Design and Layout Problem for a Combined Gas

December 11, 2018 | Author: Ashley Espeso Veluz | Category: Steam Engine, Boiler, Heat Exchanger, Power Station, Gas Turbine
Share Embed Donate


Short Description

to study the combination of gasses...

Description

P a g e  | 1

DESIGN AND LAYOUT PROBLEM FOR A COMBINED GAS-VAPOR POWER PLANT General A single Gas Turbine Power Plant topping the steam power plant that will contain two identical controlled-extraction controlled-extraction 5000-Kw turbine generators. Steam will be extracted rom each turbine or process use and or a deaerator. deaerator. Steam also will be extracted at a lower pressure or use in a surace t!pe o eed water heater. heater. A b!-pass" pressure reducing station will pro#ide process steam when the turbines are not in use. All process steam become contaminated and is wasted. $our identical boiler%heat exchangers exchangers are to suppl! the plant steam re&uirements 'two boilers to carr! maximum re&uirements o one turbine(. The boiler%heat exchanger room room will be transerring it to the steam in a heat exchanger that ser#es as the boiler b oiler.. )&uipment to be located in the turbine hall* turbine generators" deaerators" low-pressure low-pressure heaters" boiler eed pumps" condensers" circulating pumps" air e+ectors condensate pump" turbine control board" o#erhead crane. A separate building shall be pro#ided p ro#ided or gas turbine power plant. Data Gas Tur!ne P"#er Plant ,ompressor mechanical ecienc!* /  Turbine  Turbine and compressor compressor adiabatic eciencies* 5/ 5/ Generator electrical and mechanical ecienc!* / 1urner ecienc!* 5/  Turbine  Turbine mechanical ecienc! ecienc!** / $uel* 2atural gas with lower heating #alue o 30340 1tu%lb Air enters the compressor suction at 5o$ and 6.4 psia" and the gas turbine at 3070 o$. The pressure ratio is 6. The exhaust gasses lea#e the heat exchanger at 850o$. Stea$ P"#er Plant  Turbine  Turbine generators* 7/ mechanical ecienc!" 5/ generator ecienc!" design point is 5%6 load" 60-psia automatic extraction 'or surace t!pe eed water heater( and 0-psia non-automatic extraction pressures pressures 'or process use and deaerators(. Steam conditions 600 psig" 550o$" and 3 in. 9g. Process Process Steam* 85000 lb per hour or the plant. Show connection or saet! #al#e ater P:;. 1oilers* Single settings" esign on basis o heat balance ba lance data.  Turbine  Turbine ,ontrol 1oard* 1oard* Bne or both turbines"  t high b! 6 6 t long" and 5 t deep 'to allow or switchgear( with 6-t clearance. Piping* o sucient strength or pressures pressures and temperatures temperatures in#ol#ed" @anged. Cater Cater piping on pump discharges designed or #elocit! o about 650 pm and less than 300 pm on suction. 0/ pressure drop in low-pressure bleed line and / in high-pressure blee line. Dse a hand b!-pass around automatic P:;. Stac* To de#elop -in. static drat. Re&u!re$ents' a. ,alculate ,alculate heat heat balance balance or turbine turbine hall and and mae mae schematic schematic diagram with @ows" temperatures" temperatures" and enthalpies. b. ,alculate ,alculate boiler boiler siEe siEe and select select boiler boiler c. ,alculate ,alculate surace surace re&uir re&uiremen ements ts o condenser condenser and select select condenser d. ,alculate ,alculate siEe siEe o" and select" select" deaerator deaerators s and surace surace heaters heaters e. ,alculate ,alculate siEe siEe o boiler boiler eed eed pumps pumps and select select pumps pumps . ,alcul ,alculate ate siEe siEe o o conde condensa nsate te pumps pumps g. etermine >etermine the the riction riction loss loss o the water water piping piping &. >etermine >etermine the the power penetr penetrated ated b! the gas gas turbine turbine power plant r. >eter >etermin mine e amount amount o uel uel consu consumed med per per hourH hourH s. >raw a TS TS diagram diagram or or the combi combined ned gas-# gas-#apor apor power power plant plant

P a g e  | %

1oiler $eed Pump* our pumps or the plant"00/ spare" centriugal" motor-dri#en" motor-dri#en" 835-psig discharge pressure. Allow 0/ extra @ow to tae care o emergencies. >eaerators* two or entire plant" 00/ spare" " drains cascaded to condenser. condenser. >esign on basis o heat balance ba lance data.  Turbine  Turbine ,ontrol 1oard* 1oard* Bne or both turbines"  t high b! 6 6 t long" and 5 t deep 'to allow or switchgear( with 6-t clearance. Piping* o sucient strength or pressures pressures and temperatures temperatures in#ol#ed" @anged. Cater Cater piping on pump discharges designed or #elocit! o about 650 pm and less than 300 pm on suction. 0/ pressure drop in low-pressure bleed line and / in high-pressure blee line. Dse a hand b!-pass around automatic P:;. Stac* To de#elop -in. static drat. Re&u!re$ents' a. ,alculate ,alculate heat heat balance balance or turbine turbine hall and and mae mae schematic schematic diagram with @ows" temperatures" temperatures" and enthalpies. b. ,alculate ,alculate boiler boiler siEe siEe and select select boiler boiler c. ,alculate ,alculate surace surace re&uir re&uiremen ements ts o condenser condenser and select select condenser d. ,alculate ,alculate siEe siEe o" and select" select" deaerator deaerators s and surace surace heaters heaters e. ,alculate ,alculate siEe siEe o boiler boiler eed eed pumps pumps and select select pumps pumps . ,alcul ,alculate ate siEe siEe o o conde condensa nsate te pumps pumps g. etermine >etermine the the riction riction loss loss o the water water piping piping &. >etermine >etermine the the power penetr penetrated ated b! the gas gas turbine turbine power plant r. >eter >etermin mine e amount amount o uel uel consu consumed med per per hourH hourH s. >raw a TS TS diagram diagram or or the combi combined ned gas-# gas-#apor apor power power plant plant

P a g e  | (

P a g e  | )

A* Cal+ulate ,eat alan+e "r tur!ne ,all an. $a/e s+,e$at!+ .!a0ra$ #!t, "#s2 te$3eratures2 an. ent,al3!es*

5000 KC I 600 psig  The #alue is 48./ ? )ngine )cienc! 'Table  p. -7( 600 psig I 550 0$ $or the :anine ,!cle :atio F"r Emg: Emg J (Mechanical Efciency)(Generator Efciency)

J '0.7('0.5( Emg 4 51*%6

P a g e  | 7

F"r En0!ne E8+!en+9 '

Engine Efciency = 73.1 x 1.0 x 0.98

En0!ne E:* 4 ;1*> 3s!0 @ 77> >F P1 4 )>> 3s!0  1)*; 4 )1)*; 3s!a T1 4 77> >F

Fr"$ Stea$ Tale  Tale (

P

h

s 60

347

.5540 6.4 x3

5 − .4x 10

x

66.4 3

0.7

h1

s1

65

345.6

.5558

F"r ,1' 4.7 5

=

x1 0.6

=

x2 −3

1.7 x 10

 x 1=0.564

P a g e  | < h1=1276 +(− 0.564 )

h1=1275.436

 btu lb

F"r S1'  x −3

1.7 x 10

=

4.7 5

−3

 X =1.598 x 10

−3

S 1=1.5570 −(1.598 x 10 )

S 1=1.555402

btu lb

  

R

A 3"!nt %' #? , 1 4 ,% an. )6 3ressure .r"3

 P2= P1−( 4 )( P1)

J 66.4  '66.4('6/(  P2=398.112 psia

Cith h J h3?

,% 4 1%;7*)(< S"l!n0 F"r S%'

1! double interpolation I 85 psia and 600 psia

I 85 psia h

S

t 34.8 560

.5573

P a g e  | ;

6.87

L8

L6

7.3 0

345.687

s

t

344.5 550

−3

6.1 x 10

.5738

P a g e  | =

S J .5573 M x8

¿ 1.5562 +

(4.136 )( 6.1 x 10−3 ) 6.2

s =1.5603

I 600 psia h

S

t 340.

.5566

560 6.7

L

L

7.3 0

−3

6.1 x 10

345.6

s

t

344.0

.5705

550

S J .5566 M x

J

1.5544 +

( 4.636 )( 6.1 x 10−3) 6.2

s =1.55896

1! interpolating the computed S #alues*  P2

S2

85  

.5708 8.3

L

P a g e  | 5

5

8.3

600

−3

1.34 x 10

.557

S2

P a g e  | 1>

 X  −3

1.34 x 10

=

3.112 5

−4

 X =8.34016  x 10

S 2=1.5603 − x

−4

S 2=1.5602 −( 8.34016  x 10 )

S 2=1.55947

btu lb˚R

At P"!nt (' #? P % 4 )> 3s!a an. S % 4 S( 4 1*775); S"l!n0 "r ,( 9 !nter3"lat!"n' ' 

S 2= S3 =1.55947  is be!ond the #alues ound in the Tables 8" we

Since

will use Table 3

I 60 psia and with

 h  J 387.7



S 2= S3 =1.55947

s  J 0.836

hg J 88. sg J .365 ' 





S 3= S f  3 + xS fg 3



 x =

¿



S 3− Sf  3 ' 

S fg 3

1.55947 −0.39214 1.2845

 x =0.90878 734







h3= hf  3 + x hfg 3

¿ 236.16 +¿  '0.04734('88.(

P a g e  | 11 ' 

h3=1084.780283 btu / lb

P a g e  | 1%

h3

S"l!n0 "r

 RCR =stage eff .=

 us!n0 RCR'

h2−h 3 ' 

h2−h 3

RCR 4 ;=*77>)6 h2−h 3

78.5504 =



h2−h 3



h3= h2− stage ef f . ( h2 −h3 )

¿ 1275.436− 0.785504 (1275.436 −1084.7803 )

h3=1125.6752

Sol#ing

S3

 btu lb

 w%

h3=1125.6752 ∧ P3= 40 psia

h3= hf  3 + x hfg 3

 x =

 x =

h3−h f  3 h fg 3

1125.6752−236.16 933.8

 x =0.9525757121

S 3= S f  3 + xS fg 3

S 3=0.39214 +( 0.9525757121)( 1.2845 )

S 3=1.61572

btu lb˚R

P a g e  | 1(

S 2= S 4 ' 

At 3"!nt )' #?

an.

 P4 =10 psia



h4 :

S"l!n0 "r

h  J 7.38 s  J 0.3857 hg J 3. sg J .506 ' 





S 4 =S f  4 + x S fg 4



 x =

 x =



S 4− S f  4 ' 

S fg 4

1.55947 −0.28358 1.5041

 x =0.8482747158







h4 =h f  4 + h fg 4



h4 =161.23 +( 0.8482747158 )( 982.1)



h4 =994.3206 btu / lb

 RCR =stageeff .=

h1−h 4 ' 

h1−h 4



h4 =h2 −stage eff . ( h2−h 4 )

h4 =1275.436−( 0.785504 )( 1275.436 −994.3206 )

h4 =1054.62297

Sol#ing

S4

 btu lb

 with

h4 =h f  4 + x hfg 4

h4 =1054.62297 ∧ P 4=10 psia

P a g e  | 1)

 x =

h4 −hf  4 hfg 4

P a g e  | 17

 x =

1054.62297 −161.23 982.1

 x =0.9096761735

s 4 =s f  4 + x s fg 4

s 4 =0.28358 +( 0.9096761735 )( 1.5041 )

s 4 =1.65182

btu lb˚ R

 P5=2 ∈ .Hg.∧using s 2=1.55947

A 3"!nt 7'#?

btu lb˚R

h f 

P

h fg

S f 

S fg

0.0  

77.35

08.0

0.3763

706

 

0.044

0.

 X 1

0.44

−3

 X 3

6.24 x 10  X 4

.0

 

8.6

 X 2

0.05

7.46  

 

087.0

0.8377

.658

 X 1= hf  =66.25 +

(3.49 ) ( 0.0797 ) 0.10

= 69.0.3153

3

P a g e  | 1<

 X 2= hfg=1038.0 −

( 2 ) ( 0.0797 )

 X 3= S f  =0.12642+

0.10

=1036.406

 (6.24 x 10−3 )( 0.0797 ) 0.10

=0.13139328

 X 4 = Sfg = 1.8604 −

( 0.0151 ) ( 0.0797 ) 0.10

=1.8483653

P a g e  | 1;

S 1= S f + x S fg

 x =

 x =

S 1−S f  S fg

1.555402 −0.13139323 1.8483653

 x =0.7704151988

$or



h5 :

h5 ' = hf  5 ' + x hfg 5 ' 



h5= 69.03153 +( 0.7704151988 )( 1036.406 )



h5= 867.494

Sol#ing or

 RCR =

h5

btu lb

*

h1−h5 h1−h5 ' 



h5= h1− stage eff . ( h1 −h5 )

¿ 1275.436−( 0.7704151988 )( 1275.436−867.494 )

h5= 954.99593

btu lb

P a g e  | 1=

LIST OF FINAL ENTALPIES'

h1=1275.436

 btu lb

h2=1275.436

 btu lb

h3=1125.6752

 btu lb

h4 =1054.62297

h5= 954.99593

 btu lb

btu lb

FOR ESTIMATING TE TROTTLE FLOW

 KW cap Totaloutput =  Emg

¿

 5000 0.912

Totaloutput =5,482.45614035

FOR NON-BLEEDING TROTTLE FLOW

( )(

Totaloutput  Throt tle lo! "# =

 5

4

h1−h5

5,482.45614035

Throttle lo! "#=

3413 )

( )( 5 4

3413 )

1275.436 −954.99593

P a g e  | 15

Throttlr lo! "# =72991.89676488

P a g e  | %>

FROM EUATION 11-1*3*71>* "r t,e n"n-re0enerat!e +9+le

TurbineHeat Rate1

[(

1

)] [

Throttlelo! "# +  PS + Throttle lo! "# ( h4 −h f $ 2inHg ) 2

5 4

¿

]

( KWcap )

[ ( 72991.89676488 + 17500 ) ( 1275.436 −1054.62297 ) ]+ [ 72991.89676488 ( 1054.62297 −69.03153 ) ] 5 4

( 5000 )

Turbine Heat Rate1=14707.51656895

ASSUME TAT TE FINAL TEMPERATURE OF FEEDD WATER IS' T f! =239.0583772

Temp$ 2 inHg=100.9895

 ee% !ater total rise= 239.0583772 −100.9895

 ee%!ater total rise = 138.0688772

Fr"$ FIG* 11-;a 3*71(* T,e re.u+t!"n !n ,eat +"nsu$3t!"n at t"tal r!se !n Fee. #ater te$3erature 4 1(=*>*>>)%7=(;;%

%(5*>7=(;;%

%)>

 x =

%>=*))

1.0583772 ( 2.02 ) 2

 x =1.068960972 h f!=206.42 + 1.068960872 h f!=207.48896096

F"r$ E&uat!"n 11-1 W =

¿

 %*>%

Turbine Heat Rate ( KWcap ) h1−h f $ 239.053772

  17,623.24290547 ( 5000 ) 1275.436 −207.48896096

P a g e  | %(

W = 82 & 161 . 65232835

P a g e  | %)

Assu$e t,at

mT = 86030

 b * A33r"!$atel9 HRe.u+e 9 %>> hr  *

F"r A!r EJe+t"r T,ere"re

mT = 85830

EAT BALANCE FOR DEAERATOR m2 h4

1

mW =  PS + 0 . 02 mT 

 psia

2

m 2 h 4= m2 hf $9 psia + mW  ( h f $ 9 psia− hf $ 60  )

m 2=

mW  ( hf $ 9 psia− hf $ 60  ) h4 −h f $ 9 psia 1

m W =  PS + 0 . 02 mT  2

m 2=

( 17500 + 0 . 02 ( 85830 ) ) ( 156 . 27−28 . 08 ) 1054 . 62297−156 . 27

m 2=2742 . 10253237

1

m2+  PS + 0 . 02 m T  2

P a g e  | %7

T,e te$3erature " t,e ee. #ater "r$ ,eater H .eaerat"r enter!n0 t,e "!ler

1

m2+  PS + 0.02 mT  2

1

mT =  PS −m 2

1.02 mT 

2

h f $ 225.96  =224.6394 h f!

[( (

1

)

] [(

)

[(

]

)

1

m2 +  PS + 0.02 mT  ( h f $ 9 psia ) + m T −  PS −m 2 ( h f $ 225.96  ) =1.02 m T  ( hf! ) 2

1

2

)

1

m2 +  PS + 0.02 mT  ( h f $ 9 psia ) + mT −  PS −m 2 ( h f $ 225.96  ) 2

2

¿ ¿ hf! =¿

]

85830

( 2742.10253237 + 17500 +0.02 (¿) ( 156.27 ) ] + [ ( 85830 −17500 −2742.10253237 ) ( 224.6394 ) ] ¿ ¿ ¿¿

h f!=207.49017735

F"r

mC  1

m C =m T −m 2−  PS 2

m C =85830 −2742 . 10253237 −17500 m C =65587 . 89746763

F"r

mW 

P a g e  | %< 1

m W =  PS + 0 . 02 mT  2

m W =17500 + 0 . 02 ( 85830 ) m W =19216 . 6

P a g e  | %;

EAT BALANCE AT AIR EKECTOR h f $ 2inHg =69.03153

300 ( h

m C 

m C ( hC − hf $ 2 inHg )=200 ( h

hC =

200 ( 1000 ) 65587.89746763

+ 69.03153

hC = 72.08087306

EAT BALANCE AT SURFACE EATER

Pressure I surace heater J 87 psia  TsatJ370.7 0$ Cith Temperature >iNerence o 5 0$ T 2 =Tsat −T% T 2 =260.96 −5 T 2 =255.96

hC 

P a g e  | %=

m1 h3

mC 

m C 

h f $T 

hC 

2

m1

T

, 

356

333.75 .7

3

355.7

L

357

336.7

1! interpolation*  x =

255.96 −254 256−254

( 224.68 −222.65 )

h f $ 36 psia =229.75  E¿ = Eout  m C h C + m1 h3= m1 h f $ 36 psia + hf $ T 

2

m 1=

¿

mC  ( h f $ T  −hC ) 2

h3− hf $ 36 psia

65587.89746763 ( 224.6394 −72.08087306 ) 1125.6752−229.73

m 1=11168.08597525

3.08

P a g e  | %5

P a g e  | (>

FOR MASS BALANCE Assu$e t,at t,e sura+e ,eater .eaerat"r H a!r eJe+t"r +"n.enser are "ne ,eat e+,an0er* 1

 ) 2+ 0.02+  PS

 ) 1

2

0.02 ) T 

 ) T 

 ) 1 > W +a3a+!t9 #? )=%*)7) L"sses* T,e T,r"ttle Fl"# re&u!re. #!ll e'

:)PFA,)

1%5*><

777

,

7

1((*=<

F"r t,e ent,al39 " 3"!nt 1

 X h =

555 −540 560 −546

( 133.86 −129.06 )

 X h =3.6

h1 -= 129.06 + X h

h1 -= 132.66

 X  Pr=

555−540 560−540

( 1.5742 −1.3860 )

 X  Pr =0.14115

 Pr1 - =1.3860 − X  Pr

 Pr1 - =1.52715

Pr

1*(=

Pr

1*7;)%

P a g e  | ))

At 3"!nt % t,e 0as +9+le

F"r P%

 P2  P1 -

= Pressureratio

 P2 -= Pressureratio ( P1- )

F"r Pr%

 P2  P1 -

=

 Pr 2 Pr 1-

 P 2 Pr 2- = ( Pr1 - )  P1 -

 Pr 2- =21.3801

F"r t,e te$3erature an. ent,al39 " 3"!nt % !n t,e 0as +9+le Fr"$ t,e tale " 3r"3ert!es " a!r' Us!n0

 Pr 2- =21.3801

Pr

,%G

%1*1=

%=1*1)

%1*(=>1

,%

%)*>1

%51*(>

T%G

11

T%

1%>>

P a g e  | )7

F"r t,e !.eal ent,al39 " 3"!nt %

 X h 2=

21.3801−21.18 24.01−21.18

( 291.30−281.14 )

 X h 2= 0.71838021

h 2-i%eal = 281.14 + X h2

h 2-i%eal = 281.85838021

F"r t,e a+tual ent,al39 " 3"!nt %

h 2-actual = h 1- +

h 2-i%eal − h 1Turbinecopma%iabaticeff 

h 2-actual=308.18750613

F"r t,e te$3erature " 3"!nt %

 X T  2 - =

21.3801 −21.18 24.01 −21.18

 X T  2 - =2.82826855

T 2 - =1160 + X T 2 -

T 2 - =11622.82826855

( 1200 −1160 )

P a g e  | )<

At 3"!nt ( " t,e 0as +9+le Us!n0 t,e 0!en te$3erature at 3"!nt ( T 3 - =2520

Fr"$ t,e tale " t,e 3r"3ert!es " a!r

T

,(G

%7>>



,(G

%77>

HAUST

⋅ ( h.eedwater WDST):

A2SO%.pipe

Y .P J pressure loss" psi d J pipe O>" in. C J @ow" lb%min  J 6, J $riction actor" $rom $igure 3- 'Potter" pp.7( F J lenght" t ; J #elocit!" t%s Fsteam.pipe1.A := 80

$or the #alue o " using Table 3-8 'Potter" pp.78( $riction actor or steam 1! 1abcoc and Cilcox '1. and C.( in#estigator

O>pipe1.A:=  7.07

  + 8.7  steam.pipe1.A := 0.000 O>pipe1.A =  0.04305  steam.pipe1.A F$o%6

ρ 1.A:=

 ;

ρ 1.A =  0.87  T9):)$B:)*

P a g e  | =) 3

 ;elocit!7   0.0035 ⋅  steam.pipe1.A ⋅ Fsteam.pipe1.A ⋅ ρ 1.A⋅   70   ∆ P1.A:= O>pipe1.A

∆ P1.A=  4.804376 $:B< WD2,TOB2 A TB 1BOF):* SBF;O2G $B: ST)A< POPO2G P:)SSD:) >:BP* $rom )&uation 3-5 'Potter" pp.57(

3

∆P

where*

Assume6

0.0035 ⋅  steam.pipe ⋅ Fsteam.pipe ⋅ρ ⋅; dO>.pipe

Y .P J pressure loss" psi d J pipe O>" in. C J @ow" lb%min  J 6, J $riction actor" $rom $igure 3- 'Potter" pp.7( F J lenght" t ; J #elocit!" t%s Fsteam.pipeA.T := 30

$or the #alue o " using Table 3-8 'Potter" pp.78( $riction actor or steam 1! 1abcoc and Cilcox '1. and C.( in#estigator O>pipeA.T:=  4.

  + 8.7   :=   0.000  steam.pipeA.T O>pipeA.T =  0.05745  steam.pipeA.T F$o%6

ρ A.T :=

 ;3

ρ A.T =  0.4533

P a g e  | =7

 T9):)$B:)*

3

 ;elocit!   ⋅  steam.pipeA.T ⋅ Fsteam.pipeA.T ⋅ ρ A.T⋅ 0.0035   70   ∆ PA.T := O>pipeA.T

∆ PA.T =  3.03836 ∆P total:= ∆ P1.A⋅ 3 + ∆ PA. ∆P total =  87.7847644

P a g e  | =<

M* DETERMINE TE DIAMETER AND IGT OF TE STAC  SOLVING FOR TE DIAMETER OF TE STAC 

$rom* Q

A⋅

where*

Q J @ow rate" cm A J area o the stac" s&.t ; J specic #olume" cubic t.%lb $rom pre#ious solution" the @ow rate @owing to the stac is the mass o air and mass o uel gi#en oN b! the 6 boiler  The total exhaust o the 6 boiler is* iamet  Thicne er" in ss" in

Onside >iamet er" in

>

T

d

Onside >iamet er" $ith Power >5

3.45

0.308

3.67

.

Onternal ,ross Sectional Area S&. in 6.4

S&. t 0.08 8

SOLVING FOR WATER PIPING DISCARGE DIAMETER ;discharge:= 65 3 π ⋅ 'd( [email protected] ⋅ ;dischar 6

ddischarge:=

[email protected]⋅ 6 ⋅ '3( π ⋅ ;discharge

ddischarge=  .565683

Ceight o pipe per t-lb

5.46

P a g e  | 5)

2omin al Pipe SiEe" in

3

Butside Call >iamet  Thicne er" in ss" in

Onside >iamet er" in

>

T

d

Onside >iamet er" $ith Power >5

3.845

0.56

3.074

84.48

Onternal ,ross Sectional Area S&. in 8.857

S&. t 0.03 8

Ceight o pipe per t-lb

8.758

P a g e  | 57

SOLVING FOR WATER FRICTION LOSS FICTION LOSS AT SUNCTION PIPE 3

0.0035 ⋅ sunction ⋅ Fsunction ⋅ ρ suction⋅ ;sunctio ∆P sunction dsunction

W,ere'

Y P J suction pressure loss" psi d J suction inside diameter" in F J suction lenght" t ; J suction #elocit!" ps  J suction riction actor [ J suction densit!" lb%cu.t

Assu$e len0t, " su+t!"n  *suction=100

F"r su+t!"n r!+t!"n a+t"r2   Fr"$ E&* %-1= 3"tter2 33*7= 64

f  =  "  R

S"l!n0 "r Re9n".s nu$er Fr"$ E&* %-1> 3"tter2 33*7(

2:

;a#⋅ >⋅ ρ

µ

W,ere

2r J :e!nold\s number ; J a#erage #elocit!" ps > J internal pipe diameter" t [ J luid densit! or reciprocal o speciic #olume '%#(" lb-mass%cu.t ] J luid absolute #iscosit!" lb-mass%t-sec

P a g e  | 5<

>sunction O> :=  .7 2: :=

⋅ >sunction ;sunction O>⋅ 73. 70⋅ 3   ⋅ 0.0003345

2: =  3564.63544 The(6

76  sunction:= 2:

 sunction=  0.000505 THEREFORE6

3

300 ⋅  sunction ⋅ Fsunction ⋅ 73.6⋅     0.0035     70   ∆P sunction:= >sunction O>

∆P sunction=  0.0387 FRICTION LOSS AT THE "ISCHARGE PIPE6 F$o% E&u'tio( *+), -Potte$/ ..0,;2

3

∆P discharge

⋅  discharge ⋅ Fdischarge ⋅ ρ discharge ⋅ ;discharg 0.0035 ddischarge

 A55u%e le(ght of 5u(?tio(

Fdischarge:= 0 2 := :discharge Fo$ @i5?h'$ge f$i?tio( f'?to$/ f6

;discharge ⋅ >discharge O>⋅ 73. 70⋅ 3⋅ 0.0003345

2:discharge =   66.566583

F$o% E&u'tio( *+)< -Potte$/ ..0,iamet er" in

>

t

d

Onside >iamet er" $ith Power >5

5.578

0.35

5.064

8"345

Onternal ,ross Sectional Area S&. in 30.0

Ceight o pipe per t-lb

S&. t 0.8 

WATER PIPING DISCGARE DIAMETER SURFACE EATER TO BOILER TEREFORE' ;discharge= 650

π ⋅ 'd( [email protected] 6 ddischarge.S9.1 :=

3

⋅ ;dischar [email protected]⋅ 6 ⋅ '3( π ⋅ ;discharge

= 3.74757 ddischarge.S9.1

6.73

P a g e  | 55

SELECTION OF PIPE DISCARGE Fr"$ Plate 1 P"tter2 33*

t

d

Onside >iamet er" $ith Power >5

8.500

0.37

8.07

34.

Onternal ,ross Sectional Area S&. in 4.8

S&. t 0.05 

Ceight o pipe per tlb

4.5

S+,e.ule )>

SOLVING FOR WATER FRICTION LOSS FRICTION LOSS AT SUCTION LOSS Fr"$ E&* %-17 3"tter2 33*7< 3

0.0035 ⋅ sunction.S9 ⋅ Fsunction.S9 ⋅ ρ suction.S9 ⋅ ;sunction.S ∆P sunction.S9 dsunction.S9

Y P J suction pressure loss" psi d J suction inside diameter" in F J suction lenght" t ; J suction #elocit!" ps  J suction riction actor [ J suction densit!" lb%cu.t

Assu$e len0t, " su+t!"n  *%ischarge .SH =100

F"r .!s+,ar0e r!+t!"n a+t"r2 '  Fr"$ E&* %-1= 3"tter2 33*7=  

76 2:

P a g e  | 1>>

W,ere

 J discharge riction actor 2r J :e!nold\s number

P a g e  | 1>1

S"l!n0 " Re9n"l.s nu$er

Fr"$ E&* %-1> 3"tter2 33*7( 2:

;a#⋅ >⋅ ρ

µ

 , %ischarge,. SH = 2.469

;discharge ⋅ >discharge O>.S9⋅ 73. 2:discharge.S9 := 70⋅ 3⋅ 0.00055

= 73383.35076 2:discharge.S9

T,en'

76  discharge.S9 := 2:discharge.

=  0.000080  discharge.S9

T,ere"re 3

 ;discharge  0.0035 ⋅ discharge.S9 ⋅ Fdischarge.S9 ⋅ 73.6⋅   70   := ∆P discharge.S9 >discharge O>.S9

=  0.0773 ∆P discharge.S9

P a g e  | 1>%

TE TOTAL FRICTION LOSS AT SURFACE EATER TO BOILER WATER PIPING

∆P surace.heater := ∆P sunction.S9 + ∆P discharge.

= 0.038063 ∆P surace.heater FOR TOTAL FRICTION LOSS

∆P total.loss:= ∆P deaerator+ ∆P surace.hea ∆P total.loss=  0.30435 * DETERMINE TE POWER GENERATED BY TE GAS TURBINE POWER PLANT

W f  =

¿

h3 g −h 2 gactual  *H/  ( #urner eff  )

651.516 −308.18750613 20270 ( 0.95 )

W f  =0.01782923

FOR WOR OF TE COMPRESSOR

W+RK compressor =

h2 gactual− h1 g Compressor mechanicaleff .

¿

308.18750613 −132.66 0.99

W+RK compressor =177.30051124

FOR WOR OF GAS TURBINE Wor0 gasturbine =Turbinemecheff  ( h3 g −h4 gactual ) ( 1+ W f  )

¿ 0.99 ( 651.516 −366.58830641 ) ( 1+ 0.01782923 )

P a g e  | 1>(

Wor0 gasturbi ne=287.10765654

WOR NET OF TE GAS CYCLE Wor0 netgas =Wor0 gasturbine −Wor0 compressor

¿ 287.10765654 −177.30051124

Wor0 netgas =198225.54874894

R* DETERMINE AMOUNT OF FUEL CONSUMPTION PER OUR

F"r uel re&u!re.'  ) fuel=W f  ( )totalexhaust  )

¿ 0.01782923 (1049539.71137614 )

 ) fuel=18712.48089537

F"r .uel re&u!re. "r ) "!ler total fuel =4∗ ) fuel

¿ 4∗18712.48089537

total fuel=74849.92358148

P a g e  | 1>)

S* DRAW A TS DIAGRAM FOR TE COMBINED GAS-VAPOR POWER PLANT

P a g e  | 1>7

APPENDICES

>:ACO2G" ,9A:T" TA1F)S" ,ATAFBGS X BT9): :)$):)2,)S

P a g e  | 1><

P a g e  | 1>;

P a g e  | 1>=

P a g e  | 1>5

P a g e  | 11>

SELECTIO OF BOILER FROM APPENDI2 PLATE 1( PP* ) $ G 9  + K

66 7507 7^^ 3 %3^^ 8^- 0 %3^^

8^- 8%6^^ 8^-3 %3^^

9eaders Cidth o >ampers >rums >rums B#erall 9eight 9eight o#er Steam Butlet B#erall Fength >rum to Butside ,asing

F

8^-7 %6^^ 5^-3^^ ^-^^ 3^-0^^ ^-6^^ ^-0 8%^^ 7^-3^^

$ront Call Onside $ace $ont Call to < 2 B P

^-0^^ Onside $ace 1ridgewall >amper Focation-9oriEontal >amper Focation-;ertical Fength o >amper

 %^^ 36 4%^^ 7^-7^^

P a g e  | 111

SELECTION OF SURFACE ACE CONDENCER FROM APPENDI2 PLATE 1) 33* POWER PLANT TEORY AND DESIGN BY POTTER

"ISTANCE RE!UIRE" FOR WITH"RAWING

MA>0 NO0

$:AOOAF-$FBC SD:$A,) ,B2>)2S):S

SELECTION OD SURFACE EATER Fr"$ a33en.!2 3late ; 33*esign b! Potter 1oiler $eed Pumps >imensions PD

)

$

G



0

80 88  3 



8

ge Z











SELECTION OF MAIN STEAM PIPES

$rom Appendix" Plate  pp. 745 Power Plant Theor! and >esign Ph!sical Properties o Pipe '$rom 1oiler to Wunction A( 2omina

Butside

Call

Onside

l Pipe

>iamet

thicne

>iamet

SiEe" in.

er" in.

ss" in.

er" in.

>

t

d

Onside

Onternal

>iameter"

cross-

$ith

sectional

power

area S&. S&.

>5

in.

Ceight o pipe per t-lb

t.

Schedule 60 7

7.35

0.30

7.075

30

3.

0.30 0

.

P a g e  | 11)

SELECTION OF PIPE SUNCTION

$rom Appendix" Plate  "hy!ical "ro%ertie! o& "i%e  pp. 745 Power Plant theor! and >esign b! Potter Schedule 60 2omin al Pipe SiEe" in

3Z

2omin al Pipe SiEe" in

3

Butside Call >iamet  Thicne er" in ss" in

>

T

d

Onside >iamet er" $ith Power >5

3.45

0.308

3.67

.

Onside >iamet er" in

S&. in 8.857

Butside Call >iamet  Thicne er" in ss" in

Onside >iamet er" in

>

T

d

Onside >iamet er" $ith Power >5

3.845

0.56

3.074

84.48

Onternal ,ross Sectional Area S&. in 6.4

S&. t 0.08 8

Onternal ,ross Sectional Area S&. t 0.03 8

Ceight o pipe per t-lb

5.46

Ceight o pipe per t-lb

8.758

SELECTION OF PIPE SUCTION F"r$ Plate 12 3"tter2 33*

t

d

Onside >iamet er" $ith Power >5

5.578

0.35

5.064

8"345

Onternal ,ross Sectional Area S&. in 30.0

S&. t 0.8 

Ceight o pipe per t-lb

6.73

SELECTION OF PIPE DISCARGE Fr"$ Plate 1 P"tter2 33*iamet er" $ith

Onternal ,ross Sectional Area

Ceight o pipe per tlb

P a g e  | 117

8

>

t

d

Power >5

8.500

0.37

8.07

34.

S&. in 4.8

S&. t 0.05 

4.5

P a g e  | 11<

GLOSSARY   Air ejector  - a de#ice that uses a relati#el! high-pressure moti#e steam @ow through a noEEle to create a low-pressure or suction eNect  Air vent - a de#ice that allows the release o non-condensable gases rom a steam s!stem Blower  - is a an used to orce air under pressure" that is" the resistance to gas @ow is imposed primaril! upon the discharge Boiler - a #essel or tan in which heat produced rom the combustion o uels such as natural gas" uel oil" wood" or coal is used to generate hot water or steam or applications ranging rom building space heating to electric power production or industrial process heat Boiler horsepower - a unit o rate o water e#aporation e&ual to the e#aporation per hour o 86.5 pounds o water at a temperature o  33U$ into steam at 33U$. Bne boiler horsepower e&uals 88"645 1tu per hour or 85"833 Kilo+oules per hour British thermal unit (Btu) - the amount o heat re&uired to raise the temperature o one pound o water one degree $ahrenheit? e&ual to 353 calories. Ot is roughl! e&ual to the heat o one itchen match. Bunker C Oil  - :esidual uel oil o high #iscosit! commonl! used in marine and stationar! steam power plants. '2o. 7 uel oil( By-pass - A passage or a @uid" permitting a portion o the @uid to @ow around its normal pass @ow channel. Compressor   - is a machine used to increase the pressure o a gas b! decreasing its #olume Condensate - ,ondensed water resulting rom the remo#al o latent heat rom steam. Condensate pump - a pump that pressuriEes condensate allowing it to @ow bac to a collection tan or boiler plant Condenser   - A de#ice that condenses steam. Surace condensers use a heat exchanger to remo#e energ! rom the steam" and t!picall! operate under #acuum conditions. C""l!n0 Ran0e  is the diNerence in temperature between the hot water entering and cold water lea#ing the tower eaerator - a de#ice that uses steam to strip eed water o ox!gen and carbon dioxide. Ot sometimes also acts as pre-heater e&uipment ri!t   is the water lost as mist or droplets entrained b! the circulating air and discharge to the atmosphere. Ot is in addition to the e#aporati#e loss and is minimiEed b! good design

P a g e  | 11;

ry "ul" temperature  - is the temperature o air as registered b! an ordinar! thermometer E#hauster   - is a an used to withdraw air under suction" that is" the resistance to gas @ow is imposed primaril! upon the inlet $an - a machine consisting o a rotor and housing or mo#ing air or gases at relati#el! low-pressure diNerentials $an - is a machine used to appl! power to a gas to increase its energ! content thereb! causing it to @ow or to mo#e $an %ower &nput    is the power re&uired to dri#e the an and an! elements in the dri#e train which are considered as a part o the an. Power input can be calculated rom appropriate measurements or a d!namometer" tor&ue meter or calibrated motor $an 'tatic %ressure  is the diNerence between the an total pressure and the #elocit! pressure. Thereore" an static pressure is the diNerence between the static pressure at the an outlet and the total pressure at the an inlet. $an otal Eciency    is the ratio o the an power output to the an power input $eedwater  - water sent into a boiler or a steam generator. $eed water t!picall! meets cleanliness criteria" contains treatment chemicals" and has been stripped o ox!gen. $oundation - is the supporting part o the structure. Ot is a transmission or structural connection whose design depends on the characteristics o both the structure and the t!pe o the soil and roc beneath. $uel header system -is designed to pro#ide uel to multiple generators" where there are se#ere regulator! restrictions to the #olume o uel that can be stored in the generator room. The header is an  to 3 diameter pipe which runs the length o the room to ser#e all generators. The pipe is siEed to be less than the regulator! limit or uel storage &uantities in the room. &nduced dra!t tower   The an is mounted on the top 'discharge( o  the cell" with conse&uent impro#ed air distribution within the cell? drit eliminators reduce mae-up re&uirements? spra! noEEles" downspouts" splash plates and splash bars ensure ample e#aporati#e surace or the water" with maximum #olumetric heat transer rates. *ilowatt-hour (k+h) -  The electrical energ! unit o measure is e&ual to one thousand watts o power supplied to" or taen rom" an electric circuit steadil! or one hour. ,ake-up water   - water brought into a boiler s!stem rom outside to replace condensate not returned to the boiler plant" water used in blow

P a g e  | 11=

down" steam lost through leas" or water lost through e#aporation or mist %ressure educing .alve (%.) - a #al#e that regulates the amount o steam allowed rom a high-pressure ser#ice to a low-pressure ser#ice %rocess 'team - Steam used or industrial purposes other than or producing power. %ump - is a machine used to add energ! to a li&uid in order to transer the li&uid rom one point to another point o higher energ! le#el. elie! .alve ('a!ety elie! .alve) - An automatic pressure relie#ing de#ice actuated b! the pressure upstream o the #al#e and characteriEed b! opening pop action with urther increase in lit with an increase in pressure o#er popping pressure. 'team -  The #apor phase o water" unmixed with other gases. ur"ine - A de#ice that con#erts the enthalp! o steam into mechanical wor. +et "ul" temperature - is the temperature o air as registered b! a thermometer whose bulb is co#ered b! a wetted wic and exposed to a current o rapidl! mo#ing air. +et 'team - Steam containing a percentage o moisture

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF