DAMATH

August 14, 2017 | Author: Mario M. Ramon | Category: Rational Number, Mathematical Objects, Physics & Mathematics, Mathematics, Science
Share Embed Donate


Short Description

damath rules, integer damath, rational damath, radical damath, polynomial damath, damath scoresheet, math intervention, ...

Description

DAMATH

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

7

0

6

1

5

2

4

3

3

4

2

5

1

6

0

7 0

1

2

3

4

5

6

7

0

DAMATH MANUAL

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Basically the rules in playing the Filipino checkerboard game called “dama” will be used with some modifications in integrating Mathematics and Science as follows:

Set the starting positions of the chips.

0 7

Integer DAMATH

NEXT

3

5

-1

6

7 7

-11

8

-3

10

-7

4

4

6

0

6 5

-9

4

4

3

3

2 1

BACK

2 -5

2

6 5

1

0

0

-3

-11

0

1

-1

6

-9

10

8

2

3

4

4

1

-7

2

-5

5

6

2

7

0

Set the starting positions of the chips.

0 7

Rational DAMATH BACK

3

4/10

4

5

-1 /10

6

7 7

-11/10

8/10

-3 /10

10/10

-7 /10

6/10

0

6 5

-9 /10

4

4

3

3

2 1

0

-3 /10 -11/10

0

1

-1 /10

6/10

-9 /10

0

NEXT

2 -5 /10

2/10

6 5

1

10/10

8/10

2

3

4/10

4

1

-7 /10 2/10

-5 /10

5

6

2

7

0

Set the starting positions of the chips.

0 7

Radical DAMATH BACK

3

5

6

7 7

-121√18

-81√32

4√18

16√32

4

36√32

64√2

-25√18

-49√8

5

-9√2

-√8

6

4

4

3

3

2 1

-49√8

-25√18

-121√18

0

1

4√18

-√8

-9√2

0

NEXT

2 100√2

144√8

6 5

1

2

3

144√8

100√2

4

5

6

2 1

64√2

36√32

-81√32

16√32

7

0

Set the starting positions of the chips.

7 7

Polynomial

DAMATH

3

2

1

0 0

-55x

-45y

6x

10y

-15x

-21xy2

2

-3x2y

-xy2

1

4

3

3

4

1

-21xy2

-15x

-55x

0

1

6x

-xy2

-3x2y

0

NEXT

4

28y

36x2y

2

BACK

5 66x2y

78xy2

6 5

6

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

After the starting positions of the chips have been set, the first player is determined by drawing lots. The first player will occupy the side of the DAMATH board where (0, 0) is located.

A chip is allowed to move diagonally forward only to an adjoining vacant square.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

BLUE  (0, 3)

4

4

RED  (3, 4)

3

3

2

2

1

1

0

0

BLUE  (4, 3) RED  (7, 4)

0

1

2

3

4

5

6

7

A chip has to take the opponent’s chip diagonally forward or backward, thus, pass is not allowed. Mathematical operations (+, -, x, ÷) will be used depending on the vacant square’s operation symbol where the Taker chip lands by jumping over the Taken chip (the latter chip has to be removed from the board after performing the indicated mathematical operation and recording the same in the scoresheet).

BLUE  (2, 3) RED  (3, 4)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A chip has to take the opponent’s chip diagonally forward or backward, thus, pass is not allowed. Mathematical operations (+, -, x, ÷) will be used depending on the vacant square’s operation symbol where the Taker chip lands by jumping over the Taken chip (the latter chip has to be removed from the board after performing the indicated mathematical operation and recording the same in the scoresheet).

BLUE x RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

RED - BLUE

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

RED ÷ BLUE

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

RED ÷ BLUE BLUE  (6, 3)

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

RED - BLUE

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

BLUE  (6, 3)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

RED ÷ BLUE

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE - RED

0

1

2

3

4

5

6

7

In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE + RED

0

1

2

3

4

5

6

7

In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE + RED BLUE - RED

0

1

2

3

4

5

6

7

In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE + RED BLUE - RED BLUE ÷ RED

0

1

2

3

4

5

6

7

In taking a chip or more than one chip, the Dama Rules on “dama”, mayor dalawa or tatlo, mayor tatlo over dalawa, mayor dama, and mayor dalawa or tatlo over dama prevail. Mayor DALAWA BLUE + RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

In taking a chip or more than 7 one chip, the Dama Rule on “dama”, mayor 6 dalawa or tatlo, mayor tatlo over 5 dalawa, mayor 4 dama, and mayor dalawa or tatlo over dama 3 prevail. Mayor DALAWA BLUE + RED BLUE x RED

0

1

2

3

4

5

6

7 7 6 5 4 3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO BLUE + RED BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO BLUE + RED BLUE x RED BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO Over DALAWA BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO Over DALAWA BLUE + RED BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor TATLO Over DALAWA BLUE + RED BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE + RED

0

1

2

3

4

5

6

7

0

Mayor DAMA

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA - RED

0

1

2

3

4

5

6

7

0

Mayor Dama BLUE DAMA - RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Dama

1

2

3

4

5

6

7

BLUE DAMA - RED

7

7

BLUE DAMA ÷ RED

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Dalawa Over DAMA BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Dalawa Over DAMA BLUE x RED BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over DAMA BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over DAMA BLUE + RED BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over DAMA BLUE + RED BLUE x RED BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over DAMA taking Dalawa BLUE + RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over DAMA taking Dalawa BLUE + RED BLUE x RED

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo

1

2

3

4

5

6

7

7

7

6

6

5

5

BLUE x RED

4

4

BLUE + RED

3

3

2

2

1

1

0

0

Over DAMA taking Dalawa BLUE + RED

0

1

2

3

4

5

6

7

When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA - RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA - RED BLUE DAMA ÷ RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA x RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA x RED BLUE DAMA + RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

Mayor Tatlo Over Dalawa

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA + RED

0

1

2

3

4

5

6

7

0

Mayor Tatlo Over Dalawa

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA + RED BLUE DAMA x RED

0

1

2

3

4

5

6

7

0

Mayor Tatlo Over Dalawa

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA + RED BLUE DAMA x RED BLUE DAMA + RED

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A chip is declared as “dama” upon reaching terminally on the following designated squares. For BLUE chips:

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

(0, 7), (2, 7), (4, 7), (6, 7)

0

1

2

3

4

5

6

7

A chip is declared as “dama” upon reaching terminally on the following designated squares. For RED chips: (1, 0), (3, 0), (5, 0), (7, 0)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A chip is declared as “dama” upon reaching 7 terminally on the following 6 designated squares. 5

0

1

2

3

4

5

6

7 7 6 5

For BLUE chips: (0, 7), (2, 7),

4

4

3

3

2

2

1

1

0

0

(4, 7), (6, 7) For RED chips: (1, 0), (3, 0), (5, 0), (7, 0)

BLUE ÷ RED RED + BLUE

0

1

2

3

4

5

6

7

A chip is declared as “dama” upon reaching 7 terminally on the following 6 designated squares. 5

0

1

2

3

4

5

6

7 7 6 5

For BLUE chips: (0, 7), (2, 7),

4

4

3

3

2

2

1

1

0

0

(4, 7), (6, 7) For RED chips: (1, 0), (3, 0), (5, 0), (7, 0)

BLUE ÷ RED RED + BLUE RED - BLUE

0

1

2

3

4

5

6

7

Situations where a chip is not declared as “dama” BLUE - RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Situations where a chip is not declared as “dama” BLUE - RED BLUE + RED RED x BLUE

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Situations where a chip is not declared as “dama”

0

1

2

3

4

5

6

7

7

7

6

6

5

5

RED x BLUE

4

4

RED ÷ BLUE

3

3

2

2

1

1

0

0

BLUE - RED BLUE + RED

0

1

2

3

4

5

6

7

Situations where a chip is not declared as “dama”

0

1

2

3

4

5

6

7

7

7

6

6

5

5

RED x BLUE

4

4

RED ÷ BLUE

3

3

2

2

1

1

0

0

BLUE - RED BLUE + RED

RED - BLUE

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip. BLUE DAMA x RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip. BLUE DAMA x RED BLUE DAMA x RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip. BLUE DAMA x RED BLUE DAMA x RED BLUE DAMA ÷ RED or BLUE DAMA + RED

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA x RED

0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA ÷ RED

0

1

2

3

4

5

6

7

A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

It can take a chip or more than one chip.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

BLUE DAMA X RED

0

1

2

3

4

5

6

7

Moreover, a dama’s score is doubled in taking a chip or chips. 2(BLUE DAMA x RED)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Moreover, a dama’s score is doubled in taking a chip or chips. 2(BLUE DAMA x RED)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0

2(BLUE DAMA x RED) or 2(BLUE DAMA - RED)

0

1

2

3

4

5

6

7

Dama’s score is quadrupled if it takes the opponent’s dama chip. 4(BLUE DAMA x RED DAMA)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Similarly, an ordinary chip’s score is doubled if it takes a dama chip. 2(RED + BLUE DAMA)

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

Similarly, an ordinary chip’s score is doubled if it takes a dama chip. 2(RED + BLUE DAMA) RED x BLUE

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

0

WRITING ENTRIES IN THE SCORESHEET Total

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

Player A Move Score

1

1

2

3

4

Player B Move Score

5

6

7

Total

Note: Scores shall be entered in the scoresheet according to the game being played.

0 7

Integer DAMATH

2

3

-5

2

6 5

1

5

-1

6

7 7

-11

8

-3

10

-7

4

4

6

0

6 5

-9

4

4

3

3

2 1

0

0

-3

-11

0

1

-1

6

-9

2

3

2

-5

4

5

6

2 1

-7

10

8

4

7

0

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__Ramon________________________________ School:_________________________________ Grade/Year:_____________________________ Move

-9  (0, 3)

Score

Name:__Lapus________________________________ School:_________________________________ Grade/Year:_____________________________ Total

Move

Score

Total

0 7

Integer DAMATH

2

3

-5

2

6 5

1

5

-1

6

7 7

-11

8

-3

10

-7

4

4

6

0

5

-9

4 3

4 3

-9

2 1

6

-1

6

0

0

-3

-11

0

1

2

3

2

-5

4

5

6

2 1

-7

10

8

4

7

0

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

-9  (0, 3)

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

Move

-1  (1, 4)

Score

Total

0 7

Integer DAMATH

4

5

6

7 7

-11

8

4

-3

6

0

4 3

-9

-1

6

0

0

-3

-11

0

6 5

-9

-1

2 1

3

10

-7

4 3

2 -5

2

6 5

1

1

2

3

2

-5

4

5

6

2 1

-7

10

8

4

7

0

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3) -9 + (-1)

Move

-1  (1, 4) -10

-10

Score

Total

0 7

Integer DAMATH

2

3

-5

2

6 5

1

5

-3

6

-9

6

7 7

-11

8

10

-7

4

4

0

6 5

-9

4

4

3

3

2 1

-1

6

0

0

-3

-11

0

1

2

3

2

-5

4

5

6

2 1

-7

10

8

4

7

0

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3) -9 + (-1)

Move

Score

Total

1

1

-1  (1, 4) -10

-10

10 + (-9)

0 7

Integer DAMATH

2

3

-5

2

6 5

1

4

5

6

-3

4

7

-11

8

-7

7

0

5

6

4

4

3

3

-9

2 1

6

-1

0

0

-3

-11

0

1

2

3

2

-5

4

5

6

2 1

-7

10

8

4

7

0

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

1

1

-1  (1, 4)

-9 + (-1)

-10

-10

-1 – (-9)

8

-2

10 + (-9)

0 7

1

2

3

2

4

Integer DAMATH

6

7 7

-11

8

6 5

5

-3

0

5

4

4

4

3

3

-7

2 1

6

4

2

0

0

-3

-11

0

1

2

1

10

8

3

0

-5

4

2

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

0 7

1

2

3

2

4

Integer DAMATH

6

7 7

-11

8

6 5

5

-3

0

5

4

4

4

3

3

-5

2 1

6

4

-11

0

-3

0 0

1

2

1

10

8

3

0

-5

4

2

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

0 7

1

2

3

2

4

Integer DAMATH

6

7 7

11

8

6 5

5

0

-3

4

6 5

4

4

4

3

3

2

2

1

0

-3

0

8

0

1

2

1

10

3

0

-5

4

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

0 7

1

2

3

2

4

5

6

7 7

-11

8

6 5

Integer DAMATH

6 4

5

0

4

4

3 2 1

3

6

2

10

0

1

-3

0

8

0

1

2

3

0

-5

4

5

6

7

0 7

1

2

3

2

4

5

6

7 7

-11

8

6 5

Integer DAMATH

6 4

5

0

4

10

4

3

3

2

2

1

0

1

-3

0

8

0

1

2

3

0

-5

4

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

10 x 6

60

52

10 + 0

10

62

0 7

1

2

3

4

5

2

6

7 7

-11

6 5

Integer DAMATH

6 5

4

4

4

3

3

2 1

2

6

0

0

-5

-11

0

1

10

1

2

3

0

-5

4

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

10 x 6

60

52

-5 x 10

-50 x 2 = -100

-115

10 + 0

10

62

Note: When a DAMA takes an ordinary chip, the score is doubled.

0 7

Integer DAMATH

1

2

3

4

5

2

6

7 7

-11

6

6

5

5

4

4

6

3

3

4

2 1

2 1

0

0

-11

0

1

0

-5

2

3

4

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

10 x 6

60

52

-5 x 10

-50 x 2 = -100

-115

10 + 0

10

62

6+4

10 x 4 = 40

102

Note: When a DAMA takes another DAMA, the score is quadrupled.

0 7

1

2

5

6

7 7

-11

6

10

5

DAMATH

4

2

6

Integer

3

5

6

4

4

3

3

2

2

1

1

0

0

-11

0

1

0

-5

2

3

4

5

6

7

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

10 x 6

60

52

-5 x 10

-50 x 2 = -100

-115

10 + 0

10

62

10 + 6

16 x 2 = 32

-83

6+4

10 x 4 = 40

102

Note: When an ordinary chip takes a DAMA, the score is doubled.

HOME

Integer DAMATH Scoresheet Player BLUE

Player RED

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move

Score

Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Total

-9  (0, 3)

Move

Score

Total

-1  (1, 4)

-9 + (-1)

-10

-10

10 + (-9)

1

1

-1 – (-9)

8

-2

-7 ÷ 2

-3.5 ≈ -4

-3

-11 – (-5)

-6

-8

-3 x 4

-12

-15

10 x 6

60

52

-5 x 10

-50 x 2 = -100

-115

10 + 0

10

62

10 + 6

16 x 2 = 32

-83

6+4

10 x 4 = 40

102

RC: -5

-5

RC: -11

-11

0

0

2

2

-11x 2

-22

10 x 2

20

Total

-27

Total

11

Grand Total 75 Grand Total -72 Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins.

0 7

Rational DAMATH

2

3

-5 /10

2/10

6 5

1

5

-1 /10

6

7 7

-11/10

8/10 -3 /10

10/10

-7 /10 4/10

4

0

-9 /10

6/10

6 5

4

4

3

3 -9 /10

2 1

-3 /10

0

0

-11/10

0

1

-1 /10

6/10

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

-9/10  (0, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

Score

Total

0 7

Rational DAMATH

2

3

-5 /10

2/10

6 5

1

5

-1 /10

6

7 7

-11/10

8/10 -3 /10

10/10

-7 /10 4/10

4

0

-9 /10

6/10

5

4 3

4 -9 /10

3

2 1

6

-1 /10

6/10

-3 /10

0

0

-11/10

0

1

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

-9/10  (0, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

-1/10  (1, 4)

Score

Total

0 7

Rational DAMATH

4

5

6

7 7

-11/10

8/10

4/10

-3 /10

0

-9 /10

6/10

4

-9 /10

3 -1 /10

6/10

-3 /10

0

0

-11/10

0

6 5

-1 /10

2 1

3

10/10

-7 /10

4 3

2 -5 /10

2/10

6 5

1

1

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

Move

-1/10  (1, 4) -10/10

-1

Score

Total

0 7

Rational DAMATH

2

3

-5 /10

2/10

6 5

1

5

-9 /10

6

7 7

-11/10

8/10 -3 /10

10/10

-7 /10 4/10

4

0

-9 /10

6/10

6 5

4

4

3

3

2 1

-1 /10

6/10

-3 /10

0

0

-11/10

0

1

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

Move

Score

Total

2/10

1/5

-1/10  (1, 4) -10/10

-1

-7/10 – ( -9/10)

0 7

1

2 -5 /10

2/10

6 5

Rational DAMATH

3

4

5

-3 /10

10/10

7 0

-9 /10

6/10

4

7

-11/10

8/10

4/10

6

5 4

-7 /10

3

3

2 1

6

-1 /10

6/10

-3 /10

0

0

-11/10

0

1

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

RationalDAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10) 6/10  (2, 3)

Move

Score

Total

2/10

1/5

-1/10  (1, 4) -10/10

-1 -1

-7/10 – ( -9/10)

0 7

1

2 -5 /10

2/10

6 5

Rational DAMATH

3

4

4/10

6

7 7

-11/10

8/10 -3 /10

10/10

0

-9 /10

6/10

4

4 3

6/10

-1 /10

2 -3 /10

0

0

-11/10

0

1

3

4/10

-7 /10

10/10 -5 /10

8/10

2

6 5

-7 /10

3

1

5

4

5

1 2/10

6

2

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10) 6/10  (2, 3)

Move

Score

Total

-1/10  (1, 4) -10/10

-1

-7/10 – ( -9/10)

2/10

1/5

-1

-7/10 ÷ 6/10

-7/6

-29/30

0 7

1

2 -5 /10

2/10

6 5

Rational DAMATH

3

4

5

-3 /10

10/10

7 7

-11/10

8/10

4/10

6

0

-9 /10

6/10

6 5

4

4

3

3

2 1

-1 /10

-7 /10 -3 /10

0

0

-11/10

0

1

-7 /10

10/10 -5 /10

8/10

2

3

4/10

4

5

1 2/10

6

2

7

0

RationalDAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

Score

Total

-1/10  (1, 4) -10/10

6/10  (2, 3) -3/10 X -7/10

Move

21/10

-1

-7/10 – ( -9/10)

2/10

1/5

-1

-7/10 ÷ 6/10

-7/6

-29/30

11/10

0

1

2

3

7

4

5

7 -11/10

6 -9 /10

5

DAMATH

7

-11/10

6

Rational

6

5

4

4

3

3

4/10

2

-7 /10

8/10

2

1

1

0

4/10

0

1

2

3

4

5

2/10

6

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

Score

Total

-1/10  (1, 4) -10/10

6/10  (2, 3) -3/10 X -7/10

Move

21/10

-1

-7/10 – ( -9/10)

2/10

1/5

-1

-7/10 ÷ 6/10

-7/6

-29/30

24/10

43/10

11/10

4/10

+ 8/10

Note: When a DAMA chip take an ordinary chip, the score is doubled.

0

1

2

3

7

4

5

7 -11/10

6 -9 /10

5

DAMATH

7

-11/10

6

Rational

6

4

5 4

4/10

3

3 -7 /10

2

2

1

1

0

2/10

0

1

2

3

4

5

6

7

0

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

-11/10

X

4/40

Score

Total

-1/10  (1, 4) -10/10

6/10  (2, 3) -3/10 X -7/10

Move

-1

-7/10 – ( -9/10)

2/10

1/5

-1

-7/10 ÷ 6/10

-7/6

-29/30

24/10

43/10

21/10

11/10

-44/25

-33/50

4/10

+ 8/10

Note: When a DAMA chip takes a DAMA, the score is quadrupled

HOME

Rational DAMATH Scoresheet Player BLUE

Player RED

Name: Ramon, Mario M__________________ School:_JGMNHS_______________________ Grade/Year:_____________________________ Move

Score

Name:__Arroyo, Gloria__________________ School:__ADMU_________________________ Grade/Year:_____________________________ Total

-9/10  (0, 3) -9/10 + (-1/10)

-11/10 R.C.

X

4/40

-10/10

-7/10 – ( -9/10)

2/10

1/5

-1

-7/10 ÷ 6/10

-7/6

-29/30

24/10

43/10

11/10

-44/25

-33/50

-11/5

2/10

1/5

-7/10

-7/10

GRAND TOTAL

Total

-1

21/10

-11/10

TOTAL

Score

-1/10  (1, 4)

6/10  (2, 3) -3/10 X -7/10

Move

4/10

R.C.

-27/10

+ 8/10

-11/10

-11/10

-9/10

-9/10 -2

-3.36

2.3

Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

5

4√18

6

7 7

-121√18

-81√32

36√32

64√2

16√32

4

-25√18

-49√8

5

-9√2

-√8

6

4

4

3

3

2 1

-49√8

0

1

3

4

5

6

2 1

144√8

100√2

-81√32

2

16√32

64√2

36√32

-25√18

-121√18

0

4√18

-√8

-9√2

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

4√18  (4, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

Score

Total

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

5

4√18

6

7 7

-121√18

-81√32

36√32

64√2

16√32

4

-25√18

-49√8

5

-9√2

-√8

4

4

3

3

4√18

2 1

6

-√8

-9√2

-49√8

0 0

1

2

3

144√8

100√2

-81√32

4

5

6

2 1

64√2

36√32

-25√18

-121√18

16√32

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

4√18  (4, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

-9√2  (5, 4)

Score

Total

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

4√18

6

7 7

-121√18

-25√18

-49√8

4

-9√2

3

3

4√18

2

-√8

-9√2

-49√8

0

-121√18

0

1

16√32

2

3

144√8

100√2

-81√32

4

5

6

2 1

64√2

36√32

-25√18

6 5

-√8

4

1

5

-81√32

36√32

64√2

16√32

4

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2

Move

-9√2  (5, 4) -4/3

-4/3

Score

Total

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

5

4√18

6

7 7

-121√18

-81√32

36√32

64√2

16√32

4

-25√18

-√8

-49√8

6 5

4√18

4

4

3

3

2 1

-√8

-9√2

-49√8

0 0

1

2

3

144√8

100√2

-81√32

4

5

6

2 1

64√2

36√32

-25√18

-121√18

16√32

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2

Move

Score

Total

-8

-8

-9√2  (5, 4) -4/3

-4/3

-49√8 ÷ 4√18

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

5

4√18

6

7 7

-121√18

-81√32

36√32

64√2

16√32

4

6

-25√18

5

-√8

4

4

-49√8

3

3

2 1

-√8

-9√2

-49√8

0 0

1

2

3

144√8

100√2

-81√32

4

5

6

2 1

64√2

36√32

-25√18

-121√18

16√32

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2 16√32  (6, 3)

Move

Score

Total

-8

-8

-9√2  (5, 4) -4/3

-4/3 -4/3

-49√8 ÷ 4√18

0 7

144√8

6 5

Radical DAMATH

1

2

3

100√2

5

4√18

7 7 6

-25√18

5

-√8

4

4

-49√8

3

3

16√32

2 1

6 -121√18

-81√32

36√32

64√2

16√32

4

-49√8

0

1

2

3

144√8

100√2

-81√32

4

1

64√2

36√32

-25√18

-121√18

0

2

-√8

-9√2

5

6

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2 16√32  (6, 3)

Move

Score

Total

-9√2  (5, 4) -4/3

-4/3

-49√8 ÷ 4√18

-8

-8

-4/3

-49√8 - 16√32

-160√2

-8 -160√2

0 7

1

2

3

144√8

4

5

6

7 7

-9√2

6 5

Radical DAMATH

6 5

64√2

4

4

3

3

2

-√8

2

36√32

1

1

0

144√8

-49√8

0

1

2

3

4

5

6

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2 16√32  (6, 3)

Move

Score

Total

-9√2  (5, 4) -4/3

-4/3

-49√8 ÷ 4√18

-8

-8

-4/3

-49√8 - 16√32

-160√2

-8 -160√2

-196√2

-8-356√2

-49√8

+ -√8

Note: When a DAMA chip take an ordinary chip, the score is doubled.

0 7

1

2

3

144√8

4

5

6

7 7

-9√2

6 5

Radical DAMATH

6 5

64√2

4

4

-49√8

3

3

2

2

36√32

1

1

0

144√8

0

1

2

3

4

5

6

7

0

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2

Move

-4/3

-4/3

-49√8 ÷ 4√18

-8

-8

-4/3

-49√8 - 16√32

-160√2

-8 -160√2

-196√2

-8-356√2

-49√8 x -49√8

Total

-9√2  (5, 4)

16√32  (6, 3) -9√2

Score

6912

+ -√8

20732/3

Note: When a DAMA take another DAMA, the score is quadrupled

HOME

Radical DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

4√18  (4, 3) 4√18 ÷ -9√2

Move

-4/3

-4/3

-49√8 ÷ 4√18

-8

-8

-4/3

-49√8 - 16√32

-160√2

-8 -160√2

-196√2

-8-356√2

-49√8

R.C.

x -49√8

6912

-9√2

-18√2

36√32

36√32

144√8

144√8

TOTAL GRAND TOTAL

Total

-9√2  (5, 4)

16√32  (6, 3) -9√2

Score

+ -√8

20732/3 R.C.

423√2

144√8

144√8

64√2

64√2 352√2

7643.32

-13.66

Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

2

6x

1

0 0

-55x

-45y

28y

36x2y

10y

3

-15x

-21xy2

2

-3x2y

-xy2

1

4

3

3

4

2 1

-21xy2

0

-15x

-55x

0

1

6x

-xy2

-3x2y

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

-3x2y  (2, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

Score

Total

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

2

6x

1

0 0

-55x

-45y

28y

36x2y

10y

3

-15x

-21xy2

2

-3x2y

-xy2

4

3

3

4

-3x2y

2 1

1

6x

-xy2

-21xy2

0

-15x

-55x

0

1

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

-3x2y  (2, 3)

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

Move

-xy2  (4, 3)

Score

Total

7 7

Polynomial

DAMATH

5

3

2

-15x

0 0 -21xy2

3

-xy2

3

4

-3x2y

2

6x

-xy2

-21xy2

0

-15x

-55x

0

1

3

10y

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

2

1 2

-3x2y

6x

10y

1 -55x

-45y

28y

36x2y

4

1

4

66x2y

78xy2

6 5

6

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

Move

-xy2  (4, 3) 24000

24000

Score

Total

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

2

6x

1

0 0

-55x

-45y

28y

36x2y

10y

3

-15x

-21xy2

2

-3x2y

-3x2y

1

4

3

3

4

2 1

6x

-xy2

-21xy2

0

-15x

-55x

0

1

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

Move

Score

Total

99

99

-xy2  (4, 3) 24000

24000

-15x – (-3x2y)

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

3

2

0 -21xy2

3

-15x

3

4

2 1

1 2

-3x2y

6x

4

0

-55x

-45y

28y

36x2y

10y

1

6x

-xy2

-21xy2

0

-15x

-55x

0

1

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2) -xy2 (2,3)

Move

Score

Total

63

63

-xy2  (4, 3) 24000

24000 24000

-15x – (-3x2y)

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

3

0 0

-55x

-45y

-21xy2

3

-15x

3

4

-xy2

2

6x

-21xy2

0

-15x

-55x

0

1

3

10y

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

2

1 2

-3x2y

6x

10y

1

28y

36x2y

4

1

2

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2) -xy2 (2,3)

Move

Score

Total

-xy2  (4, 3) 24000

24000

-15x – (-3x2y)

99

99

24000

-15x ÷ (-xy2)

0.6

99.6

7 7

Polynomial

DAMATH

5

4

66x2y

78xy2

6 5

6

3

2

0 0

-55x

-45y

28y

36x2y

-21xy2

1 2

-3x2y

6x

10y

1

4

3

3

4

2 1

-15x

-21xy2

0

6x

-15x

-55x

0

1

2

3

78xy2

66x2y

4

5

6

5 6

36x2y

28y

-45y

10y

7

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

Score

Total

-xy2  (4, 3) 24000

-xy2 (2,3) (-15x)(-15x )

Move

0

24000

-15x – (-3x2y)

99

99

24000

-15x ÷ (-xy2)

0.6

99.6

24000

7

6

5

4

3

2

7

1

0 0

78xy2

6 5

Polynomial

DAMATH

1 2

66x2y

4

-45y

-55x

3

3 4

2

5

-55x

1

6

0

7

78xy2

0

1

2

3

4

5

6

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

Score

Total

-xy2  (4, 3) 24000

-xy2 (2,3) (-15x)(-15x )

Move

0

24000

-15x – (-3x2y)

99

99

24000

-15x ÷ (-xy2)

0.6

99.6

24000

78xy2 ÷ (-55x)

-22.69

76.91

Note: When a DAMA chip take an ordinary chip, the score is doubled.

7

6

5

4

3

2

7

1

0 0

78xy2

6 5

Polynomial

DAMATH

1 2

66x2y

4

-45y

3

-55x

3 4

78xy2

2

5

1

6

0

7 0

1

2

3

4

5

6

7

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

Move

Score

Total

-xy2  (4, 3) 24000

-xy2 (2,3)

24000

-15x – (-3x2y)

99

99

24000

-15x ÷ (-xy2)

0.6

99.6

78xy2 ÷ (-55x)

-22.69

76.91

(-15x)(-15x )

0

24000

78xy2 ÷ 78xy2

4

24004

Note: When a DAMA take another DAMA, the score is quadrupled

Polynomial DAMATH Scoresheet Player BLUE

Player RED

Name:__RAMON, MARIO M_____________ School:___JGMNHS_____________________ Grade/Year:_____________________________ Move

Score

Name:_ARROYO, GLORIA________________ School:__ADMU__________________________ Grade/Year:_____________________________ Total

-3x2y  (2, 3) (-3x2y)(-xy2)

-15x – (-3x2y)

99

99

24000

-15x ÷ (-xy2)

0.6

99.6

78xy2 ÷ (-55x)

-22.69

76.91

624

-45y

-135

0

-55x

0

0

24000

78xy2 ÷ 78xy2

4

24004

66xy2 TOTAL GRAND TOTAL

Total

24000

24000

(-15x)(-15x )

78xy2

Score

-xy2  (4, 3)

-xy2 (2,3)

R.C.

Move

624

-135 24628

Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins

-58.09

OTHER RULES Use of calculator is allowed. A move [e.g. 25  (6, 3)] is good only at the most for one (1) minute including its corresponding entries in the scoresheet; while the game’s duration is twenty (20) minutes. It will be the responsibility of the arbiter to remind the player to make a move and write entries in the scoresheet. This will be done 10 seconds before the 1-minute time frame. If in case a player did not finish writing the entries in the scoresheet after 1 minute, the time will be stopped by the arbiter. This is to give the player time to finish writing in the scoresheet. The extra time is exclusive of the twenty-minute game duration. A player may consume the whole minute in taking chip/s and writing the entries in the scoresheet. A player is required to take chip/s when there is still time left (remaining second/s of the 20-minute game duration).

The game ends when any of the following situations occur: If no show of one player is declared after ten minutes. Repetitive moves of any or both players. A player resigns or refuses to move. A player’s chip is cornered. A player has no more chip to move. The 20-minute game duration ended.

The remaining chips have to be added to the respective player’s total scores. “DAMA” chip’s corresponding value is doubled. The player with the greater total score is declared winner for which he/she is entitled to one (1) point in the tally sheet of contestants or one-half (0.5) point in case of a draw. In case two or more players have the same number of winnings, their previous games will be considered. Whoever won in these games prevails. If a winner cannot be determined from these games, a 10-minute rematch shall be done. Players are not allowed to resign in the rematch. Point System (Adding the Scores in each Game/Rematch) shall be followed if no player emerges as winner after the rematch.

Only one scoresheet is allowed to be accomplished alternately by the two players whereby incorrect entries shall be their responsibility. In case of incorrect entries in the scoresheet, a player has to immediately call the attention of the competition facilitator by raising one’s hand, that is, after stopping the time. As determined by the said facilitator, the appropriate corrections will be done by the erring player inasmuch as the former’s decision is final and unappealable. The time spent in correcting the entries is exclusive of the 20-minute game duration. Scoresheets will be reviewed by a panel of reviewers. Corrections will be done to the wrong entries which were not checked during the game. A player must write entries in the scoresheet first before making a move. The player must pass the scoresheet with complete entries to the other player first before moving a chip or taking chips. This marks the start of the 1-minute time given to the player to write entries in the scoresheet and to make a move. Passing of scoresheet and making a move should be done almost at the same time.

Repetitive moves of any or both players.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A player’s chip is cornered.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

A player has no more chip to move.

0

1

2

3

4

5

6

7

7

7

6

6

5

5

4

4

3

3

2

2

1

1

0

0 0

1

2

3

4

5

6

7

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF