Crystal Ball La Biblia

July 25, 2020 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Crystal Ball La Biblia...

Description

!" # $

$

$

$

&

%

$

& # '

#

' $ #

+ *(, &! +

!

" #

%

&

'

(

)

$

%

+ ! + ( ! (+!

! (! +.

( +& , '- ! /! 0 -' 1!1 + *(

*

,( 2334

!

+ ! ! +(

!,/ &-5 ,(

!

(

$$

+

/

! + ( ,( 0

( ') ! !" #

#

6

7 " :

+ # ,

6

"

,

, ,

! ":

8 8 (

)

"

9 :

( <

(

"

! $7

"

-

-

8

(

) ;

,; ,

%

"

;

; :!

( < , #

%

; * +

&

7

" !

:,

(

# /

=#

:

! $7

"

;8

) = = 1

= :; #

=

7 = ?

7 +

>

= !

>= 7 ; 1

)

=

+ *(, &! +

+ ! + ( ! (+!

! (! +.

( +& , '- ! /! 0 -' 1!1 + *(

,( 2334

!

+ ! ! +(

1. TABLA DE CONTENIDO @1

-

21 B1

( ! +-(+

+-, ,(

!! + A (+ C

41

-, !- C

D1

" (- *

E

D1@1

" (- * 0(+(,

D121

" (- *

F1

E

( %(! &!

E

" - &! ! .+ @3

A1 C1

4

! +!(

( % 9 (-(

! +!(%-

' !

C1@1G9 #

H

@3

@@

@@

C121G9 #

H

C1B1G9 #

7

@@ !

C141G9 #

H @2 7H

C1D1

;

7

!

C1F1G!7

;

@4

C1A121

; =

C1A1B1 0

*(,

7

@4

@D 2333H

C1E1G9 #

E1

@B

; H @4

C1A1@1 0

C1@31

; H 7H

C1A1G9 #

C1C1G! !

@2

= G9 +( @F

; @D 7 H @D =

7

= H @F

@B

@31

,(9 (,

(+-

(

, 5 ,( @C

@@1

,(9 (,

(+-

(

&-5 ,( @C

@21

!

, !,/ -

@C

@21@1

G9 I

!( !,/ -

@2121

G!7

;

@21B1

G!7

@2141

G9 #

=

H

!

8 =

G!7

@21F1

G!7

@21A1 = 7

G! H

@21C1

G!7

@21E1

G!7

= =

H 7

2B H 2A 2C

; =

8

=

H

BB

H

B4

BF ;

@21@3121

!

@21@31B1

%

@21@31D1

-

@21@31F1

! -

@21@31A1

(6

@21@@121 !,/ -

BF

!

BA

!:

BC

!:

BA

BE BE

=

(" ( %

@21@@1@1

& =

@21@3141

@B1@1

23

B@

@21@31@1

@B1

(6 H

7H

@21@31

@21@@1

@E

H 2B

@2141@1 G!7 @21D1

H @C

(

BE % ! ! .+ (

%, (, (" ( % 1J & (0 + -

(" ( % 1J *

(

43

= ,

K 43 :K 44

FC 8

FE

@B1@1@1

:&

FE

@B1@121

7

@B1@1B1 -

!:

FE

FE

@B121

A3

@B121@1

=

A3

@B12121 (

7

@B121B1

A3

@B12141 @41

A3

7

+'

A3

(

(,,

@41@1

(+8L

@41@1@1

=-

:& 7

@41@1B1 !

-

!:

AD AE

@4121

C4

@4121@1

=

@412121 (

C4

#

(8 =

7

E3

@41B121

@D1

CD

CF

@41B1@1 - ; =

@41B1B1

M A@ A@

@41@121

@41B1

A@

ED 7 ; 0, &N /5( 0, &N @3A

@33

2. INTRODUCCION !

=

) ) > :

) 7 )

=

= ; >

=

= ;; =

= ( =

)

(

#6 > ; 1

:

)

>

)

:

=

!

7

)

=

)

1 % =

7 P

8 >

!

=

! : =

=

7 7 )

=

1

>

: ( 6

7

(6 O>

7 =

&

=

7 > ) = 7 )

;

=

7

>

3. RESUMEN #

=

:

7

) =

Q =

=

(6

; = 71

:

: : =

7

: =

;

7

#

)

:

=

= = :

:

>

7 =

! 7 ;

> =

= : =

1

>

:

%

Q) =

;

= )

=

7> =

;

: 8 = ; ; Q > >

; > = 8 7

>

7

4. ABSTRACT -:

: :

:

: =

: : : )

:

=

R

: :

=

=

= :

: : :

=

=

P : : P Q :

:

1 (6

:

;

:

> <

: :

: : P P

< : =

= ;

;

= :

:

: P >

< P 1

= :

;

; : ;

S =

S

: :

=

==

< 1

P: :

P: : !

Q:

==

5 :

> :

P: :

:

5. OBJETIVOS 5.1.

OBJETIVO GENERAL

!

8 O

> )

; =

7

!

!



P

=

! =

!

(

7

=

=

;

&!(1

OBJETIVOS ESPECIFICOS 8 ;



=

) ;

)

)

5.2. •

:

$

:

!

7 ) ) 7 P ) 7

=

1

=

!

) =

; 1

!

= =

;

: ;

=

!

! (

7

O 1

6. JUSTIFICACIÓN =

7

=

=

=

= 1

= 7

;

=

=

; =T; !

=

P

Q =

7

; 7

#

=

=

1

!

P =

)

=

=

7 =

7

>

= =

>:

( =

=

=

71

=

7 6

>

)

> 7Q

;

1

%

#

8

) = =

7

> !

$

= 8

7 >=

7

7

: ; 7

=

1

7. ALCANCE DEL PAQUETE ( = = =

=

= = ) > = 1

7 7

( :

=

;

7 ) = ) =

: ;

)

= )

; = = =

!

) = ;;

> =

# >

> =

=

7 ;

) 8 ;

=

;

)

= 7

=

7

=

= 7 T

1 >

= =

1 + =

> = =

=

=

)

= 1

8. CONCEPTOS BÁSICOS 8.1. ! )

¿Qué es riesgo? 7

=

6=

=

=#

#6 > 71

; =

) ;

) =

1 =

;

)

;

> =

= )

8.2.

>

= >

=

; =

>

=

1

¿Qué es un modelo? =

=

>

;

=

: 8

7 )

=

=

%

> 7

=

!

=

1

;

=

> = ; ! =

)

#>

1 )

>

=

;

7

= =

=

7 8

;

= =

7

) )

7= 7

>

= 1

=

7>

;

Ilustración 1. Ejemplo de Cristal Ball en MS Excel

!

: ; =

) =

:

:

= )

)

=

; 6

>

) =

=

=

8.4.

1

¿Qué sucede durante una simulación? 7 8 = =

= ;; 1

T = ; ; !

L

M

2333 = )

> ! =

(

=

;8 7

=

1 (

;

>

1

#

=

=

;

¿Qué es la simulación Monte Carlo? 7

=

=

= >

8.3.

7 =

; ; =

;

; 7 ; 1

1 2333 L = #

= =

; : 8

7M ; 81

1 ; ; 7

)

8.5. De donde obtiene la Simulación Monte Carlo su nombre? 7

! =

; = >

( !

>

7

> Q

1 7

; ;

7

>

)

=

T

=

8.6.

1 % 8 = > @> 2> B> 4> D = 1 ( = L=1 1 = > 1M

F =

; =

#> =

> = ; ) = = >

>

¿Cómo analizar los resultados de una simulación?

%

: 8 =

> =

;

7 >!

=

@1

1 ! =

>

> )

2333 = =

7 =

7

1 7

@

! 8

=

7 1

=

7

;

:

>

)

= ;

: = )

;; > 7> = ; 7 ; 1

= = 1

= 7 7 = #

1

Ilustración 2. Cuadro de diálogo - Define Forecast

8.7. ! =

¿Qué es la certeza o certidumbre? ;

=

7 > = 1 (

=

8

)

=

1 % = ;# = 6

> ! 1(

; =

=

;;

8.7.1. Grafica de sensibilidad: %

; = =

7> =

7

=

L

)

;

M =

G9 # H (

;

;

1 % ;

=

1

8.7.2. La gráfica de sobreposición: (

=

T = # 8

G!

= : 8

8> 1 ( 1 (

=

)

:

= ;

M H1

; L

8.7.3. Gráfica de tendencia: %

= ;

7

)

=

1 G!7

6

;

= H

8.8. ¿Cuales son los beneficios de realizar un análisis de riesgos con Crystal Ball 2000? !

8

!

: ;

>

= ) ! =

=

=

=

1 >

= =

+

7

:

6

: 8 7

!

1

(6 T =

= : 8

; > :

!

;

!

1

!

)

1 ! =

! > =

8.9.

1

7

= 1 + 7Q ; )

= L%1(8 1 0 =

M

! =

) ;

# )

= = )

1 7 7

=

=

=

= ;

1 : 8

=

>

=

=

; 1 ! =9 = : ;

7=

6 = ;

;

8 : 8

;

8 = > ;

;

:

¿Qué es Optimización?

= 7 =

%

)

7 )

= =

> =

(6 >

(6 1 = ! =

>

= ;8

; 1 ; ;

8.10. =

>

=9

7= = 1

=

;

¿Que son los pronósticos de series de tiempo? 7

:

8 7

= 7

:

# =

=

=

7

) 1 (

J

= K 1

9. VERSIONES (

= )

7

= 5 ;2> 1

= !

> )

=

!

= =

=

;

!

! •

(

7



( %

7



(



(

! %

! =9

7 % =9 > 7

L L

+ = $

L

2: = ? ? PPP1

!

> !

=

1

!

> ! %

= = >

)

M

M

! ! - ;M # P

!

# 1 ( =

= =

= =

=

:

;

: 8

! ( •

7

#

* 7 6 K > = 1( 71



*

7

!

( ) 7 #

:

(

=

= # 5 ; = $1

= = %

7

= 7 71 % 7 ; :

= >=

;

U:

= = # ;

= ; > )

: ;

5 ;1 =

7 ;

>

P > P

) ;

= )

) = >

)

$1

=

= ;

:

=

7

= # # $

: ; ) 1 7

7

J

7

1 %

;#

;# ; @43

: ;

= -

7

=

$1 =

= •

! %

=

=

7

=

% = •

=9

%



=

1M > = %



L

! - ;> = L ! !

; M

% =

=

; 7 %

-

>

• 7

8 L

= =

) =

M =

! 7

7 L

7 :

7 =

7

1= > 1

M

A

10. REQUERIMIENTOS DE HARDWARE •

%

%



F4



B3



! U,



- 8

)

433

M

, =

;

L(

7

!

! M

C336F33 = 6 7

11. REQUERIMIENTOS DE SOFTWARE %

8

! P



> ) = 1

= 5 L M > 5 P +- 413 5 > 5 P 2333 % P V%%

( = 5 •

(6

(6= ;

P

; , 7 = =

D13 413

EC> 5

P

< > 5

EA> 2333> 2332 LV%M >

• •

;

%

L

M =

=

M

12. COMO USAR CRYSTAL BALL 12.1.

¿QUÉ HACE CRYSTAL BALL?

!

6

= (6 P



=

=

;

= = 1!

7

=

;

= 1 ! > )

:

J 5: U K

=

> =

1 (

)

8 (6 >

6= = •

: 8

=

;

7 ) 1

=

!

=

;;

T

= •

%

;

= : 8

; = = 1

;

= 1

)



6=

=

' &!" $ = 7 = ;;

8 = 1

)

;

8

=

!

&> ! )

;8

;

8 =

1

12.2.

¿Cómo abrir el programa?

!

P >

=

:

: 8 ;

= =

(6 (6

; ;8 1

% ;

=

= # >= 7

> ;8 ; O1 ( = ! >

!

= 8 7 ! %: 1% ; ! > = : = : ; = ; ;

> )

; ; 7 ;; P

>

: ;

;8

8 =

8 = T =

;

1 7

T !

1

= !

7> :

(6 M 1

L=

! ; =

= ; )

Q 7

=

:

Ilustración 3 Barra de tareas ejecutando Crystal Ball

; +! 1

!

T

Ilustración 4 Ubicación de Crystal Ball en el menú Inicio

! %: 8 = ; #

16 >

) !

1 (

;

= ) )

; ) = 7 L L M > ! >

M

> ; 81

; = 8

1

¿Cómo Crystal Ball mejora Excel?

: 8 > = 7 = ; !

=

=

1

% :

12.3.

7

=

= (6 Q

(6 7

6

:

= :

) )

> =

1

= ; 1

8

(6

=

;

;

= ; 1% :

> !

T (6 1

Ilustración 5 Barra de Herramientas de CB

! = ; = T

=

;

; )

= !

:

= : 1

=

= 8

6 7

1 ;

;

=

Q

1 T !

(,,

(+-

L

!(

L

M > (" (! - , L

M 1

Ilustración 6 Barra de Menús de Excel con CB

(

T!(

L

M=

!

Ilustración 7 Menú Cell

(

T (" (! - , L 1

M > =

1

M

Ilustración 8 Menú Run

( : (

T ! 7 %

(,,

(+7 !

L

M >

:

1

Ilustración 9 Menú CBTools

=

=

12.4. (

¿Qué es un supuesto?

) ;

)

=

: 8 ; >

1

= = ( = =

;;

J = = ;

=

K)

1

> ! =

=

; = ;; ;

; 1 ( = 7

; = =

= 1

=

8 =

L!

%:

M >

>

=

0

(

;8 L

;#

M 1

7

=

;

=

¿Cómo definir un supuesto? =

=

;

>

>

;

)

;

1 %

=

1

12.4.1. ( =

; ; 7

!

1

= ;

!

(6

;

;;

(

6

8 = ;

=

! %: )

>

= =

1

8 ;

Ilustración 10 Hoja de Calculo del ejemplo CellPhone

%

=

=

:

;

=

)

;

; 7 J ; 7 !

=

7> KL

1 L!

L @@M =

M

= > ) @@M 1

;

1

Ilustración 11 Cuadro de dialogo Distribution Gallery

Ilustración 12 Distribución Triangular para la celda B11

1

= ;

T 1

) )

=

;8

=

=

= ;; 1 (

=

= )

8 = ! %: 1% L =

>

>

=

1

T U

=

6 ; >

=

:

>

; 7

: J

; =

K

M 1

Ilustración 13 Celda supuesto % Long Distance (B11)

; L @3M 1 = KL

J

: M 1 :

=

;

; 7 ; 7

1 ; ) )

=

= B43 7

= 7>

;

: ; 4F31 = 231

43

Ilustración 14 Distribución Normal para la celda B10

: =

;

= =

L

M )

1 ( 1

!

>

Ilustración 15 Celda supuesto Actual Minutes (B10)

(

=

=

7

!

1

12.5.

¿Cómo definir un pronóstico?

:

=

= = #> ) +

; 7

! > U

7

>!=

=

7 =

7

,

= 7 7> = 8

) )

1

7

J

; 7 &E> > = = : ;

>

M :

L @4M 1 %

7

KL

&

%

L!

# (6 1 = ;

; 7

M

1

@4

&

= =

!

1

L! =

1 ! =

= ;

; > *

+

)

=

=

)

0

%

1

(

) 1 Q

= =

1 (

M

;

=

LWM

Ilustración 16 Cuadro de dialogo Define Forecast

!

:

L!

M

:

;

>

)

)

=

7

=

!

1

Ilustración 17 Celda pronostico B14

:

=

12.6.

71

¿Cómo correr una simulación?

!

7

!

B

= : 8

1 (

)

=

>

=

%

= > U=

L

7 =M

BE3

;)

:

; 7 J %

; =

3

;

!

= = "

J 5: U K 1 ; %

1 L

http://www.decisioneering.com/models/beginner.html

=

=M ! 1

: BBX1

K

Ilustración 18 Nuevos valores para el modelo al correr la simulación

(6 = 7 W41F@1

: 8 W21DB1 (

:

!

; 7 =

=

: 8 7 ;

=

KL

=M 1

) =

U=

= #

7 L M >)

>:

433

; 7 J , =

>

)

B3X

=

>

M )

= 1

1

8

= 8

;

=

;

K

7 %

7

1

;

%

;

= ;

= % X

J %

:

J (8

L,

7K

7 T

)

>

Ilustración 19 Cuadro de dialogo Run Preferences

#(

T

6

@3333

:

; 7 J (8

K

L, M

L = (8

= 7M 1

; =

= U

7

Y: 1

; =

Ilustración 20 Gráfica de pronósticos para la celda Cost Savings (B14)

12.7. ¿Como analizar los resultados arrojados por el cuadro de pronósticos? 7 8

= 1

>= #%

=

;

7

=

1 (

=

7 = ; = 7

; > = ; =

=

; = 6 =

= =

T *(,

#

=

= 7 8 =

) ; >

=

1

; )

)

L 7

M

> =

! %:

= 1

=

Ilustración 21 Cuadro de estadísticas para la celda B14

( =

= 7 = 8 ; ) W@1A31

=

;

: 1 %

8 =

C3X

:

Ilustración 22 Cuadro de Percentiles para la celda B14

(

: ;

) )

: :

=

=

= ; !

7

W41F@ ) = 1

! ;

: ; =

:

; 8

L

; !:

M 1

12.8.

¿Cómo usar el cuadro de sensibilidad?

=

;

=

;

; = %

)

1 6

= : > :

!:

=

> =

# ; 7

; $

=

J !

M

7 ! ; KL

= 1 %

1

Ilustración 23 Cuadro de Sensibilidad medida por el rango de correlación

= L! % '

% L% > ; M ;

71 M >

:

;

% &

= ;

)

= ; 7

= A41B X

M > : ;

= 7

$ L

!

:

1

Ilustración 24 Cuadro de Sensibilidad medida por la Contribución a ala varianza

;

) 7

> : ;

)

)

)

>

:

"

7

: ) >

=

1%

!

)

=

>

8 8

( +

!

=

T

=

>

:

T ) 8

=

> 7 >

=

)

Q

1

:

=

8 = > =

=

=

;

)

= >

1

¿Cómo generar un reporte?

% %

=

) ; = 1%

= =

12.9.

; =

= :

7 ;

:

; 7 !

J !

! =

1

1 KL!

,=

M

Ilustración 25 – Cuadro de diálogo Create Report

= )

) =

)

=

= =

)

7 ; ; = LZM 1

? ;8 (

=

)

$ LZM > LZM > LZM >

;

=

= (6

7 ; !

;8

LZM Q ;

>

: =

8 8 =

7

; $

=

) )

8

#( 71 ! > = =

1

=

7 ) 7 2DM 1 = >

L =

T >

: 1 ; :

6=

)

= :

:

;

=

; =

)

12.10.

Otros recursos

12.10.1. =

Distribution Fitting : 7 = 7 J

; ;

) & 0

=

= ;

K 1

Ilustración 26 Galería de Distribuciones

Ilustración 27 Cuadro de dialogo Fit Distribution

= > ; 7 J &K

12.10.2. :

Correlated Assumptions ;

=

7 71 ( : ;8 (6 1

: 8 ( ; 7

>

7

)

>

= :

%

: )

=

=

)

1

Ilustración 28 Cuadro de dialogo Correlación

12.10.3. ( !

Precision Control %

7

!

=

) =

= %

T 1 (

= !

1

) 8 = 7

; 7

Ilustración 29 Cuadro PrecisionControl

12.10.4.

Overlay Chart

)

=

=

= T =

1(

:

=

7 7 =

;

;

Ilustración 30 Cuadro de dialogo Overlay Chart

> J : ; 7 T (

K

12.10.5. *

Trend Chart

+

T =

=

;

; 1 (

T

=

:

=

7 ; ;

> = ;

(

Ilustración 31 Cuadro de Tendencias

12.10.6. =

CB Tools =

=

) =

!

12.10.7.

=

7 :

1

Example Models

!

: ;8 =

8

= #

8 = : T

) = 1

= 7

12.11.

EJEMPLOS DE APLICACIÓN DE MODELOS

12.11.1. ( & B3

PRIMER EJEMPLO. “Futura Apartments”

8 = > = 1

= 7

) ;8

;

= 8 7

= =

71

Ilustración 32 Hoja de Calculo “Futura Apartments”

!

;8 •

WD33 =



( T B3 43

) = = =

= 8 = = 71 ( : ; L ! = = (6 1 > : ; J 5: U J >

=

=

• =

:

7 = 8 >

) ; = M >

W@D1333 >= ;

= )

;

: )

: 8

= )

: )

=

=

; ;8

: 8 # =

1 /

)

; )

71 !

!

;

1

Correr la simulación %

7 •

;

=

,



8 =

7

6= *

8

6

7 ! 8 = " ! + =

; (

=

7

* = # LD33 = 1

= #

>

=

7 + : ; M >

T

6

1

Ilustración 33 Pronósticos de Ganancia/Perdida para FA

• •

+ (6 =

= % :

8

7

= >

1

= 7 7> [- ;1

7

> ; , [ =1

= =

>

(

= =

7 =

:

=

=

=

1 ( = = ;; > 1 !

W4AD3 = = )

7 ;

& =

= ;;

=# 1 ! ;

= ;# = =

W2D3 > )

= W2333 WA3331

8

Determinar el beneficio :

=

!

= ;

=

;; 1 % = •

%

= ;

;

> ;;

(



%

=

> 7

$ ; 3L

;; ; 8

=

) •

=

= M

)

7

=

Ilustración 34 Probabilidad de Ganancia para FA

( = :

=

;

;; = 7>

>

)

:

L! =

M

;

=

8 W3 =

: 8 =

1 ! 7 =

7 ; +

& 7 B> W3M

L0 ;# )

=

=

6 W2333>

=

;

>

1 -

=

:

EBX1

1

Como usa Crystal Ball la simulación de Montecarlo (

= : :

; = 8 )

;

=

1 T

) T

7

# ;

=

1

)

• •

T =

( )

T

7

:

6

(

7

(

= U

7

= !

8 ;

=

=

1, =

>

; =

6

= •

7 1 =

: ; 1

=

;# = 8 1

%

;

=

6 =

7

; ) 7

6

!

! =

; ) 1 (6 = ; )

: 8 ;

)

)

;

8 = ,

[,



=

=

;

1

• •

7 =



!

;

=

1 : 8

8 =

7

12.11.2. ( 6

SEGUNDO EJEMPLO. “Vision Research”

8 =

7

: !

: :

(

=

8 =

=

)

1

)

*

, ; 1

:4

7 =

* > = = > = =

= * P> ) = = 76 ;8

;

= 1 ( = $ =

; & )

*

, ;

: = = > = ;

= =

=

= = &

;

, = 1

> =

;

!

: : ! U

) #6

=

1

) 1 ( = 1 ! 7> $

=

!

* P =

=

1 %

; •

; 8 = !

: 8 * P =

4

;8 ! : 8 ! [ (6

7 '

>

= =

T

!

[%

[

= =

>

http://www.crystalball.com/models/pharma.html

* , 7 2B1

:=

=

!

Ilustración 35 Hoja de calculo ejemplo Vision Research

(

: 8

=

;

)

*

,

:

1 Definir supuestos (

!

>

;

= ; )

; :

7 @A

0 ; ;

; :

= 7

G!7 =

=

; ) =

=

= = U

8

=

; ;

=

=

U ;

) 1 %

>

= > 0 !

L ;

)

= ;;

7

= 1 ( : 8 = ;; ) ! * P1

; 7 ; >

)

7 DM 1 H1 (

;

6

= ;

7 ; 8 = > * , : ;

( =

8 = > =

6=

= =

;

7

1

Definir Testing Costs. La Distribución Uniforme : > * ! * P = D13331333 = = 1% ) = ;; ! =

, ;

: : > ; ; > J WB13331333

> * J -

;

, !

6 > 8

=

=

:

7

K 7 6 ; 7 = $ =

; )

W@313331333 WB13331333 W = ; K >* , : ) W D13331333 1

7

=

) !

; ;1 = 8

7 ;

7

;; %

; ;

1 = U

=

;

1 %

7> =

= =

! • •

!D (

T

> : =

!

1(

; : J

= 7 ; $ ) ,

: -+ =

-

Ilustración 36 Cuadro de dialogo “Distribution Gallery”



;



;

7

( '

,

(

J

;

7

K =

Ilustración 37 Cuadro de dialogo “Distribución Uniforme”

) >

!D ; = = 1 1 ; 71

; ; ; 7 6 1 * WB13331333 ) = ; 7 •

(

; = ; = ) !

>

= ,

: 6 = !

; B

=

= WD133313331 = = > L

) 7

= ( ,

= : •

%

WB13331333> =

= +

; = >

J ;

: 8 + K =

> =

; = T

: 8

M 1 )

; L8

! =

M 1

*



(

( =

; D

=

= ; L-

WD13331333> ! M 1

;

; =

6

=

• 7

8

; ) 7 2F

>

:

:

:

Ilustración 38 Distribución Uniforme para la celda C5

;

7 > = 7> !

; =

1

> 7 2F1 =

B •

= = = #>

!

=

D

7

!D ) 1

: 8

Definir Costos de marketing: La Distribución Triangular *

, !

: =

;

* P>

=

;

=

= = $ = ; = = ; > * W@C13331333>

=

& =

1 (

< =

=T;

1 , : = W@F13331333

W@213331333 =

;; 1

* !

,

: <

>

7 )

U

=

; 7 ; 7 6 >

=

=

; 7 = ;;

;

1 % !

=

!

<

L

<

M •

!F



; =

= 7

:

; $

J •

;

J

;

: ) ,

7 -

! -+ =

1 (

1

K

• (

J

;

7 -

K =

Ilustración 39 Cuadro de dialogo “Distribución Triangular”

:

= = ; ;

7 7

) ;

=

=

; 7

1

2A>

7 = =

1 ! = =

• ( ,

(

; @2

=

= : •

W@213331333> ! <

=

%

=

= ". ; 1

@F> ( !

= < •

; @C =

!

/

W@F13331333>

%

(

) # =

*

$$ 0 (

;;

=

=

W@C13331333>

6

=

<

• ;

7

;

=

8

1

Ilustración 40 Distribución Triangular para la celda C6

7> !

)

@F •

@2 =

@C1

: 8

Definir pacientes curados: La Distribución Binomial

) ;

=

$1 * ! * P ) = # >

&

=

; ! * P> * , : ; ; @33 = , : = ) & = ; = = = 23 = > ) T 1 ( = ; > 23X = ; 7 ! * P= $1 * , : = # = ; = ) = 8 #6 2DX1

%

; > J = = ; = G* , : = = > * , : 7 ; ) = ; ; T = L@33M 1 %

U

=

K > * >)

: #6 &

;

=



,

7 ; 7Q ) 6 L2DM

J %

2DX1 ! ; ; 7

H1 =

K >

T =

!@3



;

= 7

; •

(

'*

= ;

7

• •



( ) D3XM 1

* =

=

$ =

)

+ = = ;;

1 L&8 31D

Ilustración 41 Cuadro de dialogo “Distribución Binomial”



; L =

7

$1M 8 >

6

= ;; 6 1

=



=

1

; L

0 ( 2DX 312D

; ) = =

6= @>

3 =

8>

= * ; =

;

% ;; : )

, = = )

= ;; 313B>

T

BX1

• •

; ) =

;

&

@33 =

>

= ) * , : @33 = 6= ; 7 ; 1%

= • •

(



(

; 312D

= =

2DX =

=

;;



=



(



( =



@33> =

; @33

= =

&

$

@33 =

)

1

:



;

7

; =

8



Ilustración 42 Distribución Binomial para la celda C10

7> !

T

@33>

= &

)

3 =

1



=

: 8

Tasa de crecimiento: La Distribución Personalizada *

, : : 4313331333 = 3X DX $ ) ! * P ;

6

> =

)

=

8

=

7 =

;

1 <

2DX

6

=

= ;

=

(

)

: =

) =

= * P

! (

1 ( DX

; J ; ;

,

= = K

7 ; 1 % =

= ( =

7

#

=

;; ) 7 =

=

=

:

;

= @DX1 = 1 !

;

)

=

; > :

= ; =

0

; =

7

;

7

; =

7

>

1

=

= =

>

B1 =

7 =

=

= >

1

=

;

) > *

T

=

=

%

=



!

* P1 % =

U

!@D



;



= 7 ;

7

L%

M



( ) ; 8

; 7 B@ ) )

> 1

7 % =

=

1 +7 8

Ilustración 43 Cuadro de dialogo “Distribución Personalizada”

%

= •

(

; 3X

(

=

= •

%



(

3X

; DX

(

=

= •

%



(

( ,

=

DX

; ADX

=

=

=

=

: *

,

;;

) =

7

= =

* =

7

:1

• ;

7

3X

DX =

1

Ilustración 44 Distribución Personalizada para C15

% •

(

; U@DX

(

= •

%



(

= @DX

; UDX

( %



(

( ,

=

7

=

=

= •

7

DX

; 2DX = :

= 2DX

DX

=

;

) =

7

= =

* =

7

UDX

= *

@DX

• ; ;

7

= =

$

+ 1

@DX :

1

Ilustración 453 Distribución personalizada para C15 (2 Supuesto)

%

; 7 : 8

=

=

T ;

=

1 ( 7 !

)

=

=



1 =

: 8

Definir penetración en el mercado: La distribución normal ( =

= =

<

)

7

=

= *

,

; *

7 , FCX

FX

:

=

2X1 J + ; = ; 7 7 =

;

7 :

CX K

) =

= =

= ;8

7 >

@3X1

(

> CX> =

; =

1

) > =

<

DX> =

=

=

* J =

, <

:

7 K 1 %

% 7



#

1 ;

7

=

; U

=

; =

!@E



= 7



;

7 +

• (

J +

;

K =

Ilustración 34 Cuadro de dialogo “Distribución Normal”

:

=

)

=

=

;

7

7 •

= = =



%



(

(

C133X> =

=

7

; 2X

1

=

!

; CX CX =

(

=

2X =

7

1

• •

; 7 ) =



%



(



(

= ;

8 7

; > ; 1

=

; DX =

= = 1

=

= DX )

> ;

)

= 7

=

• •

;

7

; =

8

1

Ilustración 35 Distribución Normal para la celda C19

7> ! ;

)

7

) = =

Definir pronósticos

;8

DX ) : 8

CX 1

1

= # U

U= 1

=

=

*

U = 1(

7

,

; ;

: =

= 7 L!2BM=

>

=

;; = ;; 1 (

>

> = ; ! * P1

= =

=

)

L!2@M

;

Calcular el beneficio total !

=

=

71 (

>

;

= 1 % 1

U= = •

;

= =

: 8

;

= =

; = #

= L!@EM

7

;

= # > = 1% (

= U=

T

( ; 7 ; ;

= !@F\!@E\!231 ! = $ L!@FM = = L!23M 1

1 =



;

!2@

(

=

7

=

: J % = = ;

=

; 7

+ = 1

= ;

= 7 1( ; 1 %

1

; ;

=

" = > : 8 ;

) >

Ilustración 36 “Definir Pronostico” para C21



%



(

; J )

K

=

#

>

=

8



=

: 8

Calcular el beneficio neto ;

=

• •

=

;

>

!2B (

=

;

: 8

& ; L!2@M 1 & M >

=

;

L!@@

*

M > L!AM

;

>

& (

U= T

; + L!DM)

= :

;

=

;

% (

= = ] L!@@Q !2@U!AQ U!4U!DM

1(

L!4M !



U= ;

L!@@ :

: 1

; ;

= 7

"

Ilustración 46 “Definir Pronostico “ para C23

+

;

=

=

) = 7

)

= = #

1 •

%



(

; J

K



= #

= >

: 8

: ,

*

= :>

;

;

=

=

7

: 8 Q

= )

71 Correr la simulación ! ;

7 7 1

!

> ) T

= 7

=

=

T1 1 =

7> = )

> = %

7

=

)

T 7



(

8

1

= 7

%$(

1 8 = >

T

• •

-% = 7>

J , = ; D33

.' '

&[

% '/

(

'

K = &L

T

1 6

M >



(L



= 7 '/



(

M J

'

0 T

1L = )

!

(

$' M

; EEE

• Ver los cuadros de pronósticos ;

) = 1

;

= ;

7

=

> 6 = 7 = 7

:

1 (

; 1 = (

(

;

L0

%

( **

M =

$

>

7 BC

Ilustración 47 Cuadro de Pronostico para “Net Profit”

= 7 2"

* "

> =

7

T

=

%

1 7

=

+ ,&

> =

=

8

; 7 ;

U=

1

;

7

=

; ;

7

T =

;

1 ( = 7 = ) @F

7

+

@F = 1 ( =

,

)

1 )

= ;

= )

7 ;

7 BC>

=

> !

7

=

U= 6

8

7 1 T

= )

1

Interpretar los resultados

Entender el cuadro de pronóstico ! * T

=

=

,

:1

;

> > ) 6

6= 8

)

( W@41A : + ( =

6

= =

! T ; 1 ( @33X> ) = ; 1 , )

= ;

;

=

; 1

=

T

; > =

8 =

:

; ; ;

) : 8 1 =

= =

) 8

=

>! =

: > )

7

;# >

=

) )

1 =

:

(

7

7 BC> WB414> 1 = 7 1 %

7

=

=

=

6 6

7>

T 1 (

7

=

= 6

1 =

>

T

6

=

) 71

Determinar el nivel de certidumbre :

=

= =

1

* ;

,

: )

; = ;

%

) ;

= •

(



(



%

! )

= ; 3

7

+

-;

( > = ; 1

; W313

=

; AE1C3X = = =

J +

=

%

AE1C3X1 ( = ; = ) 6 L@33X AE1C3XM 1 *

,

; =

>=

=

=

:

%

=

K >

=

;

=

=

;

; ) * ; ;

: ) W2133313331 ! 1

) ,

:

1 2312X ;

!

Ilustración 48 Pronostico para “Net Profit” con valores positivos



(



%

; 2

=

! ;

7 BE> ! W213

; 1

Ilustración 49 Pronostico para “Net Profit”

*

,

: =

;

;

W2133313331 * , = 7 1

= !

AB1F3X =

; ) ; = >! •

(



%

= ; 4

: :

;

= ; ) W4133313331

= ;

* , W413331333 = =

: = ; = =

> 7

=

; ;

1 1

=

!

=

W413

Ilustración 50Pronostico para “Net Profit” (2)

(

=

7 ;

; =

! =

J & FFX1 ! W4133313331 * * P = 1

7 4@ ; ,

:

= ;

13. CRYSTAL BALL TOOLS :

!

= 1 %

=

*

) 7

: =

= 7> )

7 = ;

> 7

) =

(

:

1 D

)

!

=

7

:& ! ( -

7

!: =

-; = ( 7 7

; >

=

5

http://www.crystalball.com/crystal_ball/cbtools.html

8> ;

>

8

13.1.

Herramientas de Montaje del modelo 7

13.1.1. : &

Batch Fit :

F

= ! !

>

;

1

(6 T! : &1

13.1.2.

(

= ;

:

=

=

>

Matriz de correlación

: = )

) = Q

= ;8

6 : =

= >

>

; 7> = = 1

)

=

13.1.3. (

6

>=

8 = 1

Tornado Chart

=

= ; ;

:

6

>

;8 =

>

http://www.crystalball.com/spotlight/spotlight10.html

)

; 8 =

6 1

13.2.

Herramientas de análisis

13.2.1. ( =

Bootstrap

#

=

=

7

? =

= =

1

>

>

=

= 1

7>

(

7 )

:

;

13.2.2.

;

=

7

=

>

>

Escenario de decisión =

=

6

;

7 7Q 71

13.2.3.

Análisis de escenarios >

= ( =

) =

) )

>

;

=

13.2.4.

=

;

= =

=

=

1

= 7>

=

7>

>

7 1

Simulación Bidimensional: =

=

=

;

)

=

7

> =

7 1 (

;

)

=

;

=

7> 7

;

= $

= ;

6=

L

M > )

7 =

)

; >

L: 67

>

M >

;

T

= ;

L

7

T = M

14. ANÁLISIS DE LAS HERRAMIENTAS :

=

= 8

=

1 :

L

7

=

= 1

Herramientas de Montaje (Setup Tools)

: ;

!

=

M > = ;

7

%

8 =

8

=

14.1.

; )

8 * ;

7

14.1.1.

= *

1

Batch Fit o Herramientas de serie

Ilustración 51 Asistente de Batch Fit

(

#

=

;

> L

=

;;

= >

> #

; >

= =

T =

1M = = :

= )

7 )

;; T ; 1 =

7

> ; 1

8 (

7

=

: > = 7 = 8 1

( =

7 = ; =

;;

= > ; = ;

;

= 8

> !: U

Q ;

=

:

= = ;

>

=

=

=

> )

7

7 ) 7

:

)

;

> = )

>

8

=

8

(6 >

)

Q

=

>

1

Ejemplo (

=

; ! 8

; Q= =

>

%

7

;

8

( = ;

8

=

; @EEC ;

=

= =

= ; >

:

; 233B> =

1

:& = !

; >

: !-

T

=

(6 > :

: &>

=

@

1 B

; (

=

2 =

1

B

=

> =

=

1 >

= >

! :

=

;

;

7 : 8

1

= 1 = 7 ;

7 7

=

;;

=

> 1

%

B

B ) =

( =

1

= >)

;

7

=

3 = 7

>=

; =

=

:

>

! (6 > =

7

=

;

7 1

=

=

=

@1

: 8 =

=

T

=

;

7

:

1

(

T,

= 7

=

; 7

7 ^

!

=

T

>=

= 7 , :&

8 >

=

=

=

> =

1 %

:

=

1

Ilustración 52. Vista “Statistics”. Observese que el coeficiente de variación es del 9%.

:

7

=

=

=

>

=

8

=

!

:

J

7

: &K

= $

=

=

! % 8

8 ;

> = 71

> 8

7>

;

>

)

1 ( = =

7 ;

) L&

M= ; 7 =

= WD1233>

) = :

;

= E@>2X 1

Ilustración 53 . “Frequency chart” del ejemplo

=

6

7

14.1.2.

Matriz de correlación

Ilustración 54 Matriz de Correlación

) = > >

= =

7

U=

6

; =

=

7

; = =

=

7

= 71

6 = )

; 6

;

=

>

A

(6

7 7 =

(

7

7

$

)

;

Cárdenas Héctor, Curso de Econometría, capitulo 2. Profesor de la Facultad de Ciencias Económicas de la Universidad Nacional de Colombia

6=

M >

= L 7 = 8 =

= Q=

=

; 7

6=

= /] @2>B2@4CEEC _ 3>3EACDFCB V@ _ 3>42F4442@ V2_ 3>4DBF4CFA VB -

;

V@

=

V2

6=

7

VB

6=

7

; = /

67

6=

7 =

7 Q

)

:

;

6= )

;

=

7

=

7

7

!

; 6=

>

>

;

7 7

6

;

=

> Q

)

=

6=

= =

= @

8

7 =

7C =

7 :

6= ;

> )

8

)

;

= ;

=

)

= 7

6

= 1

;

6

) 7 > 6

>

; ; 6 ) ;

1

Mide el grado de asociación lineal entre la variable dependiente (endógena) y la independiente o exógena, eliminando el efecto de las demás variables del modelo

! =

= 7 ;

> >=

> ( =

= 7 T != 7

>

;

:

;

= )

;

=

1

>

=

=

7

>

=

=

= >

=

T = 6 7

;

1

> =

= 71 7

: =

= $

= : 8 )

=

= > 7

; :

> 1

=

Ilustración 55 – Matriz de correlación

7> ! 8

>=

)

; 1

Ejemplo !

8 = >

= L >

6= 7

*

; > =

=

; 7

=

7 Q 1

=

7M

7

T

= %

! 8

81

8

! ;

!

7> (6

= =

;

: 8

> =

LEEEM

;

!

7 L 1

LK > = D33M >

K M >

,

7 7 L

= 7

J

K

M 1 =

7 =

; 7 DF1

Ilustración 56 Cuadro de EStadisticas

!-

>

7 =

; ;

;# ;

7Q

=

= =

=

:

8

=

1 (

$ =

>

>

=

8

233B

2332

7 2333

!

233@

2333

!

7 7

7

@>333 3>233 3>B33 3>@33

1 (

!

@>333 3>@33 3>B33

2332

@>333 3>433

233B

@>333

7

!

( = J

233@

7

; )

8 )

) K 7

;

>

= =

8

=

>

1 > !

7

7 1

= >

14.1.3.

)

7 =

) 1

Cuadro Tornado Chart

Ilustración 57 Asistente de Tornado Chart

(

:

= >

:

= ; >

; =

=

# >

>

:

=

1

) 7Q

) ;#

>

Q ;

=

7> )

=

= ;

= #

7

; ) ;

; ;

J =

;

; ; 7

>

= K J

=

( -

:

`-

#

K 1

=

=

;

7

!:

` =

!: )

=

!

=

:

) : 1

=

2D3

;

Tornado Chart ( = =

:

=

;

= >

$ 7 = )

= (

;

> 7=

=

= 6 ; > =

;

:

> 7

= !

; ; ;

>

:

71 ;

; =

= 7

7 Q=

;

7 )

= ; )

= > #

)

$ 81

(6

=

;

>

8 ;

7

7

6

7

= 7 71

;

7 6

= 1

=

=

=

; ; >

;

U

Spider Chart $

6 =

7 =

) ;

> ; :

6

= ;

=

;

=

> =

7Q

#

1 ! ) ) = ) $

; ;

=

71

Ejemplo: %

8 = : 8

)

; #

>=

; )

=

= ;

8

T

!-

1

>

;8

>

!: L=

> @

= BM 1

! ; =

L=

2

BM

1!

)

;

)

;

1 !

1

(

=

B

B L

; @3X

T

=

6 = 7M (

= 7

=

= 7

= 7

( # ; 1

= !:

=

!:

1 :

= 8

=

8

= -

= DM >

= =

!

L L

-

=

E3XM

!:

> =

=

:

1

!:

Ilustración 58 - Tornado Chart

Ilustración 59 - Spider Chart

(

8 = >

4

=

= ;

;

> =

;

;

-

!:

7 ; 81

= =

!:

; =

;

;

=

=

)

= ;

>

>

: >

=

=

71 8 6 @33X = ;

>

= = = 6 7 =

:

; :

1 ( 7

=

;

; 7

= ;8

;

= )

= ;

1

;

>

14.2.

Herramientas de Análisis

14.2.1.

Bootstrap

Ilustración 60 - Asistente para Bootstrap

( =

# 7

)

)

6 Q

: = 6

) >

;

7 = 1

:

#

;

) =

= =

!

>= ;

7

>

71

)

=

;

=>

=

> ;

>

=

6 = ;

7 >

#

=

=

1 7

;

;

=

;

7 ;

1 (6 (

;

# #

=

= ;

=

#

7 T

=

( =

> )# 1

;

7> ;

=

(

)

=

1 #

= 6

7 =

7

=

; ; > )

) :

14.2.2.

7

;

Q ) #

=

=

> 7

8 7 71

7

> = = ;

>

=

= =

7

7 M 1 % = ; 71

= 7

=

= U5:

) # Q

>

:

7 ; ;

;

; ;

= =

: =

71

; =

)

= > =

=

= = 6 # =

7 =

7 >

Q

T =

=

>

7

L

( # = # 5 6 > = ;

=

# =

= ; 7 =

7

;

El método de la Multisimulación

!

( =

7

; = =

1

> = 8 >)

> ;

Ilustración 61 – Comparación única simulación vs. Multisimulación Fuente: Tools tutorial

14.3. % =

Ejemplo: = =

8 = > )

;

>

(

) : :

= ; 8

(6 = :

; ) )

7 :

; ! =

= =

; 7

1

;

1 )

Q 8 = !

= =

> =

Ilustración 62 – Vision general Modelo “Planta energia nuclear”

!;

>

= 7

=

=

;8

)

1 6 =

=

=#

7>

7 =

# ) ( = = D33

=

2

T

B 7

=

=

# =

B

B

T

=

) # 1

=

) =

> = >

$

7

=

7

1! T,

= EEX>

=

=

= 1

1 >

1 =

@X

; ; 1 !

6

%

7

;

= > = 6

=

>

>

7

< =

>

:

> 7Q

=

1

=;

=

=

= ;

)

>

=

)

=

)

=

7

>

=

1

Ilustración 63 – Frecuency chart para la variable “Mean”

!

7

L 7 =

; (

M >

)

=

;

)

1

6 Q 7 7 ;

%

7 ) ;

>

;

7

71

= ;

= >

8 =

> >

6= $

7

!

B>3A

3>32

7

7

^

C2

,

3>C2

3>32

3>33

3>33

! 3>AC3

U U U U 3>3EA 3>3EA 3>3@4 3>@FB 3>@2B

@>333

U U U U U 3>3EC 3>3EC 3>2EB 3>3FA 3>@@E

@>333

7 (

U @>333 @>333 3>@CF 3>@A2 3>EEE

*

U @>333 3>@CF 3>@A2 3>EEE

333 3>BFD 3>@CF

^ @>333 3>@AD ! *

7

@>333 Ilustración 64

14.3.1.

Tabla para la toma de decisiones

Ilustración 65 - Asistente para la Tabla de decisiones

;

7 ) 8

; (

; ; 7

:

; 7

=

=

> > = ; =

= ;

1 +

; )

71 7

;

7

71

% )

) >

+

; > ;

= =

) = =

;

; 8;

= =9 =9

7>

= ! >

7 1

)

: J 7=

= : ;

Q

=

K) = 1E

;

;

J= 9

K

! 7>

Ejemplo ! ;

8

! 8

7 = 7 = =

; 7 = 8 %

; TJ

>

1

:

;

K

!

=

> T

T

EEE1



7 ;

=

:

! =

> ; =

T, 1

!

^1



= 7

!;8

7> 1

E

;

;

=

>

(

) ) 7> =

7



>

; =



;

8

=

!; =

> )

=

;

71

) ;

: !

: %

233312>

7 =

1



!

>

= 7

= •

; ) 7 )

71 !

=

=

1 =

1!

=

;

1 =

=

> 7 L=

$

;

;

>

;

) =

T D33M 1!

1

L3>44M

L3>4B@@@@@@M

L3>42222222M

L3>4@BBBBBBM

L3>43444444M

L3>BEDDDDDFM

L3>BCFFFFFAM

L3>BAAAAAACM

L3>BFCCCCCEM

L3>BFM

% L@BD33M

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @

% L@BCBB>BBBBBM

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 2

% L@4@FF>FFFFAM

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE B

% L@4D33M

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE 4

% L@4CBB>BBBBBM

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE D

% L@D@FF>FFFFAM

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE F

% L@DD33M

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE A

% L@DCBB>BBBBBM

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE C

%

3>C@ 3>C2 3>CB 3>C4 3>C4 3>CD 3>CF 3>CA 3>CC 3>CE E

L@F@FF>FFFFAM % L@FD33M

3>C@ 3>C2 3>CB 3>C4 3>CD 3>CD 3>CF 3>CA 3>CC 3>CE @3 @

:

2

B

8

D

F

;

;

7> 71

=

=

>

= 7>

7

;

>

7 $

T > L

1 7 6=

> >

) 1M

= 7K > > = = > ) = ; 1

7>

=

) >

8

>

# = J ;

= ;

= =

) Q

;

: %

= T

: 7

E

7 )

=

6

C

;

;# 7 ;

A

7 =

=

%

4

> ) 7 )

7 7= = 8

;

@3

= =

>

=

>

;

= ;

7

= = ;

7

G( H

;

= ) $

=

!

= ; =

;

= 7

; > ; >

; =

=

7 U

*1 1 = ;

7

(6

=

= $

> >

> a G 8

= 6=

;

G

7

; ;

=

H

>

G >

!= =

7

*

> = 7

=

7

;

7

742

> )

)

7 =

8 8

>

%

;

=

;

8 ;

% ;

=

= 7 J , K ) ; >

71 (

=

> = ;

7

7 8 @D31

; 8

7>

> = :

1

14.3.2.

Análisis de escenario

Ilustración 66 - Asistente para el análisis de escenario

(

=

=

=

7

>

= = )

7 ; = = ; 8 L@X1M

% =

= = EE

> =

7> )

= ;

=

>

)

) ! 7> =

L@XM

:

)#

=

= 1

Ejemplo ;

:

J = =

= > ;8

;

>

=

= =

=

K > = =

>

Q

: )

=

=

8

7

=

=

> =

= =

! !

= ;

: (

>

=

= (6 > T!> ;8 1

(

; ! =

8

7

7

=

: Q 7

= 7

= 7 3 @33 =

=

;8

: 6=

:

7 =

1

;

7 = ;

)

( =

)

1 ! >

=

)

1

7>

=

=

=

71

%

7

6 233B> =

; > = ) 8 1 /

=

)

@333

T

=

;

;

T

=

1 ,

8 = =

7 7Q

=

)

) : =

;8

= @333 3 @333

> ;

=

7> =

: ;

!

) = =

7Q

;

) =

6

7 : ;>

= ;

3:

8

K

; =

)

1 =

(

Q =

7=

J

= @33> =

=

@331

% = >

> =# =

=

= 76 1 % )

= = =

=

=

7 =

(6

EA

( =

(6

23331

) ) = (6 EA 2333> ) =

>

%

)

;8 ;

;

!

;

8 =

=

1

= = 7

>

=

1

:

:

=

7

1

(

= >

)

1 ( ; %

) ) >

>

=

8 =

;

=

7

= >

= )

7 =

= =

>

7 )

> =

7

1 A1 9

=

=

; 1 ! =

,

-

-

, <

$ =

7 L! 7

M

3>3@X

3>AD BBE@4EF>3DF BEEE>ED3FE

DX

22X

3>32X

3>AD DEED@FE>42B BEEE>EC242A DX

22X

3>3BX

3>AD 4F2BA4F>@B@ BEEE>E23@BE DX

22X

3>34X

3>AF D2C2BCB>3@E 4333>@3EAD

DX

2@X

3>3DX

3>AF 444CF4D>AAA BEEE>ECFC34 DX

2@X

3>3FX

3>AF 4AA3B4F>ADD BEEE>E4D@

FX

2@X

3>3AX

3>AF DCA@@BA>C4D BEEE>EAEBCD DX

2@X

3>3CX

3>AF 4B3B@@@>AB@ 4333>@3@F2F DX

2@X

3>3EX

3>AF D4F4C2E>@CA BEEE>E3342F 4X

2@X

3>@3X

3>AF 4E3B@24>@2A 4333>@@BBCB DX

2@X

3>@@X

3>AF 4EACAB4>FA4 4333>344ED

4X

2@X

3>@2X

3>AF D@@4C24>BDC BEEE>E4B3FD DX

2@X

3>@BX

3>AF 44CFD@3>CFD BEEE>CCE242 FX

2@X

3>@4X

3>AF 4D@ABFF>E32 BEEE>CDFFE2 FX

2@X

3>@DX

3>AF D2F24@F>E4F 4333>3B2CEF FX

2@X

3>@FX

3>AF BCD2@BE>C

4333>342D4C DX

2@X

@>FDX

3>AC D4ABE@A>4EF 4333>34BEC4 DX

@EX

@>FFX

3>AC DDDBECE>42A BEEE>E2DCAD DX

@EX

@>FAX

3>AC DD3D32B>4D@ BEEE>EE3D4B DX

@EX

@>FCX

3>AC D22EDDD>E42 4333>3D4CE@ DX

@EX

@>FEX

3>AC 4CF4AEF>23B BEEE>E@4BF2 DX

@EX

@>A3X

3>AC 4CE3F43>F2D BEEE>EA@E3@ DX

@EX

@>A@X

3>AC 4FEE2@D>B2B BEEE>E3BFCE 4X

@EX

@>A2X

3>AC D3D4AFF>EC2 4333>@AEBEE DX

@EX

@>ABX

3>AC DFCBF33>AF@ 4333>2@@3FA 4X

@EX

@>A4X

3>AC 4AC33A4>E4

@EX

@>ADX

3>AC 44CC3FA>2D4 BEEE>E3F4C

DX

@EX

@>AFX

3>AC DDE2CD3>EA4 4333>3F22@F DX

@EX

@>AAX

3>AC 4@E3D4B>3EA 4333>@@@DDF DX

@EX

4333>@@@CE4 DX

@>ACX

3>AC D3@@BC@>EDF 4333>3D33E

FX

@EX

@>AEX

3>AC DC2@42E>A4B 4333>@4DACA DX

@EX

@>C3X

3>AC 4FE@D4C>4DC 4333>3DE@D2 DX

@EX

@>C@X

3>AC 423@@C4>E42 4333>2B@BAA DX

@EX

@>C2X

3>AC 4A4B43B>22

BEEE>E4ABE@ 4X

@EX

@>CBX

3>AC D@2ABCB>EB4 4333>3DE@CD FX

@EX

@>C4X

3>AC DB2DD34>BF2 4333>@2DF4E DX

@EX

@>CDX

3>AC BFAFD3B>3F@ BEEE>CCE4CE DX

@EX

@>CFX

3>AC 4CEA@AA>B2F 4333>3BA3A

DX

@EX

@>CAX

3>AC D3D2@F4>4AF BEEE>AE24DE DX

@EX

@>CCX

3>AC 43AC244>2FC BEEE>EB@@@@ FX

@EX

@>CEX

3>AC 4DEB3C3>B@2 BEEE>E@34F4 DX

@EX

@>E3X

3>AC 42D2@DF>B3@ BEEE>E4D3FF DX

@EX

@>E@X

3>AC DDBED@E>F

BEEE>ACAAAF 4X

@EX

@>E2X

3>AC DCC44F4>@@@ BEEE>EAAFFA DX

@EX

@>EBX

3>AC D@CEBD2>E4D 4333>@4F@FA DX

@EX

@>E4X

3>AC F4ADCF@>3@C 4333>3@3CDA DX

@EX

@>EDX

3>AC 4FA33D@>44E 4333>3DF4@D FX

@EX

@>EFX

3>AC 4DBF@BA>A@E 4333>33FAAD DX

@EX

@>EAX

3>AC 44DBA33>FD@ 4333>3CB424 FX

@EX

( Q = ) =

) >

) =

=

=

= = ; ; ) )

) 7 ) =

7 7

14.3.3.

Simulación bidimensional

Ilustración 67 - Asistente para la simulación bidimensional

; 7 ; = =

; ;

)

=

= 7

;; =

) ;

1 (

=

= 7

)

= 71 (

;

;

= 1

= *

;

(

; >

> = $

;

; #6

)

)

= =

) )

Q

7>

=

; 7 =

;

=

; 1

;

;

= ; 7 ;

> =

1

%

: ; 7

=

>

@3

;

=

> ;

=

= 7

= ;

= = ; (

7 =

7

=

71 :

;8

7

> =

= ;;

;

=

Q 8

)

7 7

=

1 (

=

7 >

) = ;

;

= 71

=

;

Ejemplo =

: )

) !

) 8 : 8

:

10

> =

; ) =

= 8

1

Hoffman, F. O. and J. S. Hammonds. “Propagación de la incertidumbre en situaciones de riesgo: La necesidad de distinguir entre incertidumbre debida a la falta de conocimiento y la incertidumbre ocasionada por la variabilidad” Análisis de Riesgo, vol. 14, no. 5. pp 707-712, 1994.

(

=

= 7 ; :

: 7 (

7

;

:

7

8

7

=

T

=

= 7 ; >

7

;8

:

) = 7

= $ >

1! =

=

>

7Q % @>333 >

=

EEE>

T! > ; = 7 ;8 1

!

>

=

J , K T !

7

Q=

:

(6 ;

>

=

=

1

1 $ =

= =

8

=

7 =

@33

1

:

:

=

; =

7 =

; 1 : =

= 7

7 ;

=

71

=

3>C2

, <

LAM

3>C2

, <

LFM

3>C2

, <

LDM

3>C2

, <

L4M

3>C2

, <

LBM

3>C2

, <

L2M

, <

L@M 3>C2

3

= 7 L!

M 4AA323@>FEE 4D33B@4>@B D32CEB4>CC@ D@AAD23>FB4 DAD2A3C>C3F DAF@CAB>FE2 4C2DD32>C@2 D

,

* C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

3>32

3>32

3>32

3>32

3>32

3>32

3>32

3

3>33

3>33

3>33

3>33

3>33

3>33

3>33

3

U3>@3

3>@2

U3>3B

U3>3E

U3>3E

U3>32

U3>@@

3

2>EA

B>2A

2>A3

2>ED

2>CA

B>BB

2>C2

2

3>32

3>32

3>32

3>3B

3>32

3>32

3>32

3

3>AD

3>AF

3>AD

3>A4

3>A4

3>AD

3>AF

3

3>CA

3>CE

3>CC

3>CE

3>CC

3>CE

3>CE

3

3>@2

3>@B

3>@B

3>@4

3>@4

3>@4

3>@B

3

3>AE

3>AC

3>AE

3>AE

3>AE

3>AE

3>AE

3

% DXU

@3XU

3>AE

3>AE

3>AE

3>AE

3>AE

3>AE

3>AE

3

@DXU

3>C3

3>C3

3>C3

3>C3

3>C3

3>C3

3>C3

3

23XU

3>C3

3>C3

3>C3

3>C3

3>C3

3>C3

3>C3

3

2DXU

3>C3

3>C@

3>C3

3>C3

3>C@

3>C@

3>C@

3

B3XU

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3

BDXU

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3

43XU

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3>C@

3

4DXU

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

D3XU

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

DDXU

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

F3XU

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3>C2

3

FDXU

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3

A3XU

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3

ADXU

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3>CB

3

C3XU

3>CB

3>CB

3>C4

3>C4

3>C4

3>CB

3>C4

3

CDXU

3>C4

3>C4

3>C4

3>C4

3>C4

3>C4

3>C4

3

E3XU

3>C4

3>C4

3>C4

3>C4

3>CD

3>C4

3>C4

3

EDXU

3>CD

3>CD

3>CD

3>CD

3>CD

3>CD

3>CD

3

%2

= L

# = = M

7> =

-

) ; ; >

;

71

Ilustración 68 - Overlay Chart

( :

@3D

# =

=

7 =

= >

)

:

%2

#

-

)

Ilustración 69 - Grafico de tendencias

T =

=

)

=

=

>

; ; :

: =

$

=

=

)

;;

>

;

1

= $ ;

=

= =

; 1 ( =

;

= =

EEXM 1

@3F

7

7 =

= 7

) L

@X :

%2

#

-

)

Ilustración 70 - Trend Chart

=

=

)

: =

)

=

8

: >

8 # !

;8 ;

)

8

7> ) 8 7

>= #6 =

;

;

1

15. BIBLIOGRAFÍA Y WEBGRAFÍA •

(* + > " 2334>



( 1%



+>

@3A

,

0 + > 1Q%

QJ 3 4 1 @U234

J= , :1 Q@EEAQ% 1 @UFA ":

:

Q

J == , < K > ( 1 ": 5

K Q@ECCU K QF : (

1 233B1 ! ,

1

Q

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF