Cpp-tank Dsgn Calc-rev c

August 11, 2017 | Author: namasral | Category: Bending, Beam (Structure), Stress (Mechanics), Classical Mechanics, Building Engineering
Share Embed Donate


Short Description

Download Cpp-tank Dsgn Calc-rev c...

Description

CPP-Tank Design Calc

TABLE OF CONTENT

PAGE

1

DESIGN DATA

2-3

2

CPP-T-910/T-920/T-940SIDE WALL CALC

4-6

3

CPP-T-910/T-920/T-940 BTM WALL CALC

7-9

4

CPP-T-910/T-920/T-940 ROOF WALL CALC

10-13

5

NOZZLE THICKNESS CALC - T-910

14-15

6

NOZZLE THICKNESS CALC - T-920

16-17

7

NOZZLE THICKNESS CALC - T-940

18-19

8

WIND LOADING - T-910/T-920/T-940

20

9

LOAD AT BASE & TRANSPORTATION LOAD CALC - T-910/T-920/T-940

21

10 BASE PLATE DESIGN CALCULATION - T-910/T-920/T-940

22

11 LEG DESIGN CALCULATION- T-910/T-920/T-940

23

12 T-950 SIDE WALL CALC

24-27

13 T-950 BTM WALL CALC

28-30

14 T-950 ROOF WALL CALC

31-34

15 NOZZLE THICKNESS CALC - T-950

35-36

16 WIND LOADING - T-950

37

17 LOAD AT BASE & TRANSPORTATION LOAD CALC - T-950

38

18 BASE PLATE DESIGN CALCULATION - T-950

39

19 LEG DESIGN CALCULATION- T-950

40

20 WEIGHT SUMMARY

41

21 CPP-STIFFENER SECTIONAL PROPERTIES

42

Note : Lifting Lug Design calc is done on separate document (Please refer to LIFTING LUG DESIGN CALC : Doc No. CPP-CIS-MCPD-201)

Page 1 of 42

CPP-Tank Design Calc

DESIGN DATA

ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50

RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF

ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE

NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50 K2 51 K3 52

RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF

T-910 ( CORROSION INHIBITOR TANK ) WATER FULL (+0.7/-0.03) psig o

131 F ATMOSPHERIC AMBIENT 4.1 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW

T-920 ( POUR POINT DEPRESENT STORAGE TANK ) WATER FULL (+0.7/-0.03) psig 131 oF ATMOSPHERIC AMBIENT 4.0 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1

SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW PRESSURE GAUGE PVRV/FLAME ARRESTOR

Page 2 of 42

CPP-Tank Design Calc

DESIGN DATA

ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 N6 50 N7 50 K1A 50 K1B 50

RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF

ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50

RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF

T-940 ( DEMULSIFIER STORAGE TANK ) WATER FULL (+0.7/-0.03) psig o

131 F ATMOSPHERIC AMBIENT 4.0 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW SPARE SPARE LEVEL GAUGE HIGH LEVEL GAUGE LOW

T-950 ( WATER FLOCCULANT TANK ) WATER FULL (+0.7/-0.03) psig 131 oF ATMOSPHERIC AMBIENT 2.5 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW

Page 3 of 42

CPP-Tank Design Calc

SIDE WALL DESIGN CALCULATION TANK NO. :

T-910 / T-920 / T-940 98.4 in 59.06 in 59.06 in

Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =

2500 mm 1500 mm 1500 mm

Full Water (+0.7/-0.03) psig 131 F A 240 316L

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =

9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500

S a

= =

625 mm 500 mm

b

S

S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi

b = 0.3954 a = 0.0655 0.4608 g E = 2.9E+07 psi t= c.a = t (corr) =

S

0.2362 in 0.0000 in 0.2362 in

6.0 mm 0 mm 6.0 mm

At Center, Maximum Deflection, = = =

-(aqb4)/Et3 -0.09 0.09 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

Maximum Bending stress, s =(bqb2)/ t2 =

9,765 psi

<

σ allowable

16,700 psi.

Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/sy =

: OK : O.K

A 240 316L 25000 psi 0.391

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb

32.25 lb/in 3644.27 N/mm

Page 4 of 42

CPP-Tank Design Calc

SIDE WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :

T-910 / T-920 / T-940

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in

L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in

19.69 9.8

in in

X 19.69 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.068

in3

=

0.258

in3

>

(I/y)required

=

6576

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

9.84 in

δmax = (5WL4) 384EI =

0.007

< L/360 = 0.0547 in

The stiffener size used is adequate.

Page 5 of 42

CPP-Tank Design Calc

SIDE WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-910 / T-920 / T-940 L= ґ=

W

625 312.5

mm mm

= =

24.61 12.3

in in

43.75 lb/in Load q = unit load W = =

3.5561 qxґ 43.75

psi psi lb/in

X 24.61 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 13.48 in Maximum moment, Mmax = 0.0215WL2 = 570 lb-in M/I = s/y (I/y)required = M/s = 0.023 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener

=

Therefore, s stiffener

=

0.023

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 2209

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

12.92 in 0.001309 x WL4 EI

0.0286 in

< L/360)

0.0684

in

Therefore the size used is adequate.

Page 6 of 42

CPP-Tank Design Calc

BOTTOM WALL DESIGN CALCULATION TANK NO. :

T-910 / T-920 / T-940 98.4 in 59.06 in 59.06 in

Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =

2500 mm 1500 mm 1500 mm

Full Water (+0.7/-0.03) psig °F 131 A 240 316L

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =

9.81 m/s2 1000 kg/m3 19.69 in 19.69 in 1.0000

S a

= =

500 mm 500 mm

b

S

S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi

b = 0.2874 a = 0.0444 0.4200 g E = 2.9E+07 psi t= c.a = t (corr) =

S

0.2362 in 0.0000 in 0.2362 in

6.0 mm 0 mm 6.0 mm

At Center, Maximum Deflection, = = =

-(aqb4)/Et3 -0.06 0.06 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

Maximum Bending stress, s =(bqb2)/ t2 =

7,097 psi

<

σ allowable

16,700 psi

: OK

Max Bending stress < σ allowable : O.K Material Yield Stress, sy = Stress Ratio, s/sy =

A 240 316L 25000 psi 0.284

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb

29.40 lb/in 3321.96 N/mm

Page 7 of 42

CPP-Tank Design Calc

BOTTOM WALL HORIZONTAL STIFFENER CALCULATION (1) TANK NO. :

T-910 / T-920 / T-940

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in

L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in

19.69 9.8

in in

X 19.69 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.068

in3

=

0.258

in3

>

(I/y)required

=

6576

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

9.84 in

δmax = (5WL4) 384EI =

0.007

< L/360 = 0.0547 in

The stiffener size used is adequate.

Page 8 of 42

CPP-Tank Design Calc

BOTTOM WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-950 L= ґ=

W

500 250

mm mm

= =

19.69 9.8

in in

35.00 lb/in Load q = unit load W = =

3.5561 qxґ 35.00

psi psi lb/in

X 19.69 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 292 lb-in M/I = s/y (I/y)required = M/s = 0.012 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener

=

Therefore, s stiffener

=

0.012

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 1131

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

10.33 in 0.001309 x WL4 EI

0.006 in

< L/360)

0.0547

in

Therefore the size used is adequate.

Page 9 of 42

CPP-Tank Design Calc

ROOF WALL DESIGN CALCULATION TANK NO. :

T-910 / T-920 / T-940

Tank Height, H Tank Width, W Tank Length, L

2500 mm 1500 mm 1500 mm

98.4 in 59.06 in 59.06 in

Design Pressure Design Temp. Material =

Roof weight = Misc. weight = Live load,LL = Dead load,TDL = Conc. load, CL =

Full Water (+0.7/-0.03) psig 131 F A 240 316L

= =

233.69 11.02 0.00 0.20 0.00

lb lb psi psi psi

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. S g= ρ liq = a= b= a/b = b a g E

9.81 m/s2 1000 kg/m3

a S 500 mm 500 mm

19.69 in 19.69 in 1.0000

= 0.2874 = 0.0444 = 0.4200 = 2.90E+07 psi

t= c.a = t (corr) =

= =

Live load + DeadLoad + Conc.Load 0.200 psi

= 6.0 mm 0 mm 6.0 mm

= = =

Maximum Bending stress, s =

-(aqb4)/Et3 0.00 0.00 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

(bqb2)/ t2 400 psi

= Material Yield Stress, sy = Stress Ratio, s/sy =

S

S

Loading q

0.2362 in 0.0000 in 0.2362 in

At Center, Maximum Deflection,

b

σallowable < 16,700 psi Max Bending stress < σ allowable

: OK : O.K

A 240 316L 25000 psi 0.016

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb 1.66 lb/in 187.27 N/mm

Page 10 of 42

CPP-Tank Design Calc

ROOF WALL WEIGHT CALCULATION 450NB Blind = 450NB Pipe = 450NB Slip On = 50NB WNRF = 50NB Pipe = Piping & Accs = Stiffener (FB65 X 6) = Roof plate = Misc weight =

Weight Per pcs 100 12 59 1.02 15 5 19 106 5

Qty 1 1 1 1 1 1 1 1 1 Total Weight

Total 100 12 59 1.02 15 5 19 106 5 317.02 698.91

kg kg kg kg kg kg kg kg kg kg lb

Total Loading (pressure) acting on the roof plate is calculated as shown below Dead Load = F=mxg= Area = a x b = P = F/A = =

317.02 3109.97 2.25 1382.21 0.200

kg N m2 Pa psi

Concentrated Load = F=mxg= Area = a x b = P = F/A = =

0.00 0.00 2.25 0.00 0.00

kg N m2 Pa psi

Live Load, LL = = extra load

0.00 kg/m2 0.00 psi 0.00

ROOF STIFFENER LOCATION

Page 11 of 42

CPP-Tank Design Calc

ROOF WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :

T-910 / T-920 / T-940

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 1.97 lb/in

L= ґ= Load q = unit load W = =

500 250 0.200 qxґ 1.97

mm = mm = psi psi lb/in

19.69 9.8

in in

X 19.69 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 96 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.004

in3

=

0.258

in3

>

(I/y)required

=

371

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

9.84 in

δmax = (5WL4) 384EI =

0.000

< L/360 = 0.0547 in

The stiffener size used is adequate.

Page 12 of 42

CPP-Tank Design Calc

ROOF WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-910 / T-920 / T-940 L= ґ=

W

500 250

mm mm

= =

19.69 9.8

in in

1.97 lb/in Load q = unit load W = =

0.2005 qxґ 1.97

psi psi lb/in

X 19.69 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 16 lb-in M/I = s/y (I/y)required = M/s = 0.001 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener

=

Therefore, s stiffener

=

0.001

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 64

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

10.33 in 0.001309 x WL4 EI

0.0003 in

< L/360)

0.0547

in

The stiffener size used is adequate.

Page 13 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-910 N1 / N2 / N3 / N4 / N5 / K1A / K1B

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

50NB SCH 40S …….UG - 32

A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4

MPa mm mm

mm mm mm mm

Material: 0 0 0 0

4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx

mm mm mm mm 6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00

mm mm mm mm mm mm mm mm

MATERIAL STRENGTH RATIOS

o

PAD

S @(55oC) OD Thickness = te Weld

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

MPa mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

156.90 mm2 60.00 mm2 156.90 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

256.84 mm2 OK Page 14 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-910 MW

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

600NB …….UG - 32

A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6

MPa mm mm

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx

6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00

MATERIAL STRENGTH RATIOS

mm mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

Material: 0 0 0 0

mm mm mm mm mm mm mm mm

o

PAD

S @(55oC) OD Thickness = te Weld

mm mm mm mm

MPa mm mm mm

1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

30.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

2001.85 mm2 OK Page 15 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-920 N1 / N2 / N3 / N4 / N5 / K1A / K1B / K2 / K3

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

50NB SCH 40S …….UG - 32

A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4

MPa mm mm

mm mm mm mm

Material: 0 0 0 0

4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx

mm mm mm mm 6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00

mm mm mm mm mm mm mm mm

MATERIAL STRENGTH RATIOS

o

PAD

S @(55oC) OD Thickness = te Weld

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

MPa mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

156.90 mm2 60.00 mm2 156.90 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

256.84 mm2 OK Page 16 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-920 MW

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

600NB …….UG - 32

A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6

MPa mm mm

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx

6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00

MATERIAL STRENGTH RATIOS

mm mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

Material: 0 0 0 0

mm mm mm mm mm mm mm mm

o

PAD

S @(55oC) OD Thickness = te Weld

mm mm mm mm

MPa mm mm mm

1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

30.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

2001.85 mm2 OK Page 17 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-940 N1 / N2 / N3 / N4 / N5 / N6 / N7 / K1A / K1B

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

50NB SCH 40S …….UG - 32

A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4

MPa mm mm

mm mm mm mm

Material: 0 0 0 0

4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx

mm mm mm mm 6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00

mm mm mm mm mm mm mm mm

MATERIAL STRENGTH RATIOS

o

PAD

S @(55oC) OD Thickness = te Weld

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

MPa mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

156.90 mm2 60.00 mm2 156.90 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

256.84 mm2 OK Page 18 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-940 MW

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

600NB …….UG - 32

A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6

MPa mm mm

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx

6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00

MATERIAL STRENGTH RATIOS

mm mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

Material: 0 0 0 0

mm mm mm mm mm mm mm mm

o

PAD

S @(55oC) OD Thickness = te Weld

mm mm mm mm

MPa mm mm mm

1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

30.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

2001.85 mm2 OK Page 19 of 42

CPP-Tank Design Calc

WIND LOADING - BS 6399 - PART 2 -1997 ITEM : CPP (T-910 / T-920 / T-940 ) PROJECT NO.PM329 EAST PIATU DEVELOPMENT PROJECT Terrain Category

=

1

Region

=

D

Basic Wind Speed

Vb

=

50.00

Shielding Factor

Ms

=

1

Topographic Factor

Sa

=

1

Direction Factor

Sd

=

1

Probability Factor

Sp

=

1

Seasonal Factor

Ss

=

1

Terrain and Building Factor

Sb

=

1

Design Wind Speed

Vz

=

50.00

m/s ( Vb x Sa x Sd x Sp x Ss )

=

50.00

m/s ( Vz x Sb ) kPa ( 0.613 x Ve2 x 10-3 )

Effective (Design) Wind speed Ve qz

=

1.5325

Drag Coefficient

Cd

=

1

H

=

3,500

mm

Width

=

2,800

mm

Az

=

9,800,000

mm2

H / Width

=

1.25

Kar

=

1

Cd'

=

1

3500

Dynamic Pressure

m/s

2800

Wind Force Height to COG Overturning Moment

Fw

=

15018.5

N

( Cd' x qz x Az ) / 103

h

=

1750.000

mm

(H/2)

Mw

=

26282375

Nmm

( Fw x h )

( Cd x Kar )

Page 20 of 42

CPP-Tank Design Calc LOAD AT BASE & TRANSPORTATION LOAD CALCULATION ITEM : PROJECT NO.

CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT

WEIGHTS Empty

We

=

1999

kg ------>

Wind Force Earthquake Force Transportation Force

Fw Feq FD

= = =

15,019 0 2971

Wind Moment Earthquake Moment Transportation Moment

Mw Meq Mc

= = =

26,282,375 Nmm 0 Nmm 5,199,302 Nmm

Maximum Shear Force Maximum O/T Moment

F M

= =

15,019 N 26,282,375 Nmm

19606

N

EXTERNAL LOADS N N N

[( 0.5 x We )2 + ( 1.4 x We )2 ]0.5

( FD x COG )

COG = (H/2)

1750 mm

HOLD DOWN BOLTS Bolt Material…………….……………….…………. = A 193 GR B7 Bolt Yield Stress………………….…………… Sy =

207

MPa

Bolt UTS…….…..……………….…………… Su =

507

MPa

Allowable Tensile……………….…..…...…… Ft =

124.2

MPa

69

MPa

Allowable Shear……………………...…… Fs

=

Bolt Size……………………………………...…………… M16 = Bolt Number…………………………..…...………… N =

2

AT = Tensile Area………….……………..….……

146

mm2

AS Shear Area……………………………..…

=

225

mm2

Bolt PCD………………………………….. PCD

=

1980.64

mm

SHEAR STRESS IN BOLT Shear / Bolt, fs =

F N x As

fs

=

33.37

Fs

=

69

since fs < Fs the shear stress is

MPa OK MPa OK

Page 21 of 42

CPP-Tank Design Calc

LEG BASEPLATE DESIGN CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT

ITEM : PROJECT NO.

Refer Dennis R Moss Procedure 3-10

tb

=

3xQxF 4 x A x Fb

Q = Maximum Load / Support F = Baseplate Width A = Baseplate Length Fb = Allowable Bending Stress

= = = =

4901 170 170 163.68

N mm mm MPa

tb

=

4.7

mm

Use Tb

=

10

mm

BASE PLATE WELD CHECKING Maximum stress due to Q & F = max(Q, F)/Aw

= <

Weld leg size, g Length of weld, l = 2*( 2*F + 2*A ) Area of weld, Aw = 0.5*g*l Joint efficiency for fillet weld, E Welding stress for steel, fw Allowable stress for weld, fw = E*fw Maximum vertical force, Q Maximum horizontal force, F

= = = = = = = =

( 0.66 Fy )

OK

3.68 86.9

N/mm2 N/mm2

6.0 1360 4080 0.6 144.8 86.9 4901.4 15018.5

mm mm mm2 N/mm2 N/mm2 N N

OK

Page 22 of 42

CPP-Tank Design Calc

LEG DESIGN CALCULATION CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT

ITEM : PROJECT NO. LEG DATA

Material……………...………………..= Yield Stress, Sy………….…………..= Allowable Axial Stress, fall.…...……= Allowable Bending Stress, fball.......= LEG GEOMETRY :-

A 36 2 248.2 N/mm 2 148.9 N/mm ( 0.6 x Sy ) 2 165.5 N/mm ( 2/3 x Sy )

I-BEAM 152 x 152 x 23 kg/m 2 A= 2920 mm 4 Ixx = 12500000 mm d= 76.2 mm e= 76.2 mm L= 152.4 mm r= 9 mm

d X

X e

AXIAL STRESS Axial Stress, fa =

F/A =

1.68

N/mm2

PxLxe= Ixx

13.95

N/mm2

BENDING STRESS Bending Stress, fb =

COMBINED STRESS Combined Stress, f = (fa/fall + fb/fball) = Since Combined Stress is

0.10

< 1.00 The Leg Design is OK!

Page 23 of 42

CPP-Tank Design Calc

SIDE WALL (1) DESIGN CALCULATION (@ Length = 1500mm ) TANK NO. :

T-950 98.4 in 59.06 in 59.06 in

Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =

2500 mm 1500 mm 1500 mm

Full Water (+0.7/-0.03) psig 131 F A 240 316L

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b = b a g E

9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500

S a

= =

625 mm 500 mm

b

S

S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi

= 0.3954 = 0.0655 = 0.4608 = 2.9E+07 psi

t= c.a = t (corr) =

S

0.2362 in 0.0000 in 0.2362 in

6.0 mm 0 mm 6.0 mm

At Center, Maximum Deflection, = = =

-(aqb4)/Et3 -0.09 0.09 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

Maximum Bending stress, s = (bqb2)/ t2 =

9,765 psi

<

σ allowable

16,700 psi.

Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/sy =

: OK : O.K

A 240 316L 25000 psi 0.391

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb

32.25 lb/in 3644.27 N/mm

Page 24 of 42

CPP-Tank Design Calc

SIDE WALL (2) DESIGN CALCULATION (@ Length = 1000mm ) TANK NO. :

T-950 98.4 in 59.06 in 59.06 in

Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =

2500 mm 1500 mm 1500 mm

Full Water (+0.7/-0.03) psig 131  F A 240 316L

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =

9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500

S a

= =

625 mm 500 mm

b

S

S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi

b = 0.3954 a = 0.0655 0.4608 g E = 2.9E+07 psi t= c.a = t (corr) =

S

0.2362 in 0.0000 in 0.2362 in

6.0 mm 0 mm 6.0 mm

At Center, Maximum Deflection, = = =

-(aqb4)/Et3 -0.09 0.09 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

Maximum Bending stress, s = (bqb2)/ t2 =

9,765 psi

<

σ allowable

16,700 psi

Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/ sy =

: OK : O.K

A 240 316L 25000 psi 0.391

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb

32.25 lb/in 3644.27 N/mm

Page 25 of 42

CPP-Tank Design Calc

SIDE WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :

T-950

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in

L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in

19.69 9.8

in in

X 19.69 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.068

in3

=

0.258

in3

>

(I/y)required

=

6576

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

9.84 in

δmax = (5WL4) 384EI =

0.007

< L/360 = 0.0547 in

The stiffener size used is adequate.

Page 26 of 42

CPP-Tank Design Calc

SIDE WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-950 L= ґ=

W

625 312.5

mm mm

= =

24.61 12.3

in in

43.75 lb/in Load q = unit load W = =

3.5561 qxґ 43.75

psi psi lb/in

X 24.61 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 13.48 in Maximum moment, Mmax = 0.0215WL2 = 570 lb-in M/I = s/y (I/y)required = M/s = 0.023 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s Therefore,

s stiffener

=

s stiffener

=

0.023

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 2209

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

12.92 in 0.001309 x WL4 EI

0.029 in

< L/360)

0.068

in

Therefore the size used is adequate.

Page 27 of 42

CPP-Tank Design Calc

BOTTOM WALL DESIGN CALCULATION TANK NO. :

T-950 98.4 in 59.06 in 39.37 in

Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =

2500 mm 1500 mm 1000 mm

Full Water (+0.7/-0.03) psig 131 F A 240 316L

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =

9.81 m/s2 1000 kg/m3 19.69 in 19.69 in 1.0000

S a

= =

500 mm 500 mm

b

S

S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi

b = 0.2874 a = 0.0444 0.4200 g E = 2.9E+07 psi t= c.a = t (corr) =

S

0.2362 in 0.0000 in 0.2362 in

6.0 mm 0 mm 6.0 mm

At Center, Maximum Deflection, = = =

-(aqb4)/Et3 -0.06 0.06 in

t/2 =

0.118 in

Max Deflection < t/2

: O.K

Maximum Bending stress, s =(bqb2)/ t2 =

7,097 psi

<

σ allowable

16,700 psi

: OK

Max Bending stress < σ allowable : O.K Material Yield Stress, sy = Stress Ratio, s/ sy =

A 240 316L 25000 psi 0.284

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb

29.40 lb/in 3321.96 N/mm

Page 28 of 42

CPP-Tank Design Calc

BOTTOM WALL HORIZONTAL STIFFENER CALCULATION (1) TANK NO. :

T-950

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in

L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in

19.69 9.8

in in

X 19.69 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.068

in3

=

0.258

in3

>

(I/y)required

=

6576

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

9.84 in

δmax = (5WL4) 384EI =

0.007

< L/360 = 0.0547 in

The stiffener size used is adequate.

Page 29 of 42

CPP-Tank Design Calc

BOTTOM WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-950 L= ґ=

W

500 250

mm mm

= =

19.69 9.8

in in

35.00 lb/in Load q = unit load W = =

3.5561 qxґ 35.00

psi psi lb/in

X 19.69 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 292 lb-in M/I = s/y (I/y)required = M/s = 0.012 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener

=

Therefore, s stiffener

=

0.012

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 1131

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

10.33 in 0.001309 x WL4 EI

0.006 in

< L/360)

0.0547

in

Therefore the size used is adequate.

Page 30 of 42

CPP-Tank Design Calc

ROOF WALL DESIGN CALCULATION TANK NO. :

T-950

Tank Height, H Tank Width, W Tank Length, L

2500 mm 1500 mm 1000 mm

98.4 in 59.06 in 39.37 in

Design Pressure Design Temp. Material =

Roof weight = Misc. weight = Live load,LL = Dead load,TDL = Conc. load, CL =

Full Water (+0.7/-0.03) psig 131 F A 240 316L

= =

156.53 11.02 0.00 0.26 0.00

lb lb psi psi psi

As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. S g= ρ liq = a= b= a/b = b a g E

2

9.81 m/s 1000 kg/m3

a S 1000 mm 500 mm

39.37 in 19.69 in 2.0000

= 0.6102 = 0.1110 = 0.5030 = 2.90E+07 psi

t= c.a = t (corr) =

= =

Live load + DeadLoad + Conc.Load 0.259 psi

= 6.0 mm 0 mm 6.0 mm

-(aqb4)/Et3 -0.01 0.01 in

= = =

Maximum Bending stress, s =

t/2 =

0.118 in

Max Deflection < t/2

: O.K

(bqb2)/ t2

1,097 psi

= Material Yield Stress, sy = Stress Ratio, s/sy =

S

S

Loading q

0.2362 in 0.0000 in 0.2362 in

At Center, Maximum Deflection,

b

σallowable < 16,700 psi Max Bending stress < σ allowable

: OK : O.K

A 240 316L 25000 psi 0.044

At center of long side, Maximum reaction force per unit length normal to the plate surface, R

= = =

g qb 2.56 lb/in 289.73 N/mm

Page 31 of 42

CPP-Tank Design Calc

ROOF WALL WEIGHT CALCULATION 450NB Blind = 450NB Pipe = 450NB Slip On = 50NB WNRF = 50NB Pipe = Piping & Accs = Stiffener (FB65 X 6) = Roof plate = Misc weight =

Weight Per pcs 100 12 59 1.02 15 5 10 71 5

Qty 1 1 1 1 1 1 1 1 1 Total Weight

Total 100 12 59 1.02 15 5 10 71 5 273.02 601.91

kg kg kg kg kg kg kg kg kg kg lb

Total Loading (pressure) acting on the roof plate is calculated as shown below Dead Load = F=mxg= Area = a x b = P = F/A = =

273.02 2678.33 1.50 1785.55 0.259

kg N m2 Pa psi

Concentrated Load = F=mxg= Area = a x b = P = F/A = =

0.00 0.00 1.50 0.00 0.00

kg N m2 Pa psi

Live Load, LL = = extra load

0.00 kg/m2 0.00 psi 0.00

ROOF STIFFENER LOCATION

Page 32 of 42

CPP-Tank Design Calc

ROOF WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :

T-950

Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 5.10 lb/in

L= ґ= Load q = unit load W = =

1000 500 0.259 qxґ 5.10

mm = mm = psi psi lb/in

39.37 19.7

in in

X 39.37 in

Wa

Wb

Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 19.69 in Maximum moment, Mmax = WL2/8 = 988 lb-in

Use FB 65 x 6 I/y Therefore,

s

M/I

=

s/y

(I/y)required

= =

M/s 0.040

in3

=

0.258

in3

>

(I/y)required

=

3831

psi

<

σallowable

O.K 16700 psi

O.K

Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=

19.69 in

δmax = (5WL4) 384EI =

0.017

< L/360 = 0.1094 in

The stiffener size used is adequate.

Page 33 of 42

CPP-Tank Design Calc

ROOF WALL VERTICAL STIFFENER CALCULATION TANK NO. :

T-950 L= ґ=

W

500 250

mm mm

= =

19.69 9.8

in in

2.55 lb/in Load q = unit load W = =

0.2590 qxґ 2.55

psi psi lb/in

X 19.69 in Wb

Wa

Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 21 lb-in M/I = s/y (I/y)required = M/s = 0.001 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z

= =

Z stiffener

I/y 0.258

3

>

in

2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener

=

Therefore, s stiffener

=

0.001

3

in

Z required

Max bending stress of stiffener is OK

M max / Z stiffener 82

psi

<

16700 psi

σallowable

Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax

=

=

10.33 in 0.001309 x WL4 EI

0.0004 in

< L/360)

0.0547

in

The stiffener size used is adequate.

Page 34 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-985 N1 / N2 / N3 / N4 / N5 / K1A / K1B

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

50NB SCH 40S …….UG - 32

A 312 TP316L 115.15 60.3 5.54 49.22 0 1.0 49.22 24.61 1.0 0.00262 5.54

MPa mm mm

mm mm mm mm

Material: 0 0 0 0

4.20 mm 3.88 mm xxx 3.88 mm xxx xxx xxx

mm mm mm mm 6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

49.22 36.15 49.22 15.00 13.85 13.85 5.00 150.00

mm mm mm mm mm mm mm mm

MATERIAL STRENGTH RATIOS

o

PAD

S @(55oC) OD Thickness = te Weld

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

MPa mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

147.66 mm2 69.24 mm2 147.66 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

166.12 mm2 153.39 mm2 153.39 mm2 27.70 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # SW 1.943 MPa …UG - 37 147.66 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

328.75 mm2 OK Page 35 of 42

CPP-Tank Design Calc

NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :

T-985 MW

DESIGN CONDITIONS

P DT CAe / CAi

WELDS

0.0245 MPa 55 oC mm

0 / 0

SHELL PROPERTIES

Material: o

S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA

A 240 316L 115.15 6 3 6

MPa mm mm mm

600NB …….UG - 32

A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6

MPa mm mm

Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg

4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx

6 mm 0 mm 0 mm

LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection

597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00

MATERIAL STRENGTH RATIOS

mm mm mm mm

fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]

1.0000 1.0000 0.00 0.0000

AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]

Material: 0 0 0 0

mm mm mm mm mm mm mm mm

o

PAD

S @(55oC) OD Thickness = te Weld

mm mm mm mm

MPa mm mm mm

1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2

A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]

30.00 mm2

A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)

A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2

A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]

0.00 0.00 0.00 0.00

A5 = (Pad OD - Noz OD).te.fr4

0.00 mm2

TOTAL AREA AVAILABLE

=

mm2 mm2 mm2 mm2

2001.85 mm2 OK Page 36 of 42

CPP-Tank Design Calc

WIND LOADING - BS 6399 - PART 2 -1997 ITEM : CPP (T-950 ) PROJECT NO.PM329 EAST PIATU DEVELOPMENT PROJECT Terrain Category

=

1

Region

=

D

Basic Wind Speed

Vb

=

50.00

Shielding Factor

Ms

=

1

Topographic Factor

Sa

=

1

Direction Factor

Sd

=

1

Probability Factor

Sp

=

1

Seasonal Factor

Ss

=

1

Terrain and Building Factor

Sb

=

1

Design Wind Speed

Vz

=

50.00

m/s ( Vb x Sa x Sd x Sp x Ss )

=

50.00

m/s ( Vz x Sb ) kPa ( 0.613 x Ve2 x 10-3 )

Effective (Design) Wind speed Ve qz

=

1.5325

Drag Coefficient

Cd

=

1

H

=

3,500

mm

Width

=

2,800

mm

Az

=

9,800,000

mm2

H / Width

=

1.25

Kar

=

1

Cd'

=

1

3500

Dynamic Pressure

m/s

2800

Wind Force Height to COG Overturning Moment

Fw

=

15018.5

N

( Cd' x qz x Az ) / 103

h

=

1750.000

mm

(H/2)

Mw

=

26282375

Nmm

( Fw x h )

( Cd x Kar )

Page 37 of 42

CPP-Tank Design Calc LOAD AT BASE & TRANSPORTATION LOAD CALCULATION ITEM : PROJECT NO.

CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT

WEIGHTS Empty

We

=

1361

kg ------>

Wind Force Earthquake Force Transportation Force

Fw Feq FD

= = =

15,019 0 2024

Wind Moment Earthquake Moment Transportation Moment

Mw Meq Mc

= = =

26,282,375 Nmm 0 Nmm 3,541,163 Nmm

Maximum Shear Force Maximum O/T Moment

F M

= =

15,019 N 26,282,375 Nmm

13353

N

EXTERNAL LOADS N N N

[( 0.5 x We )2 + ( 1.4 x We )2 ]0.5

( FD x COG )

COG = (H/2)

1750 mm

HOLD DOWN BOLTS Bolt Material…………….……………….…………. = A 193 GR B7 Bolt Yield Stress………………….…………… Sy =

207

MPa

Bolt UTS…….…..……………….…………… Su =

507

MPa

Allowable Tensile……………….…..…...…… Ft =

124.2

MPa

69

MPa

Allowable Shear……………………...…… Fs

=

Bolt Size……………………………………...…………… M16 = Bolt Number…………………………..…...………… N =

2

AT = Tensile Area………….……………..….……

146

mm2

AS Shear Area……………………………..…

=

225

mm2

Bolt PCD………………………………….. PCD

=

1980.64

mm

SHEAR STRESS IN BOLT Shear / Bolt, fs =

F N x As

fs

=

33.37

Fs

=

69

since fs < Fs the shear stress is

MPa OK MPa OK

Page 38 of 42

CPP-Tank Design Calc

LEG BASEPLATE DESIGN CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT

ITEM : PROJECT NO.

Refer Dennis R Moss Procedure 3-10

tb

=

3xQxF 4 x A x Fb

Q = Maximum Load / Support F = Baseplate Width A = Baseplate Length Fb = Allowable Bending Stress

= = = =

3338 170 170 163.68

N mm mm MPa

tb

=

3.9

mm

Use Tb

=

10

mm

BASE PLATE WELD CHECKING Maximum stress due to Q & F = max(Q, F)/Aw

= <

Weld leg size, g Length of weld, l = 2*( 2*F + 2*A ) Area of weld, Aw = 0.5*g*l Joint efficiency for fillet weld, E Welding stress for steel, fw Allowable stress for weld, fw = E*fw Maximum vertical force, Q Maximum horizontal force, F

= = = = = = = =

( 0.66 Fy )

OK

3.68 86.9

N/mm2 N/mm2

6.0 1360 4080 0.6 144.8 86.9 3338.3 15018.5

mm mm mm2 N/mm2 N/mm2 N N

OK

Page 39 of 42

CPP-Tank Design Calc

LEG DESIGN CALCULATION CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT

ITEM : PROJECT NO. LEG DATA

Material……………...………………..= Yield Stress, Sy………….…………..= Allowable Axial Stress, fall.…...……= Allowable Bending Stress, fball.......= LEG GEOMETRY :-

A 36 2 248.2 N/mm 2 148.9 N/mm ( 0.6 x Sy ) 2 165.5 N/mm ( 2/3 x Sy )

I-BEAM 152 x 152 x 23 kg/m 2 A= 2920 mm 4 Ixx = 12500000 mm d= 76.2 mm e= 76.2 mm L= 152.4 mm r= 9 mm

d X

X e

AXIAL STRESS Axial Stress, fa =

F/A =

1.14

N/mm2

PxLxe= Ixx

13.95

N/mm2

BENDING STRESS Bending Stress, fb =

COMBINED STRESS Combined Stress, f = (fa/fall + fb/fball) = Since Combined Stress is

0.09

< 1.00 The Leg Design is OK!

Page 40 of 42

CPP-Tank Design Calc WEIGHT SUMMARY ITEM : PROJECT NO.

CPP (T-910 / T-920 / T-940 / T-950) PM329 EAST PIATU DEVELOPMENT PROJECT DESCRIPTION

ITEM T-910 / T-920 / T-940 SIDE PLATE BASE PLATE ROOF PLATE

1.5 1.5 1.5

m m m

x x x

2.5 1.5 1.5

m m m

x x x

6 6 6

STIFFENER SIDE WALL ROOF PLATE BOTTOM PLATE

FB FB FB

65 65 65

x x x

6 6 6

x x x

17.5 2.0 12.0

m m m

thk thk thk

NOZZLE / OPENINGS MISC (PIPING / OTHERS) T-950 SIDE PLATE (1) SIDE PLATE (2) BASE PLATE ROOF PLATE

1.5 1.0 1.5 1.5

m m m m

x x x x

2.5 2.5 1.0 1.0

m m m m

x x x x

6 6 6 6

STIFFENER SIDE WALL (1) SIDE WALL (2) ROOF PLATE BOTTOM PLATE

FB FB FB FB

65 65 65 65

x x x x

6 6 6 6

x x x x

17.5 12.5 2.0 10.0

m m m m

thk thk thk thk

NOZZLE / OPENINGS MISC (PIPING / OTHERS) CPP SKID SUPPORT

30.8 m 6.6 m

UC254x254x73 kg/m2 UC152x152x23 kg/m2

height Tank Volume (T910/T920/T940) m 2.5 Tank Volume (T950) m 2.5

x x

TOTAL WEIGHT width x 1.5 m x x 1.0 m x

73 23

kg/m2 kg/m2

length 1.5 1.5

QTY

SET

WEIGHT

4 1 1

3 3 3

2119.5 317.9 317.9

kg kg kg

4 1 1

3 3 3

2571.7 18.4 110.2

kg kg kg

1 1

3 3

315.0 225.0

kg kg

2 2 1 1

1 1 1 1

353.3 235.5 70.7 70.7

kg kg kg kg

2 2 1 1

1 1 1 1

214.3 153.1 6.1 30.6

kg kg kg kg

1 1

1 1

105.0 122.0

kg kg

1 1

1 1

2250.5 152.7

kg kg

9,760

kg

mm mm

5.6 m3 3.8 m3 9,375 kg

= =

CPPT-910 / T-920 / T-940 - Water Weight [ Volume x Density(@1000 kg/m3)] SUMMARY EMPTY WEIGHT OPERATING WEIGHT (Empty Weight + Water Weight) FULL WATER WEIGHT WIRE ROPE DIAMETER USED SWL OF SLING USED

= =

24 ton 6.3 ton

9,760 19,135 19,135

kg kg kg

Design safety Factor = 1.8 Design Weight of Load = 38,731 lb 17,568 kg

Page 41 of 42

CPP-Tank Design Calc

SECTIONAL STIFFENER PROPERTIES CALCULATION TANK NO. :

CPP (T-910/T-920/T-940/T-950)

Stiffener Size Material, Yield Stress,

FB 65 x 6 A 240 316L σy

25000 psi

Allowable Stress,

σ allowable

16700 psi

Stiffener

b1

h

Where :

1

d1 =

65 mm

b1 =

6 mm

d1

y1 C

PART

h mm 0.00 0.00

h2 2 mm 0 0

Second Moment of Inertia of Stiffener I = 137312.5 mm4

=

0.3299

in4

Section Modulus of Stiffener 3 Z = 4225 mm

=

0.2578

in

Area (a)

y mm 32.5 32.5

2

1 TOTAL

mm 390 390

axy 3

mm 12675 12675

a x h2 4 mm 0 0

bd3/12 4 mm 137312.5 137312.5

I section 4

mm 137312.5 137312.5

Calculating Sectional Properties of stiffener : C =

SAy SA

C =

32.50

=

12675 390

mm

3

Page 42 of 42

View more...

Comments

Copyright ©2017 KUPDF Inc.