Definisi Dan Sifat Eksponen
September 25, 2017 | Author: Yanus | Category: N/A
Short Description
Download Definisi Dan Sifat Eksponen...
Description
JULI 30, 2012
PENGERTIAN FUNGSI EKSPONEN 1.
A. zPENGERTIAN FUNGSI EKSPONEN Dalam pelajaran kelas X, telah dipelajari perpangkatan/eksponen bilangan bulat. Untuk mempelajari bab ini kita ingat kembali sifat-sifat bilangan berpangkat rasional. Jika a dan b bilangan real, p dan q bilangan rasional maka berlaku hubungan sebagai berikut : 1.
7.
2.
8.
3.
9.
4.
10.
5.
11.
6.
Di kelas XI ini akan lebih mendalami tentang perpangkatan yang pangkatnya merupakan suatu fungsi. Bentuk perpangkatan yang pangkatnya merupakan suatu fungsi disebut fungsi eksponen. Fungsi eksponen banyak manfaatnya dalam kehidupan. Misalnya dalam peluruhan radioaktif, pertumbuhan tanaman, perhitungan bunga tabungan di Bank dan sebagainya. C. PERSAMAAN EKSPONEN Definisi : Persamaan eksponen adalah sebuah persamaan yang eksponennya mengandung peubah x dan tidak menutup kemungkinan bilangan pokoknya juga mengandung peubah x. 1.
1. 2. 3. 4. 5.
Sifat Operasi Bilangan Berpangkat Bulat am x an = am+n (am)n = (a)mn am/an = am-n (a x b )n = an x bn (a/b)n = an/bn
2. Sifat Operasi Bilangan Pangkat Rasional Jika a,b,c є bilangan real dan m,n,p,q є bilangan bulat positif, maka : a. am/n . ap/q = am/n + p/q b. (am/n)p/q = amp/nq c. am/n : ap/q = am/n – p/q d. (ab)m/n = am/n . bm/n e. (a/b)m/n = am/n/bm/n
3. Persamaan Eksponen Misalkan ada sebuah persamaan f(x) = 2x. Tentukan nilai x apabila f(x) = 8 ! Kita dapat menyelesaikannya dengan membentuk sebuah persamaan f(x) = 2x : 8 = 2x atau 2x = 8 atau 2x = 23 Persamaan yang memuat bentuk eksponen disebut persamaan eksponen. Persamaan eksponen dapat berbentuk : a. af(x) = 1 b. af(x) = ap c. af(x) = ag(x) d. af(x) = bf(x) e. af(x) = bg(x) f. [f(x)]f(x) = [f(x)]g(x) a dan b dinamakan bilangan pokok, a,b > 0 dan a,b ≠ 1. f(x) dan g(x) adalah sebuah fungsi aljabar.
Persamaan eksponen dapat diselesaikan dengan menggunakan sifat-sifat persamaan eksponen. Sebelum mempelajari sifat-sifat tersebut sebaiknya kita tinjau kembali bilangan pangkat nol (a 0).
Pengertian pangkat nol Untuk setiap a є bilangan real, maka : a0 = 1 Keterangan : untuk 00 tidak didefinisikan.
4. Sifat – sifat Fungsi Eksponen untuk Menyelesaikan Persamaan Eksponen
1.
Sifat fungsi atau eksponen berbentuk af(x) = 1 Jika af(x)= dengan a > 0 dan a ≠ 1, maka f(x) = 0
1.
Sifat fungsi atau eksponen berbentuk af(x) = ap Jika af(x) = ap dengan a > 0 dan a ≠ 1, maka f(x) = p
1.
1. 2. 3. 4.
Sifat fungsi atau persaman eksponen berbentuk af(x)= ag(x) Jika af(x) = ag(x)dengan a > 0 dan a ≠1 , makaa f(x) = g(x) d. Sifat fungsi atau persamaan berbentuk af(x) = bf(x) (a≠b) Jika af(x) = bf(x) dengan a,b > 0 a,b ≠ 1 serta a ≠ b, maka f(x) = 0 e. Sifat fungsi atau persamaan eksponen berbentuk af(x) = bg(x) Penyelesaian persamaan eksponen berbentuk af(x) = bg(x) dengan a,b>0 dan a,b≠1 dapat diselesaikan dengan logaritma, yaiu log : af(x) = log bg(x) atau f(x) log a = g(x) log b f. Sifat fungsi persamaan eksponen berbentuk [U(x)]f(x) = [U(x)]g(x) Jika [U(x)]f(x) = [U(x)g(x)] maka nlai x diperoleh dari : f(x) = g(x) U(x) = 1 U(x) = 0, jika nilai x memenuhi syarat f(x) ≥ 0 dan g(x) > 0 U(x) = -1, jika nilai x memenuhi syarat f(x) dan g(x) kedua-duanya ganjil atau kedua-duanya genap. BENTUK-BENTUK A. af(x) = ap ® f(x) = p Caranya ® Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan Contoh: 3x – 4 = 1 3x – 4 = 30 Maka x – 4 = 0 X=4 B. af(x) = ag(x) ® f(x) = g(x)Caranya ® Samakan bilangan pokoknya sehingga pangkatnya dapat disamakan. contoh : 2 SUKU ® SUKU DI RUAS KANAN, 1 SUKU DI RUAS KIRI Ö(82x-3) = (32x+1)1/4(23)(2x-3)1/2 = (25)(x+1)1/42(6x-9)/2 = 2(5x-5)/4(6x-9)/2 = (5x-5)/424x-36 = 10x+1014x = 46x = 46/14 = 23/7 3x²-3x+2 + 3x²-3x = 103².3x²-3x+3x²-3x = 109. 3x²-3x + 3x²-3x = 1010. 3x²-3x = 103x² – 3x = 30x² – 3x = 0x(x-3) = 0×1 = 0 ; x2 = 3 3 SUKU ® GUNAKAN PEMISALAN 22x + 2 – 2 x+2 + 1 = 022.22x – 22.2x + 1 = 0Misalkan : 2x = p 22x = (2x)² = p²4p² -4p + 1 = 0(2p-1)² = 02p – 1 = 0p =1/22x = 2-1x = -1 3x + 33-x – 28 = 103x + 33/3x – 28 = 10misal : 3x = pp + 27/p – 28 = 0p² – 28p + 27 = 0(p-1)(p-27) = 0p1 = 1 ® 3x = 30 x1 = 0p2 = 27 ® 3x = 33×2 = 3 C. af(x) = bf(x) ® f(x) = 0 Bilangan pokok berbeda, pangkat sama. Pangkatnya = 0. Contoh: 3x²-x-2 = 7x²-x-2x² – x -2 = 0(x-2)(x+1) = 0×1 = 2 ; x2 = -1 D. af(x) = bg(x) ® f(x) log a = g(x) log b Bilangan pokok berbeda, pangkat berbeda. Diselesaikan dengan menggunakan logaritma. Contoh: 4x-1 = 3x+1(x-1)log4 = (x+1)log3xlog4 – log4 = x log 3 + log 3x log 4 – x log 3 = log 3 + log 4x (log4 – log3) = log 12x log 4/3 = log 12x log 4/3 = log 12 x = log 12/ log 4/3 = 4/3 log 12 E. f(x) g(x) = f(x) h(x) ® Bilangan pokok (dalam fungsi) sama, pangkat berbeda.Tinjau beberapa kemungkinan. Pangkat sama g(x) = h(x) Bilangan pokok f(x) = 1 ket: 1g(x) = 1h(x) = 1 Bilangan pokok f(x) = -1Dengan syarat, setelah nilai x didapat dari f(x)=-1 , maka nilaipangkatnya yaitu g(x) dan h(x) kedua-duanya harus genap atau kedua-duanya harus ganjil.ket :g(x) dan h(x) Genap : (-1)g(x) = (-1)h(x) = 1g(x) dan h(x) Ganjil : (-1)g(x) = (-1)h(x) = -1 Bilangan pokok f(x) = 0Dengan syarat, setelah nilai x didapat dari f(x) = 0, maka nilai pangkatnya yaitu g(x) dan h(x) kedua-duanya harus positif.ket : g(x) dan h(x) positif ® 0g(x) = 0h(x) = 0 Contoh: (x² + 5x + 5)3x-2 = (x² + 5x + 5)2x+3 Pangkat sama 3x – 2 = 2x + 3 ® x1 = 5 Bilangan pokok = 1x² + 5x + 5 = 1x² + 5x + 4 = 0 ® (x-1)(x-4) = 0 ® x2 = 1 ; x3 = 4 Bilangan pokok = -1x² – 5x + 5 = -1x² – 5x + 6 = 0 ® (x-2)(x-3) = 0 ® x4 = 2 ; x5 = 3g(2) = 4 ; h(2) = 7 ; x4 = 2 tak memenuhi karena (-1)4 ¹ (-1)7g(3) = 7 ; h(3) = 9 ; x5 = 3 memenuhi karena (-1)7 = (-1)9 = -1 Bilangan pokok = 0x² – 5x + 5 = 0 ® x5,6 = (5 ± Ö5)/2kedua-duanya memenuhi syarat, karena :g(2 1/2 ± 1/2 Ö5) > 0h(2 1/2 ± 1/2 Ö5) > 0Harga x yang memenuhi persamaan diatas adalah :HP : { x x = 5,1,4,3,2 1/2 ± 1/2 Ö5} F. A{af(x)}2 = B{af(x)}2 + C = 0 Dengan ketentuan a>0 dan a ≠ 0, A, B dan C bilangan Real dan A ≠ 0 Caranya: 1. mengubah persamaan exponen ke dalam persamaan kuadrat dengan pemisalan a f(x) = y sehingga persamaan kuadrat yang didapatkan sebagai berikut: Ay2 + By + C = 0 Contoh: 22x – 12 .2x + 32 = 0
(2x)2 – 12 (2x) + 32 = 0 Misalkan 2x = y, maka persamaan menjadi: y2 – 12y + 32 =0 (y – 4) (y – 8) =0 Untuk y = 4 didapatkan: 2x = 4 2x = 22 X=2 Untuk y = 8 2x = 8 2x = 23 X=3 Jadi himpunan penyelesaiannya = {2,3} About these ads
Sharethis:
Sumber :
http://benykhan.wordpress.com/2012/07/30/pengertian-fungsi-eksponen/
Fungsi eksponensial Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Belum Diperiksa
Fungsi eksponensial adalah salah satu fungsi yang paling penting dalam matematika. Biasanya, fungsi ini ditulis dengan notasi exp(x) atau ex, dimana e adalah basis logaritma natural yang kira-kira sama dengan 2.71828183.
Fungsi eksponensial (merah) terlihat hampir mendatar horizontal (naik secara sangat perlahan) untuk nilai x yang negatif, dan naik secara cepat untuk nilai x yang positif.
Sebagai fungsi variabel bilangan real x, grafik ex selalu positif (berada di atas sumbu x) dan nilainya bertambah (dilihat dari kiri ke kanan). Grafiknya tidak menyentuh sumbu x, namun mendekati sumbu tersebut secara asimptotik. Invers dari fungsi ini, logaritma natural, atau ln(x), didefinisikan untuk nilai xyang positif.
Secara umum, variabel x dapat berupa bilangan real atau bilangan kompleks, ataupun objek matematika yang lain; lihat definisi formal dibawah ini. Daftar isi
[sembunyikan]
•
1 Sifat-sifat
•
2 Turunan dan persamaan diferensial
•
3 Definisi formal
•
4 Nilai numerik
Sifat-sifat[sunting] Dengan menggunakan logaritma natural, fungsi eksponensial yang lebih generik dapat didefinisikan. Fungsi
yang terdefinisikan untuk a > 0, dan semua bilangan real x, disebut juga fungsi eksponensial dengan basis a. Perlu diperhatikan bahwa persamaan tersebut berlaku pula untuk a = e, karena
Fungsi eksponensial dapat "menterjemahkan" antara dua macam operasi, penjumlahan dan pengkalian. Ini dapat dilihat dari rumus-rumus eksponen sebagai berikut:
Rumus-rumus di atas berlaku untuk semua bilangan real positif a dan b dan semua bilangan real x dan y. Ekspresi yang mengandung pecahan dan pengakaran pada umumnya dapat disederhanakan dengan menggunakan notasi eksponensial, karena:
dan, untuk semua a > 0, bilangan real b, dan bilangan bulat n > 1:
Turunan dan persamaan diferensial[sunting] Pentingnya fungsi eksponensial dalam matematika dan ilmu-ilmu lainnya adalah karena sifat turunannya.
Dengan kata lain, fungsi ex jika diturunkan, hasilnya adalah fungsi itu sendiri. Sifat "ketidakmempanan untuk diturunkan" ini sangat unik, karena hanya fungsi inilah yang mempunyai sifat seperti ini. Sifat fungsi ini dapat diinterpretasikan sebagai berikut:
•
Kemiringan (gradien) grafik fungsi ini pada semua titiknya sama dengan nilai fungsi pada titik tersebut.
•
Bertambahnya nilai fungsi pada x sama dengan nilai fungsi pada x
•
Fungsi ini merupakan solusi dari persamaan diferensial
.
Dalam ilmu-ilmu terapan, banyak persamaan diferensial yang menghasilkan fungsi eksponensial, antara lain persamaan Schrödinger, persamaan Laplace, dan persamaan untuk gerakan harmonis sederhana. Untuk fungsi eksponensial dengan basis-basis lain (yang bukan e):
jadi, semua fungsi eksponensial adalah perkalian turunannya sendiri dengan sebuah konstanta.
Definisi formal[sunting] Fungsi eksponensial ex dapat didefinisikan menurut beberapa definisi yang ekivalen, sebagai deret tak terhingga. Beberapa definisi tersebut antara lain:
atau sebagai limit berikut ini:
Dalam definisi di atas, adalah faktorial dari n, dan x dapat berupa bilangan real, bilangan kompleks, ataupun konsep-konsep matematika lainnya yang kompleks, seperti matriks bujursangkar. Nilai numerik[sunting] Untuk mendapatkan nilai numerik dari fungsi eksponensial, deret tak terhingga di atas dapat ditulis menjadi:
Jika x lebih kecil dari 1, maka ekspresi di atas akan menemukan nilai numerik fungsi pada titik yang dicari dengan cepat. Kategori:
•
Halaman ini terakhir diubah pada 03.08, 6 April 2013.
Sumber: http://id.wikipedia.org/wiki/Fungsi_eksponensial
EKSPONEN 1.
TINJAUAN ULANG SIFAT-SIFAT EKSPONEN
Kita masih ingat bahwa eksponen rasional am/n ( a є R dan a > 0, mbilangan bulat, dan n bilangan asli lebih dari 1 ) didefinisikan sebagai berikut : am/n = ( n√ a )m = n√am Sifat- sifat eksponen bilangan real : Jika a dan b bilangan real positif, serta x dan y bilangan real, maka berlaku hubungan : 1. ax x ay = ax+y 2. ( a x b )x = a x x b x 3. ax : ay = ax-y 4. ( a : b )x = ax : bx 5. ( ax )y = ax × y 6. (i) a-x = 1/ ax (ii) ax = 1/ a-x 2. FUNGSI EKSPONEN Definisi : Fungsi eksponen dengan bilangan pokok atau basis “a” adalah fungsi yang mempunyai bentuk umum : f : x ax atau y = f(x) = ax, a > 0 dan a ≠ 1 disebut fungsi eksponen dengan daerah asal bilangan real. C. PERSAMAAN EKSPONEN Definisi : Persamaan eksponen adalah sebuah persamaan yang eksponennya mengandung peubah x dan tidak menutup kemungkinan bilangan pokoknya juga mengandung peubah x. 1. Sifat Operasi Bilangan Berpangkat Bulat 1. am x an = am+n 2. (am)n = (a)mn 3. am/an = am-n 4. (a x b )n = an x bn 5. (a/b)n = an/bn 2. Sifat Operasi Bilangan Pangkat Rasional Jika a,b,c є bilangan real dan m,n,p,q є bilangan bulat positif, maka : a. am/n . ap/q = am/n + p/q b. (am/n)p/q = amp/nq c. am/n : ap/q = am/n – p/q d. (ab)m/n = am/n . bm/n e. (a/b)m/n = am/n/bm/n 3. Persamaan Eksponen Misalkan ada sebuah persamaan f(x) = 2x. Tentukan nilai x apabila f(x) = 8 ! Kita dapat menyelesaikannya dengan membentuk sebuah persamaan f(x) = 2x : 8 = 2x atau 2x = 8 atau 2x = 23 Persamaan yang memuat bentuk eksponen disebut persamaan eksponen. Persamaan eksponen dapat berbentuk : a. af(x) = 1 b. af(x) = ap c. af(x) = ag(x) d. af(x) = bf(x) e. af(x) = bg(x) f. [f(x)]f(x) = [f(x)]g(x) a dan b dinamakan bilangan pokok, a,b > 0 dan a,b ≠ 1. f(x) dan g(x) adalah sebuah fungsi aljabar. Persamaan eksponen dapat diselesaikan dengan menggunakan sifat-sifat persamaan eksponen. Sebelum mempelajari sifat-sifat tersebut sebaiknya kita tinjau kembali bilangan pangkat nol (a0). Pengertian pangkat nol Untuk setiap a є bilangan real, maka : a0 = 1 Keterangan : untuk 00 tidak didefinisikan.
1. 2.
4. Sifat – sifat Fungsi Eksponen untuk Menyelesaikan Persamaan Eksponen Sifat fungsi atau eksponen berbentuk af(x) = 1 Jika af(x) = dengan a > 0 dan a ≠ 1, maka f(x) = 0 Sifat fungsi atau eksponen berbentuk af(x) = ap Jika af(x) = ap dengan a > 0 dan a ≠ 1, maka f(x) = p
3.
1. 2. 3. 4.
Sifat fungsi atau persaman eksponen berbentuk af(x) = ag(x) Jika af(x) = ag(x) dengan a > 0 dan a ≠1 , makaa f(x) = g(x) d. Sifat fungsi atau persamaan berbentuk af(x) = bf(x) (a≠b) Jika af(x) = bf(x) dengan a,b > 0 a,b ≠ 1 serta a ≠ b, maka f(x) = 0 e. Sifat fungsi atau persamaan eksponen berbentuk af(x) = bg(x) Penyelesaian persamaan eksponen berbentuk af(x) = bg(x) dengan a,b>0 dan a,b≠1 dapat diselesaikan dengan logaritma, yaiu log : af(x) = log bg(x) atau f(x) log a = g(x) log b f. Sifat fungsi persamaan eksponen berbentuk [U(x)]f(x) = [U(x)]g(x) Jika [U(x)]f(x) = [U(x)g(x)] maka nlai x diperoleh dari : f(x) = g(x) U(x) = 1 U(x) = 0, jika nilai x memenuhi syarat f(x) ≥ 0 dan g(x) > 0 U(x) = -1, jika nilai x memenuhi syarat f(x) dan g(x) kedua-duanya ganjil atau kedua-duanya genap.
g. Sifat fungsi persamaan eksponen berbentuk A{af(x)}2 + B{af(x)} + C = 0 Himpunan penyelesaian dari persamaan eksponen A{a f(x)}2 + B{af(x)} + C = 0 (a>0 dan a≠1, A,B, dan C bilangan real dan A≠0) dapat ditentukan dengan cara mengubah persamaan eksponen itu ke dalam persamaan kuadrat. D. PERTIDAKSAMAAN EKSPONEN Definisi : Pertidaksamaan Eksponen adalah pertidaksamaan yang eksponennya mengandung peubah x, dan tidak menutup kemungkingan bilangan pokoknya juga mengandung peubah x. Penyelesaian dari pertidaksamaan eksponen menggunakan sifat fungsi monoton naik dan sifat fungsi monoton turun pada fungsi-fungsi eksponen baku. Sifat Fungsi Monoton Naik (a>1)
• • • •
Jika af(x)≥ag(x), maka f(x)≥g(x) Jika af(x)≤ag(x), maka f(x)≤g(x) Sifat Fungsi Monoton Turun (00 dan a≠1 tanda … dapat ditulis dengan salah satu tanda pertidaksamaan : , ≤, ≥.
CONTOH SOAL DAN PEMBAHASAN Sederhanakanlah : 1. 251/3√6 x 251/6√6 Pembahasan : 251/3√6 x 251/6√6 = 251/3√6 + 1/6√6 = 25½ √6 = (25½)√6 = 5√6 2. (303 : 103) x 32 Pembahasan : (303 : 103) x 32 = 33 x 32 = 35 3. (p6 x p-2)-0,5 Pembahasan : (p6 x p-2)-0,5 = (p6 – 2)-1/2 = p-2 Tentukan himpunan penyelesaian setiap persamaan eksponen berikut. 4. 3 x - 4 = 1 Pembahasan : 3x - 4 = 1 ↔ 3x - 4 = 3 0 ↔x–4=0 ↔x=4
Hp = {4} 5. 23x – 1 = √8 x + 1 Pembahasan : 23x – 1 = √8x + 1 ↔ 23x – 1 = 23x + 3 ↔
3x – 1 = 3x + 3
.6x – 2 = 3x + 3 3x = 5 x = 5/3 Hp = {5/3} ↔ ↔ ↔
6. 23x – 6 = 33x – 6 Pembahasan : 23x – 6 = 33x – 6 ↔ 3x – 6 = 0 ↔x=2 Hp = {2} 7. 2 x -2x -15 =1 Pembahasan : 2x2 -2x -15 = 1 x2 -2x – 15 = 0 (x -5)(x +3) = 0 x1 = 5 atau x2 = -3 Hp = {5,-3} 8. 3x – 6x + 8 = 5x -6x +8 Pembahasan : 3x -6x + 8 = 5 x2 – 6x + 8 ↔ x2 – 6x + 8 = 0 ↔ (x - 2)(x - 4) = 0 ↔ x = 2 atau x = 4 Jadi, himpunan penyelesaiannya adalah {2,4}
•
•
9. 22x -12 . 2x + 32 = 0 Pembahasan : 22x – 12 . 2x + 32 = 0 (2x)2 – 12 . (2x) + 32 = 0 Misalkan 2x = y, maka persamaan (2x)2 – 12 . (2x) + 32 = 0 dapat dituliskan menjadi y2 – 12y + 32 = 0 ↔ (y – 4)(y – 8) = 0 ↔ y = 4 atau y = 8 untuk y = 4, didapat 2x = 4 ↔ 2x = 2 2 ↔x=2 untuk y = 8, didapat 2x = 8 ↔ 2x = 2 3 ↔x=3 Jadi, himpunan penyelesaiannya adalah {2,3}
TURUN 3-5 KG dalam Miss.V LONGGAR & SEMINGGU..! BECEK? FOREDI UTK SEX KUAT TAHAN LAMA REKOMENDASI BOYKE!
FOREDI SoluSi TaHaN LaMa SEX Rekom BOYKE.Rp.200rb/ KumpulBlogger.com
• •
10. 5-2x + 2 + 74 . 5–x – 3 ≥ 0 Pembahasan : 5-2x + 2 + 74 .5–x - 3 ≥ 0 ↔ 52(5–x)2 + 74 . 5–x -3 ≥ 0 ↔ 25{(1/5)x)2 + 74 (1/5)x – 3 ≥ 0 Misalkan (1/5)x = y, sehingga pertidaksamaan 25{(1/5)x}2 + 74(1/5)x - 3 ≥ 0 dapat dinyatakan sebagai 25y2 + 74y – 3 ≥ 0. 25y2 + 74y – 3 ≥ 0 ↔ 25 y2 + 75y – y – 3 ≥ 0 ↔ 25y(y + 3) – 1(y + 3) ≥ 0 ↔ (y + 3)(25y – 1) ≥ 0 ↔ y ≤ -3 atau y ≥ 1/25 untuk y ≤ -3 : (1/5)x ≤ -3, tidak ada nilai x yang memenuhi. Untuk y ≥ 1/25 : ↔ (1/5)x ≥ 1/25 ↔ (1/5)x ≥ (1/5)2 ↔x≤2 Jadi, penyelesaian dari pertidaksamaan 5-2x + 2 + 74 . 5–x – 3 ≥ 0 adalah x ≤ 2.
DAFTAR PUSTAKA Shulthan Habibi, Ravi M. 2005. Pelajaran Matematika Program Studi Ilmu Alam. Sukamaju Depok : Arya Duta Wirodikromo, Sartono. 2006. Matematika untuk SMA Kelas X11. Jakarta : Erlangga Diposkan oleh Caray Label: Matematika
Sumber: http://makalahdanskripsi.blogspot.com/2008/12/eksponen.html
Belajar Eksponen yuk, .. ??? Diposkan Oleh Fuda_9 On Minggu, 06 Juni 2010 Label: Materi
Jam menunjukkan pukul 19.18 WIB. Waktunya makan ….. ??? Hemm,,, pas lagi mau menikmati suapan pertama, terdengar suara merdu berkumandang. Assalamualaikum …???? Dengan lantang kujawab, Waalaikumsalam ….!!!! Ternyata ada teman lamaku. Dia bermaksud meminta bantuan kepadaku untuk membantunya menyelesaikan soal – soal matematika.
Kebetulan soal yang dia kasih adalah soal ujian masuk sekolah tinggi perhubungan tahun 2008. Pas baca soal nomor 1, langsung ketemu ama yang namanya eksponen. Hemm…. Biar enak ngerjakannya, yuk kita sharing konsep dasar Eksponen.
a.
Sifat – sifat Eksponen
Jika a dan b bilangan real positif, serta x dan y bilangan real, maka berlaku hubungan : 1.
ax x ay = ax+y
2.
( a x b )x = ax x bx
3.
ax : ay = ax-y
4.
( a : b )x = ax : bx
5.
( ax )y = ax × y
6.
(i) a-x = 1/ ax (ii) ax = 1/ a-x
b.
Fungsi Eksponen
Definisi : Fungsi eksponen dengan bilangan pokok atau basis “a” adalah fungsi yang mempunyai bentuk umum : f : x ax atau y = f(x) = ax, a > 0 dan a ≠ 1 disebut fungsi eksponen dengan daerah asal bilangan real.
c.
Persamaan Eksponen
Definisi :
Persamaan eksponen adalah sebuah persamaan yang eksponennya mengandung peubah x dan tidak menutup kemungkinan bilangan pokoknya juga mengandung peubah x.
1.
Sifat Operasi Bilangan Berpangkat Bulat
1.
am x an = am+n
2.
(am)n = (a)mn
3.
am/an = am-n
4.
(a x b )n = an x bn
5.
(a/b)n = an/bn
2. Sifat Operasi Bilangan Pangkat Rasional Jika a,b,c є bilangan real dan m,n,p,q є bilangan bulat positif, maka :
a. am/n . ap/q = am/n
+ p/q
b. (am/n)p/q = amp/nq c. am/n : ap/q = am/n – p/q d. (ab)m/n = am/n . bm/n e. (a/b)m/n = am/n/bm/n
3. Persamaan Eksponen
Misalkan ada sebuah persamaan f(x) = 2x. Tentukan nilai x apabila f(x) = 8 ! Kita dapat menyelesaikannya dengan membentuk sebuah persamaan f(x) = 2 x: 8 = 2x atau 2x = 8 atau 2x = 23 Persamaan yang memuat bentuk eksponen disebut persamaan eksponen. Persamaan eksponen dapat berbentuk : a. af(x) = 1 b. af(x) = ap
c. af(x) = ag(x) d. af(x) = bf(x) e. af(x) = bg(x) f. [f(x)]f(x) = [f(x)]g(x)
a dan b dinamakan bilangan pokok, a,b > 0 dan a,b ≠ 1. f(x) dan g(x) adalah sebuah fungsi aljabar.
Persamaan eksponen dapat diselesaikan dengan menggunakan sifat-sifat persamaan eksponen. Sebelum mempelajari sifat-sifat tersebut sebaiknya kita tinjau kembali bilangan pangkat nol (a 0).
Pengertian pangkat nol Untuk setiap a є bilangan real, maka : a0 = 1 Keterangan : untuk 00 tidak didefinisikan.
4. Sifat – sifat Fungsi Eksponen untuk Menyelesaikan Persamaan Eksponen 1.
Sifat fungsi atau eksponen berbentuk a f(x) = 1 Jika af(x) = dengan a > 0 dan a ≠ 1, maka f(x) = 0
2.
Sifat fungsi atau eksponen berbentuk a f(x) = ap Jika af(x) = ap dengan a > 0 dan a ≠ 1, maka f(x) = p
3.
Sifat fungsi atau persaman eksponen berbentuk a f(x) = ag(x) Jika af(x) = ag(x) dengan a > 0 dan a ≠1 , makaa f(x) = g(x)
4. Sifat fungsi atau persamaan berbentuk af(x) = bf(x) (a≠b) Jika af(x) = bf(x) dengan a,b > 0 a,b ≠ 1 serta a ≠ b, maka f(x) = 0 5. Sifat fungsi atau persamaan eksponen berbentuk a f(x) = bg(x) Penyelesaian persamaan eksponen berbentuk a f(x) = bg(x) dengan a,b>0 dan a,b≠1 dapat diselesaikan dengan logaritma, yaiu log : af(x) = log bg(x) atau f(x) log a = g(x) log b
6. Sifat fungsi persamaan eksponen berbentuk [U(x)]f(x) = [U(x)]g(x) Jika [U(x)]f(x) = [U(x)g(x)] maka nlai x diperoleh dari : 1.
f(x) = g(x)
2.
U(x) = 1
3.
U(x) = 0, jika nilai x memenuhi syarat f(x) ≥ 0 dan g(x) > 0
4.
U(x) = -1, jika nilai x memenuhi syarat f(x) dan g(x) kedua-duanya ganjil atau kedua-duanya genap.
7. Sifat fungsi persamaan eksponen berbentuk A{a f(x)}2 + B{af(x)} + C = 0 Himpunan penyelesaian dari persamaan eksponen A{a f(x)}2 + B{af(x)} + C = 0 (a>0 dan a≠1, A,B, dan C bilangan real dan A≠0) dapat ditentukan dengan cara mengubah persamaan eksponen itu ke dalam persamaan kuadrat.
d.
Pertidaksamaan Eksponen
Definisi :
Pertidaksamaan Eksponen adalah pertidaksamaan yang eksponennya mengandung peubah x, dan tidak menutup kemungkingan bilangan pokoknya juga mengandung peubah x. Penyelesaian dari pertidaksamaan eksponen menggunakan sifat fungsi monoton naik dan sifat fungsi monoton turun pada fungsi-fungsi eksponen baku.
Sifat Fungsi Monoton Naik (a>1)
•
Jika af(x)≥ag(x), maka f(x)≥g(x)
•
Jika af(x)≤ag(x), maka f(x)≤g(x)
Sifat Fungsi Monoton Turun (a0 dan a≠1
•
tanda … dapat ditulis dengan salah satu tanda pertidaksamaan : , ≤, ≥.
e.
Gambar Grafik
f.
Soal dan Pembahasan Sederhanakanlah :
1. 251/3√6 x 251/6√6 Pembahasan : 251/3√6 x 251/6√6 = 25½ √6 = (25½)√6
= 251/3√6 + 1/6√6
= 5√6
2. (303 : 103) x 32
Pembahasan : (303 : 103) x 32 = 33 x 32 = 35
3. (p6 x p-2)-0,5 Pembahasan : (p6 x p-2)-0,5
= (p6 – 2)-1/2
= p-2
Tentukan himpunan penyelesaian setiap persamaan eksponen berikut.
4. 3
x-4
=1
Pembahasan : 3x - 4
=1
↔ 3x - 4
= 30
↔x–4
=0
↔x=4 Hp = {4}
5. 23x – 1 = √8 x + 1 Pembahasan : 23x – 1 ↔ 23x – 1
= √8x + 1 = 23x + 3
↔ 3x – 1 = 3x + 3 ↔ .6x – 2
= 3x + 3
↔
3x
↔
x
=
=
5
5/3
Hp = {5/3}
6. 23x – 6 = 33x – 6 Pembahasan : 23x – 6
= 33x – 6
↔ 3x – 6 = ↔
x
0
=
2
Hp = {2}
7. 2
x -2x -15
=1
Pembahasan : 2x2 -2x -15
=1
x2 -2x – 15
=0
(x -5)(x +3)
=0
x1 = 5 atau x2 = -3 Hp = {5,-3}
8. 3x – 6x + 8 = 5x -6x +8 Pembahasan : 3x -6x + 8
=5
↔ x2 – 6x + 8
=0
↔ (x - 2)(x - 4)
=0
↔
x2 – 6x + 8
x = 2 atau x = 4
Jadi, himpunan penyelesaiannya adalah {2,4}
9. 22x -12 . 2x + 32 = 0 Pembahasan : 22x – 12 . 2x + 32
=0
(2x)2 – 12 . (2x) + 32
=0
Misalkan 2x = y, maka persamaan (2x)2 – 12 . (2x) + 32 = 0 dapat dituliskan menjadi y2 – 12y + 32 = 0 ↔ (y – 4)(y – 8) = 0 ↔ y = 4 atau y = 8 •
untuk y = 4, didapat 2x = 4 ↔ 2x = 2 2 ↔x=2
•
untuk y = 8, didapat 2x = 8 ↔ 2x = 2 3 ↔x=3 Jadi, himpunan penyelesaiannya adalah {2,3}
Itulah tadi yang dapat saya sampaikan. Bagaimana pendapat anda ??? Mohon maaf apabila terjadi kesalahan dalam pemaparan materi ini. Terima kasih saya sampaikan kepada teman saya yang minta bantuan tadi. Kalau ga ada dia, saya tidak mungkin menulis artikel ini. Salam Matematika !!!! 7 Komentar:
Sumber: http://gurusmansaba.blogspot.com/2010/06/belajar-eksponen-yuk.html
Sumbere file pdf: http://syarifbinamu.files.wordpress.com/2013/07/bab-1-sma.pdf
tensi 5
Sumbere file pdf sing 3 hal: http://staff.uny.ac.id/sites/default/files/pendidikan/Nur %20Insani,%20M.Sc/7.3%20Fungsi%20Eksponen%20Asli.pdf Sumber modul 7: http://file.upi.edu/Direktori/FPMIPA/JUR._PEND._MATEMATIKA/195509091980021KARSO/Modul_7_S1_PGSD.pdf
Sumber fungsi eksponen asli: http://asimtot.files.wordpress.com/2012/02/fungsikompleks-fungsi-eksponensial.pdf
MONDAY, 29 APRIL 2013
MATERI EKSPONEN KELAS X
FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN
: Menggunakan aturan yang berkaitan dengan fungsi eksponen dan logaritma dalam pemecahan masalah
Kompetensi Dasar 5.1. 1 Menggunakan sifat-sifat fungsi eksponen dalam pemecahan masalah 5.2. 1 Menggambar grafik fungsi eksponen 5.3. 1 Menggunakan sifat-sifat fungsi eksponen dalam penyelesaian pertidaksamaan eksponen
A.
FUNGSI EKSPONEN
1.
Pengertian Fungsi Eksponen
Suatu fungsi eksponen f : R R dengan bilangan dasar (basis) a yang dinyatakan dalam bentuk y = f(x) = a a.
x
disebut fungsi eksponen baku atau fungsi eksponen standar dengan ketentuan :
x sebagai variabel / peubah bebas dan bertindak sebagai daerah asal fungsi Df = { x | - ∼ < x < ∼ , x ∈ R }
b.
a disebut bilangan dasar/basis dengan a > 0 dan a ≠ 1, sehingga a > 1 atau 0 < a < 1.
c.
y sebagai variabel tak bebas dan bertndak sebagai daerah hasil fungsi Rf = { y| y > 0 , y ∈ R }
2. a.
Grafik Fungsi Eksponen
Dengan bilangan dasar a > 1 Untuk mempelajari grafik fungsi eksponen y = f(x) = a 2
x
x
dengan bilangan dasar a > 1, berikut dilukiskan grafik fungsi y =
, x ∈ R dengan menggunakan bantuan tabel 1 berikut ini.
Tabel 1 y = f(x) = 2
x
x
- ∼ ...
y
0 ...
-3
-2
-1
0
1
2
3
...
∼
...
...
...
...
...
8
...
∼
Y
8 7 6
5 4 3 2 1 -3 -2 -1 0
1
2
3
X
Dari gambar dapat disimpulkan bahwa :
1. Fungsi y = f(x) = a
jika x2 > x1, maka
x
dengan bilangan dasar a > 1, disebut fungsi monoton .naik, sebab
>
2. Fungsi f merupakan fungsi satu-satu, sebab jika f(x 1) = f(x2), maka x1 = x2 3. Nilai dari fungsi f selalu positif untuk setiap x bilangan real
b.
Dengan bilangan dasar 0 < x < 1
Untuk mempelajari grafik fungsi eksponen y = f(x) = a
=
x
dengan bilangan dasar 0 < x < 1, berikut dilukiskan grafik fungsi y
, x ∈ R dengan menggunakan bantuan tabel 2 berikut ini.
Tabel 2 y = f(x) =
x
- ∼ ...
-3
-2
-1
0
1
2
y
0 ...
8
...
...
...
...
...
3
...
∼
...
∼
Y
8 7 6 5 4 3 2 1 -3 -2 -1 0
1
2
3
X
Dari gambar dapat disimpulkan bahwa :
1. y = f(x) = a
x
dengan bilangan dasar 0 < x x1, maka
<
2. fungsi f merupakan fungsi satu-satu, sebab jika f(x 1) = f(x2), maka x1 = x2 3. Nilai dari fungsi f selalu positif untuk setiap x bilangan real
Latihan Uji Kompetensi 1 Gambarlah grafik fungsi eksponen untuk x ∈ R
x
1.
y = f(x) = 3
2.
y = f(x) =
3.
y = f(x) = 3
4.
y = f(x) =
x-2
5. Dari hasil pengerjaan soal nomor 1 s.d. 4 di atas, sebutkanlah perbedaan dan kesamaan fungsi y = a x untuk a > 1 dan untuk 0 0 dan a ≠ 1
Penyelesaian persamaan a
f(x)
=a
p
adalah f(x) = p
Contoh 1 Tentukan himpunan penyelesaian persamaan – persamaan berikut :
a.
2
2x + 1
b.
=2
5
c. 8
=1
x–1
d. 3
=
=
Penyelesaian.
a.
2
2x + 1
=2
5
b.
2x + 1 = 5
=1 .....
=3
....
2x = 4 =3
x=2
....
Himpunan penyelesaiannya { 2 } = ....... x – 2 = ........ x = ........ Himpunan penyelesaiannya { ...... }
c.
8
(2---) 2
x-1
---x
- ...
x–1
=
d.
3
=
= 2.... 3 =2
....
=
... x - .... = ... 3
.
=
... x = ..... 3 . 3..... = 3...... x = ...... 3..... = 3......
Himpunan penyelesaiannya { ...... }
..... x - ....... = ....... x
= .......
Himpunan penyelesaiannya { ...... }
Latihan Uji Kompetensi 2 Tentukan Himpunan Penyelesaian persamaan – persamaan berikut
1.
5
2x
= 625 =
2.
=1 = 0,125
3.
=
4.
2.
= 0,008 2
= 100
f(x)
Bentuk a
g(x)
=a
Penyelesaian persamaan a
x -1
x
. 7 = 98
dengan a > 0 dan a ≠ 1
f(x)
=a
g(x)
adalah f(x) = g(x)
Contoh 2 Tentukan himpunan penyelesaian persamaan – persamaan berikut :
a.
2
5x - 1
=8
b.
Penyelesaian
x+3
a. 2 2
5x - 1
5x - 1
2
=8
x+3
b.
3 x+3
= (2 )
5x - 1
3x + 9
= 2.
5x - 1= 3x + 9 2 x = 10 x=5
2
3
2
3
2
- x – 1 = x + 4x + 6x – 1
Himpunan penyelesaiannya { 5 } 0 = x + 5x + 6x 0 = x(x + ...)(x + ...) x1 = ... x2 = ... x3 = ... Himpunan penyelesaiannya { ..., ..., ... }
Sumber: http://smadamath.blogspot.com/2013/04/materi-eksponen-kelas-x.html
R A B U ,
0 3
F E B R U A R I
2 0 1 0
EKSPONEN 1. Pengertian Eksponen Bentuk an (baca : a pangkat n) disebut bentuk eksponensial atau perpangkatan dengan a disebut basis atau bilangan pokok dan n disebut eksponen atau pangkat. Jika n adalah bilangan bulat positif, maka :
Berdasarkan penjelasan di atas maka berlaku rumus-rumus di bawah ini : Misalkan
dan m,n adalah bilangan positif, maka:
Contoh:
Ubahlah bentuk ini Jawab:
2. Fungsi Eksponen dan Grafiknya
dalam bentuk pangkat positif :
Fungsi eksponen merupakan pemetaan bilangan real x ke a x dengan a > 0 dan
maka
Jika a > 0 dan
disebut fungsi eksponen
sifat :
(i) Kurva terletak di atas sumbu x (definit positif) (ii) Mempunyai asimtot datar y = 0 (sumbu x ) (iii) Monoton naik untuk a > 1 (iv) Monoton turun untuk 0
Grafik fungsi eksponen y = ax
(i) y = ax : a > 1
(i) y = ax 0
,
mempunyai sifat-
Contoh: Buatlah grafik dari y = 2x! Jawab: Buatlah tabel yang menunjukkan hubungan antara x dan y = f (x) = 2 x . Dalam hal ini pilih nilai x sehingga y mudah ditentukan.
3. Persamaan fungsi Eksponen Ada beberapa bentuk persamaan eksponen, diantaranya adalah:
-F ( x ) = 1 - Untuk f(x) -
f
(
x
)
0 dan f(x) =
-1
asalkan
1, maka f(x) = g(x) f
(x)
dan
g
(x)
sama-sama
genap
atau
sama-sama
ganjil,
-f
(
x
)
=
0
asalkan
f
(
x
Contoh :
Tentukan nilai x supaya Jawab:
4. Pertidaksamaan Eksponen
1. f ( x ) > g ( x ), 0 > 1 2. f ( x ) Contoh:
Himpunan bilangan real yang memenuhi pertidaksamaan
adalah....
)
>
0
dan
g
(
x
)
>
0
Jawab:
Jadi HP = { x | x > 2 } Sumber: http://hernakuncoro.blogspot.com/2010/02/eksponen.html
Materi Lengkap Fungsi Eksponen Dan Logaritma Posted On July 20, 2013 | Under Category: Fungsi Eksponen dan Logaritma
advertisements Rumus matematika yang kali ini akan saya paparkan yaitu tentang eksponen
dan logaritma, pasti temen-temen sudah pernah
mendengarnya, atau bahkan telah mempelajarinya disekolah. 1. Fungsi Eksponen Bentuk an disebuat sebagai bentuk eksponensial atau perpangkatan, dengan a disebut basis atau bilangan pokok dan n disebut eksponen atau pangkat. Eksponen memiliki sifat – sifat sebagai berikut :
Bentuk umum dari fungsi eksponen yaitu y = ax dimana a ≥ 0 dan a ≠ 1 a. Grafik fungsi y = ax, untuk 0 < a < 1
Mempunyai sifat-sifat sebagai berikut : 1.
Terdefinisi untuk semua x ϵ R
2.
Jika x mempunyai nilai kecil dan negatif maka sebaliknya y bernilai besar dan positif.
3.
Jika x mempunyai nilai besar dan positif maka y mendekati nol dan positif.
4.
untuk x = 0 maka kita peroleh y = 1.
Gambar Grafik Fungsinya sebagai berikut :
2. Fungsi Logaritma Bentuk eksponen atau perpangkatan dapat kita tulis dalam bentuk logaritma. Secara umum dapat ditulis sebagai berikut :
Jika ab = c dengan a > 0 dan a ≠ 1 maka alog c = b
dalam hal ini a disebut basis atau pokok logaritma dan c merupakan bilangan yang
dilogaritmakan. Logaritma memuliki sifat-sifat sebagai berikut :
Bentuk umum dari fungsi logaritma yaitu Jika ay = x dengan a ≥0 dan a ≠ 1 maka y =alog x 2.1. Grafik Fungsi y =alog x untuk 0 < a < 1 contoh :
mempunyai sifat-sifat : 1.
semua x > 0 terdefinisi
2.
jika x mendekati no maka nilai y besar sekali dan positif
3.
untuk x=1 maka y=o
4.
untuk x > 1 maka y negatif sehingga jika nilai x semakin besar maka nilai y semakin kecil.
Berikut ini gambar grafiknya.
2.2. Grafik Fungsi y =alog x untuk a > 1 contoh :
mempunyai sifat – sifat sebagai berikut : 1.
untuk semua x > 0 terdefinisi
2.
jika x mendekati no maka y kecil sekali dan negatif
3.
untuk x=1 maka y=0
4.
untuk x > 1 maka y positif sehingga jika x semakin besar maka y semakin besar.
Berikut ini gambar grafiknya :
Itulah penjelasan tentang Materi Lengkap Fungsi Eksponen dan Logaritma semoga dapat bermanfaat, dan jangan lupa baca juga materi yang lain seperti Operasi Hitung Pada Pecahanatau Bilangan Prima dan Faktorisasi Prima.
Sumber: http://rumus-matematika.com/materi-lengkap-fungsi-eksponen-danlogaritma/
Fungsi Eksponen Dan Logaritma
1.
Fungsi Eksponen. Bentuk umum fungsi eksponen adalah y = ax, dengan a ≥ 0 dan a ≠ 1 a.
Grafik y = ax, untuk 0 < a < 1
Memiliki sifat-sifat: terdefinisi untuk semua x ϵ R; jika x bernilai kecil sekali dan bertanda negatip maka y besar sekali dan bertanda positip; c) jika x bernilai besar sekali dan bertanda positip maka y bernilai mendekati nol dan bertanda positip; d) untuk x = 0 diperoleh y = 1. a) b)
Gambar grafik :
b. Grafik y = ax, untuk a >1 Contoh Kasus : Memiliki sifat-sifat: a) terdefinisi untuk semua x ϵ R b) jika x bernilai kecil sekali dan bertanda negatip maka y mendekati nol dan bertanda positip c) jika x bernilai besar sekali dan bertanda positip maka y bernilai besar sekali dan bertanda positip d) untuk x = 0 diperoleh y = 1 Gambar grafik :
2.
Fungsi Logaritma Bentuk umum Jika ay = x dengan a ≥0 dan a ≠ 1 maka y =alog x
a.
Grafik fungsi y =alog x untuk 0 < a < 1 Contoh kasus :
memiliki sifat – sifat : a) b) c) d)
terdefinisi untuk semua x >0; jika x mendekati nol maka y besar sekali dan bertanda positip; untuk x = 1, y = 0 untuk x lebih besar dari 1, y berharga negatip. Jika x semakin besar, maka y semakin kecil; Gambar grafik :
b.
Grafik fungsi y =alog x untuk a > 1
Contoh Kasus : memiliki sifat – sifat : a) b) c) d)
terdefinisi untuk semua x >0; jika x mendekati nol maka y kecil sekali dan bertanda negatip; untuk x = 1, y = 0 untuk x lebih besar dari 1, y berharga positip. Jika x semakin besar, maka y semakin besar pula Gambar grafik :
Email ThisBlogThis!Share to TwitterShare to Facebook
Sumber : http://matematikatips.blogspot.com/2012/11/fungsi-eksponen-danlogaritma.html
July 16, 2013 Fungsi Transenden No comments
Fungsi Eksponen Asli dan Sifat Fungsi Eksponen Andri Muchsin Fungsi Eksponen Asli dan Sifat Fungsi Eksponen-cerdaskan.com. Dalam artikel kali ini saya mencoba menampilkan satu materi yang berhubungan
dengan fungsi transenden yakni mengenai fungsi eksponen asli dan sifat pada fungsi eksponen. Mungkin banyak yang belum mengetahui apa itu fungsi eksponen asli dan sifat yang dimiliki oleh suatu fungsi eksponen. Nah, disini akan saya jelaskan satu persatu tanpa ada campur tangan dari materi lain. Artikel ini khusus pada fungsi-fungsi eksponen dan yang berhubungan dengannya. Daripada anda pusing duluan mendingan langsung saja baca artikel di bawah ini, dan temukan jawaban atas pertanyaan apa itu fungsi eksponen asli ? dan apa sifat yang dimiliki oleh fungsi eksponen ? selamat membaca.! Fungsi Eksponen Asli Suatu fungsi logaritma asli dapat diturunkan menjadi kontinu dan akan naik pada daerah asal D = (0, ∞) , dengan daerah nilai adalah R = ( – ∞, ∞). Sebenarnya fungsi tersebut adalah fungsi balikan atau invers. Sehingga, balikan dari logaritma asli ini adalah ln -1 dengan daerah asal ( – ∞, ∞) dan daerah nilai (0, ∞). Jangan pernah lupakan fungsi ini ya! Lihat definisi berikut : Definisi : Balikan ln disebut juga fungsi eksponen asli dan ditulis dengan exp yakni : X = exp y maka y = ln x Terlihat jelas bahwa :
• •
Exp(ln x) = x dengan x > 0 Ln(exp y) = y berlaku untuk semua nilai y Sehingga, exp dan ln disebut fungsi-fungsi balikan, tapi mengapa disebut fungsi eksponen? Tahukan anda? Lihat penjelasan berikut ini : Sifat Fungsi Eksponen Kenalkan anda dengan bilangan π ? ya tentu saja, penjelasan ini kita awali dengan adanya bilangan baru seperti bilangan π yang dilambangkan dengan huruf e. dalam matematika bilangan ini sangatlah penting dan berguna, seorang ahli matematika yang menggunakan lambang ini pertama kali ialah Leonhard euler. Definisi : Bilangan e adalah bilangan riil positif yang bersifat ln e = 1 Oleh sebab ln e = 1, maka exp 1 = e. Seperti halnya π, bilangan e merupakan bilangan tak rasional. Banyak yang telah menghitungnya sampai pada 1000 angka dibelakang kurva, misalnya : e ≈ 2,718281828459045 apabila r suatu bilangan rasional maka, ex = exp(ln ex) = exp (r ln e) = exp r. Untuk r yang rasional, exp r adalah identik dengan er. bagaimana jika r tidak rasional? apa yang disebut dengan e√2? Maka kita definisikan ex untuk semua x baik itu rasional ataupun tidak rasional dengan ex = exp x. perhatikan bahwa :
• •
eln x = x dengan x > 0 ln(ey) = y berlaku untuk semua nilai y Teorema 1 Andaikan a dan b bilangan rasional, maka eaeb = ea + b dan ea/eb = ea – b Bukti teorema eaeb = exp (ln eaeb) eaeb = exp (ln ea + ln eb) eaeb = exp (a + b) eaeb = ea + b (terbukti) ea/eb = exp (ln ea/eb) ea/eb = exp (ln ea/ln eb) ea/eb = exp (a – b) ea/eb = ea – b (terbukti) Turunan ex Karena exp dan ln merupakan fungsi-fungsi yang saling berkebalikan, maka berdasarkan teorema fungsi balikan, fungsi exp x = e x dapat diturunkan. Sebuah rumus Dxex dapat kita gunakan teorema fungsi balikan itu. Andaikan y = ex, maka ; x = ln y ruas kanan dan kiri kita turunkan terhadap x, sehingga diperoleh ; x = ln y 1 = 1/y Dxy dengan memakai aturan rantai sehingga ; Dxy = y = ex maka terbukti bahwa turunan dari ex adalah ex itu sendiri. Jadi, Dx ex = ex . apabila u = f(x) dapat diturunkan, maka berdasarkan aturan rantai maka, Dx eu = eu Dx u. Contoh soal 1 : 1. tentukanlah nilai dari Dx e√x ! Penyelesaian : Andaikan u = √x maka ;
Dx e√x = e√x Dx √x Dx e√x = e√x ½ x-1/2 Dx e√x = e√x /2 √x 2. tentukanlah nilai dari Dx ex ln x ! Penyelesaian : Dx ex ln x = ex ln x Dx (xln x) Dx ex ln x = ex ln x Dx (x . 1/x + 1 ln x) Dx ex ln x = xex ln x Dx (1 + ln x) Sekianlah sedikit penjelsan saya mengenai fungsi eksponen asli dan sifat fungsi eksponen dalam artikel ini. Semoga penjelasan ini dapat membantu anda mengetahui apa itu fungsi eksponen asli dan sifat pada fungsi eksponen. Apabila dalam artikel ini ada yang keliru mohon komentar koreksinya, insyaallah saya akan tanggapi positif. Terimakasih !
Sumber: http://cerdaskan.com/fungsi-eksponen-asli-dan-sifat-fungsi-eksponen.html
View more...
Comments