data for pump users SPP pumps

April 26, 2018 | Author: Marlon Agno | Category: Pump, Bearing (Mechanical), Flow Measurement, Pipe (Fluid Conveyance), Pressure
Share Embed Donate


Short Description

guidebook for fire pump installers...

Description

Contents 4

3 Contents 4

Contacts Sales and Administration 1420 Lakeview Arlington Business Park Theale, Reading Berkshire RG7 4SA Tel: +44 (0) 118 932 3123 Fax: +44 (0) 118 932 3302 Manufacturing Centre Crucible Close Mushet Industrial Park Coleford Gloucestershire GL16 8PS Email: [email protected] Tel: +44(0)1594 832701 Fax: +44(0)1594 836300 UK Service Centre Contact Directory Western Service Centre Tufthorn Avenue, Coleford Gloucestershire England GL16 8PJ Email: [email protected] Tel: +44 (0) 1594 832701 Fax: +44 (0) 1594 810043 North West Service Centre Metrology House Dukinfield Road Hyde England SK14 4PD Email: [email protected] Tel: +44 (0) 161 366 7309 Fax: +44 (0) 161 366 8849

2

Scottish Service Centre 137 Deerdykes View Cumbernauld G68 9HN Email: [email protected] Tel: +44 (0) 1236 455035 Fax: +44 (0) 1236 455036 Southern Service Centre Unit 1 Stanstead Road Boyatt Wood Industrial Estate Eastleigh, Hampshire England SO50 4RZ Email: [email protected] Tel: +44 (0) 2380 616004 Fax: +44 (0) 2380 614522 Northern Ireland Service Centre Unit 2 Oak Bank Channel Commercial Park Queens Road, Queens Island Belfast Northern Ireland BT3 9DT Email: [email protected] Tel: +44 (0) 2890 469802 Fax: +44 (0) 2890 466152

For Service support outside of office hours please call +44 (0) 8443 759662

3 Contents 4

France SPP Pumps 2 rue du Chateau d’eau 95450 US France Email: [email protected] Tel: +33 (0) 1 30 27 96 96 Fax: +33 (0) 1 34 66 07 33 North and South America 2905 Pacific Drive Norcross GA 30071 U.S.A. Email: [email protected] Tel: +1(770) 409 3280 Fax: +1(770) 409 3290 www.spppumpsusa.com

South Africa SPP Pumps (South Africa) Cnr Horne St & Brine Ave Chloorkop Ext 23 Kemptonpark Gauteng R.S.A 1619 Email: [email protected] Tel: +27(0)11 393 7177 / 71792 Italy SPP Italy Via Watt, 13/A 20143 Milano Email: [email protected] Tel: +(0039) 02 58111782 Fax: +(0039) 02 58111782 Mobile: +(0039) 346 3204457

Middle East SPP Pumps Limited (Middle East) P O Box 61491, Jebel Ali Dubai United Arab Emirates Email: [email protected] Tel: +971 (0) 4 8838 733 Fax: +971 (0) 4 8838 735

Poland Email: [email protected]

Asia SPP Pumps Limited (Asia) 152 Beach Road Gateway East #05 - 01 to 04 Singapore 189721 Email: [email protected] Tel: +(65) 6576 5725 Fax: +(65) 6576 5701

Netherlands SPP Pumps Limited Klerkenveld 7 NL-4704 SV Roosendaal The Netherlands E-mail: [email protected] Tel: +31(0)165743053

3 Contents 4

3

Czech Republic Email: [email protected] Tel: +420 775 656 110 Russia Email: [email protected] Tel: +420 775 656 110 Parent Company Kirloskar Brothers Limited “YAMUNA” Plot No 98 (3-17), Baner 411045 Pune India Tel: +91 20 2721 4444 www.kirloskarpumps.com

4

3 Contents 4

6

3 Contents 4

Useful WBSITES USEFUL Websites

Useful Websites

Trade Associations: British Pump Manufacturers Association (BPMA) www.bpma.org.uk Construction Equipment Association (CEA) www.coneq.org.uk Fire Protection Association (FPA) www.thefpa.co.uk British Automatic Sprinkler Association www.basa.org.uk European Fire Sprinkler Network www.eurosprinkler.org Energy Industries Council www.the-eic.com Pump Centre www.pumpcentre.com

Regulatory Authorities: Factory Mutual (FM) www.fmglobal.com Underwriters Laboratories www.ul.com Loss Prevention Certification Board www.brecertification.co.uk National Fire Protection Association www.nfpa.org Pump Distributors Association www.the-pda.com Pumps-Directory www.pumps-directory.com

3 Contents 4

5

CONTENTS Introduction to SPP..................................8 -15

Manufacturing................................................... 9 Test Facility........................................................ 9 SPP Divisions................................................... 10 SPP International............................................. 15 Fire Protection and Approval Standards............ 16

Pump Specification & Operation...... 17 – 42

Data Required When Buying Pumps................. 19 Dimensions of Cast Iron Flanges to BS EN 109221................................................. 21 Dimensions of Cast Iron Flanges to ASME/ANSI B16.1............................................ 24 Dimensions of Steel Flanges to ASME/ANSI B16.5............................................ 26 Pump Installation............................................. 28 Pump Operation............................................... 28 Faults and Remedial Action.............................. 29 Vibration Tolerance.......................................... 31 Condition Monitoring........................................ 33 Flow Estimation Methods................................. 34 Application Do’s and Don’ts............................. 39

Velocity Head Correction.................... 69 – 78 Electrical Design Data......................... 79 – 84

Average Efficiencies and Power Factors of Electric Motors............................................. 80 Approximate Full Load Speeds (RPM) of AC Motors.................................................... 82 Starting AC Motors........................................... 83

Whole Life Cost...................................... 85 – 90 Whole Life Cost Principles and Pump Design.... 86 Features of a Low Life-Cycle cost centrifugal pumps............................................ 88

Energy...................................................... 91 – 94 Conversion Factors............................. 95 – 105 Conversion Factor Tables................................. 96. Vacuum Technical Data.................................. 100. Product / Application Charts........................... 101 Notes............................................................... 106

Hydraulic Design Data......................... 43 – 68

Pressure (bar) vs Head (m of Water)................. 44 Calculation of Head for Pump Selection............ 46 Autoprime Pumping Terms............................... 49 Friction Loss for Water Hazen-Williams Formula, C=140)..................... 51 Resistance in Fittings....................................... 54 Quantities Passed by Pipes at different Velocities........................................... 55 Recommended Maximum Flow through Valves (l/s).......................................... 55 Water Discharged by Round Spray Holes in thin walled Pipes Under Different Pressures............ 56 Net Positive Suction Head (NPSH)..................... 57 Maximum Suction Lift with Barometric Pressure at Different Altitudes........................................ 59 Liquid Viscosity and its Effect on Pump Performance.......................................... 60 Approximate Viscosity Conversion Schedule..... 62 Test Tolerances and Different Standards.......... 64

3 Contents 4

7

“For Where it Really Matters” For more than 130 years SPP Pumps has been a leading manufacturer of centrifugal pumps and associated systems. A global principal in design, supply and servicing of pumps, pump packages and equipment for a wide range of applications and industry sectors. SPP pumps and systems are installed on all continents providing valuable high integrity services for diverse industries, such as oil and gas production, water and waste water treatment, power generation, construction, mines and for large industrial plants. Major applications include water treatment & supply, sewage & waste water treatment, fire protection, and mobile pumps for rental sectors, for which our low life cost and environmental considerations are fundamental design priorities.

Assessed to OHSAS 18001:2007 LPCB reg. no 111

8

3 Contents 4

MANUFACTURING SPP requires the highest standards of manufacturing excellence from its facilities around the world. This is crucial to the on-going growth and development of the company. At the main manufacturing facility located in the UK, SPP set the highest standards attainable in the industry for quality and reliability. SPP distinguishes its product split between pre-engineered standard products and fully customised equipment engineered and packaged to order. The extensive manufacturing and testing capabilities reflect this wide and diverse product range. To ensure efficient use of production resources, an ERP manufacturing planning system is utilised. Assembly areas are segregated into the main product groups; standard pumps, industrial fire pumps, contractors pumps and engineered products. The machine shop is planned in cell layout with individual cells specialising in types, or ranges of components. CNC machines are linked by a DNC system allowing programming to be carried out on the machine or offline. Lean manufacturing principles ensure that SPP are always focused on continuous improvement to support their ‘Right First Time’ philosophy. Customers are always welcome to visit the facility, either during manufacturing or when equipment is on test.

TEST FACILITY Testing, including witness testing, of all SPP’s range of pumps is performed at SPP’s own extensive in-house test facility. The main test area has a 1.4 million litre test tank with a depth of 6 metres. It can test pressures up to 50 bar, flows up to 2000 l/s and powers up to 800kW at 6.6kV, 400kW at 415V and 400kW at 60Hz. Generators can be used for higher powers or voltages.

3 Contents 4

9

WATER

Pumps for water supply, water/waste water treatment, industrial processes and general pumping service. SPP has an extensive range of products suitable for a variety of applications. From end suction DIN24255 (EN 733:1995) through to vertical turbine, split case and sewage pumps, SPP has reliable and well proven products to offer. Lowest Life Cycle Cost Series

SPP’s recognises the increasing emphasis on whole life cost when evaluating pumping schemes, for the twenty-first century. This has lead to the development of their Lowest Life-Cycle Cost Series of split case, vertical turbine, dry well sewage pumps and solides diverters.

FIRE SPP is the world’s leading specialist manufacturer of quality fire protection pump packages. Unrivalled experience in design and manufacture together with advanced testing and accreditation ensures the utmost in equipment reliability. SPP fire pumps comply with the demanding requirements of the LPCB, FM and UL approval standards and meet all the requirements of NFPA 20.

10

3 Contents 4

OIL & GAS SPP is a world leader in the design and manufacture of pumping equipment for both onshore and offshore applications. In-house expertise ensures compliance with all applicable specifications and regulations. SPP has also established quality assurance and document control business systems allied to the needs of the major oil and gas contractors and end users. SPP is the packager as well as the pump manufacturer and takes full unit responsibility for the complete scope of supply.

DEWATERING The SPP Autoprime range is a proven, versatile and comprehensive product range suitable for use in a variety of applications worldwide. The Autoprime pumps are primarily sold to rental organisations, contractors, utility companies, open cast mining companies and municipalities providing a durable solution. Continual investment in market-led research and development ensure that the products are designed to meet market requirements and legislation, providing significant benefits and solutions to owners and users alike.

3 Contents 4

11

STANDARD PRODUCTS The SPP standard pump product range has been expertly designed to enable you to fit them to any of your existing DIN Standard Pump Applications. SPP’s excellent modular pump design allows interchangeability across the range and with the ability to use standard shaft motors, gives much more flexibility in terms of maintenance, stock holding and material options. SPP Standard pumps can also be used for a variety of new pump application needs.

INDUSTRY This is the largest market sector spanning chemical, pharmaceutical, power and general industry, including manufacturing processes such as foundries, rolling mills, boiler houses and water reclamation. The main pumping equipment is largely electrically driven such as: • End suction / SH & SHL non clog along with current distribution offering • KPD for chemical process • Split case units • RKB multistage • Vertical turbines

12

3 Contents 4

TRANSFORMER OIL PUMPS SPP’s transformer oil pump range is designed and manufactured to the highest quality standards. SPP have been producing transformer oil pumps for more than sixty years. Life expectancy in many cases has exceeded forty years. Applications include oil circulation in the following: power transmission, distribution and electric traction locomotive transformers.

ENERGY Through the use of proven systems and techniques, the Energy Division offers a complete energy saving package that can be applied equally to new projects and existing installations. The new division offers the following services: Energy Audits, Customer Training, Energy Management, Surveys/reports/ analysis and recommendations. By monitoring and/or analysing the actual requirement of the installation and comparing this with the specifications of the equipment installed, SPP can make recommendations that can reduce running costs (eg: power requirements), minimise maintenance costs (eg: parts/servicing and downtime) and improve plant reliability (eg: upgraded material specifications).

3 Contents 4

13

Engineering services At SPP we are committed to providing the very best in customer support. We have built our reputation by providing a fast, cost effective service whilst maintaining continually high standards of workmanship and quality. With strategically located service centres in the UK and around the world, help is never far away. Each service centre is fully equipped to offer a comprehensive range of equipment repair and refurbishment techniques. Our support is available 24 hours a day, and is only ever a phone call away. SPP supports our customers around the globe through our extensive network of field service engineers. SPP field service engineers have thousands of hours of experience, backed by intensive product and applications training. Whatever your technical support requirement, we can help you get the best performance from our equipment in your application. Field service engineers can provide: • Equipment installation and commissioning • Preventative maintenance • Equipment repair and upgrades • Product training On SPP and other manufacturers’ pumps. SPP are proud to be a chosen partner by SKF Bearings in the UK. This has led to all SPP service centres being the only UK approved SKF Certified Rebuilder of pumps. SPP also works with SKF globally and is the first port of call for SKF customers needing pump repairs and services.

14

3 Contents 4

SPP Locations Approved Service Providers

SPP is a truly global company with the main R&D, manufacturing and test facilities centrally located in the UK and local sites in the United States, India, France, South Africa, Singapore, Dubai, Italy and Poland.

SPP INTERNATIONAL

3 Contents 4

15

FIRE PROTECTION APPROVAL STANDARDS SPP has one of the widest ranges of approved and listed equipment in the world complying with the demanding requirements of the UL and FM approval standards and meeting all the requirements of NFPA 20. Along with these approvals, SPP’s fire products are also approved for use in many other markets such as Europe, The Far East, The Middle East and Africa. Although many pump companies can offer equipment ‘designed to’ the various locally applicable fire rules and regulations, only a very select few have had their pumps subjected to the stringent performance and reliability tests of specialist fire approval laboratories. Being the first to achieve fire pump approval and listing by the internationally recognised Loss Prevention Certification Board the company today has more pumps approved by the LPCB than any other manufacturer.

16

3 Contents 4

PUMP SPECIFICATION AND OPERATION

3 Contents 4

17

18

3 Contents 4

SECTION 1

Section 1

DATA REQUIRED WHEN buying PUMPS Fundamentals Number required. Nature of service. Whether continuous or intermittent.

PUMP SPECIFICATION AND OPERATION

Performance Capacity (State whether total or per unit). Total head or pressure to be developed. Suction lift (including friction), inlet pressure or head, or NPSH available. (State range of any variation in above items. Otherwise, send sketch or give full details of lifts and pipe runs including lengths, bores, materials and class of pipes and number and nature of bends, valves etc.).

Pumped Medium Nature of liquid (if other than cold, clean water). Values or ranges of actual pumping temperature with corresponding specific gravities, viscosities (if greater than for water) and vapour pressures. Any corrosive and/or abrasive properties. Nature, proportion and maximum size of any solids content.

Driver Nature of driver. If driver to be supplied, give full specification. If electric motor, state electricity supply details, any speed restriction. Whether lining-up and connecting free issue driver required. Details of starting equipment and/or other accessories required system of control if automatic.

3 Contents 4

19

Other Data If required to run in parallel with other units. Is it to be self-priming with suction lift. Pump type and arrangement. Fixed or portable. Horizontal or vertical shaft. Whether close-coupled, dry well, wet well or borehole (if vertical). Borehole diameter or any other space restrictions. If baseplate and coupling required. Constructional / material specification required. Site conditions:

If altitude above 150m.



If ambient temperature above 30º C.



If to work outdoors.

Type of drive:

Direct or indirect (i.e. coupling, gearbox or V belt).



Direction of rotation (if restricted).

Official tests/inspection, packing and shipping requirements. Tender receipt/material despatch date required. Any other significant information. Items printed in bold are minimum requirements for quotation of any standard horizontal pump. All other items, so far as they apply, are necessary for the correct execution of all orders and quotations other than standard horizontal pumps.

20

3 Contents 4

SECTION 2

Section 2

DIMENSIONS OF CAST IRON FLANGES to BS en 1092 Pumps and Fittings

PUMP SPECIFICATION AND OPERATION

NOTE - All dimensions listed below are in millimetres

BS EN 1092 TABLE PN6 NOM. DIA. 10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500 600 700 800 900 1000

FLANGE

RAISED FACE

BOLTS

DRILLING

NECK

D

b

d4

Fmax

DIA.

No

d2

k

d3

r

75 80 90 100 120 130 140 160 190 210 240 265 320 375 440 490 540 595 645 755 860 975 1075 1175

12 12 14 14 16 16 16 16 18 18 20 20 22 24 24 24 24 24 24 24 24 24 24 24

33 38 48 58 69 78 88 108 128 144 174 199 254 309 363 415 463 518 568 667 772 878 978 1078

2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5

M10 M10 M10 M10 M12 M12 M12 M12 M16 M16 M16 M16 M16 M16 M20 M20 M20 M20 M20 M24 M24 M27 M27 M27

4 4 4 4 4 4 4 4 4 4 8 8 8 12 12 12 16 16 20 20 24 24 24 28

11 11 11 11 14 14 14 14 19 19 19 19 19 19 23 23 23 23 23 28 28 31 31 31

50 55 65 75 90 100 110 130 150 170 200 225 280 335 395 445 495 550 600 705 810 920 1020 1120

20 26 34 44 54 64 74 94 110 130 160 182 238 284 342 392 442 494 544 642 746 850 950 1050

3 3 4 4 5 5 5 6 6 6 6 8 8 10 10 10 10 12 12 12 12 12 12 12

3 Contents 4

21

BS EN 1092 TABLE PN10 NOM. DIA.

FLANGE D

RAISED FACE b

d4

Fmx

BOLTS DIA.

No

DRILLING d2

k

NECK d3

r

246 298 348 408 456 502 559 658 772 876 976 1080 1292 1496 1712 1910 2120 2320

8 10 10 10 10 12 12 12 12 12 12 12 12 12 12 15 15 20

NOTE: FOR NOMINAL SIZES 10 - 150 USE PN16 TABLE 200 250 300 350 400 450 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2200

340 395 445 505 565 615 670 780 895 1015 1115 1230 1455 1675 1915 2115 2325 2550

26 28 28 30 32 32 34 36 40 44 46 50 56 62 68 70 74 78

266 319 370 429 480 530 582 682 794 901 1001 1112 1328 1530 1750 1950 2150 -

3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 -

M20 M20 M20 M20 M24 M24 M24 M27 M27 M30 M30 M33 M36 M39 M45 M45 M45 M52

8 12 12 16 16 20 20 20 24 24 28 28 32 36 40 44 48 52

23 23 23 23 28 28 28 31 31 34 34 37 41 44 50 50 50 56

295 350 400 460 515 565 620 725 840 950 1050 1160 1380 1590 1820 2020 2230 2440

BS EN 1092 TABLE PN16 NOM. DIA. 10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500 600 700 800

22

FLANGE

RAISED FACE

BOLTS

DRILLING

NECK

D

b

d4

Fmx

DIA.

No

d2

k

d3

r

90 95 105 115 140 150 165 185 200 220 250 285 340 405 460 520 580 640 715 840 910 1025

14 14 16 16 18 18 20 20 22 24 26 26 30 32 32 36 38 40 42 48 54 58

41 46 56 65 76 84 99 118 132 156 186 211 266 319 370 429 480 548 609 720 794 901

2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5

M12 M12 M12 M12 M16 M16 M16 M16 M16 M16 M16 M20 M20 M24 M24 M24 M27 M27 M30 M33 M33 M36

4 4 4 4 4 4 4 4 8 8 8 8 12 12 12 16 16 20 20 20 24 24

14 14 14 14 19 19 19 19 19 19 19 23 23 28 28 28 31 31 34 37 37 41

60 65 75 85 100 110 125 145 160 180 210 240 295 355 410 470 525 585 650 770 840 950

28 32 40 50 60 70 84 104 120 140 170 190 246 296 350 410 458 516 576 690 760 862

3 3 4 4 5 5 5 6 6 6 6 8 8 10 10 10 10 12 12 12 12 12

3 Contents 4

NOM. DIA.

RAISED FACE

BOLTS

DRILLING

NECK

D

b

d4

Fmx

DIA.

No

d2

k

d3

r

90 95 105 115 140 150 165 185 200 235 270 300 360 425 485 555 620 670 730 845 960 1085

16 16 18 18 20 20 22 24 26 28 30 34 34 36 40 44 48 50 52 56 56 56

41 46 56 65 76 84 99 118 132 156 186 211 274 330 389 448 403 548 609 720 820 928

2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5

M12 M12 M12 M12 M16 M16 M16 M16 M16 M20 M24 M24 M24 M27 M27 M30 M33 M33 M33 M36 M39 M45

4 4 4 4 4 4 4 8 8 8 8 8 12 12 16 16 16 20 20 20 24 24

14 14 14 14 19 19 19 19 19 23 28 28 28 31 31 34 37 37 37 41 44 50

60 65 75 85 100 110 125 145 160 190 220 250 310 370 430 490 550 600 660 770 875 990

28 32 40 50 60 70 84 104 120 142 162 192 252 304 364 418 472 520 580 684 780 882

3 3 4 4 5 5 5 6 6 6 6 8 8 10 10 10 10 12 12 12 12 12

PUMP SPECIFICATION AND OPERATION

10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500 600 700 800

FLANGE

SECTION 2

BS EN 1092 TABLE PN25

BS EN 1092 TABLE PN40 NOM. DIA. 10 15 20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500

FLANGE

RAISED FACE

BOLTS

DRILLING

NECK

D

b

d4

Fmx

DIA.

No

d2

k

d3

r

90 95 105 115 140 150 165 185 200 235 270 300 375 450 515 580 660 685 755

16 16 18 18 20 20 22 24 26 28 30 34 40 46 50 54 62 62 62

41 46 56 65 76 84 99 118 132 156 186 211 284 345 409 465 535 560 615

2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4

M12 M12 M12 M12 M16 M16 M16 M16 M16 M20 M24 M24 M27 M30 M30 M33 M36 M36 M39

4 4 4 4 4 4 4 8 8 8 8 8 12 12 16 16 16 20 20

14 14 14 14 19 19 19 19 19 23 28 28 31 34 34 37 41 41 44

60 65 75 85 100 110 125 145 160 190 220 250 320 385 450 510 585 610 670

28 32 40 50 60 70 84 104 120 142 162 192 254 312 378 432 498 522 576

3 3 4 4 5 5 5 6 6 6 6 8 8 10 10 10 10 12 12

3 Contents 4

23

BS EN 1092 TABLE PN63 NOM. DIA. 40 50 65 80 100 125 150 200 250 300 350 400 200 250 300 350 400

FLANGE

RAISED FACE

BOLTS

DRILLING

b

d4

Fmx

DIA.

No

d2

k

d3

r

170 180 205 215 250 295 345 415 470 530 600 670 360 425 485 555 620

28 28 28 31 33 37 39 46 50 57 61 65 34 36 40 44 48

84 99 118 132 156 184 211 284 345 409 465 535 274 330 389 448 403

3 3 3 3 3 3 3 3 3 4 4 4 3 3 4 4 4

M20 M20 M20 M20 M24 M27 M30 M33 M33 M33 M36 M39 M24 M27 M27 M30 M33

4 4 8 8 8 8 8 12 12 16 16 16 12 12 16 16 16

23 23 23 23 28 31 34 37 37 37 41 44 28 31 31 34 37

125 135 160 170 200 240 280 345 400 460 525 585 310 370 430 490 550

77 87 112 122 142 174 208 267 322 382 438 490 252 304 364 418 472

5 5 6 6 6 6 8 8 10 10 10 10 8 10 10 10 10

DIMENSIONS OF CAST IRON FLANGES to ASME/ANSI B16.1 ASME/ANSI B16.1 – 125lb – RATING – CAST IRON 250lb – RATING – CAST IRON

NOTE - All dimensions listed below are in inches

24

NECK

D

3 Contents 4

NOM. DIA.

BOLTS

DRILLING

b

DIA.

No

d2

k

4.25 4.62 5.00 6.00 7.00 7.50 8.50 9.00 10.00 11.00 13.50 16.00 19.00 21.00 23.50 25.00 27.50 32.00 38.75

0.44 0.50 0.56 0.62 0.69 0.75 0.81 0.94 0.94 1.00 1.12 1.19 1.25 1.38 1.44 1.56 1.69 1.88 2.12

0.50 0.50 0.50 0.62 0.62 0.62 0.62 0.62 0.75 0.75 0.75 0.88 0.88 1.00 1.00 1.12 1.12 1.25 1.25

4 4 4 4 4 4 8 8 8 8 8 12 12 12 16 16 20 20 28

0.62 0.62 0.62 0.75 0.75 0.75 0.75 0.75 0.88 0.88 0.88 1.00 1.00 1.12 1.12 1.25 1.25 1.38 1.38

3.12 3.50 3.88 4.75 5.50 6.00 7.00 7.50 8.50 9.50 11.75 14.25 17.00 18.75 21.25 22.75 25.00 29.50 36.00

SPOTFACE DIAMETER 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.25 1.50 1.50 1.50 1.62 1.62 1.88 1.88 2.12 2.12 2.25 2.25

HUB d3

r

1.94 2.31 2.56 3.06 3.56 4.25 4.81 5.31 6.44 7.56 9.69 11.94 14.06 15.38 17.50 19.62 21.75 26.00 -

0.12 0.12 0.12 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.38 0.38 0.38

PUMP SPECIFICATION AND OPERATION

1 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 5 6 8 10 12 14 16 18 20 24 30

FLANGE D

SECTION 2

ASME/ANSI B16.1 – 125lb RATING – CAST IRON

ASME/ANSI B16.1 – 250lb RATING – CAST IRON NOM. DIA. 1 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 5 6 8 10 12 14 16 18 20 24 30

FLANGE

BOLTS

DRILLING

D

b

DIA.

No

d2

k

4.88 5.25 6.12 6.50 7.50 8.25 9.00 10.00 11.00 12.50 15.00 17.50 20.50 23.00 25.50 28.00 30.50 36.00 43.00

0.69 0.75 0.81 0.88 1.00 1.12 1.19 1.25 1.38 1.44 1.62 1.88 2.00 2.12 2.25 2.38 2.50 2.75 3.00

0.62 0.62 0.75 0.62 0.75 0.75 0.75 0.75 0.75 0.75 0.88 1.00 1.12 1.12 1.25 1.25 1.25 1.50 1.75

4 4 4 8 8 8 8 8 8 12 12 16 16 20 20 24 24 24 28

0.75 0.75 0.88 0.75 0.88 0.88 0.88 0.88 0.88 0.88 1.00 1.12 1.25 1.25 1.38 1.38 1.38 1.62 2.00

3.50 3.88 4.50 5.00 5.88 6.62 7.25 7.88 9.25 10.62 13.00 15.25 17.75 20.25 22.50 24.75 27.00 32.00 39.25

3 Contents 4

SPOTFACE DIAMETER 1.25 1.25 1.50 1.25 1.50 1.50 1.50 1.50 1.50 1.50 1.63 1.88 2.13 2.13 2.25 2.25 2.25 2.75 34.00

HUB d3

r

2.06 2.50 2.75 3.31 3.94 4.62 5.25 5.75 7.00 8.12 10.25 12.62 14.75 16.25 18.38 20.75 23.00 27.25 34.00

0.13 0.13 0.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.38 0.38 0.38

25

DIMENSIONS OF STEEL FLANGES TO ASME/ANSI B16.5 ASME/ANSI B16.5 – 150lb – RATING - STEEL – 300lb – RATING - STEEL

NOTE - All dimensions listed below are in inches

ASME/ANSI B16.5 – 150lb RATING - STEEL NOM. DIA. 1/2 3/4 1 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 5 6 8 10 12 14 16 18 20 24

26

FLANGE

RAISED FACE

BOLTS

DRILLING

D

b

d4

Fmax

No

DIA.

d2

k

3.50 3.88 4.25 4.62 5.00 6.00 7.00 7.50 8.50 9.00 10.00 11.00 13.50 16.00 19.00 21.00 23.50 25.00 27.50 32.00

0.44 0.50 0.56 0.62 0.69 0.75 0.88 0.94 0.94 0.94 0.94 1.00 1.12 1.19 1.25 1.38 1.44 1.56 1.69 1.88

2.00 2.50 2.88 3.62 4.12 5.00 5.50 6.19 7.31 8.50 10.62 12.75 15.00 16.25 18.50 21.00 23.00 27.25

1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16

4 4 4 4 4 4 4 4 8 8 8 8 8 12 12 12 16 16 20 20

1/2 1/2 1/2 1/2 1/2 5/8 5/8 5/8 5/8 5/8 3/4 3/4 3/4 7/8 7/8 1 1 1 1/8 1 1/8 1 1/4

0.62 0.62 0.62 0.62 0.62 0.75 0.75 0.75 0.75 0.75 0.88 0.88 0.88 1.00 1.00 1.12 1.12 1.25 1.25 1.38

2.38 2.75 3.12 3.50 3.88 4.75 5.50 6.00 7.00 7.50 8.50 9.50 11.75 14.25 17.00 18.75 21.25 22.75 25.00 29.50

3 Contents 4

SPOTFACE DIAMETER 1.00 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.25 1.50 1.50 1.50 1.62 1.62 1.88 1.88 2.12 2.12 2.25

HUB d3

r

1.19 1.50 1.94 2.31 2.56 3.06 3.56 4.25 4.81 5.31 6.44 7.56 9.69 12.00 14.38 15.75 18.00 19.88 22.00 26.12

0.12 0.12 0.12 0.12 0.12 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.38 0.38

NOM. DIA.

D

b

RAISED FACE d4

Fmax

No

BOLTS DIA.

DRILLING d2

k

SPOTFACE DIAMETER

d3

HUB r

3.75 4.62 4.88 5.25 6.12 6.50 7.50 8.25 9.00 10.00 11.00 12.50 15.00 17.50 20.50 23.00 25.50 28.00 30.50 36.00

0.56 0.62 0.69 0.75 0.81 0.88 1.00 1.12 1.19 1.25 1.38 1.44 1.62 1.88 2.00 2.12 2.25 2.38 2.50 2.75

1.38 1.69 2.00 2.50 2.88 3.62 4.12 5.00 5.50 6.19 7.31 8.50 10.62 12.75 15.00 16.25 18.50 21.00 23.00 27.25

1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16

4 4 4 4 4 8 8 8 8 8 8 12 12 16 16 20 20 24 24 24

1/2 5/8 5/8 5/8 3/4 5/8 3/4 3/4 3/4 3/4 3/4 3/4 7/8 1 1 1/8 1 1/8 1 1/4 1 1/4 1 1/4 1 1/2

0.62 0.75 0.75 0.75 0.88 0.75 0.88 0.88 0.88 0.88 0.88 0.88 1.00 1.12 1.25 1.25 1.38 1.38 1.38 1.62

2.62 3.25 3.50 3.88 4.50 5.00 5.88 6.62 7.25 7.88 9.25 10.62 13.00 15.25 17.75 20.25 22.50 24.75 27.00 32.00

1.00 1.25 1.25 1.25 1.50 1.25 1.50 1.50 1.50 1.50 1.50 1.50 1.62 1.88 2.12 2.12 2.25 2.25 2.25 2.75

1.50 1.88 2.12 2.50 2.75 3.31 3.94 4.62 5.25 5.75 7.00 8.12 10.25 12.62 14.75 16.75 19.00 21.00 23.12 27.62

0.12 0.12 0.12 0.12 0.12 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.38 0.38

*NOTE: The standard for Ductile Iron flanges is ASME/ANSI B16.42 150lb and 300lb rating. They are dimensionally the same as ASME/ANSI B16.5 including the raised face. The standard for Copper Alloy flanges is ASME/ANSI B16.24 150lb and 300lb rating. They are dimensionally the same as ASME/ANSI B16.5 except they are FLAT FACE.

3 Contents 4

27

PUMP SPECIFICATION AND OPERATION

1/2 3/4 1 1 1/4 1 1/2 2 2 1/2 3 3 1/2 4 5 6 8 10 12 14 16 18 20 24

FLANGE

SECTION 2

ASME/ANSI B16.5 – 300lb RATING - STEEL

Section 3

PUMP INSTALLATION Fixed pumps must be securely anchored to firm foundations. Pumps must be accurately levelled with shafts, coupling faces and flange faces truly horizontal or vertical (as appropriate). The pump and driver shafts should be truly in line in all senses and checks and requisite adjustments should be made by means of wedges and shims both in initial setting-up and after grouting in and tightening down. Foreign matter must be prevented from ingress to liquid openings, bearings, etc., and external pipe-bores ensured clean before connecting. Pipework must be brought up to pump orifices, and independently supported, so as not to impose any weight or strain on the pump when connected. Make sure at all stages that the pump will turn freely. For fuller particulars see specific instructions as supplied with pumps. Section 4

PUMP OPERATION SPP’s Field service engineers can provide a full commissioning service for a wide range of pumps. Contact your local SPP office for details • Check all guards are fitted correctly before starting the pump • Make sure pump will turn freely • Check driver and pump rotations agree, with driver uncoupled • Make sure bearings are adequately charged with clean lubricant • Check stuffing boxes are packed and correctly adjusted • Make sure any external lubricating, cooling, sealing, etc., services and connections are turned on and operative • Make sure pump is effectively primed before starting up • Check that pump runs without undue overheating, noise or vibration: otherwise refer to detailed operating instructions for possible defects and rectify accordingly • On no account must a pump be allowed to continue running unprimed, or with a closed discharge valve • On no account should a pump be regulated by closing a valve on the suction side 28

3 Contents 4

SECTION 3/4/5

section 5

Faults and remedial action Potential Fault or Defect: No liquid delivered. Insufficient liquid delivered. Liquid delivered at low pressure. Loss of liquid after starting.

PUMP SPECIFICATION AND OPERATION

Excessive vibration. Motor runs hotter than normal. Excessive noise from pump cavitation. Pump bearings run hotter than normal. PROBABLE CAUSES • •



• •



• •







• • •



• • •

• •

• • •

• •

• • •

• • • • •





• • • • •

• • •

• •



• • • • • • • • • •









• •

Pump not primed. Speed too low. Speed too high. Air leak in suction pipework. Air leak in mechanical seal. Air or gas in liquid. Discharge head too high (above rating). Suction lift too high. Not enough head for hot liquid. Inlet pipe not submerged enough. Viscosity of liquid greater than rating. Liquid density higher than rating. Insufficient nett inlet head. Impeller blocked. Wrong direction of rotation. Excessive impeller clearance. Damaged impeller. Rotor binding. Defects in motor. Voltage and/or frequency lower than rating. Lubricating grease or dirty oil or contaminated. Foundation not rigid. Misalignment of pump and driver. Bearing worn. Rotor out of balance. Shaft bent. Impeller too small.

SPP’s service division can carry out fault identification and rectification on a wide range of pumps. Contact your local SPP office for details

3 Contents 4

29

CAUSE

REMEDIAL ACTION

Pump not primed.

Fill pump and suction pipe completely with fluid. Check that the motor is correctly connected and receiving the full supply Speed too low. voltage also confirm that the supply frequency is correct. Speed too high. Check the motor voltage. Air leak in suction pipework. Check each flange for suction draught, rectify as necessary. Check all joints, plugs and flushing lines, if fitted. Note that prolonged Air leak in mechanical seal. running with air in the mechanical seal will result in damage and failure of the seal. It may be possible to increase the pump performance to provide Air or gas in liquid. adequate pumping. Discharge head too high (above Check that valves are fully open and for pipe friction losses. An increase rating). in pipe diameter may reduce the discharge pressure. Check for obstruction of pump inlet and for inlet pipe friction losses. Suction lift too high. Measure the static lift, if above rating, raise the liquid level or lower the pump. Not enough head for hot liquid. Reduce the positive suction head by raising the liquid level. Inlet pipe not submerged If the pump inlet cannot be lowered, provide a baffle to smother the inlet enough. vortex and prevent air entering with the liquid. Viscosity of liquid greater than Refer to SPP Pumps Ltd for guidance to increase the size or power of rating. the motor or engine. Liquid density higher than Refer to SPP Pumps Ltd for guidance to increase the size or power of rating. the motor or engine. Increase the positive suction head by lowering the pump or raising the Insufficient nett inlet head. liquid level. Impeller blocked. Dismantle the pump and clean the impeller. Wrong direction of rotation. Check driver rotation with the direction arrow on the pump casing. Excessive impeller clearance. Replace the impeller when clearance exceeds the maximum adjustment. Rotor binding. Check for shaft deflection, check and replace bearings if necessary. Ensure that motor is adequately ventilated. Refer to manufacturers’ Defects in motor. instructions. Voltage and/or frequency lower If voltage and frequency are lower than the motor rating, arrange for than rating. provision of correct supply. Lubricating grease or oil dirty Dismantle the pump, clean the bearings, reassemble the pump and fill or contaminated. with new grease or oil. Ensure that the foundation bolts are tight, check that foundations match Foundation not rigid. SPP Pumps Ltd recommendations. Misalignment of pump and Realign the pump and driver as specified. driver. Remove the bearings, clean and inspect for damage and wear, replace Bearings worn. as necessary. Rotor out of balance. Check impeller for damage, replace as necessary. Shaft bent. Check shaft run-out and replace if necessary. Impeller too small. Refer to SPP Pumps Ltd for options to fit a larger impeller. SPP’s service division can carry out fault identification and rectification on a wide range of pumps. Contact your local SPP office for details 30

3 Contents 4

VIBRATION TOLERANCE In every pump there are dynamic forces of hydraulic or mechanical origin that will inevitably lead to a certain level of vibration. To maintain the integrity of the pump unit and associated equipment the level of vibration must be kept within certain limits.

SECTION 6

Section 6

Acceptance Criteria PUMP SPECIFICATION AND OPERATION

The following table defines the maximum allowable level of vibration measured in mm/s RMS overall velocity during a factory acceptance test. It should be noted that the factory acceptance test is not necessarily an accurate representation of the vibration on site, when the unit is grouted in with permanent pipe supports etc. Application / Class

Class 1

Class 2

Class 3

3.0

4.7

7.1

3.9

5.6

9.0

Not applicable

9.0

13.0

Continuous operation over the preferred operating range Continuous operation over the allowable operating range Intermittent operation over the allowable operaing range

Pump Classes Class 1 pumps will only include those that have been designed in full accordance with A.P.I. 610, for use in critical applications. None of the standard ranges of SPP fall into this class and pumps that meet it are only available on an engineered to order basis. Class 2 pumps will include all SPP general purpose industrial designs apart from those specifically identified as class 3 below. Class 3 pumps shall include any pumps with less than three impeller vanes, split case pumps of the “through bore” type and any unit driven by a diesel engine of four or more cylinders. (Refer to SPP Engineering for units driven by engines of three or less cylinders).

3 Contents 4

31

Method Vibration measurements will be made on the pump bearing housings, as close as is practical to the bearing positions. For each bearing position two measurements will be taken perpendicular to the pump rotation axis. In addition an axial measurement will be taken at the thrust bearing position. The measurements will be of velocity, overall RMS values, in mm/s. In order to reliably achieve the stated acceptance limits the pump must be rigidly restrained, aligned to the driver within the coupling makers recommendations, operating without cavitation or air entrainment. Pipe work must be arranged to provide straight uniform flow into the pump and be connected and anchored so as avoid strains and resonance.

SPP’s field service engineers can undertake vibration analysis. Contact your local SPP office for details

32

3 Contents 4

CONDITION MONITORING

Early diagnosis of potential equipment failure can result in considerable repair cost savings and crucially a reduction in unplanned downtime. Monitoring of pump energy consumption and system efficiency will bring visibility to pump wear, operating efficiency and highlight any system irregularities. All of these factors will help minimise energy consumption and reduce operating costs. The SPP condition monitoring systems can provide this level of security by detecting, analysing and evaluating key equipment performance. These include the following: • Performance/Efficiency degradation • Bearing vibration levels • Bearing element damage • Bearing operating temperatures • Driver alignment condition • Residual unbalance • Cavitation The system provides considerable flexibility in the display and use of the diagnostic output. The options include web based user configurable dashboard for live and trend data, automatic notification of alerts by text or email and local download of data to PC for detailed evaluation.

3 Contents 4

33

PUMP SPECIFICATION AND OPERATION

In order to minimise the ownership costs of capital equipment, it is critical for the user to monitor and maintain the equipment once installed. Failure to do so will impact both on the mechanical integrity and economic performance of the installed equipment.

SECTION 7

Section 7

Section 8

Flow Estimation Methods Many pumping systems are fitted with permanently installed flowmeters which enable a reasonably accurate measurement of system flow to be obtained. Where permanent flowmeters are not installed, it is often possible to use external clamp-on meters, insertion meters or thermodynamic testing equipment to determine system flow. However, it is not always practical to use these devices – either for financial reasons or system layout constraints – and where this is the case, alternative indirect methods need to be used for estimating system flow. There are a number of methods available to enable an estimation of flow to be made in the field. Each of these methods requires some form of knowledge of the system or the pump, and all have inherent inaccuracies of varying degrees. However, in the absence of any more accurate flow measuring apparatus, these can be the only alternatives available. There are four main indirect methods of determining pump flow in the field: • Pressure method • Power method • Drop test • Suction pressure measurement The Pressure and Power methods require the use of the pump curve, whilst the drop test requires sump geometry and level details.

Pressure MEASUREMENT This is the more accurate and simplest of the four methods, requiring suction and delivery pressure gauge readings, a copy of the pump performance curve at the correct operational speed and knowledge of the impeller diameter. Determine the differential head across the pump by subtracting the suction head from the discharge head. Then use the pump performance curve to obtain the pump flow at the measured head and impeller diameter. For example, if the suction head is measured as 3m and the discharge head as 63m, the pump differential head is 60m. Using the pump manufacturers original test curve for the pump, the flow can be estimated as 150 l/s. 34

3 Contents 4

SECTION 8

Where existing installed site gauges are used, it should be remembered that their accuracy may be far from ideal. Remember that the pump Q/H curve is based on differential head, normally pumping water with an SG of 1. If the site liquid being pumped has an SG other than 1, SG correction should be applied to the site pressure readings to match the performance curve being used.

Power Measurement Power meters are rarely available on site, but amps (I) and volts (V) are commonly displayed at the control panel. These readings can be used to calculate power, although this also requires motor efficiency and power factor data - which will need to be estimated if motor manufacturers information is not available. Power (kW) = (1.732 x I x V x eff x pf)/1000 Using this equation, the pump power can be calculated and from this, the flow can be read off the pump curve.

3 Contents 4

35

PUMP SPECIFICATION AND OPERATION

Over time, a pump’s Flow/Head curve will change as wear occurs within the pump. Therefore, the accuracy of this method will tend to reduce as the pump gets older. However, this will remain a more accurate method than the others detailed below.

For example, if the current is read as 165A, the voltage as 400V and motor efficiency and pf from manufacturers’ data are 95% and 0.92 respectively, the calculated power becomes: Power = (1.732 x 400 x 165 x 0.95 x 0.92)/1000 = 100kW

Reading across the power scale on the pump manufacturers curve, the flow at this absorbed power can be obtained – 150 l/s in this example. As mentioned above, a pump’s Flow/Head curve and efficiency curve will change as wear occurs within the pump. This will affect the pump’s power curve and therefore, as with the pressure measurement method, accuracy will tend to reduce as the pump gets older. It should also be remembered that the installed instruments from which readings are taken may themselves be inaccurate, as it is unlikely that they will not have been calibrated to any significant accuracy since their original installation. As an alternative to the above calculation, taking a simple current ratio (actual current/full load current) and applying it to the motor rated power can give a reasonable estimation of the motor output power. In the above example, assuming a 132kW motor with a full load current of 230A, this method would result in a duty power of (165/230)*132 = 95kW, and a resultant flow of around 135 l/s.

36

3 Contents 4

SECTION 8

Although the power method can be used very effectively in situations where a quick approximate on site estimate is required, it should not be applied to high specific speed pumps such as vertical turbine or mixed flow pumps, whose power curves can follow significantly different rules.

Drop Test This is the least accurate method, and requires knowledge of sump dimensions and levels. It is often used on sewage pump installations, where sump emptying occurs over a relatively short period of time. PUMP SPECIFICATION AND OPERATION

In this method, the time taken for a pump to lower the sump level over a known depth is recorded. The volume of liquid pumped is then calculated based on the sump level change and the sump area, and is divided by the time taken to arrive at a volume flow rate. For example, if a sump has dimensions of 4m x 3m, and the level is reduced by 1m over a time period of 10 minutes, the average pump flow is (4 x 3 x 1)/10 = 1.2 m3/min, or 72 m3/h This method has a number of inherent inaccuracies: • During the drop test, it is likely that flow will continue to enter the sump. This will affect the result – the extent of the effect will depend upon the rate of inflow in proportion to the outflow. • The sump may not have a uniform section, making volume calculation less accurate. • As the level is lowered, the total head on the pump changes which will affect the pump output. Any resultant calculation will only give an average flow over the range of heads. • Measurement of pumped depth may be difficult if there is no installed measuring equipment.

SUCTION PRESSURE MEASUREMENT In most pumping stations, it is possible to obtain a pressure reading on the suction side of the pumps. The velocity and friction head components of this reading can be used to estimate the flow. To use this method, it is necessary to know the pressure drop on the pump suction (static suction pressure operational suction pressure), the type and number of pipe fittings up to the pressure measurement point and fittings diameter. An estimation of the fittings friction (K) factor is also required.

3 Contents 4

37

Convert the suction pressure drop (P in kPA) into a head drop (Zd in meters) using the equation: Zd = P x 0.102 sg (note that this Zd calculation will change depending on your site measured units) Obtain a total K factor for the suction fittings up to the measurement point. Assuming there are no significant straight pipe losses in the suction, the following equation can then be used to determine the flow velocity: Zd = V2 x (1+K) 2g Once the velocity is known, the flow rate can be calculated using the suction diameter. This method can be adapted to suit a wide variety of suction and pump configuration and the available locations for pressure measurement. Although there are potential inaccuracies in determining K factors and internal diameters, careful use of this method can allow the velocity to be estimated to within a few percent.

Conclusion There is no single simple and accurate method of determining flow in systems where installed meters are not present, or where the use of alternative temporary flow metering equipment cannot be fitted. Instead there are a number of methods that can be utilised to obtain an approximate pumping rate, which in many cases may be sufficient for the purposes required. All these methods have limitations and inherent inaccuracies. Where these methods need to be employed, it is worthwhile applying at least two methods to get comparative results.

38

3 Contents 4

SECTION 9

Section 9

Application Do’s and Don’ts Suction & Delivery Piping Ensure that bolt grouting or chemical anchors are allowed to dry thoroughly before connecting any pipework. Note that fire pumpsets have regulatory requirements for piping and these must be strictly observed. Refer to the appropriate standard for details.

PUMP SPECIFICATION AND OPERATION

Both suction and discharge piping should be supported independently and close to the pump so that no strain is transmitted to the pump when the flange bolts are tightened. Use pipe hangers or other supports at intervals necessary to provide support. When expansion joints are used in the piping system, they must be installed beyond the piping supports closest to the pump. Install piping as straight as possible, avoiding unnecessary bends. Where necessary, use 45º or long sweep 90º bends to decrease friction losses.

Eccentric Reducer on a Split Case Pump

Typical End Suction Pump Piping Installation

3 Contents 4

39

Make sure that all piping joints are airtight. Where reducers are used, eccentric or ‘flat top’ reducers are to be fitted in suction lines and concentric or straight taper reducers in discharge lines. The length of eccentric reducers should be about four times the pump suction diameter. Undulations in the pipe runs are also to be avoided. Failure to comply with this may cause the formation of air pockets in the pipework and thus prevent the correct operation of the pump and measuring equipment. The suction pipe should be as short and direct as possible, and should be flushed clean before connecting to the pump. For suction lift applications, it is advisable to use a foot valve. Horizontal suction lines must have a gradual rise to the pump. If the pumped fluid is likely to contain foreign matter then a filter or coarse strainer should be fitted to prevent ingress to the pump. The discharge pipe is usually preceded by a non-return valve or check valve and a discharge gate valve. The check valve is to maintain system pressure in case of stoppage or failure of the driver. The discharge valve is used to prevent back flow when shutting down the pump for maintenance.

Coupling alignment Periodical checks of shaft alignments should be undertaken and if necessary adjusted accordingly. In order to maintain the warranty status of your SPP pump it is recommended to take out an SPP preventative maintenance contract. SPP’s field service engineers have extensive experience in pump and coupling alignment. Refer to the pump and coupling instruction manuals for details of shaft alignment procedures and tolerances or proceed generally thus: a) Lateral Alignment Mount a dial gauge on the motor shaft or coupling with the gauge running on the outer-machined diameter of the pump coupling. Turn the motor shaft and note the total indicator reading. b) Angular Alignment Mount a dial gauge on the motor shaft or coupling to run on a face of the pump coupling as near to the outside diameter as possible. Turn the motor shaft and note the total indicator reading at top & bottom and each side. 40

3 Contents 4

SECTION 9

c) Confirm Lateral Alignment Mount the dial gauge on the pump shaft or coupling with the gauge running on the machined outer diameter of the motor coupling. Turn the pump shaft and note the total indicator reading. d) Adjustment

Note: Shaft alignment must be checked again after the final positioning of the pump unit and connection to pipework as this may have disturbed the pump or driver mounting positions.

Engine Driven Pumps Air is required for combustion and cooling purposes, with air and radiator cooled engines in particular needing large volumes of air for cooling. Inlet and outlet apertures, suitably sized and positioned to prevent air recirculation, must be provided in the pump house structure. It is recommended that a low level vent be matched by a high level vent in the opposite wall. Exhaust runs should be as short as possible. Small bore pipe and/or excessive length will cause backpressure on the engine, reducing engine performance and therefore pump output. Engine driven fire pumps should not be left unattended whilst undertaking weekly test runs. The run-to-crash design of fire pump engines makes it essential to that they are commissioned by experienced personnel to avoid permanent damage. SPP offers fixed price fire pump commissioning services

Pre-commissioning Check If SPP Pumps Ltd is contracted to carry out the commissioning, the following check list shows items to be completed before the commissioning engineer arrives.

SPP commissioning SERVICES SPP use qualified engineers to maintain approved systems, warranty and approved parts.

3 Contents 4

41

PUMP SPECIFICATION AND OPERATION

The motor must be shimmed and re-positioned to align the shafts to the coupling manufacturer’s specifications.

Check List 1

Installation: • Mounting plinths comply with instructions for size, construction and location • The baseplate has been accurately levelled and adequately supported. This prevents distortion and makes achievable the final shaft alignment to within manufacturers specification • The fixing bolts are grouted as instructed and tightened to the required torque • The shaft alignment has been checked and set to within the stated tolerances.

42

2

Suction and delivery pipework is adequately supported and NEGLIGIBLE forces are transmitted to the pump casing.

3

Where applicable, all drain, minimum flow, and test pipelines are fitted, together with valves gauges and flow meters.

4

The diesel engine exhaust has been fitted in line with recommendations.

5

The engine fuel tank is filled with sufficient fuel.

6

Batteries are filled and charged in accordance with the manufacturer’s instructions.

7

All wiring to controls and to remote alarm panels is completed in line with appropriate regulations & power supplies are connected.

8

The area is clear of all builders’ material and rubbish to allow access to the pumps.

3 Contents 4

HyDRAULIC DESIGN DATA

3 Contents 4

43

44

71.38

81.58

91.77

20

203.94

8.00

9.00

10

101.97

40.79

4.00

7.00

30.59

3.00

61.18

20.39

2.00

6.00

10.19

1.00

50.99

0.00

0.00

5.00

0

bar

3 Contents 4

305.91

30

92.97

82.60

72.40

62.20

52.00

41.81

31.61

21.41

11.22

1.02

0.1

407.88

40

93.81

83.62

73.42

63.22

53.02

42.83

32.63

22.43

12.24

2.04

0.2

509.85

50

94.83

84.64

74.44

64.24

54.04

43.85

33.65

23.45

13.26

3.06

0.3

611.82

60

95.85

85.65

75.46

65.26

55.06

44.87

34.67

24.47

14.28

4.08

0.4

713.79

70

96.87

86.67

76.48

66.28

56.08

45.89

35.69

25.49

15.30

5.10

0.5

815.76

80

97.89

87.69

77.50

67.30

57.10

46.91

36.71

26.51

16.32

6.12

0.6

917.73

90

98.91

88.71

78.52

68.32

58.12

47.93

37.73

27.53

17.33

7.14

0.7

1019.70

100

99.93

89.73

79.54

69.34

59.14

48.95

38.75

28.55

18.35

8.16

0.8

metres

bar

100.95

90.75

80.56

70.36

60.16

49.97

39.77

29.57

19.37

9.18

0.9

Section 10

PRESSURE (bar) vs HEAD (m of water)

SECTION 10

Example Find the metres head of water (1.0 s.g.) equivalent of 54.76 bar 50.00

bar

= 509.85m

Select ‘4 bar’ line in first column and read along to figure under 0.7 in top line, hence:

4.70

bar

= 47.93m

For 0.06 bar, read under 0.6 top line: hence 6.12m dividing both figures by 10:

0.06

bar

= 0.612m

54.76

bar

= 558.392m

Thus by addition

Note: For liquids with specific gravities differing from 1.0, answer must be divided by actual specific gravity to obtain head in metres of liquid.

3 Contents 4

45

Hydraulic design Data

From bottom two lines:

Section 11

CALCULATION OF HEAD FOR PUMP SELECTION To fulfill a pumping duty a pump must develop sufficient head and meet the suction conditions. The total head of a system must take into account the difference in liquid levels at inlet and outlet, friction in the pipes, surface pressure (or in some cases vacuum) on inlet and outlet and the velocity of the fluid at discharge. The following diagram and example explains how to calculate the system head taking all these factors into account.

System head = total discharge head total suction head H = hd – hs The total discharge head is made from four separate heads: hd = hsd + hpd + hfd + hvd

• hd = total discharge head • hsd = discharge static head • hpd = discharge surface pressure head • hfd = discharge friction head • hvd = discharge velocity head

46

3 Contents 4

SECTION 11

The total suction head consists of four separate heads hs = hss + hps - hfs - hvs • hs = total suction head • hss = suction static head • hps = suction surface pressure head • hfs = suction friction head

Hydraulic design Data

• hvs = suction velocity head Example Calculate the total head of the following pump system. The total friction through suction pipes and fittings is equivalent to 1m head and through delivery pipes and fittings is equivalent to 10m head. The header tank and discharge pipe is open to atmosphere at sea level. The suction velocity head is 0.1m and the discharge velocity head is 0.5m Pumped fluid is cold clean water.

3 Contents 4

47

First we calculate the total delivery head, hsd and hss – from the diagram we can see that the discharge static head is 40m and the suction static head is 5m hpd – 0.014 = meters of liquid specific gravity pressure at sea level is approx. 760mm Hg, specific gravity of cold clean water is 1, so 760 x 0.014/1 = 10.6m millimeters of mercury x

so hpd is 10.6m, the header tank is also open to atmosphere so hps is also 10.6m

hd = hsd + hpd + hfd + hvd



= 40 + 10.6 + 10 + 0.5



= 61.1 m



hs = hss + hps - hfs - hvs



= 5 + 10.6 - 1 - 0.1



= 14.5 m

Total system head H = hd – hs

= 61.1 – 14.5

= 46.6 m Note: Gauge readings need correcting for height of gauge mounting. For this purpose it is important that pressure gauges should be full of liquid. Where a vacuum gauge is used for a suction lift, the gauge pipe should be left empty and correction made from the point of connection, not from the gauge itself.

48

3 Contents 4

SECTION 11

Autoprime Pumping Terms Head “Total Head from all Causes” is the combination of both “Total Suction Head and “Total Discharge Head”. When static heights are kept to a minimum and pipework of the correct size for the pump is used, performance will be maintained and running costs minimised.

Hydraulic design Data

Suction head will be affected by changes in liquid viscosity and specific gravity and in the vapour pressure resulting from increased liquid temperature.

Net Positive Suction Head (NPSH) NPSHr: minimum liquid head (pressure) required by the pump at the impeller to pump the liquid, this is determined by the pump design. NPSHa: minimum liquid head (pressure) available from the atmosphere to deliver the liquid to the impeller for pumping.

Example: NPSHa (Available)

10.5 m

less Static Lift

3.0 m

Friction & Vapour Loss

1.5 m

NPSHr (Required)

2.0 m

Therefore leaving for Suction Lift

4.0 m

3 Contents 4

49

Typical Suction Lift Configuration Discharge Hose Friction

AUTOPRIME

Static Delivery Head

Static Suction Lift

Suction Hose Friction

50

3 Contents 4

Total Discharge Head

TOTAL HEAD FROM ALL CAUSES

SECTION 12

Section 12

FRICTION LOSS FOR WATER (m/100m) IN SMOOTH AND NEW UNCOATED STEEL PIPES (HAZEN-WILLIAMS FORMULA, C=140) NB Figures assume actual bores exactly equal to nominal bores. See following notes regarding corrections for actual bores of commercial pipes differing from nominal bores.

0.1 0.2 0.5 1 1.5 2 3 4 5 6 7 8 9 10 12 14 16 18 20 25 30 35 40 45 50 60 70 80 90 100 120 140 160 180 200

Bore 20(3/4) 0.83 3.0 16.4 65(2½) 0.4 0.68 1.45 2.5 3.8 5.2 6.9 8.9 11.1 13.4 175(7) 0.20 0.26 0.32 0.39 0.59 0.83 1.10 1.41 1.76 2.1 3.0 4.0 5.1 6.3

25(1) 0.28 1.0 5.5 20.0 80(3) 0.25 0.53 0.90 1.36 1.9 2.5 3.2 4.0 4.9 6.9 9.1 11.7 200(8) 0.20 0.31 0.43 0.58 0.74 0.92 1.11 1.56 2.1 2.7 3.3 4.0 5.6 7.5

32(1 3/4) 0.30 1.66 6.0 12.7 21.6 100(4) 0.30 0.46 0.64 0.84 1.10 1.36 1.66 2.3 3.1 4.0 4.9 6.0 9.0 225(9) 0.32 0.42 0.52 0.63 0.88 1.17 1.50 1.87 2.3 3.2 4.2 5.4 6.7

40(1 1/2) 0.56 2.0 4.3 7.3 15.5 26.4 125(5) 0.22 0.29 0.37 0.46 0.55 0.78 1.04 1.33 1.65 2.0 3.0 4.3 5.7 7.3 250(10) 0.38 0.53 0.70 0.90 1.12 1.36 1.90 2.5 3.2 4.0

50(2) 0.68 1.45 2.5 5.2 8.9 13.4 18.8 150(6) 0.15 0.19 0.23 0.32 0.43 0.55 0.68 0.83 1.25 1.76 2.3 3.0 3.7 4.5 6.3 300(12) 0.37 0.46 0.56 0.78 1.04 1.33 1.65

8.2

4.9

2.0

Hydraulic design Data

l/s

Nominal and actual bores of pipes in mm width with nominal inch equivalents.

3 Contents 4

51

For other types of pipe, multiply foregoing figures as below, for pipes in smooth and new condition. Galvanised iron

1.33

Uncoated cast iron

1.23

Coated cast iron, wrought iron, coated steel

1.07

Coated spun iron

1.04

Smooth pipe (lead, brass, copper, stainless steel, glass, plastic)

0.88

Friction losses are affected to an even greater degree by deviations of actual bore from the standard dimensions represented in the foregoing table. To correct for actual bore, multiply also by (D/d)4.87 Where

D = Standard (nominal) bore.



d = Actual internal diameter.

Multiplying factors for grey iron pipes to BS 4622 (both sand mould cast and spun): ductile iron pipes to BS 4772: and uPVC pipes to BS 3505 taking into account the corrections both for type of pipe and for actual bore, are as follows on the next page.

52

3 Contents 4

32

40

-

Class 4 (spun)

0.75

0.64

-

Class K9

Class K12

Class D

Class E

for galvanised

medium; also X 1.24 0.90

0.66 0.75

Class C

Steel Tubes, BS 1387

-

Class B

uPVC, BS 3505:

50

-

-

-

-

(2)

65

-

-

-

-

(2½)

80

1.18

0.99

0.91

0.84

(3)

1.21

1.04

0.97

0.90

(4)

100

-

-

-

-

(5)

125

1.16

1.04

0.99

0.93

(6)

150

-

-

-

-

(7)

175

0.84

0.75

0.64

0.57

-

-

-

0.85

0.91

0.78

0.68

-

-

-

1.06

1.12

0.96

0.83

0.78

0.82

0.73

0.87

0.97

0.84

0.72

0.65

0.88

0.97

0.92

1.06

0.92

0.79

0.68

-

-

0.93

1.07

0.92

0.79

0.68

0.85

0.77

-

1.13

0.98

0.84

0.73

-

-

For sand mould cast pipes multiply by 1.03: also for uncoated bore pipes by 1.15

-

Class 3 (spun)

Ductile Iron, BS 4722:

-

(1½)

Class 1 (spun)

(1¼)

Class 2 (spun)

0.79

(in)

Hydraulic design Data

Grey Iron, BS 4622:

25

(1)

20

(¾)

Nominal bore mm

-

1.10

0.97

0.85

0.74

0.86

0.78

1.14

1.04

1.00

0.95

(8)

200

-

1.16

1.03

0.88

0.77

-

-

-

-

-

-

(9)

225

250

-

1.12

0.98

0.86

0.75

0.87

0.80

1.13

1.04

1.00

0.96

(10)

300

-

1.19

1.04

0.90

0.80

0.84

0.78

1.12

1.04

1.00

0.97

(12)

SECTION 12

3 Contents 4

53

Section 13

RESISTANCE IN FITTINGS As in straight pipe, having length of following multiples of pipe diameter: Flush sharp-edged entry

22

Slightly rounded entry

11

Flush bellmouth entry

4

Sharp entry projecting into liquid

36

Bellmouth entry projecting into liquid

9

Footvalve with strainer

113

Round elbow

45

Short radius bend

34

Medium radius bend

18

Close return bend

100

Tee:

11

straight through



side outlet, sharp angled

54



side outlet, radiused (swept tee)

22

Branch piece, straight through

7

Branch piece, flow to branch

45

Branch piece, flow from branch

22

Sluice (gate) valve

7

Reflux (back pressure, non-return) valve

45

Angle valve

225

Globe valve

450

Bellmouth outlet

9

Sudden enlargement

45

Taper, divergence angle above 60º

45

Taper, divergence angle 15º - 60º

22

Taper increaser or reduced with less than 15º divergence angle: Equivalent to pipe of mean diameter. Flap

0.06m Head

Note: Multiplying factor for type and class of pipe to be applied to above equivalent lengths for pipe fittings (elbows, bends, tees etc) but not to those for valves.

54

3 Contents 4

SECTION 13/14/15

Section 14

QUANTITIES PASSED BY PIPES AT DIFFERENT VELOCITIES Actual bore of pipe, mm Velocity of flow, m/s

50

80

100

125

150

1

1.96

5.03

7.85

12.27

1.5

2.95

7.54

11.78

2

3.93

10.05

15.71

2.5

4.91

12.57

175

200

225

250

300

17.67

24.1

31.4

39.7

49.1

70.7

18.41

26.51

36.1

47.1

59.6

73.6

106.1

24.54

35.34

48.1

62.8

79.5

98.2

141.4

19.64

30.68

44.18

60.1

78.5

99.4

122.7

176.7

l/s

5.89

15.08

23.56

36.82

53.02

72.2

94.3

119.3

147.3

212.1

6.87

17.59

27.49

42.95

61.85

84.2

110

139.2

171.8

247.4

4

7.85

20.11

31.42

49.09

70.69

96.2

125.7

159.0

196.4

282.8

5

9.82

25.13

39.27

61.36

88.36

120.3

157.1

198.8

245.4

353.4

Hydraulic design Data

3 3.5

Section 15

RECOMMENDED MAXIMUM FLOW THROUGH VALVES (l/s) Size of Valve, mm

50

65

80

100

125

150

175

200

250

300

2.2

4.0

6.0

12.0

20.0

30.0

40.0

55.0

90.0

130.0

110.0 160.0

Foot valve with strainer Back pressure valve

3.0

5.0

8.0

15.0

25.0

37.5

50.0

70.0

Sluice valve

5.5

10.0

15.0

25.0

40.0

60.0

80.0

100.0 160.0 220.0

3 Contents 4

55

56

10.2

15.3

20.4

1.0

1.5

2.0

30.6

35.7

40.8

51.0

61.2

3.0

3.5

4.0

5.0

6.0

25.5

5.1

0.5

2.5

Head (m water)

Pressure (bar)

3 Contents 4

0.150

0.136

0.122

0.114

0.106

0.096

0.086

0.075

0.061

0.043

3

0.266

0.243

0.218

0.204

0.188

0.172

0.154

0.133

0.109

0.077

4

0.416

0.380

0.340

0.318

0.294

0.269

0.240

0.208

0.170

0.120

5

0.600

0.546

0.489

0.458

0.424

0.387

0.346

0.300

0.245

0.173

l/s per hole

6

Size of hole (mm)

1.065

0.972

0.870

0.814

0.754

0.688

0.615

0.532

0.435

0.307

8

1.67

1.52

1.36

1.27

1.18

1.07

0.96

0.83

0.68

0.48

10

2.40

2.19

1.96

1.83

1.70

1.55

1.38

1.20

0.98

0.69

12

Section 16

QUANTITIES OF WATER DISCHARGED BY ROUND SPRAY HOLES IN THIN WALLED PIPES UNDER DIFFERENT PRESSURES

SECTION 16/17

Section 17

NET POSITIVE SUCTION HEAD (NPSH) For a pump to fulfil a particular duty it must first be able to get the required quantity in. For example, a pump may work satisfactorily when installed at a given height above the liquid level on the suction side, but no longer do so if it is placed higher, even though the total head remains unaltered in view of a corresponding reduction in the height of lift on the delivery side.

Hydraulic design Data

The criteria for this is termed NPSH, which has two aspects, the NPSH the installation and operating conditions provide (NPSH available) and the NPSH needed to get stable flow into the pump impeller (NPSH required). The installation conditions and pump selection must be reconciled so that the NPSH required does not exceed the NPSH available. Fluid not being sensibly cohesive, it cannot be towed. To be made to flow, it must be pressed from behind. There must, therefore, be either an extraneous pressure on the liquid and/or a head of the liquid itself, which is sufficient to cover losses as far as the pump inlet and then overcome pump inlet losses and create the requisite velocity into the impeller vanes. The pressure available behind a liquid for creating movement is the absolute pressure on the liquid free surface, less the liquid’s own pressure to move in the opposite direction, i.e. to evaporate into the spaces above the free surface – this is called vapour pressure. The head available at the pump inlet for getting the flow into the pump impeller is therefore:• Absolute pressure on liquid free surface

Ha

• Plus height of liquid free surface above pump impeller

+ hs

• Less liquid vapour pressure

- hv

• Less losses between liquid free surface and pump inlet

- hl

(All expressed in metres head of the liquid).

3 Contents 4

57

Note: +hs becomes negative if the liquid free surface is below the pump impeller. Care must be taken to state NPSH available taking all these factors into account, even though in particular cases the two may equalise each other, e.g. with a liquid at boiling point hv equals Ha and they thus cancel each other out. Otherwise confusion may arise through statement of NPSH, which is plainly inconsistent with the circumstances, e.g. a figure being quoted as NPSH when head over suction hs is meant. The velocity required at inlet to the impeller vanes is a function of flow quantity, area at vane inlets and velocity induced by impeller rotation. Consequently the NPSH required varies with pump type and size, and increases with both capacity and speed. To maintain NPSH required within given limits, the permissible speed reduces approximately as the square root of capacity increases. The increased vapour pressure of warm water often affects suction as indicated by the following table. Negative figures represent minimum requirement of head of liquid above impeller eye. Temp of water oC

40

50

60

70

75

80

85

90

95

100

Suction limit (m)

6.25

5.75

4.75

3.25

2.5

1.5

0.25

-1

-2

-3

Note: The above figures are intentionally conservative in order to cover varying suction capabilities of different pumps. Better values may be obtainable especially when the normal capacity of the pump is above the output required, but to allow investigation, full details should be submitted, and the possibility of the temperature being underestimated should not be overlooked.

58

3 Contents 4

SECTION 18/19

Section 18

MAXIMUM SUCTION LIFT WITH BAROMETRIC PRESSURE AT DIFFERENT ALTITUDES Barometric pressure

Practical maximum suction lift of pumps (m)

mm Hg

Sea level

1.013

760

10,33

500

0.954

716

9.73

6.5 6

1000

0.899

674

9.16

5.5

1500

0.846

634

8.62

5

2000

0.796

597

8.12

4.5

Hydraulic design Data

bar

Equivalent head of water (m)

Altitude (m)

Section 19

THERMOMETER SCALES Temperature Conversion Formulae:o F = (oC x 9/5) + 32 oC = (oF – 32) x 5/9

Comparison values in oF and oC Scales of temperature o

F

o

-40 -31 -22 -4 5 14 23 32 41 50 59 68 77 86 95 104

-40 -35 -30 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

C

o

F

113 122 131 140 149 158 167 176 185 194 203 212 230 248 266 284

o

C

45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140

o

F

302 320 338 356 374 392 410 428 446 464 482 500 518 536 554 572

o

C

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

3 Contents 4

59

Section 20

LIQUID VISCOSITY AND ITS EFFECTS ON PUMP PERFORMANCE Viscosity is the property of reluctance of a liquid to flow, i.e. the opposite of fluidity. It involves units of force, length and time and can be expressed as ‘absolute’ in regard to the internal forces in the liquid, or as ‘kinematic’ relating these forces to the liquid specific gravity. The most widely used unit of absolute viscosity is the poise (100 centipoises). However, in all considerations of liquid flow and pump performance the operative factor is the kinematic viscosity, the corresponding unit being the stokes (100 centistokes). stokes (centistokes) =

Poises (centipoises)

specific gravity

Common viscometers (Redwood, Saybold, Engler, etc) give readings having arbitrary relationship to fundamental units. Conversion figures are given in the schedule overleaf. These are approximate only as they may vary slightly with temperature and other factors, and are not universally agreed on, but they are sufficiently accurate for the purposes under consideration. The only values of interest to the pump engineer are kinematic viscosity at actual pumping temperatures. Viscosities are frequently quoted at standard reference temperatures, commonly 100ºF (37.8ºC) or 60ºC (140ºF). If either of these does not correspond with the actual pumping temperature, the viscosity at the latter must be obtained from product data or estimated from general viscosity/temperature curves. The performance of a centrifugal pump when handling a viscous liquid depends not only on the viscosity of the liquid but also its relative size and on whether the pump is of low or high specific speed design. The smaller the required pumping duty, the lower the viscosity for which centrifugal pumps are appropriate. For these reasons it is necessary that all enquiries for pumps to handle viscous liquids should be submitted to the pump maker for individual consideration. In the last column of the schedule, indications have been given of the approximate minimum practical size of centrifugal pump corresponding to each viscosity. In general, for greater viscosities exceeding 25 stokes, pumps of a positive displacement type should be used. 60

3 Contents 4

SECTION 20

Centrifugal Pump Affinity Laws The affinity laws can be used to show the effect of either speeding up or slowing down the rotational speed of the impeller and also how changing impeller diameter will alter the performance of a pump. The affinity laws state that: Pump capacity increases in proportion with impeller rotational speed. Q N



Pump head increases in proportion to the square of rotational speed. H N2

Hydraulic design Data



Pump power increases in proportion to the cube of rotational speed. P N3



Where Q = Capacity, H = Head, P = Power and N= Rotational speed

This allows the change in performance to be predicted as a result of changing the pump speed. Q2 = Q1 N2 N1 H2 = H1 N2 N12 P2 = P1 N2 N13 Where the subscript 1 indicates original condition and the subscript 2 indicates the revised condition.

Increasing either impeller diameter or rotational speed will have the same proportional effect on impeller peripheral speed. This means the same can be applied for changing impeller diameter. Q2 = Q1 D2 D1 H2 = H1 D2 D12 P2 = P1 D2 D13 Where D = Impeller diameter

The affinity laws are proven to work more effectively for some types of pumps as opposed to others and the accuracy of them is dependent on the pump’s hydraulic design. Because of this fact and that there may be other limiting factors (eg. casing or seal pressure rating, bearing life, etc), it is strongly advised the pump manufacturer be consulted before any changes are undertaken.

3 Contents 4

61

62

1

2

3

4

5

6

7

8

9

10

20

30

40

50

60

70

80

90

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Kinematic Kinematic Viscosity Viscosity Stokes Centistokes

3 Contents 4

364

324

284

244

203

163

123

85.0

51.7

48.8

46.0

43.2

40.5

37.9

35.3

33.0

30.9

29.0

Redwood No 1 Seconds

416

370

323

277

231

186

141

97.5

58.6

55.4

52.0

48.7

45.5

42.3

39.1

36.2

33.5

31.0

Saybolt Universal Seconds

606

559

473

406

340

274

209

147

93.9

89.3

84.7

80.1

75.9

71.3

67.2

62.6

57.5

51.3

Engler Seconds

11.8

10.5

9.21

7.90

6.61

5.33

4.07

2.87

1.83

1.74

1.65

1.56

1.48

1.39

1.31

1.22

1.12

1.00

36

32

28

24

20

16

12

9

-

-

-

-

-

-

-

-

-

-

44.0

39.5

35.0

30.5

26.0

22.2

18.5

15.0

-

-

-

-

-

-

-

-

-

-

68.9

77.5

88.6

103

124

153

207

310

620

689

775

886

1033

1240

1550

2067

3100

6200

Redwood Saybolt Engler Barbey Admiralty Furol Degrees Fluidity Seconds Seconds

50-65

50-65

50-65

40-50

40-50

32-40

25-32

20-25

No reasonable limitation

Minimum Size Centrifugal Pump (mm)

APPROXIMATE VISCOSITY CONVERSION SCHEDULE

100

200

300

400

500

600

700

800

900

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1

2

3

4

5

6

7

8

9

10

0

30

40

50

60

70

80

90

100

40500

36450

32400

28350

24300

20250

16200

12150

8100

4050

3645

3240

2835

2430

2025

1620

1215

810

405

Redwood No 1 Seconds

46200

41580

36960

32340

27720

23100

18480

13860

9240

4620

4158

3696

3234

2772

2310

1848

1386

924

462

Saybolt Universal Seconds

67700

60600

53900

47300

40600

33800

27000

20300

13500

6770

6060

5390

4730

4060

3580

2700

2030

1350

677

Engler Seconds

1316

1180

1050

921

789

658

526

395

263

132

118

105

92.1

78.9

65.8

52.6

39.5

26.3

13.2

4050

3645

3240

2835

2430

2025

1620

1215

810

405

365

324

284

243

203

162

122

81

41

4700

4230

3760

3290

2820

2350

1880

1410

940

470

423

376

329

282

235

188

141

94.7

48.5

1.03

1.24

1.55

2.07

3.10

6.2

6.9

7.8

8.9

10.3

12.4

15.5

20.7

31.0

62.0

Redwood Saybolt Engler Barbey Admiralty Furol Degrees Fluidity Seconds Seconds

Hydraulic design Data

Kinematic Kinematic Viscosity Viscosity Stokes Centistokes

Positive displacement pump required

400-450

300-350

250-300

250-300

200-250

200-250

175-200

150-175

125-150

80-100

50-80

Minimum Size Centrifugal Pump (mm)

SECTION 20

3 Contents 4

63

Section 21

TEST TOLERANCES AND DIFFERENT STANDARDS API 610 11th Edition The following tolerances shall apply: • Test speed shall be within ± 3.0% of rated speed shown on pump datasheet, at duty point. • Rated differential head at duty -

0m to 75m ±3%



75m to 300m - ±3%



Over 300m - ±3%

• Rated differential head shutoff -

0m to 75m - ±10%



75m to 300m - ±8%



Over 300m - ±5%

• Rated Power at duty - +4% (Cumulative tolerances are not acceptable) • Rated NPSH at duty -

+0%

• Efficiency is not a rating value. Note: = If a rising head flow curve is specified, the negative tolerance specified here shall be allowed only if the test curve still shows a rising characteristic.

British Standards – (Class C) The following tolerances shall apply at duty flow rate: • Rate of flow

± 3.5%

• Pump Total head

± 3.5%

• Pump Input power

± 3.5%

• Pump Efficiency

± 5.0%

64

3 Contents 4

SECTION 21

Hydraulic Institute Test Standards In making tests under this standard no minus tolerance or margin shall be allowed with respect to capacity, total head or efficiency at the rated or specified conditions. The following tolerances shall apply: • At rated head

+10% of rated capacity Hydraulic design Data

OR • At rated capacity +5% of rated head under 500 feet

+3 % of rated head 500 feet and over

Conformity with only one of the above tolerances is required. It should be noted that there might be an increase in horsepower at the rated condition when complying to plus tolerances for head or capacity. For a fire pump the following tolerances from NFPA 20 shall also apply: • At 150% of rated capacity, head will range from minimum of 65% to maximum of just below rated head. • Shutoff head will range from minimum of 101% to maximum of 140% of rated head. Exception If available suction supplies do not permit the flowing of 150% of rated capacity, the fire pump shall be operated at maximum allowable discharge to determine if it is acceptable. This reduced capacity shall not constitute an unacceptable test.

3 Contents 4

65

ISO 9906:2012 (grade 1) Table 10 The following tolerances shall apply at duty flow rate: • • • •

Rate of flow Pump Total head Pump Efficiency Speed of rotation

± 4.5 % ±3% -3% ±1%

ISO 9906:2012 (grade 2) Table 10 The following tolerances shall apply at duty flow rate: • Rate of flow

±8%

• Pump Total head

± 5.5 %

• Pump Efficiency

-5%

• Speed of rotation

±1%

ISO 9906:2012 (grade 2) Annex A.1 – Pumps produced in series. The following tolerances shall apply at duty flow rate: • Rate of flow

±9%

• Pump Total head

±7%

• Pump Input Power

+9%

• Driver Input Power

+9%

• Pump Efficiency

-7%

ISO 9906:2012 (grade 2) Annex A.2 – Pumps with a driver power input less than 10 kW The following tolerances shall apply at duty flow rate: • Rate of flow

± 10 %

• Pump Total head

±8%

66

3 Contents 4

SECTION 21

Loss Prevention Council (LPC) The following tolerances shall apply: • Rate of flow

±0%

• Pump total head

+5 %

• Pump input power

within duty rating and/or driver rating + 10%

The following tolerances shall apply: • At rated head

+10% of rated capacity

OR • At rated capacity

+5% of rated head under 500 feet

• At 150% of rated capacity, the pump will develop not less than 65% of rated head. • The maximum net pressure for a fire pump shall not exceed 140% of rated head. Note: No minus tolerance or margin shall be allowed with respect to capacity, total head or efficiency at the rated or specified conditions.

3 Contents 4

67

Hydraulic design Data

Underwrites Laboratories (UL)

68

3 Contents 4

Velocity HEAD CORRECTION

3 Contents 4

69

SECTION 22 Tables of Velocity Head Correction (Bar) Flow (Litres/Minute) Di

Dd

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

50

80

0.305

0.369

0.440

0.516

0.598

0.687

0.782

0.882

0.989

1.102

65

80

0.071

0.086

0.102

0.120

0.139

0.160

0.182

0.206

0.231

0.257

80

100

0.032

0.039

0.047

0.055

0.064

0.073

0.083

0.094

0.105

0.117

80

150

0.051

0.061

0.073

0.085

0.099

0.114

0.129

0.146

0.164

0.182

100

125

0.013

0.016

0.019

0.022

0.026

0.030

0.034

0.038

0.043

0.048

100

150

0.018

0.022

0.026

0.031

0.035

0.041

0.046

0.052

0.059

0.065

100

200

0.021

0.026

0.030

0.036

0.041

0.047

0.054

0.061

0.068

0.076

100

250

0.022

0.027

0.032

0.037

0.043

0.049

0.056

0.063

0.071

0.079

125

150

0.005

0.006

0.007

0.008

0.009

0.011

0.012

0.014

0.015

0.017

125

200

0.008

0.009

0.011

0.013

0.015

0.018

0.020

0.023

0.025

0.028

125

250

0.009

0.010

0.012

0.015

0.017

0.019

0.022

0.025

0.028

0.031

150

175

0.002

0.002

0.003

0.003

0.004

0.005

0.005

0.006

0.007

0.007

150

200

0.003

0.004

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

150

250

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.013

0.014

150

300

0.004

0.005

0.006

0.007

0.008

0.009

0.011

0.012

0.014

0.015

175

200

0.001

0.001

0.001

0.002

0.002

0.002

0.003

0.003

0.003

0.004

200

225

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.002

200

250

0.001

0.001

0.001

0.001

0.002

0.002

0.002

0.002

0.003

0.003

200

300

0.001

0.001

0.002

0.002

0.002

0.003

0.003

0.003

0.004

0.004

250

300

0.000

0.000

0.000

0.001

0.001

0.001

0.001

0.001

0.001

0.001

300

350

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

350

400

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Di - Smaller diameter (mm) Dd - Larger diameter (mm) Gauge pressure variations, where the flow is from :the smaller diameter to the larger diameter, then VAR. is POS(+) or, the larger diameter to the smaller diameter, then VAR. is NEG(-) 70

3 Contents 4

SECTION 22

Flow (Litres/Minute) Di

Dd

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

50

80

1.2211

1.3463

1.4776

1.6149

1.7584

1.9080

2.0637

2.2255

2.3934

2.5674

80

0.2847

0.3138

0.3444

0.3765

0.4099

0.4448

0.4811

0.5188

0.5579

0.5985

100 0.1298

0.1431

0.1571

0.1717

0.1869

0.2028

0.2194

0.2366

0.2544

0.2729

80

150 0.2021

0.2228

0.2445

0.2673

0.2910

0.3158

0.3415

0.3683

0.3961

0.4249

100 125 0.0532

0.0586

0.0643

0.0703

0.0766

0.0831

0.0899

0.0969

0.1042

0.1118

100 150 0.0723

0.0797

0.0874

0.0956

0.1041

0.1129

0.1221

0.1317

0.1417

0.1520

100 200 0.0844

0.0931

0.1022

0.1117

0.1216

0.1319

0.1427

0.1539

0.1655

0.1775

100 250 0.0878

0.0968

0.1062

0.1161

0.1264

0.1371

0.1483

0.1599

0.1720

0.1845

125 150 0.0191

0.0211

0.0231

0.0253

0.0275

0.0298

0.0323

0.0348

0.0374

0.0402

125 200 0.0313

0.0345

0.0378

0.0413

0.0450

0.0488

0.0528

0.0570

0.0613

0.0657

125 250 0.0346

0.0381

0.0418

0.0457

0.0498

0.0540

0.0584

0.0630

0.0678

0.0727

150 175 0.0082

0.0090

0.0099

0.0108

0.0118

0.0128

0.0138

0.0149

0.0160

0.0172

150 200 0.0122

0.0134

0.0147

0.0161

0.0175

0.0190

0.0206

0.0222

0.0238

0.0256

150 250 0.0155

0.0171

0.0187

0.0205

0.0223

0.0242

0.0262

0.0282

0.0303

0.0326

150 300 0.0167

0.0184

0.0202

0.0221

0.0240

0.0261

0.0282

0.0304

0.0327

0.0351

175 200 0.0040

0.0044

0.0048

0.0053

0.0057

0.0062

0.0067

0.0072

0.0078

0.0084

200 225 0.0021

0.0023

0.0026

0.0028

0.0030

0.0033

0.0036

0.0039

0.0041

0.0044

200 250 0.0033

0.0037

0.0040

0.0044

0.0048

0.0052

0.0056

0.0061

0.0065

0.0070

200 300 0.0045

0.0050

0.0055

0.0060

0.0065

0.0071

0.0076

0.0082

0.0089

0.0095

250 300 0.0012

0.0013

0.0014

0.0016

0.0017

0.0019

0.0020

0.0022

0.0023

0.0025

300 350 0.0005

0.0006

0.0006

0.0007

0.0007

0.0008

0.0009

0.0009

0.0010

0.0011

350 400 0.0002

0.0003

0.0003

0.0003

0.0004

0.0004

0.0004

0.0005

0.0005

0.0005

3 Contents 4

VELOCITY HEAD CORRECTION

65 80

71

Flow (Litres/Minute) Di

Dd

3000

50

80

2.7475 2.9338 3.1261 3.3245 3.5291 3.7397 3.9564 4.1793 4.4083 4.6433

3100

3200

3300

3400

3500

3600

3700

3800

3900

65

80

0.6405 0.6839 0.7287 0.7750 0.8227 0.8718 0.9223 0.9742 1.0276 1.0824

80

100 0.2921 0.3119 0.3323 0.3534 0.3752 0.3976 0.4206 0.4443 0.4686 0.4936

80

150 0.4547 0.4855 0.5174 0.5502 0.5840 0.6189 0.6548 0.6917 0.7295 0.7684

100 125 0.1196 0.1277 0.1361 0.1448 0.1537 0.1628 0.1723 0.1820 0.1920 0.2022 100 150 0.1626 0.1736 0.1850 0.1968 0.2089 0.2213 0.2342 0.2474 0.2609 0.2748 100 200 0.1900 0.2029 0.2162 0.2299 0.2440 0.2586 0.2736 0.2890 0.3048 0.3211 100 250 0.1975 0.2108 0.2247 0.2389 0.2536 0.2688 0.2843 0.3003 0.3168 0.3337 125 150 0.0430 0.0459 0.0489 0.0520 0.0552 0.0585 0.0619 0.0654 0.0689 0.0726 125 200 0.0703 0.0751 0.0800 0.0851 0.0903 0.0957 0.1013 0.1070 0.1129 0.1189 125 250 0.0778 0.0831 0.0885 0.0942 0.0999 0.1059 0.1121 0.1184 0.1248 0.1315 150 175 0.0184 0.0197 0.0210 0.0223 0.0237 0.0251 0.0265 0.0280 0.0296 0.0311 150 200 0.0274 0.0292 0.0311 0.0331 0.0351 0.0372 0.0394 0.0416 0.0439 0.0462 150 250 0.0348 0.0372 0.0396 0.0422 0.0448 0.0474 0.0502 0.0530 0.0559 0.0589 150 300 0.0375 0.0401 0.0427 0.0454 0.0482 0.0511 0.0540 0.0571 0.0602 0.0634 175 200 0.0089 0.0095 0.0102 0.0108 0.0115 0.0122 0.0129 0.0136 0.0143 0.0151 200 225 0.0048 0.0051 0.0054 0.0058 0.0061 0.0065 0.0069 0.0072 0.0076 0.0080 200 250 0.0075 0.0080 0.0085 0.0090 0.0096 0.0102 0.0108 0.0114 0.0120 0.0126 200 300 0.0102 0.0109 0.0116 0.0123 0.0131 0.0138 0.0146 0.0155 0.0163 0.0172 250 300 0.0027 0.0029 0.0031 0.0032 0.0034 0.0037 0.0039 0.0041 0.0043 0.0045 300 350 0.0012 0.0012 0.0013 0.0014 0.0015 0.0016 0.0017 0.0018 0.0018 0.0019 350 400 0.0006 0.0006 0.0006 0.0007 0.0007 0.0008 0.0008 0.0009 0.0009 0.0009

Di - Smaller diameter (mm) Dd - Larger diameter (mm) Gauge pressure variations, where the flow is from :the smaller diameter to the larger diameter, then VAR. is POS(+) or, the larger diameter to the smaller diameter, then VAR. is NEG(-)

72

3 Contents 4

SECTION 22

Flow (Litres/Minute) Di

Dd

4000

50

80

4.8845 5.1318 5.3852 5.6447 5.9102 6.1820 6.4598 6.7437 7.0337 7.3298

4100

4200

4300

4400

4500

4600

4700

4800

4900

65

80

1.1386 1.1963 1.2553 1.3158 1.3777 1.4411 1.5058 1.5720 1.6396 1.7086

80

100

0.5193 0.5456 0.5725 0.6001 0.6283 0.6572 0.6867 0.7169 0.7477 0.7792

150

0.8084 0.8493 0.8912 0.9342 0.9781 1.0231 1.0691 1.1160 1.1640 1.2130

125

0.2127 0.2235 0.2345 0.2458 0.2574 0.2692 0.2813 0.2936 0.3063 0.3192

100

150

0.2891 0.3037 0.3187 0.3341 0.3498 0.3659 0.3823 0.3991 0.4163 0.4338

100

200

0.3377 0.3548 0.3724 0.3903 0.4087 0.4274 0.4467 0.4663 0.4863 0.5068

100

250

0.3510 0.3688 0.3870 0.4057 0.4247 0.4443 0.4642 0.4846 0.5055 0.5268

125

150

0.0764 0.0803 0.0842 0.0883 0.0924 0.0967 0.1010 0.1055 0.1100 0.1146

125

200

0.1250 0.1314 0.1379 0.1445 0.1513 0.1583 0.1654 0.1726 0.1801 0.1876

125

250

0.1383 0.1453 0.1525 0.1599 0.1674 0.1751 0.1830 0.1910 0.1992 0.2076

150

175

0.0327 0.0344 0.0361 0.0378 0.0396 0.0414 0.0433 0.0452 0.0472 0.0491

150

200

0.0486 0.0511 0.0536 0.0562 0.0589 0.0616 0.0643 0.0672 0.0700 0.0730

150

250

0.0619 0.0651 0.0683 0.0716 0.0749 0.0784 0.0819 0.0855 0.0892 0.0929

150

300

0.0667 0.0701 0.0736 0.0771 0.0807 0.0844 0.0882 0.0921 0.0961 0.1001

175

200

0.0159 0.0167 0.0175 0.0184 0.0192 0.0201 0.0210 0.0219 0.0229 0.0239

200

225

0.0085 0.0089 0.0093 0.0098 0.0102 0.0107 0.0112 0.0117 0.0122 0.0127

200

250

0.0133 0.0140 0.0147 0.0154 0.0161 0.0168 0.0176 0.0184 0.0191 0.0199

200

300

0.0181 0.0190 0.0199 0.0209 0.0219 0.0229 0.0239 0.0249 0.0260 0.0271

250

300

0.0048 0.0050 0.0053 0.0055 0.0058 0.0060 0.0063 0.0066 0.0069 0.0072

300

350

0.0020 0.0022 0.0023 0.0024 0.0025 0.0026 0.0027 0.0028 0.0029 0.0031

350

400

0.0010 0.0010 0.0011 0.0011 0.0012 0.0013 0.0013 0.0014 0.0014 0.0015

3 Contents 4

VELOCITY HEAD CORRECTION

80 100

73

Flow (Litres/Minute) Di

Dd

5000

50

80

7.6320 7.9404 8.2548 8.5754 8.9020 9.2348 9.5736 9.9186 10.2697 10.6268

5100

5200

5300

5400

5500

5600

5700

5800

5900

65

80

1.7791 1.8510 1.9243 1.9990 2.0751 2.1527 2.2317 2.3121 2.3940

2.4772

80

100

0.8114 0.8441 0.8776 0.9116 0.9464 0.9817 1.0178 1.0544 1.0918

1.1297

80

150

1.2631 1.3141 1.3661 1.4192 1.4732 1.5283 1.5844 1.6415 1.6996

1.7587

100

125

0.3323 0.3458 0.3595 0.3734 0.3876 0.4021 0.4169 0.4319 0.4472

0.4627

100

150

0.4517 0.4700 0.4886 0.5075 0.5269 0.5466 0.5666 0.5870 0.6078

0.6290

100

200

0.5277 0.5490 0.5708 0.5929 0.6155 0.6385 0.6620 0.6858 0.7101

0.7348

100

250

0.5485 0.5706 0.5932 0.6163 0.6398 0.6637 0.6880 0.7128 0.7380

0.7637

125

150

0.1194 0.1242 0.1291 0.1341 0.1392 0.1444 0.1497 0.1551 0.1606

0.1662

125

200

0.1954 0.2033 0.2113 0.2195 0.2279 0.2364 0.2451 0.2539 0.2629

0.2720

125

250

0.2162 0.2249 0.2338 0.2429 0.2521 0.2615 0.2711 0.2809 0.2909

0.3010

150

175

0.0512 0.0532 0.0553 0.0575 0.0597 0.0619 0.0642 0.0665 0.0689

0.0713

150

200

0.0760 0.0791 0.0822 0.0854 0.0887 0.0920 0.0953 0.0988 0.1023

0.1058

150

250

0.0968 0.1007 0.1047 0.1087 0.1129 0.1171 0.1214 0.1258 0.1302

0.1348

150

300

0.1042 0.1085 0.1127 0.1171 0.1216 0.1261 0.1308 0.1355 0.1403

0.1451

175

200

0.0248 0.0258 0.0269 0.0279 0.0290 0.0301 0.0312 0.0323 0.0334

0.0346

200

225

0.0132 0.0138 0.0143 0.0149 0.0154 0.0160 0.0166 0.0172 0.0178

0.0184

200

250

0.0208 0.0216 0.0225 0.0233 0.0242 0.0251 0.0261 0.0270 0.0279

0.0289

200

300

0.0282 0.0294 0.0305 0.0317 0.0329 0.0342 0.0354 0.0367 0.0380

0.0393

250

300

0.0075 0.0078 0.0081 0.0084 0.0087 0.0090 0.0094 0.0097 0.0100

0.0104

300

350

0.0032 0.0033 0.0035 0.0036 0.0037 0.0039 0.0040 0.0042 0.0043

0.0045

350

400

0.0016 0.0016 0.0017 0.0017 0.0018 0.0019 0.0019 0.0020 0.0021

0.0022

Di - Smaller diameter (mm) Dd - Larger diameter (mm) Gauge pressure variations, where the flow is from :the smaller diameter to the larger diameter, then VAR. is POS(+) or, the larger diameter to the smaller diameter, then VAR. is NEG(-)

74

3 Contents 4

SECTION 22

Flow (Litres/Minute) Dd

6000

80

10.9901 11.3595 11.7350 12.1166 12.5043 12.8981 13.2981 13.7041 14.1162 14.5345

6100

6200

6300

6400

6500

65

80

2.5619 2.6480 2.7355 2.8245 2.9149 3.0067 3.0999 3.1946 3.2906

3.3881

80

100 1.1684 1.2076 1.2475 1.2881 1.3293 1.3712 1.4137 1.4569 1.5007

1.5451

80

150 1.8188 1.8799 1.9421 2.0052 2.0694 2.1346 2.2008 2.2680 2.3362

2.4054

100 125 0.4786 0.4946 0.5110 0.5276 0.5445 0.5616 0.5791 0.5967 0.6147

0.6329

100 150 0.6505 0.6723 0.6945 0.7171 0.7401 0.7634 0.7870 0.8111 0.8355

0.8602

100 200 0.7599 0.7854 0.8114 0.8378 0.8646 0.8918 0.9195 0.9476 0.9761

1.0050

100 250 0.7898 0.8164 0.8433 0.8708 0.8986 0.9269 0.9557 0.9849 1.0145

1.0445

125 150 0.1719 0.1777 0.1835 0.1895 0.1956 0.2017 0.2080 0.2143 0.2208

0.2273

125 200 0.2813 0.2908 0.3004 0.3102 0.3201 0.3302 0.3404 0.3508 0.3614

0.3721

125 250 0.3113 0.3217 0.3324 0.3432 0.3541 0.3653 0.3766 0.3881 0.3998

0.4116

150 175 0.0737 0.0762 0.0787 0.0812 0.0838 0.0865 0.0892 0.0919 0.0946

0.0975

150 200 0.1095 0.1131 0.1169 0.1207 0.1245 0.1285 0.1324 0.1365 0.1406

0.1447

150 250 0.1394 0.1440 0.1488 0.1536 0.1586 0.1636 0.1686 0.1738 0.1790

0.1843

150 300 0.1501 0.1551 0.1603 0.1655 0.1708 0.1762 0.1816 0.1872 0.1928

0.1985

175 200 0.0358 0.0370 0.0382 0.0394 0.0407 0.0420 0.0433 0.0446 0.0459

0.0473

200 225 0.0190 0.0197 0.0203 0.0210 0.0217 0.0223 0.0230 0.0237 0.0244

0.0252

200 250 0.0299 0.0309 0.0319 0.0330 0.0340 0.0351 0.0362 0.0373 0.0384

0.0396

200 300 0.0407 0.0420 0.0434 0.0448 0.0463 0.0477 0.0492 0.0507 0.0522

0.0538

250 300 0.0107 0.0111 0.0115 0.0118 0.0122 0.0126 0.0130 0.0134 0.0138

0.0142

300 350 0.0046 0.0048 0.0049 0.0051 0.0052 0.0054 0.0056 0.0057 0.0059

0.0061

350 400 0.0022 0.0023 0.0024 0.0025 0.0025 0.0026 0.0027 0.0028 0.0029

0.0030

3 Contents 4

6600

6700

6800

6900

VELOCITY HEAD CORRECTION

Di 50

75

Flow (Litres/Minute) Di

Dd

7000

50

80

14.9588 15.3892 15.8258 16.2685 16.7172 17.1721 17.6331 18.1001 18.5733 19.0526

7100

7200

7300

7400

7500

7600

7700

7800

65

80

3.4870 3.5874 3.6891 3.7923 3.8969 4.0030 4.1104 4.2193 4.3296

4.4413

80

100 1.5903 1.6360 1.6824 1.7295 1.7772 1.8256 1.8746 1.9242 1.9745

2.0255

80

150 2.4756 2.5468 2.6191 2.6923 2.7666 2.8419 2.9182 2.9955 3.0738

3.1531

100 125 0.6514 0.6701 0.6891 0.7084 0.7279 0.7477 0.7678 0.7882 0.8088

0.8296

100 150 0.8853 0.9108 0.9367 0.9629 0.9894 1.0163 1.0436 1.0713 1.0993

1.1276

100 200 1.0343 1.0641 1.0943 1.1249 1.1559 1.1874 1.2192 1.2515 1.2842

1.3174

100 250 1.0750 1.1060 1.1373 1.1691 1.2014 1.2341 1.2672 1.3008 1.3348

1.3692

125 150 0.2340 0.2407 0.2475 0.2545 0.2615 0.2686 0.2758 0.2831 0.2905

0.2980

125 200 0.3829 0.3940 0.4051 0.4165 0.4280 0.4396 0.4514 0.4634 0.4755

0.4877

125 250 0.4237 0.4358 0.4482 0.4607 0.4735 0.4863 0.4994 0.5126 0.5260

0.5396

150 175 0.1003 0.1032 0.1061 0.1091 0.1121 0.1151 0.1182 0.1214 0.1245

0.1277

150 200 0.1490 0.1533 0.1576 0.1620 0.1665 0.1710 0.1756 0.1803 0.1850

0.1897

150 250 0.1897 0.1951 0.2007 0.2063 0.2120 0.2178 0.2236 0.2295 0.2355

0.2416

150 300 0.2043 0.2102 0.2162 0.2222 0.2283 0.2345 0.2408 0.2472 0.2537

0.2602

175 200 0.0487 0.0501 0.0515 0.0529 0.0544 0.0559 0.0574 0.0589 0.0604

0.0620

200 225 0.0259 0.0267 0.0274 0.0282 0.0290 0.0297 0.0305 0.0313 0.0322

0.0330

200 250 0.0407 0.0419 0.0431 0.0443 0.0455 0.0467 0.0480 0.0493 0.0505

0.0519

200 300 0.0553 0.0569 0.0585 0.0602 0.0618 0.0635 0.0652 0.0670 0.0687

0.0705

250 300 0.0146 0.0150 0.0155 0.0159 0.0163 0.0168 0.0172 0.0177 0.0182

0.0186

300 350 0.0063 0.0064 0.0066 0.0068 0.0070 0.0072 0.0074 0.0076 0.0078

0.0080

350 400 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038

0.0039

Di - Smaller diameter (mm) Dd - Larger diameter (mm) Gauge pressure variations, where the flow is from :the smaller diameter to the larger diameter, then VAR. is POS(+) or, the larger diameter to the smaller diameter, then VAR. is NEG(-)

76

3 Contents 4

7900

SECTION 22

Flow (Litres/Minute) Dd

8000

80

19.5380 20.0295 20.5271 21.0308 21.5407 22.0566 22.5786 23.1068 23.6410 24.1813

8100

8200

8300

8400

8500

65

80

4.5545 4.6691 4.7851 4.9025 5.0213 5.1416 5.2633 5.3864 5.5109

5.6369

80

100 2.0771 2.1293 2.1822 2.2358 2.2900 2.3448 2.4003 2.4565 2.5133

2.5707

80

150 3.2334 3.3148 3.3971 3.4805 3.5649 3.6502 3.7366 3.8240 3.9125

4.0019

100 125 0.8508 0.8722 0.8938 0.9158 0.9380 0.9604 0.9832 1.0062 1.0294

1.0530

100 150 1.1564 1.1855 1.2149 1.2447 1.2749 1.3054 1.3363 1.3676 1.3992

1.4312

100 200 1.3509 1.3849 1.4193 1.4542 1.4894 1.5251 1.5612 1.5977 1.6346

1.6720

100 250 1.4041 1.4394 1.4752 1.5114 1.5480 1.5851 1.6226 1.6606 1.6990

1.7378

125 150 0.3056 0.3133 0.3211 0.3289 0.3369 0.3450 0.3532 0.3614 0.3698

0.3782

125 200 0.5002 0.5128 0.5255 0.5384 0.5514 0.5646 0.5780 0.5915 0.6052

0.6190

125 250 0.5533 0.5673 0.5814 0.5956 0.6101 0.6247 0.6395 0.6544 0.6695

0.6849

150 175 0.1310 0.1343 0.1376 0.1410 0.1444 0.1479 0.1514 0.1549 0.1585

0.1621

150 200 0.1946 0.1995 0.2044 0.2094 0.2145 0.2197 0.2249 0.2301 0.2354

0.2408

150 250 0.2478 0.2540 0.2603 0.2667 0.2731 0.2797 0.2863 0.2930 0.2998

0.3066

150 300 0.2669 0.2736 0.2804 0.2872 0.2942 0.3013 0.3084 0.3156 0.3229

0.3303

175 200 0.0636 0.0652 0.0668 0.0684 0.0701 0.0718 0.0735 0.0752 0.0769

0.0787

200 225 0.0338 0.0347 0.0356 0.0364 0.0373 0.0382 0.0391 0.0400 0.0409

0.0419

200 250 0.0532 0.0545 0.0559 0.0572 0.0586 0.0600 0.0614 0.0629 0.0643

0.0658

200 300 0.0723 0.0741 0.0759 0.0778 0.0797 0.0816 0.0835 0.0855 0.0874

0.0894

250 300 0.0191 0.0196 0.0201 0.0206 0.0211 0.0216 0.0221 0.0226 0.0231

0.0236

300 350 0.0082 0.0084 0.0086 0.0088 0.0090 0.0092 0.0095 0.0097 0.0099

0.0101

350 400 0.0040 0.0041 0.0042 0.0043 0.0044 0.0045 0.0046 0.0047 0.0048

0.0049

3 Contents 4

8600

8700

8800

8900

VELOCITY HEAD CORRECTION

Di 50

77

Di

Dd

9000

50

80

24.7278 25.2804 25.8390 26.4038 26.9747 27.5517 28.1347 28.7239 29.3192 29.9206

9100

9200

9300

9400

9500

9600

9700

9800

65

80

5.7643 5.8931 6.0233 6.1550 6.2881 6.4226 6.5585 6.6958 6.8346

6.9748

80

100 2.6288 2.6875 2.7469 2.8070 2.8677 2.9290 2.9910 3.0536 3.1169

3.1808

80

150 4.0923 4.1838 4.2762 4.3697 4.4642 4.5597 4.6562 4.7537 4.8522

4.9517

100 125 1.0768 1.1008 1.1251 1.1497 1.1746 1.1997 1.2251 1.2508 1.2767

1.3029

100 150 1.4635 1.4962 1.5293 1.5627 1.5965 1.6307 1.6652 1.7000 1.7353

1.7709

100 200 1.7098 1.7480 1.7866 1.8257 1.8651 1.9050 1.9454 1.9861 2.0273

2.0688

100 250 1.7771 1.8168 1.8569 1.8975 1.9386 1.9800 2.0219 2.0643 2.1071

2.1503

125 150 0.3868 0.3954 0.4041 0.4130 0.4219 0.4309 0.4401 0.4493 0.4586

0.4680

125 200 0.6330 0.6472 0.6615 0.6759 0.6906 0.7053 0.7202 0.7353 0.7506

0.7660

125 250 0.7003 0.7160 0.7318 0.7478 0.7640 0.7803 0.7968 0.8135 0.8304

0.8474

150 175 0.1658 0.1695 0.1732 0.1770 0.1809 0.1847 0.1886 0.1926 0.1966

0.2006

150 200 0.2463 0.2518 0.2573 0.2630 0.2686 0.2744 0.2802 0.2861 0.2920

0.2980

150 250 0.3136 0.3206 0.3277 0.3348 0.3421 0.3494 0.3568 0.3642 0.3718

0.3794

150 300 0.3377 0.3453 0.3529 0.3606 0.3684 0.3763 0.3843 0.3923 0.4004

0.4087

175 200 0.0805 0.0823 0.0841 0.0859 0.0878 0.0897 0.0916 0.0935 0.0954

0.0974

200 225 0.0428 0.0438 0.0447 0.0457 0.0467 0.0477 0.0487 0.0497 0.0508

0.0518

200 250 0.0673 0.0688 0.0703 0.0719 0.0734 0.0750 0.0766 0.0782 0.0798

0.0814

200 300 0.0915 0.0935 0.0956 0.0977 0.0998 0.1019 0.1041 0.1063 0.1085

0.1107

250 300 0.0242 0.0247 0.0253 0.0258 0.0264 0.0269 0.0275 0.0281 0.0287

0.0292

300 350 0.0104 0.0106 0.0108 0.0111 0.0113 0.0115 0.0118 0.0120 0.0123

0.0125

350 400 0.0050 0.0051 0.0053 0.0054 0.0055 0.0056 0.0057 0.0058 0.0060

0.0061

Di - Smaller diameter (mm) Dd - Larger diameter (mm) Gauge pressure variations, where the flow is from :the smaller diameter to the larger diameter, then VAR. is POS(+) or, the larger diameter to the smaller diameter, then VAR. is NEG(-)

78

3 Contents 4

9900

VELOCITY HEAD CORRECTION

Flow (Litres/Minute)

ELECTRCAL DESIGN DATA

3 Contents 4

79

Section 23

AVERAGE EFFICIENCIES AND POWER FACTORS OF ELECTRIC MOTORS Efficiency %

Typical PF

kW

2 Pole

4 Pole

6 Pole

Full load

¾ load

½ load

0.75

77.4

79.6

79.6

0.75

0.69

0.56

1.1

79.6

81.4

78.1

0.77

0.71

0.59

1.5

81.3

82.8

79.8

0.77

0.71

0.59

3

84.5

85.5

83.3

0.82

0.77

0.67

5.5

87

87.7

86

0.82

0.77

0.67

7.5

81.1

88.7

87.2

0.84

0.8

0.71

11

89.4

89.8

88.7

0.84

0.8

0.71

18.5

90.9

91.2

90.4

0.84

0.8

0.71

22

91.3

91.6

90.9

0.84

0.8

0.71

30

92

93.2

91.7

0.84

0.8

0.71

37

92.5

92.7

92.2

0.86

0.83

0.75

45

92.9

93.1

92.7

0.86

0.83

0.75

55

93.2

93.5

93.1

0.86

0.83

0.75

75

93.8

94

93.7

0.86

0.83

0.75

90

94

94.2

94

0.86

0.83

0.75

110

94.3

94.5

94.3

0.86

0.83

0.75

132

94.6

94.7

94.6

0.87

0.84

0.76

Note: Power factors are of importance where the current is charged on a kVA basis. The power factors of motors may be improved by the use of a suitable condenser. To find the output kw of motors when Current, Efficiency and Power Factor (PF) are known.

Direct Current

kW

=



volts x amps x eff % 1000 x 100

Alternating Current Single phase –

kW

=

80

volts x amps x eff % x PF 1000 x 100

3 Contents 4

SECTION 23

Three phase –

kW

= volts x amps x eff % x PF x 1.73

1000 x 100

Kilowatt consumption of any motor

= Output kW x 100

eff % ELECTRICAL DESIGN DATA

To find amperes to be carried by cable connections to a motor when output kW, Volts, Efficiency and Power Factor (PF) are known.

Direct current amps = kW x 1000 x 100

volts x eff %

Alternating current

Single phase amps

= kW x 1000 x 100

volts x eff % x PF

Three phase, amps per phase

= kW x 1000 x 100

volts x eff % x PF x 1.73

3 Contents 4

81

Section 24

APPROXIMATE FULL LOAD SPEEDS (RPM) OF ALTERNATING CURRENT MOTORS Frequency

82

kW

No of poles

25

30

40

50

60

0.75

2 Pole

1430

1716

2288

2860

3432

to

4 Pole

720

864

1152

1440

1728

2.2

6 Pole

475

570

760

950

1140

3

2 Pole

1450

1740

2320

2900

3480

to

4 Pole

720

864

1152

1440

1728

7.5

6 Pole

480

576

768

960

1152

11

2 Pole

1472.5

1767

2356

2945

3534

to

4 Pole

730

876

1168

1460

1752

22

6 Pole

485

582

776

970

1164

30

2 Pole

1485

1782

2376

2970

3564

to

4 Pole

740

888

1184

1480

1776

75

6 Pole

495

594

792

990

1188

3 Contents 4

SECTION 24/25

Section 25

STARTING ALTERNATING CURRENT MOTORS Squirrel Cage Motors Starting torque (approx) % Full load torque

Starting current (approx) % Full load current

Direct

100% - 200%

350% - 700%

Star delta (3 phase)

33% - 66%

120% - 230%

Series parallel (2 phase)

25% - 50%

90% - 175%

Auto transformer

25% - 85%

90% - 300%

ELECTRICAL DESIGN DATA

Method of starting

The above figures apply to Squirrel Cage motors of normal design and other types are available namely: High torque Squirrel Cage machines will give approximately twice the above starting torques with unrestricted currents. Low current Squirrel Cage machines restrict the current but give a lower starting torque than the high torque machines. These two types can now be used in many cases where slipring machines would have been necessary in the past. Slipring machines (2- and 3-phase). All slipring machines must be started by means of a rotor resistance starter. A starting torque of full load torque is obtainable with a starting current of approximately 1 ¼ full load current, this usually being sanctioned by supply authorities for any size of motor.

3 Contents 4

83

84

3 Contents 4

WHOLE LIFE COST

3 Contents 4

85

Section 26

Whole Life Cost Principles and Pump Design Whole life cost can be broken down into a number of key components: • Initial Capital Cost • Operating/Energy Costs • Replacement/Wear Part Costs • Maintenance & Repair Costs • Disposal Costs.

Initial Capital Cost Capital cost is the most visible cost and has historically been the primary selection criterion for most items of capital equipment. Pump users are now becoming increasingly aware of post installation costs and their impact on the total cost of ownership. Lowest capital cost purchases rarely prove economic in the longer term and given that the initial capital cost of a centrifugal pump, inclusive of installation, typically equates to between 5%-20% of whole life cost, placing more emphasis on post installation cost will clearly prove much more economic.

Operating/Energy Costs Energy costs can easily equate to as much as 90% of the whole life cost of a pumping installation, dependant on installed power and equipment utilisation. Analysis of operating costs, in terms of energy consumption, is relatively straightforward, given that pump utilisation and demand profiles are understood and predictable. The wire to water efficiency of existing or proposed installations can be compared and the results projected over the estimated lifetime of the installation. This should be a fundamental component of any tender assessment process or existing asset review procedure. Less visible however, is an installations’ capacity to operate at or near optimum efficiency throughout its operational life. A degree of degradation in hydraulic performance is inevitable with time. This degradation in performance is primarily a result of wear and erosion of internal clearances. Wear rings limit fluid re-circulation between the high and low-pressure 86

3 Contents 4

SECTION 26

areas within a centrifugal pump. A combination of erosion from high velocity fluid passing between the wear ring surfaces and mechanical wear, resultant from shaft deflection, widens the clearances allowing an increase in internal re-circulation. Significantly, highlighting the importance of optimum pump selection, this process will be accelerated if the pump operates at a duty point less than 70% or more than 115% of best efficiency flow. The resultant loss of performance usually leads to the pump running for longer periods to deliver a given quantity of fluid.

WHOLE LIFE COSTS

Erosion of hydraulic profiles and increases in the relative roughness of surfaces in contact with the pumped fluid, will also significantly impact on pump performance.

Replacement/Wear Part Costs The replacement of major components within a pump, whether as a result of wear, erosion or following a component failure is often a very significant contributor to whole life costs. A replacement rotating assembly will typically equate to 70% of the costs of a replacement pump. It is not uncommon for all components forming the rotating assembly to require replacement within the lifetime of an installation. The selection of a conservatively engineered pump, manufactured from high-grade materials should negate this, substantially reducing maintenance costs and increasing the mean time between failure and major service outages. Parts supplied by the original pump manufacturers are likely to provide the highest levels of compatibility and will include any reliability modifications that have been developed since the original date of manufacture. SPP’s parts division provides a comprehensive section of spares for SPP and Crane pumps. We can also provide a wide range of re-engineered parts for other manufacturers’ pumps.

Maintenance & Repair Costs The cost of regular monitoring and preventative maintenance is a necessary component of an installations’ whole life cost and historical evidence shows that regular maintenance is a lower cost option than unplanned emergency repairs. When calculating the cost of maintenance, installation downtime and resultant loss of productivity should be considered. Savings associated with increased mean time between failure and service outages will offset any higher initial capital costs incurred when installing a well-engineered pump, designed for ease of maintenance. SPP’s service division can provide a range

3 Contents 4

87

of field and service centre based preventative maintenance programmes to support our customers’ production and shut-down schedules. These can vary between simple annual or biannual site based maintenance through to planned pump and valve swap-out programmes to support maximum plant uptime. A well-engineered installation should be so designed as to offer good bearing and seal life and facilitate all but a major overhaul in-situ, without recourse to disturb either pipework or prime movers.

Disposal Costs Disposal costs are relatively minor. Use of higher grade materials may enhance recycling value but this is minimal in the pumps whole life cost and is normally ignored.

Features of a Low Life-cycle Cost Centrifugal Pump The majority of pumps employed on utility type applications fall into one of the following categories: Horizontal Split Casing, Vertical Suspended Bowl or End Suction Pumps. Only the latter are regularly manufactured to recognised international standards e.g. ISO 5199. The requirement for low life-cycle cost pumps is generally applicable to pumps with branch sizes 150mm and above, where power requirements are higher, so it is not usually relevant to the majority of End Suction Pump applications. The following key areas have been identified by pump end users and designers in relation to low life-cycle cost applications.

Mechanical Design A significant change has taken place over the last decade in that the switch from soft packed glands to mechanical seals for shaft sealing on utility applications is near universal. The benefits of this change however have not been fully realised, as mechanical seal life is generally proportional to certain key aspects of pump performance, not least shaft deflection, vibration levels and seal chamber design. The vast majority of utility pumps available today have their design roots in the packed gland era. In many instances this is leading to premature bearing and seal failures, as many pump shafts are quite simply too flexible without the support of numerous packing rings and neck bushes.

88

3 Contents 4

SECTION 26 WHOLE LIFE COSTS

This is arguably the most significant factor, influencing the mean time between failures of utility pumps. Mechanical seals and bearings are intolerant of shaft deflection and residual unbalance. Therefore it is suggested that a pump designed for low life-cycle cost would have a shorter span between bearings and an increased shaft diameter when compared to a similar pump designed in the packed gland era. Specifically shafts should be so designed, as to limit shaft deflection at the limits of the operating range of say, 50% - 115% of best efficiency flow, to a maximum of 0.05mm at the seal faces. Bearings likewise should be designed to provide a minimum L10 life of 50,000 hours at these limits.

Hydraulic Design With the aid of 3-Dimensional Computational Fluid Dynamics, pump manufacturers are now able to produce hydraulic designs that achieve the theoretical maximum efficiency for a given specific speed or impeller geometry. The challenge is then to consistently replicate these designs in material form. High quality manufacturing techniques and procedures are therefore essential, particularly as pump casings and impellers (the most dimensionally critical components of any centrifugal pump) tend to be produced as castings. Only foundry techniques that ensure a high standard of dimensional accuracy and surface finish should be employed in low life-cycle cost pump production.

Efficiency Degradation The maximum benefit of installing an energy efficient machine will only be realised if performance levels can be maintained for long periods of time between overhauls. Performance degradation is inevitable, however a combination of good hydraulic and mechanical design can have a positive impact in this area and prolong optimum efficiency for much longer periods of time. Hydraulic design considerations are: • Maintenance of optimum clearances between the impeller outside diameter and the volute cut-water, which will avoid vane pass cavitation. • Optimisation of impeller geometry with satisfactory suction specific speed values, this will limit internal re-circulation and facilitate a wide band of operation (30%-115% of best efficiency flow).

3 Contents 4

89

• Application of internal hydrophobic coating (low electronic affinity) in order to reduce the relative surface roughness value of the pump casing; thus maintaining the relative surface roughness values at a more constant level, unlike that of a bare metal casing, which will oxidise once put into service immediately impacting on hydraulic performance.

Mechanical design considerations • Minimisation of shaft deflection will ensure no contact between impeller eye ring and sealing/wear rings surfaces, thus maintaining ‘as new’ clearances for longer periods. • Often overlooked but highly important is wear ring design. A labyrinth profile will help to provide a staged pressure drop across the wear ring, rather than simply allowing high velocity fluid to flow across wear ring faces rapidly eroding internal clearances. • High-grade materials of construction for the pump impeller with good erosion/corrosion properties will ensure that the relative roughness of hydraulic surfaces remain reasonably smooth throughout.

Packaging the Pumpset When packaging a low life-cycle cost pump with a suitable prime mover, it is important to ensure that the same fundamental design principles be applied to the prime mover, baseplate/mounting assembly. The benefits of a superior hydraulic design and first class component quality can easily be forfeited by coupling the highly efficient pump to a lower efficiency driver. Likewise bearing and seal design lives will not be realised if the pump and driver are connected via a flexible and inadequate baseplate or mounting frame. The mounting arrangement as well as being rigid should facilitate a high degree of in-situ maintenance. Mechanical seals and bearings should be accessible without recourse to disturb either driver alignment of connecting pipework. This dictates the use of spacer type couplings, if drive end bearings and seals are to be maintainable in-situ. Only through the application of all these design and packaging principles will the true benefits of Low Life-cycle Cost pumping be realised by the end user. 90

3 Contents 4

ENERGY

3 Contents 4

91

Section 27

SPP Energy – Energy Saving Services Pumps are the single largest user of motive power in both industrial and commercial applications in the UK, accounting for over 30% of total power consumption within these sectors. Pumps account for approximately 13% of the UK’s total annual electrical consumption (BPMA Data) and energy consumption during operation has been identified as the most significant impact of pumps on the environment. In recent years, energy costs have become volatile with Oil, Gas and Coal prices at record levels. With this in mind, SPP has identified the need to operate pump systems more efficiently, and can realistically offer reductions in energy consumption and running costs by 30 to 50%.

Saving Costs, Saving Energy, Saving the Environment It is estimated that over 11 million motors with a total capacity of 90 GW are installed in UK industry – which represents about 40% of the UK’s total electricity consumption. With pumps contributing nearly a third of this consumption, there is considerable scope to reduce carbon emissions by improving pump system efficiency. SPP Energy Division promotes the benefits of auditing complete pump systems and producing recommendations to minimise the energy consumption of pumps and their associated systems. SPP Energy Division can also if required supply many of the solutions capable of realising these savings coupled with ongoing monitoring to validate such savings and sustain them through the lifetime of the installation.

92

3 Contents 4

SECTION 27

Savings through innovation Through the use of proven systems and techniques, SPP Energy offers a complete energy saving solution for pumping systems that can be applied equally to new projects and existing installations.

Annual C02 Savings Per 1% Efficiency Improvement 20000 18000 C02 Emissions Savings - kg

16000 14000 12000 10000 8000 20000 miles family car

6000 4000

Round the world flight

2000 0 0

50

100

150

200

250

300

350

400

450

500

550

System Power - kW

Energy Cost Absorbed Power Hours run per year

0.43 220 8750

kg C02/kWh kW hrs

C02 emissions

8277.5 kg C02

Savings per year

Annual Savings Per 1% Efficiency Improvement 3500

Annual saving £

3000 2500 2000 1500 1000 500 0

0

50

100

150

200

250

300

350

400

450

500

550

Power absorbed - kW Energy Cost Absorbed Power Hours run per year

7 p/kWh 220 kW 8750 hrs

Saving per year

3 Contents 4

£1,347.50

93

ENERGY

It is clear that pump systems are heavy users of energy, especially large pumps that run continuously. Such pumps are generally oversized and operating far from their best efficiency points. They can suffer from poor pump intake conditions and inefficient running regimes - all wasting considerable amounts of energy. In order to save costs SPP Energy Division will undertake site audits focused on complete pump systems, ultimately producing a detailed report making recommendations for corrective action and clearly showing cost savings, kW/Hr savings, payback time and CO2 reduction.

Services offered by SPP Energy include: a. Site Survey/Audit (including equipment and operating regime) b. Analysis by accredited engineers with Report (which will include recomendations for efficiency improvements) c. Solutions – eg: • Upgrade/ refurbish/replace pumps • Training • Operational recommendations • Computational Fluid Dynamics (CFD) • System Modelling d. Sustained improvements through Lowest Life Cycle cost e. Monitoring and Review • Intrusive measurement (Thermodynamic) • Individual parameter measurement (Non intrusive - Ultrasonic) • Permanent or temporary installations • Pump and system performance log f. Pump Systems Management Contracts.

SPP Energy – Accreditation The SPP Energy Team is certified and accredited in the use of Pump System Analysis Testing (PSAT) and Competent Pump System Assessor (CPSA) – working to globally recognised standards set within the Europe and the US. The team also operates within guidelines set by: • Government Legislation • BPMA • Carbon Trust • ISO BS EN etc • Insurance assessors – such as Lloyds, Beauro Veritas, LPC, CEMARS, Achillies etc. www.sppenergy.com 94

3 Contents 4

CONVERSION FACTORS

3 Contents 4

95

96

3 Contents 4

x

x

x

x

x

gals (Imp)

gals (Imp)

gals (US)

gals (US)

acre-inches

x

x

ft3

gal / min

x

ft3

x

x

in3

long tonne (Imp)

x

x

x

acres

miles2

lbs

x

yds2

x

100

x

ft2

bbls (oil)

1.028

x

in2

x

2.59

x

miles

x

0.4047

x

yards

ha-cm

0.836

x

feet

bbls (oil)

1.609

645.16

x

feet

0.2727

1016

0.4536

0.159

159

0.003785

3.785

0.004546

4.546

0.02832

28.32

16387

0.0929

0.9144

0.3048

304.8

0.0254

x

inches

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

m3 / h

kg

kg

m3

lit

m3

ha-cm

m3

lit

m3

lit

m3

lit

mm3

km2

ha

m2

m2

mm2

km

m

m

mm

m

mm

x

x

x

3.667

0.000984

2.2046

6.297

x

0.01 0.0063

x x

0.973

x

264.2

x

220 0.2642

x x

0.2200

35.31

0.0353

0.000061

0.3861

2.471

1.196

10.764

0.00155

0.6214

1.0936

3.281

0.00328

39.37

0.03937

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Number of

25.4

x

Number of

inches

Metric to Imperial

Imperial to Metric

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

gal / min

tonne (metric)

lbs

bbls

bbls

ha-cm x 100000 = lit

acre-inches

gals (US)

gals (US)

gals (Imp)

gals (Imp)

ft3

ft3

in3

miles2

acres

yds2

ft2

in2

miles

yards

feet

feet

inches

inches

Number of

Section 28

CONVERSION FACTORS

0.001333

10 / s.g.

x

x

x

x

ins Hg

torrs (mm Hg)

torrs (mm Hg)

kg / cm2

x

hp

0.7457

x

x

hp

x

Std atm

metric hp (CV, PS, PK, CF)

1.01325

x

kPa

0.98065

m liquid

0.9863

0.7355

0.10197 / s.g.

0.098065 x s.g.

x

x

kg / cm2

0.0136 / s.g.

0.03386

0.34537 / s.g.

0.02989 x s.g.

x

0.703 / s.g.

x

x

p.s.i.

0.0703

ins Hg

x

p.s.i.

0.06895

0.2778

17.00 / s.g.

0.2834 / s.g.

0.12653 / s.g.

1.04

0.04416

ft liquid

x

x

tons / min

p.s.i.

x

tonnes / h

m3 / hr

x

x

1000 lb / h

x

1000 bpd

0.472

x

x

cumins

barrels / h (bph)

28.32

x

cusecs

1.263

52.61

x

x

mgd

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

l/s

metric hp

kW

kW

bar

m

bar

bar

m.liquid

bar

m.liquid

bar

m.liquid

bar

m.liquid

kg / cm2

bar

l/s

l/s

l/s

l/s

l/s

l/s

l/s

l/s

l/s

x

0.792

x

x

x

x

x

x

x

x

x

x

x

x

x

1.0139

1.3596

1.341

0.9879

9.807 x s.g.

10.197 / s.g.

1.197

0.1

750

73.56 x s.g.

29.53

2.896 x s.g.

33.456 / s.g.

1.422 x s.g.

14.22

x x

14.504

3.6

0.0588 x s.g.

3.528 x s.g.

7.903 x s.g.

0.5345

22.65

2.119

0.0353

0.0190

x

x

x

x

x

x

x

x

x

x

=

=

=

=

=

=

=

=

x s.g.

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

CONVERSION FACTORS

1000 gals / h

hp

metric hp

hp

Std atm

kPa

m liquid

kg / cm2

kg / cm2

torrs

torrs

ins Hg

ins Hg

ft liquid

p.s.i.

p.s.i.

p.s.i.

m3 / hr

tons / min

tonnes / h

1000 lb / h

1000 bpd

bph

cumins

cusecs

mgd

1000 gals / h

SECTION 28

3 Contents 4

97

Supplementary data and conversion factors 1 Imp gal

= 10 lb cold fresh water = 1.2 US gal

1 US gal

= 8.33 lb cold fresh water = 0.833 Imp gal

1 Cubic foot

= 6.23 Imp gal = 62.3 lb cold fresh water = 64 lb cold sea water

1 (long) ton

= 2240 lbs = 224 Imp gal cold fresh water

1 (short) ton

= 2000 lbs = 240 US gal cold fresh water

1 barrel (bbl) oil

= 42 US gal = 35 Imp gal

1 acre-inch

= 22610 Imp gal

1 dm3

= 0.220 gals (Imp)

l/s

= (m3 / h) /3.6

Gallons per minute (gpm)

= gallons per hour / 60 = million gallons per day (mgd) / 694.4 = US gpm / 1.2 = cubic feet per second (cusecs) x 374 = cubic feet per minute (cumins) x 6.23

Imperial gpm

= lbs per hour / 600 / specific gravity = tons per min x 224 / specific gravity = tons per hour x 3.74 / specific gravity = barrels (oil) per hour (bph) x 0.583 = 1000’s barrels per day (bpd) x 24.3 x10-6

1 atmosphere (British)

= 14.70 lbs / sq inch (psi) = 30 inches mercury (Hg) = 34 feet of water = psi x 2.31 / specific gravity

Feet head

= ins Hg x 1.133 / specific gravity = atmosphere (British) x 34 / specific gravity

1 Horsepower (hp)

= 33000 ft lbs per minute = 550 ft lbs per second

Flow velocity ‘v’ in pipe v (ft / sec)

= 0.49 x gpm (Imp) d2 d = pipe actual bore in inches

98

3 Contents 4

=

SECTION 28

Flow velocity ‘v’ in pipe v (m / s)

1273.2 x l / s d2

d = pipe actual bore in mm =

Imp gpm x ft hd x s.g.

=

US gpm x ft hd x s.g.

=

lmp gpm x psi

=

Imp gal / hour x psi

3300

CONVERSION FACTORS

‘Water’ horsepower (whp)

3960

1430

85800 Mechanical hp

=

whp x 100 efficiency %

fluid hp = l / s x m x s.g. = l / s x kg / cm2 (metric) = l / s x m x s.g. = l / s x kg / cm2 (British) 75

7.5

76

7.6

fluid kW = l / s x m x s.g. 101.97 Driver output kW

=

l / s x kg / cm2

=

l / s x bar

10.197

10

= fluid kW x 100 / E% (pump efficiency)

required E (fraction)

= fluid kW kW input to pump

E% = fluid kW x 100 kW input to pump

3 Contents 4

99

Section 29

VACUUM TECHNICAL DATA

700 600 500 400

760 700 600 500 400

300 150

60 50 40

100 90 80 70

15

14 10 9 8 7 6

10 9 8 7

5

6

3

4

4

2

3

60 50 40

2 1.5

30

30 20 20

20

15

1 0.9 0.8 0.7 0.6

1 0.9 0.8 0.7

0.5

0.6

0.3

0.4

0.5 15

10 9 8 7 6 5 4

10 9 8 7

1.5

100

1033 1 0.9 0.8 0.7 0.6 0.5

0.4

5 4

0.15

0.1 0.09 0.08 0.07 0.06

3

5 10

0.3

0.2 0.15

% 0 10 20 30 40

15

0.4

50 60

20 21 22 23 24

0.10 0.09 0.08 0.07

80

25

0.06

27

28

95

0.04 0.03

0.02

90 91 92 93 94

0.05

29 29.1 29.2 29.3 29.4

cmHg mH2O 0 20

0 1 2 3

30

4

10

40

96

98

0.10

0.05

2

0.08

0.04

1.5

0.06

0.03

0.04

0.02

0.006

29.7

29.8

0.005

60

65 66 67 68 69 70

0.003

0.002

99 99.1 99.2 99.3 99.4

99.6 29.9 29.91 29.92 29.93 29.94

˚C

0.5

7

8

4 5

9

72

6

9.5

7 8 9 10

9.8

15

99.7

10.1

10.2

75.7 10.3

10.31

29.96

75.9

3 Contents 4

170 160

6

65

150

60

140

55

130

7 8 9 10 12 14 16 18 20

50 45 40

120 110 100

35

60 70

70 80 90 100

180

70

40

60

190

5

50

29.95 1

85

75

30

150

75.6

95

4

40

75.5

75.8

3

30

10

74

99.8

200

20

73

74.5

212

2

80

2

˚F

1.673 100 90

71

75

99.5

0.004

m 3/kg

50

29.6 0.01 0.009 0.008 0.007

m 3/kg 0.816 0.9 0.1

3

73.5 97

5 6

50

70

26

0.2

0.3

0.2

“Hg 0

29.5

6

3

2

Ata

Water saturation temperature

psia

5

150

100 90 80 70

25

300

300

200

“Hg 30

Saturated water steam volume of 1kg

Torr

Dry air volume of 1kg at 15˚C

mbar 1030 1000 900 800

Vacuum

Absolute pressure

Pressure and vacuum units conversions. Air and saturated water steam specific volumes. Water saturation temperature.

30 25 20

90 80 70

80 90 100

15

60

10

50

150

5

40

200

0

32

250

3 Contents 4

End Suction

Vertical Multi-Stage Suspended Bowl

Horizontally Split

Horizontal, Vertical Open Shaft, Vertical Direct Mounted Electric Motor or Horizontal Electric Motor or Engine Driven Horizontal, Vertical Open Shaft, Vertical Direct Mounted Electric Motor or Horizontal Electric Motor or Engine Driven. Vertical Electric Motor or Engine Driven. Wet well or Dry well. Vertical Electric Motor or Engine Driven. Wet well or Dry well. Horizontal DIN 24255 Electric Motor or Engine Driven. Horizontal Close Coupled Electric Motor Driven. Vertical Close Coupled Electric Motor Driven.

200 mm to 1000 mm. Outputs up to 4500 l/s. Heads up to 275m.

150 to 700mm. Outputs to 2500l/s. Heads up to 275m

100 mm to 600 mm. Outputs up to 2500 l/s. Heads up to 300 m. Pumping from depths up to 100 m.

200 to 1000mm. Outputs to 4500l/s. Heads up to 160m

32 mm to 150 mm. Outputs up to 140 l/s. Heads up to 105 m.

32 mm to 100 mm. Outputs up to 100 l/s. Heads up to 105 m.

40 mm to 100 mm. Outputs up to 60 l/s. Heads up to 65m.

LLC

Turbostream GH, GL, GR, GT

LLC

Unistream

Eurostream

Instream

Horizontal, Vertical Open Shaft, Vertical Direct Mounted Electric Motor or Horizontal Electric Motor or Engine Driven. Hi res, vDin etc.

150 mm to 700 mm. Outputs to 2500 l/s. Heads up to 275m.

Hydrostream

Thrustream

Configurations

Discharge and Performance

SPP Model

CONVERSION FACTORS

Pump Type

PRODUCT / APPLICATION CHARTS

SECTION 29/30

Section 30

101

102

3 Contents 4

Vertical Direct Mounted or Open Shaft Electric Motor Driven.

Vertical Direct Mounted or Vertical Open Shaft, Electric or Engine Driven. In-Line and Elbow Horizontal Integral Electric Motor Drive. (Custom designs available). Acoustic canopy on road tow or site trailer or skid type chassis

75 mm to 200 mm. Outputs to 100 l/s. Heads up to 60 m. 200 mm to 1100 mm. Outputs up to 4000 l/s. Heads up to 100m. 50 mm to 250 mm. Outputs up to 220 l/s. Heads up to 30 m. 50 – 400mm. Outputs up to 700 l/s. Heads up to 160m 75 mm to 250 mm. Outputs up to 250 l/s. Heads up to 48 m. Up to 100 mm. Outputs up to 20 l/s.

Aquastream

Freeway

Freeway LLC

Autoprime

Stereo / Disintegrator Solids Cutting EQ/EV Solids Diverter

Transformer Oil Pumps

Contractors Pumps

Dry Well Solids Handling Packaged

Horizontal and Vertical Open Shaft. Electric Motor Drive. Tank packages. Electric Motor Drive.

Horizontal or Vertical Electric Motor or Engine Driven.

200 mm to 650 mm. Outputs up to 1800 l/s. Heads up to 28 m.

Dry Well Solids Handling

Configurations

Discharge and Performance

SPP Model

Pump Type









Raw sludge

SECTION 30

Unscreened Sewage



Digested sludge



Activated sludge



Storm water





Screened sewage



• • •

• •

Water intake











Boosting





Town water supply



Reservoir pumping





Ground water extraction



• Unistream



• Eurostream

Raw water lift





• Freeway

Service water





CONVERSION FACTORS

Effluent



Sump pumping



Drainage

• • •







Hydrostream

LLC Split Case

Fountains

Thrustream



Fish farming



• •

• •



Sand filter washing





Swimming pools





Sprinkler irrigation





Flood irrigation

3 Contents 4

Turbine

LLC Vertical

Distintegrator

Stereo

Diverter

SPP Pump Type:

ENVIRONMENTAL SERVICES: Water Supply Water Treatment Sewage Treatment Drainage Agriculture Forestry Contracting

APPLICATIONS

103

• •



• • •



• •







Ballast/deballast



• •

Washdown



• •

Utility/service water



Crude oil shipping



Injection water booster





Drilling water







Cooling water





Sea water lift



• •









• •

Transformer oil cooling



• •

Bottle washing



• •

Cargo handling



Pipeline boosting



Tank farm/fuel transfer



Spray point





Oil slops









Unistream

Eurostream

Process liquids





Moulding machine cooling





Bearing cooling



• •









LLC Split Case

Hydrostream



Robot cooling



• • •

Process waste



Industrial stock



Paper stock





Raw juices





Fish farming





Thyristor cooling

104

Turbostream

Transformer Oil

Aquastream

Freeway

Turbine

Thrustream

3 Contents 4

LLC Vertical

SPP Pump Type:

INDUSTRIAL SERVICES: Power Food Paper Sugar Brweing Motor Process Chemical Steel Platics Onshore/Offshore Oild Industry

APPLICATIONS



• •

• •



• •

• •



• • •



• •

• •

• •

• • • •





Unistream

Eurostream

Instream

• •

Sump pumping





• •

Turbostream

Water supply

Thustream



Air washer circulation





Cooling tower circulation



Chilled water circulation



Cold water boosting



Boosted systems





Condensate return



Hot water circulation



• • • •

Fire fighting marine







• • • •



• •

Fire fighting stationary





Fire jockey

CONVERSION FACTORS

Hose-reel systems



• •

Fire monitor





Hydrant systems



Foam pumping

SECTION 30

Sprinkler systems

3 Contents 4

Multistream

Drive

Overhead Belt

SPP Pump Type:

Hospital services

Buliding services

Hazard protection

Fire protection

Offshore/onshore

SERVICES

MECHANICAL

FIRE AND

APPLICATIONS

105

Notes

106

3 Contents 4

Notes

3 Contents 4

107

Notes

108

3 Contents 4

3 Contents 4

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF