Design and Installation of PV System For Residential House in Malaysia (Energy Conversion - Coursework)

August 9, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Design and Installation of PV System For Residential House in Malaysia (Energy Conversion - Coursework)...

Description

 

 

MCB 4213 - ENERGY CONVERSION Design and Installation of PV System for Residential House in Malaysia Group 2 No.

Name

ID No.

Course

1 2

Muhammad Azwan B. Ibrahim Alan A. Alexander

13208 16036

ME ME

3

JamshidLutfullaev

14183

ME

4

Muhammad Hafiz B. Roslan

16801

ME

5

Muhammad Amir Adli B. Nazarudin

16831

ME

Lecturer: Dr. Syed IhtshamUlHaqGilani (Department of Mechanical Engineering)

 

Table of Contents ABSTRACT .................................................................................................................................... 1  CHAPTER 1: INTRODUCTION.................................................................................................... ..................................................... ............................................... 2  1.0 

Background ....................................................................................................................... 2 

1.1

Problem Statement ................................................. ..................................................................................................... ....................................................... ... 2 

1.2 1.3

Objectives ...................................................... .......................................................................................................... ................................................................ ............ 2  Scope of Study ....................................................... ........................................................................................................... ....................................................... ... 2 

CHAPTER 2: LITERATURE REVIEW......................................................................................... ................................................... ...................................... 3  2.1 

Renewable Energy potential in Malaysia ........................................................................ 3  

2.2 

Solar Collector System ..................................................................................................... 3 

2.3

Solar Tracker System .................................................................................................... ..................................................... ............................................... 5 

2.4

PV Balance of Systems ................................................................................................. .................................................. ............................................... 7 

2.4.1 Energy Storage ............................................................................................................ ........................................................ ....................................................... ... 7  2.4.2 Charge Controllers .................................................. ...................................................................................................... ....................................................... ... 8  2.4.3 Inverters and Converters ................................................. ................................................................................................ ............................................... 8  CHAPTER 3: METHODOLOGY .................................................... ................................................................................................. ............................................. 10  3.1 

Material Selection ........................................................................................................... 10 

3.1.1 Monocrystalline Solar Panel ................................................... ....................................................................................... .................................... 10  3.1.2

Properties of Materials ............................................................................................... .................................................. ............................................. 10 

3.2 

Market Share .................................................................................................................. 12 

3.3 

Efficiency ............................................... ...................................................................................................... ........................................................................ ................. 12  

3.4 

Feasibility Study ............................................................................................................. 13 

3.5

Technical Feasibility ..................................................... .................................................................................................. ............................................. 13 

3.5.1 Efficiency ............................................. .................................................................................................... ........................................................................ ................. 14  3.5.2 Longevity .................................................................................................... ............................................. ........................................................................ ................. 15  3.5.3 Embodied Energy ........................................................................................................ .................................................... ...................................................... 15  3.5.4 Greater Heat Resistance Resistance ............................................................................................... .................................................. ............................................. 15  3.5.5 More Electricity............................................................................................................ Electricity................................................................ ............................................ 15  3.5.6 Bankability .................................................... ........................................................................................................ .............................................................. .......... 16  3.6

Environmental Feasibility ........................................................................................... .............................................. ............................................. 16 

3.7 

Economical Feasibility ................................................................................................... 16 

3.8 

Installation Procedures - Preparation .............................................................................. ................................................... ........................... 17  

3.9

System Installation ..................................................................................................... ................................................. ...................................................... 17 

 

3.9.1 Attaching Roof Hooks .................................................... ................................................................................................. ............................................. 17  3.9.2 Fitting the Fixing Rails................................................... ................................................................................................ ............................................. 18  3.9.3 Mounting the Modules ................................................... ................................................................................................ ............................................. 19  3.9.4 Running the String Cables Through Through the Roof .............................................................. ...................................................... ........ 20  3.9.5 String Wiring Inside the Building and Inverter Installation........................................ 21  3.9.6 Installing the Mains Connection ................................................................................. ...................................................... ........................... 22  CHAPTER 4: RESULTS .............................................................................................................. 23   4.1 

Design Specifications & Cost Estimation ....................................................................... ...................................................... ................. 23  

4.1.1 Solar Panel & PV System Requirements ...................................................................... 23   4.1.2  4.2 

Cost Analysis & Payback Period ............................................................................. .................................................. ........................... 26  

System Layout & Components ....................................................................................... ................................................... .................................... 27  

4.2.1

Critical Components .................................................................................................. ..................................................... ............................................. 27 

4.2.2

System Drawing ........................................................................................................ .................................................... ...................................................... 28 

CHAPTER 5: CONCLUSION AND RECOMMENDATION ..................................................... 29  5.1 

Conclusions .................................................................................................... ............................................. ........................................................................ ................. 29  

5.2 

Recommendations .......................................................................................................... ...................................................... ...................................................... 29 

REFERENCES .............................................................................................................................. 30  APPENDIX ................................................................................................................................... 32 

 

List of Figures Figure 1: Schematic Diagram Dia gram of a Typical T ypical PV Grid System S ystem (with Battery Backup) ...................... 6   Figure 2: Main components in a PV Balance of System (BOS) ..................................................... 7  Figure 3: PV system s ystem schematic diagram incorporating stand-alone inverter to meet AC loads. .... 9  Figure 4: Components for Solar PV Mounting ............................................................................. 12   Figure 5: Monocrystalline Silicon Solar Panel ( courtesy of solarchoice.net) ............................... ............................... 13  Figure 6: Pre-drilling the holes and screwing the roof hooks h ooks to the rafter: A shim plate is required only if the roof hook clears the roof tile by less than 5mm. Source: Schletter  ............................  ............................ 18  Figure 7: Vertical alignment of rails and tightening of bolts. Source: MHH Solartechnik GmbH   ....................................................................................................................................................... 19  Figure 8: Mounting the modules: An anti-slippage anti -slippage precaution prevents modules that have not  been finally fixed into place from sliding off the roof. Source: MHH Solartechnik GmbH  ........ 20  Figure 9: Feeding cabling through vent tile and running the string cables through the roof. Source: Solon and agitsol  .................................................................................................... ................................................ .............................................................. .......... 21   Figure 10: Inverter room with one DC main disconnect/isolator d isconnect/isolator switch and inverter per string along with the PV sub-distribution system. Source: MHH Solartechnik GmbH  .........................  ......................... 22  Figure 11: Typical PV P V Inverter connected to a building electrical installation. ............................ 22   Figure 12: Cash flow diagram for the Implementation of PV P V System .......................................... 27   Figure 13: Schematic diagram of typical PV system .................................................................... 28   Figure 14: Suggested wiring of PV system ................................................................................... ......................................................................... .......... 28 

List of Tables Table 1: Shows the power losses vary with the angle of incidence ................................................ 6 Table 2: Important Material Properties for Design of PV System ................................................ 11 Table 3: Electrical specifications and estimated price................................................................... 25 Table 4: Mechanical specifications of PV array ............................................................................ ................................................. ........................... 25

 

ABSTRACT

Currently, electricity become daily need in society. In Malaysia, the average consumption of a single house is 5 MW per year. Therefore, with the increase of energy usage the price of energy also increase. Because, people are looking for another energy source that capable to reduce the cost. Solar energy is a perfect solution to this problem. Solar energy is very reliable since it is renewable, clean, and benefit for a long term. Moreover, Malaysia has a sunny and monsoon season only which provides a sunlight most of a year. However, there are many factors that affect the efficiency of solar system. In this project, we are designing a Photo Voltaic system that able to achieve the demanding requirement. This project also discuss the application of the design on a two story terraced house in Malaysia. The project also reports a payback period of the system which is 9 years. The feasibility of the project was also analyzed. a nalyzed.

1

 

CHAPTER 1: INTRODUCTION I NTRODUCTION 1.0

Background

Solar is a clean and renewable energy en ergy sources. It can be used in the generation of electricity without  polluting the environment. Apart from their advantage, there there are disadvantages. Solar power is not always completely predictable because it depends on the amount of solar radiation that available. If the weather is not suitable, amount of electric power p ower generated will be reduced. Other than that, electric power is unable to be generated during night time. The cost to build a Photo Voltaic system s ystem is expensive and the energy payback time is commonly large.

1.1

Problem Statement

The world today is developing at a very fast rate which causes a lot of usage of nonrenewable energy resources. The two major disadvantages of using nonrenewable energy resources are the environmental pollution and the quantity for these resources is limited. Many types of clean renewable energy can be used in the production of electrical energy. These help in reducing the  pollution to the environment.

1.2

Objectives

The objective of this project is to design a photovoltaic (PV) system for household application. The  payback period of this system installation and feasibility of this project will be discussed.

1.3

Scope of Study

The study will be focus on the design of photovoltaic (PV) system. The major component of solar  power collector will be study. The efficiency of the system will be simulated using plant design d esign software to determine the output of the year. The saving will also be calculated to determine the annual saving after the implementation of the Photo Voltaic system in designated area. The location around Malaysia will be analysis to find out the suitable location for solar power plant. Malaysia is a country that has enough solar intensity for solar power plant to function well. The average solar intensity will be used to define the suitability of the area. 2

 

CHAPTER 2: LITERATURE REVIEW

2.1

Renewable Energy potential in Malaysia

Renewable Energy is defined as the energy is generate from resource which are naturally replenished on a human timescale such as sunlight, wind, rain, tides ,waves and geothermal. Solar renewable energy have a good potential to be developed in Malaysia. Malaysia is located at the equator and received about 6 hours of sunshine per day. However, seasonal and spatial variation in the amount of sunshine received. From official website of Malaysian Meteorological Department, AlorSetar and Kota Bharu receive about 7 hours per day of sunshine while Kuching receives only 5 hours on the average. On the extreme, Kuching receives only an average of 3.7 hours per day in the month of January. On the other end of the scale, AlorSetar receives a maximum of 8.7 hours  per day on the average avera ge in the same month.Solar p photovoltaic hotovoltaic system functions to convert sunlight into electricity. The electricity generated can be either stored or used directly. Other than size, the efficiency of the system may affect the power generation. Overheating reduces the efficiency of solar panel. Cooling system can be implemented to reduce the heat of o f the PV S. Wu and CG. Xiong Xion g have carried out a passive cooling experiment toward PV cells. The passive cooling method that utilizes rainwater as cooling media and a gas expansion device to distribute rainwater has successfully increased the electrical efficiency of the PV panel by 8.3%.Different solar system is also available to increase the performance of the electric generation. B. Khadidja, K. Dris, A. Boubeker and S. Noureddine has carried out an experiment on optimization of a solar tracker system for photovoltaic power plants in Saharian region. After the experiment, it is found there is a significant gain on the amount of energy when mounting moun ting the PV systems on the trackers. 20-35% of efficiency increase has been achieved with the two axis tracking system.

2.2

Solar Collector System

Major Component for solar system is P.V modules. There are three main types of photovoltaic solar panels in the market [9]. They are:

  Monocrystalline Silicon Solar Cells   Polycrystalline Silicon Solar Cells

 

3

 

  Thin-Film Solar Cells



Almost 90% of the World’s photovoltaic are based on some variation of silicon. The silicon used in PV consists of many forms and the main difference is the purity of the silicon. The solar cell will have higher efficiency when converting solar energy to electricity when the silicon molecules are aligned perfectly. However, the process to enhance the purity of silicon is expensive. Therefore, efficiency in the aspect of purity of silicon should not be the primary conce concern. rn. 2.2.1Mono-crystalline Silicon Solar Cells Mono-crystalline silicon (mono-Si) solar cells that made from, also called single crystalline silicon are made out of silicon ingots which are cylindrical shape. It has efficiency typically of135-170 Watts/ m2 [10]. The advantages of mono-crystalline solar panels are:-

  Higher efficiency with the energy conversion rates of 15-20%. 1 5-20%.   Space efficient because it has higher performance which allows them to occupyleast occup yleast amount

 

of space compare to other types of solar panel.

  The working life is longer than others.   Perform better in low light conditions.

 

Disadvantages of monocrystalline solar panels are:

  Highest cost among all types of solar panel.   Undergo Czochralski Process to produce monocrystalline silicon will producesignificant

 

amount of silicon waste.   Tend to be more efficient in warm weather. (disadvantage for cold weather country)



2.2.2 Polycrystalline Silicon Solar Cells Polycrystalline Silicon Solar Cells were the first solar panels introduce to the market in 1981.Polycrystalline do not undergo Czochralski process which produce significant amount of silicon waste. It has efficiency of typically 120-150 Watts/m2. The advantages for polycrystalline silicon solar cells are:

  Process to make polycrystalline silicon is simpler and cost less.   Amount of waste is less compare to mono-crystalline. mono-cr ystalline.   Lower heat tolerance compares to mono-crystalline which mean it will performslightly







worse when compare to mono-crystalline mono -crystalline solar panel in high temperature. However, this effect is minor. 4

 

Disadvantages for Polycrystalline solar panel are:

  Lower efficiency with energy conversion rates of 13-16%, this is because of lowersilicon



 purity.   Lower space efficiency



2.2.3 Thin-Film Solar Cells (TFSC) Thin-Film Solar Panel is manufacture by depositing one or several thin layers of photovoltaic material onto a substrate. It has efficiency of typically 60-80 Watts/m2.The different types of thin film solar cells are:

       

   

Amorphous silicon Cadmium telluride Copper indium gallium selenide Organic photovoltaic cells

Advantage of Thin-Film Solar Cells:

  Mass production is simpler and cheaper compare to crystalline based solar cells.   Can be made flexible which give potential for create new application   Less impact on performance in high temperature







Disadvantages of Thin-Film Solar Cells: Siz e ratio of 4 to 1 when compare to mono-crystalline solarpanel to   Require a lot of space. Size



 produce same amount of energy.   Low efficiency with 9% of energy conversion rate



Degrade faster compare to mono and polycrystalline.

2.3

Solar Tracker System

The effective collection area of a flat-panel solar collector varies with the cosine of the angle of misalignment of the panel with the Sun. The levels of misalignment can be categorized by the chart  below. Solar collector has a high tolerance tolerance towards the angle misalignment. The significant power loss is less than 1% at 8º and less than 10% at 25º. However, power collected drop significantly after 30º. Which are 30% at 45º, 50% at 60º 60 º and 75% at 75º [11]. 5

 

 Angle of Incidence Power Loss (Percentage)

Table 1: Shows the power losses vary with the angle of incidence Angle of Incidence

Power loss(Percentage)

75º

75%

25º

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF