P a g e | 1
DESIGN AND LAYOUT PROBLEM FOR A COMBINED GAS-VAPOR POWER PLANT General A single Gas Turbine Power Plant topping the steam power plant that will contain two identical controlled-extraction controlled-extraction 5000-Kw turbine generators. Steam will be extracted rom each turbine or process use and or a deaerator. deaerator. Steam also will be extracted at a lower pressure or use in a surace t!pe o eed water heater. heater. A b!-pass" pressure reducing station will pro#ide process steam when the turbines are not in use. All process steam become contaminated and is wasted. $our identical boiler%heat exchangers exchangers are to suppl! the plant steam re&uirements 'two boilers to carr! maximum re&uirements o one turbine(. The boiler%heat exchanger room room will be transerring it to the steam in a heat exchanger that ser#es as the boiler b oiler.. )&uipment to be located in the turbine hall* turbine generators" deaerators" low-pressure low-pressure heaters" boiler eed pumps" condensers" circulating pumps" air e+ectors condensate pump" turbine control board" o#erhead crane. A separate building shall be pro#ided p ro#ided or gas turbine power plant. Data Gas Tur!ne P"#er Plant ,ompressor mechanical ecienc!* / Turbine Turbine and compressor compressor adiabatic eciencies* 5/ 5/ Generator electrical and mechanical ecienc!* / 1urner ecienc!* 5/ Turbine Turbine mechanical ecienc! ecienc!** / $uel* 2atural gas with lower heating #alue o 30340 1tu%lb Air enters the compressor suction at 5o$ and 6.4 psia" and the gas turbine at 3070 o$. The pressure ratio is 6. The exhaust gasses lea#e the heat exchanger at 850o$. Stea$ P"#er Plant Turbine Turbine generators* 7/ mechanical ecienc!" 5/ generator ecienc!" design point is 5%6 load" 60-psia automatic extraction 'or surace t!pe eed water heater( and 0-psia non-automatic extraction pressures pressures 'or process use and deaerators(. Steam conditions 600 psig" 550o$" and 3 in. 9g. Process Process Steam* 85000 lb per hour or the plant. Show connection or saet! #al#e ater P:;. 1oilers* Single settings" esign on basis o heat balance ba lance data. Turbine Turbine ,ontrol 1oard* 1oard* Bne or both turbines" t high b! 6 6 t long" and 5 t deep 'to allow or switchgear( with 6-t clearance. Piping* o sucient strength or pressures pressures and temperatures temperatures in#ol#ed" @anged. Cater Cater piping on pump discharges designed or #elocit! o about 650 pm and less than 300 pm on suction. 0/ pressure drop in low-pressure bleed line and / in high-pressure blee line. Dse a hand b!-pass around automatic P:;. Stac* To de#elop -in. static drat. Re&u!re$ents' a. ,alculate ,alculate heat heat balance balance or turbine turbine hall and and mae mae schematic schematic diagram with @ows" temperatures" temperatures" and enthalpies. b. ,alculate ,alculate boiler boiler siEe siEe and select select boiler boiler c. ,alculate ,alculate surace surace re&uir re&uiremen ements ts o condenser condenser and select select condenser d. ,alculate ,alculate siEe siEe o" and select" select" deaerator deaerators s and surace surace heaters heaters e. ,alculate ,alculate siEe siEe o boiler boiler eed eed pumps pumps and select select pumps pumps . ,alcul ,alculate ate siEe siEe o o conde condensa nsate te pumps pumps g. etermine >etermine the the riction riction loss loss o the water water piping piping &. >etermine >etermine the the power penetr penetrated ated b! the gas gas turbine turbine power plant r. >eter >etermin mine e amount amount o uel uel consu consumed med per per hourH hourH s. >raw a TS TS diagram diagram or or the combi combined ned gas-# gas-#apor apor power power plant plant
P a g e | %
1oiler $eed Pump* our pumps or the plant"00/ spare" centriugal" motor-dri#en" motor-dri#en" 835-psig discharge pressure. Allow 0/ extra @ow to tae care o emergencies. >eaerators* two or entire plant" 00/ spare" " drains cascaded to condenser. condenser. >esign on basis o heat balance ba lance data. Turbine Turbine ,ontrol 1oard* 1oard* Bne or both turbines" t high b! 6 6 t long" and 5 t deep 'to allow or switchgear( with 6-t clearance. Piping* o sucient strength or pressures pressures and temperatures temperatures in#ol#ed" @anged. Cater Cater piping on pump discharges designed or #elocit! o about 650 pm and less than 300 pm on suction. 0/ pressure drop in low-pressure bleed line and / in high-pressure blee line. Dse a hand b!-pass around automatic P:;. Stac* To de#elop -in. static drat. Re&u!re$ents' a. ,alculate ,alculate heat heat balance balance or turbine turbine hall and and mae mae schematic schematic diagram with @ows" temperatures" temperatures" and enthalpies. b. ,alculate ,alculate boiler boiler siEe siEe and select select boiler boiler c. ,alculate ,alculate surace surace re&uir re&uiremen ements ts o condenser condenser and select select condenser d. ,alculate ,alculate siEe siEe o" and select" select" deaerator deaerators s and surace surace heaters heaters e. ,alculate ,alculate siEe siEe o boiler boiler eed eed pumps pumps and select select pumps pumps . ,alcul ,alculate ate siEe siEe o o conde condensa nsate te pumps pumps g. etermine >etermine the the riction riction loss loss o the water water piping piping &. >etermine >etermine the the power penetr penetrated ated b! the gas gas turbine turbine power plant r. >eter >etermin mine e amount amount o uel uel consu consumed med per per hourH hourH s. >raw a TS TS diagram diagram or or the combi combined ned gas-# gas-#apor apor power power plant plant
P a g e | (
P a g e | )
A* Cal+ulate ,eat alan+e "r tur!ne ,all an. $a/e s+,e$at!+ .!a0ra$ #!t, "#s2 te$3eratures2 an. ent,al3!es*
5000 KC I 600 psig The #alue is 48./ ? )ngine )cienc! 'Table p. -7( 600 psig I 550 0$ $or the :anine ,!cle :atio F"r Emg: Emg J (Mechanical Efciency)(Generator Efciency)
J '0.7('0.5( Emg 4 51*%6
P a g e | 7
F"r En0!ne E8+!en+9 '
Engine Efciency = 73.1 x 1.0 x 0.98
En0!ne E:* 4 ;1*> 3s!0 @ 77> >F P1 4 )>> 3s!0 1)*; 4 )1)*; 3s!a T1 4 77> >F
Fr"$ Stea$ Tale Tale (
P
h
s 60
347
.5540 6.4 x3
5 − .4x 10
x
66.4 3
0.7
h1
s1
65
345.6
.5558
F"r ,1' 4.7 5
=
x1 0.6
=
x2 −3
1.7 x 10
x 1=0.564
P a g e | < h1=1276 +(− 0.564 )
h1=1275.436
btu lb
F"r S1' x −3
1.7 x 10
=
4.7 5
−3
X =1.598 x 10
−3
S 1=1.5570 −(1.598 x 10 )
S 1=1.555402
btu lb
R
A 3"!nt %' #? , 1 4 ,% an. )6 3ressure .r"3
P2= P1−( 4 )( P1)
J 66.4 '66.4('6/( P2=398.112 psia
Cith h J h3?
,% 4 1%;7*)(< S"l!n0 F"r S%'
1! double interpolation I 85 psia and 600 psia
I 85 psia h
S
t 34.8 560
.5573
P a g e | ;
6.87
L8
L6
7.3 0
345.687
s
t
344.5 550
−3
6.1 x 10
.5738
P a g e | =
S J .5573 M x8
¿ 1.5562 +
(4.136 )( 6.1 x 10−3 ) 6.2
s =1.5603
I 600 psia h
S
t 340.
.5566
560 6.7
L
L
7.3 0
−3
6.1 x 10
345.6
s
t
344.0
.5705
550
S J .5566 M x
J
1.5544 +
( 4.636 )( 6.1 x 10−3) 6.2
s =1.55896
1! interpolating the computed S #alues* P2
S2
85
.5708 8.3
L
P a g e | 5
5
8.3
600
−3
1.34 x 10
.557
S2
P a g e | 1>
X −3
1.34 x 10
=
3.112 5
−4
X =8.34016 x 10
S 2=1.5603 − x
−4
S 2=1.5602 −( 8.34016 x 10 )
S 2=1.55947
btu lb˚R
At P"!nt (' #? P % 4 )> 3s!a an. S % 4 S( 4 1*775); S"l!n0 "r ,( 9 !nter3"lat!"n' '
S 2= S3 =1.55947 is be!ond the #alues ound in the Tables 8" we
Since
will use Table 3
I 60 psia and with
h J 387.7
'
S 2= S3 =1.55947
s J 0.836
hg J 88. sg J .365 '
'
'
S 3= S f 3 + xS fg 3
'
x =
¿
'
S 3− Sf 3 '
S fg 3
1.55947 −0.39214 1.2845
x =0.90878 734
'
'
'
h3= hf 3 + x hfg 3
¿ 236.16 +¿ '0.04734('88.(
P a g e | 11 '
h3=1084.780283 btu / lb
P a g e | 1%
h3
S"l!n0 "r
RCR =stage eff .=
us!n0 RCR'
h2−h 3 '
h2−h 3
RCR 4 ;=*77>)6 h2−h 3
78.5504 =
'
h2−h 3
'
h3= h2− stage ef f . ( h2 −h3 )
¿ 1275.436− 0.785504 (1275.436 −1084.7803 )
h3=1125.6752
Sol#ing
S3
btu lb
w%
h3=1125.6752 ∧ P3= 40 psia
h3= hf 3 + x hfg 3
x =
x =
h3−h f 3 h fg 3
1125.6752−236.16 933.8
x =0.9525757121
S 3= S f 3 + xS fg 3
S 3=0.39214 +( 0.9525757121)( 1.2845 )
S 3=1.61572
btu lb˚R
P a g e | 1(
S 2= S 4 '
At 3"!nt )' #?
an.
P4 =10 psia
'
h4 :
S"l!n0 "r
h J 7.38 s J 0.3857 hg J 3. sg J .506 '
'
'
S 4 =S f 4 + x S fg 4
'
x =
x =
'
S 4− S f 4 '
S fg 4
1.55947 −0.28358 1.5041
x =0.8482747158
'
'
'
h4 =h f 4 + h fg 4
'
h4 =161.23 +( 0.8482747158 )( 982.1)
'
h4 =994.3206 btu / lb
RCR =stageeff .=
h1−h 4 '
h1−h 4
'
h4 =h2 −stage eff . ( h2−h 4 )
h4 =1275.436−( 0.785504 )( 1275.436 −994.3206 )
h4 =1054.62297
Sol#ing
S4
btu lb
with
h4 =h f 4 + x hfg 4
h4 =1054.62297 ∧ P 4=10 psia
P a g e | 1)
x =
h4 −hf 4 hfg 4
P a g e | 17
x =
1054.62297 −161.23 982.1
x =0.9096761735
s 4 =s f 4 + x s fg 4
s 4 =0.28358 +( 0.9096761735 )( 1.5041 )
s 4 =1.65182
btu lb˚ R
P5=2 ∈ .Hg.∧using s 2=1.55947
A 3"!nt 7'#?
btu lb˚R
h f
P
h fg
S f
S fg
0.0
77.35
08.0
0.3763
706
0.044
0.
X 1
0.44
−3
X 3
6.24 x 10 X 4
.0
8.6
X 2
0.05
7.46
087.0
0.8377
.658
X 1= hf =66.25 +
(3.49 ) ( 0.0797 ) 0.10
= 69.0.3153
3
P a g e | 1<
X 2= hfg=1038.0 −
( 2 ) ( 0.0797 )
X 3= S f =0.12642+
0.10
=1036.406
(6.24 x 10−3 )( 0.0797 ) 0.10
=0.13139328
X 4 = Sfg = 1.8604 −
( 0.0151 ) ( 0.0797 ) 0.10
=1.8483653
P a g e | 1;
S 1= S f + x S fg
x =
x =
S 1−S f S fg
1.555402 −0.13139323 1.8483653
x =0.7704151988
$or
'
h5 :
h5 ' = hf 5 ' + x hfg 5 '
'
h5= 69.03153 +( 0.7704151988 )( 1036.406 )
'
h5= 867.494
Sol#ing or
RCR =
h5
btu lb
*
h1−h5 h1−h5 '
'
h5= h1− stage eff . ( h1 −h5 )
¿ 1275.436−( 0.7704151988 )( 1275.436−867.494 )
h5= 954.99593
btu lb
P a g e | 1=
LIST OF FINAL ENTALPIES'
h1=1275.436
btu lb
h2=1275.436
btu lb
h3=1125.6752
btu lb
h4 =1054.62297
h5= 954.99593
btu lb
btu lb
FOR ESTIMATING TE TROTTLE FLOW
KW cap Totaloutput = Emg
¿
5000 0.912
Totaloutput =5,482.45614035
FOR NON-BLEEDING TROTTLE FLOW
( )(
Totaloutput Throt tle lo! "# =
5
4
h1−h5
5,482.45614035
Throttle lo! "#=
3413 )
( )( 5 4
3413 )
1275.436 −954.99593
P a g e | 15
Throttlr lo! "# =72991.89676488
P a g e | %>
FROM EUATION 11-1*3*71>* "r t,e n"n-re0enerat!e +9+le
TurbineHeat Rate1
[(
1
)] [
Throttlelo! "# + PS + Throttle lo! "# ( h4 −h f $ 2inHg ) 2
5 4
¿
]
( KWcap )
[ ( 72991.89676488 + 17500 ) ( 1275.436 −1054.62297 ) ]+ [ 72991.89676488 ( 1054.62297 −69.03153 ) ] 5 4
( 5000 )
Turbine Heat Rate1=14707.51656895
ASSUME TAT TE FINAL TEMPERATURE OF FEEDD WATER IS' T f! =239.0583772
Temp$ 2 inHg=100.9895
ee% !ater total rise= 239.0583772 −100.9895
ee%!ater total rise = 138.0688772
Fr"$ FIG* 11-;a 3*71(* T,e re.u+t!"n !n ,eat +"nsu$3t!"n at t"tal r!se !n Fee. #ater te$3erature 4 1(=*>*>>)%7=(;;%
%(5*>7=(;;%
%)>
x =
%>=*))
1.0583772 ( 2.02 ) 2
x =1.068960972 h f!=206.42 + 1.068960872 h f!=207.48896096
F"r$ E&uat!"n 11-1 W =
¿
%*>%
Turbine Heat Rate ( KWcap ) h1−h f $ 239.053772
17,623.24290547 ( 5000 ) 1275.436 −207.48896096
P a g e | %(
W = 82 & 161 . 65232835
P a g e | %)
Assu$e t,at
mT = 86030
b * A33r"!$atel9 HRe.u+e 9 %>> hr *
F"r A!r EJe+t"r T,ere"re
mT = 85830
EAT BALANCE FOR DEAERATOR m2 h4
1
mW = PS + 0 . 02 mT
psia
2
m 2 h 4= m2 hf $9 psia + mW ( h f $ 9 psia− hf $ 60 )
m 2=
mW ( hf $ 9 psia− hf $ 60 ) h4 −h f $ 9 psia 1
m W = PS + 0 . 02 mT 2
m 2=
( 17500 + 0 . 02 ( 85830 ) ) ( 156 . 27−28 . 08 ) 1054 . 62297−156 . 27
m 2=2742 . 10253237
1
m2+ PS + 0 . 02 m T 2
P a g e | %7
T,e te$3erature " t,e ee. #ater "r$ ,eater H .eaerat"r enter!n0 t,e "!ler
1
m2+ PS + 0.02 mT 2
1
mT = PS −m 2
1.02 mT
2
h f $ 225.96 =224.6394 h f!
[( (
1
)
] [(
)
[(
]
)
1
m2 + PS + 0.02 mT ( h f $ 9 psia ) + m T − PS −m 2 ( h f $ 225.96 ) =1.02 m T ( hf! ) 2
1
2
)
1
m2 + PS + 0.02 mT ( h f $ 9 psia ) + mT − PS −m 2 ( h f $ 225.96 ) 2
2
¿ ¿ hf! =¿
]
85830
( 2742.10253237 + 17500 +0.02 (¿) ( 156.27 ) ] + [ ( 85830 −17500 −2742.10253237 ) ( 224.6394 ) ] ¿ ¿ ¿¿
h f!=207.49017735
F"r
mC 1
m C =m T −m 2− PS 2
m C =85830 −2742 . 10253237 −17500 m C =65587 . 89746763
F"r
mW
P a g e | %< 1
m W = PS + 0 . 02 mT 2
m W =17500 + 0 . 02 ( 85830 ) m W =19216 . 6
P a g e | %;
EAT BALANCE AT AIR EKECTOR h f $ 2inHg =69.03153
300 ( h
m C
m C ( hC − hf $ 2 inHg )=200 ( h
hC =
200 ( 1000 ) 65587.89746763
+ 69.03153
hC = 72.08087306
EAT BALANCE AT SURFACE EATER
Pressure I surace heater J 87 psia TsatJ370.7 0$ Cith Temperature >iNerence o 5 0$ T 2 =Tsat −T% T 2 =260.96 −5 T 2 =255.96
hC
P a g e | %=
m1 h3
mC
m C
h f $T
hC
2
m1
T
,
356
333.75 .7
3
355.7
L
357
336.7
1! interpolation* x =
255.96 −254 256−254
( 224.68 −222.65 )
h f $ 36 psia =229.75 E¿ = Eout m C h C + m1 h3= m1 h f $ 36 psia + hf $ T
2
m 1=
¿
mC ( h f $ T −hC ) 2
h3− hf $ 36 psia
65587.89746763 ( 224.6394 −72.08087306 ) 1125.6752−229.73
m 1=11168.08597525
3.08
P a g e | %5
P a g e | (>
FOR MASS BALANCE Assu$e t,at t,e sura+e ,eater .eaerat"r H a!r eJe+t"r +"n.enser are "ne ,eat e+,an0er* 1
) 2+ 0.02+ PS
) 1
2
0.02 ) T
) T
) 1 > W +a3a+!t9 #? )=%*)7) L"sses* T,e T,r"ttle Fl"# re&u!re. #!ll e'
:)PFA,)
1%5*><
777
,
7
1((*=<
F"r t,e ent,al39 " 3"!nt 1
X h =
555 −540 560 −546
( 133.86 −129.06 )
X h =3.6
h1 -= 129.06 + X h
h1 -= 132.66
X Pr=
555−540 560−540
( 1.5742 −1.3860 )
X Pr =0.14115
Pr1 - =1.3860 − X Pr
Pr1 - =1.52715
Pr
1*(=
Pr
1*7;)%
P a g e | ))
At 3"!nt % t,e 0as +9+le
F"r P%
P2 P1 -
= Pressureratio
P2 -= Pressureratio ( P1- )
F"r Pr%
P2 P1 -
=
Pr 2 Pr 1-
P 2 Pr 2- = ( Pr1 - ) P1 -
Pr 2- =21.3801
F"r t,e te$3erature an. ent,al39 " 3"!nt % !n t,e 0as +9+le Fr"$ t,e tale " 3r"3ert!es " a!r' Us!n0
Pr 2- =21.3801
Pr
,%G
%1*1=
%=1*1)
%1*(=>1
,%
%)*>1
%51*(>
T%G
11
T%
1%>>
P a g e | )7
F"r t,e !.eal ent,al39 " 3"!nt %
X h 2=
21.3801−21.18 24.01−21.18
( 291.30−281.14 )
X h 2= 0.71838021
h 2-i%eal = 281.14 + X h2
h 2-i%eal = 281.85838021
F"r t,e a+tual ent,al39 " 3"!nt %
h 2-actual = h 1- +
h 2-i%eal − h 1Turbinecopma%iabaticeff
h 2-actual=308.18750613
F"r t,e te$3erature " 3"!nt %
X T 2 - =
21.3801 −21.18 24.01 −21.18
X T 2 - =2.82826855
T 2 - =1160 + X T 2 -
T 2 - =11622.82826855
( 1200 −1160 )
P a g e | )<
At 3"!nt ( " t,e 0as +9+le Us!n0 t,e 0!en te$3erature at 3"!nt ( T 3 - =2520
Fr"$ t,e tale " t,e 3r"3ert!es " a!r
T
,(G
%7>>
,(G
%77>
HAUST
⋅ ( h.eedwater WDST):
A2SO%.pipe
Y .P J pressure loss" psi d J pipe O>" in. C J @ow" lb%min J 6, J $riction actor" $rom $igure 3- 'Potter" pp.7( F J lenght" t ; J #elocit!" t%s Fsteam.pipe1.A := 80
$or the #alue o " using Table 3-8 'Potter" pp.78( $riction actor or steam 1! 1abcoc and Cilcox '1. and C.( in#estigator
O>pipe1.A:= 7.07
+ 8.7 steam.pipe1.A := 0.000 O>pipe1.A = 0.04305 steam.pipe1.A F$o%6
ρ 1.A:=
;
ρ 1.A = 0.87 T9):)$B:)*
P a g e | =) 3
;elocit!7 0.0035 ⋅ steam.pipe1.A ⋅ Fsteam.pipe1.A ⋅ ρ 1.A⋅ 70 ∆ P1.A:= O>pipe1.A
∆ P1.A= 4.804376 $:B< WD2,TOB2 A TB 1BOF):* SBF;O2G $B: ST)A< POPO2G P:)SSD:) >:BP* $rom )&uation 3-5 'Potter" pp.57(
3
∆P
where*
Assume6
0.0035 ⋅ steam.pipe ⋅ Fsteam.pipe ⋅ρ ⋅; dO>.pipe
Y .P J pressure loss" psi d J pipe O>" in. C J @ow" lb%min J 6, J $riction actor" $rom $igure 3- 'Potter" pp.7( F J lenght" t ; J #elocit!" t%s Fsteam.pipeA.T := 30
$or the #alue o " using Table 3-8 'Potter" pp.78( $riction actor or steam 1! 1abcoc and Cilcox '1. and C.( in#estigator O>pipeA.T:= 4.
+ 8.7 := 0.000 steam.pipeA.T O>pipeA.T = 0.05745 steam.pipeA.T F$o%6
ρ A.T :=
;3
ρ A.T = 0.4533
P a g e | =7
T9):)$B:)*
3
;elocit! ⋅ steam.pipeA.T ⋅ Fsteam.pipeA.T ⋅ ρ A.T⋅ 0.0035 70 ∆ PA.T := O>pipeA.T
∆ PA.T = 3.03836 ∆P total:= ∆ P1.A⋅ 3 + ∆ PA. ∆P total = 87.7847644
P a g e | =<
M* DETERMINE TE DIAMETER AND IGT OF TE STAC SOLVING FOR TE DIAMETER OF TE STAC
$rom* Q
A⋅
where*
Q J @ow rate" cm A J area o the stac" s&.t ; J specic #olume" cubic t.%lb $rom pre#ious solution" the @ow rate @owing to the stac is the mass o air and mass o uel gi#en oN b! the 6 boiler The total exhaust o the 6 boiler is* iamet Thicne er" in ss" in
Onside >iamet er" in
>
T
d
Onside >iamet er" $ith Power >5
3.45
0.308
3.67
.
Onternal ,ross Sectional Area S&. in 6.4
S&. t 0.08 8
SOLVING FOR WATER PIPING DISCARGE DIAMETER ;discharge:= 65 3 π ⋅ 'd(
[email protected] ⋅ ;dischar 6
ddischarge:=
[email protected]⋅ 6 ⋅ '3( π ⋅ ;discharge
ddischarge= .565683
Ceight o pipe per t-lb
5.46
P a g e | 5)
2omin al Pipe SiEe" in
3
Butside Call >iamet Thicne er" in ss" in
Onside >iamet er" in
>
T
d
Onside >iamet er" $ith Power >5
3.845
0.56
3.074
84.48
Onternal ,ross Sectional Area S&. in 8.857
S&. t 0.03 8
Ceight o pipe per t-lb
8.758
P a g e | 57
SOLVING FOR WATER FRICTION LOSS FICTION LOSS AT SUNCTION PIPE 3
0.0035 ⋅ sunction ⋅ Fsunction ⋅ ρ suction⋅ ;sunctio ∆P sunction dsunction
W,ere'
Y P J suction pressure loss" psi d J suction inside diameter" in F J suction lenght" t ; J suction #elocit!" ps J suction riction actor [ J suction densit!" lb%cu.t
Assu$e len0t, " su+t!"n *suction=100
F"r su+t!"n r!+t!"n a+t"r2 Fr"$ E&* %-1= 3"tter2 33*7= 64
f = " R
S"l!n0 "r Re9n".s nu$er Fr"$ E&* %-1> 3"tter2 33*7(
2:
;a#⋅ >⋅ ρ
µ
W,ere
2r J :e!nold\s number ; J a#erage #elocit!" ps > J internal pipe diameter" t [ J luid densit! or reciprocal o speciic #olume '%#(" lb-mass%cu.t ] J luid absolute #iscosit!" lb-mass%t-sec
P a g e | 5<
>sunction O> := .7 2: :=
⋅ >sunction ;sunction O>⋅ 73. 70⋅ 3 ⋅ 0.0003345
2: = 3564.63544 The(6
76 sunction:= 2:
sunction= 0.000505 THEREFORE6
3
300 ⋅ sunction ⋅ Fsunction ⋅ 73.6⋅ 0.0035 70 ∆P sunction:= >sunction O>
∆P sunction= 0.0387 FRICTION LOSS AT THE "ISCHARGE PIPE6 F$o% E&u'tio( *+), -Potte$/ ..0,;2
3
∆P discharge
⋅ discharge ⋅ Fdischarge ⋅ ρ discharge ⋅ ;discharg 0.0035 ddischarge
A55u%e le(ght of 5u(?tio(
Fdischarge:= 0 2 := :discharge Fo$ @i5?h'$ge f$i?tio( f'?to$/ f6
;discharge ⋅ >discharge O>⋅ 73. 70⋅ 3⋅ 0.0003345
2:discharge = 66.566583
F$o% E&u'tio( *+)< -Potte$/ ..0,iamet er" in
>
t
d
Onside >iamet er" $ith Power >5
5.578
0.35
5.064
8"345
Onternal ,ross Sectional Area S&. in 30.0
Ceight o pipe per t-lb
S&. t 0.8
WATER PIPING DISCGARE DIAMETER SURFACE EATER TO BOILER TEREFORE' ;discharge= 650
π ⋅ 'd(
[email protected] 6 ddischarge.S9.1 :=
3
⋅ ;dischar
[email protected]⋅ 6 ⋅ '3( π ⋅ ;discharge
= 3.74757 ddischarge.S9.1
6.73
P a g e | 55
SELECTION OF PIPE DISCARGE Fr"$ Plate 1 P"tter2 33*
t
d
Onside >iamet er" $ith Power >5
8.500
0.37
8.07
34.
Onternal ,ross Sectional Area S&. in 4.8
S&. t 0.05
Ceight o pipe per tlb
4.5
S+,e.ule )>
SOLVING FOR WATER FRICTION LOSS FRICTION LOSS AT SUCTION LOSS Fr"$ E&* %-17 3"tter2 33*7< 3
0.0035 ⋅ sunction.S9 ⋅ Fsunction.S9 ⋅ ρ suction.S9 ⋅ ;sunction.S ∆P sunction.S9 dsunction.S9
Y P J suction pressure loss" psi d J suction inside diameter" in F J suction lenght" t ; J suction #elocit!" ps J suction riction actor [ J suction densit!" lb%cu.t
Assu$e len0t, " su+t!"n *%ischarge .SH =100
F"r .!s+,ar0e r!+t!"n a+t"r2 ' Fr"$ E&* %-1= 3"tter2 33*7=
76 2:
P a g e | 1>>
W,ere
J discharge riction actor 2r J :e!nold\s number
P a g e | 1>1
S"l!n0 " Re9n"l.s nu$er
Fr"$ E&* %-1> 3"tter2 33*7( 2:
;a#⋅ >⋅ ρ
µ
, %ischarge,. SH = 2.469
;discharge ⋅ >discharge O>.S9⋅ 73. 2:discharge.S9 := 70⋅ 3⋅ 0.00055
= 73383.35076 2:discharge.S9
T,en'
76 discharge.S9 := 2:discharge.
= 0.000080 discharge.S9
T,ere"re 3
;discharge 0.0035 ⋅ discharge.S9 ⋅ Fdischarge.S9 ⋅ 73.6⋅ 70 := ∆P discharge.S9 >discharge O>.S9
= 0.0773 ∆P discharge.S9
P a g e | 1>%
TE TOTAL FRICTION LOSS AT SURFACE EATER TO BOILER WATER PIPING
∆P surace.heater := ∆P sunction.S9 + ∆P discharge.
= 0.038063 ∆P surace.heater FOR TOTAL FRICTION LOSS
∆P total.loss:= ∆P deaerator+ ∆P surace.hea ∆P total.loss= 0.30435 * DETERMINE TE POWER GENERATED BY TE GAS TURBINE POWER PLANT
W f =
¿
h3 g −h 2 gactual *H/ ( #urner eff )
651.516 −308.18750613 20270 ( 0.95 )
W f =0.01782923
FOR WOR OF TE COMPRESSOR
W+RK compressor =
h2 gactual− h1 g Compressor mechanicaleff .
¿
308.18750613 −132.66 0.99
W+RK compressor =177.30051124
FOR WOR OF GAS TURBINE Wor0 gasturbine =Turbinemecheff ( h3 g −h4 gactual ) ( 1+ W f )
¿ 0.99 ( 651.516 −366.58830641 ) ( 1+ 0.01782923 )
P a g e | 1>(
Wor0 gasturbi ne=287.10765654
WOR NET OF TE GAS CYCLE Wor0 netgas =Wor0 gasturbine −Wor0 compressor
¿ 287.10765654 −177.30051124
Wor0 netgas =198225.54874894
R* DETERMINE AMOUNT OF FUEL CONSUMPTION PER OUR
F"r uel re&u!re.' ) fuel=W f ( )totalexhaust )
¿ 0.01782923 (1049539.71137614 )
) fuel=18712.48089537
F"r .uel re&u!re. "r ) "!ler total fuel =4∗ ) fuel
¿ 4∗18712.48089537
total fuel=74849.92358148
P a g e | 1>)
S* DRAW A TS DIAGRAM FOR TE COMBINED GAS-VAPOR POWER PLANT
P a g e | 1>7
APPENDICES
>:ACO2G" ,9A:T" TA1F)S" ,ATAFBGS X BT9): :)$):)2,)S
P a g e | 1><
P a g e | 1>;
P a g e | 1>=
P a g e | 1>5
P a g e | 11>
SELECTIO OF BOILER FROM APPENDI2 PLATE 1( PP* ) $ G 9 + K
66 7507 7^^ 3 %3^^ 8^- 0 %3^^
8^- 8%6^^ 8^-3 %3^^
9eaders Cidth o >ampers >rums >rums B#erall 9eight 9eight o#er Steam Butlet B#erall Fength >rum to Butside ,asing
F
8^-7 %6^^ 5^-3^^ ^-^^ 3^-0^^ ^-6^^ ^-0 8%^^ 7^-3^^
$ront Call Onside $ace $ont Call to < 2 B P
^-0^^ Onside $ace 1ridgewall >amper Focation-9oriEontal >amper Focation-;ertical Fength o >amper
%^^ 36 4%^^ 7^-7^^
P a g e | 111
SELECTION OF SURFACE ACE CONDENCER FROM APPENDI2 PLATE 1) 33* POWER PLANT TEORY AND DESIGN BY POTTER
"ISTANCE RE!UIRE" FOR WITH"RAWING
MA>0 NO0
$:AOOAF-$FBC SD:$A,) ,B2>)2S):S
SELECTION OD SURFACE EATER Fr"$ a33en.!2 3late ; 33*esign b! Potter 1oiler $eed Pumps >imensions PD
)
$
G
0
80 88 3
8
ge Z
SELECTION OF MAIN STEAM PIPES
$rom Appendix" Plate pp. 745 Power Plant Theor! and >esign Ph!sical Properties o Pipe '$rom 1oiler to Wunction A( 2omina
Butside
Call
Onside
l Pipe
>iamet
thicne
>iamet
SiEe" in.
er" in.
ss" in.
er" in.
>
t
d
Onside
Onternal
>iameter"
cross-
$ith
sectional
power
area S&. S&.
>5
in.
Ceight o pipe per t-lb
t.
Schedule 60 7
7.35
0.30
7.075
30
3.
0.30 0
.
P a g e | 11)
SELECTION OF PIPE SUNCTION
$rom Appendix" Plate "hy!ical "ro%ertie! o& "i%e pp. 745 Power Plant theor! and >esign b! Potter Schedule 60 2omin al Pipe SiEe" in
3Z
2omin al Pipe SiEe" in
3
Butside Call >iamet Thicne er" in ss" in
>
T
d
Onside >iamet er" $ith Power >5
3.45
0.308
3.67
.
Onside >iamet er" in
S&. in 8.857
Butside Call >iamet Thicne er" in ss" in
Onside >iamet er" in
>
T
d
Onside >iamet er" $ith Power >5
3.845
0.56
3.074
84.48
Onternal ,ross Sectional Area S&. in 6.4
S&. t 0.08 8
Onternal ,ross Sectional Area S&. t 0.03 8
Ceight o pipe per t-lb
5.46
Ceight o pipe per t-lb
8.758
SELECTION OF PIPE SUCTION F"r$ Plate 12 3"tter2 33*
t
d
Onside >iamet er" $ith Power >5
5.578
0.35
5.064
8"345
Onternal ,ross Sectional Area S&. in 30.0
S&. t 0.8
Ceight o pipe per t-lb
6.73
SELECTION OF PIPE DISCARGE Fr"$ Plate 1 P"tter2 33*iamet er" $ith
Onternal ,ross Sectional Area
Ceight o pipe per tlb
P a g e | 117
8
>
t
d
Power >5
8.500
0.37
8.07
34.
S&. in 4.8
S&. t 0.05
4.5
P a g e | 11<
GLOSSARY Air ejector - a de#ice that uses a relati#el! high-pressure moti#e steam @ow through a noEEle to create a low-pressure or suction eNect Air vent - a de#ice that allows the release o non-condensable gases rom a steam s!stem Blower - is a an used to orce air under pressure" that is" the resistance to gas @ow is imposed primaril! upon the discharge Boiler - a #essel or tan in which heat produced rom the combustion o uels such as natural gas" uel oil" wood" or coal is used to generate hot water or steam or applications ranging rom building space heating to electric power production or industrial process heat Boiler horsepower - a unit o rate o water e#aporation e&ual to the e#aporation per hour o 86.5 pounds o water at a temperature o 33U$ into steam at 33U$. Bne boiler horsepower e&uals 88"645 1tu per hour or 85"833 Kilo+oules per hour British thermal unit (Btu) - the amount o heat re&uired to raise the temperature o one pound o water one degree $ahrenheit? e&ual to 353 calories. Ot is roughl! e&ual to the heat o one itchen match. Bunker C Oil - :esidual uel oil o high #iscosit! commonl! used in marine and stationar! steam power plants. '2o. 7 uel oil( By-pass - A passage or a @uid" permitting a portion o the @uid to @ow around its normal pass @ow channel. Compressor - is a machine used to increase the pressure o a gas b! decreasing its #olume Condensate - ,ondensed water resulting rom the remo#al o latent heat rom steam. Condensate pump - a pump that pressuriEes condensate allowing it to @ow bac to a collection tan or boiler plant Condenser - A de#ice that condenses steam. Surace condensers use a heat exchanger to remo#e energ! rom the steam" and t!picall! operate under #acuum conditions. C""l!n0 Ran0e is the diNerence in temperature between the hot water entering and cold water lea#ing the tower eaerator - a de#ice that uses steam to strip eed water o ox!gen and carbon dioxide. Ot sometimes also acts as pre-heater e&uipment ri!t is the water lost as mist or droplets entrained b! the circulating air and discharge to the atmosphere. Ot is in addition to the e#aporati#e loss and is minimiEed b! good design
P a g e | 11;
ry "ul" temperature - is the temperature o air as registered b! an ordinar! thermometer E#hauster - is a an used to withdraw air under suction" that is" the resistance to gas @ow is imposed primaril! upon the inlet $an - a machine consisting o a rotor and housing or mo#ing air or gases at relati#el! low-pressure diNerentials $an - is a machine used to appl! power to a gas to increase its energ! content thereb! causing it to @ow or to mo#e $an %ower &nput is the power re&uired to dri#e the an and an! elements in the dri#e train which are considered as a part o the an. Power input can be calculated rom appropriate measurements or a d!namometer" tor&ue meter or calibrated motor $an 'tatic %ressure is the diNerence between the an total pressure and the #elocit! pressure. Thereore" an static pressure is the diNerence between the static pressure at the an outlet and the total pressure at the an inlet. $an otal Eciency is the ratio o the an power output to the an power input $eedwater - water sent into a boiler or a steam generator. $eed water t!picall! meets cleanliness criteria" contains treatment chemicals" and has been stripped o ox!gen. $oundation - is the supporting part o the structure. Ot is a transmission or structural connection whose design depends on the characteristics o both the structure and the t!pe o the soil and roc beneath. $uel header system -is designed to pro#ide uel to multiple generators" where there are se#ere regulator! restrictions to the #olume o uel that can be stored in the generator room. The header is an to 3 diameter pipe which runs the length o the room to ser#e all generators. The pipe is siEed to be less than the regulator! limit or uel storage &uantities in the room. &nduced dra!t tower The an is mounted on the top 'discharge( o the cell" with conse&uent impro#ed air distribution within the cell? drit eliminators reduce mae-up re&uirements? spra! noEEles" downspouts" splash plates and splash bars ensure ample e#aporati#e surace or the water" with maximum #olumetric heat transer rates. *ilowatt-hour (k+h) - The electrical energ! unit o measure is e&ual to one thousand watts o power supplied to" or taen rom" an electric circuit steadil! or one hour. ,ake-up water - water brought into a boiler s!stem rom outside to replace condensate not returned to the boiler plant" water used in blow
P a g e | 11=
down" steam lost through leas" or water lost through e#aporation or mist %ressure educing .alve (%.) - a #al#e that regulates the amount o steam allowed rom a high-pressure ser#ice to a low-pressure ser#ice %rocess 'team - Steam used or industrial purposes other than or producing power. %ump - is a machine used to add energ! to a li&uid in order to transer the li&uid rom one point to another point o higher energ! le#el. elie! .alve ('a!ety elie! .alve) - An automatic pressure relie#ing de#ice actuated b! the pressure upstream o the #al#e and characteriEed b! opening pop action with urther increase in lit with an increase in pressure o#er popping pressure. 'team - The #apor phase o water" unmixed with other gases. ur"ine - A de#ice that con#erts the enthalp! o steam into mechanical wor. +et "ul" temperature - is the temperature o air as registered b! a thermometer whose bulb is co#ered b! a wetted wic and exposed to a current o rapidl! mo#ing air. +et 'team - Steam containing a percentage o moisture