September 19, 2017 | Author: NguyenPhuongDang | Category: N/A
Các đặc trưng của phổ gamma Đặng Nguyên Phương
[email protected] Ngày 21 tháng 5 năm 2014
1
Sự hình thành phổ gamma
Phần lớn các đồng vị phóng xạ đều có khả năng phát ra bức xạ gamma với các mức năng lượng và cường độ khác nhau. Để ghi nhận phổ gamma do một đồng vị phát ra phải dựa vào tương tác giữa tia gamma với vật chất, ở đây chính là các detector. Do tương tác giữa vật chất trong detector với tia gamma rất phức tạp nên thay vì chỉ ghi nhận được 1 vạch năng lượng tương ứng với năng lượng gamma, ta sẽ ghi nhận được một phổ phân bố (spectrum) như trong Hình 1. Phổ gamma trong thực nghiệm là một sự phân bố liên tục của các độ cao xung (pulse height) trong đó có chứa các đỉnh năng lượng toàn phần có bề rộng xác định.
Hình 1: Minh họa phổ gamma lý tưởng (hình trên) và phổ gamma thực tế (hình dưới) ghi nhận được bởi detector Hình 2 mô tả một ví dụ sơ đồ hệ thiết bị ghi nhận phổ gamma. Các quá trình hình thành phổ gamma gồm có • Một tia γ (photon) có năng lượng E0 đi vào detector. • Các electron sơ cấp (primary electron) với tổng động năng E sinh ra trong vùng nhạy
1
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
(sensitive volume)1 bởi sự tương tác của photon với vật chất (chủ yếu là các electron môi trường) trong vùng này. • Các electron sơ cấp này lại tiếp tục tạo ra một lượng lớn các cặp electron thứ cấp (secondary electron) − lỗ trống thông qua các phản ứng ion hóa hay kích thích. • Một tín hiệu xung có biên độ V được sinh ra ở đầu vào tiền khuếch đại (pre-amplifier ) với điên dung C. • Điện thế V được khuếch đại và biến đổi thành số chỉ vị trí kênh bởi Thiết bị chuyển đổi tương tự - số (Analog-to-Digital Converter − ADC) của Bộ phân tích đa kênh (MultiChannel Analyzer − MCA), một số đếm được cộng vào số đếm tổng tại vị trí kênh tương ứng. • Nhiều tia gamma đựơc ghi nhận và sự phân bố độ cao của xung được hình thành (phổ gamma).
Hình 2: Sơ đồ tiêu biểu cho hệ thiết bị ghi nhận phổ gamma
2
Đường chuẩn năng lượng theo kênh
Mục đích của việc chuẩn năng lượng (energy calibration) là tìm ra mối quan hệ giữa vị trí kênh (channel ) trong phổ và năng lượng ghi nhận tương ứng trong detector. Công việc này thường được tiến hành trước khi thực hiện việc đo đạc phổ của nguồn hay mẫu phóng xạ cần quan tâm. Việc chuẩn năng lượng được tiến hành bằng cách đo phổ gamma của một số nguồn phát gamma đã biết chính xác năng lượng, sau đó thiết lập mối quan hệ giữa năng lượng và vị trí kênh (ký hiệu là ch). Hàm biểu diễn sự phụ thuộc của năng lượng theo kênh thường có dạng bậc nhất E = A + B × ch
(1)
E = A + B × ch + C × ch2
(2)
hoặc bậc hai trong đó A, B và C là các hệ số thu được từ việc làm khớp.
1
còn gọi là vùng ghi nhận (detection volume) hay vùng hoạt động (active volume)
2
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
Hình 3: Ví dụ đường chuẩn năng lượng theo kênh được làm khớp theo hàm bậc hai (quadratic)
3
Các đỉnh đặc trưng của phổ gamma
Đỉnh năng lượng toàn phần hay còn gọi là đỉnh quang điện (photo-peak ) được hình thành bởi các tương tác mà ở đó photon bị mất toàn bộ năng lượng của nó bên trong detector. Sự mất năng lượng của photon có thể thông qua duy nhất một tương tác hấp thụ quang điện hoặc một chuỗi tán xạ Compton (có thể cùng với tạo cặp) và kết thúc bằng hiệu ứng hấp thụ quang điện.
Hình 4: Minh họa đỉnh quang điện
Vùng Compton phổ của các sự kiện nằm trước đỉnh năng lượng toàn phần được hình thành bởi các tán xạ Compton mà photon mất một phần năng lượng của nó trong detector. Chỗ dốc của phân bố Compton được gọi là cạnh Compton (Compton edge), đây là vị trí ứng với năng lượng cực đại mà photon có thể chuyển cho electron trong một tán xạ Compton (ứng với góc tán xạ 180◦ ). Khu vực nằm giữa cạnh Compton và đỉnh quang điện được gọi là vùng tán xạ nhiều lần (multiple Compton scattering hay Compton valley) được hình thành do các sự kiện tán xạ nhiều lần bên 3
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
trong detector hoặc do các photon tán xạ với góc nhỏ trước khi vào và mất năng lượng hoàn toàn bên trong detector.
Hình 5: Minh họa vùng Compton Đỉnh thoát đơn khi các photon có năng lượng lớn hơn 2me c2 = 1.022M eV (với me là khối lượng nghỉ của electron) đi vào trong detector, chúng có thể tạo ra các cặp electron-positron thông qua hiệu ứng tạo cặp. Các electron và positron này sẽ nhanh chóng được làm chậm trong môi trường. Sau khi được làm chậm, các positron sẽ kết hợp với các electron tạo ra sự hủy cặp (annihilation), quá trình này sẽ tạo ra hai tia gamma với cùng năng lượng 0.511M eV , những tia gamma này có thể tiếp tục tương tác với vật chất trong detector hoặc thoát ra ngoài. Trường hợp một trong hai tia gamma hủy thoát ra ngoài sẽ tạo nên đỉnh thoát đơn (single-escape peak ), đỉnh này nằm cách đỉnh quang điện một khoảng đúng bằng 0.511M eV (tương ứng với năng lượng tia gamma thoát ra khỏi detector).
Hình 6: Minh họa đỉnh thoát đơn Đỉnh thoát đôi Tương tự như trường hợp của đỉnh thoát đơn nhưng trong trường hợp này cả hai tia gamma hủy thoát ra ngoài tạo nên đỉnh thoát đôi (double-escape peak ), đỉnh này nằm cách đỉnh quang điện một khoảng 1.022M eV (tương ứng với năng lượng của cả hai tia gamma thoát ra khỏi detector). Ngoài ra, trong trường hợp mà cả hai tia gamma đều bị hấp thụ, tương tác sẽ đóng góp vào trong đỉnh năng lượng toàn phần của phổ ghi nhận. Đỉnh hủy trường hợp này có thể được xem như là trường hợp ngược lại của hai đỉnh thoát. Trong trường hợp này positron được tạo ra và hủy cặp ở môi trường bên ngoài detector, một trong hai tia gamma hủy lọt vào detector và tạo nên đỉnh hủy nằm tại vị trí ứng với năng lượng 0.511M eV . 4
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
Hình 7: Minh họa đỉnh thoát đôi
Hình 8: Minh họa đỉnh hủy Đỉnh tán xạ ngược được hình thành sau khi tia gamma tán xạ với một góc lớn (∼ 120◦ −180◦ ) với vật chất môi trường xung quanh detector và sau đó bị hấp thụ trong detector. Tổng năng lượng của đỉnh tán xạ ngược và cạnh Compton sẽ bằng với năng lượng của đỉnh quang điện, bởi vì cả hai đều là kết quả của tán xạ Compton góc lớn của tia gamma tới. Các sự kiện đóng góp cho đỉnh tán xạ ngược chỉ khi tia gamma mất năng lượng của nó trong detector, còn đóng góp cho cạnh Compton khi electron mất năng lượng của nó trong detector.
Hình 9: Minh họa đỉnh tán xạ ngược
5
Đặng Nguyên Phương
4
Tài liệu nội bộ NMTP
Các đặc trưng của đỉnh phổ gamma
4.1
Dạng của đỉnh
Dạng chi tiết của các đỉnh trong phổ gamma là quan trọng nếu chúng ta muốn diện tích đỉnh được tính một cách chính xác, đặc biệt là đối với các detector có độ phân giải cao (Hình 10).
Hình 10: Minh họa tính diện tích đỉnh phổ gamma được ghi nhận bởi detector nhấp nháy Trong các tính toán đơn giản, đỉnh phổ gamma thường được xấp xỉ theo dạng phân bố Gauss (x − x0 )2 f (x) = Aexp − (3) 2σ 2 trong đó A là độ cao đỉnh, x0 là vị trí của đỉnh và σ là độ lệch chuẩn của phân bố đỉnh. Tuy nhiên, trong nhiều trường hợp ta có thể thực hiện các mô tả chi tiết cho đỉnh phổ bằng cách sử dụng phân bố Gauss có hiệu chỉnh để mô tả phần đuôi ở phía năng lượng thấp của phân bố. Phần đuôi có thể xuất hiện do nhiều hiệu ứng vật lý, bao gồm sự thu gom điện tích không hoàn hảo trong một số vùng của detector, hay do các electron thứ cấp và bức xạ bremsstrahlung trong vùng thể tích hoạt động. Hình 11 trình bày một ví dụ cho sự mô tả đỉnh gamma cùng với đuôi của nó, bên cạnh phần mô tả đỉnh đối xứng phân bố dạng Gauss theo như công thức (3), ta còn sử dụng thâm một hàm khác để mô tả phần đuôi phân bố được tạo ra do việc thu thập điện tích không hoàn hảo bên trong vùng nhạy của detector 1 x − x0 x − x0 σ t(x) = exp erfc + (4) 2 β σ 2β Trong đó, β là tham số làm khớp mô tả độ dốc của phân bố, x0 là vị trí của đỉnh, σ là độ lệch chuẩn của phân bố đỉnh Gauss và hàm sai số bù trừ (complementary error function) erfc(x) có dạng Z ∞ 2 erfc(x) = √ exp(−t2 )dt (5) π x Sự khác biệt giữa đuôi ngắn và đuôi dài trong cấu hình là đuôi ngắn có nhiều hiệu ứng quan trọng hơn trên dạng của đỉnh gần đáy của nó, trong khi đuôi dài thường có thể được xem như là phần đóng góp thêm vào của phông nền. 6
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
Hình 11: Minh họa làm khớp phổ gamma với đuôi phân bố, hàm G(E) mô tả phân bố đỉnh dạng Gauss, hàm T (E) mô tả phân bố đuôi và hàm B(E) mô tả phân bố phông nền dạng bậc thang
4.2
Dạng của cạnh Compton
Trong một số trường hợp chẳng hạn như khi xây dựng đường chuẩn năng lượng cho phổ gamma, nếu số lượng nguồn chuẩn không đủ, ta có thể sử dụng thêm thông tin năng lượng của cạnh Compton để chuẩn. Để làm được điều này ta cần phải làm khớp để xác định chính xác năng lượng tương ứng với cạnh Compton trong phổ. Về mặt lý thuyết, cạnh Compton có dạng bậc thang (step function), tuy nhiên do sự thăng giáng trong việc ghi nhận năng lượng, dạng của cạnh Compton là sự kết hợp giữa phân bố bậc thang và phân bố Gauss x − x0 f (x) = y0 + A erfc √ (6) 2σ
4.3
Độ phân giải năng lượng
Một trong những đại lượng quan trọng nhất để đánh giá phổ năng lượng của tia gamma đó chính là độ phân giải năng lượng (energy resolution) R=
∆E E
(7)
Đại lượng này được sử dụng để đánh giá sự nở rộng đỉnh phổ do đóng góp của các nhiễu cũng như quá trình thu thập điện tích không hoàn toàn và sự mất mát năng lượng không giống nhau tại cửa sổ vào của detector cũng góp phần làm mở rộng đỉnh phổ, do đó làm giảm khả năng phân giải của detector. Độ phân giải năng lượng không chỉ phụ thuộc vào bản thân detector mà còn phụ thuộc vào các thiết bị điện tử đi kèm theo (chủ yếu là bộ tiền khuếch đại) theo công thức 2 2 2 ∆Etotal = ∆Edetector + ∆Eelectronics
(8)
Đối với các detector bán dẫn, độ lệch chuẩn cho thống kê của điện tích được tạo ra bên trong detector do quá trình hấp thụ gamma được cho bởi √ (9) σdetector = F J 7
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
với J là số trung bình các cặp electron − lỗ trống được tạo ra và F là hệ số Fano (Fano factor )2 . Độ phân giải tương đối của detector có thể biểu diễn qua công thức √ FJ Fw Rdetector = 2.35 = 2.35 (10) J E trong đó, w là năng lượng trung bình cần thiết để tạo 1 cặp electron − lỗ trống (vd: đối với germanium là 2.96eV ) và E là năng lượng photon để lại trong detector. Độ phân giải tốt không những giúp ta nhận biết được các đỉnh kề nhau, mà còn giúp ghi nhận được các nguồn yếu có năng lượng riêng biệt khi nó nằm chồng lên miền liên tục. Các detector có hiệu suất bằng nhau sẽ có kết quả là các diện tích đỉnh bằng nhau, nhưng với những detector có độ phân giải năng lượng tốt thì sẽ tạo nên các đỉnh năng lượng hẹp và cao mà nó có thể nhô lên cao vùng nhiễu thống kê của miền liên tục. Các phổ so sánh được đưa ra ở Hình 12 minh hoạ rõ về ưu thế của các detector có độ phân giải tốt trong trường hợp có nhiều các đỉnh năng lượng gamma gần nhau cần được tách ra.
Hình 12: So sánh độ phân giải giữa hai loại detector NaI(Tl) và HPGe
4.4
FWHM
Đại lượng thường đuợc sử dụng để đánh giá độ phân giải năng lượng của đỉnh phổ đơn năng là bề rộng toàn phần tại một nửa chiều cao (full width at half maximum – FWHM). Nếu giả sử rằng đỉnh phổ có dạng phân bố Gauss như mô tả trong công thức (3) với σ là độ lệch chuẩn của phân bố, ta có thể dễ dàng tính được mối quan hệ giữa F W HM và σ √ F W HM = 2 2ln2σ ≈ 2.355σ (11)
F W HM thay đổi tùy thuộc vào loại detector cũng như năng lượng gamma tới, giá trị của F W HM của một số loại detector thông dụng như 2 Hệ số Fano được đưa ra để hiệu chỉnh giữa phương sai của giá trị quan sát được (N ) với phương sai của thống kê Poisson lý thuyết, hệ số này đặc trưng cho mỗi loại vật liệu. Giới hạn thống kê của độ phân giải được tính theo công thức Rstatistical limit = 2.35(F/N )
8
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
Hình 13: Minh họa FWHM • NaI(Tl): giá trị F W HM tương đối tại đỉnh 661.7keV (137 Cs) là vào khoảng 6 − 7%, tương đương với khoảng 40keV • HPGe: có giá trị F W HM tại đỉnh 1332keV là vào khoảng khoảng 1.5 − 2.0keV . Độ phân giải năng lượng của các detector germanium tinh khiết đối với bức xạ gamma thường là nhỏ hơn 1%. Các giá trị của F W HM thường được làm khớp theo năng lượng hoặc theo kênh với các dạng sau √ F W HM = A+B×E (12) √ F W HM = A + B E (13) F W HM
= A + B × E + C × E2 + . . .
(14)
Hình 14: Ví dụ F W HM được làm khớp theo năng lượng với dạng hàm bậc hai (quadratic)
4.5
FWTM
Như đã đề cập đến trong Phần 4.1, dạng của đỉnh phổ không hoàn toàn tuân theo phân bố Gauss. Một phương pháp để chỉ ra đặc trưng của phần đuôi của một đỉnh phổ là sử dụng bề
9
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
rộng toàn phần ở một phần mười chiều cao (full width at one-tenth maxium − F W T M hay F W.1M ) của đỉnh năng lượng toàn phần. Đối với các detector có chất lượng tốt với đuôi nhỏ, F W T M sẽ nhỏ hơn hai lần F W HM (tỉ lệ F W T M/F W HM đối với đỉnh dạng Gauss thuần tuý là 1.823). Ngoài ra, một chỉ số khác cũng thường được sử dụng là tỉ lệ của bề rộng toàn phần ở 1/50 chiều cao (F W F M ) trên F W HM , thông thường được đo ở 1.333M eV . Các detector germanium tốt có giá trị của tỉ lệ này nằm giữa 2.5 và 3.0, tỉ lệ này là 2.376 của dạng Gauss thuần tuý.
Hình 15: Minh họa các giá trị độ phân giải đỉnh F W HM , F W T M và F W F M
5 5.1
Phông nền phổ gamma Phông nền Compton
Vùng phông nền Compton xuất hiện khi năng lượng toàn phần của photon tới không được hấp thụ hoàn toàn trong detector và thoát ra khỏi detector với chỉ một phần năng lượng của nó được ghi. Các đỉnh năng lượng riêng phần này xuất hiện trong phổ gamma như là các sự kiện ngẫu nhiên trước đỉnh năng lượng toàn phần và được gọi là miền Compton hay lưng Compton (Compton continuum). Tỉ số của diện tích đỉnh năng lượng toàn phần trên lưng Compton được gọi là tỉ số đỉnh/Compton (peak-to-Compton hay P/C ratio). Đối với các detector hiện đại chăng hạn như các detector germanium, tỉ số P/C thông thường nằm trong khoảng giữa 40:1 và 60:1 đối với đỉnh năng lượng 1.332M eV của nguồn 60 Co. Các detector có kích thước lớn có thể đạt được tỉ số P/C gần 100:1. Để làm tăng tỉ số đỉnh/Compton, người ta đã xây dựng các hệ thống khử nhiễu Compton (Compton suppression). Do năng lượng thoát ra thường dưới dạng các photon, cho nên ta có thể thu lại năng lượng thất thoát đó bằng một detector khác. Detector này thường là các tinh thể có kích thước lớn làm bằng một vật liệu rẻ tiền hơn chẳng hạn như NaI, plastic,... và thường được gọi là detector che chắn (shield detector ). Bằng cách thiết lập mối tương quan giữa các sự kiện trong detector ghi nhận và detector che chắn với các thiết bị điện tử đo thời gian (timing electronics), các sự kiện được ghi nhận trong detector che chắn có thể được sử dụng để loại bỏ 10
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
đồng thời các sự kiện trong detector ghi nhận. Kết quả sẽ làm triệt tiêu vùng lưng Compton của phổ gamma được ghi nhận, và làm giảm phông một cách đáng kể (Hình 16). Trong một số hệ thống khử nhiễu Compton, tỉ số P/C có thể đạt tới 800:1.
Hình 16: So sánh phổ của nguồn 60 Co trước và sau khi triệt Compton, detector ghi nhận làm bằng tinh thể Ge và detector che chắn làm bằng BGO (bismuth germanate) Ngoài tỉ số P/C, người ta còn sử dụng một tỉ số khác để đánh giá phông nền Compton, đó là tỉ số đỉnh/toàn phần (peak-to-total hay P/T ratio).
5.2
Phông nền bức xạ hãm
Bức xạ hãm (bremsstrahlung) là bức xạ điện từ sinh ra tương tác giữa electron nhanh với trường Coulomb của hạt nhân. Bức xạ hãm cũng sinh ra trong trường hợp các hạt mang điện khác bị làm chậm trong môi trường vật chất. Tuy nhiên, bức xạ hãm chỉ đáng kể đối với các hạt nhẹ mang điện. Bức xạ điện từ này có phổ liên tục và phần lớn nằm ở vùng tia X. Sự sinh ra bức xạ hãm càng đáng kể khi năng lượng của electron càng lớn và môi trường làm chậm có nguyên tử số Z càng lớn. Ví dụ như electron có năng lượng 1M eV sinh ra bức xạ hãm đáng kể trong chì (Z = 82) nhưng không đáng kể trong nhôm (Z = 13). Sự xuất hiện bức xạ hãm sẽ làm vùng phổ có năng lượng thấp bị dâng cao. Điều này làm tăng phông nền của các đỉnh có năng lượng thấp và ảnh hưởng đến độ chính xác của phép đo. Trong trường hợp của nguồn 28 Al, do electron phát ra có năng lượng cực đại 2.8M eV nên làm tăng phông vùng năng lượng thấp đáng kể (Hình 17).
5.3
Phông nền phóng xạ tự nhiên
Môi trường xung quanh chúng ta luôn tồn tại các hạt nhân phóng xạ. Các hạt nhân này có thể được tạo ra do tia vũ trụ tương tác với các hạt nhân khác trong bầu khí quyển xung quanh Trái đất, do sự tiến bộ của khoa học trong lĩnh vực hạt nhân, hay có nguồn gốc từ thuở tạo ra vũ trụ. Thông thường, các hạt nhân này thường có hoạt độ thấp. Tuy nhiên, do sự tồn tại khắp mọi nơi của chúng, trong cả mẫu đo, ngay bên trong và xung quanh detector nên cũng ảnh hưởng đáng kể đến các phép đo các mẫu môi trường có hoạt độ thấp. Việc nắm vững các
11
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
Hình 17: Phổ bức xạ hãm của electron có năng lượng cực đại 2.8M eV của
28 Al
tia gamma do các hạt nhân phóng xạ phát ra sẽ giúp chúng ta có những hiệu chỉnh cần thiết khi xác định diện tích của những đỉnh gamma mà chúng ta quan tâm. Hình 18 trình bày phổ phông nền phóng xạ tự nhiên được đo bằng nhiều loại detector khác nhau.
Hình 18: So sánh phổ phông nền phóng xạ tự nhiên của các loại detector khác nhau Nguồn phóng xạ trong môi trường được chia làm hai loại: nguồn phóng xạ tự nhiên và nguồn phóng xạ nhân tạo. Các nguồn phóng xạ tự nghiên gồm hai nhóm: nhóm các đồng vị phóng xạ nguyên thủy (có từ khi tạo thành trái đất) và vũ trụ và nhóm các đồng vị phóng xạ có nguồn gốc từ vũ trụ (được tia vũ trụ tạo ra). Nguồn phóng xạ nhân tạo do con người chế tạo bằng cách chiếu các chất trong lò phản ứng hạt nhân hay máy gia tốc hoặc từ các vụ thử nghiệm vũ khí hạt nhân Phóng xạ có nguồn gốc do bức xạ vũ trụ các bức xạ đến từ vũ trụ, chủ yếu là từ ngoài hệ Mặt trời của chúng ta, có thể là chùm hạt photon năng năng lượng cao, hạt muon, hay chùm hạt nặng mang điện. Các bức xạ này tương tác với các hạt nhân nitơ và oxi trong tầng cao của khí quyển và tạo ra các hạt nhân phóng xạ như 3 T, 14 C, 7 Be,. . . với tốc độ không đổi. Các hạt nhân phóng xạ này theo nước mưa đến bề mặt của Trái đất. Mặc dù mật độ các hạt nhân phóng xạ này nhỏ nhưng xét trên toàn cầu thì lượng hạt nhân phóng xạ này không nhỏ. Chúng 12
Đặng Nguyên Phương
Tài liệu nội bộ NMTP
có chu kì bán rã dài nhưng phần lớn đều nhỏ hơn chu kì của các hạt nhân phóng xạ nguyên thủy. Trong số các hạt nhân phóng xạ do bức xạ vũ trụ tạo ra, ba hạt nhân phổ biến nhất là 3 T, 14 C và 7 Be. Phóng xạ nguyên thuỷ các hạt nhân phóng xạ nguyên thủy có từ lúc tạo ra vũ trụ. Đa số các hạt nhân này có chu kì bán rã rất lớn, khoảng hàng trăm triệu năm. Nếu tính từ lúc Trái đất được tạo thành, các hạt nhân nào đã trải qua khoảng vài chục chu kì bán rã thì hầu như không còn tồn tại nữa. Chỉ những hạt nhân có chu kì bán rã lớn, so sánh được với tuổi của Trái đất thì vẫn còn tồn tại như 238 U, 235 U, 232 Th và 40 K. Ngoại trừ 40 K, các sản phẩm của các hạt nhân này cũng không bền nên chúng tiếp tục phân rã tạo thành ba chuỗi phóng xạ trong tự nhiên. Phóng xạ nhân tạo Trong quá trình sử dụng phóng xạ, hơn một trăm năm nay, loài người đã đưa vào tự nhiên những hạt nhân phóng xạ mới, đóng góp vào lượng phóng xạ tự nhiên. Các nguồn phát phóng xạ nhân tạo có thể kể đến như là các nhà máy điện hạt nhân, các vụ thử vũ khí hạt nhân, các khu chứa chất thải phóng xạ, chất thải rắn hay đồng vị phóng xạ đánh dấu,. . . Những hạt nhân phóng xạ này ngày càng tăng trong những lần thử vũ khí hạt nhân và trong những sự cố hạt nhân. Tuy nhiên chúng có chu kì bán rã ngắn hơn nhiều so với các hạt nhân phóng xạ nguyên thủy.
Tài liệu [1] K. Debertin, R.G. Helmer, Gamma and X-Ray Spectrometry with Semiconductor Detector, North-Holland, Amsterdam (1988). [2] G.F. Knoll, Radiation Detection and Measurement, 3rd Edition, John Wiley & Sons Inc., New York (1999). [3] Nguyễn Thị Cẩm Thu, Khảo sát phông nền và tối ưu hoá hiệu suất cho hệ phổ kế gamma HPGe trong phép đo mẫu môi trường, Luận văn tốt nghiệp Thạc sĩ (2010). [4] Josef Uher, Greg Roach, James Tickner, Peak fitting and identification software library for high resolution gamma-ray spectra, Nuclear Instruments and Methods in Physics Research A 619 (2010) 457-459. [5] G. Gilmore, Practical Gamma-Ray Spectrometry, John Wiley & Sons Ltd., West Sussex (2008) [6] www.gammaspectrometry.co.uk [7] http://nsspi.tamu.edu/nsep/courses/basic-radiation-detection/ gamma-ray-spectroscopy/gamma-ray-spectra/gamma-ray-spectra-page-two [8] https://wiki.uio.no/mn/safe/nukwik/index.php/KJM-FYS_5920_Lab_Exercise_2_-_ Student_Report
13