Cpp-tank Dsgn Calc-rev c
Short Description
Download Cpp-tank Dsgn Calc-rev c...
Description
CPP-Tank Design Calc
TABLE OF CONTENT
PAGE
1
DESIGN DATA
2-3
2
CPP-T-910/T-920/T-940SIDE WALL CALC
4-6
3
CPP-T-910/T-920/T-940 BTM WALL CALC
7-9
4
CPP-T-910/T-920/T-940 ROOF WALL CALC
10-13
5
NOZZLE THICKNESS CALC - T-910
14-15
6
NOZZLE THICKNESS CALC - T-920
16-17
7
NOZZLE THICKNESS CALC - T-940
18-19
8
WIND LOADING - T-910/T-920/T-940
20
9
LOAD AT BASE & TRANSPORTATION LOAD CALC - T-910/T-920/T-940
21
10 BASE PLATE DESIGN CALCULATION - T-910/T-920/T-940
22
11 LEG DESIGN CALCULATION- T-910/T-920/T-940
23
12 T-950 SIDE WALL CALC
24-27
13 T-950 BTM WALL CALC
28-30
14 T-950 ROOF WALL CALC
31-34
15 NOZZLE THICKNESS CALC - T-950
35-36
16 WIND LOADING - T-950
37
17 LOAD AT BASE & TRANSPORTATION LOAD CALC - T-950
38
18 BASE PLATE DESIGN CALCULATION - T-950
39
19 LEG DESIGN CALCULATION- T-950
40
20 WEIGHT SUMMARY
41
21 CPP-STIFFENER SECTIONAL PROPERTIES
42
Note : Lifting Lug Design calc is done on separate document (Please refer to LIFTING LUG DESIGN CALC : Doc No. CPP-CIS-MCPD-201)
Page 1 of 42
CPP-Tank Design Calc
DESIGN DATA
ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50
RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF
ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE
NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50 K2 51 K3 52
RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF
T-910 ( CORROSION INHIBITOR TANK ) WATER FULL (+0.7/-0.03) psig o
131 F ATMOSPHERIC AMBIENT 4.1 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW
T-920 ( POUR POINT DEPRESENT STORAGE TANK ) WATER FULL (+0.7/-0.03) psig 131 oF ATMOSPHERIC AMBIENT 4.0 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1
SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW PRESSURE GAUGE PVRV/FLAME ARRESTOR
Page 2 of 42
CPP-Tank Design Calc
DESIGN DATA
ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 N6 50 N7 50 K1A 50 K1B 50
RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF
ITEM NO. : DISCHARGE PRESSURE : DESIGN TEMPERATURE : OPERATING PRESSURE : OPERATING TEMPERATURE : WORKING VOLUME : MATERIAL : TRIM NO. : DESIGN CODE NOZZLE SIZE MW 600 N1 50 N2 50 N3 50 N4 50 N5 50 K1A 50 K1B 50
RATING 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF 150# SWRF
T-940 ( DEMULSIFIER STORAGE TANK ) WATER FULL (+0.7/-0.03) psig o
131 F ATMOSPHERIC AMBIENT 4.0 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW SPARE SPARE LEVEL GAUGE HIGH LEVEL GAUGE LOW
T-950 ( WATER FLOCCULANT TANK ) WATER FULL (+0.7/-0.03) psig 131 oF ATMOSPHERIC AMBIENT 2.5 m3 STAINLESS STEEL 316L B6 ROARK'S FORMULA STRESS AND STRAIN & ASME SECT VII DIV 1 SERVICE MANWAY FILLING CONNECTION VENT CONNECTION FEED TO PUMP DRAIN OVERFLOW LEVEL GAUGE HIGH LEVEL GAUGE LOW
Page 3 of 42
CPP-Tank Design Calc
SIDE WALL DESIGN CALCULATION TANK NO. :
T-910 / T-920 / T-940 98.4 in 59.06 in 59.06 in
Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =
2500 mm 1500 mm 1500 mm
Full Water (+0.7/-0.03) psig 131 F A 240 316L
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =
9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500
S a
= =
625 mm 500 mm
b
S
S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi
b = 0.3954 a = 0.0655 0.4608 g E = 2.9E+07 psi t= c.a = t (corr) =
S
0.2362 in 0.0000 in 0.2362 in
6.0 mm 0 mm 6.0 mm
At Center, Maximum Deflection, = = =
-(aqb4)/Et3 -0.09 0.09 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
Maximum Bending stress, s =(bqb2)/ t2 =
9,765 psi
<
σ allowable
16,700 psi.
Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/sy =
: OK : O.K
A 240 316L 25000 psi 0.391
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb
32.25 lb/in 3644.27 N/mm
Page 4 of 42
CPP-Tank Design Calc
SIDE WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :
T-910 / T-920 / T-940
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in
L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in
19.69 9.8
in in
X 19.69 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.068
in3
=
0.258
in3
>
(I/y)required
=
6576
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
9.84 in
δmax = (5WL4) 384EI =
0.007
< L/360 = 0.0547 in
The stiffener size used is adequate.
Page 5 of 42
CPP-Tank Design Calc
SIDE WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-910 / T-920 / T-940 L= ґ=
W
625 312.5
mm mm
= =
24.61 12.3
in in
43.75 lb/in Load q = unit load W = =
3.5561 qxґ 43.75
psi psi lb/in
X 24.61 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 13.48 in Maximum moment, Mmax = 0.0215WL2 = 570 lb-in M/I = s/y (I/y)required = M/s = 0.023 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener
=
Therefore, s stiffener
=
0.023
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 2209
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
12.92 in 0.001309 x WL4 EI
0.0286 in
< L/360)
0.0684
in
Therefore the size used is adequate.
Page 6 of 42
CPP-Tank Design Calc
BOTTOM WALL DESIGN CALCULATION TANK NO. :
T-910 / T-920 / T-940 98.4 in 59.06 in 59.06 in
Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =
2500 mm 1500 mm 1500 mm
Full Water (+0.7/-0.03) psig °F 131 A 240 316L
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =
9.81 m/s2 1000 kg/m3 19.69 in 19.69 in 1.0000
S a
= =
500 mm 500 mm
b
S
S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi
b = 0.2874 a = 0.0444 0.4200 g E = 2.9E+07 psi t= c.a = t (corr) =
S
0.2362 in 0.0000 in 0.2362 in
6.0 mm 0 mm 6.0 mm
At Center, Maximum Deflection, = = =
-(aqb4)/Et3 -0.06 0.06 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
Maximum Bending stress, s =(bqb2)/ t2 =
7,097 psi
<
σ allowable
16,700 psi
: OK
Max Bending stress < σ allowable : O.K Material Yield Stress, sy = Stress Ratio, s/sy =
A 240 316L 25000 psi 0.284
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb
29.40 lb/in 3321.96 N/mm
Page 7 of 42
CPP-Tank Design Calc
BOTTOM WALL HORIZONTAL STIFFENER CALCULATION (1) TANK NO. :
T-910 / T-920 / T-940
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in
L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in
19.69 9.8
in in
X 19.69 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.068
in3
=
0.258
in3
>
(I/y)required
=
6576
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
9.84 in
δmax = (5WL4) 384EI =
0.007
< L/360 = 0.0547 in
The stiffener size used is adequate.
Page 8 of 42
CPP-Tank Design Calc
BOTTOM WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-950 L= ґ=
W
500 250
mm mm
= =
19.69 9.8
in in
35.00 lb/in Load q = unit load W = =
3.5561 qxґ 35.00
psi psi lb/in
X 19.69 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 292 lb-in M/I = s/y (I/y)required = M/s = 0.012 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener
=
Therefore, s stiffener
=
0.012
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 1131
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
10.33 in 0.001309 x WL4 EI
0.006 in
< L/360)
0.0547
in
Therefore the size used is adequate.
Page 9 of 42
CPP-Tank Design Calc
ROOF WALL DESIGN CALCULATION TANK NO. :
T-910 / T-920 / T-940
Tank Height, H Tank Width, W Tank Length, L
2500 mm 1500 mm 1500 mm
98.4 in 59.06 in 59.06 in
Design Pressure Design Temp. Material =
Roof weight = Misc. weight = Live load,LL = Dead load,TDL = Conc. load, CL =
Full Water (+0.7/-0.03) psig 131 F A 240 316L
= =
233.69 11.02 0.00 0.20 0.00
lb lb psi psi psi
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. S g= ρ liq = a= b= a/b = b a g E
9.81 m/s2 1000 kg/m3
a S 500 mm 500 mm
19.69 in 19.69 in 1.0000
= 0.2874 = 0.0444 = 0.4200 = 2.90E+07 psi
t= c.a = t (corr) =
= =
Live load + DeadLoad + Conc.Load 0.200 psi
= 6.0 mm 0 mm 6.0 mm
= = =
Maximum Bending stress, s =
-(aqb4)/Et3 0.00 0.00 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
(bqb2)/ t2 400 psi
= Material Yield Stress, sy = Stress Ratio, s/sy =
S
S
Loading q
0.2362 in 0.0000 in 0.2362 in
At Center, Maximum Deflection,
b
σallowable < 16,700 psi Max Bending stress < σ allowable
: OK : O.K
A 240 316L 25000 psi 0.016
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb 1.66 lb/in 187.27 N/mm
Page 10 of 42
CPP-Tank Design Calc
ROOF WALL WEIGHT CALCULATION 450NB Blind = 450NB Pipe = 450NB Slip On = 50NB WNRF = 50NB Pipe = Piping & Accs = Stiffener (FB65 X 6) = Roof plate = Misc weight =
Weight Per pcs 100 12 59 1.02 15 5 19 106 5
Qty 1 1 1 1 1 1 1 1 1 Total Weight
Total 100 12 59 1.02 15 5 19 106 5 317.02 698.91
kg kg kg kg kg kg kg kg kg kg lb
Total Loading (pressure) acting on the roof plate is calculated as shown below Dead Load = F=mxg= Area = a x b = P = F/A = =
317.02 3109.97 2.25 1382.21 0.200
kg N m2 Pa psi
Concentrated Load = F=mxg= Area = a x b = P = F/A = =
0.00 0.00 2.25 0.00 0.00
kg N m2 Pa psi
Live Load, LL = = extra load
0.00 kg/m2 0.00 psi 0.00
ROOF STIFFENER LOCATION
Page 11 of 42
CPP-Tank Design Calc
ROOF WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :
T-910 / T-920 / T-940
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 1.97 lb/in
L= ґ= Load q = unit load W = =
500 250 0.200 qxґ 1.97
mm = mm = psi psi lb/in
19.69 9.8
in in
X 19.69 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 96 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.004
in3
=
0.258
in3
>
(I/y)required
=
371
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
9.84 in
δmax = (5WL4) 384EI =
0.000
< L/360 = 0.0547 in
The stiffener size used is adequate.
Page 12 of 42
CPP-Tank Design Calc
ROOF WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-910 / T-920 / T-940 L= ґ=
W
500 250
mm mm
= =
19.69 9.8
in in
1.97 lb/in Load q = unit load W = =
0.2005 qxґ 1.97
psi psi lb/in
X 19.69 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 16 lb-in M/I = s/y (I/y)required = M/s = 0.001 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener
=
Therefore, s stiffener
=
0.001
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 64
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
10.33 in 0.001309 x WL4 EI
0.0003 in
< L/360)
0.0547
in
The stiffener size used is adequate.
Page 13 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-910 N1 / N2 / N3 / N4 / N5 / K1A / K1B
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
50NB SCH 40S …….UG - 32
A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4
MPa mm mm
mm mm mm mm
Material: 0 0 0 0
4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx
mm mm mm mm 6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00
mm mm mm mm mm mm mm mm
MATERIAL STRENGTH RATIOS
o
PAD
S @(55oC) OD Thickness = te Weld
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
MPa mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
156.90 mm2 60.00 mm2 156.90 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
256.84 mm2 OK Page 14 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-910 MW
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
600NB …….UG - 32
A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6
MPa mm mm
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx
6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00
MATERIAL STRENGTH RATIOS
mm mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
Material: 0 0 0 0
mm mm mm mm mm mm mm mm
o
PAD
S @(55oC) OD Thickness = te Weld
mm mm mm mm
MPa mm mm mm
1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
30.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
2001.85 mm2 OK Page 15 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-920 N1 / N2 / N3 / N4 / N5 / K1A / K1B / K2 / K3
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
50NB SCH 40S …….UG - 32
A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4
MPa mm mm
mm mm mm mm
Material: 0 0 0 0
4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx
mm mm mm mm 6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00
mm mm mm mm mm mm mm mm
MATERIAL STRENGTH RATIOS
o
PAD
S @(55oC) OD Thickness = te Weld
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
MPa mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
156.90 mm2 60.00 mm2 156.90 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
256.84 mm2 OK Page 16 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-920 MW
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
600NB …….UG - 32
A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6
MPa mm mm
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx
6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00
MATERIAL STRENGTH RATIOS
mm mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
Material: 0 0 0 0
mm mm mm mm mm mm mm mm
o
PAD
S @(55oC) OD Thickness = te Weld
mm mm mm mm
MPa mm mm mm
1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
30.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
2001.85 mm2 OK Page 17 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-940 N1 / N2 / N3 / N4 / N5 / N6 / N7 / K1A / K1B
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
50NB SCH 40S …….UG - 32
A 312 TP316L 115.15 60.3 4 52.3 0 1.0 52.3 26.15 1.0 0.00278 4
MPa mm mm
mm mm mm mm
Material: 0 0 0 0
4.20 mm 2.80 mm xxx 2.80 mm xxx xxx xxx
mm mm mm mm 6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
52.3 36.15 52.3 15.00 10.00 10.00 5.00 150.00
mm mm mm mm mm mm mm mm
MATERIAL STRENGTH RATIOS
o
PAD
S @(55oC) OD Thickness = te Weld
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
MPa mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
156.90 mm2 60.00 mm2 156.90 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
119.92 mm2 79.94 mm2 79.94 mm2 20.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # SW 1.943 MPa …UG - 37 156.9 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
256.84 mm2 OK Page 18 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-940 MW
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
600NB …….UG - 32
A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6
MPa mm mm
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx
6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00
MATERIAL STRENGTH RATIOS
mm mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
Material: 0 0 0 0
mm mm mm mm mm mm mm mm
o
PAD
S @(55oC) OD Thickness = te Weld
mm mm mm mm
MPa mm mm mm
1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
30.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
2001.85 mm2 OK Page 19 of 42
CPP-Tank Design Calc
WIND LOADING - BS 6399 - PART 2 -1997 ITEM : CPP (T-910 / T-920 / T-940 ) PROJECT NO.PM329 EAST PIATU DEVELOPMENT PROJECT Terrain Category
=
1
Region
=
D
Basic Wind Speed
Vb
=
50.00
Shielding Factor
Ms
=
1
Topographic Factor
Sa
=
1
Direction Factor
Sd
=
1
Probability Factor
Sp
=
1
Seasonal Factor
Ss
=
1
Terrain and Building Factor
Sb
=
1
Design Wind Speed
Vz
=
50.00
m/s ( Vb x Sa x Sd x Sp x Ss )
=
50.00
m/s ( Vz x Sb ) kPa ( 0.613 x Ve2 x 10-3 )
Effective (Design) Wind speed Ve qz
=
1.5325
Drag Coefficient
Cd
=
1
H
=
3,500
mm
Width
=
2,800
mm
Az
=
9,800,000
mm2
H / Width
=
1.25
Kar
=
1
Cd'
=
1
3500
Dynamic Pressure
m/s
2800
Wind Force Height to COG Overturning Moment
Fw
=
15018.5
N
( Cd' x qz x Az ) / 103
h
=
1750.000
mm
(H/2)
Mw
=
26282375
Nmm
( Fw x h )
( Cd x Kar )
Page 20 of 42
CPP-Tank Design Calc LOAD AT BASE & TRANSPORTATION LOAD CALCULATION ITEM : PROJECT NO.
CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT
WEIGHTS Empty
We
=
1999
kg ------>
Wind Force Earthquake Force Transportation Force
Fw Feq FD
= = =
15,019 0 2971
Wind Moment Earthquake Moment Transportation Moment
Mw Meq Mc
= = =
26,282,375 Nmm 0 Nmm 5,199,302 Nmm
Maximum Shear Force Maximum O/T Moment
F M
= =
15,019 N 26,282,375 Nmm
19606
N
EXTERNAL LOADS N N N
[( 0.5 x We )2 + ( 1.4 x We )2 ]0.5
( FD x COG )
COG = (H/2)
1750 mm
HOLD DOWN BOLTS Bolt Material…………….……………….…………. = A 193 GR B7 Bolt Yield Stress………………….…………… Sy =
207
MPa
Bolt UTS…….…..……………….…………… Su =
507
MPa
Allowable Tensile……………….…..…...…… Ft =
124.2
MPa
69
MPa
Allowable Shear……………………...…… Fs
=
Bolt Size……………………………………...…………… M16 = Bolt Number…………………………..…...………… N =
2
AT = Tensile Area………….……………..….……
146
mm2
AS Shear Area……………………………..…
=
225
mm2
Bolt PCD………………………………….. PCD
=
1980.64
mm
SHEAR STRESS IN BOLT Shear / Bolt, fs =
F N x As
fs
=
33.37
Fs
=
69
since fs < Fs the shear stress is
MPa OK MPa OK
Page 21 of 42
CPP-Tank Design Calc
LEG BASEPLATE DESIGN CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT
ITEM : PROJECT NO.
Refer Dennis R Moss Procedure 3-10
tb
=
3xQxF 4 x A x Fb
Q = Maximum Load / Support F = Baseplate Width A = Baseplate Length Fb = Allowable Bending Stress
= = = =
4901 170 170 163.68
N mm mm MPa
tb
=
4.7
mm
Use Tb
=
10
mm
BASE PLATE WELD CHECKING Maximum stress due to Q & F = max(Q, F)/Aw
= <
Weld leg size, g Length of weld, l = 2*( 2*F + 2*A ) Area of weld, Aw = 0.5*g*l Joint efficiency for fillet weld, E Welding stress for steel, fw Allowable stress for weld, fw = E*fw Maximum vertical force, Q Maximum horizontal force, F
= = = = = = = =
( 0.66 Fy )
OK
3.68 86.9
N/mm2 N/mm2
6.0 1360 4080 0.6 144.8 86.9 4901.4 15018.5
mm mm mm2 N/mm2 N/mm2 N N
OK
Page 22 of 42
CPP-Tank Design Calc
LEG DESIGN CALCULATION CPP (T-910 / T-920 / T-940 ) PM329 EAST PIATU DEVELOPMENT PROJECT
ITEM : PROJECT NO. LEG DATA
Material……………...………………..= Yield Stress, Sy………….…………..= Allowable Axial Stress, fall.…...……= Allowable Bending Stress, fball.......= LEG GEOMETRY :-
A 36 2 248.2 N/mm 2 148.9 N/mm ( 0.6 x Sy ) 2 165.5 N/mm ( 2/3 x Sy )
I-BEAM 152 x 152 x 23 kg/m 2 A= 2920 mm 4 Ixx = 12500000 mm d= 76.2 mm e= 76.2 mm L= 152.4 mm r= 9 mm
d X
X e
AXIAL STRESS Axial Stress, fa =
F/A =
1.68
N/mm2
PxLxe= Ixx
13.95
N/mm2
BENDING STRESS Bending Stress, fb =
COMBINED STRESS Combined Stress, f = (fa/fall + fb/fball) = Since Combined Stress is
0.10
< 1.00 The Leg Design is OK!
Page 23 of 42
CPP-Tank Design Calc
SIDE WALL (1) DESIGN CALCULATION (@ Length = 1500mm ) TANK NO. :
T-950 98.4 in 59.06 in 59.06 in
Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =
2500 mm 1500 mm 1500 mm
Full Water (+0.7/-0.03) psig 131 F A 240 316L
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b = b a g E
9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500
S a
= =
625 mm 500 mm
b
S
S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi
= 0.3954 = 0.0655 = 0.4608 = 2.9E+07 psi
t= c.a = t (corr) =
S
0.2362 in 0.0000 in 0.2362 in
6.0 mm 0 mm 6.0 mm
At Center, Maximum Deflection, = = =
-(aqb4)/Et3 -0.09 0.09 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
Maximum Bending stress, s = (bqb2)/ t2 =
9,765 psi
<
σ allowable
16,700 psi.
Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/sy =
: OK : O.K
A 240 316L 25000 psi 0.391
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb
32.25 lb/in 3644.27 N/mm
Page 24 of 42
CPP-Tank Design Calc
SIDE WALL (2) DESIGN CALCULATION (@ Length = 1000mm ) TANK NO. :
T-950 98.4 in 59.06 in 59.06 in
Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =
2500 mm 1500 mm 1500 mm
Full Water (+0.7/-0.03) psig 131 F A 240 316L
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =
9.81 m/s2 1000 kg/m3 24.61 in 19.69 in 1.2500
S a
= =
625 mm 500 mm
b
S
S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi
b = 0.3954 a = 0.0655 0.4608 g E = 2.9E+07 psi t= c.a = t (corr) =
S
0.2362 in 0.0000 in 0.2362 in
6.0 mm 0 mm 6.0 mm
At Center, Maximum Deflection, = = =
-(aqb4)/Et3 -0.09 0.09 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
Maximum Bending stress, s = (bqb2)/ t2 =
9,765 psi
<
σ allowable
16,700 psi
Max Bending stress < σ allowable Material Yield Stress, sy = Stress Ratio, s/ sy =
: OK : O.K
A 240 316L 25000 psi 0.391
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb
32.25 lb/in 3644.27 N/mm
Page 25 of 42
CPP-Tank Design Calc
SIDE WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :
T-950
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in
L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in
19.69 9.8
in in
X 19.69 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.068
in3
=
0.258
in3
>
(I/y)required
=
6576
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
9.84 in
δmax = (5WL4) 384EI =
0.007
< L/360 = 0.0547 in
The stiffener size used is adequate.
Page 26 of 42
CPP-Tank Design Calc
SIDE WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-950 L= ґ=
W
625 312.5
mm mm
= =
24.61 12.3
in in
43.75 lb/in Load q = unit load W = =
3.5561 qxґ 43.75
psi psi lb/in
X 24.61 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 13.48 in Maximum moment, Mmax = 0.0215WL2 = 570 lb-in M/I = s/y (I/y)required = M/s = 0.023 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s Therefore,
s stiffener
=
s stiffener
=
0.023
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 2209
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
12.92 in 0.001309 x WL4 EI
0.029 in
< L/360)
0.068
in
Therefore the size used is adequate.
Page 27 of 42
CPP-Tank Design Calc
BOTTOM WALL DESIGN CALCULATION TANK NO. :
T-950 98.4 in 59.06 in 39.37 in
Tank Height, H = Tank Width, W = Tank Length, L = Design Pressure = Design Temp. = Material =
2500 mm 1500 mm 1000 mm
Full Water (+0.7/-0.03) psig 131 F A 240 316L
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. g= ρ liq = a= b= a/b =
9.81 m/s2 1000 kg/m3 19.69 in 19.69 in 1.0000
S a
= =
500 mm 500 mm
b
S
S Loading q = ρ liq gH = 24525 N/m2 = 3.5561 psi = 3.5561 psi
b = 0.2874 a = 0.0444 0.4200 g E = 2.9E+07 psi t= c.a = t (corr) =
S
0.2362 in 0.0000 in 0.2362 in
6.0 mm 0 mm 6.0 mm
At Center, Maximum Deflection, = = =
-(aqb4)/Et3 -0.06 0.06 in
t/2 =
0.118 in
Max Deflection < t/2
: O.K
Maximum Bending stress, s =(bqb2)/ t2 =
7,097 psi
<
σ allowable
16,700 psi
: OK
Max Bending stress < σ allowable : O.K Material Yield Stress, sy = Stress Ratio, s/ sy =
A 240 316L 25000 psi 0.284
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb
29.40 lb/in 3321.96 N/mm
Page 28 of 42
CPP-Tank Design Calc
BOTTOM WALL HORIZONTAL STIFFENER CALCULATION (1) TANK NO. :
T-950
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 35.00 lb/in
L= 500 mm = ґ= 250 mm = Load q = 3.5561 psi unit load W = q x ґ psi = 35.00 lb/in
19.69 9.8
in in
X 19.69 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 9.84 in Maximum moment, Mmax = WL2/8 = 1695 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.068
in3
=
0.258
in3
>
(I/y)required
=
6576
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
9.84 in
δmax = (5WL4) 384EI =
0.007
< L/360 = 0.0547 in
The stiffener size used is adequate.
Page 29 of 42
CPP-Tank Design Calc
BOTTOM WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-950 L= ґ=
W
500 250
mm mm
= =
19.69 9.8
in in
35.00 lb/in Load q = unit load W = =
3.5561 qxґ 35.00
psi psi lb/in
X 19.69 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 292 lb-in M/I = s/y (I/y)required = M/s = 0.012 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener
=
Therefore, s stiffener
=
0.012
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 1131
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
10.33 in 0.001309 x WL4 EI
0.006 in
< L/360)
0.0547
in
Therefore the size used is adequate.
Page 30 of 42
CPP-Tank Design Calc
ROOF WALL DESIGN CALCULATION TANK NO. :
T-950
Tank Height, H Tank Width, W Tank Length, L
2500 mm 1500 mm 1000 mm
98.4 in 59.06 in 39.37 in
Design Pressure Design Temp. Material =
Roof weight = Misc. weight = Live load,LL = Dead load,TDL = Conc. load, CL =
Full Water (+0.7/-0.03) psig 131 F A 240 316L
= =
156.53 11.02 0.00 0.26 0.00
lb lb psi psi psi
As per Table 11.4 Case No.1a Chapter 10 of Roark's Rectangular plate, all edges simply supported, with uniform loads over entire plate. S g= ρ liq = a= b= a/b = b a g E
2
9.81 m/s 1000 kg/m3
a S 1000 mm 500 mm
39.37 in 19.69 in 2.0000
= 0.6102 = 0.1110 = 0.5030 = 2.90E+07 psi
t= c.a = t (corr) =
= =
Live load + DeadLoad + Conc.Load 0.259 psi
= 6.0 mm 0 mm 6.0 mm
-(aqb4)/Et3 -0.01 0.01 in
= = =
Maximum Bending stress, s =
t/2 =
0.118 in
Max Deflection < t/2
: O.K
(bqb2)/ t2
1,097 psi
= Material Yield Stress, sy = Stress Ratio, s/sy =
S
S
Loading q
0.2362 in 0.0000 in 0.2362 in
At Center, Maximum Deflection,
b
σallowable < 16,700 psi Max Bending stress < σ allowable
: OK : O.K
A 240 316L 25000 psi 0.044
At center of long side, Maximum reaction force per unit length normal to the plate surface, R
= = =
g qb 2.56 lb/in 289.73 N/mm
Page 31 of 42
CPP-Tank Design Calc
ROOF WALL WEIGHT CALCULATION 450NB Blind = 450NB Pipe = 450NB Slip On = 50NB WNRF = 50NB Pipe = Piping & Accs = Stiffener (FB65 X 6) = Roof plate = Misc weight =
Weight Per pcs 100 12 59 1.02 15 5 10 71 5
Qty 1 1 1 1 1 1 1 1 1 Total Weight
Total 100 12 59 1.02 15 5 10 71 5 273.02 601.91
kg kg kg kg kg kg kg kg kg kg lb
Total Loading (pressure) acting on the roof plate is calculated as shown below Dead Load = F=mxg= Area = a x b = P = F/A = =
273.02 2678.33 1.50 1785.55 0.259
kg N m2 Pa psi
Concentrated Load = F=mxg= Area = a x b = P = F/A = =
0.00 0.00 1.50 0.00 0.00
kg N m2 Pa psi
Live Load, LL = = extra load
0.00 kg/m2 0.00 psi 0.00
ROOF STIFFENER LOCATION
Page 32 of 42
CPP-Tank Design Calc
ROOF WALL HORIZONTAL STIFFENER CALCULATION TANK NO. :
T-950
Maximum bending moment occurs at the point where dM/dx = 0 and shear force is zero, that is, at the middle of the beam. W 5.10 lb/in
L= ґ= Load q = unit load W = =
1000 500 0.259 qxґ 5.10
mm = mm = psi psi lb/in
39.37 19.7
in in
X 39.37 in
Wa
Wb
Bending Moment As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x = L/2 = 19.69 in Maximum moment, Mmax = WL2/8 = 988 lb-in
Use FB 65 x 6 I/y Therefore,
s
M/I
=
s/y
(I/y)required
= =
M/s 0.040
in3
=
0.258
in3
>
(I/y)required
=
3831
psi
<
σallowable
O.K 16700 psi
O.K
Deflection As per Table 8.1 Case 2e of Roark's (Uniform load on entire span) At x =L/2=
19.69 in
δmax = (5WL4) 384EI =
0.017
< L/360 = 0.1094 in
The stiffener size used is adequate.
Page 33 of 42
CPP-Tank Design Calc
ROOF WALL VERTICAL STIFFENER CALCULATION TANK NO. :
T-950 L= ґ=
W
500 250
mm mm
= =
19.69 9.8
in in
2.55 lb/in Load q = unit load W = =
0.2590 qxґ 2.55
psi psi lb/in
X 19.69 in Wb
Wa
Bending Moment As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.548L = 10.79 in Maximum moment, Mmax = 0.0215WL2 = 21 lb-in M/I = s/y (I/y)required = M/s = 0.001 in3 1. Checking Section Modulus (Z) of stiffener : Stiffener size = FB 65 x 6 Section Modulus of stiffener is OK Z
= =
Z stiffener
I/y 0.258
3
>
in
2. Checking stiffener Bending stress (s ) : = M/Z s s stiffener
=
Therefore, s stiffener
=
0.001
3
in
Z required
Max bending stress of stiffener is OK
M max / Z stiffener 82
psi
<
16700 psi
σallowable
Deflection As per Table 8.1 Case 2d of Roark's (Uniformly increasing load) At x = 0.525L = dmax
=
=
10.33 in 0.001309 x WL4 EI
0.0004 in
< L/360)
0.0547
in
The stiffener size used is adequate.
Page 34 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-985 N1 / N2 / N3 / N4 / N5 / K1A / K1B
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
50NB SCH 40S …….UG - 32
A 312 TP316L 115.15 60.3 5.54 49.22 0 1.0 49.22 24.61 1.0 0.00262 5.54
MPa mm mm
mm mm mm mm
Material: 0 0 0 0
4.20 mm 3.88 mm xxx 3.88 mm xxx xxx xxx
mm mm mm mm 6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
49.22 36.15 49.22 15.00 13.85 13.85 5.00 150.00
mm mm mm mm mm mm mm mm
MATERIAL STRENGTH RATIOS
o
PAD
S @(55oC) OD Thickness = te Weld
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
MPa mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
147.66 mm2 69.24 mm2 147.66 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
166.12 mm2 153.39 mm2 153.39 mm2 27.70 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # SW 1.943 MPa …UG - 37 147.66 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
328.75 mm2 OK Page 35 of 42
CPP-Tank Design Calc
NOZZLE THICKNESS CALCULATION TANK NO. : NOZZLE NO :
T-985 MW
DESIGN CONDITIONS
P DT CAe / CAi
WELDS
0.0245 MPa 55 oC mm
0 / 0
SHELL PROPERTIES
Material: o
S @(55 C) Wall Thickness, ts tr = t = ts - CA NOZZLE SIZE: trn = PRn 2SE - 0.2P Material: S @(55oC) OD Wall Thickness, tb ID Neck Slope F = Figure UG-37 d = ID + (2*CA) +Tol. Rn = d/2 E trn tn = tb - CA
A 240 316L 115.15 6 3 6
MPa mm mm mm
600NB …….UG - 32
A 240 316L 115.15 609.6 6 597.6 0 1.0 597.6 298.8 1.0 0.03181 6
MPa mm mm
Neck: tc1 = 0.7*t tc2 = 0.7*tn tc3 tc = Min[tc1,tc2,tc3] Pad: Fr1 = 0.5*te Fr2 = 0.5*t Fr3 = Fr = Min[Fr1,Fr2,Fr3] Summary: External Leg Internal Leg Pad Leg
4.20 mm 4.20 mm xxx 4.20 mm xxx xxx xxx
6 mm 0 mm 0 mm
LIMIT OF REINFORCEMENT ….UG - 40 R1 = d R2 = Rn + tn + t R = Max [R1,R2] h1 = 2.5*T1 h2 = 2.5*Tb1 + Tr1 h = Min [h1,h2] Internal Projection External Projection
597.6 310.8 597.6 15.00 15.00 15.00 5.00 150.00
MATERIAL STRENGTH RATIOS
mm mm mm mm
fr1 = Sn/Sv fr2 = Sn/Sv fr4 = Sp/Sv fr3 = Min[fr1,fr2,fr4]
1.0000 1.0000 0.00 0.0000
AREA AVAILABLE ….UG - 37 A11 = d(E1t - Ftr) - 2tn(E1t - Ftr)(1 - fr1) A12 = 2(t+tn)(E1t-Ftr)-2tn(E1t-Ftr)(1-fr1) A1 = Max [A11, A12]
Material: 0 0 0 0
mm mm mm mm mm mm mm mm
o
PAD
S @(55oC) OD Thickness = te Weld
mm mm mm mm
MPa mm mm mm
1792.80 mm2 72.00 mm2 1792.80 mm2 179.05 mm2 179.05 mm2 179.05 mm2
A21 = 5(tn - trn)fr2.t A22 = 5(tn - trn)fr2.tn A2 = Min [A21, A22]
30.00 mm2
A3 = (Int.proj - CAi)(tn - CAi).fr2 FLANGE Material: Type: Rating at 55oC AREA REQUIRED A = d.tr.F + 2.tn.tr.F(1-fr1)
A 182 F316L 150 # 1.943 MPa …UG - 37 1792.8 mm2
A41 = (Ext.Leg - CAe)2.fr3 A42 = (Int.Leg - CAi)2.fr2 A43 = (Pad.Leg - CAe)2.fr4 A4 = Sum[A41,A42,A43]
0.00 0.00 0.00 0.00
A5 = (Pad OD - Noz OD).te.fr4
0.00 mm2
TOTAL AREA AVAILABLE
=
mm2 mm2 mm2 mm2
2001.85 mm2 OK Page 36 of 42
CPP-Tank Design Calc
WIND LOADING - BS 6399 - PART 2 -1997 ITEM : CPP (T-950 ) PROJECT NO.PM329 EAST PIATU DEVELOPMENT PROJECT Terrain Category
=
1
Region
=
D
Basic Wind Speed
Vb
=
50.00
Shielding Factor
Ms
=
1
Topographic Factor
Sa
=
1
Direction Factor
Sd
=
1
Probability Factor
Sp
=
1
Seasonal Factor
Ss
=
1
Terrain and Building Factor
Sb
=
1
Design Wind Speed
Vz
=
50.00
m/s ( Vb x Sa x Sd x Sp x Ss )
=
50.00
m/s ( Vz x Sb ) kPa ( 0.613 x Ve2 x 10-3 )
Effective (Design) Wind speed Ve qz
=
1.5325
Drag Coefficient
Cd
=
1
H
=
3,500
mm
Width
=
2,800
mm
Az
=
9,800,000
mm2
H / Width
=
1.25
Kar
=
1
Cd'
=
1
3500
Dynamic Pressure
m/s
2800
Wind Force Height to COG Overturning Moment
Fw
=
15018.5
N
( Cd' x qz x Az ) / 103
h
=
1750.000
mm
(H/2)
Mw
=
26282375
Nmm
( Fw x h )
( Cd x Kar )
Page 37 of 42
CPP-Tank Design Calc LOAD AT BASE & TRANSPORTATION LOAD CALCULATION ITEM : PROJECT NO.
CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT
WEIGHTS Empty
We
=
1361
kg ------>
Wind Force Earthquake Force Transportation Force
Fw Feq FD
= = =
15,019 0 2024
Wind Moment Earthquake Moment Transportation Moment
Mw Meq Mc
= = =
26,282,375 Nmm 0 Nmm 3,541,163 Nmm
Maximum Shear Force Maximum O/T Moment
F M
= =
15,019 N 26,282,375 Nmm
13353
N
EXTERNAL LOADS N N N
[( 0.5 x We )2 + ( 1.4 x We )2 ]0.5
( FD x COG )
COG = (H/2)
1750 mm
HOLD DOWN BOLTS Bolt Material…………….……………….…………. = A 193 GR B7 Bolt Yield Stress………………….…………… Sy =
207
MPa
Bolt UTS…….…..……………….…………… Su =
507
MPa
Allowable Tensile……………….…..…...…… Ft =
124.2
MPa
69
MPa
Allowable Shear……………………...…… Fs
=
Bolt Size……………………………………...…………… M16 = Bolt Number…………………………..…...………… N =
2
AT = Tensile Area………….……………..….……
146
mm2
AS Shear Area……………………………..…
=
225
mm2
Bolt PCD………………………………….. PCD
=
1980.64
mm
SHEAR STRESS IN BOLT Shear / Bolt, fs =
F N x As
fs
=
33.37
Fs
=
69
since fs < Fs the shear stress is
MPa OK MPa OK
Page 38 of 42
CPP-Tank Design Calc
LEG BASEPLATE DESIGN CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT
ITEM : PROJECT NO.
Refer Dennis R Moss Procedure 3-10
tb
=
3xQxF 4 x A x Fb
Q = Maximum Load / Support F = Baseplate Width A = Baseplate Length Fb = Allowable Bending Stress
= = = =
3338 170 170 163.68
N mm mm MPa
tb
=
3.9
mm
Use Tb
=
10
mm
BASE PLATE WELD CHECKING Maximum stress due to Q & F = max(Q, F)/Aw
= <
Weld leg size, g Length of weld, l = 2*( 2*F + 2*A ) Area of weld, Aw = 0.5*g*l Joint efficiency for fillet weld, E Welding stress for steel, fw Allowable stress for weld, fw = E*fw Maximum vertical force, Q Maximum horizontal force, F
= = = = = = = =
( 0.66 Fy )
OK
3.68 86.9
N/mm2 N/mm2
6.0 1360 4080 0.6 144.8 86.9 3338.3 15018.5
mm mm mm2 N/mm2 N/mm2 N N
OK
Page 39 of 42
CPP-Tank Design Calc
LEG DESIGN CALCULATION CPP (T-950 ) PM329 EAST PIATU DEVELOPMENT PROJECT
ITEM : PROJECT NO. LEG DATA
Material……………...………………..= Yield Stress, Sy………….…………..= Allowable Axial Stress, fall.…...……= Allowable Bending Stress, fball.......= LEG GEOMETRY :-
A 36 2 248.2 N/mm 2 148.9 N/mm ( 0.6 x Sy ) 2 165.5 N/mm ( 2/3 x Sy )
I-BEAM 152 x 152 x 23 kg/m 2 A= 2920 mm 4 Ixx = 12500000 mm d= 76.2 mm e= 76.2 mm L= 152.4 mm r= 9 mm
d X
X e
AXIAL STRESS Axial Stress, fa =
F/A =
1.14
N/mm2
PxLxe= Ixx
13.95
N/mm2
BENDING STRESS Bending Stress, fb =
COMBINED STRESS Combined Stress, f = (fa/fall + fb/fball) = Since Combined Stress is
0.09
< 1.00 The Leg Design is OK!
Page 40 of 42
CPP-Tank Design Calc WEIGHT SUMMARY ITEM : PROJECT NO.
CPP (T-910 / T-920 / T-940 / T-950) PM329 EAST PIATU DEVELOPMENT PROJECT DESCRIPTION
ITEM T-910 / T-920 / T-940 SIDE PLATE BASE PLATE ROOF PLATE
1.5 1.5 1.5
m m m
x x x
2.5 1.5 1.5
m m m
x x x
6 6 6
STIFFENER SIDE WALL ROOF PLATE BOTTOM PLATE
FB FB FB
65 65 65
x x x
6 6 6
x x x
17.5 2.0 12.0
m m m
thk thk thk
NOZZLE / OPENINGS MISC (PIPING / OTHERS) T-950 SIDE PLATE (1) SIDE PLATE (2) BASE PLATE ROOF PLATE
1.5 1.0 1.5 1.5
m m m m
x x x x
2.5 2.5 1.0 1.0
m m m m
x x x x
6 6 6 6
STIFFENER SIDE WALL (1) SIDE WALL (2) ROOF PLATE BOTTOM PLATE
FB FB FB FB
65 65 65 65
x x x x
6 6 6 6
x x x x
17.5 12.5 2.0 10.0
m m m m
thk thk thk thk
NOZZLE / OPENINGS MISC (PIPING / OTHERS) CPP SKID SUPPORT
30.8 m 6.6 m
UC254x254x73 kg/m2 UC152x152x23 kg/m2
height Tank Volume (T910/T920/T940) m 2.5 Tank Volume (T950) m 2.5
x x
TOTAL WEIGHT width x 1.5 m x x 1.0 m x
73 23
kg/m2 kg/m2
length 1.5 1.5
QTY
SET
WEIGHT
4 1 1
3 3 3
2119.5 317.9 317.9
kg kg kg
4 1 1
3 3 3
2571.7 18.4 110.2
kg kg kg
1 1
3 3
315.0 225.0
kg kg
2 2 1 1
1 1 1 1
353.3 235.5 70.7 70.7
kg kg kg kg
2 2 1 1
1 1 1 1
214.3 153.1 6.1 30.6
kg kg kg kg
1 1
1 1
105.0 122.0
kg kg
1 1
1 1
2250.5 152.7
kg kg
9,760
kg
mm mm
5.6 m3 3.8 m3 9,375 kg
= =
CPPT-910 / T-920 / T-940 - Water Weight [ Volume x Density(@1000 kg/m3)] SUMMARY EMPTY WEIGHT OPERATING WEIGHT (Empty Weight + Water Weight) FULL WATER WEIGHT WIRE ROPE DIAMETER USED SWL OF SLING USED
= =
24 ton 6.3 ton
9,760 19,135 19,135
kg kg kg
Design safety Factor = 1.8 Design Weight of Load = 38,731 lb 17,568 kg
Page 41 of 42
CPP-Tank Design Calc
SECTIONAL STIFFENER PROPERTIES CALCULATION TANK NO. :
CPP (T-910/T-920/T-940/T-950)
Stiffener Size Material, Yield Stress,
FB 65 x 6 A 240 316L σy
25000 psi
Allowable Stress,
σ allowable
16700 psi
Stiffener
b1
h
Where :
1
d1 =
65 mm
b1 =
6 mm
d1
y1 C
PART
h mm 0.00 0.00
h2 2 mm 0 0
Second Moment of Inertia of Stiffener I = 137312.5 mm4
=
0.3299
in4
Section Modulus of Stiffener 3 Z = 4225 mm
=
0.2578
in
Area (a)
y mm 32.5 32.5
2
1 TOTAL
mm 390 390
axy 3
mm 12675 12675
a x h2 4 mm 0 0
bd3/12 4 mm 137312.5 137312.5
I section 4
mm 137312.5 137312.5
Calculating Sectional Properties of stiffener : C =
SAy SA
C =
32.50
=
12675 390
mm
3
Page 42 of 42
View more...
Comments