Crt i (Advance) Answer
April 22, 2017 | Author: Vineet Kumar | Category: N/A
Short Description
IIT...
Description
ANSWERS, HINTS & SOLUTIONS
CRT-I(Set-I) PAPER -2 ANSWERS KEY
ALL INDIA TEST SERIES
From Long Term Classroom Programs and Medium / Short Classroom Program 4 in Top 10, 10 in Top 20, 43 in Top 100, 75 in Top 200, 159 in Top 500 Ranks & 3542 t o t a l s e l e c t i o n s i n I I T - J E E 2 0 1 2
FIITJEE JEE(Advanced)-2013
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
ANSWER
ANSWER
ANSWER
1.
A
B
D
2.
D
A
B
3.
A
C
A
4.
C
A
C
5.
A
D
B
6.
C
A
B
7.
A
D
A
8.
C
B
B
9.
C
B
C
10.
B
C
A
11.
D
C
A
12.
D
D
B
13.
A
C
A
14.
A
D
C
15.
B
B
A
16.
C
D
D
17.
C
D
A
18.
C
B
C
19.
A (A) → (p, q, r, s) (B) → (p, q, r, s, t) (C) → (q, r) (D) → (q, r, s, t) (A) → (r) (B) → (p) (C) → (q) (D) → (q) (A) → (s) (B) → (s) (C) →(t) (D) → (s)
B A→q B→r C → q, r, t D → p, s, t A → q, s B → p, q, r, s C → p, r, s D→r A → (r) B → (p) C→ (s) D→(q, t)
A (A) → (p) (B) → (q), (r) (C) → (p) (D) → (q), (r) (A) → (r) (B) → (s) (C) → (s) (D) → (q) (A) → (p) (B) → (r) (C) → (q) (D) → (s)
1.
2.
3.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
2
Physics
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
PART – I SECTION – A
1.
V = Es ; 2sm E= qt 2 ⇒ V=
2.
3.
2s2m = 11.375 Volt qt 2
Static friction depends on tendency.
vA =
vB =
λL g 4 λ 3L g 4 λ
vB = 3v A
4. 5
When impulse of external force is zero.
sin30°
=
' sin 60°
v
⇒ '= 3 ' ω 'cos 30° = v cos 30° ω = cos 60°(v + ' ω ') = cos 60°(2v) = v ω = v/ =
6.
40 3 0.1 3
′ ω′
30° 120°
ω
= 400 rad/s
for x0 It will perform periodic motion under constant force 2E T2 = 2 mg2 Hence time period T = T1 + T2
T=π
7.
m 2E +2 k mg2
mv 02 R mv 0 B= eR
ev 0B =
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
3
a2 + R 2 = b − R b2 − a2 R= 2b 2bmv 0 B= 2 (b − a2 )e 8.
Here the total time is given T Time spent m the region is ( π + 2θ) Hence total time spent π + 2θ = T 2π
θ π + 2θ
π − 2θ θ
θ
9.
Torque of Internal force is always zero. All other quantities will vary.
17.
µ I 2kλ FB = FE ⇒ 9 0 u = q r 2πr λ ⇒ I= µ0 ε0u If the current a half then to maintain the force velocity should be increased by two times.
u quµ0I 2πr
18.
If we increase the radius by the times then there is no need to change m velocity
19.
If this case the only force is magnetic force u2 quIµ0 m = R 2πr 2πrum R= qIµ0
1.
Adiabatic dQ = 0 Isochoric dW = 0 Isothermal dT = 0 ⇒ dU = 0
λq 2πε0r
SECTION - B
Chemistry
PART – II SECTION – A
1.
OH
O
+CH3 − COOH →
-
OH ||
O
CH3 − CH OH →
H3C NH2
NH2
NH2
OH OH
-H2O H N
N −H O
2 CH3 ←
O
O
H2N O OH CH3
H3C
O
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
4
2.
O
O
O
O H3C
O
→
O
→
CH3 O Ph
O H
+ CN−
CN Ph
H
− CO
2 →
CH3
Ph OH
Ph
−CN−
Ph
4.
-
Ph
3 PhCHO + 2NH3 → Ph
-
Ph
Ph
Ph O
H
CN O
CN OH
OH
O
C
CN
O
OH
CH3
H
-
Ph
Ph
CH3
O
O
CH3
3.
O
OH H
H
N N
+3H2O Ph
Hydrobenzamide
As there in no asymmetric carbon in hydrobenzamide, it is optically inactive 5.
The rate equation of 3rd order reaction is
dx = k(a − x)3 dt As it is cubical equation, the above graph is cubical parabola 6.
Na2Al2SiO3. xH2O + Ca2+ → CaAl2SiO3. xH2O + 2Na+
7.
The dissociation equilibrium is
N 2O4 Moles at t = 0 Moles at eqm.
2 NO2
1 1–x
0 2x
2
' ∆n PNO 4x2 P kp = ' 2 = PN2O4 (1 − x ) Σn
.... ( i )
Σn = 1 − x + 2 x = 1 + x On putting values in eqn. (i), we get x = 70.7% For 50% dissociation x = 0.5 From (i) P = 780 mm Hg 10. 17.
Spontaneous change must have +ve sign for ∆S total. NH2
NH3
NH3 H2SO 4 / HNO 3
NO2 NO2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
18.
NH2
5
N2Cl H3PO2
NaNO2 / HCl Br
Br
Br
Br
Br
Br
Br Br
Br
SECTION - B 3.
The reaction at high temperature in the blast furnace is 2CuFeS2 + O2 → Cu2S + 2FeS + SO2
Mathematics
PART – III SECTION – A
1.
2.
Put x – [x] = y The equation becomes f(y) = (a –2)y2 + 2y + a2 = 0 ….. (1) Here 0 ≤ y < 1 Since the given equation has exactly one solution in (2, 3), so equation (1) has exactly one root in (0, 1). So, f(0) . f(1) < 0 ⇒ a2 (a –2 + 2 + a2) < 0 ⇒ a2 (a + a2) < 0 ⇒ a3 (1 + a) < 0 ⇒ a ∈ (–1, 0) If a = 2, 2y + 4 ⇒ y = –2 (not possible)
I=
∫
= −2
3.
4.
5.
2 1 2+ dx 1 1 1 1 x x x put 1 + + = t; − + 2 dx = dt 2 x x 2x x x 1 1 + 1+ x x dt
∫t
(
2
=
2 2x +c⇒I= + c. t x + x +1
)
(
)
d d g′ ( x ) e−3x > 3e−3x ⇒ g′ ( x ) e−3x + e−3x > 0 ⇒ (g′(x) + 1)e–3x is increasing function dx dx Now (g′(x) + 1) e-3x > (g′(0) + 1) ∀ x > 0 ⇒ (g′(x) + 1) > 0 ⇒ g(x) + x is an increasing function. 2
x cos α y sin α cos2 α sin2 α 2 1 2 1 − = + ⇒ − − + x y + ........ = 0 a2 b2 p p2 p2 a2 b2 p These lines are perpendicular 1 cos2 α 1 sin2 α b2 − a 2 1 ab ∴ 2− ⇒ . = 2 ⇒p= − − = 0 2 2 2 2 a p b p p ( ab ) b 2 − a2 x2
y2
Since |z – 6| = |z – 8| ⇒ z is locus of perpendicular bisector of points joining (6, 0) and (8, 0) ⇒ If z = x + iy ⇒ x = 7
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
6
6.
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
Tangent at x = π to the curve f (x) = |cos x| will be parallel to x–axis and cuts the curve f (x) = cos–1 (cos x) at B and C. AD = (π – 1) Area of ∆ABC = (π – 1)2
y A
π
1
B 0
C
0
45
D
45
1 π/2
π
3π/2
2π
x
2π–1
7.
⇒m=
8.
2 cos x + 2 sin x + 7 = 2 sin ( x + φ ) + 7 ⇒ −2 + 7 ≤ α ≤ 2 + 7
Suppose α =
1 1 1 ⇒ m ∈ −∞, ∪ , ∞ . α 2 − 7 2 + 7
(x cot y + ln cos x) dy + (ln sin y − y tan x) dx = 0 x cot y dy + ln sin y dx + ln cos x dy − y tan x dx = 0
∫ d ( x ln sin y ) + ∫ d ( y lncos x ) = 0 ⇒ x ln sin y + y ln cos x = ln k or (sin y)x (cos x)y = c 9.
Given equation 2x2 + 2mx + m + 1 = 0 D = 4m2 – 8(m + 1) ≥ 0 m2 – 2m – 2 ≥ 0 (m – 1)2 – 3 ≥ 0 ⇒ m = 3, 4, 5, 6, 7, 8, 9, 10. Also, number of ways of choosing m is 10. 4 Required probability = . 5 2
11.
( 8 − e )2 16 − e2 a2 + b2 + c 2 + d2 a +b + c + d ⇒ ≤ ≤ 4 16 4 4 2 2 64 + e – 16e ≤ 64 – 4e 5e2 – 16e ≤ 0 16 . 0≤e≤ 5
14–16. f(x) f′(x) ≥ 0 in [a, c] and ≤ 0 in [c, b] ∵ f(c) = – 2 and f(x) f′(x) ≠ 0 in (a, c) ∪ (c, b) ⇒ f(a), f(b) ≤ 0. f(a) f(b) f(c) 0 0 3 – 2 0 –1 3 – 2 0 3 – 2 – 2 –1 –1 3 – 2 –1 3 – 2 – 2 3 – 2 – 2 – 2 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
AITS-CRT(Set-I)-Paper-2-PCM(S)-JEE(Adv)/13
17.
7
If P is inside the triangle and area of ∆PAB = area of ∆PBC ⇒ BP must be the median. Similarly, AP must be the median. Hence P is the centroid. If ∠ABC > ∠ACB, then AB > AC and PB > PC ⇒ perimeter of ∆PAB > perimeter of ∆PAC ⇒ ∠ABC = ∠ACB. Similarly, other angles are equal and the triangle must be equilateral.
18−19. If P lies outside the triangle assuming A and B lie on the opposite sides of PC. Hence A, C lie on the same side of PB. Since area PBC = area PBA A and C must be the same distance from PB so AC is parallel to PB and PA is parallel to BC. So PACB is a parallelogram and PC = AB ⇒ ∠ACB = 90° and parallelogram is a rectangle.
SECTION - B 1.
Since f(g(x)) is a one-one function ⇒ f(g(x1)) ≠ f(g(x2)) whenever x1 ≠ x2 ⇒ g(x1) ≠ g(x2) whenever x1 ≠ x2 ⇒ g(x) is one-one. If f(x) is not one-one then f(x) = y is satisfied by x = x1, x2 ⇒ f(x1) = f(x2) = y also if g(x) is onto then let g ( x1′ ) = x1 and g ( x ′2 ) = x 2 ⇒ f ( g ( x1′ ) ) = f ( g ( x ′2 ) )
⇒ f(g(x)) can’t be one-one. 2.
x π + tan x = 2 4 from graph, the equation has 3 solutions in [−π, π]. π (B) sin−1 | x 2 − 1| + cos−1 | 2x 2 − 5 | = ⇒ |x2 − 1| = |2x2 − 5| 2 ⇒ x2 = 2 ⇒ x = ± 2 (Two solutions)
(A)
2
πx πx 4 πx + 1 = 0 ⇒ x 2 − sin2 + 1 − sin 2 = 0 2 2 π x 2 =1 ⇒ x = (2n + 1), n ∈ I and x = sin2 2 ⇒ x = ± 1 is the solution. (D) Let y = x2 + 2x + 2 sec2 πx + tan2 πx ⇒ y = (x + 1)2 + (2 sec2 πx − 1) + tan2 πx > 0 ⇒ no solution.
(C) x4 − 2x 2 sin2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi - 16, Ph: 46106000, 26515949, Fax: 26513942.
View more...
Comments