Vessel x 0.0000 Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

m/sec

mm

mm mm mm

Wind Analysis Results Static Gust-Effect Factor, Operating Case [G]: = min(0.85, 0.925((1 + 1.7 * gQ * Izbar * Q )/( 1 + 1.7 * gV * Izbar))) = min(0.85,0.925((1+1.7*3.400*0.228*0.958)/(1+1.7*3.400*0.228))) = min(0.85, 0.903 ) = 0.850 Natural Frequency of Vessel (Operating) Natural Frequency of Vessel (Empty) Natural Frequency of Vessel (Test)

44.628 Hz 73.309 Hz 45.940 Hz

Note: Per Section 1609 of IBC 2003/06/09 these results are also applicable for the determination of Wind Loads on structures (1609.1.1).

User Entered Importance Factor is Force Coefficient Structure Height to Diameter ratio Height to top of Structure

1.150 [Cf] 0.507 1.419 3305.500 mm

This is classified as a rigid structure. Static analysis performed. Sample Calculation for the First Element The ASCE code performs all calculations in Imperial Units only. The wind pressure is therefore computed in these units. Value of [Alpha] and [Zg]: Exposure Category: C from Table C6-2 Alpha = 9.500 : Zg = 274320.000 mm

Effective Height [z]: = Centroid Height + Vessel Base Elevation = 425.000 + 19663.998 = 20088.998 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 162 Wind Load Calculation : Step: 8 11:08a Jan 30,2014 = 65.909 ft. Imperial Units Velocity Pressure coefficient evaluated at height z [Kz]: Because z (65.909 ft.) > 15 ft. = 2.01 * ( z / Zg ) ^(2 / Alpha) = 2.01 * ( 65.909/900.000 )^(2/9.500 ) = 1.159

Type of Hill: No Hill Wind Directionality Factor [Kd]: = 0.95 per [6-6 ASCE-7 98][6-4 ASCE-7 02/05]

As there is No Hill Present: [Kzt]: K1 = 0, K2 = 0, K3 = 0 Topographical Factor [Kzt]: = ( 1 + K1 * K2 * K3 )² = ( 1 + 0.000 * 0.000 * 0.000 )² = 1.0000 Velocity Pressure evaluated at height z, Imperial Units [qz]: = 0.00256 * Kz * Kzt * Kd * I * Vr(mph)² = 0.00256 * 1.159 * 1.000 * 0.950 * 1.150 * 97.085² = 30.6 psf [1463.182 ] N/m² Force on the first element [F]: = qz * G * Cf * WindArea = 30.560 * 0.850 * 0.507 * 27.097 = 356.8 lbs. [1587.2 ] N Element

Hgt (z) K1 K2 K3 Kz Kzt qz mm N/m² --------------------------------------------------------------------------SKIRT 20089.0 0.000 0.000 0.000 1.159 1.000 1463.182 BOTTOM HEAD 20539.0 0.000 0.000 0.000 1.165 1.000 1470.022 SHELL 21429.0 0.000 0.000 0.000 1.175 1.000 1483.208 TOP HEAD 22582.6 0.000 0.000 0.000 1.188 1.000 1499.673

Wind Vibration Calculations

This evaluation is based on work by Kanti Mahajan and Ed Zorilla Nomenclature

Cf D Df Dr f f1 L

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 163 Wind Load Calculation : Step: 8 11:08a Jan 30,2014

Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 192397/( 2680.00 * 2436.000² ) = 0.12098E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations

ID

Wind Area Elevation Pressure Force Cf cm² mm N/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping

ID

Wind Area Elevation Pressure Force cm² mm N/m² N ------------------------------------------------------------------------INT.PLATE 0.00 20564.00 1470.39 0.00 ANODES 0.00 21822.00 1488.82 0.00 The Natural Frequency for the Vessel (Ope...) is 44.6278 Hz.

Wind Load Calculation | | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | N/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 1463.18 | 1587.23 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 1470.02 | 93.7269 | 30| 40| 21429.0 | 2961.72 | 51237.8 | 1483.21 | 3274.83 |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 164 Wind Load Calculation : Step: 8 11:08a Jan 30,2014

40|

50|

22582.6 |

2959.20 |

16017.2 |

1499.67 |

1035.09 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 165 Earthquake Load Calculation : Step: 9 11:08a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.087 0.087 0.049

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 44.6278 Hz.

Earthquake Load Calculation | | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 1618.14 | 1618.14 | 20| 30| 875.000 | 39150.6 | 4816.95 | 2270.89 | 30| 40| 1765.00 | 102413. | 12600.6 | 2919.97 | 40| 50| 2655.00 | 44477.6 | 5472.37 | 2926.31 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 166 Stress due to Combined Loads : Step: 15 11:08a Jan 30,2014

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes: Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+HW+HI+HE From Tensile All. Tens. Comp. Node Stress Stress Stress 10 0.00 1980.72 0.00 20 0.00 2829.60 0.00 30 0.00 2829.60 0.00 40 0.00 2829.60 0.00 Analysis of Load Case 2 : HP+HW+HI+HE

All. Comp. Stress 1010.47 1219.68 1235.27 1219.68

Tens. Ratio 0.0000 0.0000 0.0000 0.0000

Comp. Ratio 0.0000 0.0000 0.0000 0.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 167 Stress due to Combined Loads : Step: 15 11:08a Jan 30,2014 From Node 10 20 30 40

Tensile Stress 0.00 854.89 807.49 854.89

All. Tens. Stress 1980.72 2829.60 2829.60 2829.60

Comp. Stress 0.00

Analysis of Load Case 3 : IP+WF+CW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -27.06 20 641.63 1654.80 30 600.66 1654.80 40 644.68 1654.80

All. Comp. Stress 1010.47 1219.68 1235.27 1219.68

Tens. Ratio 0.0000 0.3021 0.2854 0.3021

Comp. Ratio 0.0000

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Tens. Ratio

Comp. Ratio 0.0268

Absolute Maximum of the all of the Stress Ratio's

0.3877 0.3630 0.3896 0.3896

Governing Element: TOP HEAD Governing Load Case 3 : IP+WF+CW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 168 Basering Calculations : Step: 17 11:08a Jan 30,2014 Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 70 [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock) Basering Operating All. Stress BASOPE 1378.96 bar Basering Yield Stress 2493.20 bar Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm Nominal Diameter of Bolts BND 38.1000 mm Bolt Corrosion Allowance BCA 0.0000 mm Bolt Material SA-325 Type1 Bolt Operating Allowable Stress SA 3100.02 bar (Allowable stress is amended based on Tensile Strength-Input by TMJV) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000 mm

Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2493.2 221.4000 76.0000 38.0000 2 31.7500 125.0000 43.0000

mm mm mm N/cm² bar mm mm mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 79125.3 N Operating Weight of Vessel ROW 199193.3 N Earthquake Moment on Basering EQMOM 43131.9 N-m Wind Moment on Basering WIMOM 9561.6 N-m (As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0

Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables Fact Results for Basering Analysis : Analyze Option

No No 1.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 169 Basering Calculations : Step: 17 11:08a Jan 30,2014

Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3100.0 [Fact]

0.0000 8.3484 133.5739 0.0 3100.02

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *3100 +208953 )/19540.71 ) + 43131/.11156E+10 = 22.65 bar Allowable Stress on Concrete

82.74

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2068.440 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 22.647/2068.440 )½ + 0.0000 = 24.4666 mm Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 22.647 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 1515.888 , must be less than 2068.440 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress Wt = (Topwth - Bnd), Width of Section T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 2459/( 2068 * 86.9000 ))½ + 0.0000 T = 28.6477 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 170 Basering Calculations : Step: 17 11:08a Jan 30,2014

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 844/2068 )½ + 0.000 31.0482 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 125.9861 Allowable Buckling Str. per E2-1 1280.93 Actual Buckling Str. at Given Thickness 651.89

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

9.7029

79.0423 125.9861 1070.25 1066.90

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

24.4666 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

28.6477 31.0482 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

9.7029 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 27.064 * ( 9.530 - 0.000 ) = 25.79 N/mm

Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 25/[( 0.4 * 2493 ) * 2 * 0.707] = 0.183 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 171 Basering Calculations : Step: 17 11:08a Jan 30,2014

Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 258786.6/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 421.435 N/mm Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 258786.6 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 240.291 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 421.44² + 240.29²)½ = 485.126 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 485.13/[( 0.4 * 2493 ) * 2 * 0.707] = 3.440 mm Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 258786.6/( 2 * 125.000 ) = 1035.146 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 258786.6 * 65.00/( 2 * 253.150 * 125.000 ) = 265.789 N/mm

Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1035.15² + 265.79²)½ = 1068.724 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1068.72/[( 0.4 * 2493 ) * 2 * 0.707] = 7.579 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness. Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size

4.7625 6.3500 7.5792

mm mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TEST CASE (LOAD CASE 1YEAR) REV ----- Page 172 Basering Calculations : Step: 17 11:08a Jan 30,2014 Required Gusset to Top Plate Double Fillet Weld Size

7.5792

mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION D:

TRANSPORTATION CASE This analysis is intent to check stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, wind & earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 174 Input Echo : Step: 1 11:09a Jan 30,2014 PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) 16.000 Design Internal Temperature 60 Type of Hydrotest User Defined Hydro Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 Projection of Nozzle from Vessel Bottom 150.00 Minimum Design Metal Temperature 0 Type of Construction Welded Special Service None Degree of Radiography RT-1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 25.481 User defined MAWP 0.0000 User defined MAPnc 0.0000 (Load Case applicable for Transportation case is as below) Load Case 1 NP+EW+WI+EQ+FW+FS+BW Load Case 2 NP+EW+EQ+WI+FW+FS+BS Load Case 3 IP+WE+EW Load Case 4 IP+VO+OW Load Case 5 IP+VE+EW

bar C

mm mm C

bar bar bar

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 m/sec Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. mm (Vessel is located on structure skid, T.O.S EL+ 19664. Refer Dwg. No.: MLK-58863004234001-B01-39002-0042065-M-DW-001.) Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 mm Distance Upwind of Crest Lh 0.0000 mm Distance from Crest to the Vessel x 0.0000 mm Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000 Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for wet tow is as below) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.137 G Loading Coefficient Gz 0.138

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 175 Input Echo : Step: 1 11:09a Jan 30,2014 G Loading Coefficient Gy Percent Seismic for Hydrotest

0.223 100.000

Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9 Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7 -------------------------------------------------------------------Element From Node Element To Node

20 30

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 176 Input Echo : Step: 1 11:09a Jan 30,2014 Element Type Elliptical Description BOTTOM HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node 30 Element To Node 40 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 177 Input Echo : Step: 1 11:09a Jan 30,2014

Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

60 1.2 SA-516 70 1.0 1.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 0.0 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1

C

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 178 Input Echo : Step: 1 11:09a Jan 30,2014

Nozzle Matl

SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight

30 Weight ANODES 1258.0 784.48

mm N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 179 Input Echo : Step: 1 11:09a Jan 30,2014 Offset from Element Centerline

0.0000

mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

40 Nozzle M1 535.00 762.0 None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

mm mm

N

mm mm

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 180 Wind Load Calculation : Step: 8 11:09a Jan 30,2014

Input Values:

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 Distance Upwind of Crest Lh 0.0000 Distance from Crest to the Vessel x 0.0000 Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

m/sec

mm

mm mm mm

Wind Analysis Results

Static Gust-Effect Factor, Operating Case [G]: = min(0.85, 0.925((1 + 1.7 * gQ * Izbar * Q )/( 1 + 1.7 * gV * Izbar))) = min(0.85,0.925((1+1.7*3.400*0.228*0.958)/(1+1.7*3.400*0.228))) = min(0.85, 0.903 ) = 0.850 Natural Frequency of Vessel (Operating) Natural Frequency of Vessel (Empty) Natural Frequency of Vessel (Test)

47.417 Hz 47.417 Hz 41.415 Hz

Note: Per Section 1609 of IBC 2003/06/09 these results are also applicable for the determination of Wind Loads on structures (1609.1.1). User Entered Importance Factor is Force Coefficient Structure Height to Diameter ratio Height to top of Structure

1.150 [Cf] 0.507 1.419 3305.500 mm

This is classified as a rigid structure. Static analysis performed. Sample Calculation for the First Element The ASCE code performs all calculations in Imperial Units only. The wind pressure is therefore computed in these units. Value of [Alpha] and [Zg]: Exposure Category: C from Table C6-2 Alpha = 9.500 : Zg = 274320.000 mm Effective Height [z]: = Centroid Height + Vessel Base Elevation = 425.000 + 19663.998 = 20088.998 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 181 Wind Load Calculation : Step: 8 11:09a Jan 30,2014

= 65.909 ft. Imperial Units Velocity Pressure coefficient evaluated at height z [Kz]: Because z (65.909 ft.) > 15 ft. = 2.01 * ( z / Zg ) ^(2 / Alpha) = 2.01 * ( 65.909/900.000 )^(2/9.500 ) = 1.159

Type of Hill: No Hill Wind Directionality Factor [Kd]: = 0.95 per [6-6 ASCE-7 98][6-4 ASCE-7 02/05] As there is No Hill Present: [Kzt]: K1 = 0, K2 = 0, K3 = 0 Topographical Factor [Kzt]: = ( 1 + K1 * K2 * K3 )² = ( 1 + 0.000 * 0.000 * 0.000 )² = 1.0000 Velocity Pressure evaluated at height z, Imperial Units [qz]: = 0.00256 * Kz * Kzt * Kd * I * Vr(mph)² = 0.00256 * 1.159 * 1.000 * 0.950 * 1.150 * 97.085² = 30.6 psf [1463.182 ] N/m² Force on the first element [F]: = qz * G * Cf * WindArea = 30.560 * 0.850 * 0.507 * 27.097 = 356.8 lbs. [1587.2 ] N

Element

Hgt (z) K1 K2 K3 Kz Kzt qz mm N/m² --------------------------------------------------------------------------SKIRT 20089.0 0.000 0.000 0.000 1.159 1.000 1463.182 BOTTOM HEAD 20539.0 0.000 0.000 0.000 1.165 1.000 1470.022 SHELL 21429.0 0.000 0.000 0.000 1.175 1.000 1483.208 TOP HEAD 22582.6 0.000 0.000 0.000 1.188 1.000 1499.673

Wind Vibration Calculations This evaluation is based on work by Kanti Mahajan and Ed Zorilla

Nomenclature Cf D Df Dr f f1 L

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 182 Wind Load Calculation : Step: 8 11:09a Jan 30,2014

Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 170762/( 2680.00 * 2436.000² ) = 0.10738E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations ID

Wind Area Elevation Pressure Force Cf cm² mm N/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping

ID

Wind Area Elevation Pressure Force cm² mm N/m² N ------------------------------------------------------------------------INT.PLATE 0.00 20564.00 1470.39 0.00 DIST. & HEADE 0.00 21429.00 1483.21 0.00 ANODES 0.00 21822.00 1488.82 0.00 The Natural Frequency for the Vessel (Ope...) is 47.4165 Hz. Wind Load Calculation | | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | N/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 1463.18 | 1587.23 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 1470.02 | 93.7269 |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 183 Wind Load Calculation : Step: 8 11:09a Jan 30,2014

30| 40|

40| 50|

21429.0 | 22582.6 |

2961.72 | 2959.20 |

51237.8 | 16017.2 |

1483.21 | 1499.67 |

3274.83 | 1035.09 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 184 Earthquake Load Calculation : Step: 9 11:09a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.137 0.138 0.223

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 47.4165 Hz. Earthquake Load Calculation

| | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 2557.42 | 2557.42 | 20| 30| 875.000 | 18457.0 | 3589.07 | 3589.07 | 30| 40| 1765.00 | 122166. | 23755.9 | 23755.9 | 40| 50| 2655.00 | 23784.1 | 4624.95 | 4624.95 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 185 Stress due to Combined Loads : Step: 15 11:09a Jan 30,2014

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes:

Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+EW+WI+EQ+FW+FS+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -35.77 1010.47 20 1654.80 -17.32 1165.68 30 1654.80 -14.79 1186.02 40 1654.80 -2.39 1165.68 Analysis of Load Case 2 : NP+EW+EQ+WI+FW+FS+BS

Tens. Ratio

Comp. Ratio 0.0354 0.0149 0.0125 0.0020

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 186 Stress due to Combined Loads : Step: 15 11:09a Jan 30,2014

From Node 10 20 30 40

Tensile Stress

All. Tens. Stress 1158.36 1654.80 1654.80 1654.80

Comp. Stress -35.77 -17.32 -14.79 -2.39

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Tens. Ratio

Comp. Ratio 0.0354 0.0149 0.0125 0.0020

Analysis of Load Case 3 : IP+WE+EW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Tens. Ratio

Comp. Ratio 0.0255

Analysis of Load Case 4 : IP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 5 : IP+VE+EW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -25.79 20 633.23 1654.80 30 593.10 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Absolute Maximum of the all of the Stress Ratio's

0.3827 0.3584 0.3897

Tens. Ratio

Comp. Ratio 0.0255

0.3827 0.3584 0.3897

Tens. Ratio

Comp. Ratio 0.0255

0.3827 0.3584 0.3897 0.3897

Governing Element: TOP HEAD Governing Load Case 3 : IP+WE+EW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 187 Basering Calculations : Step: 17 11:09a Jan 30,2014

Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 Gr. 70 [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock Basering Operating All. Stress BASOPE 1792.65 bar Basering Yield Stress 2454.55 bar Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm

Nominal Diameter of Bolts BND 38.1000 mm Bolt Corrosion Allowance BCA 0.0000 mm Bolt Material SA-325 Type1 Bolt Operating Allowable Stress SA 3100.02 bar (Allowable stress is amended based on Tensile Strength-Input by TMJV) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000 mm Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2454.5 221.4000 76.0000 38.0000 2 31.7500 125.0000 43.0000

mm mm mm N/cm² bar mm mm mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 177558.9 N Operating Weight of Vessel ROW 177558.9 N Earthquake Moment on Basering EQMOM 59679.2 N-m Wind Moment on Basering WIMOM 9561.6 N-m As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0 Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables per AISC A5.2 Bolt Operating Allowable Stress [Fact] SA All. Comp. Strength of Concrete [Fact] FC

Yes No 1.3333 [Fact] 4133.359 bar 110.317 bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 188 Basering Calculations : Step: 17 11:09a Jan 30,2014

Note : The Concrete, Bolt and Plate Stresses have been increased by 1/3 per AISC A5.2. [Fact = 4/3] Results for Basering Analysis : Analyze Option Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3100.0 [Fact]

0.0000 8.3484 133.5739 0.0 4133.36

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *4133 +217154 )/19540.71 ) + 59679/.11156E+10 = 29.90 bar Allowable Stress on Concrete

110.32

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2688.972 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 29.900/2688.972 )½ + 0.0000 = 24.6570 mm Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 29.900 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 2001.435 , must be less than 2688.972 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 189 Basering Calculations : Step: 17 11:09a Jan 30,2014

Wt = (Topwth

-

Bnd), Width of Section

T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 3279/( 2688 * 86.9000 ))½ + 0.0000 T = 29.0126 mm

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 1125/2688 )½ + 0.000 31.4437 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 109.9637 Allowable Buckling Str. per E2-1 1624.05 Actual Buckling Str. at Given Thickness 869.19

bar bar

Required Gusset thickness, + CA

10.3058

mm

74.4179 109.9637 1340.94 1339.31

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

24.6570 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

29.0126 31.4437 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

10.3058 15.8800

mm mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 35.772 * ( 9.530 - 0.000 ) = 34.09 N/mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 190 Basering Calculations : Step: 17 11:09a Jan 30,2014 Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 34/[( 0.4 * 2493 ) * 2 * 0.707] = 0.242 mm

Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 345048.8/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 561.914 N/mm Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 345048.8 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 320.389 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 561.91² + 320.39²)½ = 646.835 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 646.84/[( 0.4 * 2493 ) * 2 * 0.707] = 4.587 mm Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 345048.8/( 2 * 125.000 ) = 1380.195 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 345048.8 * 65.00/( 2 * 253.150 * 125.000 ) = 354.385 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1380.20² + 354.39²)½ = 1424.966 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1424.97/[( 0.4 * 2493 ) * 2 * 0.707] = 10.106 mm

Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness.

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-TRANSPORTATION CASE (LOAD CASE -WET TOW) Page 191 Basering Calculations : Step: 17 11:09a Jan 30,2014

Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size Required Gusset to Top Plate Double Fillet Weld Size

4.7625 6.3500 10.1056 10.1056

mm mm mm mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION E:

STORM CASE This analysis is intent to check stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, wind & earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 193 Input Echo : Step: 1 9:32a May 7,2014

PV Elite Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) Design Internal Temperature Type of Hydrotest Hydrotest Position Projection of Nozzle from Vessel Top Projection of Nozzle from Vessel Bottom Minimum Design Metal Temperature Type of Construction Special Service Degree of Radiography Miscellaneous Weight Percent Use Higher Longitudinal Stresses (Flag) Select t for Internal Pressure (Flag) Select t for External Pressure (Flag) Select t for Axial Stress (Flag) Select Location for Stiff. Rings (Flag) Consider Vortex Shedding Perform a Corroded Hydrotest Is this a Heat Exchanger User Defined Hydro. Press. (Used if > 0) User defined MAWP User defined MAPnc Load Load Load Load Load Load Load Load Load Load

Case Case Case Case Case Case Case Case Case Case

1 2 3 4 5 6 7 8 9 10

Wind Design Code Wind Profile Height mm 19663.9980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Damping Factor (Beta) for Wind (Ope) Damping Factor (Beta) for Wind (Empty) Damping Factor (Beta) for Wind (Filled)

16.000 60 User Defined Hydro Horizontal 0.0000 150.00 0 Welded None RT-1 5.0 Y N N N N N N No 25.481 0.0000 0.0000

NP+OW+WI+EQ+FS+FW+BW NP+OW+EQ+WI+FW+FS+BS IP+OW+WI+EQ+FS+FW+BW IP+OW+EQ+WI+FW+FS+BS EP+OW+WI+EQ+FS+FW+BW EP+OW+EQ+WI+FW+FS+BS IP+VO+OW NP+VO+OW FW+FS+BW+BS+IP+OW FS+FW+BW+BS+EP+OW User Defined Pressure

KN/m² 2.3940 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000

bar C

mm mm C

bar bar bar

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 194 Input Echo : Step: 1 9:32a May 7,2014 Seismic Design Code Seismic Importance Factor G Loading Coefficient Gx G Loading Coefficient Gz G Loading Coefficient Gy Percent Seismic for Hydrotest

G Loading 1.000 0.115 0.115 0.052 100.000

Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9

Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Skirt Outside Diameter Diameter of Skirt at Base Skirt Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Temperature Internal Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress, Ambient Allowable Stress, Operating Allowable Stress, Hydrotest Material Density P Number Thickness Yield Stress, Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Efficiency, Longitudinal Seam Efficiency, Head-to-Skirt or Circ. Seam

10 20 Skirt Sup. SKIRT 850.00 mm 2468.0 mm 2468.0 mm 9.5300 mm 0.0000 mm 9.5300 mm 0.0000 mm 60 C 60 C 1.2 SA-516 70 1379.0 bar 1379.0 bar 2358.0 bar 7750.4 kg/m³ 31.750 mm 2493.2 bar B CS-2 K02700 Plate 0.7 0.7

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 195 Input Echo : Step: 1 9:32a May 7,2014

-------------------------------------------------------------------Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Inside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Elliptical Head Factor

20 30 Elliptical BOTTOM HEAD 50.000 mm 2430.0 mm 18.000 mm 3.0000 mm 22.200 mm 0.0000 mm 16.000 bar 60 C 1.0342 bar 60 C 1.2 SA-516 70 1.0 1.0 2.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

20 Liquid SEA WATER -607.50 657.50 1014.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm kg/m³

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node Element To Node

30 40

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 196 Input Echo : Step: 1 9:32a May 7,2014

Element Type Description Distance "FROM" to "TO" Inside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

Cylinder SHELL 1730.0 2430.0 19.050 3.0000 19.050 0.0000 16.000 60 1.0342 60 1.2 SA-516 70 1.0 1.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 40.0364 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 44.965 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 49.950001 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 50.029999 1.0140001

mm mm mm mm mm mm bar C bar C

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 197 Input Echo : Step: 1 9:32a May 7,2014

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

Element From Node

30

mm mm

N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 198 Input Echo : Step: 1 9:32a May 7,2014

Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight ANODES 1258.0 784.48 0.0000

mm N mm

-------------------------------------------------------------------Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Inside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name [Normalized] Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Elliptical Head Factor

40 50 Elliptical TOP HEAD 50.000 mm 2430.0 mm 18.000 mm 3.0000 mm 22.200 mm 0.0000 mm 16.000 bar 60 C 1.0342 bar 60 C 1.2 SA-516 70 1.0 1.0 2.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter

40 Nozzle M1 535.00 762.0

mm mm

N

mm mm

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 199 Input Echo : Step: 1 9:32a May 7,2014

Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 200 Wind Load Calculation : Step: 8 9:32a May 7,2014

Note: Using the User Defined Wind Profile ...

Wind Vibration Calculations This evaluation is based on work by Kanti Mahajan and Ed Zorilla

Nomenclature Cf D Df Dr f f1 L Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 217566/( 2680.00 * 2436.000² ) = 0.13681E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations ID

Wind Area Elevation Pressure Force Cf cm² mm KN/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 201 Wind Load Calculation : Step: 8 9:32a May 7,2014

ID

Wind Area Elevation Pressure Force cm² mm KN/m² N ------------------------------------------------------------------------INT.PLATE 0.00 20564.00 2.39 0.00 DIST. & HEADE 0.00 21429.00 2.39 0.00 ANODES 0.00 21822.00 2.39 0.00 The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz. Wind Load Calculation | | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | KN/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 2.39400 | 6026.42 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 2.39400 | 354.208 | 30| 40| 21429.0 | 2961.72 | 51237.8 | 2.39400 | 12266.0 | 40| 50| 22582.6 | 2959.20 | 16017.2 | 2.39400 | 3834.42 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 202 Earthquake Load Calculation : Step: 9 9:32a May 7,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.115 0.115 0.052

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz.

Earthquake Load Calculation | | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 2138.92 | 2138.92 | 20| 30| 875.000 | 39440.2 | 6414.35 | 3001.75 | 30| 40| 1765.00 | 147987. | 24067.8 | 19868.4 | 40| 50| 2655.00 | 23784.1 | 3868.11 | 3868.11 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 203 Stress due to Combined Loads : Step: 15 9:32a May 7,2014

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key

IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes:

Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.33 -51.87 1010.47 20 1654.80 -23.60 1165.68 30 1654.80 -20.41 1186.02 40 1654.80 -2.83 1165.68 Analysis of Load Case 2 : NP+OW+EQ+WI+FW+FS+BS

Tens. Ratio

Comp. Ratio 0.0513 0.0202 0.0172 0.0024

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 204 Stress due to Combined Loads : Step: 15 9:32a May 7,2014 From Node 10 20 30 40

Tensile Stress

All. Tens. Stress 1158.33 1654.80 1654.80 1654.80

Comp. Stress -51.87 -23.60 -20.41 -2.83

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 3 : IP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.33 -51.87 1010.47 20 638.96 1654.80 1165.68 30 597.97 1654.80 1186.02 40 645.32 1654.80 1165.68 Analysis of Load Case 4 : IP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.33 -51.87 1010.47 20 638.96 1654.80 1165.68 30 597.97 1654.80 1186.02 40 645.32 1654.80 1165.68 Analysis of Load Case 5 : EP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.33 -51.87 1010.47 20 1654.80 -66.37 1165.68 30 1654.80 -60.43 1186.02 40 1654.80 -45.59 1165.68 Analysis of Load Case 6 : EP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.33 -51.87 1010.47 20 1654.80 -66.37 1165.68 30 1654.80 -60.43 1186.02 40 1654.80 -45.59 1165.68 Analysis of Load Case 7 : IP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.33 -32.15 20 631.00 1654.80 30 591.01 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 8 : NP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.33 -32.15 20 1654.80 -17.54 30 1654.80 -14.89

All. Comp. Stress 1010.47 1165.68 1186.02

Tens. Ratio

Comp. Ratio 0.0513 0.0202 0.0172 0.0024

Tens. Ratio

Comp. Ratio 0.0513

0.3861 0.3614 0.3900

Tens. Ratio

Comp. Ratio 0.0513

0.3861 0.3614 0.3900

Tens. Ratio

Comp. Ratio 0.0513 0.0569 0.0509 0.0391

Tens. Ratio

Comp. Ratio 0.0513 0.0569 0.0509 0.0391

Tens. Ratio

Comp. Ratio 0.0318

0.3813 0.3571 0.3897

Tens. Ratio

Comp. Ratio 0.0318 0.0150 0.0126

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 205 Stress due to Combined Loads : Step: 15 9:32a May 7,2014

40

1654.80

-2.62

1165.68

Analysis of Load Case 9 : FW+FS+BW+BS+IP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.33 -30.57 20 631.95 1654.80 30 591.73 1654.80 40 645.00 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 10 : FS+FW+BW+BS+EP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.33 -30.57 20 1654.80 -59.35 30 1654.80 -54.19 40 1654.80 -45.28

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Absolute Maximum of the all of the Stress Ratio's

0.0022

Tens. Ratio

Comp. Ratio 0.0302

0.3819 0.3576 0.3898

Tens. Ratio

Comp. Ratio 0.0302 0.0509 0.0457 0.0388 0.3900

Governing Element: TOP HEAD Governing Load Case 3 : IP+OW+WI+EQ+FS+FW+BW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 206 Basering Calculations : Step: 17 9:32a May 7,2014

Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

Basering Input:

SOD STHK SCA

2468.0000 9.5300 0.0000 0.0000 SA-516 70

mm mm mm mm

Type of Geometry: Continuous Top Ring W/Gussets

Thickness of Basering Design Temperature of the Basering Basering Matl Basering Operating All. Stress Basering Yield Stress Inside Diameter of Basering Outside Diameter of Basering Nominal Diameter of Bolts Bolt Corrosion Allowance Bolt Material Bolt Operating Allowable Stress Number of Bolts Diameter of Bolt Circle

TBA

BASOPE

DI DOU

28.5800 mm 60.00 C SA-516 Gr. 70 [Normalized] 1792.60 bar 2454.50 bar 2238.0000 mm 2738.0000 mm

SA RN DC

38.1000 0.0000 SA-325 Type1 3100.02 16 2598.0000

Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG

15.8800 125.0000 125.0000 20047900.0 2454.5 221.4000 76.0000 38.0000 2

Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate External Corrosion Allowance

Dead Weight of Vessel Operating Weight of Vessel Earthquake Moment on Basering Wind Moment on Basering Percent Bolt Preload

BND BCA

mm mm bar mm mm mm mm N/cm² bar mm mm mm

TTA TOPWTH BHOLE

31.7500 125.0000 43.0000

mm mm mm

CA

0.0000

mm

DW ROW EQMOM WIMOM ppl

177558.9 224362.8 60315.3 35726.5 100.0

Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables per AISC A5.2 Bolt Operating Allowable Stress [Fact] SA All. Comp. Strength of Concrete [Fact] FC

N N N-m N-m

Yes No 1.3333 [Fact] 4133.359 bar 110.317 bar

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 207 Basering Calculations : Step: 17 9:32a May 7,2014

Note : The Concrete, Bolt and Plate Stresses have been increased by 1/3 per AISC A5.2. [Fact = 4/3] Results for Basering Analysis : Analyze Option Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3100.0 [Fact]

0.0000 8.3484 133.5739 0.0 4133.36

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *4133 +236029 )/19540.71 ) + 60315/.11156E+10 = 30.00 bar Allowable Stress on Concrete

110.32

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2688.900 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 30.003/2688.900 )½ + 0.0000 = 24.6994 mm Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 30.003 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 2008.282 , must be less than 2688.900 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 208 Basering Calculations : Step: 17 9:32a May 7,2014

Wt = (Topwth

-

Bnd), Width of Section

T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 3279/( 2688 * 86.9000 ))½ + 0.0000 T = 29.0130 mm Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress

Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 1125/2688 )½ + 0.000 31.4441 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 109.9637 Allowable Buckling Str. per E2-1 1624.05 Actual Buckling Str. at Given Thickness 869.19

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

10.3058

74.4179 109.9637 1340.94 1339.31

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

24.6994 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

29.0130 31.4441 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

10.3058 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 51.871 * ( 9.530 - 0.000 ) = 49.43 N/mm

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 209 Basering Calculations : Step: 17 9:32a May 7,2014 Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 49/[( 0.4 * 2493 ) * 2 * 0.707] = 0.351 mm Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size

Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 345048.8/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 561.914 N/mm Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 345048.8 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 320.389 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 561.91² + 320.39²)½ = 646.835 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 646.84/[( 0.4 * 2493 ) * 2 * 0.707] = 4.587 mm Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 345048.8/( 2 * 125.000 ) = 1380.195 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 345048.8 * 65.00/( 2 * 253.150 * 125.000 ) = 354.385 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1380.20² + 354.39²)½ = 1424.966 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1424.97/[( 0.4 * 2493 ) * 2 * 0.707] = 10.106 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness.

PV Elite 2012 R1 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-STORM CASE (LOAD CASE 100 YEAR) REV. – Page 210 Basering Calculations : Step: 17 9:32a May 7,2014

Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size Required Gusset to Top Plate Double Fillet Weld Size

4.7625 6.3500 10.1056 10.1056

mm mm mm mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION F:

DAMAGE CASE This analysis is intent to check stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, wind & earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 212 Input Echo : Step: 1 11:10a Jan 30,2014 PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) 16.000 Design Internal Temperature 60 Type of Hydrotest User Defined Hydro Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 Projection of Nozzle from Vessel Bottom 150.00 Minimum Design Metal Temperature 0 Type of Construction Welded Special Service None Degree of Radiography RT-1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 25.481 User defined MAWP 0.0000 User defined MAPnc 0.0000 (Load Case applicable for Damage case is as below) Load Case 1 NP+OW+WI+EQ+FS+FW+BW Load Case 2 NP+OW+EQ+WI+FW+FS+BS Load Case 3 IP+OW+WI+EQ+FS+FW+BW Load Case 4 IP+OW+EQ+WI+FW+FS+BS Load Case 5 EP+OW+WI+EQ+FS+FW+BW Load Case 6 EP+OW+EQ+WI+FW+FS+BS Load Case 7 IP+VO+OW Load Case 8 NP+VO+OW Load Case 9 FW+FS+BW+BS+IP+OW Load Case 10 FS+FW+BW+BS+EP+OW

bar C

mm mm C

bar bar bar

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 m/sec Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. mm (Vessel is located on structure skid, T.O.S EL+ 19664. Refer Dwg. No.: MLK-58863004234001-B01-39002-0042065-M-DW-001.) Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 mm Distance Upwind of Crest Lh 0.0000 mm Distance from Crest to the Vessel x 0.0000 mm Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 213 Input Echo : Step: 1 11:10a Jan 30,2014

Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for 1 year Operating is as below.) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.087 G Loading Coefficient Gz 0.087 G Loading Coefficient Gy 0.049 Percent Seismic for Hydrotest 100.000 Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9

Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 214 Input Echo : Step: 1 11:10a Jan 30,2014

-------------------------------------------------------------------Element From Node 20 Element To Node 30 Element Type Elliptical Description BOTTOM HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

20 Liquid SEA WATER -607.50 657.50 1014.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm kg/m³

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node

30

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 215 Input Echo : Step: 1 11:10a Jan 30,2014 Element To Node 40 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 40.0364 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 44.965 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 49.950001 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 50.029999 1.0140001

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 216 Input Echo : Step: 1 11:10a Jan 30,2014

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

mm mm

N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 217 Input Echo : Step: 1 11:10a Jan 30,2014 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight ANODES 1258.0 784.48 0.0000

mm N mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.0342 bar Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist

40 Nozzle M1 535.00

mm mm

N

mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 218 Input Echo : Step: 1 11:10a Jan 30,2014 Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

762.0 None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

mm

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 219 Wind Load Calculation : Step: 8 11:10a Jan 30,2014

Input Values:

Wind Design Code ASCE-7 98/02/05/IBC-03/STS-1 Basic Wind Speed [V] 43.400 Surface Roughness Category C: Open Terrain Importance Factor 1.15 Type of Surface Moderately Smooth Base Elevation 19664. Percent Wind for Hydrotest 25.0 Using User defined Wind Press. Vs Elev. N Height of Hill or Escarpment H or Hh 0.0000 Distance Upwind of Crest Lh 0.0000 Distance from Crest to the Vessel x 0.0000 Type of Terrain ( Hill, Escarpment ) Flat Damping Factor (Beta) for Wind (Ope) 0.0150 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

m/sec

mm

mm mm mm

Wind Analysis Results

Static Gust-Effect Factor, Operating Case [G]: = min(0.85, 0.925((1 + 1.7 * gQ * Izbar * Q )/( 1 + 1.7 * gV * Izbar))) = min(0.85,0.925((1+1.7*3.400*0.228*0.958)/(1+1.7*3.400*0.228))) = min(0.85, 0.903 ) = 0.850 Natural Frequency of Vessel (Operating) Natural Frequency of Vessel (Empty) Natural Frequency of Vessel (Test)

43.534 Hz 47.417 Hz 39.685 Hz

Note: Per Section 1609 of IBC 2003/06/09 these results are also applicable for the determination of Wind Loads on structures (1609.1.1). User Entered Importance Factor is Force Coefficient Structure Height to Diameter ratio Height to top of Structure

1.150 [Cf] 0.507 1.419 3305.500 mm

This is classified as a rigid structure. Static analysis performed.

Sample Calculation for the First Element The ASCE code performs all calculations in Imperial Units only. The wind pressure is therefore computed in these units. Value of [Alpha] and [Zg]: Exposure Category: C from Table C6-2 Alpha = 9.500 : Zg = 274320.000 mm Effective Height [z]: = Centroid Height + Vessel Base Elevation = 425.000 + 19663.998 = 20088.998 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 220 Wind Load Calculation : Step: 8 11:10a Jan 30,2014 = 65.909 ft. Imperial Units

Velocity Pressure coefficient evaluated at height z [Kz]: Because z (65.909 ft.) > 15 ft. = 2.01 * ( z / Zg ) ^(2 / Alpha) = 2.01 * ( 65.909/900.000 )^(2/9.500 ) = 1.159 Type of Hill: No Hill Wind Directionality Factor [Kd]: = 0.95 per [6-6 ASCE-7 98][6-4 ASCE-7 02/05] As there is No Hill Present: [Kzt]: K1 = 0, K2 = 0, K3 = 0 Topographical Factor [Kzt]: = ( 1 + K1 * K2 * K3 )² = ( 1 + 0.000 * 0.000 * 0.000 )² = 1.0000 Velocity Pressure evaluated at height z, Imperial Units [qz]: = 0.00256 * Kz * Kzt * Kd * I * Vr(mph)² = 0.00256 * 1.159 * 1.000 * 0.950 * 1.150 * 97.085² = 30.6 psf [1463.182 ] N/m² Force on the first element [F]: = qz * G * Cf * WindArea = 30.560 * 0.850 * 0.507 * 27.097 = 356.8 lbs. [1587.2 ] N Element

Hgt (z) K1 K2 K3 Kz Kzt qz mm N/m² --------------------------------------------------------------------------SKIRT 20089.0 0.000 0.000 0.000 1.159 1.000 1463.182 BOTTOM HEAD 20539.0 0.000 0.000 0.000 1.165 1.000 1470.022 SHELL 21429.0 0.000 0.000 0.000 1.175 1.000 1483.208 TOP HEAD 22582.6 0.000 0.000 0.000 1.188 1.000 1499.673

Wind Vibration Calculations This evaluation is based on work by Kanti Mahajan and Ed Zorilla Nomenclature

Cf D Df Dr f f1 L

-

Correction factor for natural frequency Average internal diameter of vessel mm Damping Factor < 0.75 Unstable, > 0.95 Stable Average internal diameter of top half of vessel mm Natural frequency of vibration (Hertz) Natural frequency of bare vessel based on a unit value of (D/L²)(10^(4)) Total height of structure mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 221 Wind Load Calculation : Step: 8 11:10a Jan 30,2014

Lc tb V30 Vc Vw W Ws Z Dl Vp P30

-

Total length of conical section(s) of vessel mm Uncorroded plate thickness at bottom of vessel mm Design Wind Speed provided by user m/sec Critical wind velocity m/sec Maximum wind speed at top of structure m/sec Total corroded weight of structure N Cor. vessel weight excl. weight of parts which do not effect stiff. N Maximum amplitude of vibration at top of vessel mm Logarithmic decrement ( taken as 0.03 for Welded Structures ) Vib. Chance, 0.393E-05 no chance. [Vp]: = W / ( L * Dr²) = 217566/( 2680.00 * 2436.000² ) = 0.13681E-04 Since Vp is > 0.393E-05 no further vibration analysis is required !

Platform Load Calculations

ID

Wind Area Elevation Pressure Force Cf cm² mm N/m² N -------------------------------------------------------------------------

Wind Loads on Masses/Equipment/Piping ID

Wind Area Elevation Pressure Force cm² mm N/m² N ------------------------------------------------------------------------INT.PLATE 0.00 20564.00 1470.39 0.00 DIST. & HEADE 0.00 21429.00 1483.21 0.00 ANODES 0.00 21822.00 1488.82 0.00 The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz. Wind Load Calculation

| | Wind | Wind | Wind | Wind | Element | From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | cm² | N/m² | N | --------------------------------------------------------------------------10| 20| 20089.0 | 2961.60 | 25173.6 | 1463.18 | 1587.23 | 20| 30| 20539.0 | 2959.20 | 1479.60 | 1470.02 | 93.7269 |

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 222 Wind Load Calculation : Step: 8 11:10a Jan 30,2014 30| 40|

40| 50|

21429.0 | 22582.6 |

2961.72 | 2959.20 |

51237.8 | 16017.2 |

1483.21 | 1499.67 |

3274.83 | 1035.09 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 223 Earthquake Load Calculation : Step: 9 11:10a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.087 0.087 0.049

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz. Earthquake Load Calculation

| | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 1618.14 | 1618.14 | 20| 30| 875.000 | 39440.2 | 4852.59 | 2270.89 | 30| 40| 1765.00 | 147987. | 18207.8 | 15030.9 | 40| 50| 2655.00 | 23784.1 | 2926.31 | 2926.31 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 224 Stress due to Combined Loads : Step: 15 11:10a Jan 30,2014

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Stress due to Internal Pressure Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes:

Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.

Analysis of Load Case 1 : NP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -20.62 1165.68 30 1654.80 -17.74 1186.02 40 1654.80 -2.68 1165.68 Analysis of Load Case 2 : NP+OW+EQ+WI+FW+FS+BS

Tens. Ratio

Comp. Ratio 0.0425 0.0177 0.0150 0.0023

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 225 Stress due to Combined Loads : Step: 15 11:10a Jan 30,2014 From Node 10 20 30 40

Tensile Stress

All. Tens. Stress 1158.36 1654.80 1654.80 1654.80

Comp. Stress -42.90 -20.62 -17.74 -2.68

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 3 : IP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 635.87 1654.80 1165.68 30 595.22 1654.80 1186.02 40 645.16 1654.80 1165.68

Analysis of Load Case 4 : IP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 635.87 1654.80 1165.68 30 595.22 1654.80 1186.02 40 645.16 1654.80 1165.68 Analysis of Load Case 5 : EP+OW+WI+EQ+FS+FW+BW From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -63.39 1165.68 30 1654.80 -57.76 1186.02 40 1654.80 -45.44 1165.68 Analysis of Load Case 6 : EP+OW+EQ+WI+FW+FS+BS From Tensile All. Tens. Comp. All. Comp. Node Stress Stress Stress Stress 10 1158.36 -42.90 1010.47 20 1654.80 -63.39 1165.68 30 1654.80 -57.76 1186.02 40 1654.80 -45.44 1165.68 Analysis of Load Case 7 : IP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -32.15 20 631.00 1654.80 30 591.01 1654.80 40 644.90 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 8 : NP+VO+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -32.15 20 1654.80 -17.54 30 1654.80 -14.89

All. Comp. Stress 1010.47 1165.68 1186.02

Tens. Ratio

Comp. Ratio 0.0425 0.0177 0.0150 0.0023

Tens. Ratio

Comp. Ratio 0.0425

0.3843 0.3597 0.3899

Tens. Ratio

Comp. Ratio 0.0425

0.3843 0.3597 0.3899

Tens. Ratio

Comp. Ratio 0.0425 0.0544 0.0487 0.0390

Tens. Ratio

Comp. Ratio 0.0425 0.0544 0.0487 0.0390

Tens. Ratio

Comp. Ratio 0.0318

0.3813 0.3571 0.3897

Tens. Ratio

Comp. Ratio 0.0318 0.0150 0.0126

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 226 Stress due to Combined Loads : Step: 15 11:10a Jan 30,2014

40

1654.80

-2.62

1165.68

Analysis of Load Case 9 : FW+FS+BW+BS+IP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -30.66 20 631.89 1654.80 30 591.69 1654.80 40 645.00 1654.80

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Analysis of Load Case 10 : FS+FW+BW+BS+EP+OW From Tensile All. Tens. Comp. Node Stress Stress Stress 10 1158.36 -30.66 20 1654.80 -59.41 30 1654.80 -54.23 40 1654.80 -45.28

All. Comp. Stress 1010.47 1165.68 1186.02 1165.68

Absolute Maximum of the all of the Stress Ratio's

0.0022

Tens. Ratio

Comp. Ratio 0.0303

0.3819 0.3576 0.3898

Tens. Ratio

Comp. Ratio 0.0303 0.0510 0.0457 0.0388 0.3899

Governing Element: TOP HEAD Governing Load Case 3 : IP+OW+WI+EQ+FS+FW+BW PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 227 Basering Calculations : Step: 17 11:10a Jan 30,2014 Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 70-YIELD [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock) Basering Operating All. Stress BASOPE 1746.70 bar (Allowable stress is amended based on Yield Stress) Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm Nominal Diameter of Bolts BND 38.1000 Bolt Corrosion Allowance BCA 0.0000 Bolt Material SA-325 Type 1-Y Bolt Operating Allowable Stress SA 3723.19 (Allowable stress is amended based on Yield Stress) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000

mm mm

Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG

mm mm mm N/cm² bar mm mm mm

Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2454.5 221.4000 76.0000 38.0000 2 31.7500 125.0000 43.0000

bar

mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 177558.9 N Operating Weight of Vessel ROW 224362.8 N Earthquake Moment on Basering EQMOM 45629.8 N-m Wind Moment on Basering WIMOM 9561.6 N-m (As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0 Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables Fact Results for Basering Analysis : Analyze Option

No No 1.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 228 Basering Calculations : Step: 17 11:10a Jan 30,2014

Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], W = TW M = Test Moment

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 0/2598.000 ) - 0 )/16 = 0.0000 N [** No Uplift ** ] Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3723.2 [Fact]

0.0000 8.3484 133.5739 0.0 3723.19

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Earthquake in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *3723 +235356 )/19540.71 ) + 45629/.11156E+10 = 27.06 bar Allowable Stress on Concrete

82.74

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2620.050 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 27.064/2620.050 )½ + 0.0000 = 23.7648 mm Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 27.064 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 1811.569 , must be less than 2620.050 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress Wt = (Topwth - Bnd), Width of Section T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 2953/( 2620 * 86.9000 ))½ + 0.0000 T = 27.8953 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 229 Basering Calculations : Step: 17 11:10a Jan 30,2014

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress

Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 1014/2620 )½ + 0.000 30.2328 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 126.9751 Allowable Buckling Str. per E2-1 1263.28 Actual Buckling Str. at Given Thickness 782.94

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

11.0677

69.2950 126.9751 1128.58 1123.36

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

23.7648 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

27.8953 30.2328 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

11.0677 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 42.901 * ( 9.530 - 0.000 ) = 40.88 N/mm Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 40/[( 0.4 * 2454 ) * 2 * 0.707] = 0.295 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 230 Basering Calculations : Step: 17 11:10a Jan 30,2014 Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 310808.4/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 506.153 N/mm Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 310808.4 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 288.595 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 506.15² + 288.60²)½ = 582.648 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 582.65/[( 0.4 * 2454 ) * 2 * 0.707] = 4.197 mm Results for Computed Minimum Gusset to Top Plate Weld Size

Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 310808.4/( 2 * 125.000 ) = 1243.234 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 310808.4 * 65.00/( 2 * 253.150 * 125.000 ) = 319.218 N/mm

Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1243.23² + 319.22²)½ = 1283.562 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1283.56/[( 0.4 * 2454 ) * 2 * 0.707] = 9.246 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness. Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size

4.7625 6.3500 9.2463

mm mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-DAMAGE CASE (LOAD CASE 1YEAR) REV ---- Page 231 Basering Calculations : Step: 17 11:10a Jan 30,2014 Required Gusset to Top Plate Double Fillet Weld Size

9.2463

mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

SECTION G:

BLAST CASE This analysis is intent to check external pressure (blast condition) and stresses on skirt and basering. Thus, calculation provided in this section is only related to that such input echo, earthquake, combines load stress and basering calculation. Full analysis / reports, shall refer to section B “Operating Case”

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 233 Input Echo : Step: 1 11:10a Jan 30,2014

PV Elite Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) 16.000 Design Internal Temperature 60 Type of Hydrotest User Defined Hydro Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 Projection of Nozzle from Vessel Bottom 150.00 Minimum Design Metal Temperature 0 Type of Construction Welded Special Service None Degree of Radiography RT-1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 25.481 User defined MAWP 0.0000 User defined MAPnc 0.0000 (Load Case applicable for Blast case is as below) Load Case 1 NP+OW+WI+EQ+FS+FW+BW Load Case 2 NP+OW+EQ+WI+FW+FS+BS Load Case 3 IP+OW+WI+EQ+FS+FW+BW Load Case 4 IP+OW+EQ+WI+FW+FS+BS Load Case 5 EP+OW+WI+EQ+FS+FW+BW Load Case 6 EP+OW+EQ+WI+FW+FS+BS Load Case 7 IP+VO+OW Load Case 8 NP+VO+OW Load Case 9 FW+FS+BW+BS+IP+OW Load Case 10 FS+FW+BW+BS+EP+OW Wind Design Code

User Defined

Wind Profile Height mm Pressure 19664.0000 (In blast condition, 0.25bar applied as wind force) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Damping Factor (Beta) for Wind (Ope) Damping Factor (Beta) for Wind (Empty) Damping Factor (Beta) for Wind (Filled)

bars 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000

bar C

mm mm C

bar bar bar

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 234 Input Echo : Step: 1 11:10a Jan 30,2014 Seismic Design Code G Loading (Skid is located at production deck, EL+ 18000 and motion load for 1 year Operating is as below.) Seismic Importance Factor 1.000 G Loading Coefficient Gx 0.087 G Loading Coefficient Gz 0.087 G Loading Coefficient Gy 0.049 Percent Seismic for Hydrotest 100.000

Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9 Material Database Year

N Y N

Current w/Addenda or Code Year

Configuration Directives: Do not use Nozzle MDMT Interpretation VIII-1 01-37 Use Table G instead of exact equation for "A" Shell Head Joints are Tapered Compute "K" in corroded condition Use Code Case 2286 Use the MAWP to compute the MDMT Using Metric Material Databases, ASME II D

No Yes Yes Yes No Yes No

Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Skirt Sup. Description SKIRT Distance "FROM" to "TO" 850.00 mm Skirt Outside Diameter 2468.0 mm Diameter of Skirt at Base 2468.0 mm Skirt Thickness 9.5300 mm (9.53mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 0.0000 mm Nominal Thickness 9.5300 mm External Corrosion Allowance 0.0000 mm Design Temperature Internal Pressure 60 C Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Allowable Stress, Ambient 1379.0 bar Allowable Stress, Operating 1379.0 bar Allowable Stress, Hydrotest 2358.0 bar Material Density 7750.4 kg/m³ P Number Thickness 29.997 mm Yield Stress, Operating 2493.2 bar UCS-66 Chart Curve Designation D External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 0.7 Efficiency, Head-to-Skirt or Circ. Seam 0.7

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 235 Input Echo : Step: 1 11:10a Jan 30,2014 -------------------------------------------------------------------Element From Node 20 Element To Node 30 Element Type Elliptical Description BOTTOM HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.2842 bar (Full Vacuum included 0.25barg Blast Pressure) Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

20 Liquid SEA WATER -607.50 657.50 1014.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

20 Nozzle N5 0.0000 50.799999 None 150 180.0 N 0.0000 GR 1.1 SA-105

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

20 Weight INT.PLATE 50.000 4961.8 0.0000

mm mm kg/m³

mm mm

N

mm N mm

-------------------------------------------------------------------Element From Node Element To Node

30 40

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 236 Input Echo : Step: 1 11:10a Jan 30,2014 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 1730.0 mm Inside Diameter 2430.0 mm Element Thickness 19.050 mm (19.05mm is a standard thickness for carbon steel available in the market) Internal Corrosion Allowance 3.0000 mm Nominal Thickness 19.050 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.2842 bar (Full Vacuum included 0.25barg Blast Pressure) Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing SAND 0.0000 127.00 1612.9 40.0364 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE GARNET 127.00 229.00 2375.6 44.965 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing FINE GARNET 356.00 483.00 2162.0 49.950001 1.0140001

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height of Packed Section Density Percent Volume Holdup Specific Gravity of Packing Liquid

30 Packing COARSE ANTHRACI 839.00 330.00 850.72 50.029999 1.0140001

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

mm mm kg/m³

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 237 Input Echo : Step: 1 11:10a Jan 30,2014 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N1 1453.0 200.0 160 150 0.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N2 277.00 200.0 160 150 144.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle N3 1493.0 150.0 160 150 21.3862 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle H1 365.00 300.0 120 150 165.0 Y 0.0000 GR 1.1 SA-106 B

Element From Node

30

mm mm

N

mm mm

N

mm mm

N

mm mm

N

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 238 Input Echo : Step: 1 11:10a Jan 30,2014 Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

Weight DIST. & HEADER 865.00 4118.5 0.0000

mm N mm

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Miscellaneous Weight Offset from Element Centerline

30 Weight ANODES 1258.0 784.48 0.0000

mm N mm

-------------------------------------------------------------------Element From Node 40 Element To Node 50 Element Type Elliptical Description TOP HEAD Distance "FROM" to "TO" 50.000 mm Inside Diameter 2430.0 mm Element Thickness 18.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 22.200 mm (22.2mm is a standard thickness for carbon steel available in the market) External Corrosion Allowance 0.0000 mm Design Internal Pressure 16.000 bar Design Temperature Internal Pressure 60 C Design External Pressure 1.2842 bar (Full Vacuum included 0.25barg Blast Pressure) Design Temperature External Pressure 60 C Effective Diameter Multiplier 1.2 Material Name [Normalized] SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

40 Nozzle N4 803.00 80.0 160 150 240.0 N 0.0000 GR 1.1 SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter

40 Nozzle M1 535.00 762.0

mm mm

N

mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 239 Input Echo : Step: 1 11:10a Jan 30,2014 Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl [Normalized]

None 150 45.0 Y 0.0000 GR 1.1 SA-516 70

N

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 240 External Pressure Calculations : Step: 4 11:10a Jan 30,2014

External Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2010, 2011a Elliptical Head From 20 to 30 Ext. Chart: CS-2 at 60 C BOTTOM HEAD

Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 15.000 2466.00 164.40 0.0008448 799.44 EMAP = B/(K0*D/t) = 799.4418/(0.9000 *164.4000 ) = 5.4031 bar

Results for Required Thickness (Tca): Tca OD D/t Factor A B 7.115 2466.00 346.60 0.0004007 400.62 EMAP = B/(K0*D/t) = 400.6210/(0.9000 *346.5959 ) = 1.2843 bar Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head. Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (2.145*2436.0000*0.997)/(2*1379.00*1.00-0.2*2.145) = 1.8883 + 3.0000 = 4.8883 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000))/1.67 = 10.190 bar Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 5.40 , 10.1901 ) = 5.403 bar

Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head. Cylindrical Shell From 30 to 40 Ext. Chart: CS-2 at 60 C SHELL Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A 16.050 2468.10 2235.00 153.78 0.9056 0.0007810

B 773.33

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 241 External Pressure Calculations : Step: 4 11:10a Jan 30,2014

EMAP = (4*B)/(3*(D/t)) = (4*773.3347 )/(3*153.7757 ) = 6.7053 bar Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B 8.304 2468.10 2235.00 297.22 0.9056 0.0002863 286.27 EMAP = (4*B)/(3*(D/t)) = (4*286.2734 )/(3*297.2169 ) = 1.2842 bar Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B 16.050 2468.10 10757.92 153.78 4.3588 0.0001483 148.22 EMAP = (4*B)/(3*(D/t)) = (4*148.2192 )/(3*153.7757 ) = 1.2852 bar

Elliptical Head From 40 to 50 Ext. Chart: CS-2 at 60 C TOP HEAD

Elastic Modulus from Chart: CS-2 at 60 C :

0.200E+08 N/cm²

Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 15.000 2466.00 164.40 0.0008448 799.44 EMAP = B/(K0*D/t) = 799.4418/(0.9000 *164.4000 ) = 5.4031 bar

Results for Required Thickness (Tca): Tca OD D/t Factor A B 7.115 2466.00 346.60 0.0004007 400.62 EMAP = B/(K0*D/t) = 400.6210/(0.9000 *346.5959 ) = 1.2843 bar Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head. Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (2.145*2436.0000*0.997)/(2*1379.00*1.00-0.2*2.145) = 1.8883 + 3.0000 = 4.8883 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*1379.00*1.00*15.0000)/(0.997*2436.0000+0.2*15.0000))/1.67 = 10.190 bar

Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 5.40 , 10.1901 ) = 5.403 bar Thickness requirements per UG-33(a)(1) do not govern the required thickness of this head. External Pressure Calculations

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 242 External Pressure Calculations : Step: 4 11:10a Jan 30,2014 | | Section | Outside | Corroded | Factor | Factor | From| To | Length | Diameter | Thickness | A | B | | | mm | mm | mm | | bar | --------------------------------------------------------------------------10| 20| 850.000 | ... | ... | No Calc | No Calc | 20| 30| No Calc | 2466.00 | 15.0000 | 0.00084482 | 799.442 | 30| 40| 2235.00 | 2468.10 | 16.0500 | 0.00078096 | 773.335 | 40| 50| No Calc | 2466.00 | 15.0000 | 0.00084482 | 799.442 | External Pressure Calculations

| | External | External | External | External | From| To | Actual T. | Required T.|Des. Press. | M.A.W.P. | | | mm | mm | bar | bar | ---------------------------------------------------------------10| 20| ... | No Calc | ... | No Calc | 20| 30| 18.0000 | 10.1149 | 1.28420 | 5.40309 | 30| 40| 19.0500 | 11.3040 | 1.28420 | 6.70530 | 40| 50| 18.0000 | 10.1149 | 1.28420 | 5.40309 | Minimum 5.403 External Pressure Calculations | | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia | From| To | Bet. Stiff.| Bet. Stiff.| Required | Available | | | mm | mm | mm**4 | mm**4 | ------------------------------------------------------------------10| 20| 850.000 | No Calc | No Calc | No Calc | 20| 30| No Calc | No Calc | No Calc | No Calc | 30| 40| 2235.00 | 10757.9 | No Calc | No Calc | 40| 50| No Calc | No Calc | No Calc | No Calc |

Elements Suitable for External Pressure. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 243 Earthquake Load Calculation : Step: 9 11:10a Jan 30,2014

Earthquake Horizontal Horizontal Vertical

Loading Specified in G's Acceleration factor Acceleration factor Acceleration factor

(GX) (GZ) (GY)

0.087 0.087 0.049

Note: +Y Direction G loads should also be run in the negative direction. to insure maximum support loads are calculated. The Natural Frequency for the Vessel (Ope...) is 43.5337 Hz.

Earthquake Load Calculation | | Earthquake | Earthquake | Element | Element | From| To | Height | Weight | Ope Load | Emp Load | | | mm | N | N | N | -------------------------------------------------------------10| 20| 425.000 | 13151.7 | 1618.14 | 1618.14 | 20| 30| 875.000 | 39440.2 | 4852.59 | 2270.89 | 30| 40| 1765.00 | 147987. | 18207.8 | 15030.9 | 40| 50| 2655.00 | 23784.1 | 2926.31 | 2926.31 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 244 Wind/Earthquake Shear, Bending : Step: 10 11:10a Jan 30,2014

The following table is for the Operating Case. Wind/Earthquake Shear, Bending | | Distance to| Cumulative |Earthquake | Wind | Earthquake | From| To | Support| Wind Shear | Shear | Bending | Bending | | | mm | N | N | N-m | N-m | --------------------------------------------------------------------------10| 20| 425.000 | 234765. | 27604.8 | 373083. | 45629.8 | 20| 30| 875.000 | 171832. | 25986.7 | 200210. | 22844.2 | 30| 40| 1765.00 | 168133. | 21134.1 | 191707. | 21665.7 | 40| 50| 2655.00 | 40042.0 | 2926.31 | 11562.3 | 844.987 |

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 245 Basering Calculations : Step: 17 11:10a Jan 30,2014 Skirt Skirt Skirt Skirt Skirt Skirt

Data : Outside Diameter at Base Thickness Internal Corrosion Allowance External Corrosion Allowance Material

SOD STHK SCA

2468.0000 mm 9.5300 mm 0.0000 mm 0.0000 mm SA-516 70 [Normalized]

Basering Input: Type of Geometry: Continuous Top Ring W/Gussets Thickness of Basering TBA 28.5800 mm Design Temperature of the Basering 60.00 C Basering Matl SA-516 70-Yield [Normalized] (proposed to use SA 516 Gr.70N instead of SA 283 Gr.C due to unavailable stock) Basering Operating All. Stress BASOPE 1746.66 bar (Allowable stress is amended based on Yield Stress) Inside Diameter of Basering DI 2238.0000 mm Outside Diameter of Basering DOU 2738.0000 mm Nominal Diameter of Bolts BND 38.1000 Bolt Corrosion Allowance BCA 0.0000 Bolt Material SA-325 Type 1-Y Bolt Operating Allowable Stress SA 3723.19 (Allowable stress is amended based on Yield Stress) Number of Bolts RN 16 Diameter of Bolt Circle DC 2598.0000

mm mm

Thickness of Gusset Plates TGA Width of Gussets at Top Plate TWDT Width of Gussets at Base Plate BWDT Gusset Plate Elastic Modulus E Gusset Plate Yield Stress SY Height of Gussets HG Distance between Gussets RG Dist. from Bolt Center to Gusset (Rg/2) CG Number of Gussets per bolt NG

mm mm mm N/cm² bar mm mm mm

Thickness of Top Plate or Ring Radial Width of the Top Plate Anchor Bolt Hole Dia. in Top Plate

TTA TOPWTH BHOLE

15.8800 125.0000 125.0000 20047900.0 2454.5 221.4000 76.0000 38.0000 2

31.7500 125.0000 43.0000

bar

mm

mm mm mm

External Corrosion Allowance CA 0.0000 mm Dead Weight of Vessel DW 177558.9 N Operating Weight of Vessel ROW 224362.8 N Earthquake Moment on Basering EQMOM 45629.8 N-m Wind Moment on Basering WIMOM 373083.3 N-m (As clarified in CRS, calculation for combined stress shall refer to subsection “Stress due combined load”) Percent Bolt Preload ppl 100.0 Use AISC A5.2 Increase in Fc and Bolt Stress Use Allowable Weld Stress per AISC J2.5 Factor for Increase of Allowables Fact

Results for Basering Analysis : Analyze Option

No No 1.0000

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 246 Basering Calculations : Step: 17 11:10a Jan 30,2014

Basering Thickness Calculation method used : Simplified (Steel on Steel) Calculation of Load per Bolt [W/Bolt], Wind + Dead Weight Condition: W = DW M = WIMOM

= (( 4 * M/DC ) - W ) / RN per Jawad & Farr, Eq. 12.3 = (( 4 * 373083/2598.000 ) - 177558 )/16 = 24789.0391 N Required Area for Each Bolt, Based on Max Load Area Available in a Single Bolt (Corr) Area Available in all the Bolts (Corr) Bolt Stress Based on Simplified Analysis Allowable Bolt Stress 3723.2 [Fact]

0.6658 8.3484 133.5739 296.9 3723.19

Concrete Contact Area of Base Ring CCA 19540.71 Concrete Contact Section Modulus of Base Ring 0.1116E+10

cm² cm² cm² bar bar cm² mm ³

Concrete Load (Simplified method), Wind in Operating Condition [Sc]: = ((ppl/100*(Abt*Sa)+W)/Cca) + M/CZ per Jawad & Farr Eq. 12.1 = (1.000 (133.5739 *3723 +224362 )/19540.71 ) + 373083/.11156E+10 = 29.94 bar Allowable Stress on Concrete

82.74

bar

Determine Maximum Bending Width of Basering Section [Rw1,Rw2]: Rw1 = (Dou - SkirtOD)/2, Rw2 = ( SkirtID - Di + 2*Sca )/2 Rw1 = (2738.000 -2468.000 )/2, Rw2 = (2448.940 -2238.000 + 2*0.000 )/2 Rw1 = 135.000 , Rw2 = 105.470 mm Calculation of required Basering Thickness, (Simplified) [Tb]: Allowable Bending Stress 1.5 Basope = 2619.990 bar = Max(Rw1,Rw2) * ( 3 * Sc / S )½ + CA per Jawad & Farr Eq. 12.12 = Max(135.0000 ,105.4700 ) * ( 3 * 29.942/2619.990 )½ + 0.0000 = 24.9968 mm Basering Stress at given Thickness [Sb] = 3 * Sc * ( Max[Rw1, Rw2]/(Tb - Ca) )² = 3 * 29.942 * ( Max[135.000 , 105.470 ]/(28.580 - 0.000 ) )² = 2004.207 , must be less than 2619.990 bar

Required Thickness of Top Plate in Tension: (Calculated as a fixed beam per Megyesy) Ft = (Sa*Abss), Bolt Allowable Stress * Area Rm = (Ft * 2 * Cg)/8, Bending Moment Sb Allowable Bending Stress Wt = (Topwth - Bnd), Width of Section T = ( 6 * Rm / ( Sb * Wt ))½ + CA T = ( 6 * 2953/( 2619 * 86.9000 ))½ + 0.0000 T = 27.8956 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 247 Basering Calculations : Step: 17 11:10a Jan 30,2014

Required Thickness of Continuous Top Ring per Moss: a = ( Dc-SkirtOD )/2 Skirt Distance to Bolt Circle P = Sa*Abss Bolt Allowable Stress * Area l = Avgwdt Average Gusset Width g1 = Gamma 1 Constant Term f( b/l ) g2 = Gamma 2 Constant Term f( b/l ) g = Flat distance / 2 Nut 1/2 Dimension (from Tema) Fb = Allowable Bending Stress Mo Tc Tc Tc

= = = =

P/(4pi)[1.3(ln((2lsin(pia/l)/(pig)))+1]-[(0.7-g2)P/(4pi)] Moment Term ( 6 * Abs(Mo) / Fb )½ + CA Required Thickness ( 6 * 1014/2619 )½ + 0.000 30.2331 mm

Required Thickness of Gusset in Compression, per AISC E2-1: 1. Allowed Compression at Given Thickness: Factor Kl/r Per E2-1 48.2959 Factor Cc Per E2-1 126.9751 Allowable Buckling Str. per E2-1 1263.28 Actual Buckling Str. at Given Thickness 782.94

bar bar

Required Gusset thickness, + CA

mm

2. Allowed Compression at Calculated Thickness: Factor Kl/r Per E2-1 Factor Cc Per E2-1 Allowable Buckling Str. per E2-1 Act. Buckling Str. at Calculated Thickness

11.0677

69.2950 126.9751 1128.58 1123.36

bar bar

Summary of Basering Thickness Calculations: Required Basering Thickness (simplified) Actual Basering Thickness as entered by user

24.9968 28.5800

mm mm

Required Top Ring/Plate Thickness as a Fixed Beam Required Thickness of Continuous Top Ring (Moss) Actual Top Ring Thickness as entered by user

27.8956 30.2331 31.7500

mm mm mm

Required Gusset thickness, + CA Actual Gusset Thickness as entered by user

11.0677 15.8800

mm mm

Weld Size Calculations per Steel Plate Engineering Data - Vol. 2 Compute the Weld load at the Skirt/Base Junction [W] = SkirtStress * ( SkirtThickness - CA ) = 123.538 * ( 9.530 - 0.000 ) = 117.73 N/mm Results for Computed Minimum Basering Weld Size [BWeld] = W / [( 0.4 * Yield ) * 2 * 0.707] = 117/[( 0.4 * 2454 ) * 2 * 0.707] = 0.848 mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 248 Basering Calculations : Step: 17 11:10a Jan 30,2014 Results for Computed Minimum Gusset and Top Plate to Skirt Weld Size Vertical Plate Load [Wv] = Bolt Load / ( Cmwth + 2 * ( Hg + Tta ) ) = 310808.4/( 107.760 + 2 * ( 221.400 + 31.750 ) ) = 506.153 N/mm Horizontal Plate Load [Wh] = Bolt Load * e / ( Cmwth * (Hg+Tta) + 0.6667 * (Hg+Tta)² ) = 310808.4 * 65.000/(107.760 * (253.150 ) + 0.6667 * (253.150 )² ) = 288.595 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 506.15² + 288.60²)½ = 582.648 N/mm Results for Computed Min Gusset and Top Plate to Skirt Weld Size [GsWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 582.65/[( 0.4 * 2454 ) * 2 * 0.707] = 4.197 mm

Results for Computed Minimum Gusset to Top Plate Weld Size Weld Load [Wv] = Bolt Load / ( 2 * TopWth ) = 310808.4/( 2 * 125.000 ) = 1243.234 N/mm Weld Load [Wh] = Bolt Load * e / ( 2 * Hgt * TopWth ) = 310808.4 * 65.00/( 2 * 253.150 * 125.000 ) = 319.218 N/mm Resultant Weld Load [Wr] = ( Wv² + Wh²)½ = ( 1243.23² + 319.22²)½ = 1283.562 N/mm Results for Computed Min Gusset to Top Plate Weld Size [GtpWeld] = Wr / [( 0.4 * Yield ) * 2 * 0.707] = 1283.56/[( 0.4 * 2454 ) * 2 * 0.707] = 9.246 mm Note: The calculated weld sizes need not exceed the component thickness framing into the weld. At the same time, the weld must meet a minimum size specification which is 3/16 in. (4.76 mm) or 1/4 in. (6.35 mm), depending on the component thickness. Summary of Required Weld Sizes: Required Basering to Skirt Double Fillet Weld Size Required Gusset to Skirt Double Fillet Weld Size Required Top Plate to Skirt Weld Size

4.7625 6.3500 9.2463

mm mm mm

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-BLAST CASE (LOAD CASE 1YEAR) REV ----- Page 249 Basering Calculations : Step: 17 11:10a Jan 30,2014 Required Gusset to Top Plate Double Fillet Weld Size

9.2463

mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

ATTACHMENT 1:

WRC 297 CALCULATION

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 251 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014

Input Echo, WRC297 Item

1,

Description: N1,N2

Diameter Basis for Cylindrical Shell Shell Corrosion Allowance Shell Diameter Shell Thickness Shell Stress Concentration Factor

Vbasis Cas Dv Tv Scfn

ID 3.0000 2340.000 23.0100 1.000

mm mm mm

Diameter Basis for Nozzle Nozzle Corrosion Allowance Nozzle Diameter Nozzle Thickness Nozzle Stress Concentration Factor

Nbasis Can Dn Tn Scfv

OD 3.0000 219.100 15.0900 1.000

mm mm mm

Dpad Tpad

350.000 19.0500

mm mm

Diameter of Reinforcing Pad Thickness of Reinforcing Pad

Note: External Forces and Moments in WRC 107 Convention: This loads are assumed to be SUStained loads.

Design Internal Pressure Radial Load Circumferential Shear Longitudinal Shear Circumferential Moment Longitudinal Moment Torsional Moment

Dp P Vc Vl Mc Ml Mt

16.00 -22100.00 16600.00 22100.00 8800.00 11500.00 13200.00

Include Axial Pressure Thrust Include Pressure Stress Indices per Div. 2

No No

Warning - The ratio, Dn/Tn (14.520) is < 20 check the limitations of WRC bulletin 297. Stress Computations at the Edge of the Nozzle: WRC 297 Curve Access Parameters:

Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

= = = = = = = [(d/D)* (D/T)^(1/2)] =

Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc

= = = = = =

0.122 0.122 0.128 0.237 0.174 0.148

(D) (d) (T) (t)

2385.060 219.100 39.060 12.090 3.231 18.122 0.718

mm mm mm mm

bar N N N N-m N-m N-m

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 252 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014

M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = =

0.216 0.124 0.155 0.136 0.191 0.190

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 34 34 34 34 Outplane Bending (P ) 111 -111 111 -111 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -65 -65 65 65 Outplane Bending (ML) -393 393 393 -393 Normal Pressure Stress 472 488 472 488 ----------------------- -------- -------- -------- -------Outplane Stress Summary 159 739 1076 83 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 17 17 17 17 Inplane Bending (P ) 105 -105 105 -105 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -46 -46 46 46 Inplane Bending (ML) -320 320 320 -320 Inplane Pressure Stress 236 236 236 236 ----------------------- -------- -------- -------- -------Inplane Stress Summary -7 421 726 -125 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 12 12 -12 -12 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 44 44 44 44 ----------------------- -------- -------- -------- -------Shear Stress Summary 57 57 32 32

Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Au Al Top Top Outside Inside -----------(bar

Bu Bl Bottom Bottom Outside Inside )------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 253 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 Two * Max Shear Stress

201

749

1079

219

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 34 34 34 34 Outplane Bending (P ) 111 -111 111 -111 Outplane Membrane (Mc) -32 -32 32 32 Outplane Bending (Mc) -341 341 341 -341 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 236 236 236 236 ----------------------- -------- -------- -------- -------Outplane Stress Summary 7 468 755 -149

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 17 17 17 17 Inplane Bending (P ) 105 -105 105 -105 Inplane Membrane (Mc) -38 -38 38 38 Inplane Bending (Mc) -275 275 275 -275 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 472 488 472 488 ----------------------- -------- -------- -------- -------Inplane Stress Summary 282 636 909 164 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -16 -16 16 16 Torsional Shear (Mt) 44 44 44 44 ----------------------- -------- -------- -------- -------Shear Stress Summary 28 28 61 61 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Nozzle Stresses LONGITUDINAL PLANE (Stresses in the

Cu Cl Left Left Outside Inside -----------(bar 284 641

Au Top

Al Top

Du Dl Right Right Outside Inside )-----------931 336

Bu Bottom

Bl Bottom

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 254 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 hoop direction)

Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 34 34 34 34 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) 0 0 0 0 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) -65 -65 65 65 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 145 164 145 164 ----------------------- -------- -------- -------- -------Hoop Stress Summary 114 133 245 264 Nozzle Stresses LONGITUDINAL PLANE (Stresses Normal to pipe cross-section)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Axial Membrane (P ) 28 28 28 28 Axial Bending (P ) 549 -549 549 -549 Axial Membrane (Mc) 0 0 0 0 Axial Bending (Mc) 0 0 0 0 Axial Membrane (ML) -297 -297 297 297 Axial Bending (ML) -1880 1880 1880 -1880 Axial Pressure Stress 72 72 72 72 ----------------------- -------- -------- -------- -------Axial Stress Summary -1527 1133 2829 -2031 Nozzle Stresses LONGITUDINAL PLANE (Shear stress)

Au Al Bu Bl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 39 39 -39 -39 Shear due to (Vl) 0 0 0 0 Shear due to Torsion 144 144 144 144 ----------------------- -------- -------- -------- -------Shear Stress Summary 184 184 104 104 Nozzle Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses in the hoop direction) Hoop Hoop Hoop Hoop Hoop

Membrane Bending Membrane Bending Membrane

(P ) (P ) (Mc) (Mc) (ML)

Au Al Outside Inside -----------(bar 1683 1166

Bu Bl Outside Inside )-----------2833 2305

Cu Cl Left Left Outside Inside -----------(bar 34 34 0 0 -32 -32 0 0 0 0

Du Dl Right Right Outside Inside )-----------34 34 0 0 32 32 0 0 0 0

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 255 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014

Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 145 164 145 164 ----------------------- -------- -------- -------- -------Hoop Stress Summary 147 166 212 231 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to pipe cross-section)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Axial Membrane (P ) 28 28 28 28 Axial Bending (P ) 549 -549 549 -549 Axial Membrane (Mc) -228 -228 228 228 Axial Bending (Mc) -1654 1654 1654 -1654 Axial Membrane (ML) 0 0 0 0 Axial Bending (ML) 0 0 0 0 Axial Pressure Stress 72 72 72 72 ----------------------- -------- -------- -------- -------Axial Stress Summary -1232 977 2533 -1875

Nozzle Stresses CIRCUMFERENTIAL PLANE (Shear stress)

Cu Cl Du Dl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 0 0 0 0 Shear due to (Vl) -53 -53 53 53 Shear due to Torsion 144 144 144 144 ----------------------- -------- -------- -------- -------Shear Stress Summary 91 91 197 197 Nozzle Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Cu Cl Outside Inside -----------(bar 1391 987

Du Dl Outside Inside )-----------2550 2144

Stress Computations at the Edge of the Reinforcing Pad: WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

(D) (d) (T) (t)

= = = = = = = [(d/D)* (D/T)^(1/2)] =

2366.010 350.000 20.010 77.540 0.258 10.000 1.609

mm mm mm mm

Note: Re-pad thickness is added to nozzle thickness to simulate the Re-pad. Nr/P Mr/P

= =

0.080 0.169

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 256 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = =

0.049 0.094 0.297 0.087 0.092 0.067 0.134 0.091 0.042 0.114

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 51 51 51 51 Outplane Bending (P ) 162 -162 162 -162 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -93 -93 93 93 Outplane Bending (ML) -205 205 205 -205 Normal Pressure Stress 929 945 929 945 ----------------------- -------- -------- -------- -------Outplane Stress Summary 844 947 1443 722 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 43 43 43 43 Inplane Bending (P ) 558 -558 558 -558 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -74 -74 74 74 Inplane Bending (ML) -661 661 661 -661 Inplane Pressure Stress 464 464 464 464 ----------------------- -------- -------- -------- -------Inplane Stress Summary 331 537 1802 -635 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 15 15 -15 -15 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 34 34 34 34 ----------------------- -------- -------- -------- -------Shear Stress Summary 49 49 19 19

Vessel Stresses

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 257 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress

Au Al Top Top Outside Inside -----------(bar 849 953

Bu Bl Bottom Bottom Outside Inside )-----------1803 1359

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 51 51 51 51 Outplane Bending (P ) 162 -162 162 -162 Outplane Membrane (Mc) -42 -42 42 42 Outplane Bending (Mc) -344 344 344 -344 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 464 464 464 464 ----------------------- -------- -------- -------- -------Outplane Stress Summary 292 657 1066 51 Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 43 43 43 43 Inplane Bending (P ) 558 -558 558 -558 Inplane Membrane (Mc) -54 -54 54 54 Inplane Bending (Mc) -1117 1117 1117 -1117 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 929 945 929 945 ----------------------- -------- -------- -------- -------Inplane Stress Summary 360 1494 2703 -630 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -20 -20 20 20 Torsional Shear (Mt) 34 34 34 34 ----------------------- -------- -------- -------- -------Shear Stress Summary 14 14 54 54 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Left Left Outside Inside -----------(bar 363 1494

Du Dl Right Right Outside Inside )-----------2705 690

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 258 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014

WRC 297 Stress Summations per ASME Sec. VIII Div. 2:

Vessel Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 472 488 472 488 472 488 472 488 Circ. Pl (SUS) | -31 -31 99 99 -21 -21 55 55 Circ. Q (SUS) | -282 282 504 -504 -170 170 380 -380 -----------------------------------------------------------------------Long. Pm (SUS) | 236 236 236 236 236 236 236 236 Long. Pl (SUS) | -29 -29 63 63 2 2 66 66 Long. Q (SUS) | -215 215 425 -425 -230 230 452 -452 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 12 12 -12 -12 -16 -16 16 16 Shear Q (SUS) | 44 44 44 44 44 44 44 44 -----------------------------------------------------------------------Pm (SUS) | 472.0 488.0 472.0 488.0 472.0 488.0 472.0 488.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 441.6 457.6 571.5 587.5 452.2 468.1 528.1 544.1 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 201 748 1077 218 283 641 927 335 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 488.00 1378.95 | Passed Pm+Pl (SUS) | 587.50 2068.43 | Passed Pm+Pl+Q (TOTAL)| 1077.89 4136.86 | Passed -----------------------------------------------------------------------WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 929 945 929 945 929 945 929 945 Circ. Pl (SUS) | -42 -42 144 144 -11 -11 97 97 Circ. Q (SUS) | -43 43 367 -367 -559 559 1675 -1675 -----------------------------------------------------------------------Long. Pm (SUS) | 464 464 464 464 464 464 464 464

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 259 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 Long. Pl (SUS) | -31 -31 117 117 9 9 93 93 Long. Q (SUS) | -103 103 1219 -1219 -182 182 506 -506 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 15 15 -15 -15 -20 -20 20 20 Shear Q (SUS) | 34 34 34 34 34 34 34 34 -----------------------------------------------------------------------Pm (SUS) | 929.0 945.0 929.0 945.0 929.0 945.0 929.0 945.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 887 903 1073 1089 918 934 1026 1042 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 848 951 1801 1360 361 1493 2702 692 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 945.00 1378.95 | Passed Pm+Pl (SUS) | 1089.44 2068.43 | Passed Pm+Pl+Q (TOTAL)| 2702.78 4136.86 | Passed ------------------------------------------------------------------------

WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Nozzle Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 145 164 145 164 145 164 145 164 Circ. Pl (SUS) | -31 -31 99 99 2 2 66 66 Circ. Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Long. Pm (SUS) | 72 72 72 72 72 72 72 72 Long. Pl (SUS) | -269 -269 325 325 -200 -200 256 256 Long. Q (SUS) | -1331 1331 2429 -2429 -1105 1105 2203 -2203 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 39 39 -39 -39 -53 -53 53 53 Shear Q (SUS) | 144 144 144 144 144 144 144 144 -----------------------------------------------------------------------Pm (SUS) | 145.0 164.0 145.0 164.0 145.0 164.0 145.0 164.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 320.6 339.1 406.4 407.5 294.7 312.5 348.4 351.2 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1682 1166 2830 2304 1391 987 2547 2141 -----------------------------------------------------------------------------------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 260 WRC297 Analysis : N1,N2 Item: 1 11:10a Jan 30,2014 Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 164.00 1179.00 | Passed Pm+Pl (SUS) | 407.52 1768.51 | Passed Pm+Pl+Q (TOTAL)| 2830.26 3537.01 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 261 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

Input Echo, WRC297 Item

2,

Description: N3

Diameter Basis for Cylindrical Shell Shell Corrosion Allowance Shell Diameter Shell Thickness Shell Stress Concentration Factor

Vbasis Cas Dv Tv Scfn

ID 3.0000 2430.000 19.0500 1.000

mm mm mm

Diameter Basis for Nozzle Nozzle Corrosion Allowance Nozzle Diameter Nozzle Thickness Nozzle Stress Concentration Factor

Nbasis Can Dn Tn Scfv

OD 3.0000 168.300 18.2600 1.000

mm mm mm

Dpad Tpad

270.000 19.0500

mm mm

Diameter of Reinforcing Pad Thickness of Reinforcing Pad

Note: External Forces and Moments in WRC 107 Convention: This loads are assumed to be SUStained loads. Design Internal Pressure Radial Load Circumferential Shear Longitudinal Shear Circumferential Moment Longitudinal Moment Torsional Moment

Dp P Vc Vl Mc Ml Mt

16.00 -16900.00 12700.00 16900.00 5100.00 6600.00 7600.00

Include Axial Pressure Thrust Include Pressure Stress Indices per Div. 2

No No

Warning - The ratio, Dn/Tn (9.217) is < 20 check the limitations of WRC bulletin 297. Stress Computations at the Edge of the Nozzle:

WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

= = = = = = = [(d/D)* (D/T)^(1/2)] =

Nr/P Mr/P M0/P N0/P MrD/Mc NrDL/Mc

= = = = = =

0.183 0.169 0.120 0.172 0.213 0.190

(D) (d) (T) (t)

2471.100 168.300 35.100 15.260 2.300 11.029 0.571

mm mm mm mm

bar N N N N-m N-m N-m

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 262 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = =

0.182 0.124 0.195 0.178 0.165 0.050

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 23 23 23 23 Outplane Bending (P ) 98 -98 98 -98 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -15 -15 15 15 Outplane Bending (ML) -314 314 314 -314 Normal Pressure Stress 547 563 547 563 ----------------------- -------- -------- -------- -------Outplane Stress Summary 339 786 1000 189 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 25 25 25 25 Inplane Bending (P ) 139 -139 139 -139 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -56 -56 56 56 Inplane Bending (ML) -371 371 371 -371 Inplane Pressure Stress 273 273 273 273 ----------------------- -------- -------- -------- -------Inplane Stress Summary 10 474 865 -155 Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 13 13 -13 -13 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 48 48 48 48 ----------------------- -------- -------- -------- -------Shear Stress Summary 62 62 34 34

Vessel Stresses LONGITUDINAL PLANE (Stress Intensities

Au Al Top Top Outside Inside -----------(bar

Bu Bl Bottom Bottom Outside Inside )------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 263 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014 Two * Max Shear Stress

351

798

1008

351

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 23 23 23 23 Outplane Bending (P ) 98 -98 98 -98 Outplane Membrane (Mc) -30 -30 30 30 Outplane Bending (Mc) -269 269 269 -269 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 273 273 273 273 ----------------------- -------- -------- -------- -------Outplane Stress Summary 96 437 695 -40 Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 25 25 25 25 Inplane Bending (P ) 139 -139 139 -139 Inplane Membrane (Mc) -46 -46 46 46 Inplane Bending (Mc) -314 314 314 -314 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 547 563 547 563 ----------------------- -------- -------- -------- -------Inplane Stress Summary 350 717 1073 180

Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -18 -18 18 18 Torsional Shear (Mt) 48 48 48 48 ----------------------- -------- -------- -------- -------Shear Stress Summary 30 30 66 66 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Nozzle Stresses LONGITUDINAL PLANE (Stresses in the

Cu Cl Left Left Outside Inside -----------(bar 353 720

Au Top

Al Top

Du Dl Right Right Outside Inside )-----------1084 258

Bu Bottom

Bl Bottom

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 264 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014 hoop direction)

Outside Inside Outside Inside -----------(bar )-----------Hoop Membrane (P ) 23 23 23 23 Hoop Bending (P ) 0 0 0 0 Hoop Membrane (Mc) 0 0 0 0 Hoop Bending (Mc) 0 0 0 0 Hoop Membrane (ML) -15 -15 15 15 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 77 97 77 97 ----------------------- -------- -------- -------- -------Hoop Stress Summary 85 104 117 136 Nozzle Stresses LONGITUDINAL PLANE (Stresses Normal to pipe cross-section)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Axial Membrane (P ) 23 23 23 23 Axial Bending (P ) 339 -339 339 -339 Axial Membrane (Mc) 0 0 0 0 Axial Bending (Mc) 0 0 0 0 Axial Membrane (ML) -255 -255 255 255 Axial Bending (ML) -1066 1066 1066 -1066 Axial Pressure Stress 38 38 38 38 ----------------------- -------- -------- -------- -------Axial Stress Summary -921 533 1723 -1087 Nozzle Stresses LONGITUDINAL PLANE (Shear stress)

Au Al Bu Bl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 31 31 -31 -31 Shear due to (Vl) 0 0 0 0 Shear due to Torsion 111 111 111 111 ----------------------- -------- -------- -------- -------Shear Stress Summary 143 143 80 80 Nozzle Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses in the hoop direction) Hoop Hoop Hoop Hoop Hoop

Membrane Bending Membrane Bending Membrane

(P ) (P ) (Mc) (Mc) (ML)

Au Al Outside Inside -----------(bar 1047 577

Bu Bl Outside Inside )-----------1727 1235

Cu Cl Left Left Outside Inside -----------(bar 23 23 0 0 -30 -30 0 0 0 0

Du Dl Right Right Outside Inside )-----------23 23 0 0 30 30 0 0 0 0

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 265 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014 Hoop Bending (ML) 0 0 0 0 Hoop Pressure Stress 77 97 77 97 ----------------------- -------- -------- -------- -------Hoop Stress Summary 71 90 132 151

Nozzle Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to pipe cross-section)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Axial Membrane (P ) 23 23 23 23 Axial Bending (P ) 339 -339 339 -339 Axial Membrane (Mc) -197 -197 197 197 Axial Bending (Mc) -925 925 925 -925 Axial Membrane (ML) 0 0 0 0 Axial Bending (ML) 0 0 0 0 Axial Pressure Stress 38 38 38 38 ----------------------- -------- -------- -------- -------Axial Stress Summary -722 450 1524 -1004

Nozzle Stresses CIRCUMFERENTIAL PLANE (Shear stress)

Cu Cl Du Dl Outside Inside Outside Inside -----------(bar )-----------Shear due to (Vc) 0 0 0 0 Shear due to (Vl) -41 -41 41 41 Shear due to Torsion 111 111 111 111 ----------------------- -------- -------- -------- -------Shear Stress Summary 69 69 153 153

Nozzle Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Cu Cl Outside Inside -----------(bar 805 463

Du Dl Outside Inside )-----------1540 1195

Stress Computations at the Edge of the Reinforcing Pad: WRC 297 Curve Access Parameters: Vessel Nozzle Vessel Nozzle T / t d / t Lambda

Mean Diameter Outside Diameter Thickness used Thickness used

(D) (d) (T) (t)

= = = = = = = [(d/D)* (D/T)^(1/2)] =

2452.050 270.000 16.050 66.110 0.243 10.000 1.361

mm mm mm mm

Note: Re-pad thickness is added to nozzle thickness to simulate the Re-pad. Nr/P Mr/P

= =

0.089 0.188

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 266 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014 M0/P N0/P MrD/Mc NrDL/Mc M0d/Mc N0DL/Mc MrD/Ml NrDL/Ml M0D/Ml N0DL/Ml

= = = = = = = = = =

0.055 0.102 0.303 0.081 0.093 0.060 0.155 0.095 0.048 0.115

Vessel Stresses LONGITUDINAL PLANE (Stresses Normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 66 66 66 66 Outplane Bending (P ) 215 -215 215 -215 Outplane Membrane (Mc) 0 0 0 0 Outplane Bending (Mc) 0 0 0 0 Outplane Membrane (ML) -109 -109 109 109 Outplane Bending (ML) -273 273 273 -273 Normal Pressure Stress 1206 1222 1206 1222 ----------------------- -------- -------- -------- -------Outplane Stress Summary 1105 1237 1870 910 Vessel Stresses LONGITUDINAL PLANE (Stresses parallel to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 58 58 58 58 Inplane Bending (P ) 740 -740 740 -740 Inplane Membrane (Mc) 0 0 0 0 Inplane Bending (Mc) 0 0 0 0 Inplane Membrane (ML) -89 -89 89 89 Inplane Bending (ML) -882 882 882 -882 Inplane Pressure Stress 603 603 603 603 ----------------------- -------- -------- -------- -------Inplane Stress Summary 429 713 2374 -871

Vessel Stresses LONGITUDINAL PLANE (Shear stress normal to longitudinal plane)

Au Al Bu Bl Top Top Bottom Bottom Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 18 18 -18 -18 Outplane Shear (Vl) 0 0 0 0 Outplane Shear (Mt) 41 41 41 41 ----------------------- -------- -------- -------- -------Shear Stress Summary 59 59 22 22

Vessel Stresses

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 267 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress

Au Al Top Top Outside Inside -----------(bar 1110 1244

Bu Bl Bottom Bottom Outside Inside )-----------2375 1782

Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses Normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Membrane (P ) 66 66 66 66 Outplane Bending (P ) 215 -215 215 -215 Outplane Membrane (Mc) -43 -43 43 43 Outplane Bending (Mc) -409 409 409 -409 Outplane Membrane (ML) 0 0 0 0 Outplane Bending (ML) 0 0 0 0 Normal Pressure Stress 603 603 603 603 ----------------------- -------- -------- -------- -------Outplane Stress Summary 431 819 1337 89 Vessel Stresses CIRCUMFERENTIAL PLANE (Stresses parallel to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Inplane Membrane (P ) 58 58 58 58 Inplane Bending (P ) 740 -740 740 -740 Inplane Membrane (Mc) -59 -59 59 59 Inplane Bending (Mc) -1334 1334 1334 -1334 Inplane Membrane (ML) 0 0 0 0 Inplane Bending (ML) 0 0 0 0 Inplane Pressure Stress 1206 1222 1206 1222 ----------------------- -------- -------- -------- -------Inplane Stress Summary 610 1815 3399 -734 Vessel Stresses CIRCUMFERENTIAL PLANE (Shear stress normal to circumferential plane)

Cu Cl Du Dl Left Left Right Right Outside Inside Outside Inside -----------(bar )-----------Outplane Shear (Vc) 0 0 0 0 Outplane Shear (Vl) -24 -24 24 24 Torsional Shear (Mt) 41 41 41 41 ----------------------- -------- -------- -------- -------Shear Stress Summary 16 16 66 66 Vessel Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

Cu Cl Left Left Outside Inside -----------(bar 612 1815

Du Dl Right Right Outside Inside )-----------3401 834

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 268 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Vessel Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 547 563 547 563 547 563 547 563 Circ. Pl (SUS) | 8 8 38 38 -21 -21 71 71 Circ. Q (SUS) | -216 216 412 -412 -175 175 453 -453 -----------------------------------------------------------------------Long. Pm (SUS) | 273 273 273 273 273 273 273 273 Long. Pl (SUS) | -31 -31 81 81 -7 -7 53 53 Long. Q (SUS) | -232 232 510 -510 -171 171 367 -367 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 13 13 -13 -13 -18 -18 18 18 Shear Q (SUS) | 48 48 48 48 48 48 48 48 -----------------------------------------------------------------------Pm (SUS) | 547.0 563.0 547.0 563.0 547.0 563.0 547.0 563.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 555.5 571.5 585.7 601.7 527.2 543.2 619.1 635.0 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 350 798 1005 352 354 720 1082 258 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 563.00 1378.95 | Passed Pm+Pl (SUS) | 635.05 2068.43 | Passed Pm+Pl+Q (TOTAL)| 1082.19 4136.86 | Passed -----------------------------------------------------------------------WRC 297 Stress Summations per ASME Sec. VIII Div. 2: Vessel Stress Summation at Reinforcing Pad Edge -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 1206 1222 1206 1222 1206 1222 1206 1222 Circ. Pl (SUS) | -43 -43 175 175 -1 -1 117 117 Circ. Q (SUS) | -58 58 488 -488 -594 594 2074 -2074 -----------------------------------------------------------------------Long. Pm (SUS) | 603 603 603 603 603 603 603 603

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 269 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

Long. Pl (SUS) | -31 -31 147 147 23 23 109 109 Long. Q (SUS) | -142 142 1622 -1622 -194 194 624 -624 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 18 18 -18 -18 -24 -24 24 24 Shear Q (SUS) | 41 41 41 41 41 41 41 41 -----------------------------------------------------------------------Pm (SUS) | 1206 1222 1206 1222 1206 1222 1206 1222 -----------------------------------------------------------------------Pm+Pl (SUS) | 1163 1179 1381 1397 1205 1221 1323 1339 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1110 1243 2373 1781 612 1815 3399 833 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1222.00 1378.95 | Passed Pm+Pl (SUS) | 1397.50 2068.43 | Passed Pm+Pl+Q (TOTAL)| 3399.05 4136.86 | Passed ------------------------------------------------------------------------

WRC 297 Stress Summations per ASME Sec. VIII Div. 2:

Nozzle Stress Summation at Vessel-Nozzle Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 77 97 77 97 77 97 77 97 Circ. Pl (SUS) | 8 8 38 38 -7 -7 53 53 Circ. Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Long. Pm (SUS) | 38 38 38 38 38 38 38 38 Long. Pl (SUS) | -232 -232 278 278 -174 -174 220 220 Long. Q (SUS) | -727 727 1405 -1405 -586 586 1264 -1264 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 31 31 -31 -31 -41 -41 41 41 Shear Q (SUS) | 111 111 111 111 111 111 111 111 -----------------------------------------------------------------------Pm (SUS) | 77.0 97.0 77.0 97.0 77.0 97.0 77.0 97.0 -----------------------------------------------------------------------Pm+Pl (SUS) | 285.8 305.4 320.7 321.2 221.7 240.4 270.0 271.8 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1045 575 1724 1234 804 463 1538 1195 -----------------------------------------------------------------------------------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 270 WRC297 Analysis : N3 Item: 2 11:10a Jan 30,2014

Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 97.00 1179.00 | Passed Pm+Pl (SUS) | 321.16 1768.51 | Passed Pm+Pl+Q (TOTAL)| 1724.98 3537.01 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 271 Vessel Results Summary Item: 1 11:10a Jan 30,2014

WRC297 Stress Computations at the Edge of the Nozzle : N1,N2 ----------------------------------------------------

VESSEL Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress VESSEL Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress NOZZLE Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress NOZZLE Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Top Top Outside Inside -----------(bar 201 749

Bu Bl Bottom Bottom Outside Inside )-----------1079 219

Cu Cl Left Left Outside Inside -----------(bar 284 641

Du Dl Right Right Outside Inside )-----------931 336

Au Al Outside Inside -----------(bar 1683 1166

Bu Bl Outside Inside )-----------2833 2305

Cu Cl Outside Inside -----------(bar 1391 987

Du Dl Outside Inside )-----------2550 2144

WRC297 Stress Computations at the Edge of the Reinforcing Pad : N1,N2 --------------------------------------------------------------VESSEL Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress

VESSEL Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress

NOZZLE Stresses LONGITUDINAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Top Top Outside Inside -----------(bar 849 953

Bu Bl Bottom Bottom Outside Inside )-----------1803 1359

Cu Cl Left Left Outside Inside -----------(bar 363 1494

Du Dl Right Right Outside Inside )-----------2705 690

Au Al Outside Inside -----------(bar 34 28

Bu Bl Outside Inside )-----------162 197

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 272 Vessel Results Summary Item: 1 11:10a Jan 30,2014 NOZZLE Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Cu Cl Outside Inside -----------(bar 73 46

Du Dl Outside Inside )-----------134 189

WRC297 Stress Computations at the Edge of the Nozzle : N3 ---------------------------------------------------VESSEL Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress VESSEL Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress NOZZLE Stresses LONGITUDINAL PLANE (Stress Intensities Two * Max Shear Stress

NOZZLE Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Top Top Outside Inside -----------(bar 351 798

Bu Bl Bottom Bottom Outside Inside )-----------1008 351

Cu Cl Left Left Outside Inside -----------(bar 353 720

Du Dl Right Right Outside Inside )-----------1084 258

Au Al Outside Inside -----------(bar 1047 577

Bu Bl Outside Inside )-----------1727 1235

Cu Cl Outside Inside -----------(bar 805 463

Du Dl Outside Inside )-----------1540 1195

WRC297 Stress Computations at the Edge of the Reinforcing Pad : N3 --------------------------------------------------------------VESSEL Stresses LONGITUDINAL PLANE (Stress Intensities

Two * Max Shear Stress VESSEL Stresses CIRCUMFERENTIAL PLANE (Stress Intensities

Two * Max Shear Stress NOZZLE Stresses

Au Al Top Top Outside Inside -----------(bar 1110 1244

Bu Bl Bottom Bottom Outside Inside )-----------2375 1782

Cu Cl Left Left Outside Inside -----------(bar 612 1815

Du Dl Right Right Outside Inside )-----------3401 834

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : WRC 297 S-6504ABCD-------------------------------- Page 273 Vessel Results Summary Item: 1 11:10a Jan 30,2014

LONGITUDINAL PLANE (Stress Intensities Two * Max Shear Stress

NOZZLE Stresses CIRCUMFERENTIAL PLANE (Stress Intensities Two * Max Shear Stress

Au Al Outside Inside -----------(bar 43 32

Bu Bl Outside Inside )-----------190 231

Cu Cl Outside Inside -----------(bar 89 55

Du Dl Outside Inside )-----------150 208

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

ATTACHMENT 2:

PACKED SUPPORT CALCULATION

Page 275

Summary Stress Analysis Title Subject Internal Support Company MSETec Corporation Sdn. Bhd Project Project M2-234 Physical Material Mass Area Volume Center of Gravity Diameter of Plate Thickness of Plate Stand Support Size

SA 240 UNS S32750 64.773 kg 10987400 mm^2 64773000 mm^3 x=0 mm y=0 mm z=-31.3162 mm 2430 mm 12 mm 75 mm x 75 mm x 12 mm

Page 276

Input Data General objective and settings: Design Objective Simulation Type Last Modification Date Detect and Eliminate Rigid Body Modes Separate Stresses Across Contact Surfaces Motion Loads Analysis

Single Point Static Analysis 10/29/2013, 1:41 PM No No No

Advanced settings: Avg. Element Size (fraction of model diameter) Min. Element Size (fraction of avg. size) Grading Factor Max. Turn Angle Create Curved Mesh Elements Ignore Small Geometry Use part based measure for Assembly mesh

0.1 0.2 1.5 60 deg Yes No Yes

Material(s) Name

SA 240 UNS S32750 Mass Density General Yield Strength Ultimate Tensile Strength Young's Modulus Stress Poisson's Ratio Shear Modulus Expansion Coefficient Stress Thermal Thermal Conductivity Specific Heat Part Name(s) Internal Support.ipt

7.75037 g/cm^3 551.2 MPa 799.24 MPa 194.298 GPa 0.29 ul 75.3093 GPa 0.000000000111 ul/c 14.2 W/( m K ) 475 J/( kg c )

Page 277

Operating conditions Pressure:1 Load Type Pressure Magnitude 0.032 MPa Selected Face(s)

Page 278

Fixed Constraint:1 Constraint Type Fixed Constraint Selected Face(s)

Results Result Summary Name Volume Mass Von Mises Stress 1st Principal Stress 3rd Principal Stress

Minimum Maximum 64764000 mm^3 501.945 kg 0.325597 MPa 153.325 MPa -82.0166 MPa 79.0486 MPa -212.14 MPa 35.9879 MPa

Maximum

PASSED PASSED PASSED

Displacement Safety Factor

0 mm 3.59498 ul

2.01265 mm PASSED 15 ul PASSED Page 279

Figures Von Mises Stress

Page 280 1st Principal Stress

Page 281 3rd Principal Stress

Page 282 Displacement

Page 283 Safety Factor

APPENDIXES:

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 285

LIFTING & TAILING LUG CALC(VERTICAL VESSEL) ( Ref: Compress & Pressure Vessel Handbook by Dennis Moss).

1.0 LIFTING LUG CALCULATION

Figure 1: Lifting Lug Detail

1.1 Geometry Inputs Lifting Lug Material Length of Lifting Lug, L Width of Lifting Lug, B Thickness of Lifting Lug, t Pin Hole Diameter, d Lug Diameter at Pin, D Weld Size, tw Weld Length, b1 Weld Length, d2 Collar Thickness, tc Collar Diameter, Dc Width of Pad, Bp Length of Pad, Lp Pad Thickness, tp Pad Weld Size, twp Weld Length, L3 Length to Brace Plate, L1

: = = = = = = = = = = = = = = = =

SA 516 Gr. 70N 331 mm 180 mm 32 mm 50 mm 180 mm 18 mm 65 mm 75 mm 6.35 mm 125 mm 280 mm 465 mm 19.05 mm 13 mm 100 mm 105 mm

= =

5.00 cm 18.00 cm

=

10.50 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 286

Vessel Empty Weight Load Factor Design Lift Weight, W Dist. from C.O.G to Lifting Lug,l1 Dist. from C.O.G to Tailing Lug,l2 Dist. from Vessel C.L to Tailing Lug,l3

= = = = = =

Yield Stress at amb Temp.,Sy Allow.Tensile Stress, σt.allow =0.6Sy Allow. Shear Stress, σs.allow = 0.4Sy Allow. Bearing Stress, σp.allow =0.9Sy Allow. Bending Stress, σbt.allow =0.66Sy Allow. Bending Stress, σbz.allow =0.75Sy Allow. Weld Shear Stress,τallow.

= = = = = = =

8489 2 16978 1068 1427 1409

kg kg mm mm mm

kg/cm2 kg/cm2 kg/cm2 kg/cm2 kg/cm2 2 1827.75 kg/cm 2 1476.400 kg/cm 2437 1462.2 974.8 2193.3 1608.42

In-Plane Out of Plane

1.2 Lift Forces Lift force on lifting & tailing lug during rotational lift (0o ≤ α ≥90o) 2*Ftop Ftail

= =

[W* ((l2*cosα) +(l3*sinα))] / [((l1*cosα) + (l2*cosα) + (l3*sinα))] W - (2*Ftop)

FT FL

Figure 2: Lifting & Tailing Force-Loading Diagram

= =

Ftop cos θ Ftop sin θ

MSET ENGINEERING CORPORATION SDN BHD

θo 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 287

θ(rad)

Ftop (kgf)

Ftail (kgf)

FT(top) (kgf)

FL(top) (kgf)

0 0.0873 0.1745 0.2618

4855 5026 5184 5333 5475

7268 6925 6609 6312 6028

5613 5749 5885 6024 6167 6317 6478 6652 6846 7065 7320 7624 8002 8489

5753 5481 5208 4931 4645 4344 4023 3674 3287 2848 2339 1729 975

4855 5007 5106 5151 5145 5087 4979 4821 4614 4361 4060 3715 3326 2893 2416 1894 1324 697

0 7268

0 5151

0 438 900 1380 1872 2372 2874 3375 3872 4361 4839 5306 5761 6204 6639 7070 7509 7971 8489

FTrans/Lateral (kgf) 1767 1829 1887 1941 1993 2043 2092 2142 2192 2244 2299 2358 2421 2492 2571 2664 2775 2912 3090

8489

3090

0.3491 0.4363 0.5236 0.6109 0.6981 0.7854 0.8727 0.9599 1.0472 1.1345 1.2217 1.3090 1.3963 1.4835

1.5708 Max Force (kgf)

8489

Table 1: Lifting Load at Various Lift Angle, θ Max. Lifting Load (vertical), Fv Max. Lifting Load (Trans./lateral), Ft Max. Tailing Load, FT

= = =

1.3 Lifting Lug Stress Calculation 1.3.1 Lug Pin Diameter based on Shear Stress. Pin Hole Required Diameter, dreqd : = Pin Hole Required Dia.

less than

Pin Hole Area (on 2 Lifting Lug), A Shear Stress Required, σs.reqd

Shear Stress Required

less than

8489 kgf

kgf

3090 7268 kgf

(2*Fv /(π*σs))0.5 1.922 cm

Geometry Input, So Pin Hole Dia. is

: =

2*((π/4)*d2)

: =

Fv /A

3926.991

216.171

mm2

19.22 mm

=

Sufficient

=

2 39.27 cm

kg/cm2

Allowable Shear Stress, Stress on Hole is

Sufficient

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 288

1.3.2 Lug Thickness based on Tensile Stress. Lifting Lug Thickness Required, treqd : = Thickness Required are

less than

Tensile Stress Required, σt.reqd

less than

: =

D*t

: =

Fv /A

Lifting Lug Thickness Required, Treqd

less than

: =

: =

less than

Bearing Stress Required, σb.reqd

less than

147.378 kg/cm

2 57.60 cm

=

2

Sufficient

t + (2*tc) 45 mm Fv /(d*σp) 1.742 cm

=

17.42 mm Sufficient

max(0, 0.5*(Treqd -t)) 0.00 mm Geometry Input, Thickness used is

Bearing Area, Abearing

Bearing Stress Required

2

Sufficient

Geometry Input, Thickness used is

Collar Required Thickness, tc reqd

Collar Thick. Required

5760 mm

3.23 mm

=

Allowable Tensile Stress, Stress on Lug is

1.3.3 Lug Thickness based on Bearing Stress. Lifting Lug Thickness (Including Collar Plate) T : =

Thickness Required are

0.323 cm

Geometry Input, Thickness used is

Lifting Lug Area, A

Tensile Stress Required

Fv /(D*σt)

: =

(d*(t+2tc))

: =

Fv /Abearing

2235.00 mm

2

379.821 kg/cm

=

Sufficient

2 22.35 cm

2

Allowable Bearing Stress, Stress on Lug is

Sufficient

1.3.4 Lug Thickness based on Shear Stress. ( Ref: Pressure Vessel Design Manual Handbook by Dennis Moss pg 417).

Net Section at top of Lug(2 lugs), An

: =

2[t(D-d/2)] + [2t c (Dc-d/2)] 2 5112.50 mm

=

2 51.13 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 289

Shear Stress at top of lug, σs

Shear Stress Required

: = less than

1.3.5 Unity Check, Combined Stresses Unity Check, U

Since Unity Check is

less than

FT(top)/An 100.755 kg/cm

2

Allowable Shear Stress, Stress on Lug is

: =

Sufficient

(σs.reqd /σs.allow) + (σt.reqd /σt.allow) + (σb.reqd /σb.allow) 0.496

1, therefore lifting lug size is

Sufficient

1.4 Out of Plane Bending In addition as the lifting lugs are alligned with the sling, take a minimum load of 5% of total applied load.Note that this out of plane stress is combined with the in-plane bending stress and tensile stress. Out of Plane Load, Fz

In Plane (transverse) Moment, Mt

Out of Plane Moment, Mz

1.4.1 Bending Moment (In-Plane) Section Modulus of Lug, Zt

Bending Stress (in-plane), σbt.reqd

1.4.2 Bending Moment (Out of Plane) Section Modulus of Lug, Zz

Bending Stress (in-plane), σbz.reqd

1.4.3 Unity Check, Combined Stresses Unity Check, U

Since Unity Check is

less than

: =

5% x Fv

: =

Ft x L1

: =

Fz x L1

: =

B*t2 /6

: =

Mt/Zt

: =

B2*t /6

: =

Mz/Zz

: =

(σt.reqd /σt.allow) + (σbt.reqd /σbt.allow) + (σbz.reqd /σbz.allow)

424 kgf

32442 kgfcm

4457 kgfcm

30720.00 mm

3

1056 kg/cm

172800.00 mm

3 30.72 cm

=

3 172.80 cm

2

3

26 kg/cm

=

2

0.771

1, therefore lug is

Sufficient

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 290

1.4.4 Von-Mises Check Criteria Equivalent Stress, σe

Allow. Eqv. Stress, σe.allow (0.66 Sy) Since Equivalent Stress

less than

:

{Sqrt[(σt.reqd - σbt.reqd)2 +(σbt.reqd - σbz.reqd)2 + (σbz.reqd - σt.reqd)2]}/2 2

=

690 kg/cm

=

1608 kg/cm2

Allow. Equivalent Stress, therefore lug is

Sufficient

1.4.5 Max Lift. Angle from Vertical Section Modulus of Lug, Z

: =

B*t2 /6 30720.00 mm

3

=

3 30.72 cm

By using bending stress equivalent, max lift angle (from vertical) be determine as below: Bending Stress, σb : M/Z = Fsin θ*L1 /Z , Where F = 0.5W/cosθ ,Where sinθ/cosθ = tanθ σb = 0.5W(sinθ/cosθ)*L1/Z Max. lift cable angle from Vertical, θ = arctan((σb*Z)/(0.5WL1)) = =

0.65 rad 37.09 deg

1.4.6 Transverse / Lateral force due to max. lift. angle Ftop Ø Resultant force, Fs Transverse / Lateral force, Ft

= = : = : =

8489 kgf

20 deg Ftop /cosØ 9034 kgf

Fs *sinØ 3090 kgf

=

0.35 rad

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 291

1.5 Weld Stress Calculation

Figure 3: Lifting Lug Weld Area. Maximum weld shear stress occurs at lift angle,α = From Interpolation table 1, lift force,Fr =

11.00 deg 5214.01 kgf

=

0.1920

rad

Lifting Lug Weld Area, Aweld

: = =

A1 + A2 + A3 + A4(Brace Plate) 0.707*tw[(d1+b1)+(2d2+b2)+(d3+b3) + L1] 2 2 8081.01 mm = 80.81 cm

Max. weld Shear Stress, τt

: =

Fr cosα/ A weld

: =

Fr sinα/ A weld

Max. weld Shear Stress, τs

2 63.34 kgcm

2 12.31 kgcm

1.5.1 Torsional Shear: Weld Centrod: Weld Areas, Ai : 0.707 *tw*Li 2 Location Area(mm ) A1 1272.60 A2 827.19 A3 954.45 A4 636.30 A5 954.45 A6 827.19 A7 1272.60 A8 2290.68 (Weld at Brace Plate) ∑Ai (mm2)

9035.46

Table 2: Weld Torsion Area

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 292

Weld Centroid Location: x1 = 0.00 x2 = 32.50 x3 = 75.00 x4 = 90.00 x5 = 115.00 x6 = 147.50 x7 = 180.00 x8 = 90.00 Xbar

: =

mm mm mm mm mm mm mm mm

∑(Ai*Xi)/∑Ai 91.06 mm

Radius to Centroid Locations, ri r1 = 109.01 r2 = 124.56 r3 = 74.19 r4 = 34.95 r5 = 76.29 r6 = 123.58 r7 = 107.25 r8 = 216.07 Polar Moment Area, Ji J1 = 1060500.00 J2 = 291239.81 J3 = 447398.44 J4 = 132562.50 J5 = 447398.44 J6 = 291239.81 J7 = 1060500.00 J8 = 6184836.00

y1 y2 y3 y4 y5 y6 y7 y8

= = = = = = = =

Ybar

: =

50.00 0.00 37.50 75.00 37.50 0.00 50.00 326.00 ∑(Ai*Yi)/∑Ai

109.94 mm

:

sqrt((Xbar -xi)2 +(Ybar-yi)2)

:

0.707 *tw*(Li3)/12

: =

∑(Ji + Ai*ri2)

: =

sqrt(Xbar2 +((L3+L-L1)- Ybar)2)

mm mm mm mm mm mm mm mm

4

mm mm4 mm4 mm4 mm4 mm4 mm4 mm4

Parrallel axis theorem, J

Radial distance from centroid to weld: r

mm mm mm mm mm mm mm mm

4 183670560 mm

234.47 mm

(Location at Brace)

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 293

θr

Weld Shear Stress Reqd.

: = =

arctan(((L3+L-L1)-Ybar)/Xbar)

τ2

: = = =

M*r/J (Fr*cosα*(L+L3-Ybar))*r/J 2 2.10 kg/mm2 209.77 kg/cm

τtotal

: =

sqrt[(τt +τ2sinθr)2 + (τs + τ2cosθr)2] 2 273.24 kg/cm

less than

1.17 rad 67.15 deg

Allow. Weld Shear Stress. So, Stress is

Sufficient

1.5.2 Collar Weld Stress: Collar Weld Area, Aweld

Collar Weld Stress, τc

Collar Weld Shear Stress Required Sufficient

: =

2πDc*0.707tw

: =

Fv/Aweld

2 9994.98 mm

less than

1.4.3 Pad Weld Stress:

Figure 4: Pad Weld Area.

=

2 99.95 cm

2 84.93 kg/cm

Allow. Weld Shear Stress. So, Stress is

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 0

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 294

Direct Shear: Pad Weld Area, Aweld

Max. weld Shear Stress, τt

Max. weld Shear Stress, τs

: =

0.707twp * (2Lp +Bp)

: =

Fr cosα/ A weld

: =

Fr sinα/ A weld

:

0.707 *twp*Li

2 11121.11 mm

=

2 46.02 kgcm

2 8.95 kgcm

1.5.4 Torsional Shear: Weld Centrod: Weld Areas, Ai Location Area(mm2) A1 4273.82 A2 2573.48 A3 4273.82 ∑Ai (mm2)

11121.11

Table 3: Weld Torsion Area

Weld Centroid Location: x1 = 0.00 x2 = 140.00 x3 = 280.00 Xbarp

: =

mm mm mm

∑(Ai*Xi)/∑Ai 140.00 mm

y1 y2 y3

= = =

Ybarp

: =

232.50 0.00 232.50

∑(Ai*Yi)/∑Ai 178.70 mm

:

sqrt((Xbar -xi)2 +(Ybar-yi)2)

Polar Moment Area, Ji J1 = 77008804.03 mm4 J2 = 16813402.67 mm4 J3 = 77008804.03 mm4

:

0.707 *twp*(Li3)/12

Parrallel axis theorem, J

: =

∑(Ji + Ai*ri2)

Radius to Centroid Locations, ri r1 = 149.98 r2 = 178.70 r3 = 149.98

mm mm mm

mm mm mm

445285873 mm4

2 111.21 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 295

Radial distance from centroid to weld: : =

sqrt(Xbarp2 +((Lp- Ybarp)2)

: = =

arctan(((Lp)-Ybar)/Xbar)

τ2

: = = =

M*rp/Jp (Fr*cosα*(L+Lp-Ybarp))*rp/Jp 2 2.26 kg/mm 2 226.13 kg/cm

τtotal

: =

sqrt[(τt +τ2sinθr)2 + (τs + τ2cosθr)2] 2 271.68 kg/cm

r

θr

Weld Shear Stress Reqd.

318.70 mm

1.12 rad 63.94 deg

higher than Allow. Weld Shear Stress. So, Stress is

Sufficient

1.6.Convert Attachment Parameters ( Ref: Pressure Vessel Design Manual Handbook by Dennis Moss, Procedure 5-3 pg 267~269).

Attachment Length, b Attachment Height, h One-half circumferential width, C1 One-half longitudinal width, C2

Width of Cleat, 2C1 Length of Cleat, 2C2

: = : = : = : = = =

B

180 mm L-L1

226 mm 0.25b

45.0 mm 0.4h

90 mm 90 mm 181 mm

Note: Above parameter will be insert in PV-elite data for calculation of local stres analysis (WRC 107)

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-LIFTING ATTACHMENT--------------------- Page 296 WRC Clip Analysis: : LIFTING ATTACH Step: 18 11:10a Jan 30,2014

Input Echo, WRC107 Item

1,

Description: LIFTING ATTACH:

Diameter Basis for Vessel Cylindrical or Spherical Vessel Internal Corrosion Allowance Vessel Diameter Vessel Thickness

Design Vessel Vessel Vessel

Vbasis Cylsph Cas Dv Tv

Temperature Material Cold S.I. Allowable Hot S.I. Allowable

Smc Smh

ID Cylindrical 3.0000 mm 2430.000 mm 19.050 mm 60.00 SA-516 70 1379.00 1379.00

C bar bar

Attachment Type Parameter C11 Parameter C22

Type C11 C22

Thickness of Reinforcing Pad Pad Parameter C11P Pad Parameter C22P

Tpad C11p C22p

19.050 280.000 465.000

Dp

17.017 No

bar

-30302.7 -83249.2 0.0 0.0 0.0 0.0

N N N N-m N-m N-m

Design Internal Pressure Include Pressure Thrust

External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P Longitudinal Shear (SUS) Vl Circumferential Shear (SUS) Vc Circumferential Moment (SUS) Mc Longitudinal Moment (SUS) Ml Torsional Moment (SUS) Mt

Use Interactive Control WRC107 Version

Version

Include Pressure Stress Indices per Div. 2 Compute Pressure Stress per WRC-368

Gamma =

No March

mm mm mm

1979 No No

WRC 107 Stress Calculation for SUStained loads: Radial Load P Circumferential Shear VC Longitudinal Shear VL Circumferential Moment MC Longitudinal Moment ML Torsional Moment MT Dimensionless Parameters used :

Rectangular 90.00 mm 181.00 mm

-30302.7 0.0 -83249.2 0.0 0.0 0.0

N N N N-m N-m N-m

35.20

Dimensionless Loads for Cylindrical Shells at Attachment Junction: ------------------------------------------------------------------Curves read for 1979 Beta Figure Value Location

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-LIFTING ATTACHMENT--------------------- Page 297 WRC Clip Analysis: : LIFTING ATTACH Step: 18 11:10a Jan 30,2014 ------------------------------------------------------------------N(PHI) / ( P/Rm ) 0.068 4C 6.464 (A,B) N(PHI) / ( P/Rm ) 0.068 3C 6.172 (C,D) M(PHI) / ( P ) 0.047 2C1 0.156 (A,B) M(PHI) / ( P ) 0.047 1C 0.199 (C,D) N(PHI) / ( MC/(Rm**2 * Beta) ) 0.046 3A 0.408 (A,B,C,D) M(PHI) / ( MC/(Rm * Beta) ) 0.050 1A 0.104 (A,B,C,D) N(PHI) / ( ML/(Rm**2 * Beta) ) 0.058 3B 1.990 (A,B,C,D) M(PHI) / ( ML/(Rm * Beta) ) 0.054 1B 0.057 (A,B,C,D) N(x) N(x) M(x) M(x) N(x) M(x) N(x) M(x)

/ / / / / / / /

( ( ( ( ( ( ( (

P/Rm ) P/Rm ) P ) P ) MC/(Rm**2 MC/(Rm ML/(Rm**2 ML/(Rm

* * * *

Beta) Beta) Beta) Beta)

) ) ) )

0.059 0.059 0.060 0.060 0.046 0.061 0.058 0.064

Stress Concentration Factors Kn = 1.00,

3C 4C 1C1 2C 4A 2A 4B 2B

6.418 6.546 0.181 0.138 0.503 0.061 0.555 0.091

(A,B) (C,D) (A,B) (C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Kb = 1.00

Stresses in the Vessel at the Attachment Junction -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Memb. P | 45 45 45 45 43 43 43 43 Circ. Bend. P | 230 -230 230 -230 294 -294 294 -294 Circ. Memb. MC | 0 0 0 0 0 0 0 0 Circ. Bend. MC | 0 0 0 0 0 0 0 0 Circ. Memb. ML | 0 0 0 0 0 0 0 0 Circ. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Circ. Str.| 276.0 -185.7 276.0 -185.7 337.5 -251.2 337.5 -251.2 -----------------------------------------------------------------------Long. Memb. P | 44 44 44 44 45 45 45 45 Long. Bend. P | 266 -266 266 -266 203 -203 203 -203 Long. Memb. MC | 0 0 0 0 0 0 0 0 Long. Bend. MC | 0 0 0 0 0 0 0 0 Long. Memb. ML | 0 0 0 0 0 0 0 0 Long. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Long. Str.| 311.5 -221.8 311.5 -221.8 249.3 -157.8 249.3 -157.8 -----------------------------------------------------------------------Shear VC | 0 0 0 0 0 0 0 0 Shear VL | 0 0 0 0 65 65 -65 -65 Shear MT | 0 0 0 0 0 0 0 0 | Tot. Shear| 0.0 0.0 0.0 0.0 65.5 65.5 -65.5 -65.5 ------------------------------------------------------------------------

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-LIFTING ATTACHMENT--------------------- Page 298 WRC Clip Analysis: : LIFTING ATTACH Step: 18 11:10a Jan 30,2014 Str. Int. | 311.48 221.79 311.48 221.79 372.35 284.96 372.35 284.96 -----------------------------------------------------------------------Dimensionless Parameters used : Gamma = 76.39 Dimensionless Loads for Cylindrical Shells at Pad edge: ------------------------------------------------------------------Curves read for 1979 Beta Figure Value Location ------------------------------------------------------------------N(PHI) / ( P/Rm ) 0.185 4C 9.529 (A,B) N(PHI) / ( P/Rm ) 0.185 3C 5.221 (C,D) M(PHI) / ( P ) 0.138 2C1 0.040 (A,B) M(PHI) / ( P ) 0.138 1C ! 0.073 (C,D) N(PHI) / ( MC/(Rm**2 * Beta) ) 0.135 3A 3.009 (A,B,C,D) M(PHI) / ( MC/(Rm * Beta) ) 0.144 1A 0.075 (A,B,C,D) N(PHI) / ( ML/(Rm**2 * Beta) ) 0.160 3B 7.484 (A,B,C,D) M(PHI) / ( ML/(Rm * Beta) ) 0.151 1B 0.024 (A,B,C,D) N(x) N(x) M(x) M(x) N(x) M(x) N(x) M(x)

/ / / / / / / /

( ( ( ( ( ( ( (

P/Rm ) P/Rm ) P ) P ) MC/(Rm**2 MC/(Rm ML/(Rm**2 ML/(Rm

* * * *

Beta) Beta) Beta) Beta)

) ) ) )

0.163 0.163 0.167 0.167 0.135 0.171 0.160 0.171

3C 4C 1C1 2C ! 4A 2A 4B 2B

6.141 10.167 0.061 0.036 5.456 0.032 3.074 0.025

(A,B) (C,D) (A,B) (C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D) (A,B,C,D)

Note - The ! mark next to the figure name denotes curve value exceeded.

Stress Concentration Factors Kn = 1.00,

Kb = 1.00

Stresses in the Vessel at the Edge of Reinforcing Pad -----------------------------------------------------------------------| Stress Values at Type of | (bar ) ---------------|-------------------------------------------------------Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Memb. P | 146 146 146 146 80 80 80 80 Circ. Bend. P | 283 -283 283 -283 516 -516 516 -516 Circ. Memb. MC | 0 0 0 0 0 0 0 0 Circ. Bend. MC | 0 0 0 0 0 0 0 0 Circ. Memb. ML | 0 0 0 0 0 0 0 0 Circ. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Circ. Str.| 430.5 -137.0 430.5 -137.0 596.9 -436.1 596.9 -436.1 -----------------------------------------------------------------------Long. Memb. P | 94 94 94 94 156 156 156 156 Long. Bend. P | 431 -431 431 -431 252 -252 252 -252 Long. Memb. MC | 0 0 0 0 0 0 0 0 Long. Bend. MC | 0 0 0 0 0 0 0 0 Long. Memb. ML | 0 0 0 0 0 0 0 0

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-LIFTING ATTACHMENT--------------------- Page 299 WRC Clip Analysis: : LIFTING ATTACH Step: 18 11:10a Jan 30,2014

Long. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Long. Str.| 525.8 -336.6 525.8 -336.6 409.4 -96.2 409.4 -96.2 -----------------------------------------------------------------------Shear VC | 0 0 0 0 0 0 0 0 Shear VL | 0 0 0 0 55 55 -55 -55 Shear MT | 0 0 0 0 0 0 0 0 | Tot. Shear| 0.0 0.0 0.0 0.0 55.8 55.8 -55.8 -55.8 -----------------------------------------------------------------------Str. Int. | 525.76 336.60 525.76 336.60 612.24 445.01 612.24 445.01 -----------------------------------------------------------------------WRC 107 Stress Summations: Vessel Stress Summation at Attachment Junction -----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 582 599 582 599 582 599 582 599 Circ. Pl (SUS) | 45 45 45 45 43 43 43 43 Circ. Q (SUS) | 230 -230 230 -230 294 -294 294 -294 -----------------------------------------------------------------------Long. Pm (SUS) | 291 291 291 291 291 291 291 291 Long. Pl (SUS) | 44 44 44 44 45 45 45 45 Long. Q (SUS) | 266 -266 266 -266 203 -203 203 -203 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 0 0 0 0 65 65 -65 -65 Shear Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Pm (SUS) | 582.1 599.2 582.1 599.2 582.1 599.2 582.1 599.2 -----------------------------------------------------------------------Pm+Pl (SUS) | 627.3 644.3 627.3 644.3 639.4 655.7 639.4 655.7 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 858.2 413.5 858.2 413.5 930.6 366.4 930.6 366.4 ------------------------------------------------------------------------

-----------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 599.15 1379.00 | Passed Pm+Pl (SUS) | 655.74 2068.50 | Passed Pm+Pl+Q (TOTAL)| 930.59 4137.00 | Passed -----------------------------------------------------------------------WRC 107 Stress Summations:

Vessel Stress Summation at Reinforcing Pad Edge

PV Elite 2012 Licensee: MSET ENGINEERING SDN BHD FileName : S-6504ABCD-LIFTING ATTACHMENT--------------------- Page 300 WRC Clip Analysis: : LIFTING ATTACH Step: 18 11:10a Jan 30,2014

-----------------------------------------------------------------------Type of | Stress Values at Stress Int. | (bar ) ---------------|-------------------------------------------------------Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------Circ. Pm (SUS) | 1282 1299 1282 1299 1282 1299 1282 1299 Circ. Pl (SUS) | 146 146 146 146 80 80 80 80 Circ. Q (SUS) | 283 -283 283 -283 516 -516 516 -516 -----------------------------------------------------------------------Long. Pm (SUS) | 641 641 641 641 641 641 641 641 Long. Pl (SUS) | 94 94 94 94 156 156 156 156 Long. Q (SUS) | 431 -431 431 -431 252 -252 252 -252 -----------------------------------------------------------------------Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 0 0 0 0 55 55 -55 -55 Shear Q (SUS) | 0 0 0 0 0 0 0 0 -----------------------------------------------------------------------Pm (SUS) | 1282 1299 1282 1299 1282 1299 1282 1299 -----------------------------------------------------------------------Pm+Pl (SUS) | 1429 1446 1429 1446 1368 1385 1368 1385 -----------------------------------------------------------------------Pm+Pl+Q (Total)| 1713 1163 1713 1163 1883 873 1883 873 ----------------------------------------------------------------------------------------------------------------------------------------------Type of | Max. S.I. S.I. Allowable | Result Stress Int. | bar | ---------------|-------------------------------------------------------Pm (SUS) | 1299.99 1379.00 | Passed Pm+Pl (SUS) | 1446.74 2068.50 | Passed Pm+Pl+Q (TOTAL)| 1883.61 4137.00 | Passed -----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 291

1.5 Weld Stress Calculation

Figure 3: Lifting Lug Weld Area. Maximum weld shear stress occurs at lift angle,α = From Interpolation table 1, lift force,Fr =

11.00 deg 5214.01 kgf

=

0.1920

rad

Lifting Lug Weld Area, Aweld

: = =

A1 + A2 + A3 + A4(Brace Plate) 0.707*tw[(d1+b1)+(2d2+b2)+(d3+b3) + L1] 2 2 8081.01 mm = 80.81 cm

Max. weld Shear Stress, τt

: =

Fr cosα/ A weld

: =

Fr sinα/ A weld

Max. weld Shear Stress, τs

2 63.34 kgcm

2 12.31 kgcm

1.5.1 Torsional Shear: Weld Centrod: Weld Areas, Ai : 0.707 *tw*Li 2 Location Area(mm ) A1 1272.60 A2 827.19 A3 954.45 A4 636.30 A5 954.45 A6 827.19 A7 1272.60 A8 2290.68 (Weld at Brace Plate) ∑Ai (mm2)

9035.46

Table 2: Weld Torsion Area

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 292

Weld Centroid Location: x1 = 0.00 x2 = 32.50 x3 = 75.00 x4 = 90.00 x5 = 115.00 x6 = 147.50 x7 = 180.00 x8 = 90.00 Xbar

: =

mm mm mm mm mm mm mm mm

∑(Ai*Xi)/∑Ai 91.06 mm

Radius to Centroid Locations, ri r1 = 109.01 r2 = 124.56 r3 = 74.19 r4 = 34.95 r5 = 76.29 r6 = 123.58 r7 = 107.25 r8 = 216.07 Polar Moment Area, Ji J1 = 1060500.00 J2 = 291239.81 J3 = 447398.44 J4 = 132562.50 J5 = 447398.44 J6 = 291239.81 J7 = 1060500.00 J8 = 6184836.00

y1 y2 y3 y4 y5 y6 y7 y8

= = = = = = = =

Ybar

: =

50.00 0.00 37.50 75.00 37.50 0.00 50.00 326.00

∑(Ai*Yi)/∑Ai 109.94 mm

:

sqrt((Xbar -xi)2 +(Ybar-yi)2)

:

0.707 *tw*(Li3)/12

: =

∑(Ji + Ai*ri2)

: =

sqrt(Xbar2 +((L3+L-L1)- Ybar)2)

mm mm mm mm mm mm mm mm

4

mm mm4 mm4 mm4 mm4 mm4 mm4 mm4

Parrallel axis theorem, J

Radial distance from centroid to weld: r

mm mm mm mm mm mm mm mm

183670560 mm4

234.47 mm

(Location at Brace)

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 293

θr

Weld Shear Stress Reqd.

: = =

arctan(((L3+L-L1)-Ybar)/Xbar)

τ2

: = = =

M*r/J (Fr*cosα*(L+L3-Ybar))*r/J 2 2.10 kg/mm 2 209.77 kg/cm

τtotal

: =

sqrt[(τt +τ2sinθr)2 + (τs + τ2cosθr)2] 2 273.24 kg/cm

less than

1.17 rad 67.15 deg

Allow. Weld Shear Stress. So, Stress is

Sufficient

1.5.2 Collar Weld Stress: Collar Weld Area, Aweld

Collar Weld Stress, τc

Collar Weld Shear Stress Required Sufficient

: =

2πDc*0.707tw

: =

Fv/Aweld

2 9994.98 mm

less than

1.4.3 Pad Weld Stress:

Figure 4: Pad Weld Area.

=

2 99.95 cm

2 84.93 kg/cm

Allow. Weld Shear Stress. So, Stress is

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 294

Direct Shear: Pad Weld Area, Aweld

Max. weld Shear Stress, τt

Max. weld Shear Stress, τs

: =

0.707twp * (2Lp +Bp)

: =

Fr cosα/ A weld

: =

Fr sinα/ A weld

:

0.707 *twp*Li

2 11121.11 mm

=

2 46.02 kgcm

2 8.95 kgcm

1.5.4 Torsional Shear: Weld Centrod: Weld Areas, Ai Location Area(mm2) A1 4273.82 A2 2573.48 A3 4273.82 ∑Ai (mm2)

11121.11

Table 3: Weld Torsion Area

Weld Centroid Location: x1 = 0.00 x2 = 140.00 x3 = 280.00 Xbarp

: =

mm mm mm

∑(Ai*Xi)/∑Ai 140.00 mm

y1 y2 y3

= = =

Ybarp

: =

232.50 0.00 232.50

∑(Ai*Yi)/∑Ai 178.70 mm

:

sqrt((Xbar -xi)2 +(Ybar-yi)2)

Polar Moment Area, Ji J1 = 77008804.03 mm4 J2 = 16813402.67 mm4 J3 = 77008804.03 mm4

:

0.707 *twp*(Li3)/12

Parrallel axis theorem, J

: =

∑(Ji + Ai*ri2)

Radius to Centroid Locations, ri r1 = 149.98 r2 = 178.70 r3 = 149.98

mm mm mm

mm mm mm

445285873 mm4

2 111.21 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 285

LIFTING & TAILING LUG CALC(VERTICAL VESSEL) ( Ref: Compress & Pressure Vessel Handbook by Dennis Moss).

1.0 LIFTING LUG CALCULATION

Figure 1: Lifting Lug Detail

1.1 Geometry Inputs Lifting Lug Material Length of Lifting Lug, L Width of Lifting Lug, B Thickness of Lifting Lug, t Pin Hole Diameter, d Lug Diameter at Pin, D Weld Size, tw Weld Length, b1 Weld Length, d2 Collar Thickness, tc Collar Diameter, Dc Width of Pad, Bp Length of Pad, Lp Pad Thickness, tp Pad Weld Size, twp Weld Length, L3 Length to Brace Plate, L1

: = = = = = = = = = = = = = = = =

SA 516 Gr. 70N 331 mm 180 mm 32 mm 50 mm 180 mm 18 mm 65 mm 75 mm 6.35 mm 125 mm 280 mm 465 mm 19.05 mm 13 mm 100 mm 105 mm

= =

5.00 cm 18.00 cm

=

10.50 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 289

Shear Stress at top of lug, σs

Shear Stress Required

: = less than

1.3.5 Unity Check, Combined Stresses Unity Check, U

Since Unity Check is

less than

FT(top)/An 100.755 kg/cm

2

Allowable Shear Stress, Stress on Lug is

: =

Sufficient

(σs.reqd /σs.allow) + (σt.reqd /σt.allow) + (σb.reqd /σb.allow) 0.496

1, therefore lifting lug size is

Sufficient

1.4 Out of Plane Bending In addition as the lifting lugs are alligned with the sling, take a minimum load of 5% of total applied load.Note that this out of plane stress is combined with the in-plane bending stress and tensile stress. Out of Plane Load, Fz

In Plane (transverse) Moment, Mt

Out of Plane Moment, Mz

1.4.1 Bending Moment (In-Plane) Section Modulus of Lug, Zt

Bending Stress (in-plane), σbt.reqd

1.4.2 Bending Moment (Out of Plane) Section Modulus of Lug, Zz

Bending Stress (in-plane), σbz.reqd

1.4.3 Unity Check, Combined Stresses Unity Check, U

Since Unity Check is

less than

: =

5% x Fv

: =

Ft x L1

: =

Fz x L1

: =

B*t2 /6

: =

Mt/Zt

: =

B2*t /6

: =

Mz/Zz

: =

(σt.reqd /σt.allow) + (σbt.reqd /σbt.allow) + (σbz.reqd /σbz.allow)

424 kgf

32442 kgfcm

4457 kgfcm

30720.00 mm

3

1056 kg/cm

172800.00 mm

3 30.72 cm

=

3 172.80 cm

2

3

26 kg/cm

=

2

0.771

1, therefore lug is

Sufficient

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 288

1.3.2 Lug Thickness based on Tensile Stress. Lifting Lug Thickness Required, treqd : = Thickness Required are

less than

Tensile Stress Required, σt.reqd

less than

: =

D*t

: =

Fv /A

Lifting Lug Thickness Required, Treqd

less than

: =

: =

less than

Bearing Stress Required, σb.reqd

less than

147.378 kg/cm

2 57.60 cm

=

2

Sufficient

t + (2*tc) 45 mm

Fv /(d*σp) 1.742 cm

=

17.42 mm Sufficient

max(0, 0.5*(Treqd -t)) 0.00 mm Geometry Input, Thickness used is

Bearing Area, Abearing

Bearing Stress Required

2

Sufficient

Geometry Input, Thickness used is

Collar Required Thickness, tc reqd

Collar Thick. Required

5760 mm

3.23 mm

=

Allowable Tensile Stress, Stress on Lug is

1.3.3 Lug Thickness based on Bearing Stress. Lifting Lug Thickness (Including Collar Plate) T : =

Thickness Required are

0.323 cm

Geometry Input, Thickness used is

Lifting Lug Area, A

Tensile Stress Required

Fv /(D*σt)

: =

(d*(t+2tc))

: =

Fv /Abearing

2235.00 mm

2

379.821 kg/cm

=

Sufficient

2 22.35 cm

2

Allowable Bearing Stress, Stress on Lug is

Sufficient

1.3.4 Lug Thickness based on Shear Stress. ( Ref: Pressure Vessel Design Manual Handbook by Dennis Moss pg 417).

Net Section at top of Lug(2 lugs), An

: =

2[t(D-d/2)] + [2t c (Dc-d/2)] 2 5112.50 mm

=

2 51.13 cm

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE: .0.2014

DOC. REF. NO.: MSET/M2-234/S-6504ABCD/DC

REVISION: 04

SUBJECT: TITLE PAGE

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE: 5 of 309

TABLE OF CONTENT (CONTINUED NO

46 47 48

CONTENT

Earthquake Load Calculation Stress due Combined Loads Basering Calculation

PAGE NO.

223 224 227

SECTION G: BLAST CASE

49 50 51 52 53

Input Echo External Pressure Earthquake Load Calculation Stress due Combined Loads Basering Calculation

233 240 243 244 245

ATTACHMENTS

54 55 56

Attachment 1: WRC 297 Calculation Attachment 2: Packed Support Calculation Appendixes: Lifting Lug, Tailing Lug & Base Block Calculation

250 274 284

MSET ENGINEERING CORPORATION SDN BHD DOCUMENT TITLE: DESIGN CALCULATION

DATE : 30.01.2014

DOC. REF. NO.: MSET/M2-234/ S-6504ABCD/DC

REVISION: 03

SUBJECT: LIFTING LUG CALCULATION

JOB NO: M2-234

SERIAL NO.: M2-234/001,002,003,004

PAGE : 286

Vessel Empty Weight Load Factor Design Lift Weight, W Dist. from C.O.G to Lifting Lug,l1 Dist. from C.O.G to Tailing Lug,l2 Dist. from Vessel C.L to Tailing Lug,l3

= = = = = =

8489 2 16978 1068 1427 1409

Yield Stress at amb Temp.,Sy Allow.Tensile Stress, σt.allow =0.6Sy Allow. Shear Stress, σs.allow = 0.4Sy Allow. Bearing Stress, σp.allow =0.9Sy Allow. Bending Stress, σbt.allow =0.66Sy Allow. Bending Stress, σbz.allow =0.75Sy Allow. Weld Shear Stress,τallow.

= = = = = = =

2437 1462.2 974.8 2193.3 1608.42 1827.75 1476.400

kg kg mm mm mm kg/cm2 kg/cm2 kg/cm2 kg/cm2 kg/cm2 kg/cm2 kg/cm2

In-Plane Out of Plane

1.2 Lift Forces Lift force on lifting & tailing lug during rotational lift (0o ≤ α ≥90o) 2*Ftop Ftail

= =

[W* ((l2*cosα) +(l3*sinα))] / [((l1*cosα) + (l2*cosα) + (l3*sinα))] W - (2*Ftop)

FT FL

Figure 2: Lifting & Tailing Force-Loading Diagram

= =

Ftop cos θ Ftop sin θ

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF