Dasar-Dasar Desain Komunikasi Visual (Modul 3)
July 25, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Dasar-Dasar Desain Komunikasi Visual (Modul 3)...
Description
6
6. G`nk G`nktg tgtf tfss Kfif R Rn nkyusuk _ncedfj
>.2 .2 `fk GGk`us k`ustry try 0.2 5 fpf cf cfgtfk gtfkkyf kyf 5
?
1. _frf _frfkf kf Rr Rrfs fsfr frfk fkf f ◅
Hfjfk
< Ie`ud Flfr `fk Qg`ne Putergfd
◅
Fdft
< Dfptep/Ceiputnr, J JR R, `fk Lfrgkmfk Gktnrknt
◅ ◅
In`gf Fpdgcfsg < ] ]jftssfpp jftssfpp , meemdn `rgvn, indflfj.g` Rrfsfrfkf < Dfh. Ceiputnr / Xufkm Cndfs
=. Cfrfctnr Cfrfctnr Rnsnrtf Rnsnrtf @g`gc/ @g`gc/Pfrmn Pfrmntt Rnsnrtf Rnsnrtf @g`gc ◅
Rnsnrtf `g`gc rnmudfr `nkmfk tgpgcfd uiui
:. Iftn Iftnrg rg Fl Flfr fr ◅
Rnrcnihfkmfk tnckedemg Gk`ustrg @nsfgk Ceiukgcfsg Qgsufd
◅
@nsfgk Ceiukgcfsg Qgsufd `fdfi Gk`ustrg 0.2 `fk seognty >.2
◅
Ceksnp Gk`ustrg Jglfu (Mrnnk Gk`ustry )
7. Dfkmcfj-dfkmcfj Dfkmcfj-dfkmcfj Cnmgftfk Rnihndflfrfk Cnmgftfk Rnihndflfrfk Cnmgftfk Rnrtfif (1 x 0> inkgt) Dfkmcfj
@nscrgpsg
]fctu
Rnihndflfrfk Rnk`fjudufk
Fdecfsg
6. Muru inihnrg inihnrg sfdfi, sfdfi, sndfk sndfklutky lutkyf f inkfkyfc inkfkyfcfk fk cfhfr pnsnrtf `g`gc 8. _fdfj _fdfj sftu sftu pnsnrtf pnsnrtf `g`gc `g`gc inigipg inigipgk k hnr`ef hnr`ef snhndui snhndui iniudfg pndflfrfk
82 inkgt
?. Muru inkmgkmf inkmgkmftcfk tcfk pnsnrtf pnsnrtf `g`gc `g`gc tn tnktfkm ktfkm preteced preteced cnsnjftfk `gifsf pfk`nig 0. Rnsnrtf Rnsnrtf `g`gc `g`gc `ghnrg `ghnrgcfk cfk cnsnipftf cnsnipftfk k uktu uktucc indfcuc indfcucfk fk dgtnrfsg dnwft hucu `fk gktnrknt. >. Muru inihnrgcf inihnrgcfk k fpnrsnpsg fpnrsnpsg tnrcfgt tnrcfgt iftnr iftnrgg yfkm yfkm fcfk
0
`gsfipfgcfk `gsfipfgcf k snrtf pnrtfkyffk pnifktgc 1. Muru inkyfipfgcfk inkyfipfgcfk tulufk tulufk pnihndflfrfk pnihndflfrfk yfkm fcfk Cnmgftfk Gktg
`gofpfg< 6. Rnsnrtf Rnsnrtf `g`gc `g`gc inkygif inkygifcc muru `fdfi `fdfi inihnr inihnrgcfk gcfk 8?2 inkgt pnklndfsfk tnktfkm Rnrcnihfkmfk Pnckedemg `fk Gsu-gsu tnrcgkg tnrcgkg `fdfi hg`fkm @CQ @CQ inkmmukfcfk vg`ne `fk RRP 8. Rnsnrtf Rnsnrtf `g`gc `g`gc hnrtfkyf hnrtfkyf tnrcfg tnrcfgtt pnifpfif pnifpfifrfk rfk yfkm yfkm `ghnrgcfk muru tnktfkm Rnrcnihfkmfk Pnckedemg `fk Gsu-gsu tnrcgkg `fdfi hg`fkm @CQ ?. Muru Muru inihnr inihnrgcf gcfk k lfwfh lfwfhfk fk tnrcfgt tnrcfgt pnrtfkyf pnrtfkyffk fk yfkm `gflucfk ednj Rnsnrtf `g`gc 0. Muru inihnrgcf inihnrgcfk k pnkumfsfk pnkumfsfk cn Rnsnrtf Rnsnrtf `g`gc `g`gc tnrcfgt `nkmfk iftnrg Rnrcnihfkmfk Pnckedemg `fk Gsu-gsu tnrcgkg `fdfi hg`fkm @CQ >. Rnsnrtf Rnsnrtf `g`gc `g`gc ink`gscusg ink`gscusgcfk cfk `nkmfk `nkmfk `nkmf `nkmfk k cndeipeckyf tnktfkm pnkumfsfk yfkm `ghnrgcfk tnktfkm Rnrcnihfkmfk `fk Gsu-gsu tnrcgkg `fdfi hg`fkm @CQ Pnckedemg indfdug suihnr-suihnr hndflfr yfkm su`fj `ghnrgcfk. 1. Rnsnrt Rnsnrtf f `g `g`g `gcc inipnr inipnrnsn nsnktf ktfsgc sgcfk fk tumfs tumfs yfkm su`fj su`fj `ghnrgcfk =. Rnsnrtf Rnsnrtf `g`gc `g`gc dfgk dfgk inkyfipfg inkyfipfgcfk cfk pnk`fpft pnk`fpft inkmn inkmnkfg kfg lfwfhfk yfkm `ghnrgcfk ednj tnifkkyf `nkmfk hfgc `fk tnrtgh
Cnmgftfk Rnkutup
6. Muru inkmf inkmflfc lfc pnsnrtf pnsnrtf `g`g `g`gcc indfcucfk indfcucfk rnadnc rnadncsg sg 82 inkgt tnrjf`fp cnmgftfk yfkm su`fj `gdfcsfkfcfk `fk `gtudgs `fdfi hucu oftftfk ifsgkm-ifsgkm. 8. Muru inihnrg inihnrgcfk cfk uipfk hfdgc hfdgc tnrjf`f tnrjf`fp p presns `fk jfsgd pnihndflfrfk. pnihndflfrfk. ?. Muru
inihn inihnrg rg
tgk`fc tgk`fc
dfklut dfklut
uktuc
pnrtni pnrtniufk ufk
>
sndfklutkyf. 0. _f _fdf dfj j sf sftu tu pnsn pnsnrt rtf f `g `g`g `gcc inkmfcjgrg pndflfrfk
inig inigip ipgk gk `ef `ef uktu uktucc
>. Muru
`nkmfk
inkutup
pndflfrfk
inkmuofpcfk
sfdfi.
Cnmgftfk cn`uf (1 x 0> i inkgt) nkgt) Dfkmcfj
@nscrgpsg
]fctu
Rnihndflfrfk Rnk`fjudufk
Fdecfsg
6. Muru inihn inihnrg rg sfdfi, sfdfi, sndfklut sndfklutkyf kyf inkfkyfcf inkfkyfcfk k cfhfr pnsnrtf `g`gc 8. _fdfj _fdfj sftu sftu pnsnrtf pnsnrtf `g`gc `g`gc inigipg inigipgk k hnr`ef hnr`ef snhndui snhndui iniudfg pndflfrfk ?. Rnsnrtf Rnsnrtf `g`gc `g`gc `ghnrg `ghnrgcfk cfk cnsnipftf cnsnipftfk k uktu uktucc indfcuc indfcucfk fk dgtnrfsg dnwft hucu tncs / nheec / gktnrknt. 0. Muru inihnrgcf inihnrgcfk k fpnrsnpsg fpnrsnpsg tnrcfgt tnrcfgt iftnr iftnrgg yfkm yfkm fcfk fcfk
82 inkgt
`gsfipfgcfk snrtf pnrtfkyffk pnifktgc `gsfipfgcfk >. Muru inkyfipfg inkyfipfgcfk cfk tulufk tulufk pnihndflf pnihndflfrfk rfk yfkm yfkm fcfk fcfk `gofpfg<
Cnmgftfk Gktg
6. Rnsnrtf Rnsnrtf `g`gc `g`gc inkygif inkygifcc muru `fdfi `fdfi inihnr inihnrgcfk gcfk 8?2 inkgt pnklndfsfk tnktfkm @nsfgk Ceiukgcfsg Qgsufd `fdfi Gk`ustrg Gk`us trg 0.2 `fk seognty seognty >.2 indfdug indfdug vg`ne vg`ne yeutuhn `fk RRP. 8. Rnsnrtf Rnsnrtf `g`gc `g`gc hnrtfkyf hnrtfkyf tnrcfg tnrcfgtt pnifpfif pnifpfifrfk rfk yfkm yfkm `ghnrgcf `ghn rgcfk k muru tnktfkm tnktfkm @nsfgk @nsfgk Ceiukgcfsg Ceiukgcfsg Qgsufd `fdfi Gk`ustrg 0.2 `fk seognty >.2 ?. Muru Muru inihnr inihnrgcf gcfk k lfwfh lfwfhfk fk tnrcfgt tnrcfgt pnrtfkyf pnrtfkyffk fk yfkm `gflucfk ednj Rnsnrtf `g`gc 0. Muru inihnrgcfk inihnrgcfk pnkumfsfk pnkumfsfk cn Rnsnrtf Rnsnrtf `g`gc tnrcfgt tnrcfgt `nkmfk @nsfgk Ceiukgcfsg Qgsufd `fdfi Gk`ustrg 0.2 `fk seognty >.2
1
>. Rnsnrtf `g` `g`gc ink ink`gscusgcfk `nk `nkmfk `nk `nkmfk cndeipeckyf tnktfkm pnkumfsfk yfkm `ghnrgcfk tnktfkm @nsfgk Ceiukgcfsg Qgsufd `fdfi Gk`ustrg 0.2 `fk seognty >.2 indfdug suihnr-suihnr hndflfr yfkm su`fj `ghnrgcfk. 1. Rnsnrtf `g `g`gc in inipnrnsnkt snktf fsgcfk cfk tu tumfs yf yfkm su`fj `ghnrgcfk =. Rnsnrtf `g`gc dfgk inkyf kyfipfgcfk pnk`fpft inkmnkfg lfwfhfk yfkm `ghnrgcfk ednj tnifkkyf `nkmfk hfgc `fk tnrtgh
Cnmgftfk Rnkutup
6. Muru inkmfl inkmflfc fc pnsnrtf pnsnrtf `g`gc `g`gc indfcucfk indfcucfk rnadncsg rnadncsg 82 inkgt tnrjf`fp cnmgftfk yfkm su`fj `gdfcsfkfcfk `fk `gtudgs `fdfi hucu oftftfk ifsgkm-ifsgkm. 8. Muru inihnrg inihnrgcfk cfk uipfk hfdgc hfdgc tnrjf`f tnrjf`fp p presns `fk jfsgd pnihndflfrfk. pnihndflfrfk. ?. Muru inihnr inihnrgg tgk`fc tgk`fc dfklut dfklut uktuc pnrtni pnrtniufk ufk sndfklutkyf. 0. _fdfj _fdfj sftu pnsnrtf pnsnrtf `g`gc `g`gc inigip inigipgk gk `ef uktuc uktuc inkmfcjgrg pndflfrfk >. Muru
inkutup inkutup
pndflf pndflfrfk rfk
`nkmfk `nkmfk
inkmuofpc inkmuofpcfk fk
sfdfi.
Cnmgftfk cntgmf (1 x 0> i inkgt) nkgt) Dfkmcfj Rnihndflfrfk
@nscrgpsg
Fdecfsg ]fctu
Rnk`fjudufk
6. Muru inihn inihnrg rg sfdfi, sfdfi, sndfklut sndfklutkyf kyf inkfkyf inkfkyfcfk cfk cfhfr cfhfr pnsnrtf `g`gc 8. _fdfj _fdfj sftu sftu pnsnrtf pnsnrtf `g`gc `g`gc inigipg inigipgk k hnr`ef hnr`ef snhndui snhndui iniudfg pndflfrfk
82 inkgt
?. Rnsnrtf Rnsnrtf `g`gc `g`gc `ghnrgcf `ghnrgcfk k cnsnipf cnsnipftfk tfk uktuc uktuc indfcucfk indfcucfk
=
dgtnrfsg dnwft hucu tncs / nheec `fk gktnrknt. 0. Muru inihnrgc inihnrgcfk fk fpnrsnp fpnrsnpsg sg tnrcfg tnrcfgtt iftnrg iftnrg yfkm yfkm fcfk `gsfipfgcfk `gsfipfgcf k snrtf pnrtfkyffk pnifktgc >. Muru inkyfipfg inkyfipfgcfk cfk tulufk tulufk pnihndflf pnihndflfrfk rfk yfkm yfkm fcfk fcfk `gofpfg< Cnmgftfk Gktg
Rnsnrtf `g`gc inkygifc muru `fdfi inihnrgcfk 8?2 inkgt pnklndfsfk iftnrg tnktfkm Ceksnp Gk`ustrg Jglfu (Mrnnk Gk`ustry) dnwft vg`ne `fk RRP 8. Rnsn Rnsnrtf rtf `g`gc `g`gc hnrtfkyf hnrtfkyf tnrcfgt tnrcfgt pnifpfif pnifpfifrfk rfk yfkm `ghnrgcfk muru tnktfkm Ceksnp Gk`ustrg Jglfu (Mrnnk Gk`ustry) ?. Muru inihnrgcfk lfwfhfk tnrcfgt pnrtfkyffk yfkm `gflucfk ednj Rnsnrtf `g`gc
6.
Muru inihnrgcfk pnkumfsfk cn Rnsnrtf `g`gc tnrcfgt `nkmfk Ceksnp Gk`ustrg Jglfu (Mrnnk Gk`ustry) >. Rnsnrtf `g`gc ink`gscusgcfk `nkmfk `nkmfk cndeipeckyf tnktfkm pnkumfsfk yfkm `ghnrgcfk tnktfkm Ceksnp Gk`ustrg Jglfu (Mrnnk Gk`ustry ) indfdug suihnr-suihnr hndflfr yfkm su`fj `ghnrgcfk. 1. Rnsnrtf `g`gc inipnrnsnktfsgcfk tumfs yfkm su`fj `ghnrgcfk =. Rnsnrtf `g`gc dfgk inkyfipfgcfk pnk`fpft inkmnkfg lfwfhfk yfkm `ghnrgcfk ednj tnifkkyf 0.
`nkmfk hfgc `fk tnrtgh
Cnmgftfk Rnkutup
6. Muru inkmfl inkmflfc fc pnsnrtf pnsnrtf `g`gc indfcucf indfcucfk k rnadncsg rnadncsg tnrjf`fp cnmgftfk yfkm su`fj `gdfcsfkfcfk `fk `gtudgs `fdfi hucu oftftfk ifsgkm-ifsgkm.
82 inkgt
8. Muru inihnrg inihnrgcfk cfk uipfk uipfk hfdgc tnrjf`f tnrjf`fp p presns `fk jfsgd pnihndflfrfk. pnihndflfrfk.
:
?. Muru inihnrg tgk`fc dfklut uktuc pnrtniufk sndfklutkyf. 0. _f _fdf dfj j sf sftu tu pnsn pnsnrt rtf f `g `g`g `gcc inig inigip ipgk gk `ef `ef uktu uktucc inkmfcjgrg pndflfrfk >. Muru
inkutup
pndflfrfk
`nkmfk
inkmuofpcfk
sfdfi.
62.. Fsns 62 Fsnsi ink f. _gcfp (Rreagd (Rreagd Rndflf Rndflfrr Rfkofsg Rfkofsgdf) df) hnrupf lurkfd ssgcfp gcfp h. Rnraerif Rnraerif `fdfi hnk hnktuc tuc prnsn prnsnktf ktfsg sg o. Pnrt Pnrtudgs udgs `fdf `fdfi i hn hnktuc ktuc nssf nssfyy
66. Xnadn Xnadncsg csg Mur Muru u 6. fctgagtfs Inkuruttndfj fk`f fk`f,snsufg , fpfcfj inte`n e`n yfkm `gm `gmukfcfk ukfcfk uktu uktucc inkofpfg tu tulufk lufk 5 int 8. Inkurut fk`f, fp fpfcfj fcfj fctgagt fctgagtfs fs tnif tnd tndfj fj hnrlfdfk sn snsufg sufg `nkmfk f fdur dur 5 ?. Inkurut fk`f fk`f,, fpf cnk`fdf `fk jf jfihftfk ihftfk `fdfi i indfcsfkfcf ndfcsfkfcfk k fctgagtfs tn tnif if gkg5 0. Inkurut fk`f f fpfcfj pfcfj pnsfk `g `ginksg inksg preagd pn pndflfr dflfr Rfkof Rfkofsgdf sgdf su`fj tnrof tnrofpfg pfg 5
68. Xnadnc Xnadncsg sg Rn Rnsnr snrtf tf ` `g`g g`gc c 6. Inkurut Fk`f, fpfcfj su`fj inipukyfg mfihfrfk tnktfkm Rnrcnihfkmfk
Pnckedemg `fk Gsu-gsu tnrcgkg `fdfi hg`fkm @CQ 5
6?. Dnihfr Dnihfr C Cnrlf nrlf Rnsnrtf Rnsnrtf @g @g`gc `gc Cnmgftfk 6 <
f) Rnt Rntuk ukluc luc C Cnrl nrlf f< - Huft cnde cndeipec ipec yfkm tnr`grg `f `frg rg ?-0 erfkm - _gfpcfk Rnrf Rnrfkmcft kmcft Ceipu Ceiputnr/JR tnr/JR `nkmfk Cekncsg lfrgkmfk lfrgkmfk gktn gktnrknt rknt - _gfp _gfpcf cfk k seatwfrn Rewnr Regkt / Meemdn _dg`n
7
h) Rnk Rnkumf mfsf sfk k Cn Cnde dei ipe pec c < @gscusgdfj hnrsfif fkmmetf cndeipec, ofrgdfj lfwfhfk indfdug dgtnrfsg `g gktnrknt ftfu hucu cniu`gfk `glfwfh inkmmukfcfk Hfjfsf cfdgfk snk`grg tnktfkm frtg `frg @CQ snrtf huftdfj igk` ifppgkm inmmukfcfk ceiputnr (`gmgtfd) tnktfkm snlfrfj pnrcnihfkmfk tnckedemg `fk gsu-gsu pf`f hg`fkm @CQ snlfc nrf cekvnksgekfd sfipfg `nkmfk ie`nrk, cniu`gfk prnsnktfsgcfk jfsgd cnrlf cndeipec `g `npfk cndfs snsufg frfjfk muru. o) Xuhrgc R Rn nkgdfgfk R Rrrnsnktfsg Cn Cnddeipec Kfif Cndeipec < ]fctu R Rrrnsnktfsg < Iftnrg < Fkmmetf Ke
<
Crgtnrgf Rnkgdfgfk
6
Rnkmufsfffk Iftnrg
8
jfsgd igk` ifppgkm
Curfkm
Oucup
Hfgc
_fkmft Hfgc
( 82-?7)
02->7
12-=7
:2-622
`gmgtfd ?
Cnceipfcfk Rnihfmfgfk Cnrlf
0
Rnrkyfipfgfk
`.) Dnihfr Rnkmfiftfk _gcfp Gk`gvg`u (Ehsnrvfsg @gscusg Cndeipec)
Ke
Kfif Rnsnrtf @g`gc
Rreagd Rndflfr Rfkofsgdf Ifk`grg
Crnftga
Hnragcgr crgtgs
Luidfj _cer
Xftf-rftf Kgdfg
6 8
62
? 0 > > = : 7 62 66 68 6? 60 6> 61 6= 6: 67 82 86 88 8? 80 8> 81 8= 8: 87 ?2 ?6 ?8 ??
66
?0 ?> ?1
Ke 6
Fspnc Hnrpgcgr Crgtgs
_cer 6
Cntnrfkmfk Rnsnrtf `g`gc tg`fc `fpft hnrkfdfr crgtgs `fdfi inkmniucfcfk pnk`fpft/mfm pnk`fpft/mfmfsfk fsfk
8
Rnsnrtf `g`gc `fpft sn`gcgt hnrkfdfr crgtgs `fdfi inkmniucfcfk pnk`fpft/mfmfsfk pnk`fpft/mfmfsfk (>2% tnpft)
?
Rnsnrtf `g`gc `fpft hnrkfdfr crgtgs `fdfi inkmniucfcfk pnk`fpft/mfmfsfk pnk`fpft/mfmf sfk (=>% tnpft)
0 8
Crnftga
6
Rnsnrtf `g`gc `fpft hnrkfdfr crgtgs `fdfi inkmniucfcfk pnk`fpft/mfmfsfk `nkmfk tnpft pnk`fpft/mfmfsfk Rnsnrtf `g`gc tg`fc f`f crnftgagtfs `fdfi pnihuftfk gkaemrfags
8
Rnsnrtf `g`gc sn`gcgt inigdgcg crnftgagtfs `fdfi pnihuftfk gkaemrfags
?
Rnsnrtf `g`gc oucup inigdgcg crnftgagtfs `fdfi pnihuftfk gkaemrfags `nkmfk curfkm crnftga
0
Rnsnrtf `g`gc sfkmft crnftga `fdfi pnihuftfk gkaemrfags `nkmfk crnftga
?
Ifk`grg
6 8
Rnsnrtf `g`gc tg`fc tnrdghft fctga `fdfi pnihuftfk gkaemrfags Rnsnrtf `g`gc gcut hnrpnrfk fctga `fdfi pnihuftfk gkaemrfags (fctga `fdfi >2% cnmgftfk)
?
Rnsnrtf `g`gc hnrpnrfk fctga `fdfi pnihuftfk gkaemrfags (fctga `fdfi =>% cnmgftfk)
0
Rnsn Rnsnrt rtf f `g` `g`gc gc hn hnrp rpnr nrfk fk fctg fctgaa ` `fd fdfi fi pnih pnihuf uftf tfk k gka gkaem emrf rfag agss
68
Rntukluc Rnkscerfk < 6. _cer _cer fcjgr fcjgr inkmm inkmmukf ukfcfk cfk scfd scfdf f 6 sfipf sfipfgg 0 8. Rnrjgtukm Rnrjgtukmfk fk scer scer fcjgr fcjgr inkmmukfcf inkmmukfcfk k ruius ruius < Kgdfg Kgdfg 9
g
x 0
?. Rn Rnsnr snrtf tf `g `g`gc `gc inipnr inipnredn ednj j kgdfg kgdfg < Kgdfg
_oern
_fkmft hfgc
?.82 ‟ 0,22 (:2 ‟ 622)
Hfgc
8.: ‟ ?.67 (=2 ‟ =7)
Oucup
8.0 ‟ 8.=7 (12 ‟ 17)
curfkm
Curfkm `frg 8.0 (12)
Cnmgftfk 8 < f) Rnt Rntuk ukluc luc C Cnrl nrlf f< - Huft cn cndeipec deipec yf yfkm km tnr`grg `frg ?-0 erfkm - _gfpcfk Rn Rnrfkmcft rfkmcft Ceip Ceiputnr/JR utnr/JR `nkm `nkmfk fk Cekncsg lf lfrgkmfk rgkmfk gkt gktnrknt nrknt - _gfpcfk seatwfrn Rewnr Regk Regktt / Me Meemdn emdn _dg _dg`n `n h) Rnkumfsfk < @g @gscu scusg sgdfj dfj hnr hnrsf sfif if fk fkmme mmetf tf cndei cndeipec pec tnktf tnktfkm km Fpf yfk yfkm m `gifcsu` `nkmfk gk`ustrg 0.2 `fk seognty >.2 `fk `fipfckyf tnrjf`fp hg`fkm @CQ Hnr`fsfrcfk dgtnrfsg `fk pnkmfiftfk pnrcnihfkmfk tnckedemg Hg`fkm @CQ `g knmfrf cgtf ifsuc `fdfi afsn/ cftnmerg fpf, lndfscfk fdfsfkkyf `fk tufkmcfk `fdfi hnktuc RRP cniu`gfk prnsnktfsgcfk snofrf hnrmfktgfk `g `npfk cndfs. o) Xuhr Xuhrgc gc Rnkgdfg Rnkgdfgfk fk Rrnsnk Rrnsnktfsg tfsg Cndei Cndeipec pec Kfif Kf if Cnd Cndei eipec pec < ]fctu ]fc tu Rrnsn Rrnsnktfs ktfsgg < Iftnrg <
6?
Fkmmetf Ke
< Curfkm ( 82-?7)
Crgtnrgf Rnkgdfgfk
Oucup 02->7
Hfgc 12-=7
_fkmft Hfgc :2-622
6
Rnkmufsfffk Iftnrg
8
Fdft Rnrfmf & Rewnr Regkt
?
Cnceipfcfk
Rnihfmfgfk
Cnrlf 0
Rnrkyfipfgfk
Pns Aeriftga 6. Lndf Lndfscfk scfk fp fpf f yfkm fk` fk`f f cntfj cntfjug ug tnkt tnktfkm fkm Gk` Gk`ustr ustryy 0.2 `fk _eog _eognty nty >.2 ! (s (scer cer 82) 8. Lndfscfk pnrhn`ffk Gk`ustrg 0.2 `nkmfk Xnvedusg Gk`ustrg snhnduikyf ! (scer 82) ?. _nhutcfk > Rnknrf Rnknrfpfk pfk Gk`u Gk`ustrg strg 0.2 `fdfi @ @nsfgk nsfgk ceiukgcfsg vgsufd yfkm fk fk`f `f cntfjug! (82) 0. _nhu _nhutcfk tcfk `fk Lnd Lndfscf fscfk k tncked tnckedemg emg yfkm ink inklf`g lf`g aec aecus us utfif utfif `frg Gk`us Gk`ustry try 0.2 >. Lndf Lndfscfk scfk `f `fipfc ipfc pe pesgtg sgtgaa `fk knmf knmftga tga `fr `frgg f`fky f`fkyf f Gk`us Gk`ustrg trg 0.2 ! (82 (82))
Xuhrgc Rnkgdfgfk Pns Aeriftga Gk`gcfter
_cer
Inklndfscfk Gk`ustry
>
0.2 `fk _eognty >.2
@nscrgpsg Inklndfscfk gk`ustrg 0.2 `fk seognty >.2 `nkmfk pfklfkm dnhfr, utuj, ruktut dnkmcfp, snsufg `nkmfk cektncs. (> crgt crgtnrgf) nrgf)
0
Inklndfscfk gk`ustrg 0.2 `fk seognty >.2 `nkmfk pfklfkm dnhfr, dnkmcfp, dnkmcfp, snsufg `nkmfk cektncs. (0 crgtnrgf)
?
Inklndfscfk gk`ustrg 0.2 `fk seognty >.2 `nkmfk pfklfkm dnhfr, ruktut dnkmcfp, snsufg `nkmfk cektncs. (? crgtnrgf)
60
Inklndfscfk pnrhn`ffk gk`ustry 0.2 `nkmfk rnvedusg snhnduikyf
8
Jfkyf inkmfk`ukm `uf cnywer`
6
Jfkyf inkmfk`ukm sftu cnywer`
2
Pg`fc inkudgscfk lfwfhfk Inklndfscfk gk`ustrg 0.2 `fk seognty > >..2 `nkmfk pfklfkm dnhfr, utuj, ruktut dnkmcfp,
>
snsufg `nkmfk cektncs. (> crgt crgtnrgf) nrgf) 0
Inklndfscfk gk`ustrg 0.2 `fk seognty > >..2 `nkmfk pfklfkm dnhfr, dnkmcfp, dnkmcfp, snsufg `nkmfk cektncs. (0 crgtnrgf)
?
Inklndfscfk gk`ustrg 0.2 `fk seognty > >..2 `nkmfk pfklfkm dnhfr, ruktut dnkmcfp, snsufg `nkmfk cektncs. (? crgtnrgf)
Inklndfscfk > oektej pnknrfpfk Gk`ustry 0.2 `fdfi @ukgf @nsfgk Ceiukgcfsg Qgsufd
8 6
Jfkyf inkmfk`ukm `uf cnywer` Jfkyf inkmfk`ukm sftu cnywer`
2
Pg`fc inkudgscfk lfwfhfk
>
Ifipu inklndfscfk > oektej pnknrfpfk `nkmfk hnkfr
0
Ifipu inklndfscfk 0 oektej pnknrfpfk `nkmfk hnkfr
?
Ifipu inklndfscfk ? oektej pnknrfpfk `nkmfk hnkfr
8
Ifipu inklndfscfk 8 oektej pnknrfpfk `nkmfk hnkfr
6
Ifipu inklndfscfk 6 oektej pnknrfpfk `nkmfk hnkfr
Inklndfscfk oektej
>
pnknrfpfk
2
Pg`fc inkudgscfk lfwfhfk
>
Ifipu inklndfscfk > oektej pnknrfpfk `nkmfk hnkfr
6>
Gk`ustry 0.2 `fdfi @ukgf @nsfgk Ceiukgcfsg Qgsufd
0
Ifipu inklndfscfk 0 oektej pnknrfpfk `nkmfk hnkfr
?
Ifipu inklndfscfk ? oektej pnknrfpfk
8
`nkmfk hnkfr Ifipu inklndfscfk 8 oektej pnknrfpfk `nkmfk hnkfr
6
Ifipu inklndfscfk 6 oektej pnknrfpfk `nkmfk hnkfr
Inklndfscfk `fipfc pesgtga `fk knmftga gk`ustry 0.2
2
Pg`fc inkudgscfk lfwfhfk
>
Ifipu inifpfrcfk > `fipfc pesgtga `fk knmftga gk`ustry 0.2 `nkmfk hnkfr
0
Ifipu inifpfrcfk 0 `fipfc pesgtga `fk
?
knmftga gk`ustry 0.2 `nkmfk hnkfr Ifipu inifpfrcfk ? `fipfc pesgtga `fk knmftga gk`ustry 0.2 `nkmfk hnkfr
8
Ifipu inifpfrcfk 8 `fipfc pesgtga `fk knmftga gk`ustry 0.2 `nkmfk hnkfr
6
Ifipu inifpfrcfk 6 `fipfc pesgtga `fk knmftga gk`ustry 0.2 `nkmfk hnkfr
2
Pg`fc inkudgscfk lfwfhfk
Cnmgftfk ? < f) Rnt Rntuk ukluc luc C Cnrl nrlf f< - Huft cn cndeipec deipec yf yfkm km tnr`grg `frg ?-0 erfkm - _gfpcfk Rn Rnrfkmcft rfkmcft Ceip Ceiputnr/JR utnr/JR `nkm `nkmfk fk Cekncsg lf lfrgkmfk rgkmfk gkt gktnrknt nrknt - _gfpcfk seatwfrn Rewnr Regk Regktt / Me Meemdn emdn _dg` _dg`n n
61
h) _efd < Ofrgdfj iftnrg tnktfkm fpf gtu Mrnnk Gk`ustry (Gk`ustrg Jglfu) snrtf pnknrfpfkkyf `fdfi hg`fkm `nsfgk ceiukgcfsg vgsufd. @gscusgcfk `nkmfk tnifk sftu cndeipec Cniu`gfk prnsnktfsgcfk `g `npfk cndfs snofrf hnrmfktgfk. o) Xuhr Xuhrgc gc Rnkgdfg Rnkgdfgfk fk Rrnsnk Rrnsnktfsg tfsg Cndei Cndeipec pec Kfif Kf if Cnd Cndei eipec pec < ]fctu ]fc tu Rrnsn Rrnsnktfs ktfsgg < Iftnrg < Fkmmetf Ke
< Curfkm ( 82-?7)
Crgtnrgf Rnkgdfgfk
Oucup 02->7
Hfgc 12-=7
_fkmft Hfgc :2-622
6
Rnkmufsfffk Iftnrg
8
Fdft Rnrfmf Regkt
?
Cnceipfcfk Rnihfmfgfk
&
Rewnr
Cnrlf 0
Rnrkyfipfgfk
6=
Pns Aeriftga 6. Lndf Lndfscfk scfk fpf yf yfkm km fk`f cntf cntfjug jug tnkt tnktfkm fkm Gk`u Gk`ustrg strg Jgl Jglfu! fu! (sce (scerr ifcsg ifcsgifd ifd 82) 8. Hfmfgifkf > oektej pnknrfpfk Mrnnk Gk`ustry (Gk`ustrg Jglfu) `fdfi pnrcnihfkmfk pnrcnihfkm fk tnckedemg sfft gkg! (scer ifcsgifd >2) ?. Hnrg Hnrgcfk cfk ifs ifsgkmgkm-ifs ifsgkm gkm > oekt oektej ej `frg sfi sfipfj pfj Erm Ermfkgc fkgc,, Fkermf Fkermfkgc kgc snrt snrtf f H? ! (scer ifcsgifd ?2)
Xuhrgc Rnkgdfgfk Pns Aeriftga Gk`gcfter
_cer
Inklndfscfk Mrnnk
>
Gk`ustrg (Gk`ustrg
@nscrgpsg Inkmfk`ukm cftf usfjf, inifkafftcfk `fk tnckedemg, cniu`gfk cntgmf cftf tnrsnhut tnrfkmcfg `fdfi sftu cfdgift yfkm utuj
Jglfu)
0
Inkmfk`ukm cftf usfjf, inifkafftcfk `fk tnckedemg, cniu`gfk cntgmf cftf tnrsnhut tnrfkmcfg `fdfi sftu cfdgift yfkm utuj
?
Inkmfk`ukm cftf usfjf, inifkafftcfk `fk tnckedemg, cniu`gfk cntgmf cftf tnrsnhut tnrfkmcfg `fdfi sftu cfdgift yfkm utuj
Inklndfscfk > oektej pnknrfpfk Mrnnk Gk`ustrg
8
Jfkyf inkmfk`ukm `uf cnywer`
6
Jfkyf inkmfk`ukm sftu cnywer`
2
Pg`fc inkudgscfk lfwfhfk
>
Ifipu inklndfscfk > oektej pnknrfpfk
0
Mrnnk Gk`ustry `nkmfk hnkfr Ifipu inklndfscfk 0 oektej pnknrfpfk Mrnnk Gk`ustry `nkmfk hnkfr
?
Ifipu inklndfscfk ? oektej pnknrfpfk Mrnnk Gk`ustry `nkmfk hnkfr
8
Ifipu i in nklndfscfk 8 oektej p pn nknrfpfk
6:
Mrnnk Gk`ustry `nkmfk hnkfr
6
Ifipu inklndfscfk 6 oektej pnknrfpfk Mrnnk Gk`ustry `nkmfk hnkfr
2 >
Inklndfscfk > oektej sfipfj ermfkgc, fkermfkgc `fk H?
Pg`fc inkudgscfk lfwfhfk Ifipu inifpfrcfk >
oektej
sfipfj
ermfkgc, fkermfkgc snrtf H? `nkmfk hnkfr 0
Ifipu
inifpfrcfk
0
oektej
sfipfj
ermfkgc, fkermfkgc snrtf H? `nkmfk hnkfr ?
Ifipu
inifpfrcfk
?
oektej
sfipfj
ermfkgc, fkermfkgc snrtf H? `nkmfk hnkfr 8
Ifipu
inifpfrcfk
8
oektej
sfipfj
ermfkgc, fkermfkgc snrtf H? `nkmfk hnkfr 6
Ifipu inifpfrcfk 6 oektej sfipfj ermfkgc, fkermfkgc snrtf H? `nkmfk hnkfr
2
Pg`fc inkudgscfk lfwfhfk
Rntukluc Rnkscerfk < 6. _cer fcjg fcjgrr in inkmmu kmmukfcf kfcfk k scf scfdf df 6 ssfipf fipfgg 0 8. Rnrj Rnrjgtuk gtukmfk mfk sscer cer fc fcjgr jgr i inkmm nkmmukfc ukfcfk fk rui ruius us < K Kgdfg gdfg 9
g
x0
?. Rns Rnsnrt nrtf f `g` `g`gc gc in inipn ipnred rednj nj kg kgdfg dfg < Kgdfg
_oern
_fkmft
?.82 ‟ 0,22 (:2 ‟
hfgc
622)
Hfgc
8.: ‟ ?.67 (=2 ‟ =7)
Oucup
8.0 ‟ 8.=7 (12 ‟ 17)
curfkm
Curfkm `frg 8.0 (12)
67
60.. Rnkm 60 Rnkmfy fyff ffk k `fk `fk Xnig Xnig`g `gfd fd f. Rnkmfyffk `ghnrgcfk `fdfi hnktuc iftnrg yfkm dnhgj ceipdncs `fk tfihfjfk dftgjfk-dftgjfk `ghg`fkm tnokeprnknur. h. Xnig`gfd `ghnrgcfk `fdfi hnktuc dnihfr cnrlf f ftfu tfu ttumfs umfs yf yfkm km hndui `gofpfg ednj ifsgkm-ifsgkm ifsgkm-ifsgkm pnsnrtf `g`gc yfkm hnrhn`f.
82
86
View more...
Comments