Definite and Indefinite Integration
Short Description
Notes with exercices...
Description
KEY 1.
CONCEPTS
DE FI NI TI ON :
If f & g are functions are functions of of x such that g'(x) = f(x) = f(x) then then the function func tion g is called called a PRIMITIVE ANTIDERIVATIVE ANTIDERIVATIVE O R INTEGRAL of f(x) w.r.t. x and is is writte wri tten n symbolically as
OR
f ci I f(x) dx f(x) dx = g(x) + c < c — (g(x) + c) = f(x), = f(x), where where c is called the constant of integration, dx 2.
STANDARD RESULTS : \ nn+ l
r
(ax+b) i) J (ax + b)°dx= , \ a(n+l)
+c
j
(ii)
n*-l
=-
ax+b
a
/n (ax + b) + c px+ q
iii) f e
ax+b
dx = - e a
ax+b
r 1 n x+ (iv) I aP i dx = — (a > 0) + c . p fn a
+ c
v) f si n(a x+b ) dx = -— co s( ax +b ) + c a
(vi) J c o s ( a x + b )dx= - sin(ax +b ) + c a
vii) j tan(ax + b) dx = — In sec (ax + b) + c a
(viii) f cot(ax+ b) dx = - /n sin(ax+ sin(a x+ b)+ c a
2
2
ix) J sec (ax + b) dx = — tan(ax + b) + c a
(x) j cosec (ax + b) dx = _ 1 1 cot(ax + b)+ c
xi) J sec (ax + b) . tan (ax + b) dx = — sec (ax + b) + c a xii) J cosec co sec (ax + b) . cot co t (ax + b) dx =
cosec (ax + b) + c a In tan {
+yj
+ c
xiii) J secx dx =I n (secx + tanx) + c
OR
xiv) J cosec x dx = In In (cosecx (cose cx - cotx) + c
OR In tan ^ + c OR - In (cosecx (cose cx + cotx) 2
xv) J sinh sinh x dx = cosh x + c (xvi) J cosh x dx = sinh sinh x + c (xvii) J sech x dx = tanh x + c 2
xviii) J cosech x dx = - coth x + c
(xix) J sech x . tanh x dx dx = - sech x + c
xx) J cosechx. cosechx. cot hxd x= -co se chx + c
(xxi) j"
xxii) J
xxiv) JJ ' xxv) J
xxvi) |
dx
„ 2„ = - ta n a +x 2
-1
— + — + c
72 =ln =l n + 2 L x + a + a
dx
dx a2 -x 2
1 I , dX > Jf Vax + bx + c j^/x+1 r~T 1 ((x2 +3x+3
^ r Q.48
dx Y x3V(l + x)3
2
dx
Q.47 JJ (x-a)V(x-a)(x-(3) 0) V 7 '
Definite & Indefinite Integration
[18]
Q.23
(2x+ 3 )
3/2 Q.24 J |x. sinTtxl dx
x
Evaluate: f f d x . I (1 + cos x) p+ qn
Q.25 Show that J | cos x| dx = 2q + sinp where q s N & -— < p b>0
Definite & Indefinite Integration
[18]
A
Q.45
Let f(x) = - j /n cos y dy then prove that f(x) = 2f
71 v4
2,
-2f
X
4 _ 2
-x/n2.
Jt/2
Hence evaluate J
sec
t dt
~ .^ , r x. lnx , , r a x. dx Q.46 Showthat J f ( - + - ) . dx = ln a. Jf (- +- ). x a x x a x 1
Q. 47
-(2x332 +x 99 8 +4x 1668-sinx 69 1 ) dx Evaluate the definite integral, j 666 1 + x -l
Q.48
Prove that
0» IM
(a) } V(x -a )( P- x)
p (c)5{
p
dx xA/(x-a)()3-x)
V^P
4 cos x Q.49
If f(x) = (cosx-1)
Q.50 Evaluate:
/ntan_ - 1 xx
Je/ n t a n
1
1 2
2
2 (cosx + 1) (cosx-1) , find Jf( x) dx
(cosx + 1)2 1
x.dx
(cosx + 1)2
cos 2 x
-sin _1 (cosx)dx. -1,
o
EXERCISE-III Q.l
If the derivative of f(x) wrtx is — - then show that f(x)is a periodic function.
Q.2
Find the range of the function, f(x)= f
Q.3
A function f is defined in [-1,1] as f (x) = 2 x sin — - cos — ; x ^ 0 ; f(0) = 0 ;
f(x)
Sm X
—7 .
1 — 2t cosx + t
X
X
f (I/71) — 0 . Discuss the continuity and derivability of f at x=0. Q.4
Let f(x) = [
-1 if - 2 < x < 0 I and g(x) = J f(t) dt. Define g (x) as a function ofx and test the x -* 1 if 0 < x < 2 _2
continuity and differentiability of g(x) in (-2,2). Q.5
Prove the inequalities : (a) 0 < J 0
x 7 dx_
Ml
/3
1
(b) 2 e~1/4 < } ex2"x dx < 2e2.
8
2s (c) a< f — < b then find a & b. i 10+3cos x Q.6
dx
(d) ^ < J 2 + x2 " 6 —2 0
Determine a positive integer n 2 prove that
- n (n - 1) Un _ 2 - 2 n(2n - l)U n _ p
1 further if Vn - J e x . U n dx, prove that when n > 2, Vn + 2n(2n- l). V n _ r n(n- 1) Vn _ 2 = 0 0 f J?nt Ait Q. 16 If J —2—2 .2 0 X ~F~ T equation.
=
%£n22 71 4
"1-x
Q.17 Let f(x)=
if
( x > 0) then show that there can be two integral values of 'x' satisfying this
0
(D) [g(x)/g(7l)]
( Q - 1 + V2
(D )l + V2
:
(B) - 1 + VJ
e" The value of J ————— dx is
(c)
I
sinx
H e Let — F(x) = dx x values ofki s
(d)
Q.3
4
? , x > 0 . If f — ' x .
dx = F (k) - F (1) then one ofthe possible
2x
0 + s i n x ) d x 1 + COS X
(e)
Determine the value of J „
(a)
If ff(t) dt = x + f t f ( t ) dt , then the value of /( l) is
[JEE '9 7, 2 + 2 + 2 + 2 + 5]
(A)° 1/ 2
(B) 0 (C) 1 (D) -1/2 i f Y \ i Prove that f tan"1 dx = 2 f tan 1 x dx . Hence or otherwise, evaluate the integral 2 i U-x+x ; i i Jtan _1 (l-x+x 2 )dx [JEE'98,2 + 8]
(b)
Q
4
E
r
a
l
u
a
t
e
(ilZ?a«sa/
[
Classes
Definite & Indefinite Integration
R
E
E
'
9
8
-
6
1
[18]
Q.5
(a)
If for al real number y, [y] is the greatest integer less than or equal to y, then the value of the 371/2 integral j [2 sinx] dx is: (A) - n
(B) 0
(C)
(D) *
2
2
3,1/4
rlY f — — — is equal to : L 1+ cosx
(b)
(A) 2 /N (c)
(C)
(B) - 2
x3 + 3x + 2 , Integrate: J — dx (x 2 +l ) (x + 1)
T
R
ii
(d)
Integrate: J
„cosx .
e
+e
-cos x
[JEE '99, 2 + 2 + 7 + 3 (out of200)]
-dx
71/6
Q.6\\
Evaluate the integral J
Q.7
(a)
V3cos2x cosx
The value of the integral (A) 3/2
[REE'99, 6] log e x
j
dx is:
(B) 5/2
(C) 3
(D) 5
x
(b)
r 1 ' 1 Let g( x) = J f (t ) dt, where f is such that - < f( t)
View more...
Comments