Kabolonoþl ïpsomgl-kamtf ^af b ulf ulf bulnoþl kabolokf al fm`ùl oltarvfmg feoartg qua ngltal`f f f. Am mãcota Aiarnonogs rasuamtgs mf asnroea kabolonoþl apsomþl-kamtf) ka b (x) nuflkg f f as M, y sa x toalka (fpmonflkg Al mgs mgs aiar aiarnon nonogs ogs 6 f 0, kacuas kacuastra tra qua am mãcota mãcota as am am lùca lùcarg rg olkon olkonfkg fkg fpmonflkg mf kabolonoþl Apsomþl-kamtf9
Lgtf9 lg as lanasfrog qua b asta asta kabolokf al f pfrf qua am mãcota axostf.
^gmunoglas 6. ^gmunoþl9
Kfkg ul oltarvfmg kglka astæ kabolokf kabolokf mf bulnoþl asta oltarvfmg kaea ngltalar f -6 Mf bulnoþl astæ kabolokf al tgkgs mgs rafmas (b(x)31x+:) pgr mg qua -6 partalana f asta oltarvfmg.
Apso Apsomg mgl l „ kam kamtf tf ^a kaea kaea alng alnglt ltrf rfrr ul kamt kamtf f al al tïrc tïrcol olgs gs ka ïpso ïpsomg mgl l qua qua nucpm nucpmf f mfs mfs nfrfntarãstonfs ka mf bulnoþl. 4 =| x + 6|= λ ↕|( 1 x + : )∕>|= α 4 =| x + 6|= λ ↕|1 x + : ∕>|= α 4 =| x + 6|= λ ↕|1 x + 1|= α 4 =| x + 6|= λ ↕ 1| x + 6|= α
4 =| x + 6|= λ ↕| x + 6|=
α 1
α Efstf ngl utomozfr ul kamtf o`ufm f λ 3 pfrf qua sa nucpmf am mocota 1
Altglnas sa fsa`urf qua9 moc 1 x + : 3>
x↕ ∕ 6
4 =| x ∕ >|= λ ↕|( 0 ∕> x ) + 5|= α 4 =| x ∕ >|= λ ↕|0 ∕> x + 5|= α
| |= λ ↕|?∕> x|=α 4 =| x ∕ >|= λ ↕|∕> (∕> + x )|= α 4 =| x ∕ >|= λ ↕|∕> ( x ∕> )|= α 4 =| x ∕ >|= λ ↕|∕>|| x ∕>|= α 4 =| x ∕ >|= λ ↕ >| x ∕>|= α α 4 =| x ∕ >|= λ ↕| x ∕>|= 4 = x ∕ >
>
α Efstf ngl tgcfr λ 3 pfrf qua am mocotf axostf pgr mg tfltg >
moc 0∕ > x 3∕5 x ↕ >
;. ^gmunoþl9
Aiarnonog 1 5 ( x ∕> ) ( x ∕5 ) x ∕1 x + 2 moc 3moc 3 moc x ∕53> ∕536 x ∕ > x ∕> x ↕ > x ↕ > x ↕> 5
x ∕1 x + 2 moc 36 x ∕ > x ↕ >
Tfrf tgkg α
5
x ∕1 x + 2 ^o 4 =| x ∕>|= λ altglnas ∕6 = α x ∕> ^o 4 =| x ∕>|= λ altglnas
x
>
x
x
>
5
6
α
^o 4 =| x ∕>|= λ altglnas|( x ∕5 )∕6|= α ^o 4 =| x ∕>|= λ altglnas| x ∕5∕6|= α ^o 4 =| x ∕>|= λ altglnas| x ∕>|= α
Tfrf ul λ 3 α am vfmgr kam mãcota mãcota sa nucpma. Tgr mg tfltg 5 x ∕1 x + 2 moc 36 x ∕ > x ↕ >
Aiarnonog 2 moc ( 0 x ∕? )31 x ↕ 5
Tfrf tgkgα tgkg α < 4 , kaea kaea axost axostor or ul λ < 4 tfmqua ^o 4 =| x ∕5|= λ altglnas altglnas|( 0 x ∕? ) ∕1|= α ^o 4 =| x ∕5|= λ altglnas|0 x ∕?∕1|= α
^o 4 =| x ∕5|= λ altglnas|0 x ∕6;|= α | x ∕5|= λ altglnas|0 ( x ^o 4 = x ∕5 )|= α ^o 4 =| x ∕5|= λ altglnas 0| x ∕5|=α α ^o 4 =| x ∕5|= λ altglnas| x ∕5|= 0
α Tfrf ul λ 3 am vfm vfmgr gr kam mãcot mãcotaa sa varobo varobonf nf 0
Tgr mg tfltg moc ( 0 x ∕? )31 x ↕ 5
NFMNQMA _ KACQA^[UA MG^ ^O@QOAL[A^ MÃCO[A^ 5
6 · moc 5 x
moc
x ∕1 ) 3 moc ( 5 x + > )36> 0 x ∕61 3 moc ( 5 x + > ) ( x ∕ x ∕1 x ∕1
) ( ∕ ( ∕ )3
x ↕ 1
x ↕ 1
( ∕
5 x
5
x↕ 1
0 x 61 x 1
)
x ↕ 1
6>
|(
Tfrf tgkg α < 4 , ka kaeaaxos eaaxosto torr ul λ < 4 tf tfmm qu quaa ^o 4 =| x ∕1|= λ altgln altglnas as
|(
) |
( 5 x + > ) ( x ∕1 ) ∕6> = α x ∕1 ^o 4 =| x ∕1|= λ altglnas|( 5 x + > ) ∕6>|= α ^o 4 =| x ∕1|= λ altglnas|5 x + > ∕6>|= α ^o 4 =| x ∕1|= λ altglnas|5 x ∕64|= α ^o 4 =| x ∕1|= λ altglnas|5| x ∕1||= α ^o 4 =| x ∕1|= λ altglnas 5| x ∕1|=α ^o 4 =| x ∕1|= λ altglnas
^o 4 =| x ∕1|= λ altglnas| x ∕1|= α
5
α Tfrf ul λ 3 am vfmgr vfmgr kam mãcot mãcotaa sa varobo varobonf nf 5
5 x
5
) |
∕0 x ∕61 ∕6> = α x ∕1
Tgr mg tfltg moc
(
5 x
x ↕ 1
5 · moc
(
; x
5
x ↕∕5
moc x↕ ∕5
(
; x
5
5
)
∕0 x ∕61 36> x ∕1
) (
)
( ; x +0 ) ( x + 5 ) + 61 x + 6; 3 moc 3 moc ( ; x + 0 )3∕6 x + 5 x + 5 x ↕∕ 5 x↕ ∕ 5
)
+ 61 x + 6; 3∕6 x + 5
|(
altglnas Tfrf tgkgα tgkg α < 4 , kaea kaea axost axostor or ul λ · moc
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.