CORRECIONES Fase - 3 - Analisis - Problemas - Balance - Materia - Andrés Fernando
October 12, 2022 | Author: Anonymous | Category: N/A
Short Description
Download CORRECIONES Fase - 3 - Analisis - Problemas - Balance - Materia - Andrés Fernando...
Description
lelraî`.
D`h`eml bl n`tlrf` y
@eàhfsfs prkdhln`s bl d`h`eml bl n`tlrf` y lelraî` c`sl = Arupk - =7007=[00
Wrlslet`bk pkr9 @ebræs Clre`ebk Màrble`s N`ppl
Wrlslet`bk `9 Fealeflr`. Jlfby Hkrle` A`hhlak
Bfrlmtkr bl mursk D`h`eml bl n`tlrf` y lelraî`
\efvlrsfb`b @dflrt` y ` Bfst`emf` \E@B Wrkar`n` Fealeflrî` bl @hfnletks LMDRF Mursk D`h`eml bl n`tlrf` y lelraî` Afr`rbkt, kmtudrl blh 4740.
Kdiltfvks
lelraî`.
D`h`eml bl n`tlrf` y
Bls`rrkhh`r hks puetks mknphltks bl h` `mtfvfb`b `m`bænfm` le lh tflnpk skhfmft`bk pkr hks tutkrls. @bqufrfr hks mkekmfnfletks prkdhln`s bl d`h`eml y n`tlrf` le lh bls`rrkhhk blh mursk p`r` `phfm`rhk le eulstr` m`rrlr` prkclsfke`h. \tfhfz`r tkbks hks rlmursks letrla`bks pkr eulstrks tutkrls le lh m`npus vfrtu`h p`r` ue `prlebfz`il lxmlhletl y mkrrlmtk mke ue ar`e lnplðk.
0.
Wrkdhln` bl lxtr`mmfýe.
\e arupk bl fevlsa`bkrls lstà lstubf`ebk h` ckrn` bl bfsnfeufr lh mketlefbk bl t`efeks bl ue` nulstr` bl crfikh, puls j`e lemketr`bk qul ue pkrmlet`il lhlv`bk bl t`efeks le lh `hfnletk pkbrî` tlelr lclmtks `e eutrfmfke`hls. Hks fevlsa`bkrls tkn`e ue` nulstr` bl 04n`au` 4 + n `au` 2
n0+ x `au`= n= > x`au` 4 n 4 + x `au` 2 n 2 Bkebl,
n4>n0∔7.0= n 0 + 7.:< nt`efeks= Letkemls,
n0+ x `au` = n= > x`au` 4 ( 7.:1 n0 + 7.:< nt`efeks= ) + x `au` 2 n 2 n0+ x `au` = n= > x`au` 4 ( 7.:1 n0 + ( 7.:< ) ( 7.0: ) n = ) + x `au` 2 n 2
Crfikh9
n crfikh =>ncrfikh 2 x crfikh = n=> x crfikh 2 n2 Bkebl,
n2 >n =∔7.:< nt`efeks= + 7.0= n0 n + 7.0= n
n >n ∔7.:< x 2
=
t`efeks=
=
0
Letkemls,
x crfikh = n=> x crfikh 2 ( n =∔7.:nt`efeks4+ nt`efeks2
lelraî`.
D`h`eml bl n`tlrf` y
x t`efeks= n => x t`efeks4 n4 + x t`efeks2 n 2 x t`efeks= n=> x t`efeks4 ( n0 ∔7.0= n0 + 7.: x`au` 4 ( 7.:1 n0 + ( 7.:< ) ( 7.0: ) n = ) + x `au` 2 ( n=∔ 7.: x `au` 2 >
n `au` 2 n2
7.0= n 0+ x `au` = n= n= ∔7.: x`au` 4 ( 7.:1 n0 + ( 7.:< ) ( 7.0: ) n= ) +
( 7.0= n + x `au` 0
=
n= ) ( n =∔7.: x `au` 4 ( 7.:1 n0 + ( 7.:< ) ( 7.0: ) n= ) + 7.0= n0
x `au` 4>
x `au` 4>
n0∔7.0= n0
7.:1 n0 + ( 7.:< ) ( 7.0: ) n=
04< a ∔ ( 7.0= ) ( 04< a )
( 7.:1 ) ( 04< a ) + ( 7.:< ) ( 7.0: ) ( 4:7 a )
x `au` 4> 7.1012
lelraî`.
D`h`eml bl n`tlrf` y
Mknk 0> x t`efeks 4+ x `au` 4 Letkemls,
x t`efeks4>0 ∔ x `au`4 x t`efeks4>0 ∔7.1012
x t`efeks4> 7.4:43
H` n`s` tkt`h n4 ls9
n4>n0∔7.0= n 0 + 7.:< nt`efeks= n 4>7.:1 n0 + 7.:( 7.:1 ) ( 4:7 a ) + ( 7.:< ) ( 7.0: ) ( 04< a ) n 4>434.1= a
m. Mkrrfletl bl s`hfb` bl p`st`. Blh d`h`eml ahkd`h9
n 2 >n0+ n= ∔n4 n2 >4:7 a + 04< a ∔434.1= a n2 >024.41 a
Wkr mknpkeletls9
n crfikh 2> x crfikh= n= ncrfikh 2> ( 7.27 ) ( 04< a ) n crfikh 2>
n crfikh 2 n2
024.41 a x crfikh 2>7.= x t`efeks= n=∔7.:7.0( 7.0< ) ( 7.0: ) ( 04< a ) nt`efeks 2>=.=1< a
x t`efeks2 > x t`efeks2 >
nt`efeks 2 n2
=.=1< a 024.41 a
x t`efeks 2 >7.74=1
Mknk, 0> x `au` 2 + x crfikh 2 + x t`efeks 2
x `au` 2 >0∔ x crfikh 2 + x t`efeks 2 x `au` 2 >0∔ 7.=7.342:
4.
Wrkdhln` bl nlzmh`.
lelraî`.
D`h`eml bl n`tlrf` y
\e` lnprls` qul prkbuml a`iks bl n`eb`rfe` n`eb`rfe` le `hnîd`r `hfnlet `hfnlet` ` `h prkmlsk 017oa/j bl crut` letlr`. Lst` crut` sl slhlmmfke` y j`y ue` pærbfb` bl =. 017 oa ∑(7,63< ) N ccrut` j
N crut`blm`hfb`b>032,7<
oa j
Wrkmlsk bl plh`bk
H` crut` bl m`hfb`b ls levf`b` ` ue prkmlsk bl plh`bk bkebl sl lhfnfe` ue 0:% le plsk bl màsm`r` rlsplmtk `h plsk bl crut` `hfnlet`bk
N m`sm`r` m`sm`r`> N crut` crut` blm`hfb` blm`hfb`b b∑( 7,0:)
(
N m`sm`r` > 032,7<
)
oa ∑( ∑(7,0: ) j
N m`sm`r` >46, N crut`bl m`hfb`b∑( 0 ∔7,0: )
(
N a`iks > 032,7<
)
oa ∑( 7,:4) j
N a`iks a`iks >0=2,7,< ( N prkbumt prkbumtk k alelr`bk)
Blh d`h`eml bl n`tlrf` rl`hfz`bk le h` uefb`b `etlrfkr sl mkekml lh uik bl crut` levf`bk j`mî` lh prkmlsk bl nlzmh`bk
N a`iks >7,< ( N prkbum prkbumtk tk alelr`bk)
0=2,7,< ( N prkbumtk alelr`bk) j 0=2, 436,724 N i`r`dl > N a`iks
oa j
lelraî`.
D`h`eml bl n`tlrf` y
N i`r`dl >0=2,
View more...
Comments