Dasar Teknik Elektro 2

October 2, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Dasar Teknik Elektro 2...

Description

 

Dasar Dasar Teknik Teknik Elekt Elektro ro

EL.112 (3 sks) Enjang A.Juanda/ Lukmanul Hakim

 

Silabus Mata Kuliah Secara garis besar disajikan: 1. Peng Pengantar antar T Teknik eknik Elek Elektro. tro. 2. Dasar-das Dasar-dasar ar rrangka angkaian ian listri listrik. k. 3. Resp Respon onkondisi ran rangkaia gkaian n bola bolak-bali k-balikk pad padaa steady state. 4. Pe Penga nganta ntarr sys system tem.. 5. Das Dasar ar elektr elektroni onika. ka. 6. Dasa Dasarr komp komponen onen elek elektroni tronika ka semikonduktor. 7. Peng Pengantar antar anali analisa sa jari jaringan. ngan. 8. Dasar Dasar el elektro ektronika nika digital digital & mikroprosesor. 9. Pe Peng ngua uatt OPOP-Am Amp. p.

 

Tujuan Setelah selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan dasar teknik elektro   d a n sedapat mungkin mempraktekkan bagianbagian yang praktisnya tentang dasar  t e k n i k e l e k t r o .  Evaluasi - Kehadiran - Tugas Presentasi dan diskusi - Makalah - UTS - UAS

 

Rincian Bahan I). Membahas silabus perkuliahan dan mengakomodasikan berbagai masukan dari mahasiswa untuk memberi kemungkinan revisi terhadap pokok bahasan yang dianggap tidak penting dan memasukkan pokok bahasan yang dianggap penting. Sesuai dengan apa yang dikemukakan dalam silabus, pada pertemuan ini dikemukakan pula tujuan, ruang lingkup, prosedur  perkuliahan, penjelasan tentang tugas yang harus dilakukan mahasiswa, ujian yang harus diikuti termasuk jenis soal dan cara menyelesaikan/ menjawab pertanyaan, dan sumber-sumber. sumber-sumber. Terakhir, menyampaikan uraian pendahuluan tentang DasarTeknik Elektro/ Pengantar Teknik Elektro. II). Pengertian dan definisi-definisi yang terkait dengan dasar  teknik elektro. III). Rangkaian-rangkaian listrik dasar: DC dan sistem DC. IV). Rangkaian-rangkaian listrik dasar: AC dan sistem AC. V). Pengertian sistem, piranti, komponen dan kaitan satu sama lain dalam teknik elektro. VI). Dasar elektronika VII). Dasar semikonduktor dan komponen semikonduktor 

VIII). UTS.  

Lanjutan Rincian

IX). Pengenalan pesawat-pesawa pesawat-pesawatt elektronika X). Pengantar analisa jaringan XI). Dasar-dasar teknik dijital XII). Komponen-komponen Komponen-komponen dijital dan dasar-dasar analisis rangkaian dijital XIII). Dasar-dasar rangkaian dijital XIV). Sejarah dan dasar teknik mikroprosesor  mikroprosesor  XV). Dasar teknik mikroprosesor dan pemrogramannya pemrogramannya XVI). Dasar penguat Op-Amp XVII). UAS

 

Daftar Pustaka Sumber Utama:& Richard C.Dorf: Ralph J.Smith C i r cu i ts , D evi e vi c e s, a n d S ys te m s  ,

John Wiley & Sons,1995. F o u n d a ttii o n o f   J.R.Cogdell: E l ectr e ctr i c a l E n g i n e e err i n g   , Prentice Hall,1995. David E.Johnson, Johny

R.Johnson, : E le l e c t r i c C iirr cJohn u i t A nL.Hilburn al y s i s   , Prentice Hall.

 

Referensi/Pengayaan Referensi: 1. P.H .H.. S Sm mal ale, e, , Te llee c o m m u n i c a t i o n S y s t e m I ,  Pitman Publishing Limited, London, 1978. 2. R.M .Maargunadi, P en en g a n t a r U m u m E l e k t r o t e k n i k   , P.T.Dian Rakyat, Jakarta, 1986. 3. All llen en,, Mot Motte ters rshe head ad,, E l e c t r o n i c D e v i c e s an an d C i r c u i t s , a n i n t r o d u c t i o n  , Prentice-Hall of India, New Delhi, 1976. 4. Enja Enjang ng A. Jua Juanda nda dan Ja Jaja ja K Kust ustija, ija, P en en g a n t a r E l e k t r o T e ek knik  , JPTEFPTK-IKIP, Bandung, 1994. 5. A.P .P.. Ma Malv lvin ino, o, E l ec ec t r o n i c s P r i c i p l e s   , Mc.Graw-Hill Mc.Graw -Hill Company Company,, London, 1985 6. Bri Brian an Moore Moore aand nd Joh John nD Dona onaghy ghy,, O p e r a t io , io n a l A m p l i f i e r C i r c u i t s   Heinemann, London, 1986. 7. Ar Archie chie W W.Culp,J .Culp,Jrr (T (Terjem erjemahan: ahan: Ir Ir.. Darwin Sitomp Sitompul ul M.Eng M.Eng), ), P r i n s i p -   p r i n s i p K o n v e r s i E n e rrg g i , Penerbit Erlangga, Jakarta, 1985. - Jurnal 1. IEEE, Telecommunication Transactions. - Internet Dosen dapat dihubungi melalui: Alamat rumah dan telpon: Jl. Suryalaya IX No.31 Bandung 40265T.7310350 Alamatt e-mail: [email protected] Alama

 

 Apperse  Appersepsi psi

 

 ARUS SEARAH (DC) (Arus dan Tegangan Listrik)

 

 Arus Listrik 19 coulomb Q = 1.6 X 10  – 19

i = dq/dt 1 A = 1 coulomb/det Tipe Ti pe Besar Arus: Stasiun Pembangkit : 1000 100 0 A Starter Mobil

: 100 A

Lampu Dop

: 1A

Radio Mini

: 10 mA

Jam Tangan

: 1 mikroA

 

DC Circuits: Review • Current: The rate of flow of electric charge past a point in a circuit  – Measured in amperes (A)  – 1 A = 1 C/s = 6.25  1018 electrons per second  – Current direction taken as direction positive direction positive charges flow  –  Analogou  Analogous s to volume flow rate (volume/unit time) time) of water  in a pipe

• Voltage: Electrical potential energy per unit charge  – Measured in volts (V): 1 V = 1 J/C  – Ground  Ground is is the 0 V reference point  point   –  Analogou  Analogous s to water pressure

• Resistance: Restriction to charge flow  – Measured in ohms (W)  –  Analogou  Analogous s to obstacles that restrict water water flow

 

 A Simple DC Circuit V 



• Resistors have a constant resistance over a broad range of voltages and currents  – Then V    IR law)   IR with  R = constant (Ohm’s law)  • Power = rate energy is delivered to the resistor = 2 rate energy is dissipated by the  P    IV    I 2 R  V  resistor   R

 

Hukum Ohm

Bahwa I V (hub. linier) Ditulis: V = I R  Atau

: R = V/I

 

Bahan Non-Linier  i

0

v

 

Power (Daya): energi yang diberikan pada elektron tiap satuan waktu

P = v dq/dt =vI 1 watt = 1 volt x 1 A Contoh Daya : Generator : 300 MW Radiator

: 1000 W

Lampu Senter : 6 W Jam Tangan : 10 mikroW

 

Ideal Voltage and Current Sources •  An ideal voltage source is a source of voltage with zero internal resistance (a perfect battery)  – Supply the same voltage regardless of the amount of  current drawn from it

•  An ideal current source a constant regardless of what load supplies it is connected to current  – Has infinite internal resistance  – Transistors can be represented by ideal current sources

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)    

Ideal Voltage and Current Sources • Load resistance  R L connected to terminals of a real current source:  – Larger current is through the smaller resistance

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)  

• Current sources can always be converted to voltage sources  – Terminals A’B’ A’B’ act electrically exactly like terminals AB

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)  

 

Contoh: Berapa arus yang mengalir pada resistor???

a. VA = 6 V VB = 2 V VAB = 4 V I=4A  b. …………… 

 

Komponen Rangkaian DC a) baterai, b) resistor dan c) kabel penghubung

Resistor standar: Toleransi 10% 10,12,15,18,22,27,33,39, 47,56,68,dan 82

Short circuit (hubung singkat: V =0 (R = 0) Open Circuit (hubung terbuka): I = 0 (R = ~)

 

Hukum Kirchhoff  I.

Total arus pada suatu titik  cabang = 0 I=0

II.

Total penur penurunan unan tegangan pada rangkaian tertutup = 0 V=0

 

Resistor Seri dan Paralel Seri:

masing-masing dilewati arus

yang sama RT = R1 +R2 +R3

Paralel: masing-masing mendapat tegangan yang sama 1/RT = 1/R1 + 1/R2 + 1/R3

 

Penyederhanaan Penyederhana an Rangkaian

 

Bagaimana Bagaiman a resistansi tergantung pada dimensi R = l/A (tergantung dimensi)

Seri?

Paralel?

 

Pembagi Potensial (Potential Divider)

 

Voltage Divider  • Voltage divider: Circuit that produces a predictable fraction of the input voltage as the output voltage • Schematic:  R   1

(Student Manual for The Art of  Electronics,, Hayes and Horowitz, Electronics 2nd Ed.) Ed.)  

 R2 

V in

• Current (same everywhere) is:  I    R  R 1 2 • Output voltage (V out) is then given by: V out

  IR2 

 R2

V in

 R1  R2  

Voltage Divider  • Easier way to calculate

V out:

Notice the voltage drops

are proportional to the resistances  R1 

 – For example, if  R  R1 = R2 then V out = V in / 2   –  Another example: example: If  R  R1 = 4 W and R2 = 6 W, then V  = (0.6)V  out

 R2 

in

• No Now wa att ttac ach h a ““lo load ad”” res resis isto tor  r  R  R L across the output:  R1 

 R2 

 R1 

 R L 

=

 R2    R   R L 

 – You can model  R1 and R L as one resistor (parallel

combination), then calculate

V out

for this new voltage divider 

 

Tugas : Tentukan besarnya v3 !

 

Pembagi tegangan terbebani

 

Penyederhanaan Penyederhana an Rangkaian

 

Voltage Division v1

 i s R1

v2

and

 i s R2

Applying KVL to the loop, v s

 v1  v2  i s ( R1  R2 ) 

i s

and



v s  R1   R2

Combining these yields the basic voltage division formula:



v1

 v s

 R1  R1   R2

v2

 v s

 R2  R1   R2

 

Voltage Division (cont.) Using the derived equations with the indicated values, v1

v2

 10 V  10 V

8 k W  8.00 V 8 k W  2 k W 2 k W

 2.00 V

8 k W  2 k W Design Note: Voltage division only applies when both resistors are carrying the same current.

 

Teorema Thevenin Jika suatu kumpulan rangkaian sumber potensial dan resistor  dihubungkan dengan dua terminal keluaran, maka rangkaian tersebut dapat digantikan dengan sebuah rangkaian seri dari sebuah sumber potensial rangkaian terbuka dan sebuah resistor 

 

Thevenin and Norton Equivalent Circuits

 

Find the Thevenin Equivalent Voltage

Problem: Find the Thevenin

equivalent voltage at the output.

Solution: •

Known Information topologyand andGiven Data: Circuit values in figure.



Unknowns: Thevenin equivalent voltage v TH.



TH  Approach: Voltage source v TH

is defined as the output voltage with no load.

Assumptions: None. • Analysis: Next slide…  slide… 



 

Thevenin’s Theorem  Theorem  • Thevenin’s Theore rem m: Any combination of voltage sources and resistors with 2 terminals is electrically equivalent to an ideal voltage source in series with a single resistor   RTh 

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)  

V Th 

 – Terminals A’B’ A’B’ electrica electrically lly equival equivalent ent to terminals AB  AB 

• Thevenin equivalent

V Th

V Th  V  (open circuit )

and RTh given by:  RTh

(output voltage with no load attached)  I (short



V  (open circuit )  I  (short circuit )

circuit) = current when the output is

shorted directly to ground   

Thevenin’s Theorem  Theorem  • The Theven venin’ in’s s ttheo heorem rem app applie lied d tto o a vol voltag tage ed divi ivider der::   R1 

 R2 

V Th

 V out   IR2 

 RTh



 I (short circuit )  V in  R1

 R2 V  in  R1  R2

V (open circuit )

V Th



 I (short circuit )

 I (short circuit )



 R1 R2 1

 R



 R2

• Thevenin equivalent circuit:  RTh 

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)   V Th 

(a load resistance  R L  can then be attached between terminals A’ and B’, in series with  RTh)

 R2   – Note that RTh = R1    R

• Imagine mentally shorting out the voltage source • Then R1 is in parallel with R2 

• Only works for constant (independent) voltage sources (batteries)  

Contoh: Dengan menggunakan teorema Thevenin, hitung besarnya arus I 2  pada rangkaian di bawah ini

 

Vo/c = 5,455 V RP = 5,455 k Ohm

I2 = 0,397 mA

Menurut Thevenin

 

Example Problem #1.9

(The Art of Electronics, Electronics, Horowitz and Hill, 2nd Ed.) Ed.)  

Solution (details given in class): (a) 15 V (b) 10 V (c)

V Th

= 15 V,  RTh = 5k

(d) 10 V

(e)

 P   L

= 0.01 W, P  R2 = 0.01 W, P  R1 = 0.04 W

 

Example Problem #1.7 Solution (details given in class): 1 –  –V V source: 0.667 V 10k –  –10k 10k voltage divider: 0.4 V

 

THÉVENIN EQUIVALENT CIRCUITS 

 

The Thévenin voltage is equal to the open-circuit phasor voltage of the original circuit.  

Vt   Voc We can find the Thévenin impedance by zeroing the independent sources and determining the impedance looking into the circuit terminals. 

 

The Thévenin impedance equals the open-circuit voltage divided by the short-circuit current.

Voc

 Z t  I sc

Vt  

I n  I sc

I sc

 

CURRENT DEVIDER (Pembagi Arus) io = iI (G2/G1+G2)

 

Current Division (cont.) Using the derived equations with the indicated values, i1

 5 ma  5 ma

i 2

3 k W  3.00 mA 2 k W  3 k W 2 k W

 2.00 mA

2 k W  3 k W

Design Note: Current division only applies when the same voltage appears across both resistors.

 

Current Division i s

 i1  i2

where i1 

v s  R1

and

i2



v s  R2

Combining and solving for v , s

v s

 i s

1

 R1 R2

 i s   i s R1 || R2 1 1  R1   R2  

 R1

 R2

Combining these yields the basic current division formula: i1

 i s

 R2  R1   R2

i 2  i s

 R1  R1  R 2

and  

Norton’s Theorem  Theorem  • Norton’s Theorem: Any combination of voltage sources and resistors with 2 terminals is electrically equivalent to an ideal current source in parallel with a single resistor   I   N  

(Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)  

 R N  

 – Terminals A’B’ A’B’ electrica electrically lly equival equivalent ent to terminals AB  AB 

• Norton equivalent  I  N  and  R N  given by:  R N 

  RTh 

V  (open circuit )  I  (short circuit )

(same as Thevenin equivalent resistance)

 I  N 



V  (open circuit )  R N 

 

Norton’s Theorem  Theorem  • No Nort rton on’s ’s the theor orem em ap appl plie ied d to a volt voltag age e divi divide der: r:    R1 

 R2 

 I  N 

 R N 





V in  R1 V (open circuit )



 R1 R2  R1  R2

 I  N 

• Norton equivalent circuit: (Introductory Electronics, Electronics, Simpson, 2nd Ed.) Ed.)    N    I 

 R N  

(a load resistance  R L  can then be attached between terminals A’ and B’, in parallel  in parallel   with  R N )

 – The Norton equivalent circuit is just as good as the

Thevenin equivalent circuit, and vice versa

 

TRANSMISI LISTRIK

 

Konstruksi Transformator 

 

Persamaan gelombang sinus: y 

a  s in ( t    )

2 gelombang dengan amplitudo berbeda tetapi berfase awal sama

 



4 s in t 



2 s in t 

 

2 gelombang dengan amplitudo sama tetapi berfase awal berbeda





4 s in t 

4 s in ( t    / 4)

 

2 gelombang dengan amplitudo sama tetapi berfase awal berbeda

y 1

4 s in ( t    / 2)

 

y 2

4 s in ( t    / 2)

Bagaimana jika y1 + y2 ?  

Superposisi dua gelombang

Diagram Phasor:

 

Rangkaian resistor murni

v   V  s in t  i   I  s in t  i dan v sefase

 

Rangkaian Kapasitor Murni

v  V  s in  t  V  c os t  i  Xcc  X  Xcc  1 /  C   X i mendahului v sebesar 90o

 

Rangkaian Induktor Murni

i   I  s in  t  v   I  X  XL L cos  t   XL  X L    L o

v mendahului i sebesar 90

 

Rangkaian RC untuk Tapis Lolos Rendah vi = vR + vC

Sudut fase diambil dari input ke output  

Perbandingan keluaran dan masukan:

V o  / V i 

1 / 1  ( R  C )

untuk  o  t g 

(

2

1 / RC  ( saat  X C   R ) /  o  )

Bagaimana V  o  / V  i  untuk   o 

i )



i i )



i i i )

 o 



V o  / V i 

1/ 1 (

/  o  )

2

)





 

Grafik vo/vi terhadap frekuensi (di kertas semilog: linier-logaritmik

 

Frekuensi 3 dB Besarnya Penguatan (Gain) biasa dinyatakan dengan dB, dengan definisi:

dB  20 log10 V o / V i 

Untuk :  o 

1 / 2  saat  X C 

V  o  / V  i 

diperoleh  Gain  o 



3dB 



R 

atau  

disebut  frekuensi  3dB 

 

Rangkaian RC untuk Tapis Lolos Tinggi vi = vR + vC

Sudut fase diambil dari input ke output

 

Perbandingan keluaran dan masukan:

V o  / V i 

1 / 1  (1 / R  C ) 2

Bagaimana V  o  / V  i  untuk 

untuk  o  

 



1 / RC  ( saat  X C   R )

 o 

i )



i i )



 o 

t g 

( V o  / V i 

/ ) 1/ 1 (

i i i ) o 

/ )



 o 

2

 

Grafik vo/vi terhadap frekuensi

 

Steady-State Sinusoidal A Analysis nalysis

Sinusoidal Currents and Voltages Phasors Complex Impedances Circuit Analysis with Phasors&Complex Impedances Power in AC Circuits Thevenin and Norton Equivalent Circuits Balanced Three-Phase Circuits

 

SINUSOIDAL CURRENTS AND VOLTAGES  V m is the peak value ω is the angular frequency in radians per second θ is θ  is the phase angle T is T  is the period 

 

Frequency

 f   

1 T 

Angular frequency

  

2  T 

   2  f  

s in  z   cos z   90



 

Root-Mean-Square Root-Mean-Squa re Values  V r m s 

 P a vg

1







1

2 0

2 rm s

 V   R

v t dt   I rm s 

T  2

T  0 i t dt 



 P avg   I   R 2 rm s

 

RMS Value ofV am Sinusoid  V rm s



2

The rms value for a sinusoid is the peak value divided by the square root of two. This is not true for other periodic waveforms such as square waves or  triangular waves. 

 

Phasor Definition  Time function :   v1 t   V 1 cosωt   θ 1  Phasor :   V1  V 1θ 1

 

Adding Sinusoids Using Phasors  Step 1: Determine the phasor for each term.  Step 2: Add the phasors using complex arithmetic. Step 3: Convert the sum to polar form.  Step 4: Write the result as a time function.  

 

Using Phasors to Add   20 cos  t   45 v1 t Sinusoids





v 2 t   10 cos  t   60

V1  20   45









V2

10

30

 

Vs



V1





20   45

V2

 14 .14 



 10  

 j14 .14

30



 8.660 



23 .06   j19 .14



29 .97   39 .7

 j5



v s t   29 .97 cos  t   39 .7



 

Sinusoids can be visualized as the realaxis projection of vectors rotating in the complex plane. The phasor for a sinusoid is a snapshot of the corresponding rotating vector at t = 0.

 

Phase Relationships  To determine determine phase relationships from a phasor diagram, consider the phasors to rotate at a counterclockwise. Then when standing fixed point, if V1 arrives first followed by V2  2  1 leads after a rotation of  of θ  θ , , we say that V V by θ  θ .. Alternatively Alternatively,, we could say say that V2 lags θ .. (Usually θ as V1 by θ  (Usually,, we take θ  as the smaller  angle between the two phasors.) 

 

To determine determine phase relationships relationships between sinusoids from their plots versus time, find the shortest time interval t   between positive  p peaks of the two waveforms. Then, the phase angle is θ = (t  p /T   /T )) × 360°. If the peak of v  of v 1(t ) occurs first, we say that v 1(t ) leads v 2(t ) or that v 2(t )  lags v 1(t ). ).  

 

COMPLEX IMPEDANCES  V L   j L  I L

 Z  L   j  L   L90

V L  Z  L I L



 

 VC 

Z C I C 

 Z C  1  1   90 C     j 1   C   j C   C 

V R  RI R



 

Kirchhoff’s Laws in Phasor 

Form  We can apply KVL directly to phasors. The sum of the phasor voltages equals zero for any closed path.  The sum of the phasor currents entering a node must equal the sum of the phasor  currents leaving. 

 

Circuit Analysis Using Phasors and Impedances  1. Replace the time descriptions of the voltage and current sources with the corresponding phasors. (All of the sources must have the same frequency.) 

 

2. Replace inductances by their complex =

L   jωL impedances Z   jωL..complex Replaceimpedances capacitances by their Z C  = 1 /(jωC)  /(jωC).. Resistances have impedances equal to their resistances. using any o off the techniques techniques 3. Analyze the circuit using studied earlier in Chapter 2, performing the calculations with complex arithmetic.

 

AC Power Calculations   P   V rm s I r m s cos   PF  co coss    

  v   i

Q  V r m s I rm s s in   

 

apparent po  pow wer  V rm s I rm s

 P   Q  V rm s I rm s  2

 P    I   R 2 rm s

Q

2 rm s

  I 

 X 

2

2

 P  

Q

2 Rr m s



 R 2 X r m s



 X 

 

 

 

Maximum Average Power  Transfer   If the load can take on any complex value, maximum power transfer is attained for a load impedance equal to the complex conjugate of  the Thévenin impedance.  If the load is required to be a pure resistance, maximum power transfer is attained for a load resistance equal to the

magnitude of the Thévenin impedance. 

 

BALANCED THREE-PHASE CIRCUITS  Much of the power used by business and industry is supplied by three-phase distribution systems. Plant engineers need to be familiar with three-phase power. 

 

Phase Sequence  Three-phase sources can have either  a positive or negative phase sequence. The direction of rotation of certain three-phase motors can be reversed by changing the phase sequence. 

 

Wye –Wye Connection 

Three-phase sources and loads can be connected either in a wye configuration or in a delta configuration.  The key to understanding the various threephase configurations is a careful examination of the wye– wye –wye circuit.

wye  wye circuit. 

 

 P a vg   p t   3V Y rm sI Lrm s cos  

Q3

V Y  I  L

2

s in     3V Y r m s I Lr m s s in   

 

 Z 



 3 Z 

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF