Crossing Calculation API RP1102 (TEMPLATE)
Short Description
Road Crossing Calc for Pipeline...
Description
ATTACHMENT - X Document No. XXXXX Uncased Track Crossing Design Calculation 36-inch Pipeline, API 5L X65 SAW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
As per API RP 1102
Input Data Pipe Material Pipeline design factor, D.F.
= =
API 5L X65 SAW 0.50
pipe size, Outside Diam., D Pipe nominal thickness, t SMYS of linepipe material Longitudinal joint factor, Ej
= = = =
36 20.6 65300 1 0.72 1 19.6 70 65 13 2.07E+05 0.3 1.17E-05 1927 3.40E+06 6.90E+07 2000 914 112 112 144
Allow. design factor for Eff. Stress, Fa =
Corrosion allowance Corroded wall thickness, tw Design pressure, P Design temperature (U/G), T2 Installation (backfill) temp., T1 Youngs modulus of steel, E Poisson ratio, ٧ Thermal expansion coefficient, a Soil density, g Modulus of soil reaction, E' Soil resilient modulus, Er Depth of cover, H Bored diameter, Bd Tandem Axle Load, Pt Single Axle Load, Ps Wheel contact area, A
= = = = = = = = = = = = = = = =
in mm psi
914 mm
mm barg
10197.16213
2 713801.3 kg/m
deg C deg C Mpa
101971.6213
2 2.111E+10 kg/m
18.9
N/m2 N/m2
3.47E+05 7.04E+06
mm mm kN kN Inch2
psig
= 23672.23 = 32650.00
KHe = Be = Ee = SHe =
Check critical axle configurations (figure A-1) Pavement type : No Pavement Pavement Critical Axle : Tandem Axles
Soil Type = Loose Sand
kg/m2 2 kg/m
psi psi
= Hence
0.00689
2709 0.7 1.00 3340368
R = 1.1
Impact factor and applied surface pressure w Ref. Fig 7 H = 2.00 Applied pressure (w) = Pt /A for Tandem Axles
kN/m3
Construction type: Trenched Trenched 11428.57 kg 11428.57 kg 2 0.093 m
Circumferential stress due to earth load SHe tw/D Ref. Fig 3 = 0.021 Ref. Fig 4 H/Bd = 2.2 Ref. Fig 5 Bd/D = 1.00 SHe = KHe x Be x Ee x g x D Ref. Equation 1
kg/m2
L = 1.00
163.21 OK
MPa
32.76
MPa
1.21
MPa
9.81E-06
(Refer table 2)
Fi = 1.45 2 w = 123016.1 kg/m
Cyclic circumferential stress ΔSHh tw/D Ref fig 14 = 0.021 Ref fig 15 ΔSHh = KHh x GHh x R x L x Fi x w Ref. Equation 5
KHh = GHh = ΔSHh =
13.90 0.71 18.99
MPa
Cyclic Longitudinal stress ΔSLh tw/D Ref fig 16 = 0.021 Ref fig 17 ΔSLh = KLh x GLh x R x L x Fi x w Ref. Equation 6
KLH = GLh = ΔSLh =
9.70 0.73 13.63
MPa
Circumferential Stress due to Internal Load, SHi SHi = P(D-tw)/2tw Ref. Equation 7
SHi = 23164.60 psi
Principal stresses S1, S2, & S3 S1(max circum stress) = SHe + ΔSHh + SHi Ref. Equation 9
S1 =
211.46
MPa
Ref. Equation 10, S2 = Maximum longitudinal stress S2 = ΔSLh - Ea(T2-T1) + ٧(SHe + SHi) S2 =
-54.57
MPa
-7
MPa
Ref. Equation 11, Radial stress S3 = -P
S3 =
Allowable effective stress (SMYS x Fa)
= [0.5 {(S1-S2) + (S2-S3) + (S3-S1)2}] 0.5 Seff = 245.73 MPa = 324.16 MPa
Ratio of Seff / Allowable
=
2
Check for Fatigue Girth weld fatigue endurance limit (SFG) = Allowable SFG = SFG x D.F = ΔSLh < SFG x D.F Refer Equation 17 Ratio of Actual (ΔSLh)/ Allowable = Longitudinal weld endurance limit (SFL) Allowable SFL = SFL x D.F. ΔSHh < SFL x D.F. Refer Equation 18 Ratio of Actual (ΔSHh) / Allowable SFL
1015.26
per deg C kg/m3
Check for Allowable stress Sh [ D.F x Ej x SMYS Hoop stress Shi(Barlow) = PD/2tw D.F x Ej x SMYS
Ref. Equation 12, Effective stress Seff
14.504
= = =
9.81E-06
159.71
MPa
2
0.758
82.74 41.37
Design OK
Result
Design OK
Result
Design OK
MPa (from table 3 of API 1102) MPa
0.329 82.74 41.37
Result
MPa (from table 3 of API 1102) MPa
0.459
\\vboxsrv\conversion_tmp\scratch_6\[256686419.xls.ms_office.xls]calculation
Page 1 of 1
View more...
Comments