Corrección Segundo Parcial de Cálculo III, 27 de noviembre (tarde) de 2017
Short Description
Descripción: Corrección Segundo Parcial de Cálculo III, 27 de noviembre (tarde) de 2017...
Description
Universidad Mayor de San Sim´on Facultad de Ciencias y Tecnolog´ıa
Hans Muller u ¨ ller Santa Cruz Departamento de Mathematicas
Correcci´ on Segundo Parcial de C´ on alculo alculo III
27 de noviem noviembre bre de 201 2017 7
1, 2, 3, 4
Tabla de Respuestas on del problema a valor inicial 1. (40 puntos ) Determinar el valor de x(ln2), sabiendo que y y es soluci´
Respuesta:
x˙ = 4x y 2, y˙ = 2x + y + y 4, x(0) = 0, 0, y (0) = 0. 0.
− − −
Resolvemos el sistema diferencial lineal asociado al problema:
x˙ = 4x y + y y˙ = 2x + y
− − 2, − 4.
Comenzamo Comenzamoss con (LH) asociado, asociado, que dicho de paso es (LHC), (LHC), escrito escrito matricialm matricialment entee x˙ y
=
4 2
−1 1
⇒ x y
pA (λ) =
− − λ
4
− 1
2
λ
1
= λ 2
− 5λ + 6 = (λ ( λ − 3)(λ 3)(λ − 2)
Familia generadora: e3t , e2t , planteamos como soluci´on on general de (LHC), remplazamos en la segunda ecuaci´on on para obtener relaciones entre las constantes
{
x = c = c 11 e3t + c12 e2t , y = c = c 21 e3t + c22 e2t
}
⇒
y˙ = 3c21 e3t + 2c 2c22 e2t , 2x + y + y = = (2c (2c11 + c + c21 )e3t + (2c (2c12 + c + c22 )e2t .
⇒c
= c 11 = c = c 1 , 21 = c
c22 = 2c12 = 2c2 .
La soluci´ soluci´ on general de (LH) asociado es on x = c = c 1 e3t + c2 e2t , y = c = c 1 e3t + 2c 2c2 e2t Ahora hallamos hallamos una soluci´ on particular por tanteo, planteamos x = on x = α α,, y = β = β . Derivamos y reemplazamos:
0 = 4α β 0 = 2α + β + β
− − 2, ⇒ α = 1, − 4,
β = = 2
La soluci´ soluci´ on on general de la ecuaci´on on (L) es x = c = c 1 e3t + c2 e2t + 1, 1, y = c = c 1 e3t + 2c 2c2 e2t + 2 Con la soluci´on on general podemos halla los valores de las constantes c1 y c2 , reemplazando las condiciones inicia ini ciales les en ´esta. esta . x(0) = c = c 1 + c + c2 + 1 = 0, 0, c1 = 0, c2 = 1 y(0) = c = c 1 + 2c 2 c2 + 2 = 0
⇒
−
La soluci´ soluci´ on del problema a valor inicial es: on x = y = De donde x(ln (ln 2) =
2t
−e + 1,1, −2e + 2 2t
−4 + 1 = −3.
2. (30 puntos ) Un punto P es arrastrado por el plano x y mediante una cuerda P P T de longitud 1 1 . Si T T arranca del origen y se mueve a lo del eje x positivo y si P on de la trayectoria P arranca del punto (0, (0 , 1). Dar la ecuaci´ del punto P .
−
Respuesta:
El punto P P se mueve con una velocidad proporcional al vector P T , T , por consiguiente el segmento P T es T es tangente a la trayectoria del punto P punto P ,, ver figura. Por lo tanto, si la trayectoria es el grafo de y de y((x), se tiene
−→
−→ − −→ − − PR
y =
y
=
1
RT
La trayectoria del punto P punto P es soluci´on on del problema a valor inicial
y =
y
− √
1−y 2
y (0) = 1. 1.
,
y2
.
La ecuaci´on on diferencial es de tipo separable, integrando, mediante substituci´on trigonom´ trigono m´ etrica, etrica, obtenemos ln
− − − 1+
y2
1 y
1
y 2 = x + x + C C
Remplazando el valor inicial y inicial y = = 1, cuando x cuando x = = 0, obtenemos C obtenemos C = = 0. Por lo tanto, tanto, la ecuaci´ on on de la trayectoria es x = ln
− − − 1+
y2
1 x
1
y2 .
on general de la ecuaci´ on 3. (30 puntos ) Hallar la soluci´
(1 + y + y)) dx + dx + (1
− x) dy = dy = 0.
Respuesta:
Dividimos la ecuaci´on on por (1 + y + y)(1 )(1
− x), lo que da dx 1
−x
+
dy = 0, 1 + y + y
ecuaci´ on on que s´ı admite primitiva. Integrando respecto resp ecto a x e y, y , obtenemos la primitiva f ( f (x, y) = De donde la soluci´on on general es ln(
y + 1 − ln(1 − x) + ln(1 + y + y)) = ln( ). 1−x
y + 1 ) = c = c o y + 1 = c( c (x 1 x
−
2
− 1).
Universidad Mayor de San Sim´on Facultad de Ciencias y Tecnolog´ıa
Hans Muller u ¨ ller Santa Cruz Departamento de Matem´aticas aticas
Segundo Segund o Parcial de C´ alculo alculo III II I
27 de noviem noviembre bre de 201 2017 7
1
Nombre y Apellido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carnet de Identidad . . . . . . . . . . . . . . . . . . .
Firma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indicaciones: En las hojas en blanco, escriba con letra clara el desarrollo de las preguntas que est´a respondiendo, indicando claramente a que
pregunta corrresponde. En la tabla de respuestas, marque la opci´ on que considere correcta. on El examen esta dise˜ nado de manera que en cada una de las preguntas, una de las opciones sea la correcta; sin embargo, por errores de transcripci´ nado on puede suceder que ninguna sea la correcta. Si es el caso, marcar esta opci´ on y si el desarrollo de la pregunta es correcto tendr´ a una bonificaci´ on on adicional de 5 puntos por la pregunta. Importante. No olvidarse de marcar la respuesta que considere correcta en el talonario, porque solamente se corrigen las respuestas correctas
del talonario. Las no respondidas se consideran incorrectas.
Tabla de Respuestas 1.
f
2.
d
3.
e
on del problema a valor inicial 1. (40 puntos ) Determinar el valor de x(ln2), sabiendo que y y es soluci´
Respuesta:
x˙ = 4x y 2, y˙ = 2x + y + y 4, x(0) = 0, 0, y (0) = 0. 0.
− − −
a) x(ln (ln 2) = 1, 1, d) x(ln (ln 2) = 1, g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
b) x(ln (ln 2) = 3, 3, e) x(ln (ln 2) = 0, 0,
c) x(ln (ln 2) = f) x(ln (ln 2) =
−6, −3,
2. (30 puntos ) Un punto P es arrastrado por el plano x y mediante una cuerda P P T de longitud 1 1 . Si T T arranca del origen y se mueve a lo del eje x positivo y si P on de la trayectoria P arranca del punto (0, (0 , 1). Dar la ecuaci´ del punto P .
−
Respuesta:
a)
x = ln
d) x = ln g)
y
1+ 1+
√ √
1−y 2
1−y 2 y
− − +
1 + y + y 2 , 1
y2 ,
b) x = cosh(y cosh(y), e)
x = ln
Ningun Ninguna a de las anter anterior iores. es.
c) x = sinh(y sinh(y),
√
1−
1+y 2 y
+
1 + y + y 2 ,
f)
y = e = e x
on general de la ecuaci´ on 3. (30 puntos ) Hallar la soluci´
(1 + y + y)) dx + dx + (1
− x) dy = dy = 0.
Respuesta:
a) y 1 = c ln(x ln(x + 1), 1), d) y = cx = cx 3 , g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
b) y = x = x2 /(c x), e) (y + 1) = c = c((x 1), 1),
−
−
c) xy( xy(x + y + y))2 = c, f) (y 1) = c = c((x + 1), 1),
−
− 1,
Universidad Mayor de San Sim´on Facultad de Ciencias y Tecnolog´ıa
Hans Muller u ¨ ller Santa Cruz Departamento de Matem´aticas aticas
Segundo Segund o Parcial de C´ alculo alculo III II I
27 de noviem noviembre bre de 201 2017 7
2
Nombre y Apellido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carnet de Identidad . . . . . . . . . . . . . . . . . . .
Firma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indicaciones: En las hojas en blanco, escriba con letra clara el desarrollo de las preguntas que est´a respondiendo, indicando claramente a que
pregunta corrresponde. En la tabla de respuestas, marque la opci´ on que considere correcta. on El examen esta dise˜ nado de manera que en cada una de las preguntas, una de las opciones sea la correcta; sin embargo, por errores de transcripci´ nado on puede suceder que ninguna sea la correcta. Si es el caso, marcar esta opci´ on y si el desarrollo de la pregunta es correcto tendr´ a una bonificaci´ on on adicional de 5 puntos por la pregunta. Importante. No olvidarse de marcar la respuesta que considere correcta en el talonario, porque solamente se corrigen las respuestas correctas
del talonario. Las no respondidas se consideran incorrectas.
Tabla de Respuestas 1.
e
2.
c
3.
d
on del problema a valor inicial 1. (40 puntos ) Determinar el valor de x(ln2), sabiendo que y y es soluci´
Respuesta:
x˙ = 4x y 2, y˙ = 2x + y + y 4, x(0) = 0, 0, y (0) = 0. 0.
− − −
a) x(ln (ln 2) = 3, 3, d) x(ln (ln 2) = 0, 0, g) Ningun Ninguna a de las anter anterior iores. es.
b) x(ln (ln 2) = e) x(ln (ln 2) =
−6, −3,
c) x(ln (ln 2) = 1, f) x(ln (ln 2) = 1, 1,
−
2. (30 puntos ) Un punto P es arrastrado por el plano x y mediante una cuerda P P T de longitud 1 1 . Si T T arranca del origen y se mueve a lo del eje x positivo y si P on de la trayectoria P arranca del punto (0, (0 , 1). Dar la ecuaci´ del punto P .
−
Respuesta:
a)
x = cosh(y cosh(y),
d) x = ln g)
b) x = sinh(y sinh(y),
√
1−
1+y 2 y
+
1 + y + y 2 ,
e)
y = e = e x
− 1,
c) x = ln f)
Ningun Ninguna a de las anter anterior iores. es.
x = ln
√
1+
1−y 2 y
y
√
1+
1−y 2
− − 1
+
1 + y + y 2 ,
on general de la ecuaci´ on 3. (30 puntos ) Hallar la soluci´
(1 + y + y)) dx + dx + (1
− x) dy = dy = 0.
Respuesta:
a) y = x = x2 /(c x), d) (y + 1) = c = c((x 1), 1), g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
−
b) xy( xy(x + y + y))2 = c, e) (y 1) = c( c (x + 1), 1),
−
c) y = cx = cx 3 , f) y 1 = c ln(x ln(x + 1), 1),
−
y2,
Universidad Mayor de San Sim´on Facultad de Ciencias y Tecnolog´ıa
Hans Muller u ¨ ller Santa Cruz Departamento de Matem´aticas aticas
Segundo Segund o Parcial de C´ alculo alculo III II I
27 de noviem noviembre bre de 201 2017 7
3
Nombre y Apellido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carnet de Identidad . . . . . . . . . . . . . . . . . . .
Firma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indicaciones: En las hojas en blanco, escriba con letra clara el desarrollo de las preguntas que est´a respondiendo, indicando claramente a que
pregunta corrresponde. En la tabla de respuestas, marque la opci´ on que considere correcta. on El examen esta dise˜ nado de manera que en cada una de las preguntas, una de las opciones sea la correcta; sin embargo, por errores de transcripci´ nado on puede suceder que ninguna sea la correcta. Si es el caso, marcar esta opci´ on y si el desarrollo de la pregunta es correcto tendr´ a una bonificaci´ on on adicional de 5 puntos por la pregunta. Importante. No olvidarse de marcar la respuesta que considere correcta en el talonario, porque solamente se corrigen las respuestas correctas
del talonario. Las no respondidas se consideran incorrectas.
Tabla de Respuestas 1.
d
2.
b
3.
c
on del problema a valor inicial 1. (40 puntos ) Determinar el valor de x(ln2), sabiendo que y y es soluci´
Respuesta:
x˙ = 4x y 2, y˙ = 2x + y + y 4, x(0) = 0, 0, y (0) = 0. 0.
− − −
a) x(ln (ln 2) = 6, d) x(ln (ln 2) = 3, g) Ningun Ninguna a de las ant anteri eriore ores. s.
b) x(ln (ln 2) = 1, e) x(ln (ln 2) = 1, 1,
− −
−
c) x(ln (ln 2) = 0, 0, f) x(ln (ln 2) = 3, 3,
2. (30 puntos ) Un punto P es arrastrado por el plano x y mediante una cuerda P P T de longitud 1 1 . Si T T arranca del origen y se mueve a lo del eje x positivo y si P on de la trayectoria P arranca del punto (0, (0 , 1). Dar la ecuaci´ del punto P .
−
Respuesta:
a)
x = sinh(y sinh(y),
d) y = e = e x
b) x = ln
− 1,
e)
x = ln
g) Ninguna Ninguna de las las ant anteri eriore ores. s.
1+
√
1+
√
1−y 2 y
y
1−y 2
− − 1
+
y2 ,
1 + y + y 2 ,
c) x = ln f)
√
1+y 2 y
1−
x = cosh(y cosh(y),
on general de la ecuaci´ on 3. (30 puntos ) Hallar la soluci´
(1 + y + y)) dx + dx + (1
− x) dy = dy = 0.
Respuesta:
a) xy( xy(x + y + y))2 = c, d) (y 1) = c( c (x + 1), 1), g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
b) y = cx = cx 3 , e) y 1 = c ln(x ln(x + 1), 1),
−
c) (y + 1) = c = c((x 1), 1), f ) y = x = x2 /(c x),
−
−
+
1 + y + y 2 ,
Universidad Mayor de San Sim´on Facultad de Ciencias y Tecnolog´ıa
Hans Muller u ¨ ller Santa Cruz Departamento de Matem´aticas aticas
Segundo Segund o Parcial de C´ alculo alculo III II I
27 de noviem noviembre bre de 201 2017 7
4
Nombre y Apellido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carnet de Identidad . . . . . . . . . . . . . . . . . . .
Firma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Indicaciones: En las hojas en blanco, escriba con letra clara el desarrollo de las preguntas que est´a respondiendo, indicando claramente a que
pregunta corrresponde. En la tabla de respuestas, marque la opci´ on que considere correcta. on El examen esta dise˜ nado de manera que en cada una de las preguntas, una de las opciones sea la correcta; sin embargo, por errores de transcripci´ nado on puede suceder que ninguna sea la correcta. Si es el caso, marcar esta opci´ on y si el desarrollo de la pregunta es correcto tendr´ a una bonificaci´ on on adicional de 5 puntos por la pregunta. Importante. No olvidarse de marcar la respuesta que considere correcta en el talonario, porque solamente se corrigen las respuestas correctas
del talonario. Las no respondidas se consideran incorrectas.
Tabla de Respuestas 1.
c
2.
a
3.
b
on del problema a valor inicial 1. (40 puntos ) Determinar el valor de x(ln2), sabiendo que y y es soluci´
Respuesta:
x˙ = 4x y 2, y˙ = 2x + y + y 4, x(0) = 0, 0, y (0) = 0. 0.
− − −
a) x(ln (ln 2) = 1, d) x(ln (ln 2) = 1, 1, g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
b) x(ln (ln 2) = 0, 0, e) x(ln (ln 2) = 3, 3,
c) x(ln (ln 2) = f) x(ln (ln 2) =
−3, −6,
2. (30 puntos ) Un punto P es arrastrado por el plano x y mediante una cuerda P P T de longitud 1 1 . Si T T arranca del origen y se mueve a lo del eje x positivo y si P on de la trayectoria P arranca del punto (0, (0 , 1). Dar la ecuaci´ del punto P .
−
Respuesta:
a)
x = ln
d) x = ln g)
1+
√
1+
√
1−y 2 y
y
1−y 2
− − 1
+
y2 ,
1 + y + y 2 ,
b) x = ln e)
√
1−
1+y 2 y
x = cosh(y cosh(y),
+
1 + y + y 2 ,
c) y = e = e x f)
x = sinh(y sinh(y),
Ningun Ninguna a de las anter anterior iores. es.
on general de la ecuaci´ on 3. (30 puntos ) Hallar la soluci´
(1 + y + y)) dx + dx + (1
− x) dy = dy = 0.
Respuesta:
a) y = cx = cx 3 , d) y 1 = c ln(x ln(x + 1), 1), g) Ningun Ninguna a de las ant anteri eriore ores. s.
−
b) (y + 1) = c = c((x 1), 1), e) y = x = x2 /(c x),
−
−
c) (y 1) = c = c((x + 1), 1), f) xy( xy(x + y + y))2 = c,
−
− 1,
View more...
Comments