Decision Analysis – Prac Prob 2015

August 28, 2017 | Author: vasuraj002 | Category: Science, Mathematics, Business
Share Embed Donate


Short Description

dm...

Description

Decision Analysis – Practice Problems

DMUO ‐ 2015

Dr. Gunjan Malhotra [email protected][email protected] 9/8/2015

IMT, Ghaziabad, INDIA

1

Question 1.  • Bob’s bike shop is considering three options for its facility next year.  Bob can expand his current shop, move to a larger facility, or make  no change. With a good market, the annual payoff would be  $56,000 if he expands, $70,000 if he moves, and $30,000 if he does  nothing. With an average market, his payoffs will be $21,000,  $35,000, and $10,000, respectively. With a poor market, his payoff  will be ‐$29,000, ‐$45,000, and $5,000 respectively. (a) Which option should Bob choose if he uses the maximax  criterion? (b) Which option should Bob choose if he uses the maximin criterion? (c) Which option should Bob choose if he uses the equally likely  criterion? (d) Which option should Bob choose if he uses the criterion of realism  with α =0.6? (e) Which option should Bob choose if he uses the minimax regret  criterion?

Answer 1.  (a) Maximax (b) Maximin Alternatives Maximum Choice Minimum Choice Expand $56,000 -$29,000 Move $70,000 Best -$45,000 No change $30,000 $5,000 Best

(c) Equally Likely (d) Hurwicz (0.6) Average Choice Realism Choice $16,000 $22,000 $20,000 Best $24,000 Best $15,000 $20,000

Regret Outcomes (e) Minimax Alternatives Good Average Poor Maximum Choice Expand $14,000 $14,000 $34,000 $34,000 Best Move $0 $0 $50,000 $50,000 No change $40,000 $25,000 $0 $40,000

Question 2. • Bob (in continuation to the previous question)  has gathered some additional information. The  probabilities of good, average, and poor markets  are 0.25, 0.45, and 0.3, respectively. • (a) Using EMVs, what option should Bob choose?  What is the maximum EMV? • (b) Using EOL, what option should Bob choose?  What is the minimum EOL? • (c) Compute the EVPI and show that it is the  same as the minimum EOL.

Answer 2.  Alternatives Expand Move No change

EMV $14,750 $19,750 $13,500

Choice Best

Expected Value WITH Perfect Information (EVwPI) = $34,750 Best Expected Monetary Value (EMV) = $19,750 Expected Value OF Perfect Information (EVPI) = $15,000 Alternatives Expand Move No change

EOL Choice $20,000 $15,000 Best $21,250

Question 3. • Jeff Park sells newspapers on Sunday mornings in an area  surrounded by three busy churches. Assume that Jeff’s demand can  either be for 100, 200, or 300 newspapers, depending on traffic and  weather. Jeff has the option to order 100, 200, or 300 newspapers  from his supplier. Jeff pays$1.25 for each newspaper he orders and  sells each for $2.00. • (a) How many papers should Jeff order if he chooses the maximax  criterion? • (b) How many papers should Jeff order if he chooses the maximin  criterion? • (c) How many papers should Jeff order if he chooses the equally  likely criterion? • (d) How many papers should Jeff order if he chooses the  criterion  of realism α =0.4? • (e) How many papers should Jeff order if he chooses the minimax  regret  criterion?

Answer 3.  (c) Equally Likely

(d) Hurwicz (0.4)

(a) Maximax (b) Maximin (e) Minimax Alternative Maximu Choic Minimu Choic Maximu Choic s m e m e Average Choice Realism Choice m e 100 $75 $75 Best $75 $75 Best $150 200 $150 -$50 $83 Best $30 $125 Best 300 $225 Best -$175 $25 -$15 $250

Question 4. • Jeff Park (in continuation to question 3) has done  some research and discovered that the  probabilities for demands of 100, 200, and 300  newspapers are 0.4, 0.35, and 0.25, respectively. • (a) Using EMVs, how many paper should Jeff  order? • (b) Using EOL, how many paper should Jeff  order? • (c) Compute Jeff’s EVwPI and EVPI.

Answer 4. Alternatives EMV Choice 100 $75 Best 200 $70 300 -$5 Expected Value WITH Perfect Information (EVwPI) = $139 Best Expected Monetary Value (EMV) = $75 Expected Value OF Perfect Information (EVPI) = $64 Alternatives EOL Choice 100 $64 Best 200 $69 300 $144

Question 5. •

• • • • •

Even though independent gasoline stations have been having a difficult time,  Susan Solomon has been thinking about starting her own independent gasoline  station. Susan’s problem is to decide how large her station should be. The annual  returns will depend on both the size of her station and a number of marketing  factors related to the oil industry and demand for gasoline. After a careful analysis,  Susan developed the following payoff (profit) table: Size

Good Market ($)

Fair Market ($)

Poor Market ($)

Small

50,000

20,000

‐10,000

Medium

80,000

30,000

‐20,000

Large

1,00,000

30,000

‐40,000

Very Large 3,00,000 25,000 (a) what is the maximax decision? (b) what is the maximin decision? (c) what is the equally likely decision? (d) what is the criterion of realism decision, using α = 0.8? (e) what is the minimax regret decision?

‐1,60,000

Answer 5. (a) Maximax (b) Maximin Alternative Maximu Choic Choic s m e Minimum e Small $50,000 -$10,000 Best Medium $80,000 -$20,000 Large $100,000 -$40,000 Very large $300,000 Best $160,000

(c) Equally Likely

(d) Hurwicz (0.8)

Average Choice Realism $20,000 $38,000 $30,000 $60,000 $30,000 $72,000

(e) Minimax Maximu Choic Choice m e $250,000 $220,000 $200,000

$55,000 Best $208,000 Best $150,000 Best

Question 6. •

• •



Kenneth Brown is the principal owner of Brown Oil, Inc. After quitting his university  teaching job, ken has been able to increase his annual salary by a factor of over 100.  At the present time, ken is forced to consider purchasing some more equipment for  Brown Oil because of competition. His alternatives, outcomes, and payoffs (profits)  are shown in the following table:  Equipment

Favorable market ($)

Unfavorable market ($)

Sub 100

300,000

‐200,000

Oiler J

250,000

‐ 100,000

Texan

75,000

‐18,000

(a) Ken has always been very optimistic decision maker. Which alternative is best  from Ken’s point of view? (b) Although ken is the principal owner of Brown Oil, his brother Bob is credited  with making the company a financial success. Bob attributes his success to his  pessimistic attitude about business and the oil industry. Which alternative is best  from Bob’s point of view? (c)  The Lubricant is an expensive oil newsletter to ken subscribes. In the latest issue,  the newsletter describes how the demand for oil products will be extremely high.  Apparently, the American consumer will continue to use oil products even if the  price of these products doubles. Indeed, one of the articles in the Lubricant states  that the chance of a favourable market for oil products is 70%. If ken uses these  probabilities in  determining the best decision, which alternative is best?

Answer 6. Outcomes Alternatives Fav mkt Unfav mkt Sub 100 $300,000 -$200,000 Oiler J $250,000 -$100,000 Texan $75,000 -$18,000

(a) Maximax (b) Maximin (c) EMV Maximum Choice Minimum Choice EMV Choice $300,000 Best -$200,000 $150,000 Best $250,000 -$100,000 $145,000 $75,000 -$18,000 Best $47,100

• DECISION TREES

Question 7. •

• •

A group of medical professionals is considering constructing a private  clinic. If patient demand for the clinic is high, the physicians could realize a  net profit of $100,000. If the demand is low, they could lose $40,000. Of  course, they don’t have to proceed at all, in which case there is no cost. In  the absence of any market data, the best the physicians can guess is that  there is a 50‐50 chance that demand will be good. (a) construct a decision tree to help analyze this problem. What should the  medical professionals do? (b) The physicians have been approached by a market research firm that  offers to perform a study of the market at a fee of $5,000. The market  researchers claim that their experience enables them to use Bayes’  theorem to make the following statements of probability: • • • • •



Probability of high demand given a positive study result = 0.82 Probability of low demand given a positive study result = 0.18 Probability of high demand given a negative study result = 0.11 Probability of low demand given a negative study result = 0.89 Probability of  a positive study result = 0.55

Expand the decision tree in part (a) to reflect the options now open with  the market study. What should the medical professionals do now?

Answer 7. • • • • • • • • •

(a) EMV if we construct the clinic = 0.5 * $100,000 + 0.5 * (‐$40,000) =  $30,000. EMV if we do nothing = $0. Therefore, construct clinic. (b) Excel: Construct clinic if result is positive. Do not construct clinic if  result is negative. EMV = $36,140 (c) EVSI = $11,140. Thus, the physicians would pay up to $11,140 more for  the survey. Note: Since EVSI should be calculated assuming no cost to  gather the sample information, $5,000 had to be added back to $36,140. (d) EVwPI = $50,000. Best EMV = $30,000. EVPI = $20,000. Efficiency =  55.70%.

Answer 7.  Problem 7

0.82 High demand

(a) Construct clinic; EMV = $30,000 (b) Conduct study. Construct clinic if positive result Do not construct clinic if negative result. EMV = $36,140 (c) EVSI = $11,140 0.55 (d) EVwPI = $50,000 Positive result Best EMV = $30,000 1 EVPI = $20,000 $0 $69,800 Efficiency = 55.70%

$95,000 Construct

$1,00,000 $0

$69,800

$95,000

0.18 Low demand -$45,000 -$40,000 -$45,000

Not Construct -$5,000 $0

-$5,000

Study -$5,000

0.11 High demand

$36,140

$95,000 Construct

$1,00,000 $0

-$29,600

0.45 Negative result

0.89 Low demand -$45,000

2 $0

$95,000

-$40,000 -$45,000

-$5,000

1

Not Construct

$36,140

-$5,000 $0

-$5,000

0.50 High demand $1,00,000 Construct $0

$1,00,000 $1,00,000 $30,000

0.50 Low demand

No Study

-$40,000 1

$0

-$40,000

-$40,000

$30,000 Not Construct $0 $0

$0

Question 8.  Jerry Young is thinking about opening a bicycle shop in his hometown. Jerry loves to  take his own bike on 50‐mile trips with his friends, but he believes that any small  business should be started only if there is a good chance of making a profit. Jerry  can open a small shop, a large shop, or no shop at all. Because there will be a five‐ year lease on the building that Jerry is thinking about using, he wants to make sure  that he makes the correct decision. Jerry has done some analysis about the profitability of the bicycle shop. If  Jerry builds the large bicycle shop, he will earn $60,000 if the market is good, but he will  lose $40,000 if the market is bad. The small shop will return a $30,000 profit in a good  market and a $10,000 loss in a bad market. At the present time, he believes that there is  a 59% chance that the market will be good. Jerry also has the option of hiring his old marketing professor for $5,000 to  conduct a marketing research study. If the study is conducted, the results could be  either favorable or unfavorable. It is estimated that there is a 0.6 probability that the  survey will be favorable. Furthermore, there is a 0.9 probability that the market will be  good, given a favorable outcome from the study. However, the marketing professor has  warned Jerry that there is only a probability of 0.12 of a good market if the marketing  research results are not favorable. • (a) Develop a decision tree for Jerry and help him to decide what he should do. • (b) How much is the marketing professor’s information worth? What is the  efficiency of this information> •

Answer 8. • (a) Conduct survey. If results are favorable,  build large shop. If the results are unfavorable,  don't build any shop. • • (b) EVSI = $11,000. EVwPI = $35,400. Best  EMV = $19,000. EVPI = $16,400. Efficiency =  67.07%. •

Answer 8.  Problem 8

0.59 Good market

(a) Conduc t s urvey

$60,000

Large shop

If favorable, build large s hop If unfavorable, don't build any s hop EVSI = $11,000 (b) EVwPI = Bes t EMV = EVPI = Effic ienc y =

$0

$60,000

$60,000

0.41 Bad market

$19,000

$35,400 $19,000 $16,400 67.07%

-$40,000 -$40,000

-$40,000

0.59 Good market

No survey

$30,000 1

$0

Small shop

$30,000

$30,000

$19,000 $0

0.41 Bad market

$13,600

-$10,000 -$10,000

-$10,000

No shop $0 $0

$0

0.90 Good market $55,000

Large shop $0

$60,000 $45,000

$55,000

0.10 Bad market

2 $25,000

-$45,000 -$40,000

-$45,000

0.90 Good market

0.60 Favorable

$25,000 1

$0

Small shop

$30,000

$25,000

$45,000 $0

$21,000

0.10 Bad market -$15,000 -$10,000

-$15,000

No shop -$5,000 $0

-$5,000

Survey -$5,000

0.12 Good market

$25,000

$55,000

Large shop $0

$60,000 -$33,000

$55,000

0.88 Bad market -$45,000 -$40,000

0.12 Good market

0.40 Unfavorable

$25,000

3 $0

-$45,000

Small shop

$30,000

$25,000

-$5,000 $0

-$10,200

0.88 Bad market -$15,000 -$10,000

-$15,000

No shop -$5,000 $0

-$5,000

Question 9.  Rob Johnson is a product manager for Diamond Chemical. The  firm is considering whether to launch a new product line that  will require building a new facility. The technology required to  produce the new product is yet untested. If Rob decides to build  the new facility and the process is successful, Diamond Chemical  will realize a profit of $650,000. If the process does not succeed,  the company will lose $800,000. Rob estimates that there is a  0.6 probability that the process will succeed. Rob can also decide to build a pilot plant for $50,000 to  test the new process before deciding to build the full – scale  facility. If the pilot plant succeeds, Rob feels the chance of the  full‐scale facility succeeding is 85%. If the pilot plant fails, Rob  feels the chance of the full‐scale facility succeeding is only 20%.  The probability that the pilot plant will succeed is estimated at  0.6. Structure this problem with a decision tree and advise Rob  what to do.

Answer 9. • Build the pilot plant. If the pilot plant  succeeds, build facility. If the pilot plant fails,  don't build facility. Expected profit = $209,500. •

Answer 9. Problem 9

0.85 Facility works

Build the pilot plant.

$6,00,000

If pilot plant succeeds, build facility.

Build facility

$6,50,000

$6,00,000

If pilot plant fails, don't build facility. Expected profit = $209,500

$0

$3,82,500

0.60 Pilot works

-$8,50,000 1

$0

0.15 Facility fails -$8,00,000

-$8,50,000

$3,82,500 Don't build -$50,000 $0

-$50,000

Build pilot 0.20 -$50,000

$2,09,500

Facility works $6,00,000 Build facility $0

-$5,60,000

0.40 Pilot fails

$6,00,000

0.80 Facility fails -$8,50,000

2 $0

$6,50,000

-$8,00,000

-$8,50,000

-$50,000 Don't build -$50,000

1

$0

-$50,000

$2,09,500 0.60 Facility works $6,50,000 Build facility $0

$6,50,000 $70,000

$6,50,000

0.40 Facility fails -$8,00,000 -$8,00,000

-$8,00,000

Do nothing $0 $0

$0

Question 10. • Rob Johnson (see problem 9) has some revised  information concerning the accuracy of the pilot  plant probabilities. According to his new  information, the probability that the pilot plant  will be successful, given that the full‐scale facility  will work, is 0.8. The probability that the pilot  plant will fail, given that the full‐scale facility will  fail, is 0.85. Calculate the posterior probabilities  and reevaluate the decision tree from Problem 9.  Does this new information affect Diamond  Chemical’s original decisions?

Answer 10. • (a)

Prior Probabilities P(Facility works) = P(Facility fails) = Conditional probabilities P(Pilot works | Facility works) = P(Pilot fails | Facility works) = P(Pilot works | Facility fails) = P(Pilot fails | Facility fails) =

Posterior probabilities GIVEN pilot works Outcome P(Pilot works | Outcome) Facility works 0.80 Facility fails 0.15 Posterior probabilities GIVEN pilot fails Outcome P(Pilot fails | Outcome) Facility works 0.20 Facility fails 0.85

0.60 0.40 0.80 0.20 0.15 0.85

Prior prob 0.60 0.40 P(Pilot works) =

Jt prob 0.48 0.06 0.54

Post. prob 0.89 0.11

Prior prob 0.60 0.40 P(Pilot fails) =

Jt prob 0.12 0.34 0.46

Post. prob 0.26 0.74

• (b) Build the pilot plant. If the pilot plant succeeds,  build facility. If the pilot plant fails, don't build facility.  Expected profit = $244,300. •

Answer 10.

Question 11. • Shamrock Oil owns a parcel of land that has the potential to be an  underground oil field. It will cost $500,000 to drill for oil. If oil does  exist on the land, Shamrock will realize a payoff of $4,000,000 (not  including drilling costs). With current information, Shamrock  estimates that there is a 0.2 probability that oil is present on the  site. Shamrock also has the option of selling the land as is for  $400,000, without further information about the likelihood of oil  being present. A third option is to perform geological tests at the  site, which would cost $100,000. There is a 30% chance that the  test results will be positive, after which Shamrock can sell the land  for $650,000 or drill the land, with a 0.65 probability that oil exists.  If the test results are negative, Shamrock can sell the land for  $50,000 or drill the land, with 0.05 probability that oil exists. Using  a decision tree, recommend a course of action for Shamrock Oil. 

Answer 11. • Test the land. If the test result is positive, drill  for oil. If the test result is negative, sell the  land. Expected profit = $565,000. • •

Answer 11.  Problem 11

Test land. If test is positive, drill. If test is negative, sell. Expected profit = $565,000.

Sell land $400 $400

$400

Sell land $550 0.3 Positive

$650

$550

2 $0

0.65

$2,000

Oil $3,400 Drill Land -$500

$4,000 $2,000

Test land

$3,400

0.35 Dry -$600

-$100

$565

$0

-$600

2 $565

Sell land -$50 0.7 Negative

$50

-$50

1 $0

0.05

-$50

Oil $3,400 Drill land -$500

$4,000 -$400

$3,400

0.95 Dry -$600 $0

-$600

0.2 Oil $3,500 Drill Land -$500

$4,000 $300

$3,500

0.8 Dry -$500 $0

-$500

Question 12. • Shamrock Oil (see Problem 11) has some revised  information concerning the accuracy of the  geological test probabilities. According to this  new information, the probability that the test will  be positive, given that the oil is present in the  ground, is 0.85. The probability that the test will  be negative, given that oil is not present, is 0.75.  Calculate the posterior probabilities and  reevaluate the decision tree from problem 11.  Does this information affect Shamrock Oil’s  original decision?

Answer 12. • (a)

Prior Probabilities P(Oil well) = P(Dry well) = Conditional probabilities P(Positive test | Oil well) = P(Negative test | Oil well) = P(Positive test | Dry well) = P(Negative test | Dry well) =

Posterior probabilities GIVEN positive test Outcome P(Positive test | Outcome) Oil well 0.85 Dry well 0.25 Posterior probabilities GIVEN negative test Outcome P(Negative test | Outcome) Oil well 0.15 Dry well 0.75

0.20 0.80 0.85 0.15 0.25 0.75

Prior prob 0.20 0.80 P(Positive test) =

Jt prob 0.17 0.20 0.37

Post. prob 0.46 0.54

Prior prob 0.20 0.80 P(Negative test) =

Jt prob 0.03 0.60 0.63

Post. prob 0.05 0.95

• (b) Test the land. If the test result is positive, drill  for oil. If the test result is negative, sell the land.  Expected profit = $427,300.

Answer 12. Problem 12

Test land. If test is positive, drill. If test is negative, sell. Expected profit = $427,300. Sell land $400 $400

$400.00

Sell land $550 0.37 Positive

$650

$550

2 $0

0.46

$1,240

Oil $3,400 Drill Land -$500

$4,000 $1,240

Test land

$3,400

0.54 Dry -$600

-$100

$427.30

$0

-$600

2 $427.30

Sell land -$50 0.63 Negative

$50

-$50

1 $0

0.05

-$50

Oil $3,400 Drill land -$500

$4,000 -$400

$3,400

0.95 Dry -$600 $0

-$600

0.2 Oil $3,500 Drill Land -$500

$4,000 $300.00

$3,500

0.8 Dry -$500 $0

-$500

Question 13 • Shamrock Oil (see Problem 11) has decided to rely on utility  theory to assist in the decision concerning the oil field. The  following table describes its utility function; all monetary values  are in thousands of dollars: Monetary Value ($)

Utility

‐600

0.00

‐500

0.03

‐50

0.10

400

0.15

550

0.17

3400

0.90

3500

1.00

• (a) Redo problem 11 using this information. • (b) How can you best describe Shamrock Oil’s attitude toward  risk? Justify your answer.

Answer 13. • (a) Test the land. If the test result is positive, drill for oil. If the  test result is negative, sell the land. Expected utility = 0.246. •

Problem 13 (a)

Test land. If test is positive, drill. If test is negative, sell. Expected utility = 0.246.

Sell land

0.150

0.150



Sell land 0.170 0.30 Positive

0.170 2

0.65

0.585

Oil 0.900 Drill Land

0.90 0.585

Test land

0.35 Dry 0.000

0.246

0.00

2 0.246

Sell land 0.100 0.70 Negative

0.100 1

0.05

0.100

Oil 0.900 Drill land

0.90 0.045

0.95 Dry 0.000 0.00

0.20 Oil 1.000 Drill Land

1.000 0.224

0.80 Dry 0.030 0.030

Answer 13. • (b) Shamrock Oil is a risk seeker. Problem 13 (b) Utility Curve 1.00 0.75

Utility

Dollar Utility -$600 0.00 -$500 0.03 -$50 0.10 $400 0.15 $550 0.17 $3,400 0.90 $3,500 1.00

0.50 0.25 0.00 -$600

$0

$600

$1,200

$1,800

Monetary value Risk seeker.

$2,400

$3,000

$3,600

Question 14. Jim Sellers is thinking about producing a new type of electric razor for men. If the market  is good, he would get a return of $100,000, but if the market for this new type of razor is  poor, he would lose $60,000. Because Ron Bush is a close friend of Jim Sellers, Jim is  considering the possibility of using Bush Marketing Research to gather additional  information about the market for the razor. Ron has suggested two options to Jim. The  first alternative is a sophisticated questionnaire that would be administered to a test  market. It will cost $5,000. The second alternative is to run a pilot study. This would  involve producing a limited number of the new razors and trying to sell them in two cities  that are typical of American cities. The pilot study is more accurate but is also more  expensive. It will cost $20,000. Ron has suggested that it would be a good idea for Jim to  conduct either the questionnaire or the pilot before making the decision concerning  whether to produce the new razor. But Jim is not sure if the value of either option is  worth the cost. For the sake of solving this problem, assume that Jim has the following  probability  estimates available: the probability of a successful market without  performing the questionnaire or pilot study is 0.5, the probability of a successful market  given a positive questionnaire result is 0.78, the probability of a successful market given a  negative questionnaire result is 0.27, the probability of the successful market given a  positive pilot study result is 0.89, and the probability of a successful market given a  negative pilot study result is 0.18. Further, the probability of a positive questionnaire  result is 0.45 and the probability of a positive pilot study result is also 0.45. (a) Draw the decision tree for this problem and identify the best decision for Jim. (b) What is the value of the questionnaire’s information? What is its  efficiency? (c) What is the value of the  pilot  study’s information? What is its  efficiency?

Answer 14. • (a)Conduct the survey questionnaire. If the  response is positive, produce razor. If the  response is negative, do not produce razor.  Expected return = $24,160. • • (b) EVPI = $30,000. EVSI = $9,160. Efficiency =  30.53%. • • (c) EVPI = $30,000. EVSI = $17,080. Efficiency =  56.93%.

Answer 14. Problem 14

0.78 Good market

(a) Conduct questionnaire. If positive, produce razor. If negative, do not produce razor. Expected return = $24,160. EVPI = $30,000 (b) EVSI = Efficiency =

$9,160 30.53%

(c) EVSI = Efficiency =

$17,080 56.93%

$95,000 Produce

$1,00,000

$0

$59,800

0.45 Positive result

0.22 Poor market -$65,000

1 $0

$95,000

-$60,000

-$65,000

$59,800 Not Produce -$5,000 $0

-$5,000

Questionnaire -$5,000

0.27 Good market

$24,160

$95,000 Produce

$1,00,000

$0

-$21,800

0.55 Negative result

0.73 Poor market -$65,000

2 $0

$95,000

-$60,000

-$65,000

-$5,000 Not Produce -$5,000 $0

-$5,000 0.89 Good market $80,000

Produce

$1,00,000

$0

$62,400

0.45 Positive pilot

0.11 Poor market -$80,000

1 $0

$80,000

-$60,000

-$80,000

$62,400

1

Not Produce

$24,160

-$20,000 $0

-$20,000

Pilot study -$20,000

0.18 Good market

$17,080

$80,000 Produce

$1,00,000

$0

-$51,200

0.55 Negative pilot

0.82 Poor market -$80,000

2 $0

$80,000

-$60,000

-$80,000

-$20,000 Not Produce -$20,000 $0

-$20,000

0.5 Good market $1,00,000 Produce $0

$1,00,000 $20,000

$1,00,000

0.5 Poor market

Neither test

-$60,000 1

$0

-$60,000

-$60,000

$20,000 Not produce $0 $0

$0

Question 15. • Jim Sellers (see problem 14) has been able to  estimate his utility for a number of different  values, and he would like to use these utility  values in making his decision. The utility values  are U (‐$80,000) = 0, U(‐$65,000) = 0.5, U(‐ $60,000) = 0.55, U($80,000) = 0.9, U ($95,000) =  0.95, and U($100,000) = 1. • (a) Solve Problem 14(a) again using utility values. • (B) Is Jim a risk avoider or risk seeker? Justify your  answer.

Answer 15. •

(a) Conduct the survey questionnaire. If the survey response is positive,  produce razor. If the survey response is negative, do not produce razor.  Expected utility = 0.823.

Pr oblem



15

(a)

0.78 Good m arket

Conduc t ques tionnaire. If pos itive, produc e raz or. If negative, do not produc e raz or. Expec ted utility = 0.823.

0.950 Produc e

0.950 0.851

0.45 Pos itive res ult

0.22 Poor m arket 0.500

1

0.500

0.851 Not Produc e 0.800 0.800 Ques tionnaire 0.27 Good m arket

0.823

0.950 Produc e

0.950 0.622

0.55

0.73 Poor

m arket

Negative res ult

0.500 2

0.500

0.800 Not Produc e 0.800 0.800 0.89 Good m arket 0.900 Produc e

0.900 0.801

0.45 Pos itive pilot

0.000 1

0.00

0.11 Poor m arket 0.000

0.801

1

Not Produc e

0.823

0.700 0.700 Pilot s tudy 0.18 Good m arket

0.745

0.900 Produc e

0.900 0.162

0.55 Negative pilot

0.82 Poor m arket 0.000

2

0.000

0.700 Not Produc e 0.700 0.700 0.50 Good m arket 1.000 Produc e 0.775 Neither

1.000 0.50 Poor m arket

tes t

0.550 2

0.550

0.810 Not produc e 0.810 0.810

Answer 15. • (b) Jim is a risk avoider. Problem 15 (b) Utility Curve 1.00 0.75

Utility

Dollar Utility -$80,000 0.00 -$65,000 0.50 -$20,000 0.70 -$5,000 0.80 $0 0.81 $80,000 0.90 $95,000 0.95 $1,00,000 1.00

0.50 0.25 0.00 -$80,000

-$40,000

$0

$40,000

Monetary value Risk avoider.

$80,000

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF