Deep Learning:第18章

September 17, 2017 | Author: matsuolab | Category: N/A
Share Embed Donate


Short Description

Deep Learning日本語翻訳版...

Description

576

18

16.2.2

p˜(x; θ) p˜

Z(θ) 1 p˜(x; θ) Z(θ)

(18.1)

p˜(x)dx

(18.2)

p(x; θ) = !

" x

20 p(x)

18.1

p˜(x)

(18.3)

18.

(18.4)

∇θ log p(x; θ) = ∇θ log p˜(x; θ) − ∇θ log Z(θ) positive phase

negative phase

RBM

RBM 19

log Z (18.5)

∇θ log Z ∇θ Z Z ! ∇θ x p˜(x) = Z ! ∇θ p˜(x) = x Z

(18.6)

=

x

p(x) > 0

(18.7) (18.8)

p˜(x)

=

!

!

x

∇θ exp (log p˜(x)) Z

exp (log p˜(x)) ∇θ log p˜(x) Z ! p˜(x)∇θ log p˜(x) = x Z " = p(x)∇θ log p˜(x) x

exp (log p˜(x)) (18.9) (18.10) (18.11) (18.12)

x

= Ex∼p(x) ∇θ log p˜(x)

577

(18.13)

18.

x

x

∇θ p˜

!

!

p˜(x)dx =

∇θ p˜(x)

(i)θ

x

∇θ p˜(x)

p˜ (ii)

x x

θ (iii)

∂ maxi | ∂θ p˜(x)| i

(18.14)

∇θ p˜(x)dx

≤ R(x)

θ

∇θ p˜(x)

R(x)

(18.15)

∇θ log Z = Ex∼p(x) ∇θ log p˜(x)

x log p˜(x)

log p˜(x) 16.7 18.1

18.2 18.15 1 18.1

578

log p˜

18.

Algorithm 18.1 MCMC ϵ k RBM

100

while

do 1 m

g← m

!m

{x(1) , . . . , x(m) }

m

i=1

∇θ log p˜(x(i) ; θ)

˜ (1) , . . . , x ˜ (m) x

for i = 1 to k do for j = 1 to m do ˜ (j) ← gibbs_update(˜ x x(j) )

end for end for g←g−

1 m

θ ← θ + ϵg

!m

i=1

∇θ log p˜(˜ x(i) ; θ)

end while

MCMC 2 2

18.1 log p˜

log Z

hallucinations

fantasy particles

(Crick and Mitchison, 1983) log p˜ log Z 579

18.

The positive phase

The negative phase

pdata (x)

pdata (x) p(x)

pmodel (x)

p(x)

pmodel (x)

x

x

18.1:

18.1

The positive phase

The negative phase

log p˜

19.5

18.1 MCMC

contrastive divergence CD CD

CD-k (Hinton, 2000, 2010)

18.2 580

k

18.

Algorithm 18.2 ϵ k

p(x; θ)

pdata RBM

1 20 while g←

do 1 m

m

!m

i=1

∇θ log p˜(x(i) ; θ)

{x(1) , . . . , x(m) }

for i = 1 to m do ˜ (i) ← x(i) x

end for

for i = 1 to k do for j = 1 to m do ˜ (j) ← gibbs_update(˜ x x(j) )

end for end for g←g−

1 m

θ ← θ + ϵg

!m

i=1

∇θ log p˜(˜ x(i) ; θ)

end while

CD

CD

spurious modes k

Carreira-Perpiñan and Hinton (2005)

RBM

fully visible Boltzmann machines

CD 581

18.2

18.

pmodel (x)

p(x)

pdata (x)

x

18.2:

18.2

R R

x

edit distance 2-D

CD CD MCMC

Bengio and Delalleau (2009)

MCMC CD

RBM DBN

DBM

CD

582

CD

18.

CD CD CD

CD Sutskever and Tieleman (2010)

CD

CD CD stochastic maximum likelihood SML (Younes, 1998) persistent contrastive divergence PCD PCD

1

k

PCD-k

(Tieleman, 2008)

18.3

SML

CD SML

CD SML

Marlin et al. (2010) SML RBM

RBM

SVM

SML 583

SML

18.

SML

k

MNIST

ϵ

7 7

9 Algorithm 18.3 ϵ k RBM

1

p(x; θ + ϵg) DBM

˜ (m) } {˜ x(1) , . . . , x

m while g←

p(x; θ) 5 50 ( )

do 1 m

!m

m

i=1

∇θ log p˜(x(i) ; θ)

{x(1) , . . . , x(m) }

for i = 1 to k do

for j = 1 to m do ˜ (j) ← gibbs_update(˜ x x(j) )

end for end for g←g−

1 m

θ ← θ + ϵg

!m

i=1

∇θ log p˜(˜ x(i) ; θ)

end while SML

584

18.

Berglund and Raiko (2013)

CD

SML

CD SML

CD

MCMC MCMC

SML

17

(Desjardins et al., 2010; Cho et al., 2010) MCMC 1 Fast PCD FPCD

(Tieleman and Hinton, 2009)

θ θ = θ (slow) + θ (fast)

(18.16)

2 fast

fast fast fast MCMC

1 log p˜

log Z

log Z

log p˜(x) p˜ log Z

585

18.

18.3

p(x) = p(y)

x

a

b

1 ˜(x) Zp 1 ˜(y) Zp

=

p˜(x) p˜(y)

(18.17)

c

a

b

p(a | b) = a

c

p(a, b) p(a, b) p˜(a, b) =! =! . p(b) ˜(a, b, c) a,c p(a, b, c) a,c p a

c

1

a

(18.18)

1

c p˜

n−1

n

log p(x) = log p(x1 ) + log p(x2 | x1 ) + · · · + p(xn | x1:n−1 ) a c

c

(18.19)

x2:n pseudolikelihood

b

(Besag, 1975)

x−i

xi

n " i=1

(18.20)

log p(xi | x−i )

k

p˜ k

n

586

k×n

18.

(Mase, 1995) generalized pseudolikelihood estimator (Huang and Ogata, 2002) m S , i = 1, . . . , m (i)

S

m=1 m=n

m ! i=1

S

(i)

(1)

= 1, . . . , n

= {i}

(18.21)

log p(xS(i) | x−S(i) )

p(x)

S

S 19

p˜(x) p˜

SML 1

(Goodfellow et al., 2013b) SML 587

18.

log Z 1 Marlin and de Freitas (2011)

18.4 (Hyvärinen, 2005)

Z score

∇x log p(x)

1 ||∇x log pmodel (x; θ) − ∇x log pdata (x)||22 2 1 J(θ) = Epdata (x) L(x, θ) 2 θ ∗ = min J(θ)

(18.22)

L(x, θ) =

(18.23) (18.24)

θ

Z

∇x Z = 0

x

Z pdata

L(x, θ) ˜ L(x, θ) =

n ! j=1

"

∂2 1 log pmodel (x; θ) + 2 ∂xj 2 n

#

∂ log pmodel (x; θ) ∂xj

$2 %

x

x

log p˜(x) log p˜(x)

log p˜(x)

588

(18.25)

18.

(Hyvärinen, 2007a)

CD Lyu (2009) Marlin et al. (2010)

Marlin et al. (2010) (generalized score

0 matching GSM) ratio matching

(Hyvärinen, 2007b)

L(RM) (x, θ) =

n ! j=1

⎛ ⎝

1 1+

pmodel (x;θ) pmodel (f (x),j);θ)

⎞2 ⎠

f (x, j)

(18.26) x

j

2 Marlin et al. (2010) SML

GSM p˜ SML

n

1

MCMC

MCMC 589

n

18.

Dauphin and Bengio (2013)

Marlin and de Freitas (2011)

18.5 pdata psmoothed (x) =

y

!

(18.27)

pdata (y)q(x | y)dy q(x | y)

x pdata pmodel

q 5.4.5

Kingma and LeCun (2010)

q

14.5.1

18.6 SML

CD

(Noise-contrastive estimation NCE) (Gutmann and Hyvarinen, 2010) 590

18.

(18.28)

log pmodel (x) = log p˜model (x; θ) + c − log Z(θ)

c θ θ

c

c

log pmodel (x)

c *1

c NCE

c 1

p(x)

noise distribution pnoise (x)

2 x

y pjoint (y = 1) =

1 , 2

(18.29)

pjoint (x | y = 1) = pmodel (x),

(18.30)

pjoint (x | y = 0) = pnoise (x).

(18.31)

y

x

x ptrain (y = 1) = 1 2

ptrain (x | y = 1) = pdata (x) ptrain (x | y = 0) = pnoise (x) pjoint

ptrain

θ, c = arg max Ex,y∼ptrain log pjoint (y | x). θ,c

*1

NCE

c

591

(18.32)

18.

pjoint pmodel (x) pmodel (x) + pnoise (x)

pjoint (y = 1 | x) = =

=

1 1+

(18.34)

pnoise (x) pmodel (x)

!

1

1 + exp log #

(18.33)

pnoise (x) pmodel (x)

pnoise (x) = σ − log pmodel (x)

(18.35)

"

$

(18.36) (18.37)

= σ (log pmodel (x) − log pnoise (x)) log p˜model

pjoint NCE

pnoise NCE

(Mnih and Kavukcuoglu, 2013) NCE 1 pmodel pnoise pmodel

pnoise pnoise

pmodel NCE

NCE

pjoint (y = 1 | x)

pjoint (y = 0 | x)

pjoint (y = 1 | x)

p˜ pnoise

592

18.

self-contrastive estimation

NCE

(Goodfellow, 2014)

NCE

(Welling et al., 2003b; Bengio, 2009)

20.10.4

18.7 Z(θ)

pA (x; θA ) = pB (x; θB ) =

1 ˜A (x; θA ) ZA p

1 ˜B (x; θB ) ZB p

!

i

pA (x(i) ; θA ) > " i

MB !

MA

2

{x(1) , . . . , x(m) }

m i

pB (x(i) ; θB )

log pA (x(i) ; θA ) −

"

log pB (x(i) ; θB ) > 0

i

MA 593

MB

(18.38)

18.

18.38 18.38 2 ! i

(i)

log pA (x ; θA ) −

!

(i)

log pB (x ; θB ) =

i

!" i

p˜A (x(i) ; θA ) log p˜B (x(i) ; θB )

2

MA r=

#

− m log MA

MB

Z(θB ) Z(θA )

Z(θA ) Z(θB ) (18.39)

MB

2

2

Z(θA )

Z(θB ) = rZ(θA ) =

Z(θB ) Z(θA ) Z(θA )

p0 (x) =

(18.40)

1 ˜0 (x) Z0 p

Z0 p˜0 (x) $ Z1 = p˜1 (x) dx $ p0 (x) = p˜1 (x) dx p0 (x) $ p˜1 (x) = Z0 p0 (x) dx p˜0 (x) K Z0 ! p˜1 (x(k) ) Zˆ1 = K p˜ (x(k) ) k=1 0

(18.42) (18.43)

s.t. : x(k) ∼ p0

p0 (x) p˜1

(18.41)

(18.44) Zˆ1

p0

K 1 ! p˜1 (x(k) ) K p˜ (x(k) ) k=1 0

s.t. : x(k) ∼ p0

594

(18.45)

18.

18.39 p0

2 18.44

p1

(Minka, 2005)

p1 p1 p0

p0

p1

p0

18.44

p1

Zˆ1 %2 K $ ! " Z0 # p˜1 (x(k) ) ˆ ˆ ˆ Var Z1 = 2 − Z1 K p˜0 (x(k) )

(18.46)

k=1

p˜1 (x(k) ) p˜0 (x(k) )

2 p0

p1

p0

p1

intermediate distributions

bridge the gap

18.7.1 DKL (p0 ∥p1 )

p0

p1

annealed importance sampling AIS (Jarzynski, 1997; Neal, 2001)

pη 0 , . . . , p η n

p0

p1

0 = η0 < η1 < · · · < ηn−1 < ηn = 1 RBM RBM

2 RBM 595

18.

Z1 Z0

Zη Z1 Z 1 Z η1 = · · · n−1 Z0 Z 0 Z η1 Zηn−1 Zη Zη Zη Z1 = 1 2 · · · n−1 Z 0 Z η1 Zηn−2 Zηn−1 =

n−1 ! j=0

0 ≤ j ≤ n−1

(18.47) (18.48)

Zηj+1 . Z ηj

pη j

(18.49)

pηj +1

Zηj+1 Zη j

Z1 Z0

p0 pη1 . . . pηn−1 p1

p0 η

1−ηj

(18.50)

pη j ∝ p 1 j p0

x Tηj (x′ | x)

Tηj (x′ | x)

pηj (x) pηj (x) =

AIS

"

pηj (x′ )Tηj (x | x′ ) dx′

p0

p1 • for k = 1 . . . K (k)

– xη1 ∼ p0 (x) (k)

(k)

(k)

– xη2 ∼ Tη1 (xη2 | xη1 ) – ...

(k)

(k)

x′

(k)

– xηn−1 ∼ Tηn−2 (xηn−1 | xηn−2 )

596

(18.51)

18.

(k)

(k)

(k)

– xηn ∼ Tηn−1 (xηn | xηn−1 )

• end

18.49

k

(k)

w(k) =

(k)

p˜η1 (xη1 ) p˜η2 (xη2 ) (k)

(k)

p˜0 (xη1 ) p˜η1 (xη2 )

(k)

...

p˜1 (x1 )

(18.52)

(k)

p˜ηn−1 (xηn ).

w(k) log w(k) 18.52 K Z1 1 ! (k) ≈ w Z0 K

(18.53)

k=1

AIS [xη1 , . . . , xηn−1 , x1 ] (Neal, 2001)

p˜(xη1 , . . . , xηn−1 , x1 ) =˜ p1 (x1 )T˜η (xη | x1 )T˜η n−1

n−1

(18.54) n−2

(xηn−2 | xηn−1 ) . . . T˜η1 (xη1 | xη2 ).

T˜a

(18.55)

Ta pa (x′ ) p˜a (x′ ) T˜a (x′ | x) = Ta (x | x′ ) = Ta (x | x′ ). pa (x) p˜a (x)

(18.56)

18.55 (18.57)

p˜(xη1 , . . . , xηn−1 , x1 ) = p˜1 (x1 )

n−2 " p˜η (xη ) p˜ηn−1 (xηn−1 ) i i Tηn−1 (x1 | xηn−1 ) Tη (xηi+1 | xηi ) ˜ (x ) i p˜ηn−1 (x1 ) p η η i i+1 i=1

n−2 " p˜ηi+1 (xηi+1 ) p˜1 (x1 ) = Tηn−1 (x1 | xηn−1 ) p˜η1 (xη1 ) Tηi (xηi+1 | xηi ) p˜ηn−1 (x1 ) p˜ηi (xηi+1 ) i=1

597

(18.58)

(18.59)

18.

q (18.60)

q(xη1 , . . . , xηn−1 , x1 ) = p0 (xη1 )Tη1 (xη2 | xη1 ) . . . Tηn−1 (x1 | xηn−1 ) 18.59

w(k) =

q(xη1 , . . . , xηn−1 , x1 )

(k) (k) (k) p˜(xη1 , . . . , xηn−1 , x1 ) p˜1 (x1 ) p˜η2 (xη2 ) p˜η1 (xη1 ) = . . . . (k) (k) (k) q(xη1 , . . . , xηn−1 , x1 ) p˜ηn−1 (xηn−1 ) p˜1 (xη1 ) p˜0 (x0 )

AIS

(18.61)

AIS

Jarzynski (1997)

Neal

(2001)

(Salakhutdinov and Murray, 2008) AIS

Neal (2001)

18.7.2 bridge sampling (Bennett, 1976)

AIS

1 bridge p0

1

Z1 Z1 /Z0

p∗ p1

p˜0

K (k) ! Z1 p˜∗ (x0 ) ≈ (k) Z0 ˜0 (x0 ) k=1 p

"

598

p˜∗ K (k) ! p˜∗ (x )

1 (k) ˜1 (x1 ) k=1 p

p˜1

p˜∗

(18.62)

18.

p∗

p0

support

p1 2 (opt)

p∗ r = Z1 /Z0

(x) ∝

DKL (p0 ∥p1 ) p˜0 (x)p˜1 (x) r p˜0 (x)+p˜1 (x)

r (Neal, 2005) r AIS

p0

DKL (p0 ∥p1 )

AIS

2

p∗

AIS

p0

p1 1

Neal (2005)

p1

linked importance sampling method

AIS

AIS

Desjardins et al. (2011)

AIS RBM RBM

AIS

599

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF