D ata A An n al ysi s U si n g SPSS D r. A bdul l ah Al A l -S -Swidi widi Othman Oth man Yeop A bd bdu u l l ah Gr ad adu u ate Sch oo ooll of B u si n ess, UU U U M
Tomorrow PL S Path M odel i n g Workshop
Res Re sear ch Pr oce oces ss PO
LR
Problem Statement
D&C
TF
Hypothesis
Findings
Research Design
Data Qua uall i ty ! !
Op e ra ratio tio n a l Defin De fin ition Operationally defining a concept is basically to render
that concept measurable. This is achieved by looking at the behavioral dimensions, facets or properties denoted by the concept. Measures for many concepts has already been developed by researchers. Eg. Job satisfaction, Organizational Culture, …etc. Researchers are advised to note the measures used to measure a construct of interest when conducting the literature review.
I s th the er e a dif di f f er en ce be bett we wee en T h e Co Con n cept and an d Th T h e Construct???
Variable A variable is something that can be observed and
measured. Examples: Age, Exam score Both of the Age and Exam score are well
defined and measurable.
T ype pes s of V ar arii ab abll es There are four main types of variables: Independent variable Dependent variable Moderating variable Mediating (Intervening) variable
Mea Me a s u rem e n t Sc S c a le The operational definition of a construct is the
way through which this construct is going to be measured. There are four types of measurement scales, or called sometime the level of the data: Nominal Ordinal Interval Ratio
12
Que Qu esti on onn n ai airr es an and d M an anag age eme men n t Research Much of the data in management and social
science research is gathered using questionnaires or interviews. The validity of the results depends on the quality of these instruments.
13
Remember!!!!! Good questionnaires are difficult to construct; bad questionnaires are difficult to analyze.
Reff l ecti ve Con Re Cons str u ct OR F or ma mati tiv ve Co Con n str u ct
A f te terr col l ecti tin n g my data data what wh at I h ave t o do???
I h av ave e col olll ecte ted d my datt a, So what? da wh at?
A r e you r ead ady y wi with th your stati tatis sti cal k n owl owle edge to go f or da data ta anal an alys ysii s???
I don’t like Statistics!!!! Statistics!!!!
W h at to t o do to l ear n Statistics?
B e D ete terr mi min n ed! ! !
H ave A Str tra ate teg gi c Go Goa al ! ! ! !
Learn!!!
B e Patie tient! nt! ! ! !
D ata Sc Scr een i n g Cle ean i n g D ata Cl ong g da data ta en en tr y Wr on
Data H and ndll i ng M i ssi ng Data MCAR M A R NMAR
Outliers
Outlii er s U n i var i ate Outl tiv var i ate Outl utlii er s M ul ti
Normality
mall i ty U ni var i ate N or ma tiva ar i ate N or ma mall i ty M ul tiv
T h e Two M ai ain n Ste teps ps i n D ata A n al alys ysii s F ir st : The Validity and Reliability of the Measurement Model
Pill ot Stu Pi tudy dy To ens ensu u r e th the e vali dity and r el i ab abii l i ty of of th the e i n str tru u me men n t u sed, Pil Pi l ot Stu Study dy is i s h i ghl y re r eco comme mmen n de ded. d. I t i s als al so use used to miti mi ti gate gate th the e ef f ect of Common M eth thod od Var Varii ance and othe oth er i ssu es r el ated ated to the th e ques questi onnai onn airr e des desi gn.
T h e Two M ai ain n Ste teps ps i n D ata A n al alys ysii s Second : Hypothesi Hypothesiss Testing (Structural Model)
Stati sti ca call Test A ppr pproac oach h es
Parr ame Pa ametr tr i c Stati tatis sti cs
N on-par on-parame ametr tr i c Stati Statis sti tic cs
T h e Re Rell ati ation ons sh i p betwe betwee en Two Var Varii ab abll es
Corr r el ati tio on A n al ysi s Co
T h e ef f ect of a se set of var arii ab abll es on oth the er var i abl e tip pl e L i n ear Re Reg gr essi on M u l ti x1
x2
x3
y
Remember!!!
T o Run Ru n Re Regr gre essi on A n al aly ysi s Example
Parr ame Pa ametr tr i c Stati tatis sti tic cs N on -Pa -Parr ame metr tr i c Stati tatis sti tic cs
I n Summ Summa ar y T t est A N OVA Tes Test
Val i di ty ty.. F actor A n al ysi s, Va Cronbach’s A l pha, I nte nterr nal
consistency Re Regr gre essi on A n al alys ysii s H i er ar arc ch i cal Re Regr gre essi on A An n al ysi s
Seco con n d Gen Gen er ati ation on Stat tatii sti cal Modeling Path th A n al ysi s Pa x1
x2
x3
M
y
Str tru u ctur al E quati uatio ons M odel i ng 1 e4
EP1 1
e3
e17
EP2
EP
1 e2
EP3
JS1
1
e19
JS2
e20
e21
1
1
1
JS3
1
JS4
JS5
1
1 e1
e18
1
e24
EP4
1
JS
1 1
SI 1
e 13 1
1
SI 2 e22
SI
e 14 1
SI 3
e 15 1
e23 1
OC 1 e8
1
AC1 1
e7
AC2
AC
1 e6
AC3
OC2
1
1
1 e12
1 e5
OC1
AC4
e11
OC3 1 e10
OC4 1 e9
SI 4
e 16
SO!!! Whe Wh en Sh oul ould d I l ear arn n abou abou t Stati Statis sti tic cal Modeling???
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.